
CHAPTER 2 

Physical and Mathematical Setting for Simulation 

 

2.1  Simulate Tool 

 

The chapter 3 is employed by ISE TCAD 10.0 (ISE) which is supplied by National 

Center of High-Performance Computing (NCHC). The ISE simulation flows are as 

follows: (1) ISE simulation flow starts from process simulation and lead to electrical 

device characteristics (2) process flow operations are modeled in LIGAMENT or 

DIOS and result in device structure and doping distribution (3) MDRAW links 

process and device simulations providing an optimized high quality grid to DESSIS (4) 

the electrical characteristics are obtained solving potential and carrier transport 

equations with the device simulator DESSIS. The LIGAMENT, DIOS, MDRAW, and 

DESSIS are parts of tool in ISE. By directly drawing device structure, one can omit 

flows (1) and (2), and MDRAW supplies this function for users. All of the results in 

chapter 3 are just in device simulation but without in process simulation since ISE still 

has no germanium (Ge) relating process simulation.  

2.2  Modeling 

 

2.2.1 Energy Band Model 

 

  The detailed energy band diagrams of silicon (Si) and Ge are shown in Fig. 2.1 

[2.1]. The energy band diagrams are frequently simplified when analyzing 

semiconductor devices. Since the electrons properties of a semiconductor are 

dominated by the highest partially empty band and the lowest partially filled band, it 
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is often sufficient to only consider those bands. This leads to a simplified energy band 

diagram for semiconductors as shown in Fig. 2.2. The energy band gap is located 

between the two lines, conduction band (Ec) and valence band (Ev), which are 

separated by the bandgap energy Eg. The distance between the Ec and the energy of a 

free electron outside the crystal (called the vacuum level labeled Evacuum) is quantified 

by the electron affinity, χ multiplied with the electron charge q. Fig. 2.3 shows the 

comparison of Si and Ge energy band levels [2.2].  

  The Eg of semiconductors tends to decrease as the temperature is increased. This 

behavior can be better understood if one considers that the interatomic spacing 

increases when the amplitude of the atomic vibrations increases due to the increasing 

thermal energy. An increased interatomic spacing decreases the average potential seen 

by the electrons in the material, which in turn reduces the size of the Eg. The 

temperature dependence of the Eg has been experimentally determined yielding the 

following expression for Eg as a function of the temperature, T:  
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where Eg(0), α and β are the fitting parameters. These fitting parameters are listed for 

Si and Ge in Tab. 2.1 [2.3]. The Fig. 2.4 shows the Eg with temperature increasing 

form 0K to 1000K.  

2.2.2 Mobility Model 

 

  The mobility is computed in two steps. First, the low field mobility μlow is 

determined according to section 2.2.2.1 constant mobility model. Second, the final 

mobility is computed from the formula in section 2.2.2.2 hydrodynamic Canali model 

or 2.2.2.3 driving force model. The two steps can be written as a function :  

( ,low )f Fμ μ=                                                      (2-2) 
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In our simulations, we use hydrodynamic Canali model for electrons and driving force 

model for holes in second step calculating.  

2.2.2.1 Constant Mobility Model 

 

  The constant mobility model assumes that carrier mobility is only affected by 

phonon scattering and, therefore, dependent on the lattice temperature. For the 

purpose of simulation one usually takes a simple power law whose coefficients are 

obtained by fitting experimental mobility values.  
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The published numerical values for the constants in (2-3), (2-4) show some scatter. 

The coefficients are summarized in Tab. 2.2 [2.4].  

2.2.2.2 Hydrodynamic Canali Model 

 

  In this model, the driving force F is expressed in terms of the carrier thermal energy 

wc. In a homogeneous and stationary situation, the hydrodynamic equations have the 

simple solution:  
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Where 3
2
B c

c
k Tw =  is the average carrier thermal energy, 0

3
2
B Lk Tw =  gives the 

equilibrium thermal energy, τe,c is the energy relaxation time, Tc denotes the carrier 

temperature, and TL denotes the lattice temperature. The index c is e for electrons and 

h for holes. The Canali model is shown [2.5]:  
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where T0=300K, constants for (2-7) and (2-8) are listed in Tab. 2.3 and Tab. 2.4. 

Substituting Fc into the (2-6) and solving for μ yields the hydrodynamic Canali model:  
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where the parameter α is given by:  
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2.2.2.3 Driving Force Model 

 

  We use this model to set the driving field F which is given by the gradient of the 

Fermi potential φc:  

cF ϕ= ∇                                                         (2-11) 

Then the F in (2-6) will be substituted by (2-11).  

2.2.3 Impact Ionization Rate Model 

 

  Impact ionization is a generation/recombination modeling. We define αn and αp as 

the ionization rates for electrons and holes. They are defined as generated 

electron-hole pairs per unit length of travel and per electron and hole, respectively. 

The theoretical results for the ionization rate αn, αp are not unique. However, both 

 11



theoretical and experimental investigations indicate a good approximation to be an 

exponential dependence of the ionization rates upon the electric field component E in 

direction of current flow. 
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The exponents βn, βp are found in the range 1 to 2 [2.6-2.8]. Investigations by Baraff 

[2.9] have predicted that these theories can be interpreted as the two limiting cases of 

a much more rigorous model. For low fields Sockley’s model is more appropriate, 

whereas for high fields Wolff’s model is asymptotically correct. Baraff’s results can, 

unfortunately, not be given in closed form. They have been obtained by a numerical 

solution of the Boltzmann transport equation, however, restricted to the assumption of 

an unrealistic band structure. However, a universal plot for both electrons and holes 

has been presented, which shows:  
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λ is the mean free path between collisions with high energetic phonons; Er is the 

average loss of energy defined per such collision; and Ei denotes the ionization energy, 

which is consumed from the ionizing carrier. Baraff’s universal curves have been 

approximated with compact formulae so that an application for the purpose of 

simulation is facilitated. Okuto and Crowell [2.10] have proposed an empirical 

expression which is supposed to fit the theoretical results of Baraff as well as 

measurement.  
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The coefficients of formula in (2-15), which is temperature dependent, are 

summarized in Tab. 2.5.  

2.2.4 Thermal Conductivity Model 

 

Most currently available models for the thermal conductivity of Si and Ge are 

based on the early measurements of Glassbrenner and Slack [2.11]. They presented 

theoretical investigations which led to the following formula for thermal conductivity 

in semiconductors.  

2
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The constants a, b, and c are summarized for Si and Ge in Tab. 2.6. Above sections 

(2.2.1 to 2.2.4) have shown the models which are used in simulation, but there are still 

some parameters have set for Si and Ge as Tab. 2.7.  

2.2.5 Hydrodynamic Model 

 

  With continued scaling into the deep submicron regime, neither internal nor 

external characteristics of sate-of-the-art semiconductor devices can be described 

properly using the conventional drift-diffusion transport model. In particular, the 

drift-diffusion approach cannot reproduce velocity overshoot and often overestimates 

the impact ionization generation rates. The Monte Carlo method for the solution of the 

Boltzmann kinetic equation is the most general approach, but because of its high 

computational requirements, it cannot be used for the routine simulation of devices. 

The hydrodynamic model provides a very good compromise. In the hydrodynamic 
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case, current densities are defined as:  
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where kB is the Boltzmann’s constant, Tn and Tp are carriers temperature, and fn
td and 

fp
td are parameters representing different approach in literature. The first term takes 

into account the contribution due to the spatial variations of electrostatic potential, 

electron affinity, and the band gap. The three remaining terms in (2-17) and (2-18) 

take into account the contribution due to the gradient of concentration, the carrier 

temperature gradients, and the spatial variation of the effective masses.  

2.2.6 Capacitive Coupling Model 

 

  As the name of capacitive coupling model, we calculate the floating-gate (FG) 

voltage by using of capacitors between FG and others. Fig. 2.5 shows the cross 

section of this model. If we name the total capacitances as:  

T IPD TOX SC C C C C= + + +                                           (2-19) 

and we define J
J

T

C
C

α =  the coupling coefficient relative to the electrode J, where J 

can be CG, substrate, source, and drain. The potential on the FG due to capacitive 

coupling is given by:  

fg g g b b d d sV V V V sVα α α α= + + +                                       (2-20) 

The higher coupling ratio, the lower CG operation voltage is needed to get the same 

speed.  

2.3  Programming and Erasing Mechanisms 

 

2.3.1 Fowler-Nordheim (F-N) Tunneling 
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2.3.1.1 Programming 

 

  One of the most important injection mechanisms used in nonvolatile memory is 

F-N tunneling. When a large control-gate (CG) voltage is applied during 

programming, its energy band structure will be influenced as shown in Fig. 2.6. In the 

figure, the applied CG voltage creates the electric field resulting in a potential barrier. 

This barrier provides a path for the electrons in the substrate to tunnel through the thin 

gate oxide (typically less than 12nm) and eventually be collected in the n+-poly Si FG. 

The electrons collected at the FG lead to a tunneling current density which is given by 

the following equations:  
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where, Einj=Electric field at the injection surface= app fb

ox

V V
t
−

, Vapp=Voltage applied 

across the tunneling oxide (TOX), Vfb=Flat band voltage, and tox=TOX thickness, 

2
h
π

= , h=Planck’s constant, φ b=Energy barrier at the injection surface, and 

m*=Effective mass of an electron in the band gap of SiO2. Fig. 2.7 shows a 

cross-section of a nonvolatile memory with electrons tunneling uniformly with CG 

voltage at positive potential while the source, the drain, and the substrate are at 

ground potential. An optional method that can be used to program Flash is given in 

Fig. 2.8 which is called drain-side tunneling. Drain-side tunneling is sometimes 

preferred over the uniform tunneling due to the programming speed as a result of 
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higher tunneling current density due to smaller injecting area. The simplified model in 

ISE is:  

2
B
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=                                                     (2-24) 

where jFN is the tunneling current density, F is the insulator electric field at the 

interface, and A and B are physical constants. The defaults coefficients used for F-N 

tunneling are listed in Tab. 2.8.  

2.3.1.2 Erasing 

 

  F-N tunneling can also be used to erase a nonvolatile memory. One of the methods 

is by applying a large negative voltage at the CG. The energy band structure will be 

influenced as shown in Fig. 2.9. The applied CG voltage created the electric field 

resulting in a potential barrier. This barrier provides a path for the electrons to tunnel 

from the FG to the substrate through the thin gate oxide. Fig. 2.10 and Fig. 2.11 show 

two choices to erase a Flash. For uniform tunneling, a large negative CG voltage is 

applied while for drain-side tunneling method. In general, uniform tunneling is slower 

than drain-side tunneling, but, drain-side tunneling tends to cause reliability issues. 

The reliability issue is the gate oxide damage that occurs near the drain since a small 

area is bombarded by electrons and that the tunneling current density as a result of 

small area is higher. The simplified model in ISE is as (2-24), and the coefficients are 

listed in Tab. 2.9.  

2.3.2 Hot Carriers Injection 

 

  The hot carriers refers to either electrons or holes that have gained very high kinetic 

energy after being accelerated by a strong electric field in areas of high field 

intensities within a semiconductor device. There are four commonly encountered hot 
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carrier injection mechanisms found: (1) the drain avalanche hot carrier (DAHC) 

injection (2) the channel hot electron (CHE) injection (3) the substrate hot electron 

(SHE) injection (4) the secondary generated hot electron (SGHE) injection.  

The DAHC injection is said to produce the worst device degradation under normal 

operating temperature region. This occurs when a high voltage applied at the drain 

under non-saturated conditions (Vd>Vg) results in very high electric fields near the 

drain, which accelerate channel carriers into the drain’s depletion region. Studies have 

shown that the worst effects occur when Vd=2Vg. The acceleration of the channel 

carriers causes them to collide with Si lattice atoms, creating dislodged electron-hole 

pairs in the process. This phenomenon is known as impact ionization, with some of 

the displaced electron-hole pairs also gaining enough energy to overcome the electric 

potential barrier between the Si substrate and the gate oxide. Under the influence of 

drain-gate field, hot carriers that surmount the substrate-gate oxide barrier get injected 

into the gate oxide layer where they are sometimes trapped. This hot carrier injection 

process occurs mainly in a narrow injection zone at the drain end of the device where 

the lateral field is at its maximum. Hot carriers can be trapped at the Si-SiO2 interface 

or within the oxide itself. These charges shift some of the characteristics of the device, 

such as its threshold voltage (Vth) and its conveyed conductance (gm). Injected carriers 

that do not get trapped in the gate oxide become gate current. Excessive substrate 

current may therefore be an indication of hot carrier degradation. The Fig. 2.12 shows 

the DAHC injection cross-section view.  

The CHE injection occurs when both the gate voltage and the drain voltage are 

significantly higher than the source voltage, with Vg~Vd. Channel carriers that travel 

from the source to the drain are sometimes driven towards the gate oxide even before 

they reach the drain because of the high gate voltage. Fig. 2.13 shows the CHE 

cross-section view, and Fig. 2.14 shows the energy band diagram during hot-electrons 
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programming.  

The SHE injection occurs when the substrate back bias is very positive or very 

negative, i.e., 0bV >> . Under this condition, carriers of one type in the substrate are 

driven by the substrate field toward the Si-SiO2 interface. As they move toward the 

substrate-oxide interface, they further gain kinetic energy from the high field in 

surface depletion region. They eventually overcome the surface energy barrier and get 

injected into the gate oxide, where some of them are trapped. The Fig. 2.15 shows the 

SHE injection cross-section view.  

  SGHE injection involves the generation of hot carriers from impact ionization 

involving a secondary carrier that was likewise created by an earlier incident of 

impact ionization. This occurs under conditions similar to DAHC, i.e., the applied 

voltage at the drain is high or Vd>Vg, which is the driving condition for impact 

ionization. The main difference, however, is the influence of the substrate’s back bias 

in the hot carrier generation. This back bias results in a field that tends to drive the hot 

carriers generated by the secondary carriers toward the surface region, where they 

further gain kinetic energy to overcome the surface energy barrier. The Fig. 2.16 

shows the SGHE injection involves hot carriers generated by secondary carriers.  

In our simulation during programming the Flash cell, it is going through the DAHC 

and CHE. In ISE, the total hot carrier injection current according to the Fiegna model 

[2.12] can be written as:  

0

( ) ( ) ( )
B

g ins
E

I q P v f g d dsε ε ε ε
∞

⊥

⎛ ⎞
= ⎜⎜

⎝ ⎠
∫ ∫ ⎟⎟

                                  (2-25) 

where ε is the electron energy, EB0 is the height of the semiconductor-insulator barrier, 

v⊥ is the velocity normal to the interface, f(ε) is the electron energy distribution, g(ε) 

is the density of states of the electrons, Pins is the probability of scattering in the image 
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force potential well as described by (2-29), and ∫ds is an integral along the 

semiconductor-insulator interface. The following expression for the electron energy 

distribution was proposed for a parabolic and an isotropic band structure, and 

equilibrium between lattice and electrons:  

3

1.5( ) exp
eff

f A
F
εε χ

⎛ ⎞
= ⋅ −⎜⎜

⎝ ⎠
⎟⎟                                           (2-26) 

therefore, the gate current can be rewritten as:  
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where n is the electron density and Feff is an effective field, and EB is shown as 

insulator field Fins function:  
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the EB is the Si-SiO2 barrier height, EB0 is the zero field barrier height at the 

semiconductor-insulator interface, the second term is the equation represents barrier 

lowering due to image potential, and the third term of the barrier lowering is due to 

the tunneling processes. All hot carrier models contain a probability Pins of scattering 

in the image force potential well:  
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where λins is the scattering mean free path in the insulator and the distance x0 is given 

as:  

0
016 ins ins

qx
Fπε ε

=                                                 (2-30) 

in the above expression, εins is the dielectric constant of the insulator. The coefficients 

and their defaults are given in Tab. 2. 10.  
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Fig. 2.1 Energy band diagram of Si and Ge.  

 

Fig. 2.2 A simplified energy band diagram used to describe semiconductor. Shown are 

the valence and conduction band as indicated by the valence band edge, Ev, and the 

conduction band edge, Ec. The vacuum level, Evacuum, and the electron affinity, χ, are 

also indicated on the figure.  
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Fig. 2.3 Comparison of energy-band levels in Si and Ge.  
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Fig. 2.4 Temperature dependence of the energy bandgap of Si and Ge.  
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Fig. 2.5 The capacitive coupling model that using the capacitance between the FG and 

the other electrodes.  

 
Fig. 2.6 Energy band diagram of a FG memory during programming by F-N 

tunneling.  
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Fig. 2.7 A cross-section of a nonvolatile memory with electrons tunneling uniformly.  

     

Fig. 2.8 Drain-side tunneling to program Flash.  
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Fig. 2.9 Energy band diagram of a FG memory during erasing by F-N tunneling.  

 

Fig. 2.10 Uniform tunneling to erase Flash.  
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Fig. 2.11 Drain-side tunneling to erase Flash.  

 

Fig. 2.12 DAHC injection involves impact ionization of carriers near the drain area.  

 25



 

Fig. 2.13 CHE injection involves propelling of carriers in the channel toward the 

oxide even before they reach the drain area.  

 

Fig. 2.14 Energy band diagram of a FG memory during programming by hot-electron 

injection.  
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Fig. 2.15 SHE injection involves trapping of carriers from the substrate.  

 

Fig. 2.16 SGHE injection involves hot carriers generated by secondary carriers.  
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 Eg(0) (eV) α (eV/K) Β (K) 

Silicon 1.166 0.473×10-3 636 

germanium 0.744 0.477×10-3 235 

Tab. 2.1 Parameters used to calculate the energy bandgap of Si and Ge as a function 

of temperature.  

 

 μn
0 (cm2/V ⋅ s) αn μp

0 (cm2/V ⋅ s) αp

silicon 1417 2.5 470.5 2.2 

germanium 3900 1.6 1900 2.3 

Tab. 2.2 Lattice mobility constants.  

 

 β0 βexp

silicon 1.109 0.66 

germanium 

electrons 

1.109 0.66 

Tab. 2.3 Canali model parameters.  

 

 vsat,0 (cm/s) vsat,exp

silicon 1.07×107 0.87 

germanium 

Electrons 

7.43×106 0.87 

Tab. 2.4 Default velocity saturation parameters.  
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 a300 (1/V) b300 (V/cm) c d 

electrons 0.426 4.81×105 3.05×10-4 6.86×10-4silicon 

holes 0.243 6.53×105 5.35×10-4 5.87×10-5

electrons 0.569 3.32×105 6.33×10-4 9.34×10-4germanium 

holes 0.559 2.72×105 7.87×10-4 8.82×10-4

Tab. 2.5 Coefficients for (2-15).  

 

 a (cm ⋅K/V ⋅A) b (cm/V ⋅A) c (cm/K ⋅V ⋅A) 

silicon 0.03 1.56×10-3 1.65×10-6

germanium 0.17 3.95×10-3 3.38×10-6

Tab. 2.6 Coefficients for (2-16).  

 

 silicon germanium 

relative epsilon: εr 11.7 16.1 

refractive index:  4
300( ) 1 2 10 ( 300)n T n T−⎡ ⎤= + × −⎣ ⎦

n300=3.45 n300=1 

0

nm
m

∗

 1.18 0.55 

0

pm
m

∗

 
0.5 0.3 

crystal lattice constant ( ) Α
5.43072 5.65754 

Tab. 2.7 Parameters used in ISE beside mentioned above.  
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 A (program) (A/V2) B (program) (V/cm) 

silicon 1.23×10-6 2.37×108

Germanium 1.25×10-6 2.71×108

Tab. 2.8 Coefficients for F-N tunneling to program in ISE.  

 

 A (erase) (A/V2) B (erase) (V/cm) 

silicon 1.82×10-7 1.88×108

Germanium 1.84×10-7 2.15×108

Tab. 2.9 Coefficients for F-N tunneling to erase in ISE.  

 

 electrons holes 

A (cm．eV2.5/s) 4.87×102 4.87×102

χ (V/cm．eV)1.5 1.3×108 1.3×108

λins (cm) 3.2×10-7 3.2×10-7

EB0 (eV) 3.1 4.7 

α (V．cm)0.5 2.6×10-4 2.6×10-4

β (V．cm)1/3 1.5×10-5 1.5×10-5

Tab. 2.10 Coefficients for Fiegna model.  
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