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Abstract

A large amount of semiconductor markets are given by the semiconductor
memories. The past decade in the field of Flash memories have been the explosive
growth, driven by cellular phones and other portable equipments. In order to improve
the speed of Flash cell, it is necessary to lower the tunneling oxide (TOX) thickness.
However, this causes the loss of charges at the same time. According to the trade-off
between speed and reliability, the thickness of TOX is compromised to about 8-11nm.
Unless changing of device structures, materials, and operating mechanisms, we can’t
overcome the difficulty which Flash memories meet. Recently, germanium (Ge) has
prompted renewed interest in Ge-based devices due to the lower effective mass and
higher mobility of carriers in Ge as compared to silicon (Si). Ge also exhibits more
serious impact ionization which is responsible for channel hot electrons (CHE)

injection programming. We think the differences of Si and Ge in physical



characteristics may change the operating mechanisms, and bring some solutions to
improve programming/erasing efficiency of Flash memories.

We use ISE TACD for our simulate work. The tool has set Si-related process and
device simulation parameters as default. We have changed the parameters what we
could found, basing on the published papers and books to make sure the simulate
results. The models are: energy band model, mobility model, impact ionization rate
model, thermal conductivity model, hydrodynamic model, and capacitive coupling
model. The mechanisms are: Fowler-Nordheim (F-N) tunneling and hot carriers
injection. All of the results are just gotten from device simulation but without process
simulation since ISE still has no Ge-related process simulation.

We use CHE and channel F-N (CFN) to program the Flash cells respectively, and
use F-N tunneling to erase the Flash cells. On CHE programming, the higher coupling
ratio of control-gate (CG) makes the higher electrical field across TOX in Si than Ge.
Also because of the continuity of displacement. vector, the higher permittivity of Ge
would cause the lower electrical field at.interface: \We get the higher gate current in Si
than Ge. On CFN programming, the higher Ct in Ge would show the higher electrical
field across TOX. However, the parameters of F-N tunneling are calculated and
showing the gate current in Si is larger than Ge. On the same mechanism of F-N
tunneling erasing, the parameters also show the higher electrical filed (Einj) of Si
would cause the higher erasing speed. The continuity of displacement vector also
explains the higher electrical field at interface for F-N tunneling
programming/erasing.

Finally, we show the simple conclusions for our research. The simulate
characteristics always need the experimental results to prove the correctness, and

build the mathematical model. We also show recommendations for the future works.
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