中文摘要i
Abstractii
誌謝iii
Contentsiv
Figure Captionsvii
Table Captionsxi
Chapter1 Introduction1
1.1 Motivation and Background1
1.2 Thesis organization3
Chapter2 3T and 4T RF MOSFET Layout and Application5
2.1 Layout
2.2 Application
Chapter3 RF MOSFET Small Signal Equivalent Circuit Model Analysis7
3.1 Preface
3.2 3T MOSFET under linear and saturation regions7
3.2.1 Linear region7
3.2.2 Saturation region11
3.3 4T MOSFET under linear and saturation regions
3.4 Comparison between 3T and 4T MOSFET13
3.4.1 Substrate network13
3.4.2 Parasitic resistance, capacitance, inductance14
3.4.3 De-embedding method14
Chapter4 3T RF MOSFET Model Parameter Extraction20
4.1 De-embedding methods20

Contents

4.1.1 Open de-embedding	20
4.1.2 Short de-embedding	21
4.2 Parasitic resistance and inductance extraction and analysis	22
4.2.1 Parasitic RL extraction from short pad	22
4.2.2 Parasitic RL extraction from device	24
4.2.3 Frequency and bias dependence	30
4.2.4 Device geometry dependence	31
4.3 Capacitance extraction and analysis	32
4.3.1 Bias dependence	33
4.3.2 Frequency dependence	35
4.3.3 Device geometry dependence	36
Chapter5 4T RF MOSFET Model Parameter Extraction	45
5.1 De-embedding methods.	45
5.2 Parasitic resistance and inductance extraction and analysis	45
5.2.1 Parasitic RL extraction from device	46
5.2.2 Frequency and bias dependence	49
5.2.3 Device geometry dependence	50
5.3 Capacitance extraction and analysis	50
5.3.1 Bias dependence	51
5.3.2 Revised method to extract capacitance	54
5.3.3 Frequency dependence	57
5.3.4 Device geometry dependence	57
Chapter6 Small Signal Model Verification by Equivalent Circuit Simulation	71
6.1 Comparison of measured and simulation for 3T device	71
6.1.1 Linear regions for 3T device	71
6.1.2 Saturation regions for 3T device	74

6.2 Comparison of measured and simulation for 4T device7	76
6.2.1 4T device in linear regions7	77
6.2.2 4T device in Saturation regions7	79
6.3 The role of substrate parameters in equivalent circuit	31
Chapter7 Future Work10)4
7.1 Parasitic resistance extracted from short pad10)4
7.2 Bulk resistance and capacitance extraction10)4
7.3 Small signal equivalent circuit modification10)5
Reference10)6

Figure Captions

Chapte	r2
Fig. 2-1	The layout difference between 3T and 4T devices of metal-3 layer6
Chapte	r3
Fig. 3-1	Equivalent circuit of an RF MOSFET at $V_{gs}=V_{ds}=0V$ 15
Fig. 3-2	The equivalent circuit of 3T device at V _{gs} =V _{ds} =0V (Open_de)15
Fig. 3-3	The equivalent circuit of 3T device at V _{gs} =V _{ds} =0V (Open+Short_de)16
Fig. 3-4	The geometry dependence of extracted resistances at $V_{gs}=V_{ds}=0V$ for 3T16
Fig. 3-5	Small signal equivalent circuit of the MOSFET at saturation region16
Fig. 3-6	The equivalent circuit of 3T device at V_{gs} =1.2V, V_{ds} =0V (Open_de)17
Fig. 3-7	The configuration of equivalent circuit of 3T at V_{gs} =1.2V, V_{ds} =0V17
Fig. 3-8	The equivalent circuit of device at V _{gs} >V _{th} ; V _{ds} =0V17
Fig. 3-9	The equivalent circuit of 3T device at V _{gs} =V _{ds} =1.2V (Open_de)18
Fig. 3-10	The equivalent circuit of 4T device at V _{gs} =V _{ds} =0V (Open_de)19
Fig. 3-11	The equivalent circuit of 4T device at V _{gs} =1.2V, V _{ds} =0V (Open_de)19
Fig. 3-12	The equivalent circuit of 4T device at $V_{gs}=V_{ds}=1.2V$ (Open_de)19
Chapte	r4
Fig. 4-1	RF measurement for a two-port system
Fig. 4-2	The equivalent circuit of 3T device with pad37
Fig. 4-3	The equivalent circuit of open pad37
Fig. 4-4	The equivalent circuit of short pad
Fig. 4-5	The illustration of de-embedding procedure for 3T device
Fig. 4-6	The equivalent circuit of short pad after open de-embedding
Fig. 4-7	A small-signal equivalent circuit model at saturation region
Fig. 4-8	The equivalent circuit of device at V _{gs} >V _{th} ; V _{ds} =0V

Fig. 4-9	The R_{ch} versus reciprocal of finger number (1/N _F)	10
Fig. 4-10	The total parasitic resistance vs. reciprocal of finger number $(1/N_F)$ for $3T$	40
Fig. 4-11	The C _{gg} capacitance vs. gate voltage (V _{gs}) at V _{ds} =0V for 3T	41
Fig. 4-12	The C _{gd} capacitance vs. gate voltage (V _{gs}) at V _{ds} =0V for 3T	41
Fig. 4-13	The C _{gg} capacitance vs. gate voltage (V _{gs}) at V _{ds} =1.2V for 3T	42
Fig. 4-14	The C _{gd} capacitance vs. gate voltage (V _{gs}) at V _{ds} =1.2V for 3T	42
Fig. 4-15	The C _{gg} capacitance vs. frequency at V _{gs} =1.2V with varying V _{ds} for 3T	13
Fig. 4-16	The C _{gd} capacitance vs. frequency at V _{gs} =1.2V with varying V _{ds} for 3T	13
Fig. 4-17	The capacitances vs. finger number at $V_{gs}\=1.2V$ and $V_{ds}\=0V$ for 3T	14
Fig. 4-18	The capacitances vs. finger number at V $_{gs}$ =1.2V and V $_{ds}$ =1.2V for 3T	14
Chapter	r5	
Fig. 5-1	The equivalent circuit of 4T device with pad	59
Fig. 5-2	The illustration of de-embedding procedure for 4T device	59
Fig. 5-3	The equivalent circuit of device at $V_{gs} > V_{th}$; $V_{ds} = 0V$	59
Fig. 5-4	The total parasitic resistance vs. reciprocal of finger number $(1/N_F)$ for 4T6	30
Fig. 5-5	The total parasitic resistance vs. reciprocal of finger number $(1/N_F)$ for $3T$	30
Fig. 5-6	4T MOSFET C _{gg} capacitance vs. gate voltage (V _{gs}) at V _{ds} =0V6	31
Fig. 5-7	4T MOSFET C_{gd} capacitance vs. gate voltage (V_{gs}) at V_{ds} =0V6	31
Fig. 5-8	The C_{gg} capacitances comparison of 3T and 4T devices at V_{ds} =0V6	32
Fig. 5-9	The C _{gd} capacitances comparison of 3T and 4T devices at V _{ds} =0V6	32
Fig. 5-10	The equivalent circuit schematics to illustrate internal source node voltage, V_{ns} effect α	วท
extractior	n of C_{gg} and C_{gd} under V_{ds} =0V6	33
Fig. 5-11	4T MOSFET C _{gg} capacitance vs. gate voltage (V _{gs}) at V _{ds} =1.2V6	54
Fig. 5-12	4T MOSFET C _{gd} capacitance vs. gate voltage (V _{gs}) at V _{ds} =1.2V6	54
Fig. 5-13	The C_{gg} capacitances comparison of 3T and 4T devices at V_{ds} =1.2V6	35
Fig. 5-14	The C_{gd} capacitances comparison of 3T and 4T devices at V_{ds} =1.2V6	35

Fig. 5-15	The equivalent circuit schematics to illustrate internal source node voltage, V_{ns} effect on
extraction	of C_{gg} and C_{gd} under V_{ds} =1.2V66
Fig. 5-16	The C_{gg} capacitances comparison of 3T and 4T devices at $V_{ds} {=} 0V$ (Source impedance
de-embed	ding)67
Fig. 5-17	The C_{gd} capacitances comparison of 3T and 4T devices at $V_{ds} {=} 0V$ (Source impedance
de-embed	ding)67
Fig. 5-18	The C_{gg} capacitances comparison of 3T and 4T devices at $V_{ds}\mbox{=}1.2V$ (Source impedance
de-embed	ding)68
Fig. 5-19	The C_{gd} capacitances comparison of 3T and 4T devices at $V_{ds}\mbox{=}1.2V$ (Source impedance
de-embed	ding)68
Fig. 5-20	The C _{gg} of 4T vs. frequency at V _{gs} =1.2V with varying V _{ds}
Fig. 5-21	The C _{gd} of 4T vs. frequency at V _{gs} =1.2V with varying V _{ds}
Fig. 5-22	$Z_{ns}(\omega)$ analysis
Fig. 5-23	The capacitances vs. finger number at V_{gs} =1.2V and V_{ds} =0V for 4T70
Fig. 5-24	The capacitances vs. finger number at V_{gs} =1.2V and V_{ds} =1.2V for 4T70
Chapter	6
Fig. 6-1	The comparison results of 3T device at $V_{gs}=V_{ds}=0V$ (w/i and w/o substrate parameters)84
Fig. 6-2	The comparison results of 3T device at $V_{gs}=V_{ds}=0V$ (Optimized)86
Fig. 6-3	The comparison results of 3T device at V_{gs} =1.2V, V_{ds} =0V (Initial)87
Fig. 6-4	The comparison results of 3T device at V_{gs} =1.2V, V_{ds} =0V (Optimized)88
Fig. 6-5	The equivalent circuit taken off substrate network at V_{gs} =1.2V, V_{ds} =0V89
Fig. 6-6	The comparison results at V_{gs} =1.2V, V_{ds} =0V (w/o substrate network)90
Fig. 6-7	The comparison results of 3T device at $V_{gs}=V_{ds}=1.2V$ (Initial)91
Fig. 6-8	The comparison results of 3T device at $V_{gs}=V_{ds}=1.2V$ (Optimized)93
Fig. 6-9	The comparison results of 4T device at $V_{gs}=V_{ds}=0V$ (Initial)94
Fig. 6-10	The comparison results of 4T device at $V_{gs}=V_{ds}=0V$ (Optimized)95

Fig. 6-11	The comparison results of 4T device at $V_{gs}=V_{ds}=0V$ (Neglecting N _F =72)	97
Fig. 6-12	The comparison results of 4T device at V_{gs} =1.2V, V_{ds} =0V (Initial)	98
Fig. 6-13	The comparison results of 4T device at V_{gs} =1.2V, V_{ds} =0V (Optimized)	99
Fig. 6-14	The comparison results of 4T device at $V_{gs}=V_{ds}=1.2V$ (Initial)	101
Fig. 6-15	The comparison results of 4T device at $V_{gs}=V_{ds}=1.2V$ (Optimized)	102
Fig. 6-16	The simulation of 3T device at V _{gs} =1.2V, V _{ds} =0V with varying R _{bulk} and C _{dnw}	103
Fig. 6-17	The simulation of 3T device at $V_{gs}=V_{ds}=1.2V$ with varying R_{bulk} and C_{dnw}	103

Table Captions

Chapter2	
Table 2-1	The device layout list5
Chapter3	3
Table 3-1	The extracted resistance for 3T device at $V_{gs}=V_{ds}=0V$ 9
Table 3-2	The extracted capacitances for 3T device at $V_{gs}=V_{ds}=0V$ 10
Chapter4	
Table 4-1	The extracted extrinsic resistances and inductances of short pad24
Table 4-2	The extracted channel resistance R _{ch} 26
Table 4-3	The extracted total parasitic source resistance R _S 27
Table 4-4	The extracted total parasitic drain resistance R _D 28
Table 4-5	The extracted total parasitic gate resistance R _G 28
Table 4-6	The extracted total parasitic source inductance L _s
Table 4-7	The extracted total parasitic drain inductance L _D
Table 4-8	The extracted total parasitic gate inductance L _G 29
Table 4-9	The C_{gg} capacitances versus gate voltage at V_{ds} =0V for 3T33
Table 4-10	The C_{gd} capacitances versus gate voltage at V_{ds} =0V for 3T33
Table 4-11	The C_{gg} and C_{gd} capacitances versus gate voltage at V_{ds} =1.2V for N_F =1834
Table 4-12	The C_{gg} and C_{gd} capacitances versus gate voltage at $V_{ds} {=} 1.2 V$ for $N_F {=} 3634$
Table 4-13	The C_{gg} and C_{gd} capacitances versus gate voltage at $V_{ds}\mbox{=}1.2V$ for $N_F\mbox{=}7235$
Chapter5	
Table 5-1	The extracted total parasitic source resistance R _S 46
Table 5-2	The extracted total parasitic drain resistance R _D 47
Table 5-3	The extracted total parasitic gate resistance R _G 47
Table 5-4	The comparison of parasitic resistances of 3T and 4T devices48

Table 5-5	The extracted total parasitic source inductance L _S	.48
Table 5-6	The extracted total parasitic drain inductance L _D	.48
Table 5-7	The extracted total parasitic gate inductance L _G	.49
Table 5-8	The comparison of parasitic inductances of 3T and 4T devices	.49
Table 5-9	The C_{gg} capacitances versus gate voltage at V_{ds} =0V for 3T	.51
Table 5-10	The C_{gd} capacitances versus gate voltage at V_{ds} =0V for 3T	.52
Table 5-11	The C_{gg} and C_{gd} capacitances versus gate voltage at $V_{ds}\mbox{=}1.2V$ for $N_F\mbox{=}18$.53
Table 5-12	The C_{gg} and C_{gd} capacitances versus gate voltage at $V_{ds}\mbox{=}1.2V$ for $N_F\mbox{=}36$.53
Table 5-13	The C_{gg} and C_{gd} capacitances versus gate voltage at $V_{ds}\mbox{=}1.2V$ for $N_F\mbox{=}72$.53
Table 5-14	The C_{gg} capacitances versus gate voltage at V_{ds} =0V by revised method	.55
Table 5-15	The C_{gd} capacitances versus gate voltage at V_{ds} =0V by revised method	.56
Table 5-16	The C _{gg} and C _{gd} capacitances versus gate at V _{ds} =1.2V voltage for N _F =18	.56
Table 5-17	The C _{gg} and C _{gd} capacitances versus gate voltage at V _{ds} =1.2V for N _F =36	.56
Table 5-18	The C_{gg} and C_{gd} capacitances versus gate voltage at V_{ds} =1.2V for N_F =72	.56
Chapter6	- AND THE OWNER OF T	
Table 6-1	The optimized parameters of 3T device under $V_{gs}=V_{ds}=0V$ (Open_de only)	.72
Table 6-2	The initial parameters for 3T device at V_{gs} =1.2V, V_{ds} =0V (Open_de only)	.73
Table 6-3	The optimized parameters of 3T device at V _{gs} =1.2V, V _{ds} =0V	.73
Table 6-4	The initial parameters for 3T device at $V_{gs}=V_{ds}=1.2V$ (Open_de only)	.75
Table 6-5	The optimized parameters for 3T device at $V_{gs}=V_{ds}=1.2V$.76
Table 6-6	The initial parameters for 4T device at $V_{gs}=V_{ds}=0V$ (Open_de only)	.77
Table 6-7	The optimized parameters for 4T device at $V_{gs}=V_{ds}=0V$.78
Table 6-8	The initial parameters for 4T device at V_{gs} =1.2V, V_{ds} =0V (Open_de only)	.79
Table 6-9	The optimized parameters for 4T device at V_{gs} =1.2V, V_{ds} =0V	.79
Table 6-10	The initial parameters for 4T device at $V_{gs}=V_{ds}=1.2V$ (Open_de only)	.80
Table 6-11	The optimized parameters for 4T device at V_{gs} =V _{ds} =1.2V	.81