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摘 要       

在使用活動式量子位元的計算模式下，我們分別報告兩個能對實現量子計算

有用的研究。在這份報告的第一個部分，我們在理論上探討了半導體對稱雙能障

結構中的自旋相依穿隧效應。我們的計算是基於等效的單個能帶的 Hamiltonian
以及 Dresselhaus自旋軌道耦合項。我們展示，帶有不同自旋方向的電子，彼此

穿隧時間的比例變化可達幾個數量級。而這大且可調整的穿隧時間比例，可以作

為發展全半導體的動態 spin filter的基礎。 
在這份報告的第二個部分，我們提出一種進行量子計算的架構，使用 ballistic 

electron作為量子位元，以及耦合的量子環作為量子邏輯閘。在這個架構中，兩

條相鄰且一維的量子線形成一個量子位元，它們被接到兩個互相耦合的量子

環。而量子環圈繞住的奈米磁鐵提供所需的磁通量。在 Aharonov-Bohm效應下，
我們仔細設計電子波函數受到的相位調變，以促成可重新程式化且可動態控制

的量子邏輯閘。基於這個架構我們可製造一組有高 fidelity的量子邏輯閘。 
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ABSTRACT 

We present two separate research which, under the computing scheme with mobile 
qubits, could be useful to the implementation of quantum computation. In the first part 
of this report, spin dependent tunneling in semiconductor symmetric double barrier 
structures is studied theoretically. Our calculation is based on the effective one band 
Hamiltonian and Dresselhaus spin-orbit coupling. We demonstrate that the ratio of the 
tunneling times of electrons with opposite spin orientations can vary over a few orders 
in magnitude. The large and tunable ratio of the tunneling times can serve as the basis 
in development of all-semiconductor dynamic spin filters. 

In the second part of this report, we propose an architecture to perform quantum 
computation, using ballistic electrons as qubits and coupled quantum rings as quantum 
gates. In the proposed architecture two adjacent one-dimensional wires, creating a 
single qubit, are connected to two coupled quantum rings, where the required 
magnetic flux is provided by enclosed nano-sized magnets. The phase modulation of 
the wave function of the ballistic electrons under the Aharonov-Bohm effect is 
carefully designed to facilitate re-programmable and dynamically controllable 
quantum gates. A set of quantum gates with high fidelity can be constructed on the 
basis of this architecture. 
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Chapter 1

Introduction

The idea of quantum computation can be dated back to 1982, when R. Feyn-

man pointed out the essential difficulties in simulating quantum mechanical

systems on classical computers [1]. To circumvent those difficulties he ini-

tiated to build computers based on the principles of quantum mechanics.

Similar idea was proposed by Deutsch later in 1985 [2], while he sought

to provide a foundation for the Church-Turing thesis based on a physical

theory. The field of quantum computation and quantum information arouse

widespread interest, however, not until 1994 when P. Shor demonstrated that

the problem of finding the prime factors of an integer can be solved efficiently

on a quantum computer [3]. It struck people like a bolt because this problem

is still believed to have no efficient solution on a classical computer. Thus

the finding challenges the strong Church-Turing thesis once again. Further

findings signaling the power of quantum computers came in 1995, when L.

Grover showed the problem of searching an unstructured database can also be

sped up on a quantum computer [4]. Nowadays the competition of research

toward the physical implementation of a quantum computer has become like

a ”gold rush”.
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But the impetus of this rush lends itself not only to the theoretical break-

through on the speedup of computation. The need for ever powerful informa-

tion processing capability has driven the growth of microelectronics industry

over the last decades. That need can only be met by integrating more func-

tions into even smaller chips. The resulting growth in computation power

has proved to be an engineering accomplishment, so much so as to be codified

as the Moore’s law. Although Moore’s law has approximately held true for

decades since 1960s, it is not expected to be held for the next twenty years.

Today the feature size of electronic devices hits the scale of nanometer, the

scale where the conventional semi-classical approach ceases to be true and

quantum mechanics begins to take part in. While researchers in nanoelec-

tronics seek to exploit quantum mechanical effects to construct logic gates

of the scale of few atoms, a paradigm shift to quantum computation appears

to be more luring than ever.

Yet the physical implementation of a quantum computer poses a most

formidable challenge. To pass the five stringent requirements for the im-

plementation of quantum computation set by DiVincenzo et el. [6], the

suitability in virtually every branch of quantum physics has been contem-

plated: atomic physics, quantum optics, nuclear and electron magnetic reso-

nance spectroscopy, superconducting device physics, electron physics on liq-

uid Helium, and mesoscopic and quantum dot research(an account of all

those propositions can be found in [5]). Among the numerous schemes to

implement quantum computers, solid state micro- and nano- systems draw

special attention because of their obvious advantages: scalability, miniatur-

izability and flexibility in design. It has also been remarked that solid state

physics is a most versatile branch of physics, in that almost any phenomenon

possible in physics can be embodied in an appropriately designed condensed
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matter system [6]. Naturally then, we expect the versatility of solid state

systems will extend to the construction of quantum computers as well. Our

later discussion indicates this proposition to be more plausible (though only

time could tell if it is right).

The success of microelectronics has been built on the utilization of the

charge degrees of freedom of electrons. A quantum mechanical aspect of

electrons – the spin degrees of freedom – has largely been ignored. As the

working dimension of semiconductor electronics devices has been reduced to

such a small scale, that quantum mechanical property of electrons can no

longer be neglected, the field of semiconductor ”spintronics” has begun to

emerge. The underlying principle of this new electronics is the intimate con-

nection between the charge and spin degrees of freedom of electrons. Besides

the possibility to enhance the performance of quantum electronic devices, the

utilization of spin offers the opportunity to manipulate phase coherence over

length scale much larger than is typically possible in charge-based device [6].

This is a welcoming feature especially as far as the construction of quantum

computers is concerned, for spin can be a natural candidate for the qubit.

To successfully incorporate spin into existing semiconductor technology,

however, one has to address technical issues such as efficient spin injection,

transport control, and detection of spin polarization. A natural starting

point to tackle those problems would be to pass electrons through strongly

magnetized metals and then inject them back into semiconductor. But the

conductivity mismatch between metal and semiconductor impedes the elec-

tron transport and makes this approach seem inefficient, as Schmidt pointed

out [9]. Reported experimental results on polarization efficiency are less than

1% [10]. On the other hand, there is another approach which exploits the

spin-orbit interaction in semiconductor. The spin-orbit interaction lifts the
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energy degeneracy among electrons with different spin polarization, making

the coherent dynamics of electron spin dependent. Based on that we can

conceive ways to manipulate the transport property of the electron. We will

see such an application in chapter 2.

A calculation process of a quantum computer is facilitated by distribut-

ing and exchanging quantum information among various parts of circuit. In

schemes that use static qubits, this task is carried out by incorporating extra

means to transport the state of the qubit. Moreover, we would need ultrafast

electronics or laser pulses (on the femto second scale) to perform gate opera-

tions subcoherently (the above discussion largely follows [7]). Thus we want

to use mobile qubits in solid state systems as our embodiment of qubits. If

we use electrons as information carriers, there are two such choices – spin

qubits and charge qubits. Quantum computing with mobile electron spins

[7] is a natural extension of spintronics, its feasibility relies on our under-

standing of and capability in this field. In this report, therefore, we will try

to address one of the elementary issues faced in spintronics rather than thor-

oughly discuss its capacity to implement quantum computation. Quantum

computing with mobile electron charges has also been proposed recently as

an attractive candidate [36, 37, 38]. Due to its relatively mature techno-

logical ground, we will look more closely at its architecture and how it can

possibly be implemented in this report.

This report is organized as follows: in chapter 2, we discuss a method

to carry out spin-filtering in III-V semiconductor thus obtain spin-polarized

current. As described above, such method could be useful to the implemen-

tation of quantum computing as well as quantum electronics. The result of

this chapter has been published in Journal of Applied physics, 98, 023716. In

chapter 3, we propose a novel architecture to perform quantum computation

8



and in particular single-qubit operations, using ballistic electrons as qubits

and coupled quantum rings as quantum gates. The result of this chapter

has been submitted to Applied Physics Letters. Finally we summarize our

findings.
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Chapter 2

Time resolved spin-filtering in

semiconductor symmetric

resonant barrier structures

Since the first spin-dependent electronic device was proposed by Das and

Datta [8], the utilization of the spin-orbit coupling has been one of the key

topics of semiconductor spintronics. However, a most elementary issue, an

efficient means to obtain spin polarized currents in semiconductor structures,

has not been resolved yet. The inefficiency of spin-injection back from mag-

netized metal electrodes leads us to seek total-semiconductor alternatives.

The spin-orbit interaction in semiconductors lifts the spin-degeneracy of elec-

trons’ energy, resulting in spin-dependent transport through semiconductor

junctions, which thus provides a possible solution.

The spin-orbit interaction of electrons in III-V semiconductor materi-

als is usually described by two contributions to the effective one-band spin-

dependent Hamiltonian. One, often referred to as the Rashba term, is in-

duced by the inversion asymmetry of the macroscopic potential [11], which
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can be controlled by an external electric field or material growth techniques.

The other, referred to as the Dresselhaus term [12], is due to the inver-

sion asymmetry of the zinc-blende lattice. The interplay between these two

terms has been studied by de Andrada e Silva [13], showing that, for narrow

gap semiconductors, the contribution from the Rashba term to the spin-

orbit interaction dominates over that from the Dresselhaus term. Hence

the Dresselhaus term is often neglected. Calculations based on the Rashba

spin-orbit interaction in III-V semiconductor heterostructures have been per-

formed [14, 15, 16, 17, 18, 19], showing the all semiconductor tunneling struc-

tures can be a feasible means to obtain electronic spin-polarized currents.

However, it was suggested recently [20, 18, 21] that even through a single

symmetric barrier, where the contribution from the Rashba term cancels out

due to macroscopic symmetry [14], electrons can tunnel highly spin-polarized

because of the Dresselhaus term.

In this paper we elaborate on this idea and evaluate the spin-dependent

tunneling (delay) time in a symmetric resonant tunneling structure. The

tunneling time is an important quantity in a tunneling process that deter-

mines the dynamic working range of tunneling devices. In this work we take

the ”stationary phase approach” to define the tunneling time, as taken by

Bohm [22, 23]. Our following discussion will reveal that when the spin-orbit

interaction effect comes into play, the ratio of the tunneling time between

differently spin-polarized electrons can gain a few orders of magnitude. This

provides the theoretical basis for time-resolved spin-filtering. We also suggest

that one can manipulate the tunneling time to a great variety by changing

the barrier width. The relation between the delay time and the width is

simple and can be used as a rule to select working frequencies.

This chapter is organized as follows. In Sec. 1 we detail our calcula-
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tion of the electron spin-dependent transmission amplitude, of polarization

efficiency, and of tunneling time. In Sec. 2, results of calculations for In-

GaAs/InAlAs/InGaAs double barrier tunnel structure are presented. In Sec.

3 we summarize the results.

2.1 Polarization efficiency and tunneling time

We consider the spin-dependent tunneling process through a symmetric dou-

ble barrier structure grown along z||[001] direction, as shown in Fig. 2.1(a).

Taking the ”stationary phase approach” the tunneling time is described to

be the phase delay time, which is the energy derivative of the phase Θ of the

transmission amplitude [23]

τσ = ~
∂Θσ

∂Ez

, (2.1)

where Θ± = arg |t±|, Ez denotes the longitudinal component of the electron’s

energy (corresponding to a motion parallel to the heterostructure growth

direction), and σ = ±1 refers to the spin polarization.

Our calculation is performed on the base of the effective electronic one

band Hamiltonian, energy- and position- dependent electron effective mass

approximation and the Ben Daniel-Duke boundary conditions [24]. Layers

of the structure are perpendicular to the z-axis, the in-plane electron’s wave

vector is k. With the above assumptions the electronic wave function in the

jth region can be presented as

Φσ(x, y, z) = Ψjσ(z)exp(i(kxx + kyy)), (2.2)

where k =
√

k2
x + k2

y and Ψjσ(z) satisfies the z-component of the Schrödinger

equation

ĤjσΨjσ(z) = EΨjσ(z) (2.3)
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Figure 2.1: (a) Sketch of electron tunneling with the wave vector (k, kz),

where k is the in-plane wave vector and z ‖ [001] - direction of the structure

growth. The variation of the band parameters forms a symmetric double

barrier tunneling heterostructure. (b) A schematic illustration of a possible

spin-filter implementation.

with the spin-dependent Hamiltonian in each region [20]

Ĥjσ = Ĥj0 + ĤjSO. (2.4)

In Eq. (2.4) Hj0 is the Hamiltonian of the system without spin-orbit inter-

action

Ĥj0 = − ~2

2mj(E)

(
d2

dz2
− k2

)
+ Ejc,

and
1

mj(E)
=

2P 2

3~2

[
2

E − Ejc + Ejg

+
1

E − Ejc + Ejg + ∆j

]
, (2.5)
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presents the energy and position dependent reciprocal effective mass. Ejc,

Ejg and ∆j stand for the position dependent conduction-band edge, band

gap and the spin-orbit splitting in the valence band. P is the momentum

matrix element [24]. In Eq. (2.4) ĤjSO is the spin-dependent part of the

Hamiltonian which originates from the Dresselhaus term (in the symmetrical

structure the Rashba spin-orbit coupling vanishes [14]). When the kinetic

energy of electrons is substantially smaller than the barrier’s height we can

present this term as the following [20]

ĤjSO = γj(σ̂xkx − σ̂yky)
d2

dz2
, (2.6)

where σ̂x and σ̂y are correspondingly x and y components of the vector of

the Pauli matrices σ̂ = {σ̂x, σ̂y, σ̂z}and γj is a material constant of the jth

region.

The boundary conditions for the solution Ψjσ(z) at the interface between

j and j + 1 regions have been introduced in Ref.[24]

1

mj(E)

{
d

dz
Ψjσ(z)

}

z=zj

=
1

mj+1(E)

{
d

dz
Ψj+1σ(z)

}

z=zj

,

Ψjσ(zj) = Ψj+1σ(zj). (2.7)

To diagonalize the Hamiltonian one can put the in-plane wave-vector k along

the x-direction (ky = 0) and take the electronic wave functions to be

Ψj±(z) = ψj± (z)


 1

∓1


 ,

which are eigenfuctions of σ̂x.

The general solution of Eq. (2.3) in a given jth region has the form

ψjσ(z) = ajσφ
+
jσ(z) + bjσφ

−
jσ(z),
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where φ±jσ(z) is a pair of linearly independent solutions of Eq. (2.3) within

that region. In the regions j = 1, 3, 5 the solutions are the following plane

wave sets

φ±jσ(z) = exp(±ikjz),

where

kj(Ez, k) =
Σjσ

~

√
2mj(Ez, k)(Ez + E1c − Ejc)− ~2

[
1− mj(Ez, k)

m1(Ez, k)

]
k2,

Σjσ =

√
1 + σ

2γjmj(Ez, k)

~2
k,

and Ez is the longitudinal component of the total energy in the first region:

E = E1c + Ez +
~2k2

2m1(Ez, k)
.

We use this expression, along with Eq. (2.5), to find the dependence of

mj(Ez, k) on E(Ez, k)(j = 1 − 5). In the regions j = 2, 4, the solutions are

chosen to be

φ±jσ(z) = exp(±qjz),

where

qj(Ez, k) =
Σjσ

~

√
2mj(Ez, k)(Ejc − E1c − Ez) + ~2

[
1− m2(Ez, k)

m1(Ez, k)

]
k2.

The coefficients {ajσ, bjσ} are to be determined from the boundary con-

ditions, Eq. (2.7). The sets of coefficient in neighboring regions are related

by the transfer matrix M [25]:


 ajσ

bjσ


 = M j

σ


 aj+1σ

bj+1σ



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According to the boundary conditions Eq. 2.7 the matrix M j
σ is written as

[14]

M j
σ =

1

∆j


 Λ−j+ Λ+

j+

−Λ−j− −Λ−j−




with

∆j = ∆+
j −∆−

j , ∆±
j =

{
d

dz
ln[ψ±jσ(z)]

}

z=zj

,

Λ±j+ =

(
mj

mj+1

∆±
j −∆+

j

)
ψ∓j+1σ(zj)

ψ+
jσ(zj)

,

Λ±j− =

(
mj

mj+1

∆±
j −∆−

j

)
ψ∓j+1σ(zj)

ψ+
jσ(zj)

.

The double barrier tunneling structure consists of four interfaces, so the

total transfer matrix is written as

Mσ =
4∏

j=1

M j
σ.

Electrons are injected from the region j = 1. The transmitted waves will

appear in the region j = 5. With this assumption the transmission amplitude

is given by

tσ =
1

(Mσ)11

,

and the spin-dependent delay time is written as

τσ(Ez, k) = −~∂ arg [(Mσ)11]

∂Ez

.

The polarization efficiency of the structure was defined in [14] to be

P =
|t+|2 − |t−|2
|t+|2 + |t−|2

.
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Figure 2.2: Polarization efficiency P calculated for a

In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As DBT structure (see Fig.

2.1). The structure parameters are obtained in Refs. [27]: E1g = 0.418 eV,

E2g = 1.52 eV, ∆1 = 0.38 eV, ∆2 = 0.341 eV, m1(0) = 0.044 m0,

m2(0) = 0.084 m0 (m0 is the free electron mass), γ1 = 0.0769 eV nm3 [20],

γ2 = 0.0734 eV nm3 [28], c = 6 nm, d = 12 nm.

2.2 Calculation results

In Fig. 2.2 we demonstrate the numerical results of the polarization effi-

ciency P of an electron’s tunneling through a resonant symmetric structure

made of In0.53Ga0.47As /In0.52Al0.48As heterojunctions. All calculations are

performed within a region on (Ez, k) plane where the total energy of electrons

is substantially smaller than the barrier’s height (see Eq. 2.6). The numer-

ical values of γ in different materials are obtained for InAs and GaAs from

Ref. [20], for AlAs from Ref. [28], for alloys with the Vegard’s superposition

law [29]. One can see that the polarization efficiency shows typical resonant

behaviors as a function of the longitudinal energy and in-plane wave-number.
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The peaks correspond to the spin-split lowest resonant levels on the (Ez, k)

plane. The splitting of the resonant levels result in an abrupt change of the

sign of the polarization efficiency.

Figure 2.3: The delay time for the structure in Fig. 2.2. (a) Delay time for

electrons with spin ”up”. (b) Delay time for electrons with spin ”down”.

The delay time of tunneling electrons with two opposite spin polariza-

tion is presented in Fig. 2.3. The position of the peak corresponds to the

resonant tunneling level, at which the tunneling electron is ”trapped” in the

quasi-bound states of the well. Although the positions of the peak for the

two opposite spin polarizations do not seem to have the same functional de-

pendence on (Ez, k), the distance between them in Ez is proportional to k,

in accordance to the linear dependence on k of the Dresselhaus spin-spliting

of the levels in the well.

Since the positions of the peaks depends sharply on Ez and k, we present

in a logarithmic scale the ratio of the delay time between oppositely spin-

polarized electrons (see Fig. 2.4). This ratio increases with the length of

k-vector and can gain a few orders in magnitude.

The ratio of delay times can be tuned by means of structural design. For

this reason we present in Fig. 2.5 the dependence of the maximal delay time
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Figure 2.4: Ratio between the delay time for different polarizations of the

electron spin. The structure is the same as in Fig. 2.2.

on the barrier thickness c and the well width d. The delay time increases

with the increasing of c and d, but has different functional dependencies on

each of them. From the calculation results presented in Fig. 2.5 for τ+, one

can approximate the dependencies as the following formula:

τ+ ∝ d2 exp(αc),

α is a constant; for τ− of the same structure, one can recalculate it from

the logarithmic ratio. For our symmetric InGaAs/InAlAs/InGaAs double

barrier structure α ≈ 0.074 when d = 18nm. Applying this formula one can

determine the actual region of frequencies where the structure is applicable

to spin-dependent electronic devices.

The large and tunable ratio of spin-dependent delay times in symmetric

structures provides a new method to perform spin-filtering. Once we have

clearly spin-distinguishable times of the tunneling processes, the cutoff fre-

quencies of electrons differently spin-polarized will also split. By selecting an

appropriate region of frequency, the current contribution from electrons with

lower cutoff frequency can be greatly suppressed. In this sense we achieved
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Figure 2.5: The variation of the maximum delay time with respect to (a) the

barrier thickness. (b) the well width. The constant τ0 = 10−12 s is defined

for normalization. The structure is the same as in Fig. 2.2.

time-resolved spin-filtering. This dynamic regime is more efficient than the

conventional static regime. Indeed, in the static regime the means to spin-

filtering is a large spin-splitting of resonant levels in the well [16], which

requires a large transversal DC bias (or built-in electric field). In symmetri-

cal structures instead one can perform the dynamic spin-filtering even when

only a weak time dependent signal is applied. We mention by pass that the

spin-relaxation processes can also be suppressed by the same means.

An important point tends to be missed is that the spin-filtering based on

the spin-orbit coupling requires a control of electrons’ in-plane momentum

[16, 18, 19]. Fig. 2.1(b) illustrates schematically the basic concept of a

dynamic spin-filter fabricated in a split multi-collector configuration. The

in-plane momentum control of electrons and the dynamic spin-filtering are

achieved by sending a series of high frequency voltage pulses to different

leads of the multi collector. Another method to control electrons’ in-plane

momentum was demonstrated recently with side-gated resonant devices in a

DC regime [19].
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2.3 Conclusions

Based on the stationary phase concept and the effective one-band Hamil-

tonian with the Dresselhaus spin-orbit coupling, we present the numerical

results of the tunneling time through a realistic InGaAs/InAlAs/InGaAs

resonant symmetric structure. It is shown that the polarization efficiency of

the structure has a well-defined resonance behavior, which leads to a consid-

erable spin polarization of electrons tunneling through. In the lower energy

region, the ratio between the tunneling times of electrons with opposite spin

orientation can vary over a few orders in magnitude. The results indicate

that the Dresselhaus spin-orbit coupling separates the time-dependent re-

sponse of differently spin-polarized tunneling electrons. Further, the large

and tunable ratio of the tunneling times provides a possible way to con-

struct a dynamic spin filter. The characteristic time of such devices also has

been estimated and presented, showing simple functional dependencies on

the barrier thickness and the well width. The dependencies can be exploited

to design spintronic devices working in the desired frequencies.
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Chapter 3

Aharonov-Bohm quantum gates

with ballistic electrons

The physical implementation of a quantum computer continues to pose a

great challenge. Among the numerous schemes to implement quantum com-

puters, solid state micro- and nano- systems draw special attention because

of their obvious advantages: scalability, miniaturizability and flexibility in

design. Quantum computation using ballistic electrons has been proposed

recently as an attractive candidate [36, 37, 38]. In this scheme we use bal-

listic electrons as flying qubits in one dimensional quantum wires within the

dual rail representation [38, 44]. That is, two adjacent 1D quantum wires,

called the 0- and the 1-rail respectively, are used as the physical implemen-

tation of a single qubit. The logic state |0〉 is defined as the presence of a

single electron in the 0-rail while the logic state |1〉 as in the 1-rail. Initial-

ization and measurement of the qubit states are done by coupling each qubit

rail to a single electron transistor, as was proposed in [38]. The construction

of quantum gates deserves more discussion so from hereon we pay special

attention to it.
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After the first idea of utilizing quantum interference effects to perform

logic functions has been proposed by Datta et el. [40], the property of

quantum waveguide and quantum network has been widely investigated.

Among them are quantum interference transistors [40, 47], serial stubs [30]

and Ahanorov-Bohm rings with multiple arms [31], to list only a few. A

complete set of logic functional devices has also been proposed by Wu. et

el. [45], leading to the possibility of performing massive parallel computing

by electron wave. Those previous works, however, focus mainly on the ma-

nipulation of transmission probability but not on the accompanying changes

on the phase of the wave. That is, they concentrated on the possibility to

perform classical computation but miss the even more natural application to

perform quantum computation. Thus we are motivated to explore the ca-

pacity of quantum interference devices to perform single-qubit operation in

the context of quantum computation using ballistic electrons. But to achieve

that end we would like to look at the existing quantum network theory in a

new setting first.

3.1 A detour to microwave engineering

In this detour we will first provide an equivalent description of the quantum

network, which brings us more flexibilities in designing the quantum network

and gives insight into the capacity of quantum interference devices. Then we

adopt those ideas to create a single-qubit quantum gate for ballistic electrons.

All knowledge about microwave engineering used in this section can be found

in [34].

It is well-known that both the time-independent Schrödinger equation

and the the source-free Maxwell equations take the form of the Helmholtz
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equations. Further resemblance appears when we consider the TEM solutions

of the Maxwell equations in waveguides, i. e., the transmission line equation

[34], and the one-dimensional Schrödinger equation in constant potential.

The analogy can be most directly seen as follows: In the transmission line

theory we concern only two integrated physical quantities of the electric

circuit, the electrical potential V (x) and the electrical current I(x), but not

the detailed field solutions of the Maxwell equations. Their solutions in a

lossless transmission line are:

V (x) = V +
0 eiβx + V −

0 e−iβx,

I(x) =
V +

0

Z0

eiβx − V −
0

Z0

e−iβx,

where Z0 is the characteristic impedance of the transmission line and β is the

propagation constant. However, in constant potential the time-independent

one-dimensional Schrödinger equation has solutions:

ψ(x) = a1e
ikx + a2e

−ikx,

∂ψ(x)

∂x
= a1ikeikx − a2ike−ikx,

and k =

√
2m∗(E−V )

~ , V is a constant potential. If we regard ik as a wave

conductance in the quantum network as 1
Z0

in the transmission line, those

two sets of solutions take the same form. Their boundary conditions are

also the same. In the transmission line equation we require the continuity of

the voltage V (x) and the conservation of the current I(x) at each intersec-

tion; in a one-dimensional quantum network we require the continuity of the

wave function ψ(x) and the conservation of the current ∂ψ(x)
∂x

by the Griffiths

boundary conditions [35, 47]. Thus we can draw freely the already sophisti-
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cated circuits and techniques from the microwave engineering to apply to a

quantum network.

Then we immediately see that a quantum interference transistor in [47]

amounts to a single stub. Total transmission occurs (see Fig.7 in that refer-

ence) when kL/π = n
2
, n ∈ Z, or L = nλ

4
, i.e., when the single stub acts as

a quarter-wave transformer such that the infinite load is transformed into a

zero load. An impurity introduced into the quantum network, modeled as a

δ-function in [33], is like a conductance connected in series. It can be put at

the intersection of multiple segments of 1D quantum wires to match the wave

impendence of the quantum network. The inclusion of external magnetic field

breaks the reciprocity of the quantum network, creating anisotropic quantum

interference devices. These devices include the isolator and the quantum cir-

culator, both of which prevent reflected waves of the next stage from further

interfering with the input waves. All the above mentioned structures give us

more flexibilities in designing quantum network to do computation.

Having seen a variety of quantum interference devices, we now want to

make use of them to perform single-qubit operation. Again let’s look at

some of the existing microwave circuits first. The (180◦) hybrid works as a

Hadmard gate. The quadrature(90◦) hybrid (see the figure below) is espe-

cially interesting. Let the input and output electron have a wave number

k =
√

2m∗E/~, where E stands for the electron energy and m∗ for the elec-

tron effective mass. Also, let ka and kb be the electron wave number in the

corresponding segments of 1D quantum wires in Fig. 3.1. The length of each
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of the four internal segments of 1D quantum wires is chosen to be λ
4

with

respect to the corresponding wave number in that segment. Connecting four

phase shifters [38] to it, the transfer matrix of this quadrature(90◦) hybrid

would be 


√
α

α+1
ei(θ1+θ3) −i

√
1

α+1
ei(θ2+θ3)

−i
√

1
α+1

ei(θ1+θ4)
√

α
α+1

ei(θ2+θ4)


 ,

where α = ka/kb. By controlling over α and θi , i = 1− 4, this configuration

can be constructed to act as arbitrary single-qubit quantum gate.

There are two problems with this construction, however. To have an

identity or a σx gate, α has to approach to infinity or zero. This is impractical

for α is related to the voltage applied to different segments of 1D quantum

wires. The second problem arises since we require the length of each of the

four internal segments of 1D quantum wires to be λ
4

with respect to the

corresponding wave number in that segment. Different ka and kb require

different length for the corresponding segments. If we have no means to vary

the length of each segment of quantum wire, then the functionality of such

quantum gates could not be changed after fabrication.

The ability to construct quantum gates by total electrical means is not all

satisfying. Adding an external magnetic field to electric circuits, however, can

further modulate the phases of the electronic waves of the ballistic electrons

(the Aharonov-Bohm (AB) effect [39, 40]). So, we propose in this chapter

a system of one-dimensional (1D) quantum wires incorporating an array of

nano-rings and nano-sized magnets [43] which can act as a new architecture

to perform quantum computation. Each quantum gate in this architecture

is controlled dynamically by flipping the magnetization of the nano-sized

magnets and changing the chemical potential for the ballistic electrons. This

provides the opportunity to program dynamically a quantum computer the
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same way as we do a classical one.

3.2 General architecture

Our architecture is shown conceptually in Fig. 3.1. A pair of adjacent

quantum rings, which enclose nano-sized magnets (represented in Fig. 3.1

as tablets with arrows) stands for a single-qubit AB quantum gate (basic

element). Figure 3.1 shows two single qubit gates and a controlled phase

shifter [38]. The phase shifter enables the entangling of two single qubits

and to form a two qubit gate. During a quantum computation cycle, two

input qubits enter from the two pairs of parallel 1D quantum wires at the left-

hand side (the rails) two AB quantum gates. Their wave functions interfere

and become modulated under the AB effect in the quantum rings, then they

leave and enter finally the two pairs of parallel 1D quantum wires at the

right-hand side. Note that the two pairs of quantum wires at the left-hand

side are separated far enough to minimize the Coulomb interaction between

different qubits. After two single-qubit operations (being performed in two

separated pairs of quantum rings), rails leaving the AB quantum gates enter

path selectors, which could either direct electrons to a position close enough

to ”turn on” the Coulomb interaction between them (for instance, the lightly

shaded region in Fig. 3.1), or lead electrons away from the interaction region

(then ”turn off” the interaction). Path selectors can be realized by making the

potential barrier on a certain path high enough or by a quantum circulator

[45]. With a carefully designed length of the interaction region, the two

qubits altogether will undergo a controlled phase shift transformation [38].

Since single- and two-qubit gates can be implemented, our architecture is

scalable and can be expanded to perform arbitrary multi-qubit quantum
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Figure 3.1: Schematic diagram of the proposed architecture for quantum

computation. Two pairs of parallel 1D quantum wires represent two qubits

connected to two pairs of quantum rings, each of which stands for a single-

qubit quantum gate. The tablets in the rings are single-domain nano-sized

magnets (the arrows indicate their magnetization), and the cantilever is used

as a read-write head to monitor/control the magnetization. Path selectors

(abbreviated as p.s.) are used to lead electrons to/away from the lightly

shaded region (phase shifter), where the Coulomb interaction between elec-

trons is strong enough to entangle two qubits. The numbers in the upper-left

corner indicate the segments of the 1D quantum wires used in the calculation

of a single-qubit gate.

computations [46]. From now on we focus on the construction of the single-

qubit AB quantum gate in our discussion.

3.3 Calculation and results

To determine the operations that a single qubit undergoes by passing the

AB quantum gate, we evaluate the transmission matrix T between the input

and output of the gate (see the upper-left corner of Fig. 3.1). Assuming

the single-modedness in each segment j of 1D quantum wave guides , we
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adopt the method proposed in [47], where the electron wave functions are

represented by 1D plane waves. In the input and output leads (segments

j = 1, 2, 9, 10 in Fig. 3.1) the electron wave vector is k =
√

2m∗E/~, where

E stands for the electron energy and m∗ for the electron effective mass. The

wave numbers of the plane wave solutions in the jth segment of quantum

wire (for j = 3, 6) are chosen to be ki± = k ± πφi/L. Here the normalized

flux φ is defined by φi = Φi/Φ0, where Φi is the magnetic flux through the

upper (i = 1) or lower (i = 2) ring. 2L stands for the circumference of

a quantum ring and ” ± ” indicates whether the electron wave vector has

the same direction as the magnetic vector potential or not. Φ0 = ~/e is

the universal flux quantum. In the segments j = 4, 5, 7, 8 the electron wave

number is given by ki± = kg±πφi/L. The wave number kg can differ from k

and depends on changes in the chemical potential or the shape of the segment.

Applying standard techniques one can calculate the matrix elements Tnm of

the transmission matrix, which relates the input and output electronic wave

functions as

|0〉out = T11|0〉in + T12|1〉in
|1〉out = T21|0〉in + T22|1〉in.

,

State |0〉 or |1〉 is the electronic wave propagating in the upper or lower rail

correspondingly.

The quantum gate represented by the transmission matrix T is in general

not unitary. However, we stress that with properly configurated gates the

transmission rate is sufficiently high to perform a reasonably long quantum

computation. The probabilities of transmission T0 from the input 0-rail to

the upper and T1 to the lower output rail for a particular kg/k are shown

in Fig. 3.2 (T0 = |T11|2, T1 = |T12|2). The transmission probabilities are

periodic functions of kL/π and φ1 (φ2 has the opposite sign of φ1), so the

plot region is chosen to cover exactly a period of φ1. Note that T0 and T1
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Figure 3.2: Transmission probabilities from the 0-rail of the input to the

0-rail (left panel) and 1-rail (right panel) of the output. φ1 ∗ φ2 6 0, |φ1| =

|φ2| , log2(kg/k) = 2.275. The red line (gray line) in top plane is drawn for

kL/π = 0.839.

at kL/π ' 0.839 attain their maximum for different φ1. This signals an

opportunity to change the functionality of the quantum gate dynamically by

tuning the magnetic flux.

Using the AB quantum gates we can control directly the phase of the

electronic wave function. Increasing the phase φ1 by 1 changes the arguments

of the matrix elements T11, T12, T21, T22 by −1
4
π, −1

8
π, −1

8
π, 2π, without

affecting their modulus. Similarly, increasing the phase φ2 by 1 changes these

arguments by 2π, 1
8
π, 1

8
π, 1

4
π respectively. Such phase relationship holds for

all kg/k. Therefore, with a proper choice of kL/π and kgL/π, one can obtain

a set of quantum gates of different functionality simply by varying φ1 and φ2

through the action of the cantilevers. A set of elementary quantum gates,

including the identity gate (I), Pauli-Z gate (σz), Pauli-X gate (σx), and the

π/8 gate (T ) is at our disposal. It should be noted that the AB quantum

gates constructed in this way can only be symmetric. Asymmetric gates are

achieved by connecting two or more gates in series. Varying kL/π, however,

30



-2 -1 1 2
Log 2

kg
����������

k

-10

-8

-6

-4

-2

Log10 Ε

Figure 3.3: Minimum error rate for the H and σx gate (dotted and solid line

resp.). The horizontal dashed line stands for εth = 10−4.

we have also the Hadamard gate (H). By the H-gate and T -gate we can

approximate any individual operation to arbitrary accuracy [46]. We list the

AB quantum gates and the corresponding working points in Table 3.1 for

log2(kg/k) = 2.275.

In order to compare the error-prone (non-unitary) T-gates with ideal

error-free (unitary) gates (U), we also present in the table estimates of the

gate’s error rate ε, which is defined as ε = 1−z, wherez =
∣∣Tr

(
TU †)∣∣�Tr

(
UU †)

is the gate fidelity [48]. Also, we take εth = 10−4 as a rough estimate of

the threshold for quantum computation, below which an arbitrarily large

computation can be performed efficiently [46]. Clearly, the proposed AB

quantum gates demonstrate error rate below εth, which ensures the scalabil-

ity of the architecture. Moreover, due to the periodical behavior of the AB

quantum gates described above, we claim that the optimal operating points

(kL/π, kgL/π, φ1, φ2) for a particular functionality can always be found by

tuning and a very high fidelity can be achieved. Figure 3.3 shows an ex-

ample of the behavior of the minimal error rate ε for σx and H gates to

different kg/k, when φ1 and kL/π are varied over the plot region in Fig. 3.2.

For several kg/k the minimal error rates of both gates are beyond εth. The

possibility to choose and tune the gate dynamically makes our architecture
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Table 3.1: Error rate for the set of AB quantum gates. The second column

defines the dynamic working points for the gates, log2(kg/k) = 2.275.

Gate I σz σx T H

log10 ε −5.810 −5.810 −5.179 −5.810 −8.442

kL/π 0.839 0.839 0.839 0.839 1.219

φ1 0.748 0.748 0.252 0.748 0.933

φ2 3.252 −0.748 −0.252 0.252 −4.933

particularly promising.

3.4 Implementation

The proposed architecture can be implemented using two dimensional elec-

tron gas structures and applying the split-gate techniques to define the pat-

tern of 1D quantum wires. Within the dual rail representation for ballistic

electron flying qubits, initialization and measurement of the qubit states can

be done as was proposed in [38]. Nano-sized magnets can be electroplated

on the sample [43]. Lithographic techniques enable us to make well-defined

shapes and locations. The dynamic control of the AB quantum gates is re-

alized by flipping the magnetization of the nano-magnets with read-write

heads [43] (which is shown in Fig. 3.1 as a cantilever). As a result we can

manipulate the phase of the electronic wave functions. Furthermore, differ-

ent magnitudes of φ1 and φ2 are obtained by varying the size of the magnets

and the rings, or by enclosing many magnets in a single ring. In addition,

the application of the split-gate techniques to a two dimensional electron

gas makes the values of kL/π and kgL/π tunable. Variation of the voltage

32



applied to the gate changes the lateral confinement of the electrons in the

quantum wires and modifies k and kg. So, we can tune separately all of

the four variables to choose the working point (kL/π, kgL/π, φ1, φ2) and to

achieve the highest fidelity.

The approach proposed in ([38]) uses ballistic electrons. The function-

ality of the gates in that design is defined at the stage of fabricating the

computer. This architecture will seriously suffer from any fabrication defect

because defects cannot be compensated afterwards. In contrast, the dynamic

controllability in our proposition implies that the functionality of each gate

can be re-defined after fabrication and even during operation. For instance

one can dynamically re-assign a H-gate into a T -gate during the calculation

process. Since it is possible to make a hybridization of quantum computers

and classical computers in solid state circuits, a classical computer are used

to operate the read-write head. Without this dynamic re-programmability

the architecture can only serve as special purpose quantum circuits but not

as quantum computers for general purposes. We emphasize that the above

advantages are entirely due to the universality of the AB quantum gates –

multi-functionality is achieved by changing through k and kg and the en-

closed magnetic fluxes. The utilization of a magnetic field, rather than an

electric field like in [38], has other benefits: low power, insensitivity to noise,

and less astray field.

3.5 Two-dimensional calculation using the lat-

tice Green’s function method

In the previous sections we have demonstrated good gate fidelity within an

one-dimensional calculation. The applicability of such results, however, is
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not clear for the following reasons. At each intersection, to connect the wave

functions in different segments of quantum wires the Griffith [35] bound-

ary conditions are imposed, which treat each segment as simple straight

line without taking its geometry into consideration. Taking the geometry of

quantum wires into account, we expect the transmission through an intersec-

tion maximizes only when the incident energy of electrons can couple to the

quasi-bound states of the intersection. The transmission probability depends

on incident energy complicatedly while that does not depend on incident en-

ergy if the Griffith boundary conditions are imposed. On the other hand,

the construction of the σz and T gates in our architecture relies on how the

phases of the transmission amplitudes increase with the magnetic flux. And

the phase dependence is determined by the relative position of the incoming

and outgoing leads along the ring. In real situation the leads and the arms

of the rings have non-negligible width. Can we still establish a perfect phase

property when the width effect is taken into account? If not, are we able

to construct such gates like σz and T gates which require the phase-shifting

property of the transmission amplitudes?

We perform a two-dimensional calculation based on the lattice Green’s

function method [41] to address the above questions. This method is suitable

for our use because of its ability to calculate the transmission property for

an arbitrarily shaped conductor. Another appealing feature of this method

is that some types of magnetic fields may be incorporated quite simply into

the formalism, and therefore it is well suited to study various effects of mag-

netotransport [41]. Moreover, we can obtain the Green’s function recursively

and then extract the scattering matrix elements from the Green’s function

as in [42]. The discretized mesh used in our calculation is shown in Fig.

3.4, and the single particle Green’s function is solved on this mesh under the
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Figure 3.4: Actually simulated meshes in our calculation. The numbers along

the axes are the index of the mesh. In this calculation 121 × 238 meshes

are included. Red arrows indicating the relevant length of this system. The

dashed line in the center separates the left half region and the right half one,

across it the magnetic field is taken to be abruptly different. The effective

mass of the electron is 0.09 m0.

effective mass approximation. We have made an infinite barrier approxima-

tion, that is, the potential energy in the light region is set to be zero and

that in the dark region is set to be infinite. The straight light segments in

the center connect respectively to the semi-infinite incoming and outgoing

leads, in which the magnetic field is assumed to be not present. However,

at actually simulated mesh shown here the magnetic field is present, and is

taken to be abruptly different in the left half region and the right half region

(separated in the figure by a dashed line).

In a realistic two-dimensional calculation the quantum waveguides are

not singlemoded. We define the logic state of the qubit as the presence of

a single electron in the first transverse mode of a rail, and we restrict the

incident energy in the range between the first and second transverse mode

so as to minimize the error due to leakage to other transverse modes. The
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Figure 3.5: Transmission probabilities from the 0-rail of the input to the

0-rail (left panel) and 1-rail (right panel) of the output at a zero magnetic

field. The plot energy range is between the first and second transverse mode,

3.02eV and 11.49eV in this system. The light and dark line correspond to T0

and T1, respectively.

probabilities of transmission T0 and T1 (T0 = |T11|2, T1 = |T12|2) at a zero

magnetic field are shown in Fig. 3.6 in the energy range between the first

and second transverse mode. The zero energy point is set at the conduction

band edge. The incorporation of the geometry of the intersection greatly

complicates the energy response of the coupled ring system, as contrasted to

the one-dimensional situation where T0 and T1 are periodic to kL/π. Another

notable feature of this system is that the incident electron from the input

0-rail can better couple to the output 1-rail rather than to the output 0-rail

(we will be more precise to this claim later).
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Figure 3.6: Transmission probabilities from the 0-rail of the input to the 0-

rail (left panel) and 1-rail (right panel) of the output. φ1∗φ2 6 0, |φ1| = |φ2| .

In Fig. 3.6 we calculate T0 and T1 with respect to the incident electron

energy and the normalized magnetic flux φ. Here the normalized flux φ is

defined by φi = Φi/Φ0, where Φi is the average of the magnetic flux enclosed

by the outer or inner circle, through the left (i = 1) or right (i = 2) ring. In

the two unit of φ1 of the plot region shown here, the transmission probabilities

are almost periodic to φ1 (φ2 has the opposite sign of φ1). Having the ratio of

wire width to ring radius as 1
10

, this system well retains the periodic oscillation

of the transmission probability with respect to the enclosed magnetic flux.

To observe how the non-negligible widths of the quantum wires affects

the phase property of T11 and T12, the phase relationship at E = 8.548(eV )

is illustrated Fig. in 3.7 to φ1 (φ2 has the opposite sign of φ1). The argument

of T11 increases about 0.103π (or 1
9.749

π) at a unit of φ1, while that of T12

increases half as fast. Although in this two-dimensional system we tried

to keep our original design (i.e., we deploy the two leads along the ring at a

distance of 2
16

ring circumference), the increment of the arguments is different

from what we have designed in the one-dimensional case. Also, the increment

of the arguments at a unit of φ1 is no longer exactly the same at different
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Figure 3.7: Arguments of T11 and T12 at E = 8.548(eV ) (the light and dark

line resp.). The dots mark the increment of the arguments at each unit of φ1

and the straight lines are linear fittings of the increment.

E and φ1, but in the figure shown the increment varies less than 1.5% from

a linear extrapolation. Since the increment of the arguments is not even

rational numbers, it is not apparent here whether the phase property of this

two-dimensional system could facilitate the construction of the σz and T

gates. From the working points shown in Table 3.2, however, we indeed see

the working points of the σz and T gates deviate from the working point

of the I gate only by almost integer units of φ1 and φ2. How could non-

rational increment of the arguments adds up to a phase difference of π/4 or

π between T11 and T12? It may be explained as the following. Not only does

the increment of the arguments increases linearly at each integer point of

φ1, the arguments themselves increase linearly in between integer points of

φ1. Note that the former claim holds at other energies but the latter does

not. So the working points of the σz and T gates will not deviate very far

from that of the I gate by exactly integer shifts of φ1 and φ2, and the fidelity

of the I gate can be retained or even improved for the two gates. Another

interesting thing to note is that the σx gate has a fidelity even higher than

that of the I gate and reaches the threshold fidelity of quantum computation.

By applying a gate voltage to the central region as what we have done in the
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Table 3.2: Error rate for the set of AB quantum gates in the two-dimensional

calculation. The second column defines the dynamic working points for the

gates.

Gate I σz σx T H

log10 ε −3.202 −3.197 −4.157 −3.453 −2.529

E(eV ) 8.548 8.548 6.896 8.548 9.476

φ1 3.282 7.280 −0.528 2.268 7.261

φ2 −3.282 2.718 0.528 −4.294 4.605

one-dimensional calculation, we expect other quantum gates could reach the

threshold fidelity as well.

3.6 Conclusion

In conclusion, we proposed and analyzed an architecture for quantum com-

putation with ballistic electrons: coupled ballistic Aharonov-Bohm quantum

gates. On the one hand, such quantum gates can be tuned, controlled and re-

programmed dynamically. On the other hand, in properly selected operation

regimes, the fidelity of the gates can attain about 0.99999.

We would like to point out that our architecture can be used as a starting

point for the implementation of dynamically reprogrammable quantum com-

puters based on electrons as qubits and coupled quantum rings as quantum

gates. On the other hand, the main idea to use an external magnetic flux

as a dynamic factor to reprogram quantum computers during the calcula-

tion process is more general and potentially very rich. The rapid progress

in the fabrication of quantum magnetic disks and the already elaborated
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high quality two dimensional electron systems make us claim that quantum

computation with the ballistic Aharonov-Bohm quantum gates is not only

promising but also feasible in the near future.
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Chapter 4

Conclusions

In conclusion, we investigated two systems which could be useful in imple-

menting quantum computing with mobile qubits. In chapter 2, we present the

numerical results of the tunneling time through a realistic InGaAs/InAlAs/InGaAs

resonant symmetric structure with the Dresselhaus spin-orbit coupling. The

results indicate that the Dresselhaus spin-orbit coupling separates the time-

dependent response of differently spin-polarized tunneling electrons. The

large and tunable ratio of the tunneling times provides a possible way to con-

struct a dynamic spin filter, which is a basic element in spintronics as well as

quantum computing with mobile spin qubits. In chapter 3, we proposed and

analyzed an architecture for quantum computing with mobile charge qubits:

coupled ballistic Aharonov-Bohm quantum gates. Such quantum gates can

be tuned, controlled and reprogrammed dynamically. In properly selected

operation regimes, the gates demonstrate an excellent fidelity of 0.99999.

The central idea to use an external magnetic flux as a dynamic factor to

reprogram quantum computers during the calculation process is potentially

very rich. We hope our research could be useful and intriguing to the wide

community of quantum computation and information.

41



Bibliography

[1] R. P. Feynman, Int. J. of Theor. Phys., 21, 467(1982).

[2] D. Deutsch, Proc. R. Soc. Lond. A, 400, 97(1985).

[3] P. W. Shor, Algorithms for quantum computation:discrete logarithms

and factoring. Proc. of 35th Annual Sumposium on Fundamentals of

Computer Science (IEEE press, Los Alamitos, CA, 1994).

[4] L. Grover, Proc. of 28th Annual ACM Sumposium on on the Theory of

Computation, pages 212-219 (ACM press, New York, 1996).

[5] S. L. Braunstein and H. K. Lo(Eds.), Scalable Quantum Computers

(WILEY-VCH, Berlin, 2001).

[6] D. P. DiVincenzo, G. Burkard, D. Loss and E. Sukhorukov, in Quan-

tum Mesoscopic Phenomena and Mesoscopic Devices in Microelectron-

ics, eds. I. O. Kulik and R. Ellialtoglu (NATO ASI, Turkey, June 13-25,

1999).

[7] A. E. Popescu and R. Ionicioiu, Phys. Rev. B 69, 245422 (2004).

[8] S. Datta and B. Das, Appl. Phys. Lett. 89, 665(1990).

[9] G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, and J. van Wees,

Phys. Rev. B 62, R4790 (2000).

42



[10] P. R. Hammar, B. R. Bennett, M. J. Yang and M. Johnson, Phys. Rev.

Lett. 83, 203(1999); S. Gardelis, C. G. Smith, C. H. W. Barnes, E.

H. Linfield, and D. A. Ritchie, Phys. Rev. B 60, 7764(1999); D. D.

Awschalom, D. Loss, and N. Samarth (Eds), Semiconductor Spintronics

and Quantum Computation (Springer, Berlin, 2002).

[11] Yu. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).

[12] G. Dresselhaus, Phys. Rev. 100, 580 (1955).

[13] E. A. de Andrada e Silva, Phys. Rev. B 46, 1921 (1992); E. A. de

Andrada e Silva, and G. C. La Rocca, Phys. Rev. B 50, 8523 (1994).

[14] A. Voskoboynikov, S.S. Liu, and C.P. Lee, Phys. Rev. B 59, 12 514

(1999).

[15] E. A. de Andrada e Silva, and G. C. La Rocca, Phys. Rev. B 59, 15583

(1999).

[16] A. Voskoboynikov, S.S. Liu, and C.P. Lee, J. Appl. Phys. 87, 387 (2000).

[17] T. Koga, J. Nita, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88,

126601 (2002).
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