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ABSTRACT

We present two separate research which,-under.the computing scheme with mobile
qubits, could be useful to the implementation-of quantum computation. In the first part
of this report, spin dependent tunneling in:semiconductor symmetric double barrier
structures is studied theoretically. Our calculation is-based on the effective one band
Hamiltonian and Dresselhaus spin-orbit'coupling. We demonstrate that the ratio of the
tunneling times of electrons with opposite spin orientations can vary over a few orders
in magnitude. The large and tunable ratio of the tunneling times can serve as the basis
in development of all-semiconductor dynamic spin filters.

In the second part of this report, we propose an architecture to perform quantum
computation, using ballistic electrons as qubits and coupled quantum rings as quantum
gates. In the proposed architecture two adjacent one-dimensional wires, creating a
single qubit, are connected to two coupled quantum rings, where the required
magnetic flux is provided by enclosed nano-sized magnets. The phase modulation of
the wave function of the ballistic electrons under the Aharonov-Bohm effect is
carefully designed to facilitate re-programmable and dynamically controllable
quantum gates. A set of quantum gates with high fidelity can be constructed on the
basis of this architecture.
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Chapter 1

Introduction

The idea of quantum computation can be dated back to 1982, when R. Feyn-
man pointed out the essential difficulties in‘simulating quantum mechanical
systems on classical computers [1]. T cicecumvent those difficulties he ini-
tiated to build computers ;based on the principles of quantum mechanics.
Similar idea was proposed by Dentsch-later in 1985 [2], while he sought
to provide a foundation for the Chureh=Turing thesis based on a physical
theory. The field of quantum computation and quantum information arouse
widespread interest, however, not until 1994 when P. Shor demonstrated that
the problem of finding the prime factors of an integer can be solved efficiently
on a quantum computer [3]. It struck people like a bolt because this problem
is still believed to have no efficient solution on a classical computer. Thus
the finding challenges the strong Church-Turing thesis once again. Further
findings signaling the power of quantum computers came in 1995, when L.
Grover showed the problem of searching an unstructured database can also be
sped up on a quantum computer [4]. Nowadays the competition of research
toward the physical implementation of a quantum computer has become like

a "gold rush”.



But the impetus of this rush lends itself not only to the theoretical break-
through on the speedup of computation. The need for ever powerful informa-
tion processing capability has driven the growth of microelectronics industry
over the last decades. That need can only be met by integrating more func-
tions into even smaller chips. The resulting growth in computation power
has proved to be an engineering accomplishment, so much so as to be codified
as the Moore’s law. Although Moore’s law has approximately held true for
decades since 1960s, it is not expected to be held for the next twenty years.
Today the feature size of electronic devices hits the scale of nanometer, the
scale where the conventional semi-classical approach ceases to be true and
quantum mechanics begins to take part in. While researchers in nanoelec-
tronics seek to exploit quantumtmechanical effects to construct logic gates
of the scale of few atoms, a paradigim shift to quantum computation appears
to be more luring than evet.

Yet the physical implementationrof~aquantum computer poses a most
formidable challenge. To pass:the five stringent requirements for the im-
plementation of quantum computation set by DiVincenzo et el. [6], the
suitability in virtually every branch of quantum physics has been contem-
plated: atomic physics, quantum optics, nuclear and electron magnetic reso-
nance spectroscopy, superconducting device physics, electron physics on lig-
uid Helium, and mesoscopic and quantum dot research(an account of all
those propositions can be found in [5]). Among the numerous schemes to
implement quantum computers, solid state micro- and nano- systems draw
special attention because of their obvious advantages: scalability, miniatur-
izability and flexibility in design. It has also been remarked that solid state
physics is a most versatile branch of physics, in that almost any phenomenon

possible in physics can be embodied in an appropriately designed condensed



matter system [6]. Naturally then, we expect the versatility of solid state
systems will extend to the construction of quantum computers as well. Our
later discussion indicates this proposition to be more plausible (though only
time could tell if it is right).

The success of microelectronics has been built on the utilization of the
charge degrees of freedom of electrons. A quantum mechanical aspect of
electrons — the spin degrees of freedom — has largely been ignored. As the
working dimension of semiconductor electronics devices has been reduced to
such a small scale, that quantum mechanical property of electrons can no
longer be neglected, the field of semiconductor ”spintronics” has begun to
emerge. The underlying principle of this new electronics is the intimate con-
nection between the charge and.spin‘degrees of freedom of electrons. Besides
the possibility to enhance thé petformance of qiaantum electronic devices, the
utilization of spin offers the-opportunity to manipulate phase coherence over
length scale much larger than is typicallyrpossible in charge-based device [6].
This is a welcoming feature especially asfar-as the construction of quantum
computers is concerned, for spin can be a natural candidate for the qubit.

To successfully incorporate spin into existing semiconductor technology,
however, one has to address technical issues such as efficient spin injection,
transport control, and detection of spin polarization. A natural starting
point to tackle those problems would be to pass electrons through strongly
magnetized metals and then inject them back into semiconductor. But the
conductivity mismatch between metal and semiconductor impedes the elec-
tron transport and makes this approach seem inefficient, as Schmidt pointed
out [9]. Reported experimental results on polarization efficiency are less than
1% [10]. On the other hand, there is another approach which exploits the

spin-orbit interaction in semiconductor. The spin-orbit interaction lifts the



energy degeneracy among electrons with different spin polarization, making
the coherent dynamics of electron spin dependent. Based on that we can
conceive ways to manipulate the transport property of the electron. We will
see such an application in chapter 2.

A calculation process of a quantum computer is facilitated by distribut-
ing and exchanging quantum information among various parts of circuit. In
schemes that use static qubits, this task is carried out by incorporating extra
means to transport the state of the qubit. Moreover, we would need ultrafast
electronics or laser pulses (on the femto second scale) to perform gate opera-
tions subcoherently (the above discussion largely follows [7]). Thus we want
to use mobile qubits in solid state systems as our embodiment of qubits. If
we use electrons as informationicarriers, there are two such choices — spin
qubits and charge qubits. Quantuin- computinig with mobile electron spins
[7] is a natural extension of spintronies; its feasibility relies on our under-
standing of and capability in this‘field-rInrthis report, therefore, we will try
to address one of the elementary issues faged in spintronics rather than thor-
oughly discuss its capacity to implement quantum computation. Quantum
computing with mobile electron charges has also been proposed recently as
an attractive candidate [36, 37, 38]. Due to its relatively mature techno-
logical ground, we will look more closely at its architecture and how it can
possibly be implemented in this report.

This report is organized as follows: in chapter 2, we discuss a method
to carry out spin-filtering in III-V semiconductor thus obtain spin-polarized
current. As described above, such method could be useful to the implemen-
tation of quantum computing as well as quantum electronics. The result of
this chapter has been published in Journal of Applied physics, 98, 023716. In

chapter 3, we propose a novel architecture to perform quantum computation



and in particular single-qubit operations, using ballistic electrons as qubits
and coupled quantum rings as quantum gates. The result of this chapter
has been submitted to Applied Physics Letters. Finally we summarize our

findings.




Chapter 2

Time resolved spin-filtering in
semiconductor symmetric

resonant barrier structures

Since the first spin-dependent. electronic-device was proposed by Das and
Datta [8], the utilization of the spimsorhit'coupling has been one of the key
topics of semiconductor spintronics. However, a most elementary issue, an
efficient means to obtain spin polarized currents in semiconductor structures,
has not been resolved yet. The inefficiency of spin-injection back from mag-
netized metal electrodes leads us to seek total-semiconductor alternatives.
The spin-orbit interaction in semiconductors lifts the spin-degeneracy of elec-
trons’ energy, resulting in spin-dependent transport through semiconductor
junctions, which thus provides a possible solution.

The spin-orbit interaction of electrons in III-V semiconductor materi-
als is usually described by two contributions to the effective one-band spin-
dependent Hamiltonian. One, often referred to as the Rashba term, is in-

duced by the inversion asymmetry of the macroscopic potential [11], which
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can be controlled by an external electric field or material growth techniques.
The other, referred to as the Dresselhaus term [12], is due to the inver-
sion asymmetry of the zinc-blende lattice. The interplay between these two
terms has been studied by de Andrada e Silva [13], showing that, for narrow
gap semiconductors, the contribution from the Rashba term to the spin-
orbit interaction dominates over that from the Dresselhaus term. Hence
the Dresselhaus term is often neglected. Calculations based on the Rashba
spin-orbit interaction in III-V semiconductor heterostructures have been per-
formed [14, 15, 16, 17, 18, 19], showing the all semiconductor tunneling struc-
tures can be a feasible means to obtain electronic spin-polarized currents.
However, it was suggested recently [20, 18, 21] that even through a single
symmetric barrier, where the contribution from the Rashba term cancels out
due to macroscopic symmetzy [14}, electrons can tunnel highly spin-polarized
because of the Dresselhausterm.

In this paper we elaborate on thisridearand evaluate the spin-dependent
tunneling (delay) time in a symmetric resonant tunneling structure. The
tunneling time is an important quantity in a tunneling process that deter-
mines the dynamic working range of tunneling devices. In this work we take
the ”stationary phase approach” to define the tunneling time, as taken by
Bohm [22, 23]. Our following discussion will reveal that when the spin-orbit
interaction effect comes into play, the ratio of the tunneling time between
differently spin-polarized electrons can gain a few orders of magnitude. This
provides the theoretical basis for time-resolved spin-filtering. We also suggest
that one can manipulate the tunneling time to a great variety by changing
the barrier width. The relation between the delay time and the width is
simple and can be used as a rule to select working frequencies.

This chapter is organized as follows. In Sec. 1 we detail our calcula-

11



tion of the electron spin-dependent transmission amplitude, of polarization
efficiency, and of tunneling time. In Sec. 2, results of calculations for In-
GaAs/InAlAs/InGaAs double barrier tunnel structure are presented. In Sec.

3 we summarize the results.

2.1 Polarization efficiency and tunneling time

We consider the spin-dependent tunneling process through a symmetric dou-
ble barrier structure grown along z||[001] direction, as shown in Fig. 2.1(a).
Taking the ”stationary phase approach” the tunneling time is described to
be the phase delay time, which is the energy derivative of the phase © of the

transmission amplitude [23]

09,
OFE.’

where ©O4 = arg |t1|, E, denetes thelongitudinal component of the electron’s

R (2.1)

energy (corresponding to a nietien parallel to the heterostructure growth
direction), and o = £1 refers to the spin polarization.

Our calculation is performed on the base of the effective electronic one
band Hamiltonian, energy- and position- dependent electron effective mass
approximation and the Ben Daniel-Duke boundary conditions [24]. Layers
of the structure are perpendicular to the z-axis, the in-plane electron’s wave
vector is k. With the above assumptions the electronic wave function in the

7th region can be presented as
O, (x,y, 2) = Vp(2)exp(i(kx + kyy)), (2.2)

where k = |/k2 + k2 and VU, (2) satisfies the z-component of the Schrodinger

equation

~

H;;Vjs(2) = EV,,(2) (2.3)
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growth. The variation of thé-,‘ a.nd par@m@t%rs forms a symmetric double

"‘l

barrier tunneling heterostructure (b) A schematlc illustration of a possible

spin-filter implementation.
with the spin-dependent Hamiltonian in each region [20]
H;jo = Hjo+ Hjs0. (2.4)

In Eq. (2.4) Hjo is the Hamiltonian of the system without spin-orbit inter-

action
N h? d?
Hjo = — N k2 E'c:
° o, (B) (dz2 ) e
and
1 2 P2 2 1
= %2 { + } , (2.5)
mJ(E) 377, E — ch + Ejg E — ch + Ejg + Aj

13



presents the energy and position dependent reciprocal effective mass. £},
E;, and A; stand for the position dependent conduction-band edge, band
gap and the spin-orbit splitting in the valence band. P is the momentum
matrix element [24]. In Eq. (2.4) fljgo is the spin-dependent part of the
Hamiltonian which originates from the Dresselhaus term (in the symmetrical
structure the Rashba spin-orbit coupling vanishes [14]). When the kinetic

energy of electrons is substantially smaller than the barrier’s height we can

present this term as the following [20]

. R R d?
Hjso = v;(6:ks — ayky)ﬁa (2.6)

where 6, and ¢, are correspondingly x and y components of the vector of
the Pauli matrices 6 = {6, 6,;78:}and 7; is.a material constant of the jth
region.

The boundary conditions for the solution W;z(2) at the interface between
j and j + 1 regions have been introducedin Ref.[24]

ﬁ {d%q’ja(z)}zzzj T m {diZ\I/jJrlcr(Z)} ;

Z:Zj
Vo (7)) = Vjt10(2))- (2.7)
To diagonalize the Hamiltonian one can put the in-plane wave-vector k along

the z-direction (k, = 0) and take the electronic wave functions to be

1
Ujs(2) = iz (2) :
Fl

which are eigenfuctions of .

The general solution of Eq. (2.3) in a given jth region has the form

Vio(2) = ajo 0, (2) + bjo 5, (2),

14



where ¢jf,(z) is a pair of linearly independent solutions of Eq. (2.3) within
that region. In the regions j = 1,3,5 the solutions are the following plane
wave sets

£ (2) = exp(&ik;2),

jo

where

S
ki(E. k) = %\/Qmj(E% k)(E: + Erc — Ejc) — I? [1 -

2y,m;(E,, k)
Y, = \/1 + U%k,

and F, is the longitudinal component of the total energy in the first region:

h2k?

E=FK. +F +—— .
: . N le(Ezvk)

We use this expression, aléng with Eq.. (2.5); to find the dependence of
m;(E,, k) on E(E,, k)(j =41 — 5). Intheregions j = 2,4, the solutions are
chosen to be ‘

+

o (2)=exp(tq;2),

where

Yig
Qj(EZ7 k) = %\/Qm](Ez, k?)(E]c — Elc — Ez) —+ hg |:1 —
The coefficients {a;,, bjs} are to be determined from the boundary con-

ditions, Eq. (2.7). The sets of coefficient in neighboring regions are related

by the transfer matrix M [25]:

Ajo Ajtl1o

bja bj+1cr

15



According to the boundary conditions Eq. 2.7 the matrix M/ is written as
[14]
L[ A AR

Ml = —
T A _ _
I\ AL AL
with

_ d
a-of-ag, af={fuwpen}

J

+ m; + 1/}:":+1U(Zj)
Aj+_( i Ad _A;r>ﬁ—

mji1 7 i (z)
Aji_ _ ( m; Aji _ A;) ¢]¥—:10<Zj>‘
mjt1 o (25)

The double barrier tunneling structure consists of four interfaces, so the

total transfer matrix is written .as

4
M, =[] Az

j=1
Electrons are injected from“thesregionj.= 1. The transmitted waves will
appear in the region 7 = 5. With'this-assumption the transmission amplitude

is given by
1
(Mo)y,

and the spin-dependent delay time is written as

—ha arg [(Mo')ll]
OF, .

t, =

T.(E,, k) =

The polarization efficiency of the structure was defined in [14] to be

_ te? = [t-|?

R

16



33.66

33.62

3380  E,(mev)
2 33.58

Figure 2.2 Polarization efﬁciency P calculated for a
Ing 53Gag 47As/ Inol52A10_48As/In"(‘).53Ga0,47Aé *DBT  structure (see Fig.
2.1). The structure parametefs are ‘Oﬂ)faiﬂed in!WRefs. [27]: By, = 0418 eV,
By = 152 eV, A, = 088 eV, Ap = 0.341 eV, my(0) = 0.044 my,
m2(0) = 0.084 mg (myg is the frécelectron ‘mass), v = 0.0769 eV nm? [20],
72 = 0.0734 eV nm? [28], ¢ = 6 nm, d =12 nm.

2.2 Calculation results

In Fig. 2.2 we demonstrate the numerical results of the polarization effi-
ciency P of an electron’s tunneling through a resonant symmetric structure
made of Ing53Gags7As /Ings2Alp48As heterojunctions. All calculations are
performed within a region on (E,, k) plane where the total energy of electrons
is substantially smaller than the barrier’s height (see Eq. 2.6). The numer-
ical values of 7 in different materials are obtained for InAs and GaAs from
Ref. [20], for AlAs from Ref. [28], for alloys with the Vegard’s superposition
law [29]. One can see that the polarization efficiency shows typical resonant

behaviors as a function of the longitudinal energy and in-plane wave-number.
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The peaks correspond to the spin-split lowest resonant levels on the (E,, k)
plane. The splitting of the resonant levels result in an abrupt change of the

sign of the polarization efficiency.

(b)
1.0
0.8
7_(ns) 0.8

0.4

10

20 E. (meV)

Figure 2.3: The delay time for thestrueture in Fig. 2.2. (a) Delay time for
electrons with spin "up”. (b):Delay timefor electrons with spin "down”.

The delay time of tunneling electrons with “two opposite spin polariza-
tion is presented in Fig. 2.3, The position of the peak corresponds to the
resonant tunneling level, at which the tunneling electron is "trapped” in the
quasi-bound states of the well. Although the positions of the peak for the
two opposite spin polarizations do not seem to have the same functional de-
pendence on (FE,, k), the distance between them in FE, is proportional to k,
in accordance to the linear dependence on k of the Dresselhaus spin-spliting
of the levels in the well.

Since the positions of the peaks depends sharply on F, and k, we present
in a logarithmic scale the ratio of the delay time between oppositely spin-
polarized electrons (see Fig. 2.4). This ratio increases with the length of
k-vector and can gain a few orders in magnitude.

The ratio of delay times can be tuned by means of structural design. For

this reason we present in Fig. 2.5 the dependence of the maximal delay time
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1.5\-\\_1 '23.615 E:(meV)

k(10tem™")

Figure 2.4: Ratio between the delay time for different polarizations of the

electron spin. The structure is the same as in Fig. 2.2.

on the barrier thickness ¢ and thewellwidth d. The delay time increases
with the increasing of ¢ and.d; but hasdifferent functional dependencies on
each of them. From the calculation féshlt‘s presented in Fig. 2.5 for 7, , one

can approximate the dependencies-as the followfng formula:
TLio0d? explac),

« is a constant; for 7_ of the same structure, one can recalculate it from
the logarithmic ratio. For our symmetric InGaAs/InAlAs/InGaAs double
barrier structure a &~ 0.074 when d = 18nm. Applying this formula one can
determine the actual region of frequencies where the structure is applicable
to spin-dependent electronic devices.

The large and tunable ratio of spin-dependent delay times in symmetric
structures provides a new method to perform spin-filtering. Once we have
clearly spin-distinguishable times of the tunneling processes, the cutoff fre-
quencies of electrons differently spin-polarized will also split. By selecting an
appropriate region of frequency, the current contribution from electrons with

lower cutoff frequency can be greatly suppressed. In this sense we achieved
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Figure 2.5: The variation of the maximum delay time with respect to (a) the
barrier thickness. (b) the well width. The constant 7o = 107'? s is defined

for normalization. The structure is the same as in Fig. 2.2.

time-resolved spin-filtering. Thls dynamic‘r“eﬂ"g‘inme is more efficient than the
conventional static regime. :Ir‘ldeed, 11f‘1 %hén staitig regime the means to spin-
filtering is a large spin-splitting of ,reéonant lev‘;\fels in the well [16], which
requires a large transversal DC bias (‘o'r‘ Hf)"uilt;in electric field). In symmetri-
cal structures instead one can perform the dynamic spin-filtering even when
only a weak time dependent signal is applied. We mention by pass that the
spin-relaxation processes can also be suppressed by the same means.

An important point tends to be missed is that the spin-filtering based on
the spin-orbit coupling requires a control of electrons’ in-plane momentum
[16, 18, 19]. Fig. 2.1(b) illustrates schematically the basic concept of a
dynamic spin-filter fabricated in a split multi-collector configuration. The
in-plane momentum control of electrons and the dynamic spin-filtering are
achieved by sending a series of high frequency voltage pulses to different
leads of the multi collector. Another method to control electrons’ in-plane
momentum was demonstrated recently with side-gated resonant devices in a

DC regime [19].
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2.3 Conclusions

Based on the stationary phase concept and the effective one-band Hamil-
tonian with the Dresselhaus spin-orbit coupling, we present the numerical
results of the tunneling time through a realistic InGaAs/InAlAs/InGaAs
resonant symmetric structure. It is shown that the polarization efficiency of
the structure has a well-defined resonance behavior, which leads to a consid-
erable spin polarization of electrons tunneling through. In the lower energy
region, the ratio between the tunneling times of electrons with opposite spin
orientation can vary over a few orders in magnitude. The results indicate
that the Dresselhaus spin-orbit coupling separates the time-dependent re-
sponse of differently spin-polarized, tunneling electrons. Further, the large
and tunable ratio of the tumneling times provides a possible way to con-
struct a dynamic spin filter« The characteristic time of such devices also has
been estimated and presented, showing simple-functional dependencies on
the barrier thickness and theswell width. The.dependencies can be exploited

to design spintronic devices working'in' the desired frequencies.
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Chapter 3

Aharonov-Bohm quantum gates

with ballistic electrons

The physical implementation of a quantum eomputer continues to pose a
great challenge. Among thé numerous schemes o implement quantum com-
puters, solid state micro- and nane- systems draw special attention because
of their obvious advantages: scalability; miniaturizability and flexibility in
design. Quantum computation using ballistic electrons has been proposed
recently as an attractive candidate [36, 37, 38]. In this scheme we use bal-
listic electrons as flying qubits in one dimensional quantum wires within the
dual rail representation [38, 44]. That is, two adjacent 1D quantum wires,
called the 0- and the 1-rail respectively, are used as the physical implemen-
tation of a single qubit. The logic state |0) is defined as the presence of a
single electron in the 0-rail while the logic state |1) as in the 1-rail. Initial-
ization and measurement of the qubit states are done by coupling each qubit
rail to a single electron transistor, as was proposed in [38]. The construction
of quantum gates deserves more discussion so from hereon we pay special

attention to it.
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After the first idea of utilizing quantum interference effects to perform
logic functions has been proposed by Datta et el. [40], the property of
quantum waveguide and quantum network has been widely investigated.
Among them are quantum interference transistors [40, 47|, serial stubs [30]
and Ahanorov-Bohm rings with multiple arms [31], to list only a few. A
complete set of logic functional devices has also been proposed by Wu. et
el. [45], leading to the possibility of performing massive parallel computing
by electron wave. Those previous works, however, focus mainly on the ma-
nipulation of transmission probability but not on the accompanying changes
on the phase of the wave. That is, they concentrated on the possibility to
perform classical computation but miss the even more natural application to
perform quantum computations®Thus we are motivated to explore the ca-
pacity of quantum interfererce devices to perform single-qubit operation in
the context of quantum computation using ballistic electrons. But to achieve
that end we would like to laok at thetexisting quantum network theory in a

new setting first.

3.1 A detour to microwave engineering

In this detour we will first provide an equivalent description of the quantum
network, which brings us more flexibilities in designing the quantum network
and gives insight into the capacity of quantum interference devices. Then we
adopt those ideas to create a single-qubit quantum gate for ballistic electrons.
All knowledge about microwave engineering used in this section can be found
in [34].

It is well-known that both the time-independent Schrodinger equation

and the the source-free Maxwell equations take the form of the Helmholtz
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equations. Further resemblance appears when we consider the TEM solutions
of the Maxwell equations in waveguides, i. e., the transmission line equation
[34], and the one-dimensional Schrédinger equation in constant potential.
The analogy can be most directly seen as follows: In the transmission line
theory we concern only two integrated physical quantities of the electric
circuit, the electrical potential V'(x) and the electrical current I(x), but not
the detailed field solutions of the Maxwell equations. Their solutions in a

lossless transmission line are:

Viz) = Vyte™ +Vye 7,
V+ . V- .
I — 0 ifx _ 0 _—ifx
(@) Z " 7,

where Z is the characteristic impedance of the transmission line and ( is the
propagation constant. However, in constant potential the time-independent

one-dimensional Schrodinger” equation -has solutions:

P(r) = are™ + age

= auike™® — aQike_’kx,

and k = —VQm*h(E_V), V' is a constant potential. If we regard ik as a wave

conductance in the quantum network as ZLO in the transmission line, those
two sets of solutions take the same form. Their boundary conditions are
also the same. In the transmission line equation we require the continuity of
the voltage V(z) and the conservation of the current I(z) at each intersec-
tion; in a one-dimensional quantum network we require the continuity of the
wave function ¢(x) and the conservation of the current &g—f) by the Griffiths

boundary conditions [35, 47]. Thus we can draw freely the already sophisti-
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cated circuits and techniques from the microwave engineering to apply to a
quantum network.

Then we immediately see that a quantum interference transistor in [47]
amounts to a single stub. Total transmission occurs (see Fig.7 in that refer-
ence) when kL/m = %, n € Z,or L = "T)‘, i.e., when the single stub acts as
a quarter-wave transformer such that the infinite load is transformed into a
zero load. An impurity introduced into the quantum network, modeled as a
d-function in [33], is like a conductance connected in series. It can be put at
the intersection of multiple segments of 1D quantum wires to match the wave
impendence of the quantum network. The inclusion of external magnetic field
breaks the reciprocity of the quantum network, creating anisotropic quantum
interference devices. These deviges includé the isolator and the quantum cir-
culator, both of which prevent reflected wayes of the next stage from further
interfering with the input waves. All the above mentioned structures give us
more flexibilities in designing quantunmrmetwork to do computation.

Having seen a variety of quantum interference devices, we now want to
make use of them to perform single-qubit operation. Again let’s look at
some of the existing microwave circuits first. The (180°) hybrid works as a
Hadmard gate. The quadrature(90°) hybrid (see the figure below) is espe-

cially interesting. Let the input and output electron have a wave number

30 ka 16-
- E"lel NS e’ 3
- 14
— ‘1292 ’ —2.9,_1 —
€ ka €

k = +2m*FE/h, where E stands for the electron energy and m* for the elec-
tron effective mass. Also, let ka and kb be the electron wave number in the

corresponding segments of 1D quantum wires in Fig. 3.1. The length of each
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with

>

of the four internal segments of 1D quantum wires is chosen to be
respect to the corresponding wave number in that segment. Connecting four

phase shifters [38] to it, the transfer matrix of this quadrature(90°) hybrid

—a_i(61+63) i(02+63)
a+1

2(01 +94) 92+04
a+1 a+1

would be

—1
where o = ka/kb. By controlling over o and 6; , i = 1 — 4, this configuration
can be constructed to act as arbitrary single-qubit quantum gate.

There are two problems with this construction, however. To have an
identity or a o, gate, a has to approach to infinity or zero. This is impractical
for « is related to the voltage applied to different segments of 1D quantum
wires. The second problem arises since wérrequire the length of each of the
four internal segments of 1B quantum wires to be % with respect to the
corresponding wave number in that segment. Different ka and kb require
different length for the corresponding-segments.’ If we have no means to vary
the length of each segment of quantum wire; then the functionality of such
quantum gates could not be changed after fabrication.

The ability to construct quantum gates by total electrical means is not all
satisfying. Adding an external magnetic field to electric circuits, however, can
further modulate the phases of the electronic waves of the ballistic electrons
(the Aharonov-Bohm (AB) effect [39, 40]). So, we propose in this chapter
a system of one-dimensional (1D) quantum wires incorporating an array of
nano-rings and nano-sized magnets [43] which can act as a new architecture
to perform quantum computation. Each quantum gate in this architecture
is controlled dynamically by flipping the magnetization of the nano-sized
magnets and changing the chemical potential for the ballistic electrons. This

provides the opportunity to program dynamically a quantum computer the
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same way as we do a classical one.

3.2 General architecture

Our architecture is shown conceptually in Fig. 3.1. A pair of adjacent
quantum rings, which enclose nano-sized magnets (represented in Fig. 3.1
as tablets with arrows) stands for a single-qubit AB quantum gate (basic
element). Figure 3.1 shows two single qubit gates and a controlled phase
shifter [38]. The phase shifter enables the entangling of two single qubits
and to form a two qubit gate. During a quantum computation cycle, two
input qubits enter from the two pairs of parallel 1D quantum wires at the left-
hand side (the rails) two AB quantumgates. Their wave functions interfere
and become modulated under the AB effect inthe quantum rings, then they
leave and enter finally the=two pairs of parallel 1D quantum wires at the
right-hand side. Note that the two-pairs-of quantum wires at the left-hand
side are separated far enoughto minimize.the Coulomb interaction between
different qubits. After two single-qubit operations (being performed in two
separated pairs of quantum rings), rails leaving the AB quantum gates enter
path selectors, which could either direct electrons to a position close enough
to "turn on” the Coulomb interaction between them (for instance, the lightly
shaded region in Fig. 3.1), or lead electrons away from the interaction region
(then ”turn off” the interaction). Path selectors can be realized by making the
potential barrier on a certain path high enough or by a quantum circulator
[45]. With a carefully designed length of the interaction region, the two
qubits altogether will undergo a controlled phase shift transformation [38].
Since single- and two-qubit gates can be implemented, our architecture is

scalable and can be expanded to perform arbitrary multi-qubit quantum
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Figure 3.1: Schematic diagram of the proposed architecture for quantum
computation. Two pairs of parallel 1D quantum wires represent two qubits
connected to two pairs of quantum rings, each of which stands for a single-
qubit quantum gate. The tablets in the rings are single-domain nano-sized
magnets (the arrows indicate theirinagnétization), and the cantilever is used
as a read-write head to monitor/centrol the magnetization. Path selectors
(abbreviated as p.s.) are used to leadelectrons to/away from the lightly
shaded region (phase shifter), where-the.Coulomb interaction between elec-
trons is strong enough to entangle two qubits: The numbers in the upper-left
corner indicate the segments of the 1D quantum wires used in the calculation

of a single-qubit gate.

computations [46]. From now on we focus on the construction of the single-

qubit AB quantum gate in our discussion.

3.3 Calculation and results

To determine the operations that a single qubit undergoes by passing the
AB quantum gate, we evaluate the transmission matrix T between the input
and output of the gate (see the upper-left corner of Fig. 3.1). Assuming

the single-modedness in each segment 7 of 1D quantum wave guides , we
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adopt the method proposed in [47], where the electron wave functions are
represented by 1D plane waves. In the input and output leads (segments
j =1,2,9,10 in Fig. 3.1) the electron wave vector is k = v/2m*E/h, where
E stands for the electron energy and m™* for the electron effective mass. The
wave numbers of the plane wave solutions in the jth segment of quantum
wire (for j = 3,6) are chosen to be ki = k &+ 7¢;/L. Here the normalized
flux ¢ is defined by ¢; = ®;/P¢, where ®; is the magnetic flux through the
upper (i = 1) or lower (i = 2) ring. 2L stands for the circumference of
a quantum ring and ” £+ 7 indicates whether the electron wave vector has
the same direction as the magnetic vector potential or not. ®, = h/e is
the universal flux quantum. In the segments j = 4,5,7,8 the electron wave
number is given by ki = k, £+ 7w/ L. The wave number k, can differ from k
and depends on changes in the chemical potential or the shape of the segment.
Applying standard techniques‘one can caleulate the matrix elements T, of
the transmission matrix, which relatestherinput and output electronic wave

functions as
10)out = T11[0Vin + T12[1)in,

Dow = Tr0)in + Toa| Vin-
State |0) or |1) is the electronic wave propagating in the upper or lower rail
correspondingly.

The quantum gate represented by the transmission matrix T is in general
not unitary. However, we stress that with properly configurated gates the
transmission rate is sufficiently high to perform a reasonably long quantum
computation. The probabilities of transmission 7y from the input O-rail to
the upper and 77 to the lower output rail for a particular k,/k are shown
in Fig. 3.2 (T = \TH]Q, T, = \T12\2). The transmission probabilities are
periodic functions of kL/m and ¢; (¢ has the opposite sign of ¢;), so the

plot region is chosen to cover exactly a period of ¢;. Note that Ty and T}
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Figure 3.2: Transmission probabilities from the O-rail of the input to the
0-rail (left panel) and 1-rail (right panel) of the output. ¢ * ¢ < 0,|d1| =
|po| , logy(k,/k) = 2.275. The red line (

gray line) in top plane is drawn for
kL/T(' = 0.839. r' TTTT .

at kL/m ~ 0.839 attain the.ir maxﬂ;rLu'm 6-r,‘-‘“'di_.lfferent ¢1. This signals an
opportunity to change the fuhctlomahty Vof.:f‘-h.e l.dix:lantum gate dynamically by
tuning the magnetic flux. ) “'F'FI-";'-"'. ﬁ
Using the AB quantum galfé.é.‘.‘\ﬁé can “'('ég)ntrol directly the phase of the
electronic wave function. Increasing the phase ¢ by 1 changes the arguments
1

of the matrix elements 111, Tio, To1, T2 by —%71’, —5™ —%71’, 27, without

affecting their modulus. Similarly, increasing the phase ¢, by 1 changes these

arguments by 2, %7‘(’ ir, i

.- 7 respectively. Such phase relationship holds for

all k,/k. Therefore, with a proper choice of kL/m and k,L/m, one can obtain
a set of quantum gates of different functionality simply by varying ¢; and ¢o
through the action of the cantilevers. A set of elementary quantum gates,
including the identity gate (I), Pauli-Z gate (o), Pauli-X gate (0,), and the
/8 gate (1) is at our disposal. It should be noted that the AB quantum
gates constructed in this way can only be symmetric. Asymmetric gates are

achieved by connecting two or more gates in series. Varying kL /m, however,
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Figure 3.3: Minimum error rate for the H and o, gate (dotted and solid line

resp.). The horizontal dashed line stands for e, = 1074

we have also the Hadamard gate (H). By the H-gate and T-gate we can
approximate any individual operation to arbitrary accuracy [46]. We list the
AB quantum gates and the corresponding working points in Table 3.1 for
log, (k,/k) = 2.275.

In order to compare the ertoriprone (non-unitary) T-gates with ideal
error-free (unitary) gates (U), we also ‘present in the table estimates of the
gate’s error rate €, which is defined aS€/=1= F ; where F = ‘Tr (TUT) } /T (UUT)
is the gate fidelity [48]. Also, we take € = 107" as a rough estimate of
the threshold for quantum computation, below which an arbitrarily large
computation can be performed efficiently [46]. Clearly, the proposed AB
quantum gates demonstrate error rate below €;,, which ensures the scalabil-
ity of the architecture. Moreover, due to the periodical behavior of the AB
quantum gates described above, we claim that the optimal operating points
(kL/m, kyL/7, ¢1,¢2) for a particular functionality can always be found by
tuning and a very high fidelity can be achieved. Figure 3.3 shows an ex-
ample of the behavior of the minimal error rate € for o, and H gates to
different k,/k, when ¢y and kL/7 are varied over the plot region in Fig. 3.2.
For several k,/k the minimal error rates of both gates are beyond €. The

possibility to choose and tune the gate dynamically makes our architecture

31



Table 3.1: Error rate for the set of AB quantum gates. The second column

defines the dynamic working points for the gates, log,(k,/k) = 2.275.

Gate I o, Oy T H

log;q€e | —5.810 | —5.810 —5.179 —5.810 —8.442

kL/m | 0.839 | 0.839 0.839 0.839 1.219
o1 0.748 | 0.748  0.252  0.748  0.933
o) 3.252 | —0.748 —0.252 0.252 —4.933

particularly promising.

3.4 Implementation

The proposed architecture ‘can be implemented;using two dimensional elec-
tron gas structures and applying the split-gate techniques to define the pat-
tern of 1D quantum wires. Withinithe dual rail representation for ballistic
electron flying qubits, initialization and measurement of the qubit states can
be done as was proposed in [38]. Nano-sized magnets can be electroplated
on the sample [43]. Lithographic techniques enable us to make well-defined
shapes and locations. The dynamic control of the AB quantum gates is re-
alized by flipping the magnetization of the nano-magnets with read-write
heads [43] (which is shown in Fig. 3.1 as a cantilever). As a result we can
manipulate the phase of the electronic wave functions. Furthermore, differ-
ent magnitudes of ¢; and ¢, are obtained by varying the size of the magnets
and the rings, or by enclosing many magnets in a single ring. In addition,
the application of the split-gate techniques to a two dimensional electron

gas makes the values of kL/m and k,L/m tunable. Variation of the voltage
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applied to the gate changes the lateral confinement of the electrons in the
quantum wires and modifies £ and k,. So, we can tune separately all of
the four variables to choose the working point (kL/m, k,L/7, ¢1,¢p2) and to
achieve the highest fidelity.

The approach proposed in ([38]) uses ballistic electrons. The function-
ality of the gates in that design is defined at the stage of fabricating the
computer. This architecture will seriously suffer from any fabrication defect
because defects cannot be compensated afterwards. In contrast, the dynamic
controllability in our proposition implies that the functionality of each gate
can be re-defined after fabrication and even during operation. For instance
one can dynamically re-assign a H-gate into a T-gate during the calculation
process. Since it is possible to imake a hybridization of quantum computers
and classical computers in sélid istate|circuits, @ classical computer are used
to operate the read-write head. Witheut this dynamic re-programmability
the architecture can only sérve as special-purpose quantum circuits but not
as quantum computers for general purposes.” We emphasize that the above
advantages are entirely due to the universality of the AB quantum gates —
multi-functionality is achieved by changing through k and k, and the en-
closed magnetic fluxes. The utilization of a magnetic field, rather than an
electric field like in [38], has other benefits: low power, insensitivity to noise,

and less astray field.

3.5 Two-dimensional calculation using the lat-
tice Green’s function method

In the previous sections we have demonstrated good gate fidelity within an

one-dimensional calculation. The applicability of such results, however, is
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not clear for the following reasons. At each intersection, to connect the wave
functions in different segments of quantum wires the Griffith [35] bound-
ary conditions are imposed, which treat each segment as simple straight
line without taking its geometry into consideration. Taking the geometry of
quantum wires into account, we expect the transmission through an intersec-
tion maximizes only when the incident energy of electrons can couple to the
quasi-bound states of the intersection. The transmission probability depends
on incident energy complicatedly while that does not depend on incident en-
ergy if the Griffith boundary conditions are imposed. On the other hand,
the construction of the o, and T' gates in our architecture relies on how the
phases of the transmission amplitudes increase with the magnetic flux. And
the phase dependence is determined by the relative position of the incoming
and outgoing leads along thé ring. tIn real:situation the leads and the arms
of the rings have non-negligible width. -Can we still establish a perfect phase
property when the width effect is takenrinto/account? If not, are we able
to construct such gates like o.“and I' gates which require the phase-shifting
property of the transmission amplitudes?

We perform a two-dimensional calculation based on the lattice Green’s
function method [41] to address the above questions. This method is suitable
for our use because of its ability to calculate the transmission property for
an arbitrarily shaped conductor. Another appealing feature of this method
is that some types of magnetic fields may be incorporated quite simply into
the formalism, and therefore it is well suited to study various effects of mag-
netotransport [41]. Moreover, we can obtain the Green’s function recursively
and then extract the scattering matrix elements from the Green’s function
as in [42]. The discretized mesh used in our calculation is shown in Fig.

3.4, and the single particle Green’s function is solved on this mesh under the
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Figure 3.4: Actually simulated meshes in our calculation. The numbers along
the axes are the index of the mesh. In this calculation 121 x 238 meshes
are included. Red arrows indicating the relevant length of this system. The
dashed line in the center separates the left half region and the right half one,
across it the magnetic field isstaken to be abruptly different. The effective

mass of the electron is 0.09+my.

effective mass approximation: We have-made an infinite barrier approxima-
tion, that is, the potential erfergy in the light region is set to be zero and
that in the dark region is set to be infinite. The straight light segments in
the center connect respectively to the semi-infinite incoming and outgoing
leads, in which the magnetic field is assumed to be not present. However,
at actually simulated mesh shown here the magnetic field is present, and is
taken to be abruptly different in the left half region and the right half region
(separated in the figure by a dashed line).

In a realistic two-dimensional calculation the quantum waveguides are
not singlemoded. We define the logic state of the qubit as the presence of
a single electron in the first transverse mode of a rail, and we restrict the
incident energy in the range between the first and second transverse mode

so as to minimize the error due to leakage to other transverse modes. The
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Figure 3.5: Transmission pi:QbabilitliéS;“fydm tiie O-rail of the input to the
O-rail (left panel) and 1-rail (right pdnél) of the“,h output at a zero magnetic
field. The plot energy range i bétween the ﬁrst and second transverse mode,
3.02eV and 11.49¢V in this system. The light and dark line correspond to Tj

and 77, respectively.

probabilities of transmission Ty and T (T = |T11]2, T, = \T12|2) at a zero
magnetic field are shown in Fig. 3.6 in the energy range between the first
and second transverse mode. The zero energy point is set at the conduction
band edge. The incorporation of the geometry of the intersection greatly
complicates the energy response of the coupled ring system, as contrasted to
the one-dimensional situation where Ty and T} are periodic to kL /7. Another
notable feature of this system is that the incident electron from the input
0-rail can better couple to the output 1-rail rather than to the output O-rail

(we will be more precise to this claim later).
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Figure 3.6: Transmission probabilities from the 0-rail of the input to the 0-

rail (left panel) and 1-rail (right panel) of the output. ¢1x¢s < 0, |p1| = |P2] .

In Fig. 3.6 we calculate Ty and, 7. with respect to the incident electron
energy and the normalized maénetic Hux ¢.Here the normalized flux ¢ is
defined by ¢; = @,/ Py, whefe ‘CDi is t}‘m; évé}agé of the magnetic flux enclosed
by the outer or inner circle; fhrough the left (i e 1) or right (¢ = 2) ring. In
the two unit of ¢; of the plot'ﬁregio“n shown 'her‘éﬂ,‘the transmission probabilities
are almost periodic to ¢; (¢o has the opposité sign of ¢1). Having the ratio of
wire width to ring radius as %, this system well retains the periodic oscillation
of the transmission probability with respect to the enclosed magnetic flux.

To observe how the non-negligible widths of the quantum wires affects
the phase property of T1; and T, the phase relationship at E = 8.548(eV)
is illustrated Fig. in 3.7 to ¢; (¢2 has the opposite sign of ¢;). The argument

of T} increases about 0.1037 (or 7) at a unit of ¢y, while that of T},

1
9.749
increases half as fast. Although in this two-dimensional system we tried
to keep our original design (i.e., we deploy the two leads along the ring at a
distance of 136 ring circumference), the increment of the arguments is different

from what we have designed in the one-dimensional case. Also, the increment

of the arguments at a unit of ¢, is no longer exactly the same at different
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Figure 3.7: Arguments of T}; and T3, at E = 8.548(eV') (the light and dark
line resp.). The dots mark the increment of the arguments at each unit of ¢,

and the straight lines are linear fittings of the increment.

E and ¢4, but in the figure shown the increment varies less than 1.5% from
a linear extrapolation. Since the increment of the arguments is not even
rational numbers, it is not apparent_here whether the phase property of this
two-dimensional system could facilitate the construction of the o, and T
gates. From the working points shewn in Table’3.2, however, we indeed see
the working points of the o, and*T gates deviate from the working point
of the I gate only by almost integer umits of ¢; and ¢,. How could non-
rational increment of the arguments adds up to a phase difference of 7/4 or
7 between T7; and T157 It may be explained as the following. Not only does
the increment of the arguments increases linearly at each integer point of
¢1, the arguments themselves increase linearly in between integer points of
¢1. Note that the former claim holds at other energies but the latter does
not. So the working points of the o, and T" gates will not deviate very far
from that of the I gate by exactly integer shifts of ¢; and ¢, and the fidelity
of the I gate can be retained or even improved for the two gates. Another
interesting thing to note is that the o, gate has a fidelity even higher than
that of the I gate and reaches the threshold fidelity of quantum computation.

By applying a gate voltage to the central region as what we have done in the
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Table 3.2: Error rate for the set of AB quantum gates in the two-dimensional
calculation. The second column defines the dynamic working points for the

gates.

Gate I o, Oy T H

logyge | —3.202 | —3.197 —4.157 —3.453 —2.529

E(eV) | 8548 | 8548  6.896  8.548  9.476
1 3.282 | 7.280 —0.528 2.268  7.261
o5 —3.282 | 2.718 0.528 —4.294 4.605

one-dimensional calculation, we expect. other quantum gates could reach the

threshold fidelity as well.

3.6 Conclusion

In conclusion, we proposed and ‘analyzed an architecture for quantum com-
putation with ballistic electrons: coupled ballistic Aharonov-Bohm quantum
gates. On the one hand, such quantum gates can be tuned, controlled and re-
programmed dynamically. On the other hand, in properly selected operation
regimes, the fidelity of the gates can attain about 0.99999.

We would like to point out that our architecture can be used as a starting
point for the implementation of dynamically reprogrammable quantum com-
puters based on electrons as qubits and coupled quantum rings as quantum
gates. On the other hand, the main idea to use an external magnetic flux
as a dynamic factor to reprogram quantum computers during the calcula-
tion process is more general and potentially very rich. The rapid progress

in the fabrication of quantum magnetic disks and the already elaborated

39



high quality two dimensional electron systems make us claim that quantum
computation with the ballistic Aharonov-Bohm quantum gates is not only

promising but also feasible in the near future.
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Chapter 4

Conclusions

In conclusion, we investigated two systems which could be useful in imple-
menting quantum computing with mobile qubits. In chapter 2, we present the
numerical results of the tunneling time through a realistic InGaAs/InAlAs/InGaAs
resonant symmetric structure with the Dresselhaus spin-orbit coupling. The
results indicate that the Drésselhans spin-orbit. coupling separates the time-
dependent response of differently spin=polarized tunneling electrons. The
large and tunable ratio of the tunneling times provides a possible way to con-
struct a dynamic spin filter, which is a basic element in spintronics as well as
quantum computing with mobile spin qubits. In chapter 3, we proposed and
analyzed an architecture for quantum computing with mobile charge qubits:
coupled ballistic Aharonov-Bohm quantum gates. Such quantum gates can
be tuned, controlled and reprogrammed dynamically. In properly selected
operation regimes, the gates demonstrate an excellent fidelity of 0.99999.
The central idea to use an external magnetic flux as a dynamic factor to
reprogram quantum computers during the calculation process is potentially
very rich. We hope our research could be useful and intriguing to the wide

community of quantum computation and information.
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