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Chapter 1

Introduction

1.1 Thin-Film Transistors

A transistor whose active, current-carrying layer is a thin film (usually a film of

silicon), in contrast to MOSFETs, which are made on Silicon wafers and use the

ght must be able to pass

bulk-silicon as the active layer. In. a-flat-p _u_
L o k:- .- 3 ':' s |2
through the substrate.material to reach the viewer. Opaque silicon wafers obviously
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Polycrystalline silicon thin-film transistors (TFTs) have been investigated

extensively for their use on the peripheral driving circuits in active matrix liquid

crystal displays (AMLCDs) [1], high-density static random access memories (SRAMs)

[2][3], linear image sensors [4], thermal printer heads [5], liquid crystal shutter arrays

for printers [6], photodetector amplifier [7], and nonvolatile memories [8] ,etc.



Traditionally, AMLCDs were fabricated using hydrogentated amorphous silicon

(0-Si:H) TFTs for the pixel switching devices [9]. The o-Si:H TFTs have many

advantages, particularly its compatibility with low temperature process on large glass

substrate and high off-state resistivity which result a low leakage current. However,

the low electron field effect mobility in a-Si:H TFTs has limited the technology

| ] l .
development for AMLCD 3.‘. Slication. "3l A

1. the same substrate is very desirable ng y-torreduce the cost but

driving circuits o

as '[ower otocurrent,
B

o
circuits as v:F "h he ac‘uhﬁi ‘,,

a'-'_-, 0 it 1.-4'

It should be noted that ‘Pol—S. licon’ covers at ne of thin film materials, which
vary in the methods of preparation, grain size and nature, distribution of intragranular
and bulk defects, and surface roughness. Thus, the properties of any particular film
will be dependent on these parameters, which have therefore been the subject of

extensive studies to optimize key TFTs parameters such as off-current, on-current,

subthreshold swing and mobility [11]. The performance of Poly-Silicon TFTs is

2



strongly influenced by grain boundaries and intragranular defects. In order to enhance
TFTs electrical characteristics, several techniques which are used to increase the grain
sizes of poly-Si films have been proposed. The methods for recrystallization of a-Si to
poly-Si at glass-compatible temperatures are the key technology for fabricating

low-temperature process (LTP) Poly-Silicon TFTs on glass. It was reported that the

i "l -
T I st Sl o B
o .

rystalized such as: solid-phase

o-Si film can be re

= 7 :.I .:- -~ " l.l o
crystallization (SP ELA) [13]3[15], metal-induce
lateral crystallizati n ‘ apid, th anneali _h . [19], and

microwaye-erystallizatiol ~obtain larger grain sizes. of poly-Sisfor high

The present -_:j grain-boundary and intragranular defects in - the “active region of
lnﬁ':l 5

' “devices! performance. The

Poly-Silicon TFTs "places. a“major limitation on
= e

dangling bond midgap states a ‘ec “ .-: d vol .'; and subthreshold swing, while
the strain bond tail states influence leakage current and field-effect mobility [21]. The
well-established method for reducing these trap states is hydrogenation in hydrogen
plasma at 300°C [21]-[23]. The atomic hydrogen, which has a higher diffusivity,

diffuses rapidly into the Poly-Silicon film and then passivates defects. It was found

that the dangling bonds have a faster response to bond with hydrogen, while the

3



strain-bonds response slower. Only when the hydrogen concentration is so large as to

fill both the midgap states and the tail states, a significant fraction of the tail states

will be passivated. Although hydrogenation is successfully used to improve the

performance of Poly-Silicon TFTs, it has been reported that TFTs exposed to

hydrogen plasma suffer a low hot-carrier endurance and a low thermal stability [24].

In this study, we utilized. ammoni; réplace the conventional
’ = R
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0 'licon TFTs. It
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1.3 Poly-Silicon Recrystallization Methods

The performance of Poly-Silicon TFTs is strongly influenced by grain

boundaries and intragranular defects. In order to enhance TFTs characteristics, several



techniques are used to increase the grain sizes of Poly-Silicon films have been

proposed.

1.3.1 Solid-Phase Crystallization Method

One of prominent methods is the crystallization of amorphous silicon films

deposited by low-pressure chein por deposition (LPCVD). The grain sizes
- = ﬂ i M .-'a‘. u
ru- "!"
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obtained by solid-pl |.'1 ‘ everal times and has
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ﬁg annealing

'-e' can grow to a large size.
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. ] . n g

u

is low and therefore gre

The crystallized silicon film structure is believed to related to the structural

disorder of the initially deposited material. It has been shown previously that by

increasing the disorder of silicon network, a significant enlargement of the grain size

of the crystallized silicon can be achieved. The disorder of the underlying silicon



network can be in turn increased with using low deposition temperature and high

deposition rate. Disilane has been shown to result in high deposition rate compared to

SiH, even at temperature below 470°C. After SPC, larger grain Poly-Silicon films can

be obtained at low temperature below 600°C with disilane as gas precursor to silane.

- M
. '..' -

1.3.2 Excimer Taset Annealing Crystallization Méthod
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surface, so both Poly-Silicon TFTs and émorphous Silicon TFTs can be formed on the
same substrate. The laser process heats the thin silicon film to the melting point on a
short time scale (tens of nanoseconds) that allows the film to melt and recrystallized
without significantly heating the glass substrate. Since this process achieves higher

annealing temperatures than a conventional furnace annealing, significantly



higher-quality Poly-Silicon films can be obtained.

1.3.3 Metal-Induce Lateral Crystallization Method

Recently, the metal-induced lateral crystallization (MILC) process has been

studied widely for polycrystalline silicon thin film transistor applications. Compared

(

with the conventional solid-phaSe cry St 1 . ation process [12] of amorphous
= o mm ol I. .- ; L}

Lh- -' J .- - :‘ .!. L}
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ess offers the advantages of lower.anne

silicon (a-Si), MILC p

ling temperature (=

600°C) and better cr
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the MILC' ocess can t

ilm. Ex;)erimen 'E 2 nealing

or Ni and Pd are 500°C., 1.6 500°C,
F - - m " i - !

e annealing temperature (= 1_".’ Yl still too high

temperatures. and MILC re esc
n | |

. Bt

10pum/h, respectively. Howeve

L]
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for Poly-Silicon TFT devices t osbe fabricated on conven -::' na glass Substrate, and the
- .l".l".'.'—"".';' K-

low MILC rate, i.e. long anne ing time :i 0 1 c eases the thermal budget in the
Poly-Silicon TFT fabrication process. So, gold (Au) has been employed to induce
lateral crystallization of o-Si:H film owing its lower eutectic temperature (363C).
The crystallization of Au/a-Si:H film is observed starting from annealing treatment at
175°C, which is a much lower crystallized temperature than for Ni and Pd (500C).

After the discovery of Au-MILC where microtwin-free Si grains are obtained, MILC
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also has been successfully applied to the low-temperature fabrication of high-mobility

N-channel TFTs.

1.3.4 Rapid Thermal Annealing Crystallization Method

To obtain the Poly-Silicon crystalline phase, laser crystallization can be used

with very good results [14], butithe process is expensive and difficult to control. On
- o = ﬂ o Fa
. by o i

ar 1 ylts furnace annealing requ

the other hand, for i -
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s 1o wertemperature and is
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tyJof the grains.
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e defeets remaining in the
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so-called “grains” of the films anneale at 600C ( SPC) are partially annihilated when
the films are annealed at higher temperatures. With regards to the TFTs electrical
characteristics, the work suggests combining SPC and RTA steps to obtain TFTs with

improved electrical performance.



1.4 Gate Dielectric Film Option

1.4.1 Original Gate oxide Growth Technology

In order to achieve low temperature process of high quality gate dielectric film,

several methods for deposition of gate dielectric were investigated such as

lasma-enhanced chemical vapor deposition (P D), electron cyclotron resonance

L il Bl = B y

: Lh i J-.'- - e A '-:‘
[ s

(ECR) plasma therma : :-.-" liquid phase deposited '( P‘l_»_,_.- 2. PECVD system

which has good coverage high deposition rate, low te progess at 300°C.
s

5

. n g
of films "r' hhas silicon

(ONO) sta

d ed DC1 C OL P O

ecomposed.. .i_ln 300C . ﬂm lasma /of '€ _wle TEOS
[ ] g L™ h L - Eom

silicon dioxidesfilms were delﬂlstrated superior step coverag.-' :' temperature.

EOS-oxide has a higher le
H-;ﬁ'l """I' = -

voltage, and higher instability han'thérmal oxide due to the low integrity and high

However, the depd' ed '.' ent, 1ower breakdown

interface trapped charges. The deposited oxide also has the rough oxide/Poly-Silicon

interface due to the localized enhancement of oxidant diffusion through the grain

boundaries, which leads to higher local electric field. Recently, N,O plasma oxide was

investigated for gate dielectric of Poly-Silicon TFTs due to the combined effects of

nitrogen-plasma and oxygen-plasma passivation and smoother interface.
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1.4.2 Reason For Using LaAlOj; For Gate Dielectric Film

To prevent from short channel effect in high speed transistors, thickness of gate
oxide continues shrinking. With this condition, we first encounter the difficulty of

uniformity of thin film. Next, on characte_ristic of device, we will encounter: (1) direct

tunneling, which make arge leakage “current.” (. .:;_:-e degradation, surface
Hom ﬂl ] - d
1l

vertical electric field v

B | ]
a =

gate-leakage current and'breal ;rj“ '5!--' d, since th
: i .

constant layer can be increased. And PVD (Physical Vapor Deposition) process is not

higher than 600C .
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1.5 Metal Gate Technology

Poly-Silicon is conventional gate material for CMOS process, because of
adjustable threshold voltage with different concentration of implantation. While the
thickness of gate dielectric continue shrink, Poly-Silicon gate will face several

problem. (1) the surface between Poly-Silicon and Metal oxide (high dielectric

B s 0 u
]

-

. i = ﬂn;l: '--I
o

L'.n_éi

"=\

"I __ m s
2.Dual Metal System: NN

PMOS: A ~ Pt et. (High work function)
To use different metal which has different work
function adjusts threshold voltage that matches the

threshold voltage of NMOS and PMOS.
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PolySilMeOx Interface
Bulk MeOx Charge

MeDuw/IL Interface

Bulk IL Charge
IL/Si Interface

5l
Subsatrate

Fig 1.1 the structure of -Silicon on Metal Oxide
B TN

0 Ec
n-l-dqj“n-----

(NMOS)

Si-Hf bond

Fermi Pinning
Location

pt doping

(NMOS)
Si-0-Al Bond
Fermi Pinning
Location
. “u
p+ doping
Ev PolySi

Fig 1.3 The Fermi level pining effect of Si-O-Al bond
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1.6 Motivation

Although display technology does not suffer Fermi-Level Pinning Effect

because of its thickness of gate dielectric film larger than 100nm, we still can adjust

drive current (Ip) by using diffe etal whi “different work-function. In this

Tor
£

)0 )( ~2¢,

ox

)+ ¢ms

The threshold voltage of NMOS decreases with lower ¢, , and the threshold voltage

ms

of PMOS increases with higher ¢

ms ?

relatively, and we can get higher drive current.

So, we choose the low work-function metal, Ytterbium, for NMOS in our experiment.

13



We attempt to integrate this conception into Low Temperature Poly-Silicon
technology that we can achieve high performance TFTs. In this thesis, we report
LaAlO; gate dielectric with low work-function Ytterbium metal gate into LTPS TFTs

NMOS, which show a high breakdow oltage, low sub-threshold slope, high

field-effect mobility J staté drive curren /Loir) and high drive

current. The high. b en sSuggest that the

Ytterbium/LaZ xel and display

circuits. And ircuit.on panel
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1.7 Thesis Outline

In this thesis, we concentrate our efforts on metal gate for improving

Poly-Silicon TFTs’ performance.

In chapter 1, a brief overview of Poly-Silicon TFTs technology was given to

con TFTs

with metal g device

~R

o " ; ii-' = AEE T . el S 3 . ey
current, low threshold voltage, low sub-threshold slope, bad mobility, and very
A A

2

good breakdown voltage. And it also shows the comparison between the performance

of our conception and the performance of other TFTs’ design.

Finally, conclusions and future works as well as suggestion for further research

are given in chapter 4.
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Chapter 2
The Experimental Steps
2.1 The Fabrication Steps

Fabrication of the TFTs started with the formation of a Poly-Silicon film, by

depositing 100-nm amorphous Silicon on SiO,/Si wafers (using LPCVD at 550 °C),

¥ ] |
followed by crystalhz iof t 'f 0°C an ﬂ. 10 “'"1 I 2. Then 500 nm thick
PECVD oxide

as formed by

patterning a n the active

device region | were implanted with osphe 5 KeV 2 0 cm™) andiactivated

o ol | C _ ] k
at 600°C'fo annea nde Tk > 50 nr gate diclectric

depositing 200 nm Ytter U ¥ ‘df'l D. The TF] Ts
d :

definition with lift-off process, electrode formation and 400°C sintering for 30 min
under N, ambient without using hydrogenation plasma passivation treatment. The

fabricated device has gate length and width of 4 gm and 100 um , respectively.

16



2.2 The Structure of fabrication

1. Silicon substrate.

Si0,(5000A)

Fig 2.2 Step 2
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3. Amorphous Silicon deposition by LPCVD at 550°C ( 1000 A).

Si0,(5000A)

Fig 2.4 Step 4



5. Isolation oxide deposition by PECVD ( 5000 A)

 CaBAARE -

Si0,(5000A)

Si0,(5000A) F "

MASK-1

~ Poly(to00A
Si0,(5000A)

Fig 2.6 Step 6



7. Source and Drain implantation with phosphorus ( 35KeV at 5e15 cm™).

phosphorus

Si0,(5000A)

MASK-2

Si0,(5000A)

Fig 2.8 Step 8 9



10. LaAlOs; deposition by PVD in Ar ( 150-W, 30-sccm, 500 A ).

C e oy iG00A) -

Si0,(5000A)

11. Contact hole define, er';j;lg .

MASK-3

© e poly(Y000A) mNe

Si0,(5000A)

Fig 2.10 Step 11



12. Photoresist deposition

Si0,(5000A)

“I’!ll-‘!

|

Si0,(5000A)

Fig 2.12 Step 13



14. PVD-Yb deposition ( 2000 A )

Si0,(5000A)

Si0,(5000A)

Fig 2.14 Step 15
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Chapter 3

Result & Discussion

3.1 Method Of Device Parameter Extraction

In this thesis, weu -.* ipsor easure : >t ickness of Poly-Silicon,
zil . : : H. ] "

tric films in the : _1 > Al the electrical

proposed to.extract the

i arame! fer “re fed for the channel
'5::'l—'.l.'_l—r' 4 T

] § [l e . .
asurements: However, Vg, is not uniquely

length-width and series resistance.

defined. Various definitions have been proposed and the reason can be found in
Ip-Vgs curves. One of the most common techniques is the linear extrapolation method
with the drain current measured as a function of gate voltage at a low drain voltage of
50~100mV to ensure operation in the linear region [17]. The drain current is not zero
when Vgg below threshold voltage and approaches zero asymptotically. Hence the Ipg

versus Vgs curve can be extrapolated to Ip=0, and the Vy, is determined from the

24



extrapolated intercept of gate voltage (Vgsi) by

VDS

Vi =Vesi — )

(Eq. 3.1)

Equation (3.1) is strictly only valid for negligible series resistance. Fortunately
series resistance is usually negligible at the low drain current when threshold voltage
measurements are made. The Ips-Vgs curve deviates from a straight line at gate

voltage below Vy, due to sub-threshold current and above Vg, due to series resistance

and mobility degradation effeéts. It is'com ;u- n practice to,find the point of maximum
o A= = A K A 2
(th ame as the max-value poi L.l eld Effect Mobility,

slope of the Ips-V.

) :: .- ding the point
| .L-I

=~ i

taken as the V. Thi s-ado in the tudied papers of] _:J_v -Silicon
TFTs. It ean be. gi : ) that obtai 1|:" X linear
<10nA for
Vps=0.1V a d (W, A > _channel width and

i=

Irragrrliei-d

L : s
3.1.2 Determination Of Sub-thre d Slope

Sub-threshold slope (S.S.) is a typical parameter to describe the control ability
of gate toward channel, which reflects the turn on/off speed of a device. It is defined
as the amount of gate voltage required to increase/decrease drain current by one order
of magnitude.

The S.S. should be independent of drain voltage and gate voltage. However, in

25



reality, the S.S. increases with drain voltage due to channel shortening effect such as
charge sharing, avalanche multiplication and punchthrough effect. The sub-threshold
slope is also related to gate voltage due to undesirable and inevitable factors such as
the serial resistance and interface states.

In this thesis, the S.S. is defined as one-third of the gate voltage required to
decrease the threshold current by three orders of magnitude. The threshold current is

specified to be the drain current when thel gate '0 age i equal to threshold voltage.

l |
- Fa -!.
3.1.3 Determina L- 1 t Field Effect M0b1l1ty

H- I-

“value of

= mg ” ] i = m ; e :7 - 12
transconductanc ) at ain bie characteri :'l. y-Silicon

TFTs are

[ air to those 0O 5o that the first ordér of I-V

relation in_ ’: ~bulk Si ly-Silicon =.:I_§l_.l' e drain

current in linearregion (Vps Vs APPIo. as following

equation: H.! .
‘ . n . iy y
Ips = By Gl 5 VGS ~V, Vs — R (Eq. 3.2)
- L] q ;ﬁ | ] l I‘I I ,r * :
where W and L are channel width and channel length, respectively. Cox 1s the gate

oxide capacitance per unit area and Vg is the threshold voltage. Thus, the

transconductance is given by

ol g (WJ
=—=u,C | — |V Eq. 3.3
gm aVGS ﬂeﬂ ox L DS ( q )

Therefore, the field-effect mobility is

L
C Wy, Snm)

Heyy = (Eq.3.4)

Vps =0
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3.1.4 Determination Of ON/OFF Current Ratio

On/Off current ratio is one of the most important parameters of Poly-Silicon
TFTs since a high-performance device exhibits not only a large on-current but also a

small off-current (leakage current). The leakage current mechanism in Poly-Silicon

TFTs is not like that in MOS annel is composed of single

crystalline Si and the leakage ctrrent is due to the tunnelir L minority carrier from

I ! o
drain region to a cur i et Jocated i : gion.s. However, in
s ’ " | ..L-u L
Poly-Silicon TFTS; the is co ed of Pe con. A large amount of trap

g . Ll X
I_
gy band gap to

[arger in

Poly-Sil 0 _L_'. e voltage

£

. ‘ ;
voltage increases, the band gap width decreas nneling effect

and drain

becomes 5._ 11 r ; Norn y—Silicon
TFTs’ Ips-Vas. cten& where the nitude ca current, will reach a

.. Cr L
minimum and then incr

"l
ase-as the gate voltage decreases/increases for n/p-channel
™ m " -l .
‘ - .., L]
= e Tl =l

and off-current. In this chapter, take

TFTs.

There are a lot of ways to sp cify the o

n-channel Poly-Silicon TFTs for examples, the on-current is defined as the drain
current when gate voltage at the maximum value and drain voltage is 0.1V. The

off-current is specified as the minimum current when drain voltage equals to 0.1V.

I,y  Maximum Current of I,;—Vy Plot at V), =0.1V

7 (Eq. 3.5)
ort Minimum Current of I, -V, Plot at V,; =0.1V
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3.2 Experimental Data Result & Discussion

The fabricated devices were characterized using HP4156 and HP4284 Precision

Semiconductor Parameter Analyzer. We first show the data of NMOS-TFT (Yb /

LaAlOs). The I;-V, chara icsof a

e Y 3 eshowninFig. 3.1. The

s 1AK

slope of 0:58°V. e low ica interface trap

density, and iss

. . . - |
oxidation also oxidized the poly
L}

in high- x CMOS to lower down |t e ) D ' the good high- x /Ytterbium

interface gives the not bad mobility and good sub-threshold slope. The L,/ Iof ratio of
the Ytterbium/LaAlO; TFT is 1.63x10° even without performing hydrogen

passivation.

And then the output characteristics (I;-V;) of the Ytterbium/LaAlOs; TFT are

shown in Fig. 3.5. The large drive current of 22 uA/um, at 5 V, is attractive for

28



high-speed display ICs. This good performance is related to the lower threshold
voltage and the high gate-capacitance of 3.9x107 F/cm?® from C-V measurements (Fig
3.6), which gives a small equivalent-oxide thickness (EOT) of 8.7 nm at a x value
of ~22.5 [28][29] This is the thinnest reported EOT TFTs so far [32-35], And the high
drive current is higher than our past reported Al/LaAlO; (EOT=8.7 nm) thin film

transistor, which is showed in Fig 3.7~3.13. It is because the work-function of Al (=4

eV) is higher than that of Yb (& 216 . So the data affirm our conception. Our

; :-I-I‘- .ﬂ . l. L} .'“
¥ e high' S current, along with
.:H. -I =

6.25 MV/cm th

is high enough to di

comparable with or better |ull."u at for

important for achieving good dielectr eliability [28-31]. It may arise from the

plasma-free process used, which does not damage the gate dielectric.

Figure 3.15 shows the charge-trapping characteristics of the Ytterbium/LaAlO;
TFTs under constant-current stress from 0.1 to 10 mA/cm? (or ~2.9 to 5.8 MV/cm
electric field ). The gate voltage shift is only 0.61 V even under 10 mA/cm® stress,

which is much better than the 2.2 V shift in TEOS oxide TFTs under the same stress
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condition [43]. Such low charge-trapping indicates the good quality of the gate
dielectric and is consistent with high — x LaAlOs; CMOSFETs also fabricated at low
temperature [28-29] and good intersurface between metal gate and high — £ gate

dielectric. Hence integrating high- x gate dielectrics with Ytterbium metal gate into

TFT-NMOS should not degrade the TFT device reliability, often dominated by the

grain-boundary related hot-carrier degradation [44]

Poly—SiG;' > [45 also-sho a mipafison. The betier device ‘perfc mance of

the Ytter am/

L

d . le ¢ms +
[
=,
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PECVD | PECVD
TEOS TEOS

oxide oxide

Gate Al,O3 50

nm[45]

This work |

dielectric |

ia| Poly-SiGe

slope 0.44

(V/decade) & =
Ion/ Ioff 3x1 05
Breakdown
. Not
field |
acted | extracted extracted
(MV/cm)

Table 1

The primary parameter comparison of different structure thin film transistor
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Fig 3.2 The threshold voltage of Al/LaAlO; thin film transistor

Drain Current (A)

- Gate Voltage (V

Fig 3.3 The low subthreshold slope of Yb/LaAlQO3 thin film transistor
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Field Mobility (cm’/Vs)

Fig 3.4 The mobility of Yb/LaAlO3 thin film transistor
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Fig 3.6 The C-V measurement | LaA 13 thin film transistor
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Fig 3.8 The drain current of Yb/LaAlO; thin film transistor at Vg=1V
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Fig 3.10 The drain current of Yb/LaAlQOj; thin film transistor at Vg=3V
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Fig 3.12 The drain current of Yb/LaAlQj; thin film transistor at Vg=5V
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Drain Current (mA)

The comparison of drain current at different gate voltage between

Yb-gate and Al-gate
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Fig 3.14 The break
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Gate Voltage shift (V)
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4. Conclusion
We have fabricated and characterized high-performance LTPS TFTs-NMOS
which incorporate high- x LaAlO; dielectric with low work-function Ytterbium

metal gate that provides good dielectric properties such as a high breakdown field,
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