Contents

Abstract (in Chinese)	I
Abstract (in English)	III
Acknowledgement	V
Contents	VI
Table Lists	VIII
Figure Captions	IX

Chapter 1 Introduction

1.1 General Background and Motivation	.1
1.2 Introduction to Poly-3-hexylthiophene,P3HT	.1
1.3 OTFTs beased on P3HT with Bottom-Contact Structure	.3
1.4 Operation of Organic Thin Film Transistor	3
1.5 Thesis Organization	.4

Chapter 2 Low Temperature Process of P3HT OTFTs with LPD SiO ₂ as Insulator
2.1 Introduction
2.2 <u>Chemical Vapor Deposition(CVD) and Liquid-Phase Depotition(LPD)12</u>
2.3 Mechanism of LPD14
2.4 Experimental Detail
2.4.1 Process flow of OTFTs based on P3HT with SiO ₂ as gate insulator by PECVD
and LPD15
2.4.2 Process flow of OTFTs based on P3HT with SiO2 as gate insulator and isolation
layer by LPD16
2.5 Electrical Characteristics of OTFTs based on P3HT
2.5.1 Measurement17
2.5.2 Threshold Voltage and OFF Current Definition18
2.5.3 The Extraction Method of Mobility18
2.6 Results and Discussion
2.6.1 Characteristics of LPD SiO ₂ 19
2.6.2 Characteristics of OTFTs with LPD SiO ₂ as gate insulator19
2.6.3 Characteristics of OTFTs with LPD SiO2 as gate insulator and isolationlayer.20
2.7 Summry
Chapter 3 Plasma Treatment Effects on OTFTs
3.1 Introduction40

3.3 Results and Discussion42
Chapter 4 Conclusion and future work
4.1 Conclusions
4.1.1 Low Temperature Process of OTFTs with LPD SiO ₂ as Gate Insulator60
4.1.2 Plasma Treatment Effects on OTFTs61
4.2 Future work
4.2.1 A new method to deposit P3HT thin film61
4.2.2 Thermal stability of P3HT OTFTs62
4.2.3 An in-situ pacivation layer for protecting the P3HT film62
4.2.4 New gate insulator materials for P3HT OTFTs62

Reference	
Vita	

Table Lists

Chapter 1

 Table 1-1
 Characteristics of some of the most commonly used organic semiconductors

Chapter 2

- Table2-1 The magnitude of I_{OFF} with different channel length and different channel width
- **Table 2-2**Field-effect Mobility, Off state leakage and I_{ON}/I_{OFF} of OTFTs with

PECVD SiO₂, LPD SiO₂ and LPD SiO₂ with isolation dielectric layer.

Chapter 3

- Table 3-1
 Summary of field-effect mobility and threshold voltage with respect to O₂ plasma exposure time.
- Table 3-2
 Summary of field-effect mobility and threshold voltage with respect to N₂O plasma exposure time.
- Table 3-3
 Summary of field-effect mobility and threshold voltage with respect to NH₃

 plasma exposure time.

Figure Captios

Chapter 1

- Figure 1-1 Molecular structure of poly-3-hexylthiophene
- Figure 1-2 Two different orientations of ordered P3HT lamella structure with respect to the substrate
- Figure 1-3 OTFT device configurations : (a)Top-contact device, with source and drain electrodes evaporated onto the organic semiconducting layer through a mask. (b) Bottom-contact device, with the organic semiconductor deposited onto the gate insulator and the prefabricated source and drain electrodes[1.13].
- **Figure 1-4** (a)the schematic diagram of bottom-contact OTFT. (b)the layout of comb structure for source and drain electrodes

Figure 1-5 Schematic of operation modes of organic thin film transistor, showing a lightly p-doped semiconductor : + indicates a positive charge in semiconductor ; - indicate a negative charge counterion(a) no-bais (b) accumulation mode (c) depletion mode (d) channel pinch-off.

Chapter 2

- Figure 2-1 The schematic diagram of the apparatus for LPD
- **Figure 2-2** Process flow of OTFTs based on P3HT with SiO₂ as gate insulator by PECVD and LPD
- **Figure 2-3** Process flow of OTFTs based on P3HT with SiO₂ as gate insulator and isolation layer by LPD.
- Figure 2-4 High frequency of C-V curve of LPD SiO₂
- Figure 2-5 I-V curve of MOS capacitors with LPD SiO₂
- **Figure 2-6** Gate leakage current of OTFTs based on P3HT with LPD SiO₂ amd PECVD SiO₂

- Figure 2-7 Gate leakage path of OTFTs at (a)positive gate bias (b) negative gate bias.
- Figure 2-8 The transfer characteristics I_S - V_G of OTFTs with LPD SiO2 and PECVD SiO2 as gate insulator
- Figure 2-9 The gate leakage current of OTFTs with and without LPD SiO2 as isolation layer
- Figure 2-10 The output characteristics I_S-V_G of OTFTs with and without LPD SiO₂ as isolation layer
- Figure 2-11 (a) The output characteristics I_S - V_D of OTFTs without isolation layer (b)current path of OTFTs without isolation layer
- Figure 2-12 (a) The output characteristics I_S-V_D of OTFTs with LPD SiO₂ as isolation layer
 (b)current path of OTFTs with isolation layer

TID

Chapter 3

- **Figure 3-1** Process flow of OTFTs with plasma treatment on SiO₂ prior to the deposition of P3HT.
- **Figure 3-2** The output characteristics I_S-V_G of OTFTs with O_2 plasma treatment prior to the deposition of P3HT.
- **Figure 3-3** Variation of field-effect mobility with respect to O₂ plasma exposure time.
- **Figure 3-4** Variation of threshold voltage with respect to O₂ plasma exposure time.
- Figure 3-5 The output characteristics I_S - V_D of OTFTs with O_2 plasma treatment prior to the deposition of P3HT.
- Figure 3-6 The output characteristics I_S-V_G of OTFTs with N_2O plasma treatment prior to the deposition of P3HT
- Figure 3-7 Variation of field-effect mobility with respect to N₂O plasma exposure time.
- Figure 3-8 Variation of threshold voltage with respect to N₂O plasma exposure time.
- Figure 3-9 The output characteristics I_S - V_D of OTFTs with N_2O plasma treatment prior to

the deposition of P3HT

- Figure 3-10 The output characteristics I_S - V_G of OTFTs with NH_3 plasma treatment prior to the deposition of P3HT
- Figure 3-11 Variation of field-effect mobility with respect to NH₃ plasma exposure time
- Figure 3-12 Variation of threshold voltage with respect to NH₃ plasma exposure time
- Figure 3-13 The output characteristics I_S - V_D of OTFTs with NH₃ plasma treatment prior to the deposition of P3HT

