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1. Introduction

Let G = (VE) with V ={1,2,...,n} be an undi-
rected graph. A dominating set of G is a subset V' C
V such that for each vertex u € V — V' there is a ver-
tex v € V' so that (u,v) € E. The minimum dom-
inating set problem is to find a set V' of the mini-
mum cardinality, which is known to be NP-complete
[3]. In this paper we consider the on-line version
of the problem in two settings. The first setting is
that all vertices 1,2,...,n in the graph are given
in advance. At time interval i the adjacency condi-
tion of vertex i to the other vertices is presented.
We propose an on-line algorithm of performance ra-
tio 1.54/n + ¢i and show that /n — ¢y is a lower
bound for the performance ratio that an on-line dom-
inating set algorithm can possible achieve, where ¢
and c; are some positive constants. The second set-
ting is that at time interval { the adjacency condition
of vertex i to vertices j, j < i, is given. For this set-
ting we show that performance ratio n — 1 is the tight
bound.
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2. The first on-line setting

Suppose all vertices of the graph G are given in
advance. At time i the adjacency condition of a ver-
tex i (say) to the other vertices is given. Therefore,
without loss of generality, vertices are given in se-
quence 1,2,...,n. We present our on-line dominat-
ing set algorithm JUMP. Let D; be the set of ver-
tices selected by JUMP at time i, where Dy = (). By
the nature of the on-line algorithm, D; C D, and
D = D, is the dominating set returned by JUMP.
Let (i,i41),(i,12),...,(i,ig4,) be the adjacent edges of
vertex i given at time i, where d; is the degree of ver-
tex iand 1 < i) < ip < -+ < iy, < n. After time
i, vertex u € V is marked as “dominated” if u € D;
or there is a vertex v € D; such that (u,v) € E. A
vertex that is not “dominated” is an “undominated”
vertex. Also, the vertices j, j < i, that are presented
before are called “visited”. There are four cases in the
following by which the vertex i is put into D; at time
i. A vertex in D is classified into one of the three
types: j-vertex, r-vertex, and f-vertex. Note that the
current vertex is checked from case 1 to case 4 one
by one, so a vertex cannot be of two types. We also
define a function f on some vertices for later analy-
sis.
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(1) Thereare > [/n] “undominated” vertices among
i1,4i2,...,1q,. For this case vertex i is called a j-
vertex in D.

(2) Vertex [ dominates all the remaining “undomi-
nated” vertices. For this case vertex i is called an
r-vertex.

(3) All vertices iy, 1 < s < d; are less than { and
not in D;_j, that is, vertex i’s adjacent vertices
are visited and not selected by JUMP such that
vertex i is selected to dominate itself. For this
case vertex { is called an f-vertex and we define
fG) =i

(4) There is a vertex j such that j < i, i = jg,, and all
vertices j, ji, j2, - - - » ja;—1 are notin D;_y, that is,
vertex i is the last vertex that can dominate vertex
Jj. For each such vertex j, we say that vertex j
forces vertex i to be in D. For this case also vertex
i is called an f-vertex, and we define f(j) =
i

Correctness. For each vertex i, 1 < i < n, if itis put
in D; then it is dominated by itself. If it is not put in
D; then it is dominated either by a vertex v € D;_; or
by one of its neighbors i, that is not visited yet, that
is, i, > i. Therefore, the final D = D, is a dominating
set for the graph G.

Performance ratio. We now show that the perfor-
mance ratio of JUMP is 1.5,/n+c; for some constant
¢1. Let C be a minimum dominating set for G.

Lemma 1. There are at most |\/n] j-vertices in D.

Proof. Since each j-vertex v in D dominates at least
[v/r] “undominated” vertices at time v. Once a ver-
tex is marked as “dominated”, it will no longer con-
tribute as an “undominated” vertex in case one. There-
fore, there are at most |{n/[\/n]| = |\/n] j-vertices
inD. O

Lemma 2. There is at most one r-vertex in D.
Proof. If vertex v is an r-vertex in D then all vertices
of G are dominated after time v. No more vertices can

be put into D thereafter. [0

Lemma 3. If the minimum dominating set C consists
of only one vertex then D contains no f-vertices.

Proof. Let C = {c}. Vertex ¢ is adjacent to all the
other vertices. Therefore no f-vertices are put into D
before time c. If vertex c is selected as a j-vertex in
case one then all vertices are dominated by vertex c.
No more vertices can be put into D. Otherwise, vertex
¢, or some other vertex ¢’ that dominates all vertices,
must be selected as an r-vertex. So, no f-vertices can
be putinto D. [

We define opt as a mapping of a vertex into one of
its dominating vertices in C:

i) i ifiecC,
opt(t) =
P min{j | j €C, (i,j) € E} ifigcC.

We now compare the sets D and C. We define a
charge scheme, which distributes weights w; of ver-
tices in D to weights wy of vertices in C. Initially,
wi(u) = 1 if and only if u € D and wy(v) = 0
if and only if v € C. Then the performance ra-
tio of JUMP is max{w:(v) | v € C} after the
weight distribution. The charge scheme is as fol-
lows:

1. For each vertex u € C N D, the weight of u is
charged to itself. That is, w,(u) is increased by
wq (u) .

2. For each f-vertex u € D — C, the weight of vertex
u is evenly charged to each vertex opt(v), where
f(v) = u. That is, wa(opt(v)) is increased by
wi(u)/m, where m = |{v | f(v) =u}|.

3. For each j- or r-vertex u € D — C, the weight of
vertex u is evenly charged to each vertex v € C.
That is, wy(v) is increased by wy (u) /|C|.

Lemma 4. Foreachv € CND,wy(v) is not charged
by any other f-vertex in D.

Proof. For an f-vertex u € D and u # v charg-
ing to wp(v), vertex u must be in D — C. We con-
sider only case four by which vertex u is put into
D as an f-vertex. There must be a vertex v’ with
opt(v') = v and vertex v forces vertex u to be in D,
that is, f(v') = u. However, if vertex v’ forces ver-
tex u to be in D, all its adjacent vertices must be vis-
ited and not in D,. Therefore vertex v, which is ad-
jacent to vertex v, is not in D, which is a contradic-
tion. (]
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Fig. 1. The structure against on-line dominating set algorithms.

Lemma 5. For each vertex v € C — D, wy(v) is
charged by at most [\/n] — 1 f-vertices.

Proof. Since vertex v ¢ D, welet I, = {u | (u,0) €
E, vertex u is “undominated” after time v — 1}. For an
f-vertex u, f(v') =u and opt(v') = v, to be charged
to wa(v), vertex v/ must be in I, and f-vertex u is
in D — C. Since vertex v is not put into D at time
v, it has at most [{/n] — 1 adjacent “undominated”
vertices after time v — 1, that is, |I,| < [{/n] — 1.
Therefore, wo(v) is charged at most [\/n] — 1 times
by f-vertices. [J

Lemma 6. If |C| = 1 then the performance ratio of
JUMP is at most |\/n| + 1.

Proof. By Lemma 3 the set D contains no f-vertices
if |C| = 1. By Lemmas 1 and 2, |D| < [/n] + 1. The
weight wy(c) is at most |/n] + 1, where C = {c}.
Therefore, the performance ratio of JUMP is at most
lvr] +1if|C|=1. O

Lemma 7. The performance ratio of JUMP is at most
1.5\/n + c for some constant c.

Proof. By the above lemma we consider only the case
that |C| > 2. Since D consists of at most |v/n] j-

vertices and one r-vertex, for each vertex v € C,
wa(v) is charged at most (|v/n| + 1) /2 by j- and r-
vertices. Furthermore, by Lemmas 4 and 5, for each
vertex v € C, wa(v) is charged at most, for n > 2,

[Vr] =1+ ([Va] +1)/2,

which is 1.5\/5 + ¢; for some constant ¢;. [

Lower bound. We now use a strong adversary to
prove that \/n — c; is a deterministic lower bound for
the performance ratio of the on-line dominating set
problem for general graphs in this setting, where ¢; is
a constant.

Theorem 8. /1 — c; is a lower bound for the per-
Jormance ratio of the on-line dominating set problem
for general graphs in this setting.

Proof. Let D be the dominating set selected by an
on-line dominating set algorithm. For simplicity,
we assume that k = +/n — 1 is an integer. Let S/ =
(V/,E}), where V/ = {i,k+ 1,i(k — 1) + 3,i(k —
1)+4,...,itk—1)+k+1}and El = {(i,v) |v e
V/—{i}}for1 <i<k

From time intervals 1 to k, vertices 1,2,....k%
are presented such that vertices aj,a,...,a, are
included in D and vertices by, b;,...,b,; are not



14 G.-H, King, W.-G. Tzeng/Information Processing Letters 61 (1997) 11-14

included in D by the on-line algorithm, where
{a;,az,. .. ,Llp,bl,b2,. . ,bq} = {],2,. . .,k} and
P + g =k. At time interval kK + 1, vertex k + 1 is pre-
sented with adjacency to vertices 1 to k and to vertices
inV; UV, U-- UV, —{k+1}. After time k+1, all ver-
tices in (V, UV, U---UVp ) —{k+1,b1,b2,. .., by}
are forced to be included in D with a structure shown
in Fig. 1. Therefore D = {a1,az,...,a,, k+1}U{u|
u€ (Vy UV, U---UVy) —{bi,ba,....bg}}. Since
p-k+4q-k+1=nand the minimum dominating
setis {b1, b2, ..., by, k + 1}, the lower bound for the
performance ratio is

g (k—1)+p+1

1+4¢
k-(1+¢q) ~29+1
N 1+g
2g—1
=vn—1- >vn—-c 0

3. The second on-line setting

In this setting, at time interval {, the adjacency con-
dition of vertex i to the vertices j, 1 < j < i is given.
We show that n — 1 is the tight bound for this on-line
setting.

First, we present an on-line algorithm for this set-
ting for completeness although it is straightforward.
At time i, the algorithm puts vertex i into D if vertex
i is not dominated by other vertices j, 1 < j < i. Itis
easy to check that the performance ratio of the algo-
rithm is » — 1, in particular, for graphs with a single
dominating vertex. We now show that the lower bound
isn—1.

Theorem 9. n— 1 is a deterministic lower bound for
the performance ratio of the on-line dominating set
problem in this setting.

Proof. An adaptive adversary is given as follows. Let
A be an on-line algorithm. The adversary keeps pro-
viding a vertex that is connected to all previous ver-
tices till it is not put into D. Let us say that this vertex
is k. Then the remaining vertices j, k+1 < j < n, are
provided as being connected to vertex k only. Algo-
rithm A has to choose the remained vertices so that D
is{1,2,....,k—1,k+1,k+2,...,n}. However, the

minimum dominating set for this graph is {k}. There-
fore, n — 1 is a deterministic lower bound. 0O

From the above proof, we can see even if the given
graph is known to be connected (or permutation, or in-
terval) in advance, the lower bound remains the same.

Corollary 10. The deterministic lower bound for the
performance ratio of the on-line dominating set prob-
lem for connected (even for permutation or interval)
graphs in this setting isn — 1.

Corollary 11. n — 1 is the tight bound for the per-
Sformance ratio of the on-line dominating set problem
(even for connected, permutation, or interval graphs)
in this setting.
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