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Abstract—The IEEE 802.16 standard for wireless metropoli-
tan area networks (WMANs) is defined to meet the need for
wide-range broadband wireless access at low cost. The objective
of this paper is to study how to exploit spectral reuse in re-
source allocation in an IEEE 802.16 mesh network, which includes
routing tree construction (RTC), bandwidth allocation, time-slot
assignment, and bandwidth guarantee of real-time flows. The
proposed spectral reuse framework covers bandwidth allocation
at the application layer, RTC and resource sharing at the medium
access control (MAC) layer, and channel reuse at the physical
layer. To the best of our knowledge, this is the first paper that
formally quantifies spectral reuse in IEEE 802.16 mesh networks
and exploits spectral efficiency under an integrated framework.
Simulation results show that the proposed schemes significantly
improve the throughput of IEEE 802.16 mesh networks.

Index Terms—IEEE 802.16, mesh network, resource allocation,
routing tree, WiMax, wireless network.

I. INTRODUCTION

O ACHIEVE the requirement of wide-range wireless

broadband access at a low cost, the IEEE 802.16 standard
[1] has recently been proposed. The goal of this standard is to
solve the last-mile problem in a metropolitan area network in a
more flexible and economical way as opposed to traditional ca-
bled access networks, such as fiber optics, digital subscriber line
(DSL), or T1 links [2], [3]. The IEEE 802.16 standard is based
on a common medium access control (MAC) protocol that
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is compliant with different physical layer specifications. The
physical layer can employ the orthogonal frequency-division
multiplexing (OFDM) scheme below 11 GHz or the single-
carrier scheme between 10 and 66 GHz.

The IEEE 802.16 MAC protocol supports the point-to-
multipoint (PMP) mode and the mesh mode. In PMP mode,
stations are organized as a cellular network, where subscriber
stations (SSs) are directly connected to base stations (BSs).
Such networks require each SS to be within the communication
range of its associated BS, thus greatly limiting the coverage
range of the network. On the other hand, in mesh mode, stations
are organized in an ad hoc fashion. Each SS can act either as
an end point or as a router to relay traffics for its neighbors.
Thus, there is no need to have a direct link from each SS to its
associated BS. This leads to two advantages: SSs may transmit
at higher rates to their parent SSs or BS, and a BS can serve a
wider coverage at a lower deployment cost [4].

In an IEEE 802.16 mesh network, transmissions can un-
dergo a multihop manner. The standard specifies a centralized
scheduling mechanism for the BS to manage the network.
Stations will form a routing tree rooted at the BS for the
communication purpose. SSs in the network will send request
messages containing their traffic demands and link qualities to
the BS to ask for resources. The BS then uses the topology
information along with SSs’ requests to determine the routing
tree and to allocate resources. Resources in an IEEE 802.16
network are usually represented by time slots within a frame.
Our goal is to solve the resource allocation problem given the
uplink/downlink bandwidth demands of each SS and their link
qualities. There are four issues to be considered.

1) Tree reconstruction: How do we determine the routing
tree based on SSs’ current bandwidth demands and link
qualities?

2) Bandwidth allocation: How do we determine the number
of time slots of each SS according to its uplink and
downlink bandwidth demands?

3) Time-slot assignment: How do we assign time slots to
each SS in a frame?

4) Bandwidth guarantee: How do we schedule transmission
on time slots for each SS so that a fixed amount of
bandwidth is guaranteed for each real-time flow?

In this paper, we investigate the resource-allocation problem
by exploring the concept of spectral reuse. Although it is well
known that a time slot used by a station can be “reused”
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TABLE 1
COMPARISON OF PRIOR WORKS [15]-[17] AND OUR SPECTRAL REUSE FRAMEWORK
reuse load tree time-slot  bandwidth
features modeling! awareness reconstruction  allocation  guarantee’
reference [15] partial® 4
reference [16] partia]2
reference [17] N4 N4
our framework v v v v v

1 Mathematical modeling is provided to evaluate the degree of spectral reuse.
2 Initial tree construction is provided, but without tree reconstruction.

3 The guarantee is for real-time flows.

by another station if the latter is sufficiently separated from
the former, the IEEE 802.16 standard does not explore this.
We propose a spectral reuse framework to efficiently allocate
resources in an IEEE 802.16 mesh network with global fairness
in mind, that is, the bandwidths allocated to SSs will be pro-
portionate to their requests in an end-to-end (SS-to-BS) sense.
Our framework includes routing tree construction (RTC) and
a centralized scheduling algorithm. The former allows a BS
to form an efficient routing tree according to SSs’ bandwidth
demands and interferences. The latter helps a BS determine
bandwidth allocation and time-slot assignment. In particular,
when time slots are tight, we show how to adjust scheduling to
prioritize real-time from nonreal-time traffic to guarantee some
bandwidth for real-time traffic. Note that the tree topology is
consistent with the current IEEE 802.16 standard. In addition,
our framework does not require any change to the message
structures and the signaling mechanism defined in the standard.

In the literature, early works on the IEEE 802.16 standard
have primarily focused on the PMP mode [5]-[7]. For the mesh
mode, former efforts have been devoted to topology design [8],
packet scheduling [9], [10], and QoS support [11], [12]. Ref-
erence [13] shows how to manage radio resources in a WiMax
single-carrier network in a distributed manner. Reference [14]
discusses how to improve channel efficiency and provide fair
access to SSs. The BS allocates time slots to SSs in a per-hop
basis in such a way that one-hop nodes will have precedence
over two-hop nodes (“hop” in the sense of nodes’ distances
to the BS). Similarly, ¢-hop nodes will have precedence over
(i 4+ 1)-hop nodes. However, this may lead to starvation of far-
ther away SSs as the network becomes congested, particularly
when SSs with smaller hop counts request larger bandwidths.
On the contrary, our scheduling algorithm allocates time slots
to SSs that are proportionate to their requests and thus avoids
such starvation.

Several studies [15]-[17] have addressed the issue of spec-
tral reuse to solve the resource allocation problem. Reference
[15] proposes RTC and a scheduling algorithm by considering
interference among neighboring SSs. It attempts to find a route
to reduce the interference among SSs and then to maximize the
number of concurrent transmissions. How to attach a new SS
to a routing tree incurring the least interference is discussed in
[16]. In [17], the authors indicate that the network performance
highly depends on the order that SSs join the routing tree
and then propose a routing tree reconstruction and concurrent
transmission scheme to achieve spectral reuse. As can be seen,
the prior works only discuss partial aspects of the resource-
allocation problem.

Table I compares the functions provided by other schemes
and ours. Our framework offers the most complete solution
to the resource-allocation problem. The contributions of our
framework are fourfold. First, it formally quantifies spectral
reuse in a mesh network and is thus capable of achieving higher
spectral efficiency. Second, it takes dynamic traffic demands
of SSs into account and includes not only a tree optimization
algorithm but bandwidth allocation and time-slot assignment
as well. Third, we propose a way to prioritize real-time from
nonreal-time traffic so that a fixed amount of bandwidth is
maintained for each real-time flow when resources are strin-
gent. Finally, the proposed framework covers bandwidth allo-
cation at the application layer, RTC and resource sharing at the
MAC layer, and channel reuse at the physical layer. Extensive
performance studies are conducted, and the simulation results
show that our framework can achieve better spectral reuse and
higher network throughput compared with existing results.

The rest of this paper is organized as follows. Section II
briefly reviews the operations of an IEEE 802.16 mesh net-
work and formally defines the resource-allocation problem.
Section III proposes our spectral reuse framework. Section IV
discusses how to guarantee the bandwidth of real-time traffic
by our framework. Section V gives the simulation results.
Section VI concludes this paper.

II. PRELIMINARY
A. Resource Allocation in an IEEE 802.16 Mesh Network

An IEEE 802.16 mesh network is composed of a BS and
several SSs. These stations form a routing tree rooted at the BS,
and transmissions between stations may undergo a multihop
manner. The IEEE 802.16 MAC protocol supports both cen-
tralized and distributed scheduling methods. In this paper, we
focus on centralized scheduling to fully exploit spectral reuse.

In centralized scheduling, the standard supports two control
messages, i.e., Mesh Centralized Scheduling Configuration
(MSH-CSCF) and Mesh Centralized Scheduling (MSH-CSCH),
to help the BS establish its routing tree and specify the trans-
mission schedules of SSs in the network. To achieve this, the
BS first broadcasts an MSH-CSCF message containing the
routing tree information to the network. An SS receiving such
a message can know its parent and children in the tree and then
rebroadcasts the MSH-CSCF message according to its index
specified in the message. This procedure is repeated until all
SSs have received the MSH-CSCF message.

After constructing the routing tree by the MSH-CSCF
message, SSs can transmit MSH-CSCH:Request messages to
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Fig. 1. Bandwidth allocation example in the IEEE 802.16 standard.

request time slots. The transmission order is from leaves to
the root. An SS will combine the requests from its children
into its own MSH-CSCH:Request message and then transmits
the message to its parent. This way, the BS can gather band-
width requests from all SSs and then broadcasts an MSH-
CSCH:Grant message containing the slot allocations to all SSs.
Note that the BS can also update the routing tree by containing
the tree update information in the MSH-CSCH:Grant message.
In this case, SSs have to update their positions in the new tree
according to the message. Otherwise, the routing tree remains
the same as specified in the previous MSH-CSCF message.
Note that according to the 802.16 standard, the period during
which the MSH-CSCH schedule is valid is limited by the
time that the BS takes to aggregate traffic requirements and
distribute the next schedule. Therefore, the scheduling interval
is several frames, depending on the size of the mesh network.
Therefore, it is reasonable to assume that the link data rates and
bandwidth demands of SSs are constants over a short period
of time.

To allocate bandwidths for SSs, the IEEE 802.16 standard
gives an example, as illustrated in Fig. 1. Each SS ¢ first
sends its uplink bandwidth demand by and downlink band-
width demand bP" to the BS. Let the uplink and downlink
data rates of SS i be rP% and rPY, respectively. The ratios
of uplink slots allocated to SS 1, SS 2, SS 3, and SS 4
will be (bYL + oYL +bJL)/rVL pFL/pPL . pUL P UL
bV /rI (=71 ~42: 73: 74). Note that here the calcu-
lation also includes the relay traffic. If NUL s the total

total
number of uplink slots per frame, the numbers of slots allo-

cated o them are 71 - NU%,/ 20, 3 72 - Ny /S0, 7
v3 - NYL ./ Z?:l i, and 4+ NOL ./ 2?21 i, respectively.
The bandwidth allocation for downlink traffic follows the
same way.

However, the above bandwidth allocation is very inefficient
because a slot is always allocated to only one SS. In fact, SS 2
and SS 3 can concurrently transmit without interfering with
each other. We can quantify the waste of slots as follows. Given

-] frame k-1] frame k [frame k+1]---

7 N

* 4 ~N
7 ~N
control data |
subframe subframe
// N
/ 3
LTI
downlink uplink
time slots | time slots

2 U@
SS 2
(b",b5")

S§S4
bandwidth demands: (b.", b2")

arouting tree 7, the aggregated uplink bandwidth demand dP"

for each SS 7 is defined as

ait =ph 4+ Y dyn (1)
jechild ()

where child(¢) is the set of SS ¢’s children in 7. Then, the
demand of uplink transmission time for SS 17 is

UL diUL
T = or @

Ty

Let us denote the sum of the uplink transmission time of all
SSs by

UL _ 2: UL
Ototal_ Ti :
€T —-BS

Therefore, only a ratio of T;7%/CU% | of the uplink slots is
allocated to SS i. However, let the sum of the transmission times

of SS ¢ and its interference neighbors be

cit=> 1" 3)

JEE;

where F; = {i} UZ(i), and Z(i) is the set of interference
neighbors of SS <. From SS 7’s perspective, it only sees a ratio
of CPL/CYL | of the uplink slots to be busy. In other words, the
remaining 1 — (C7%/CYL ) portion of time is simply idle, as
seen by SS 4. The downlink direction will suffer from a similar
waste.

B. Problem Definition

The problem with the preceding waste is due to the lack
of spectral reuse. Our goal is to solve the resource-allocation
problem in an IEEE 802.16 mesh network with spectral reuse.
Given the uplink and downlink bandwidth demands b and
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TABLE 1I
SUMMARY OF NOTATIONS
notation definition
N number of time slots within a data subframe
NIL/NBL | number of uplink/downlink slots within a frame

NYY/NPY number of uplink/downlink slots allocated to SS 4

bV /bPY individual bandwidth demand of uplink/downlink traffics generated by SS i
dZUL / d?L aggregated bandwidth demands of uplink/downlink traffics delivered by SS4
Pl /Pl uplink/downlink data rate of SS3

Tt /TP demand of uplink/downlink transmission time of SS3

E; set of SSs that contains SS+¢ and its interference neighborhood Z(3)
CZ-UL / CP L aggregated TV /TDL of all SSj in E;
Ctlg)%al/ Cgtal aggregated leUL /T L of all SS 4 in the network
c9L. / ¢PL maximal CZ-U / CZD among all SS+ in the network

'-------------------------------.
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Fig. 2. System architecture of our spectral reuse framework.

b?L and data rates rlU L and T?L, respectively, of each SS 7, we

will consider the following four issues.

1) Tree reconstruction: How do we organize the routing tree
according to SSs’ bandwidth demands and data rates so
that the traffic loads among tree nodes can be balanced
and the network throughput can be maximized?
Bandwidth allocation: How do we allocate time slots to
SSs according to their bandwidth demands and data rates
so that SSs can fully utilize the channel?

Time-slot assignment: How do we assign slots of a frame
for SSs with global fairness in mind so that the transmis-
sions between SSs will not conflict with each other?
Bandwidth guarantee: How do we schedule real-time and
nonreal-time traffic when resources are stringent so that
the bandwidth requirements of real-time flows can be
maintained?

2)

3)

4)

III. SPECTRAL REUSE FRAMEWORK

In this section, we propose our spectral reuse framework to
solve the first three issues in the resource-allocation problem.
In Section IV, we will discuss how to extend our framework
to provide bandwidth guarantee for real-time flows. Table II
summarizes the notations used in this paper. Fig. 2 shows the
system architecture of our framework. First, the BS collects
the MSH-CSCH:Request messages and passes the bandwidth
demands and data rates of SSs to the scheduling and routing
modules. The scheduling module is a fast process that deter-
mines the number of time slots and their positions allocated to
each SS in each frame. The routing module is a slow process,
which continuously monitors the quality of the routing tree and

MSH-CSCH:Grant
message to SSs

reconstructs the tree when the quality of the tree degrades. That
is, when it is found that the tree cannot efficiently deliver the
traffics of SSs, a new routing tree will be computed by the
routing module. The BS then broadcasts an MSH-CSCH:Grant
message containing the new routing tree and time-slot alloca-
tion of each SS to the network.

In the following sections, we first present the basic concept
of our spectral reuse framework, followed by the designs of the
scheduling and routing modules.

A. Basic Concept

Earlier, we have indicated that, in the uplink -case,
the scheduling scheme in IEEE 802.16 only assigns p; =
TVl /CUL | portion of uplink slots to each SS i. From each
SS i’s view, the remaining 1 — (CP%/CUL ) portion of uplink
slots are idle. Ideally, SS 7 may expect the idle portion to be
fairly distributed to all SSs in E; proportionally. This implies
that SS i can share an additional ¢; = (1 — CP%/CUL ) x
T9% /CPY portion of uplink transmission time. Thus, the total
portion of uplink transmission time assigned to SS ¢ is

TUL cVL VL UL
C{IL + (1 - OGL ) X CZUL = ClUL' “)
total total 7 i

Similarly, the total portion of downlink transmission time
assigned to SS i can be upgraded, ideally, to T,°% /CPL.

Unfortunately, (4) does not consider the congestion issue
in the global network. In a noncongested network, the uplink
bandwidth of an SS should be able to deliver all traffic from
itself plus those from its children. Otherwise, congestion on
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that SS’s uplink will occur. Therefore, given a noncongested
network, if an SS ¢’s uplink bandwidth is increased by a ratio
of «, a sufficient condition to avoid the network becoming
congested is to enforce the parent of SS ¢ to increase its uplink
bandwidth by at least a ratio of «. Now, let a; be the ideal ratio
of increase by SS i in the uplink direction
cVL TV
o _ (@) < dr o,

_ _ total _
Q; = * = TUL = CUL — 1.
pi 4T @
total

The minimum ratio of increase among all SSs is

UL
C'total
CVUL

max

Qmin = rréi_n{ai} = —-1>0
K2

where OVl = maxy; {CYY}. Therefore, using ami, as the
global ratio of increase, the portion of uplink transmission time

for each SS ¢ such that the network will not be congested is

(1 o ) y TiUL - Tl-UL
min - M
CtUo%al Crlrjlgx

Similarly, the portion of downlink transmission time for each
SS i such that the network will not be congested is 7°%/CPL |
where CDL = maxy; {CPL}.

max

Note that the above calculation includes the demands of
individual SSs as well as relay traffic. Therefore, our slot allo-
cation is in an end-to-end sense. Next, we discuss how to adopt
this concept to the scheduling module to increase the channel
efficiency. The routing module will reconstruct the routing tree
to further improve the performance of the scheduling module.
For readability, we first discuss how the scheduling module
works and then present how the routing module works.

B. Scheduling Module

Given a routing tree 7, the scheduling module should
properly allocate time slots to SSs in each frame so that the
transmissions of nearby SSs will not cause collision, and global
fairness among SSs can be maintained. Assuming N to be the
total number of slots in a data subframe, the scheduling module
involves the following steps.

1) We first choose the ratio of the number of uplink slots to
the number of downlink slots to be CUL : CPL  Thus,

max max-*

the numbers of uplink and downlink slots in a data sub-
frame observed by the BS are Nk, = |CUL /CUL 4

max/ ~max
DL DL __ DL UL DL
Cmax X NJ and Ntotal - Lcmax/cmax + Cmax X NJ’

respectively.!

2) Based on NYL and NPL | we then allocate NI =

TPV Chagie X Ny and NPY=TPL/ Rl x NRL, slots
to each SS ¢ for its uplink and downlink traffics, respec-

IRecall that CUL. and CRL represent the maximum uplink and downlink
demands, respectively, seen by individual nodes. They are bottlenecks of uplink
and downlink transmissions. Therefore, we use the ratio of CUL, and CDL to
reflect the demands of uplink and downlink slots and use this ratio to distribute
slots. Later on, we will construct the routing tree by minimizing the sum of
CUL and CRL to improve spectral reuse. In addition, note that the number
of slots should be bounded to integers. However, in the following, we will avoid

using floor and ceiling functions for ease of presentation.

tively. Note that since spectral reuse is considered, it is
possible that >, N> NUL and 3, NPL > NDPL

3) Next, we need to allocate N' collision-free uplink slots

in each data subframe to SS i. These slots are divided
into two parts. Part-1 contains T)°%/Cit) x NOE

tot total
slots. Part-2 contains (TVY/CUL — TUL/CUL ) %
NUEL | slots. Part-1 slots are more suitable for real-time

traffics because a packet issued by any SS in 7 can be

delivered to the BS with a latency of no more than one

frame time (the reason will be explained in Theorem 1).

Now, we describe how these slots are determined.

a) Part-1 slots: These slots are assigned in a bottom-up
manner along the tree 7. Specifically, we traverse SSs
in 7 according to the transmission order of MSH-
CSCH:Request messages. In IEEE 802.16, such an
order is reverse in hop count to the BS (that is, largest
hop count first) and is retained as the nodes’ IDs in the
routing tree for SSs with the same hop count. Thus, the
order of a child SS is always before that of its parent.
Following this transmission order, for each SS ¢ being
visited, we select the first 7;°% /C{L  x NZL . un-
occupied slots as its part-1 slots and then mark these
slots as occupied. This operation is repeated until all
SSs are visited.

b) Part-2 slots: We also assign these slots following the
transmission order of MSH-CSCH:Request messages.
For every SS i being visited, each of its part-2 slots
is selected from the first unoccupied slot by any SS in
E;. Then, that slot is marked as occupied. The above
operation is repeated until all SSs are visited.

Algorithm 1 gives the pseudocode of the foregoing time-

slot assignment scheme.

Algorithm 1: Time-slot assignment for uplink traffics

Input: numbers of uplink slots for SSs, {NPF, .- NYE}
Output: result of slot assignment, transmit[n| [Ng%al]
// assign part-1 slots

let SS1,2,--- ,n be the transmission order of
MSH-CSCH:Request messages in 7 ;
free — 1;

for i =1 ton do
Tk UL .
allocated < free +atr— X Niotals
total
for j = free to allocated do slot[j] — i;
| free < allocated,

// assign part-2 slots
for i =1 ton do
for j =1to NI, do
| transmit[i][j] < NULL;
for i =1ton do // mark occupied slots of SSs
for j =1to N2, do
| if slot[j] € E; then transmit[i][j] < slot[j];

for i =1 ton do
TUL UL
allocated = (Cj‘m— — St

max total
for j =1to NI, do
if allocated > 0 and transmit[i][j] = NULL then
transmit[i][]] <
allocated — allocated —1;
for k =1ton do
| if k € E; then transmit(k][j] < i;

UL .
) X Ntotah
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Fig. 3. Example of time-slot assignment for uplink traffics.

4) We then designate NPV collision-free downlink slots
to each SS 7. These slots are also divided into
two parts, where part-1 contains TPY/CRL x NPL
slots and part-2 contains (7PY/CDL — TPL/CPL ) x
Nt]?)%al slots. For each part, we assign their slots in a
top-down manner along the tree 7. Specifically, we
traverse SSs in 7 by the transmission order of MSH-
CSCH:Request messages and then assign slots to these
SSs following the reverse order. For each SS being vis-
ited, we assign downlink slots to them according to the

rules specified in step 3.

Consider an illustrative example in Fig. 3, where we need
to assign uplink slots for five SSs in the network. Let the
demand of each of the SSs a, b, ¢, and d be one slot, and
let the demand of SS e be two slots. We assume that the
interference neighborhood of an SS contains all its neighbors
within the two-hop range. First, part-1 slots can easily be
assigned in a sequential manner (¢ — ¢ —d — a —b). To
assign part-2 slots, observe that the interference neighborhood
Z(a) of a includes ¢, d, and e. For e, we assign slot 8 as
its part-2 slot since it is the first unoccupied slot by SSs in
E. ={a,c,d,e}. Similarly, we assign slot 10 as ¢’s part-2
slot because it is the only unoccupied slot by SSs in E, =
{a,b,c,d,e}. For a, since E, = {a,c,d, e}, we assign slot 9
as its part-2 slot. Note that although slot 9 has already been
assigned to b, it does not prevent a from using it because
b ¢ E,. From Fig. 3, we can observe that any packet issued
in part-1 slots can always be delivered to the BS within one
frame time. However, a packet issued by e in its part-2 slot
totally takes 12 slots to be delivered to the BS, which exceeds
one frame time. Note that the above scheduling employs a
proportional allocation in the sense that the bandwidth allo-
cation for each SS is based on its own bandwidth demand,
its children’s demands, and the sum of all SSs’ demands in
the mesh network. The BS collects all of SSs’ demands and
allocates bandwidth to them by the ratio of their aggregated
demands and CUL . Since all the aggregated demands of

SSs are divided by the same factor of CUL | the resource

max?

is proportionally allocated to SSs. In addition, once a slot is
allocated to an SS, the relaying slots are allocated to its parent
SS too. Therefore, the allocation is done in an end-to-end
perspective.

Theorem 1: Part-1 slots are collision free, and any packet
issued in part-1 slots can be delivered to the destination station
within one frame time.

Proof: We first prove that part-1 slots are collision free.
For the uplink case, since Zw TZ.UL = Cg)%al, the total number
of part-1 slots is > ., (7' /CPL | x NUE ) = NUL . Thus,
there must be enough slots assigned to all SSs for their part-1
slots. In addition, since step 3 in the scheduling module guar-
antees that any two SSs will not select the same uplink slot, the
part-1 slots in the uplink case are collision free. Similarly, for
the downlink case, since >, (TPY/CRL  x NPL ) = NPL |
it is guaranteed that there are enough slots assigned to all SSs.
Again, since step 4 ensures that two SSs will not choose the
same downlink slot, the part-1 slots in the downlink case are
also collision free.

We then show that the latency of any packet issued in part-1
slots is bounded to one frame time. For the uplink case,
we schedule SSs following the transmission order of MSH-
CSCH:Requet messages. Since this order is the reverse of
the hop count to the BS, it is guaranteed that we always
assign uplink slots of a child SS before its parent. In addition,
since each SS has enough uplink slots to relay its children’s
packets, any packet issued in part-1 slots can be delivered to
the BS within one frame time. For the downlink case, since we
schedule SSs following the reverse order of the transmission
order of MSH-CSCH:Request messages, we will always assign
downlink slots of a parent SS before its children. Again, since
each SS has enough downlink slots to relay packets from the
BS, we can guarantee that any packet from the BS in part-1
slots can be delivered to the destination SS within one
frame time. |

Theorem 2: Part-2 slots are collision free.

Proof: We first prove that the part-2 slots in the uplink
direction are collision free. In Section III-A, we have shown
that each SS can be assigned with T,"%/CUL x NUL  slots
without congesting the network. Thus, there are enough slots
assigned to all SSs for their part-2 slots. In addition, step 3 in
the scheduling module guarantees that any two SSs inside the
interference range will not select the same slot. Thus, the part-2
slots in the uplink case are collision free. For the downlink
case, since each SS can be assigned with TPV /CPL < NPL,
slots without congesting the network, there are also enough
slots assigned to all SSs. Similarly, by step 4, we can ensure
that two SSs inside the interference range will not choose
the same slot. Thus, this theorem still holds in the down-
link case. ]

Remark 1: The IEEE 802.16 mesh mode only supports time
division duplex (TDD) for uplink and downlink traffics. The
TDD framing is adaptive in that the bandwidths allocated to
uplink and downlink traffics can vary. Unlike the PMP mode,
there is no clear boundary between uplink and downlink slots
in the mesh mode. In this paper, we assume that a slot will
exclusively be used by only uplink or downlink throughout the
whole network.
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Fig. 4. Special case of the RTC problem.

C. Routing Module

In Section III-A, we have indicated that the uplink and
downlink slots allocated to each SS are inversely proportional
to the values of CUL_and CDL | respectively. Therefore, the
goal of this routing module is to reconstruct the routing tree,
whenever needed, to reduce both CUL and CDL so that SSs
can receive more time slots.

Definition 1: Given a mesh network G, bandwidth demands,
and data rates of SSs in G, the RTC problem is to find a
routing tree 7 in G such that the value of CUL + CPL s
minimized.

To prove that the RTC problem is NP-complete, we define a
decision problem as follows.

Definition 2: Given a mesh network G, bandwidth demands,
data rates of SSs in G, and a real number R, the RTC problem

is to decide whether G has a routing tree 7 such that CUL +
CDL

max —

Theorem 3: The RTC problem is NP-complete.

Proof: First, given the routing trees in G, we can calculate
the values of their CULand CPL and check whether CUL +
CPL < R. Clearly, this takes polynomial time. Thus, the RTC
problem belongs to NP.

We then prove that the RTC problem is NP-hard by reducing
an NP-complete problem, i.e., the partition problem [18], to a
special case of the RTC problem in polynomial time. Given a
set X’ where each element z; € X has an associated size s(x;),
the partition problem asks whether it can partition X into two
subsets with equal total size.

Consider a special case of the RTC problem in Fig. 4, where
the interference neighborhoods Z(a) and Z(b) of SS a and SS
b are not overlapped. The data rates and bandwidth demands
of SSs in E, U Ej are set to r and 0, respectively. Except for
those SSs in E, U Ej, there are n SSs X = {x1,x2,...,2,}
connected with both SS ¢ and SS d, each with nonzero equal
uplink and downlink bandwidth demands.

Here, we reduce the partition problem to the special case
of the RTC problem. Let the size s(x;) be the sum of uplink
and downlink bandwidth demands of each z; € X, and R =
5/2% ,; s(z;)/r. From Fig. 4, we can observe that the parent
of z; € X is either SS ¢ or SS d. Because the bandwidth
demands of all SSs in E, U Ej, are zero, the only way to make
CUL 4+ CPL < R is to partition X into two subsets (where
the SSs in X’ select either SS ¢ or SS d as their parent) with
equal total size. Thus, if there exists a routing tree in G such that

CUL 4+ CPL < R, there must be a partition to divide X into
two subsets with equal total size. Obviously, this reduction can
be performed in polynomial time. Therefore, the RTC problem
is NP-complete. ]
In the following sections, we propose a heuristic load-aware
tree construction (LTC) algorithm to solve the RTC problem.
The LTC algorithm constructs the routing tree from leaves to
the root. Let P, = PFS U REQ where PLS is the set of SS i’s
neighbors whose hop counts to the BS are less than that of SS ¢,
and Pl-EQ is the set of SS 4’s neighbors whose hop counts to the
BS are equal to that of SS ¢; these neighbors have already been
assigned with parents. The LTC algorithm works as follows.

1) Our goal is to form a routing tree 7 to connect all SSs.
Initially, SSs are not connecting to any node. Therefore,
we have a forest of trees, where each tree is an individ-
ual SS. Then, we can use (1) and (2) to calculate the
aggregated uplink bandwidth demand dY'", aggregated
downlink bandwidth demand dP%, demand of uplink
transmission time 7V, and demand of downlink trans-
mission time TiDL of each SS 7. However, note that to
calculate (2), it is necessary to know the parent node of
SS i (to estimate the transmission rate between ¢ and its
parent). To resolve this uncertainty, we assume that before
an SS ¢ decides its actual parent, it has a tentative parent
SS j, where j € P;, and the transmission rate between %
and j is the highest among all the candidates.

2) Since the demands of the transmission times 7,°“ and
TPL of all nodes i are known, we can apply (3) to
calculate CPL and CPY for all SS 1.

3) Let A be the set of SSs that have not decided their actual
parents and have maximum hop counts to the BS.

4) This step will decide the actual parent of one SS in A.

a) For each SS ¢ € A, connect SS ¢ to each SS j € P;
and recompute the new values of C’™ and CP" by
assuming that ¢’s actual parent will become j. Note
that to avoid forming a cycle, if the path from SS
¢ to SS j results in a loop, we set the values of
CY% and CPY as co. We then choose the SS j with
the minimum value of CJUL + CJDL as the candidate
parent of SS .

b) Step a) will choose a candidate parent, for example,
p(2), for each SS i € A. Among these candidates, we
choose the SS p(i) such that the value of C}s + C s
is minimized as the actual parent of SS ¢ and make a
connection between i and p(i).

5) Repeat step 4 until the set A is empty.

6) Repeat steps 3—5 until all SSs have decided their actual
parents.

Step 4a builds the subtree whose subtree root (SS j) has
the minimum value of C’UL + C’DL Similarly, step 4b builds
the subtree whose subtree root (SS p(%)) has the minimum

value of CE(L) Cp - This can help balance the distribution

of forwarding traffics and keep the final value of CYL + CPL
as small as possible in the constructed tree. Note that the above
calculations of C'Y and CPL are all tentative. Their values will
keep on changing as the tree is building up. Algorithm 2 gives

the pseudocode of the LTC algorithm.
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Algorithm 2: Load-aware tree construction (LTC) algorithm

Input: set G of all SSs in the network

Output: routing tree 7

foreach ¢ € G do

let rf(}l;]ax) and r%‘nax) be the highest rates of uplinks and

downlinks of SS j tgLSSs in Pj;
UL bj

ci — Z]'EEL' r]['J(E:nax) 4
DL

DL bj
Ci — EjEE,' 7D

I
F(max)

while G # ( do

let A be the set of SSs without parents which have the
largest hop counts to the BS;

G—G-A

while A # 0 do

C1min 00

foreach i € A do

foreach j € P; do

if CJ’" + CP" < Ciin then
Chin — CY* + CPY;
parent «— j;
child « i;

T [child] = parent;
A — A — {child};
| foreach 7 € Eyarent U Ecnila do update CPY and CPY;

Next, we analyze the time complexity of the LTC algorithm.
Since each SS has exactly one parent, step 4 will be repeated at
most n times, where n is the number of SSs in the network.
In step 4a, at most m nodes will be checked, and each will
check at most d candidates, where m is the maximum number
of SSs with the same hop count to the BS, and d is the maximum
degree of SSs. Thus, the time complexity is O (nmd).

Finally, we comment on the timing to invoke the routing
module. Since reconstructing the routing tree causes communi-
cation cost, one possible moment to invoke the routing module
is when the value of CUL + CPL of the old tree is higher than

that of the new tree by a predefined threshold.

IV. BANDWIDTH GUARANTEE FOR REAL-TIME FLOWS

The aforementioned spectral reuse framework can allocate
time slots to SSs proportionate to their requests. However,
when SSs request new flows or need more bandwidth for
their old flows, the system may no longer guarantee enough
bandwidth for the original flows. To solve this problem, we
propose an admission control mechanism to extend our spec-
tral reuse framework. Specifically, we separate flows into
real-time and nonreal-time flows. When an SS requests a new
flow or more bandwidth for its old flows, we will check whether
the bandwidth requirements of all real-time flows can still be
satisfied. If so, we will admit this request. Otherwise, we will
reject this request to guarantee bandwidths of existing real-time
flows.

Fig. 5 illustrates the flowchart of our admission control
mechanism. The idea is to prioritize real-time from nonreal-
time flows. For each SS, we always ensure sufficient slots to
satisfy the bandwidth requirements of all its real-time flows,
and then distribute the remaining slots to its nonreal-time flows.

SSjrequests a new flow i

Is i a real-time flow?

check whether SS j has enough |yes
slots to support all its real-time flows

no

reallocate slots to SSs by spectral
reuse framework with the bandwidth
requirements of all flows
no
reallocate slots to SSs by spectral es
reuse framework with the bandwidth >
requirements of only real-time flows
¢ no

es

~<

A 4

<

\4

reject flow i admit flow i

Fig. 5. Flowchart of the admission control mechanism.

This is what we mean by prioritizing real-time from nonreal-
time flows. This implies that an SS can always admit more
nonreal-time flows since its real-time flows always have higher
priority. However, when an SS j requests a new real-time flow
7 (or wants to increases bandwidth of a real-time flow ), the
following steps will be executed.

1) Check whether SS j’s current slots can support the re-
quired bandwidths of all its real-time flows (including
flow ¢). If there are enough slots, we can admit flow <.
Otherwise, it means that we have to reallocate slots in the
system to support this new request (refer to step 2).

2) To reallocate slots of SSs in the network, we will execute
our spectral reuse framework in Section III. We will
update the bandwidth requirement of SS j, run the routing
module to reconstruct the routing tree, and then run the
scheduling module to allocate slots to all SSs. Then, we
check whether this new allocation can support the real-
time flows of all SSs. If so, we can admit flow ¢ and
adopt the new allocation. Otherwise, it means that the new
scheduling cannot satisfy some real-time flows, so we go
to step 3.

3) Update the bandwidth requirements of all SSs by remov-
ing their nonreal-time flows. With these requirements, we
execute our spectral reuse framework again. We run the
routing module to reconstruct the routing tree and then
run the scheduling module to allocate slots to all SSs.
Then, we check whether this new allocation can support
the real-time flows of all SSs. If so, we can admit flow ¢
and adopt the new allocation. Otherwise, the system does
not have enough slots to support flow 7, so we should
reject the request of flow .

Note that although step 3 allocates slots to SSs based on
their requirements of real-time flows, an SS can still transmit
nonreal-time flows as long as its real-time flows do not consume
all the bandwidths of the SS. In addition, we comment that
although the above discussions only cover two classes (real time
and nonreal-time) of traffic, general multiple m classes of traffic
is applicable. In this case, we should check whether the addition
of a new flow ¢ (e.g., in class £ < m) can still guarantee the
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Fig. 6. Regular and dense network topologies in our experiments.

bandwidth requirements of all flows in classes 1,2,... k. If
not, we can remove flows in classes k£ + 1,k + 2,...,m and
reallocate slots to check whether the system has enough slots to
support the request of flow i.

V. PERFORMANCE EVALUATION

In this section, we present some experimental results con-
ducted by the ns-2 simulator [19] to verify the effectiveness
of the proposed framework. We adopt a single-channel OFDM
physical layer and a two-ray ground reflection model for ra-
dio propagation and extend the time-division multiple-access
(TDMA) MAC module in ns-2 for the MAC layer. We consider
three kinds of network topologies, i.e., regular, dense, and
random. In a regular network, there are at most 84 SSs placed
in a diamond mesh topology (as shown in Fig. 6). In a dense
network, we add an extra SS in each position marked by “+”
in Fig. 6. In a random network, we arbitrarily select at most 84
positions from the dense network to place SSs. Note that the
resulting network is connected. All SSs are stationary and work
in half duplex. The interference neighborhood of an SS includes
all its neighbors within the two-hop range. Therefore, there are
at most 12 and 24 nodes in an SS’s interference range in regular
and dense networks, respectively. In the random network, an
SS’s interference range contains 12 nodes on average. There
are 512 time slots in a frame. The channel bandwidth is set to
50 Mb/s, and we assume that all links have the same data rates.
For each experiment, at least 100 simulations are repeated, and
we take their average.

communication link

A. Network Throughputs Under Different Network Topologies

We first evaluate the network throughputs under different
network topologies. Network throughput is defined as the total
amount of data received and transmitted at the BS. We compare
our results against the basic 802.16 mesh operation and the con-
current transmission scheme with route adjustment proposed
in [17]. For the 802.16 operation, the random routing tree is
adopted, and the numbers of uplink and downlink slots are set
to equal. Each SS will generate random traffic loads and request
the same uplink and downlink bandwidth demands. For regular
and random networks, the number of SSs is set to 4, 12, 24, 40,
60, and 84. For the dense network, we set the number of SSs as
8, 24, 48, 80, 120, and 168.

Fig. 7 shows the network throughputs of different methods
in the regular network. Clearly, the network throughput will
decrease as the number of SSs increases because a packet
needs to travel more hops on average as the network scales
up. From Fig. 7, we can observe that the throughput of the
802.16 operation significantly drops when the number of SSs
increases. This is because it adopts a random routing tree, which
causes longer relay routes. Moreover, the neglect of spectral
reuse greatly hurts the system performance. The improvement
of throughput by the concurrent transmission scheme proposed
in [17] is limited because it constructs the routing tree according
to the SSs’ positions rather than their traffic loads. Thus, the
network bottleneck cannot be reflected, and the benefit of route
adjustment is limited. Moreover, this concurrent transmission
scheme restricts that SSs cannot transmit data earlier than their
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Fig. 7. Comparison of network throughputs in the regular network.

child SSs so that the throughput is reduced. Our framework
performs better than these two schemes because it can estimate
the degree of spectral reuse according to SSs’ traffic loads
and thus allocates more time slots to SSs. As the network
scale grows, the degree of spectral reuse can also increase.
In addition, the LTC algorithm of the tree module can gener-
ate better routing paths to distribute the traffics more evenly.
Therefore, the complete framework can result in the highest
throughput.

We then verify the network throughputs of different methods
in dense and random networks (as shown in Fig. 8). All the
network throughputs are normalized by that of the basic 802.16
mesh operation. From Fig. 8, we can observe that the results are
similar to that in Fig. 7. However, as compared with Fig. 7, the
improvement of our framework slightly degrades. For the dense
network, this is due to the decrease of the degree of spectral
reuse since the number of nodes in each SS’s interference
neighborhood becomes double. For the random network, this is
because the network bottleneck usually appears in the one-hop
neighbors of the BS.

In the following experiments, we conduct all the simulations
in the regular network.

3 Y T T
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Fig. 8. Comparison of normalized network throughputs in dense and random

networks.

B. Network Throughputs Under Different Traffic Demands

Fig. 9 shows the normalized network throughputs under
different numbers of SSs with various uplink traffic demands.
Each SS randomly requests 50%—-100% uplink bandwidth de-
mand. From Fig. 9, we can observe that the network throughput
of our framework is much higher than that of the 802.16
operation. This is because the 802.16 operation only allocates
equal numbers of slots to uplink and downlink traffic without
any flexibility. The situation becomes worse when the number
of SSs increases, because the difference between the amount
of uplink traffic and the amount of downlink traffic could be
large. On the contrary, our framework allocates the ratio of
uplink to downlink slots as CUL : CPL - which reflects the
practical traffic loads of SSs. In addition, the tree module helps
reconstruct a better routing tree to reduce both values of CUL
and CPL | thereby further improving system performance.

Fig. 10 illustrates the normalized network throughputs under
different uplink traffic demands. We set the number of SSs
as 84. Each SS generates 0.3-Mb/s traffic load on average,
where the ratio of uplink request is varied from 10% to 50%.
From Fig. 10, we can observe that our framework can signifi-
cantly improve the network throughput, particularly when the
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Fig. 10. Comparison of normalized network throughputs under different
uplink traffic demands.

difference between uplink and downlink traffic demands in-
creases. This is because the 802.16 operation simply allocates
equal numbers of slots for uplink and downlink traffic, which
may lead to network congestion in one direction while leaving
slots wasted in another direction. The situation becomes worse
when the traffic loads in the uplink and downlink directions
become extremely unbalanced.

C. Packet Dropping Ratio of Real-Time Flows

We then evaluate the packet dropping ratio of real-time flows
in the network, which is defined as the ratio of the number
of real-time packets dropped (due to exceeding deadlines) to
the number of real-time packets generated. We set the deadline
of a real-time packet as 500 ms. There are 80% real-time
flows and 20% nonreal-time flows in the network. Fig. 11
illustrates the packet dropping ratios under different numbers
of SSs. We can observe that our framework can result in a
lower packet dropping ratio because it can achieve a higher
network throughput with the help of spectral reuse and tree
reconstruction. Therefore, real-time flows can receive more
bandwidth to alleviate their packet dropping ratios.
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Fig. 11. Comparison of packet dropping ratios under different numbers
of SSs.
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Fig. 12. Comparison of real-time-flow-granted ratios under different numbers

of SSs.
D. Real-Time Flow Granted Ratio

Fig. 12 shows the real-time-flow-granted ratio under different
numbers of SSs. The real-time-flow-granted ratio is defined as
the ratio of the number of admitted real-time flows to the num-
ber of requested real-time flows. We set the ratio of the number
of real-time flows to the number of nonreal-time flows as 4: 1.
Each flow uniformly generates a traffic load of [0.1 Mb/s,
0.5 Mb/s]. From Fig. 12, we can observe that when the number
of SSs increases, the real-time-flow-granted ratio will decrease
because the average routing path to the BS increases. In this
case, SSs have to relay more traffic from their children, result-
ing in a high risk of network congestion. By exploiting spectral
reuse, our framework can achieve a higher network throughput
and thus improves the real-time-flow-granted ratio. In addition,
the extension of our framework in Section IV prioritizes real-
time flows from nonreal-time flows, thereby further improving
the real-time-flow-granted ratio.

Fig. 13 illustrates the real-time-flow-granted ratio under dif-
ferent traffic loads of 84 SSs. We vary the average traffic load
of SSs from 0.1 to 0.6 Mb/s. Each SS will request 80% real-
time flows and 20% nonreal-time flows. From Fig. 13, we
can observe that the real-time-flow-granted ratio significantly
decreases as the average traffic load increases due to serious
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network congestion. In such a severe environment, the 802.16
operation can only admit no more than 10% real-time flows.
On the other hand, our framework can still admit 25% real-
time flows even when the average traffic load of SSs arrives to
0.6 Mb/s. This reflects the flexibility of flow scheduling in our
framework.

Fig. 14 shows the real-time-flow-granted ratio under different
nonreal-time traffic demands. We set the number of SSs as 84.
Each SS generates 0.3-Mb/s traffic load in average, where the
ratio of nonreal-time flows is varied from 10% to 50%. From
Fig. 14, we can observe that the real-time-flow-granted ratio
of our framework can be improved as the ratio of nonreal-
time flows increases because real-time flows can obtain more
bandwidths from these nonreal-time flows.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown how to increase the degree of
spectral reuse in an IEEE 802.16 mesh network. An integrated
spectral reuse framework for centralized scheduling and an
RTC scheme are developed. Compared with previous works,
our framework is complete in exploiting the spectral reuse of
IEEE 802.16 mesh networks in the sense that it takes dynamic

traffic loads of SSs into account and integrates not only a
bandwidth-scheduling scheme but also a time-slot allocation
scheme. In addition, a routing algorithm with tree optimiza-
tion is proposed. We have also developed an extension of
our framework to support the bandwidth requirements of real-
time flows. Simulation results have shown that the proposed
framework significantly improves the network throughput and
the flow-granted ratio compared with the specification in the
IEEE 802.16 standard.

Our discussion has focused on the bandwidth guarantee of
real-time flows. As for future works, several directions may de-
serve further investigation. First, more QoS factors of real-time
flows such as delay constraints and jitters could be considered
in the slot assignment strategy [20]. Second, flow differentiation
rather than flow prioritization could be considered in the band-
width allocation scheme to prevent nonreal-time flows from
starvation. Third, multipath routing and distributed scheduling
could be considered to provide better performance. Finally, the
limitation that a slot is only exclusively used for uplink or
downlink throughout the whole network could be relaxed for
better bandwidth efficiency.
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