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1. Introduction 

LetG=(VE) withV={1,2,...,n}beanundi- 
rected graph. A dominating set of G is a subset V’ 2 
V such that for each vertex u E V - V’ there is a ver- 
tex u E V’ so that (u, U) E E. The minimum dom- 
inating set problem is to find a set V’ of the mini- 

mum cardinality, which is known to be NP-complete 
[3]. In this paper we consider the on-line version 
of the problem in two settings. The first setting is 

that all vertices 1,2,. . . , n in the graph are given 
in advance. At time interval i the adjacency condi- 
tion of vertex i to the other vertices is presented. 
We propose an on-line algorithm of performance ra- 
tio l.SJii + cl and show that fi - c2 is a lower 
bound for the performance ratio that an on-line dom- 

inating set algorithm can possible achieve, where ct 
and c2 are some positive constants. The second set- 
ting is that at time interval i the adjacency condition 
of vertex i to vertices j, j < i, is given. For this set- 
ting we show that performance ratio II - 1 is the tight 
bound. 
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2. The first on-line setting 

Suppose all vertices of the graph G are given in 
advance. At time i the adjacency condition of a ver- 
tex i (say) to the other vertices is given. Therefore, 
without loss of generality, vertices are given in se- 

quence 1,2,..., n. We present our on-line dominat- 
ing set algorithm JUMP. Let Di be the set of ver- 
tices selected by JUMP at time i, where DO = 8. By 
the nature of the on-line algorithm, Di C Di+l and 

D = D, is the dominating set returned by JUMP. 
Let (i,it),(i,iz) ,..., ( i, id, ) be the adjacent edges of 
vertex i given at time i, where di is the degree of ver- 

tex i and 1 < il < i2 < . . . < id, 6 n. After time 
i, vertex u E V is marked as “dominated” if u E Di 

or there is a vertex ZJ E Di such that (u, U) E E. A 
vertex that is not “dominated” is an “undominated” 
vertex. Also, the vertices j, j < i, that are presented 
before are called “visited”. There are four cases in the 
following by which the vertex i is put into Di at time 
i. A vertex in D is classified into one of the three 
types: j-vertex, r-vertex, and f-vertex. Note that the 

current vertex is checked from case 1 to case 4 one 
by one, so a vertex cannot be of two types. We also 
define a function f on some vertices for later analy- 
sis. 
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There are > [m “undominated” vertices among 

il,i2,. . . , id,. For this case vertex i is called a j- 
vertex in D. 
Vertex i dominates all the remaining “undomi- 

nated” vertices. For this case vertex i is called an 
r-vertex. 
All vertices i,, 1 < s < di are less than i and 
not in Di-1, that is, vertex i’s adjacent vertices 

are visited and not selected by JUMP such that 
vertex i is selected to dominate itself. For this 

case vertex i is called an f-vertex and we define 

f(i) =i. 
There is a vertex j such that j < i, i = jd,, and all 
vertices j, jl , j2, . . . , jd,__l are not in Di_1, that is, 
vertex i is the last vertex that can dominate vertex 
j. For each such vertex j, we say that vertex j 

forces vertex i to be in D. For this case also vertex 
i is called an f-vertex, and we define f(j) = 

1. 

Correctness. For each vertex i, 1 < i < n, if it is put 
in Di then it is dominated by itself. If it is not put in 
Di then it is dominated either by a vertex u E Di_1 or 
by one of its neighbors iP that is not visited yet, that 
is, i, > i. Therefore, the final D = D, is a dominating 

set for the graph G. 

Performance ratio. We now show that the perfor- 
mance ratio of JUMP is lSfi+q for some constant 
cl. Let C be a minimum dominating set for G. 

Lemma 1. There are at most [fi] j-vertices in D. 

Proof. Since each j-uertex u in D dominates at least 
[&’ “undominated” vertices at time u. Once a ver- 
tex is marked as “dominated”, it will no longer con- 
tribute as an “undominated” vertex in case one. There- 
fore, there are at most In/ [fl] = Lfi] j-vertices 
in D. 0 

Lemma 2. There is at most one r-vertex in D. 

Proof. If vertex u is an r-vertex in D then all vertices 
of G are dominated after time u. No more vertices can 
be put into D thereafter. 0 

Lemma 3. If the minimum dominating set C consists 
of only one vertex then D contains no f-vertices. 

Proof. Let C = {c}. Vertex c is adjacent to all the 
other vertices. Therefore no f-vertices are put into D 

before time c. If vertex c is selected as a j-vertex in 
case one then all vertices are dominated by vertex c. 
No more vertices can be put into D. Otherwise, vertex 
c, or some other vertex c’ that dominates all vertices, 
must be selected as an r-vertex. So, no f-vertices can 
be put into D. q 

We define opt as a mapping of a vertex into one of 
its dominating vertices in C: 

{ 

i 
opt(i) = 

ifiE C, 

min{j 1 j E C, (i, j) E E} if i $ C. 

We now compare the sets D and C. We define a 
charge scheme, which distributes weights WI of ver- 

tices in D to weights w2 of vertices in C. Initially, 

WI(U) = 1 if and only if u E D and w2( u) = 0 

if and only if u E C. Then the performance ra- 
tio of JUMP is max{wz(u) 1 u E C} after the 
weight distribution. The charge scheme is as fol- 
lows: 

For each vertex u E C fl D, the weight of u is 

charged to itself. That is, w2( U) is increased by 

WI(U). 
For each f-vertex u E D - C, the weight of vertex 
u is evenly charged to each vertex opt(u), where 

f(u) = U. That is, w2(opt(u>> is increased by 
wl(u)/m, where m = I{u 1 f(u) = u}I. 

For each j- or r-vertex u E D - C, the weight of 
vertex u is evenly charged to each vertex u E C. 
That is, WZ(U) is increased by wl(u)/lCI. 

Lemma 4. For each u E C fl D, w2 (u) is not charged 
by any other f-vertex in D. 

Proof. For an f-vertex u E D and u # u charg- 
ing to w2( u), vertex u must be in D - C. We con- 
sider only case four by which vertex u is put into 
D as an f-vertex. There must be a vertex u’ with 
opt(u’) = u and vertex u’ forces vertex u to be in D, 

that is, f (u’) = U. However, if vertex u’ forces ver- 
tex u to be in D, all its adjacent vertices must be vis- 
ited and not in D,. Therefore vertex u, which is ad- 
jacent to vertex u’, is not in D, which is a contradic- 
tion. 0 
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Fig. 1. The structure against on-line dominating set algorithms. 

Lemma 5. For each vertex u E C - D, w2( v) is 

charged by at most [$ij - 1 f-vertices. 

Proof. Since vertex v $ D, we let I,, = {U 1 (u, v) E 
E, vertex u is “undominated” after time v - 1). For an 
f-vertex u, f(v’) = u and opt(v’) = v, to be charged 
to w2( v), vertex v’ must be in I,, and f-vertex u is 
in D - C. Since vertex v is not put into D at time 
v, it has at most [fl - 1 adjacent “undominated” 
vertices after time v - 1, that is, IZ,,( < rfl - 1. 
Therefore, wz(v) is charged at most [fil - 1 times 

by f-vertices. 0 

Lemma 6. If ICI = 1 then the performance ratio of 
JUMP is at most [Ji;] + 1. 

Proof. By Lemma 3 the set D contains no f-vertices 
if ICI = 1. By Lemmas 1 and 2, IDI < [fi] + 1. The 
weight We is at most L&i] + 1, where C = {c}. 
Therefore, the performance ratio of J UMP is at most 
LJirJ + 1 if ICI = 1. •i 

Lemma 7. The perfomuznce ratio of J U MP is at most 

1.5&i + cl for some constant cl. 

Proof. By the above lemma we consider only the case 
that (Cl > 2. Since D consists of at most Ifi] j- 

vertices and one r-vertex, for each vertex v E C, 

w2 (v) is charged at most ( [J;IJ + 1) /2 by j- and r- 

vertices. Furthermore, by Lemmas 4 and 5, for each 
vertex v E C, We is charged at most, for n > 2, 

r&-t1 - 1+ (L&q + 1)/2, 

which is 1 Sfi + ct for some constant cl. 0 

Lower bound. We now use a strong adversary to 
prove that fi - c:! is a deterministic lower bound for 
the performance ratio of the on-line dominating set 
problem for general graphs in this setting, where c2 is 
a constant. 

Theorem 8. fi - c2 is a lower bound for the per- 

formance ratio of the on-line dominating set problem 
for general graphs in this setting. 

Proof. Let D be the dominating set selected by an 
on-line dominating set algorithm. For simplicity, 
we assume that k = m is an integer. Let S; = 

(y’,Ei), where I$’ = {i,k + l,i(k - 1) + 3,i(k - 

1) +4,... ,i(k-l)+k+l}andE,‘={(i,v) IUE 
v’ - {i}} for 1 < i < k. 

From time intervals 1 to k, vertices 1,2,. . . , k 

are presented such that vertices al, a2, . . . , up are 
included in D and vertices 61, b2,. . . , b, are not 
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included in D by the on-line algorithm, where 

{UI,LZZ ,..., a,,bl,bz ,..., b4} = {I,2 ,..., k} and 
p + q = k. At time interval k + 1, vertex k + I is pre- 
sented with adjacency to vertices 1 to k and to vertices 
in V,l,UV&lJ. ~4JV~P-{k+l}.Aftertimek+l,allver- 

tices in (Vi, U V& U. 4JV;)-{k+l,b,,bz ,..., bq} 
are forced to be included i; D with a structure shown 

inFig.l.ThereforeD={a~,a;!,...,a,,k+l}U{u~ 
u~(V~,UV&U+..UV~~)-{bl,b2,...,b~}}.Since 
p . k + q. k + 1 = n and the minimum dominating 
set is {bl, b2,. . . , b,, k + l}, the lower bound for the 
performance ratio is 

q.(k-l)+p+l 

1+q 

k.(l+q)-2q+l 
= 

*+q 

3. The second on-line setting 

In this setting, at time interval i, the adjacency con- 
dition of vertex i to the vertices j, 1 < j < i is given. 
We show that n - 1 is the tight bound for this on-line 
setting. 

First, we present an on-line algorithm for this set- 
ting for completeness although it is straightforward. 
At time i, the algorithm puts vertex i into D if vertex 
i is not dominated by other vertices j, 1 6 j < i. It is 
easy to check that the performance ratio of the algo- 
rithm is n - 1, in particular, for graphs with a single 
dominating vertex. We now show that the lower bound 
isn- 1. 

Theorem 9. n - 1 is a deterministic lower boundfor 

the performance ratio of the on-line dominating set 
problem in this setting. 

Proof. An adaptive adversary is given as follows. Let 
A be an on-line algorithm. The adversary keeps pro- 
viding a vertex that is connected to all previous ver- 
tices till it is not put into D. Let us say that this vertex 
is k. Then the remaining vertices j, k+ 1 < j < n, are 
provided as being connected to vertex k only. Algo- 
rithm A has to choose the remained vertices so that D 
is{l,2,..., k-l,k+l,k+2 ,..., n}.However, the 

minimum dominating set for this graph is {k}. There- 
fore, n - 1 is a deterministic lower bound. 0 

From the above proof, we can see even if the given 
graph is known to be connected (or permutation, or in- 
terval) in advance, the lower bound remains the same. 

Corollary 10. The deterministic lower boundfor the 

pelformunce ratio of the on-line dominating set prob- 

lem for connected (even for permutation or interval) 
graphs in this setting is n - 1. 

Corollary 11. n - 1 is the tight boundfor the per- 

formance ratio of the on-line dominating set problem 

(even for connected, permutation, or interval graphs) 

in this setting. 
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