CHAPTER 6

Conclusions

In this dissertation, the growth and characterization of Si_{1-x}Ge_x, GaAs and ZnSe epilayers grown on Si (100) substrates are systematically studied. The mechanism of interface-blocking mechanism was proposed to reduce the threading dislocations in the Si_{1-x}Ge_x and Ge epilayers on Si substrates. And the high-quality epitaxial Ge layers grown on a Si substrate were demonstrated. In this study, the growths of GaAs and ZnSe epilayers on Si were based on this novel Ge/Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1} buffer structure. The growths of high-quality GaAs and ZnSe epilayers on Ge/Ge_xSi_{1-x}/Si were successfully demonstrated by using MOCVD and MBE equipment, respectively. The properties of nickel germanosilicide contact on Si_{1-x}Ge_x were also investigated with improvement. The primary results obtained in this dissertation are summarized below:

- (1) An interface-blocking mechanism was proposed to reduce the threading dislocations in the SiGe and Ge layers grown on Si(100) substrates. A method of growing high-quality Ge epitaxial layers on a Si substrate was also were demonstrated. The method mainly involves: (1) growth of three layers consisting of 0.8μm Si_{0.1}Ge_{0.9}, a 0.8μm Si_{0.05}Ge_{0.95}, and a 1.0μm top Ge layer, and (2) *in situ* 750°C annealing for 15 min performed on each individual layer. By this procedure, many dislocations were formed at the Si_{0.1}Ge_{0.9}/Si interface and at the lower part of the Si_{0.1}Ge_{0.9} layer. Moreover, the upward propagated dislocation in the bottom layer were bent and terminated effectively by the interfaces of Si_{0.05}Ge_{0.95}/ Si_{0.1}Ge_{0.9} and Ge/ Si_{0.05}Ge_{0.95}. The top Ge layer exhibited a low threading dislocation density and a smooth surface, while the total thickness of the epitaxial structure was relatively small.
- (2) High-quality GaAs epitaxial layers successfully grown on Ge/Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1}/Si substrates by using MOCVD were demonstrated. The improvement of the crystallinity of the GaAs was demonstrated by using the Ge/Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1} buffer structure grown

- on 6° off-cut Si substrate. It was shown that the GaAs epitaxial layers grown by this approach exhibited ultra-low threading dislocation densities. The suppression of Ge inter-diffusion into GaAs epilayers was also succeeded using the Si substrate with 6° off-cut toward the [110] direction.
- (3) The of high-quality ZnSe epilayers Si on substrates using Ge/Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1} buffer structure was demonstrated. The use of the large off-cut Si substrate improved the crystallinity of the ZnSe epilayer grown and successfully suppressed Ge diffusion into the ZnSe layers. The ZnSe epilayers grown on the large off-cut Ge/Ge_{0.95}Si_{0.05}/Ge_{0.9}Si_{0.1} buffer layers also exhibited a low threading dislocation density. The PL spectrum of the large off-cut ZnSe sample showed intense FX with a narrow peak width. These results indicate that the use of the large off-cut Si substrate to suppresse the Ge interdiffusion through the heterointerface and help the growth of high-quality layers by reducing dislocation generation. The method of low temperature MEE and buffer layer growth with in-situ annealing can effectively suppress the formation of the deep-level emission in the ZnSe/Ge/Ge_xSi_{1-x} structure was also demonstrated.
- (4) We have demonstrated that in order to improve the sheet resistance, specific contact resistivity and junction leakage current of the nickel silicide contact on Si_{1-x}Ge_x layer, a Si consuming layer with an appropriate thickness should be grown on the top of the Si_{1-x}Ge_x layer for silicide formation. The silicidation film is uniform, smooth and free from Ge segregation nickel silicide formed on Si_{0.8}Ge_{0.2}. The morphological is also demonstrated stability was thermally stable after aging at 400°C for 48 hours.