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Abstract

This thesis investigates the short .channel characteristics and provides design
considerations for FInFET and Tri-gate Structures, An analytical solution of channel
potential in multiple-gate devices is derived by solving 3-D Poisson’s equation with
adequate boundary conditions. By use ‘of this channel potential solution, threshold
voltage for FInFET and Tri-gate transistors can be obtained. The modeling results of
threshold voltage roll-off and potential distribution are verified with the aid of 3-D
device simulation.

Both fin width and fin height scaling improve short channel control, and fin
width scaling benefits more than fin height scaling. FinFET will be a better design
structure relative to Tri-gate when on-state current and short channel effect
suppression are both considered. Besides, Tri-gate structure can be used to alleviate
minimum feature size required for the same short channel characteristics. Lightly
doped Tri-gate is feasible if high k dielectric is incorporated to suppress short channel
effect. Without high k dielectric to enhance gate control, the device design for lightly

doped Tri-gate will be difficult.
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Figure Captions

2-1 The scheme of multiple-gate transistor structure.
2-2 Verification of homogeneous dielectric approximation by 1-D exact solution
(a) with various oxide thicknesses, (b) with various doping concentration.

2-3 Potential model verified with device simulation along the fin height direction
(a) the positions of fin width center and gate insulator/body interface in
heavily doped body, (b) the position of fin width center in heavily doped
body.

2-4 Potential model verified with deyice simulation along the fin width direction
(a) the positions of fin-height cénter. and: gate insulator/body interface in
heavily doped body, (b) the position of fin: height center in heavily doped
body.

2-5 Potential model verified with device simulation along the channel length
direction (a) the positions of body center and side gate insulator/body
interface in heavily doped body, (b) the position of body center in heavily
doped body.

2-6 Potential profiles of top channel showing corner effect with various fin width
(10nm and 30nm) and various body doping (3E18 cm” and 6E18cm™).

3-1 Double-gate FinFET threshold voltage roll-off derived by 2¢, method verified
with device simulation.

3-2 Tri-gate threshold voltage roll-off derived by 2¢; method verified with device
simulation (a) fin width = 20nm, and (b) fin width = 30nm.

. 3-3 Tri-gate threshold voltage roll-off with fin width = 30nm derived by
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2¢, method and subthreshold current method, verified with device
simulation.

3-4 Subthreshold current model predicted heavily doped body with oxide and
lightly doped body with high k dielectric (a) threshold voltage values and (b)
subthreshold swing values, verified with device simulation.

3-5 Threshold voltage with various fin height in (a) heavily doped body with
oxide and lightly doped body with high k dielectric, and (b) the rescaling of
(a) to show the opposite trend between heavily and lightly doped cases.

3-6 Threshold voltage with various fin width in (a) heavily doped body with
oxide and lightly doped body with high k dielectric, and (b) the rescaling of
(a) to show the opposite trend between heavily and lightly doped cases.

3-7 Threshold voltage roll-off . comparison between heavily doped and lightly
doped bodies with oxide to be gate insulator and low drain bias.

3-8 Threshold voltage roll-off comparison between high drain bias and low drain
bias with oxide to be gate insulator'and heavily doped body.

3-9 Threshold voltage roll-off comparison between gate insulator oxide and gate
insulator high k dielectric with lightly doped body and low drain bias.

4-1 Threshold voltage roll-off comparison between fin height scaling and fin
width scaling in heavily doped body with low drain bias.

4-2 Threshold voltage roll-off comparison between fin height scaling and fin
width scaling in (a) lightly doped body with oxide to be gate insulator, and (b)
lightly doped body with high k dielectric to be gate insulator, (c) heavily
doped body with high drain bias.

4-3 Subthreshold swing of heavily doped multiple-gate devices versus total width

in three different geometry devices.
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Fig. 4-4 Subthreshold swing of lightly doped multiple-gate devices versus total width
in three different geometry devices.

Fig. 4-5 (a) Comparison of fabrication data of [20] with our model, and (b) the
comparison of subthreshold swing versus total width between FinFET and
Tri-gate by using the parameters in (a).

Fig. 4-6 (a) Contours of various doping concentration for the same subthreshold
swing, (b) the comparison of minimum feature size versus channel length
between FinFET, Tri-gate, and planar device by using the parameters in (a),
and (c) a relaxed subthreshold swing criterion for Tri-gate in (b).

Fig. 4-7 (a) Minimum feature size of three different geometry devices versus channel
length in lightly doped body, with. high k dielectric, and (b) contours of
various gate insulator for the same Subthreshold swing compared with the

Tri-gate condition (Wgz=Hpn=L).
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