Chapter 1.

General Introduction



Phase transformations of copper-aluminum (Cu-Al) binary alloys have
been extensively studied by many workers [1-10]. Based on their studies, it was
found that when the Cu-Al binary alloys with a chemical composition ranging
from 20 to 30 at.% Al were solution heat-treated at a point in the single B phase
(disordered body-centered cubic) region and then quenched into
room-temperature water or iced brine, a B(A2) — B4(D03) phase transition
would be occurred during quenching by an ordering transition, as shown in
Figure 1.1. Figure 1.1 is a Cu-Al binary phase diagram [6-7], two kinds of
martensite phases, B1' (18R) and Y, (2H), are occurred during quenching by a
martensitic transformation in the different.composition ranges. The martensitic
transformation temperature:would'decrease with increasing the Al content. In
addition, in order to suppress the:martensitic transformation, manganese (Mn)
was added to the Cu-Al binary alloys [11-21]. Effects of the Mn content on the
microstructure of Cu-Al binary alloys have been studied by many researchers,
too [12-16, 19-42]. According to their studies, it was found that the addition of
Mn to the Cu-Al alloy is effective in decreasing the martensitic transformation
temperature (Ms) and stabilizing the B phase region [12-26, 40-42]. In 1975, M.
Bouchard and G. Thomas have established the metastable phase diagram of
the CusMn,Al alloys with 0 < X < 1.0 (0 = Mn < 25.0 at.%), as shown in Figure

1.2 [25]. Based on their reports, it is seen that when the Cus,Mn,Al alloys with
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0.1 =X <0.8(2.5<Mn =< 20.0 at.%) were solution heat-treated at a point in the
single B phase region and then quenched into iced brine rapidly, a B — B2—
(D05 + L24) transition would occur during quenching by an ordering transition
and a spinodal decomposition. The as-quenched microstructure of the
CuzMn,Al alloys with 0.1 < X < 0.8 was a mixture of (D05 + L24) [25, 35, 38, 39].
When the Mn content of the Cu;,AlMn, alloys was increased to X=1.0 (Mn=25
at.%), the as-quenched microstructure of the alloys became a single L2,
(CuMnAl) phase [22-28, 33, 38-41]. The crystal structure of the L2, phase is
similar to the D03 structure (CuzAl),.and the only difference between them is
that Mn replaces Cu at a specific lattice site with the eight nearest Cu atoms in
the D03 structure so as to form a stoichiometry composition of Cu,AlMn [19, 25,
39], as illustrated in Figure 1.3./Recently, Kainuma et al by using X-ray
diffraction measurement found that when the Mn content of the Cus;Mn,Al
alloys with X < 0.32 (Mn < 8.0 at.%), the as-quenched microstructure of the
alloys was a single D03 phase[39].

It is well-known in the previous studies of Fe-Al, Fe-Al-Ti, Fe-Al-Mn and
Fe-Al-Mn-C alloys that if the D0; phase was formed by continuous ordering
transition during quenching. It was always occurred through an A2 — B2 — D03
transition [43-49]. The B2 — DO0; transition produced a/2<100> anti-phase

boundaries (APBs) and the A2 — B2 transition produced a/4<111> APBs
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[43-45, 49]. Similarly, a number of workers also found this phenomenon in
Cu-Al, Cu-Al-Ni and Cu-Al-Mn alloy systems [7, 21, 25, 50], that is, the DO;
phase in these alloy systems could also be formed by the A2 — B2 — D03
continuous ordering transition during quenching from the single B phase region.
However, in contrast to the result above, some workers claimed that the DO;
phase was occurred through an A2 — DO transition, rather than the A2 — B2
— DOj3 transition [6-7, 51-52]. The reason for this discrepancy between them is
that, up to now, the existence of B2 phase-field was investigated by means of
differential scanning calorimetry (DSC), differential thermal analysis (DTA) and
X-ray diffraction method, =no! al4<-111 >- APBs could be observed by
transmission electron microscopy (TEM). It means that no direct evidence
confirmed the existence of the B2'phase-field in these Cu-Al base alloys.
When the as-quenched Cus,Mn,Al alloy was aged at temperatures
ranging from 300°C to 650°C for moderate times, y-brass, B-Mn and T3 phases
would be precipitated within the matrix during aging. The y-brass (CugAls) has a
D8; (ordered body-centered cubic) structure with lattice parameter a=0.872 nm
[23-24, 26, 29, 31]. The orientation relationship between the y-brass and the
matrix was cubic to cubic [16, 33]. The B-Mn has an A13 (simple cubic)
structure with lattice parameter a= 0.641 nm [26, 29, 31]. The T3 phase has a

C15 structure (ordered fcc) with lattice parameter a=0.691 nm that the
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stoichiometry composition corresponds to CuzMn,Al [26, 29, 31]. In 1987, R.
Kozubski reported that the orientation relationship between the 3-Mn and L2,
matrix was [011]gmn//[013]12,, (100)g1y//(100),,, with a plate-like shape at 460
°C and [001]gwn//[001]2,, (210)g.mn//(100).5, with a irregular shape at 560°C
[33].

Recently, the present workers performed TEM observations on the phase
transformations of the Cu-Mn-Al alloy systems. Based on our experimental
results, it is found that the as-quenched microstructure of a Cu,MnAl alloy was
a mixture of (L2, + L-J) phases (the L-J phase is a new type of precipitate,
which was firstly observed-and identified by Liu and Jeng (designated L-J
phase) in a Cu,,MnggAl alloy) {53]. The L-J phase has an orthorhombic
structure with lattice parameters‘a=0.413nm, b=0.254nm and ¢=0.728nm. The
orientation relationship between the L-J phase and the matrix was
(100)_//(01 1), (010)_y//(11 1), and (001),_,//(211),, [54]. The rotation axis
and rotation angle between two variants of the L-J phase were [021] and 90
deg., respectively. It is worthwhile to note here that the L-J phase has never
been found by other workers in the Cu-Al, Cu-Mn and Cu-Mn-Al alloy systems
before. When the Cu,MnAl alloy was aged at 460°C and 560°C, the B-Mn
precipitates were formed within the L2, matrix. TEM examinations indicated

that the orientation relationship between the 3-Mn and the L2, matrix would still
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maintain the same, in spite of the morphology change, and it could be the best
stated as follows: ( 210 )ape//( 100 )p, ( 120 )aun//( 010 ),, and
(001)gmn//(001)5,. This finding is in disagreement with that reported by R.
Kuzobski et al. in the aged Cu,MnAl alloy [33].

To date, it is apparent that the phase transformations in the Cusz,Mn,Al
alloys with 0.5 < X < 1 have been studied by many researchers, however, the
information concerning about the microstructural changes of the alloys with
Cu-Mn-Al alloys with Mn content less than 12.5 at.% (X < 0.5) is very deficient.
Therefore, the purpose of these_ studies is an attempt to investigate the
microstructural changes of-the CussMn,Al- alloys with low Mn content. In
addition, the addition of the Mn content higher than 35 at.% on the phase
transformations of Cu-Mn-Al alloy will also be investigated by TEM and
energy-dispersive X-ray spectrometer analyses (EDS).The detailed

experimental results are presented in Chapters 2~4, respectively.
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Figure 1.1 A schematic drawing of the phase diagram of the Cu-Al alloy system
with A2 — B2 and B2 — D03 order-disorder transition temperatures

and martensitic transformation temperatures (Ms) [6-7].
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Figure 1.2 A schematic drawing of the ordering temperatures Tc (B2) and Tc

(D03 + L24) and the miscibility gap of the (Cu-Mn);Al alloy [25].
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Figure 1.3 Schematic representation of the ordering sequence of the quenched
CuzsMngsAl alloy (vertically) and its isothermal decomposition

(horizontally) [19, 25, 39].
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