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一個用來改善形變通道 N型金氧半場效電晶體 

熱載子可靠度的方法 
 

  研究生 :  黃健銘                    指導教授 : 黃調元 博士 

                                                 林鴻志 博士 

 

國立交通大學 

電子工程學系    電子研究所碩士班 

 

 

摘要 

在本研究中，我們探討了使用薄緩衝層對於具有形變通道的 n-型深次微米電

晶體的性能影響與可靠度分析。我們實驗發現，在氮化矽沉積前先沉積一層薄緩

衝層(thin buffer layer)並不會使元件性能變差，這是使用薄緩衝層的優點之

一。而沉積氮化矽覆蓋層時所帶來的熱預算(thermal budget)雖然可以降低界面

的缺陷與減少逆短通道效應，然而卻會使多晶矽空乏現象變嚴重。在本研究中，

我們分別探討了兩種緩衝層材質: 四乙氧基矽烷(TEOS)氧化矽與多晶矽。我們發

現在形變元件中氫含量的多寡是影響元件可靠度最主要的因素。使用四乙氧基矽

烷(TEOS)氧化矽緩衝層可以減緩沉積氮化矽的過程中氫擴散至閘極介電層的情

形。另一方面，由於在沉積多晶矽緩衝層的過程中是使用含有氫的矽甲烷(SiH4)

先驅物(precursor)，所以多晶矽緩衝層沒有像四乙氧基矽烷(TEOS)緩衝層一樣佳
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的阻隔效果。當元件含有氮化矽覆蓋層來增進其驅動電流時，熱載子退化效應會

被嚴重地劣化，然而我們也證實：在氮化矽沉積前先沉積一層緩衝層，可以有效

改善熱載子退化效應。 
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Abstract 

In this work, the effect of a thin buffer layer inserted between the gate and a SiN 

capping layer on the performance and reliability of deep-submicron n-channel MOS 

transistors with strained channel was studied. It is found that the insertion of a thin 

buffer layer would not degrade the device performance, which is important for the 

adoption of the approach to the mainstream ULSI manufacturing. The thermal budget 

associated with the deposition of the SiN capping layer could reduce the amount of 

interface states and alleviate the reverse short-channel effect, although the 

poly-depletion effect becomes worse. More importantly, we found that hydrogen species 

is the primary culprit for aggravated reliabilities in strained devices. Two types of buffer 

layers, namely, TEOS oxide and poly-Si, were characterized in this work. The TEOS 
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buffer layer could effectively block the diffusion of hydrogen species contained in the 

SiN layer into the channel region. On the other hand, poly-Si buffer layer does not 

depict the same blocking effect as TEOS, owing to the use of the H-containing 

precursor (e.g. SiH4) in the deposition step. Hot-electron degradation is adversely 

affected when the SiN layer is deposited over the gate. The effectiveness of the inserted 

buffer layer for alleviating the hot-carrier degradation of devices is clearly demonstrated: 

when a buffer layer is capped prior to the SiN deposition, although still worse than the 

control ones, significant improvement over that without the buffer could be obtained.  
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Chapter 1  
Introduction 

1.1 General Background  

1.1.1 Introduction 

The famous “Moore’s Law’’, proposed by Gordon Moore in 1964, states that the 

number of transistors on an integrated circuit may double every 24 months. For the past 

four decades, the advancement in IC industry more or less follows this intelligent 

foresight in its pursue of better performance with lower cost. It can be said that 

“Moore’s Law’’ is the basis for the overwhelmingly rapid growth of the computing 

power. In order to keep pace with “Moore’s Law’’, the shrinkage of the transistor 

dimensions is mandatory. Fig. 1.1 depicts the historical trends of scaling in feature size 

of CMOS devices [1]. 

Geometric scaling of silicon complementary metal-oxide semiconductor (CMOS) 

transistors has enabled not only an exponential increase in circuit integration density 

(Moore’s law), but also a corresponding enhancement in the transistor performance 

itself. Many methods have been adopted to improve the performance of CMOS 

integrated circuit. Recently, strain engineering on the channel has emerged as one of the 

most effective remedies to boost the drive current in the scaled devices [2-5]. This could 
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be done by either applying high biaxial tensile strain to the channel region with a SiGe 

virtual substrate [2], or by uniaxially straining the channel with strain boosters [3-5]. 

The latter approach is attractive since it can be incorporated seamlessly in 

state-of-the-art ULSI technology, and has received many attentions in the last few years. 

Now that the knowledge base concerning mobility enhancement in strained-Si has 

been reasonably well established, it is time to turn the focus on such issues as 

integration and reliability. Device degradation induced by hot electrons represents one 

of the most critical reliability issues in deep sub-micron NMOSFETs [6-7]. The physical 

mechanisms and characteristics of hot electron degradation have been extensively 

examined [8-9]. The degradations in terms of threshold voltage shift (∆Vth), drain 

current degradation (∆IDS), and transconductance degradation (∆Gm), were studied using 

the accelerated stress test. From our group’s previous studies, the extra hydrogen 

species incorporated during SiN deposition has significant impacts on hot carrier 

reliability [10]. In this work, we propose a novel fabrication process to prevent device 

channel from hydrogen encroachment.  

1.1.2 Strain Technology 

With the scaling of the device size, performance improvement of CMOS devices 

faces a number of obstacles. It is becoming more and more difficult to maintain high 

transistor performance because of mobility degradation caused by the increase in 
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substrate doping. To address this issue, mobility enhancement technology is essential. In 

order to realize high-speed performance, it is necessary to increase the carrier mobility 

for devices with the gate length down to the sub-100-nm and below. Strain improves 

MOSFET drive current by altering the band structure of the channel and can therefore 

enhance performance even at aggressively scaled channel lengths [11-13]. 

MOSFETs with biaxial tensile channel stress by growing a Si channel layer on a 

relaxed SiGe substrate has been demonstrated [14]. Drive current of both NMOSFET 

and PMOSFET was enhanced by the biaxial tensile stress when Ge is incorporated by 

more than 20% in the relaxed SiGe layer. It is noted that the thickness of the top 

strained-Si layer must be thinner than the critical thickness which depends on the Ge 

content of the underlying relaxed SiGe layer to avoid the generation of a large amount 

of dislocations. However, the yield issue associated with high threading dislocation 

density (typically > 104 cm-2) of the virtual SiGe substrates still represents a major 

obstacle for practical applications. In addition, other concerns such as high Ge content 

and up-diffusion, fast diffusion of n-type dopants, and expensive wafer cost further 

blight the situation. 

In contrast, uniaxial channel strain is free from the aforementioned concerns. 

Uniaxial strain can be engineered by modifying contact-etch-stop-layer (CESL) 

deposition [15], shallow trench isolation (STI) [16], source/drain (S/D) material [17], 
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silicidation [18], packing process [19], and so on. Furthermore, the behaviors of carrier 

mobility under uniaxial strain depend on the strength of the strain and the orientation 

[20]. Electron and hole mobilities respond to the complex three-dimensional mechanical 

stress in different and even opposite ways. The channel tensile and compressive stress 

can be applied separately to NMOS and PMOS devices to enhance performance, 

respectively (as shown in Fig. 1.2). Depending on the CESL deposition conditions, the 

SiN layer can generate either tensile or compressive stress [21]. The channel tensile and 

compressive stress can be applied on NMOS and PMOS devices to enhance 

performance, respectively [20]. 

The carrier mobility is given by *m
qτµ = , where1/τ is the scattering rate and m* is 

the conductivity effective mass. Strain enhances the mobility by reducing the 

conductivity effective mass and/or the scattering rate. Both effective mass and scattering 

rate changes are important for mobility enhancement in electrons [22]. However, only 

effective mass change due to band warping and repopulation [23] plays a significant 

role in holes. For electron transports in bulk Si, the conduction band is composed of six 

degenerate valleys (∆6) of the same energy. Strain removes the degeneracy between the 

four in-plane valleys (∆4) and the two out-of-plane valleys (∆2) by splitting them in 

energy. The energy difference (∆E) between ∆2 and ∆4 sub-bands determines the total 

population of the bands. The enhancement caused by the splitting of conduction band 
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can suppress inter-valley phonon scattering [24]. The lower energy of the ∆2 valleys 

indicates that they are preferentially occupied by electrons. The electron mobility is 

improved partly by reducing in-plane and increasing out-of-plane effective mass due to 

the favorable mass of the ∆2 valleys, which results in more electrons with an in-plane 

transverse effective mass and out-of-plane longitudinal mass. 

For holes, the valence-band structure of Si is more complex than the 

conduction-band structure. The complex band structure as well as valence-band warping 

under strain results in a much larger mobility enhancement of holes than electrons. 

These two factors also explain why strained-channel PMOSFETs is a key focus in 

advanced logic technologies. Holes occupy the top two (the heavy- and light- hole) 

bands for unstrained Si. With the application of strain, the hole effective mass becomes 

highly anisotropic due to band warping, and the energy levels become mixtures of the 

pure heavy, light, and split-off bands. Thus, the light and heavy hole bands lose their 

meaning, and holes increasingly occupy the top band at higher strain due to the energy 

splitting. To quantify the mobility enhancement of holes, changes of the scattering and 

effective mass depend on the altered valence band caused by the strain. From full-band 

Monte Carlo simulation [25], uniaxially compressive-strained PMOSFETs may have 

lighter in-plane effective mass thus improve hole mobility. But, for biaxial tensile stress, 

the effective mass is heavier than that in the unstrained case. Thus the hole mobility 
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enhancement is only possible through the reduction of inter-valley scattering [26]. This 

effect becomes significant only when the strain level is high enough (e.g., Ge > 20 %). 

Reducing the intra-band acoustic scattering by altering the density-of-states of the light- 

and heavy-hole bands is negligible for uniaxial strain in Si, even at several hundreds of 

mega-pascal. 

Hole mobility at high vertical field with uniaxial compressive and biaxial tensile 

stresses would have different behaviors. Splitting of light- to heavy-hole band caused by 

uniaxial and biaxial stresses has no significant difference without considering surface 

quantization confinement. However, the splitting of light- and heavy-hole bands caused 

by biaxial tensile stress would be nullified at high electric field due to surface 

confinement [27]. In contrast, hole mobility enhancement under uniaxial compressive 

strain is not nullified by surface confinement, which represents a major advantage for 

MOSFETs operating at high electric fields. The splitting of the surface confinement 

depends on the relative magnitude of the stress-altered out-of-plane masses of the light 

and heavy holes. Recent reports [23] showed the interesting result that the out-of-plane 

effective mass of light hole is heavier than that of heavy hole for uniaxial stress, and 

causes the increase in the splitting of light- to heavy-hole bands. On the contrary, for 

biaxial stress the previously-reported out-of-plane effective mass of light hole is lighter 

than that of the heavy hole, leading to a reduced band splitting. This is why the biaxial 
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stress degrades hole mobility enhancement at high vertical electric fields (as shown in 

Fig. 1.3). 

For NMOSFETs, it has been report that the threshold voltage shift caused by 

biaxial tensile stress is larger than the case with uniaxial tensile strain [28]. For 

PMOSFETs, larger shifts of light-hole band edge under biaxial tensile strain leads to 

larger shift in Vth, compared with the case with uniaxial compressive strain [23]. 

1.1.3 Hot Carrier Effect 

One of the serious reliability problems posed by continuous shrinking of 

MOSFETs into the submicron regime is the hot-carrier effect [29-30]. If devices 

dimensions are reduced and the supply voltage remains constant, the lateral electric 

field in the channel increases. This would cause the inversion layer charge to be 

accelerated more significantly, and leads to a number of harmful devices phenomena, 

denoted as hot-carrier degradation. The most important hot-carrier effect is the damage 

inflicted to the gate oxide and/or the Si/SiO2 interface. This causes a time-dependent 

degradation of various MOSFET characteristics, for example, threshold voltage, linear 

transconductance, subthreshold slope, and saturation current. 

The location of the damage region due to hot-carrier stress is found to be adjacent 

to the drain of the device. The lifetime of devices is impacted by the spatial 

non-uniformity of this damage. The extent of the damaged region is a function of device 
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geometry, the duration and conditions of stress, and of spatial distribution of oxide and 

interfacial defects. However, it has also been reported that the length of damaged region 

is independent of channel length [31]. Thus, the damaged region becomes a larger 

fraction of the channel length as the device shrinks. This causes a dramatic increase in 

the percentage of drive current degradation as Leff becomes smaller for the same 

stressing time and the same value of Isub. 

1.2 Motivation 

The SiN layer (contact-etch-stop-layer) can be used to induce channel strain for 

mobility enhancement [4][23]. However, in typical SiN capping processes abundant 

hydrogen species will be incorporated into the channel, and significantly influences 

MOSFETs characteristics. In particular, despite the dramatic performance improvement 

in the strained devices, their hot-carrier reliability is however compromised, which has 

been shown to be closely related to the incorporated hydrogen species [10]. This 

motivates us to carry out this study on the hot carrier degradation of NMOSFETs 

devices with SiN capping layer. We also propose the use of a buffer layer inserted 

between the gate and SiN capping layer to prevent hydrogen diffusion during 

processing and thus alleviate its impacts on device reliability. Different buffer layers 

were employed and investigated.  

1.3 Organization of This Thesis 
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This thesis is divided into four chapters. 

In Chapter 2, we briefly describe the key process flow for fabricating the NMOS 

devices with buffer layers. In order to verify the effect of buffer layers under hot carrier 

stress, splits with different buffer layers were fabricated and characterized. In addition, 

we present the characterization method and the stress conditions. 

In Chapter 3, we show and discuss the improvement on device performance with 

buffer layer. The effectiveness of the buffer layers on alleviating the hot-carrier 

degradation of the locally strained devices with buffer layers is evaluated and addressed. 

Finally, important conclusions generated from our experimental results are 

summarized, and some recommendations and suggestions for future work are given in 

Chapter 4. 
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Chapter 2 
Device Fabrication and Measurement 

Setup 

2.1 Device Fabrication and Process Flow 

The NMOSFETs were fabricated on 6-inch p-type (100) Si wafers with resistivity 

of 15~25Ω-cm and thickness of 655~695 μm. Additional p-type substrate doping was 

performed first by BF2
+ implantation at 100 keV and 1×10-13 cm-2. Next, standard local 

oxidation of silicon (LOCOS) process with channel stop implant (by BF2
+ implantation 

at 120 KeV and 4×10-13 cm-2) was used for device isolation. Threshold voltage 

adjustment and anti-punch through implantation were done by implanting 40 KeV BF2
+ 

and 35 KeV B+, respectively. After the growth of 3 nm thick thermal gate oxide, a 

150nm undoped poly-Si layer was deposited by low-pressure chemical vapor deposition 

(LPCVD), followed by gate etch process to pattern the poly-Si film. The Source/drain 

(S/D) extension regions were then formed by As+ implantation at 10 KeV and 5×10-14 

cm-2. After an 80nm TEOS spacer formation, S/D regions were formed by P+ 

implantation at 15 KeV and 5×10-15 cm-2. Then the patterning of the substrate doping 

regions was performed through lithography and etching processes, followed by a BF2
+ 

implantation at 40 KeV and 5×10-15 cm-2. Rapid thermal anneal (RTA) was subsequently 
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carried out in a nitrogen ambient at 900°C for 30 sec to activate dopants in the gate, S/D, 

and substrate regions. 

Afterwards, some samples were capped with a TEOS or a poly-Si to serve as the 

buffer layer. The thickness of the buffer layer is 10 nm. Then a SiN capping layer 

(contact-etch-stop-layer, CESL) of 300nm was deposited on some wafers both with or 

without the buffer layer. The SiN deposition was performed at 780 ℃ with SiH2Cl2 

and NH3 as the reaction precursors using low-pressure chemical vapor deposition 

(LPCVD) system. After the SiN capping, a 300nm TEOS passivation layer was 

deposited by an LPCVD system. 

 To simulate the effect of deposition temperature during the SiN deposition, the 

control devices (i.e., without SiN capping) received a placebo treatment (i.e., the same 

temperature and treatment time as that used in the SiN deposition) in N2 ambient. After 

contact hole etching, normal metallization was carried out for all samples. The final step 

was a forming gas anneal performed at 400°C for 30 min to mend dangling bonds and 

reduce interface state density in the gate oxide/Si interface. Cross-sectional view of the 

fabricated device was shown in Fig. 2.1.The five split conditions stated above are 

summarized in Table 2.1. 

2.2 Electrical Measurement Setup 

Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were evaluated 
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by an HP4156A precision semiconductor parameter analyzer and an HP4284 LCR meter, 

respectively. Temperature-regulated hot chucks were used to maintain the measurement 

temperature at 25°C. 

2.3 Charge Pumping Measurement 

2.3.1 Basic Theory 

The charge pumping principle for MOSFETs has been applied to characterize the 

fast interface traps in MOSFETs. The original charge pumping method was introduced 

by Brugler and Jespers [32], and the technique was then developed by Heremans [33]. 

This technique is based on a recombination process at the Si/SiO2 interface involving 

the surface traps. It consists of applying a constant reverse bias at the source and drain, 

while sweeping the base level of the gate pulse train from a low accumulation level to a 

high inversion level. The frequency and the rise/fall time are kept constant. When the 

base level is lower than the flat-band voltage while the top level of the pulse is higher 

than the threshold voltage, the maximum charge pumping current occurs. This means 

that a net amount of charge is transferred from the source and drain to the substrate via 

the fast interface traps each time the device is pulsed from inversion toward 

accumulation. The charge pumping current is caused by the repetitive recombination at 

interface traps. As a result, the recombination current measured from the bottom 
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(substrate) is the so-called charge pumping (CP) current [34]. The CP current can be 

given by: 

ICP = q · f · W · L · Nit.                                         (2.1) 

According to this equation, the current is directly proportional to the interface trap 

density in the channel, the frequency, and the area of the device. However, when the top 

level of the pulse is lower than the flat-band voltage or the base level is higher than the 

threshold voltage, the fast interface traps are permanently filled with holes in 

accumulation or the electrons in inversion in NMOSFETs. As a result, there is no 

recombination current and no charge pumping current can be detected.  

2.3.2 Basic Measurement Setup 

The basic setup of charge pumping measurement is shown in Fig. 2.2.  In this 

thesis, “fixed amplitude sweep” is used to calculate interface trap density, and “fixed 

base sweep” is used to analyze the lateral distribution of interface trap, respectively. The 

source and drain are biased at 50mV. The substrate electrodes of tested devices are 

grounded. A 1MHz (the frequency can be modulated for different devices) square pulse 

waveform provided by HP8110A with fixed amplitude is applied to the NMOS gate. 

The base voltage is varied to let surface condition switch from inversion to 

accumulation, while keeping the pulse amplitude at 1.5V. In our measurement setup, 

Vbase is varied from -2V to -0.2V in step of 0.05V. The parameter analyzer HP4156A is 
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used to measure the charge pumping current (ICP). 

2.4 Hot Carrier Reliability Measurement Setup  

In our reliability measurement, the device was stressed with the drain voltage at a 

highly positive voltage, and the gate terminal biased at the voltage where maximum Isub 

occurs to accelerate the degradation. So we must first measure the Isub-VG with a fixed 

drain bias to find VG@Isubmax, before stressing the device. To monitor the degradation 

caused by the hot electrons, the ID-VG characteristics at VDS = 0.05 V (linear region) and 

charge pumping current were measured before and after the stress. The degradations in 

terms of threshold voltage shift (∆Vth), interface trap density degradation (∆Nit), and 

transconductance degradation (∆Gm), were recorded in the accelerated stress test. 

2.5 Extraction Procedure of Lateral Distribution of 

Nit  

The lateral distribution of interface state after hot carrier stress of all splits was also 

discussed in this work. This method builds on [35] and the measurement setup is shown 

in Fig. 2.3. The experimental procedures are described below. 

(1) Measure the Icp-Vh curve on a virgin MOSFET from the drain junction (with the 

source junction floating), and from which the relationship between Vh and Vth(x) near 

the junction of interest is established [36]. 

(2) Record the Icp-Vh curve after hot-carrier injection. 
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(3) The hot-carrier-induced interface state distribution, Nit(x), is obtained from the 

difference of the Icp-Vh curves before and after the stress. 
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Chapter 3 
Experimental Results and Discussion 

3.1 Electrical Characteristics of Locally Strained 

NMOSFETs with Buffer Layer 

3.1.1 Fundamental Electrical Characteristics 

First of all, our goal is to investigate the effect of thermal budget associated with 

the SiN deposition. So, for the placebo split, we deliberately added an additional 

thermal treatment step in N2 with an identical temperature and treatment time as those 

used in the SiN deposition (i.e., at 780℃ ambient for 3 hours) before the TEOS 

passivation layer deposition. Samples which were skipped both the SiN deposition and 

the thermal N2 annealing steps were also fabricated for comparison, denoted as the REF 

(reference) split. Fig.3.1 shows the effect of such placebo thermal treatment on the 

capacitance-voltage(C-V) characteristics of devices without SiN capping. In this figure, 

the device with the additional thermal budget (placebo split) shows apparent 

poly-depletion effect. We believe this is caused by the temperature-dependent solid 

solubility of dopants in poly gates [37], as shown in Fig. 3.2. In other words, the 

original solid solubility (approaching the equilibrium value at 900℃, which is caused 

by the rapid thermal anneal (RTA) step) is lowered by the furnace SiN deposition step 
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due to the additional thermal budget. The placebo split shows larger threshold voltage 

due to the reduction of fixed charge in gate oxide. The C-V characteristics of 

MOSFETS are also important in verifying the oxide quality and the equivalent oxide 

thickness (EOT). Fig. 3.3 exhibits C-V characteristics of NMOSFETs for all splits (i.e. 

placebo (thermal budget), SiN, TEOS/SiN, POLY/SiN). The curves of four splits are 

basically identical. It gives an equal ground to compare the performance of all splits. So 

the split with placebo thermal budget (i.e., the placebo split) serves the role of the 

control split, and will also be called the control split interchangeably. Fig. 3.4 shows 

cumulative probability distributions of the sheet resistance of the poly gate for all splits. 

The REF (i.e., W/O thermal budget) split has lower sheet resistance values, while the 

other four splits exhibit almost same distribution of sheet resistance. This demonstrates 

that the additional thermal treatment step used in the SiN deposition indeed results in 

worse poly-depletion effect. 

The Id-Vg characteristic of the split conditions are shown in Fig. 3.5. From the 

figure, there is no obvious difference in the transconductance (Gm) among all samples 

except the placebo split, clearly revealing the enhancement of transconductance by the 

strained technology. The off-state leakage current and the subthreshold slope show no 

distinguishable difference in Fig. 3.5, indicating that the devices with strained channel 

do not show major influence on the fundamental properties. Fig. 3.6 depicts the 
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subthreshold swing for all splits, and the results indicate that the values are confined in 

a narrow range between 74~75 mV/decade. The output characteristics of all splits are 

shown in Fig. 3.7. It is seen that the insertion of the buffer layer prior to SiN deposition 

(i.e., TEOS/SiN, POLY/SiN) does not degrade the current enhancement. Consistent with 

previous literature report [38], the NMOS drive current can be enhanced by a thicker 

SiN etch-stop layer which is tensile in nature. 

Fig. 3.8 shows the percentage increase of the transconductance among different 

splits relative to the placebo devices (i.e., w/o SiN capping). The transconductance 

enhancement reaches about 29% and 33% at a channel length of 0.5µm and 0.4µm, 

respectively. We can see that when the channel length decreases, the strain effect 

enhances. In other words, the strain is distributed locally inside the channel and 

concentrated near the source and drain. As a result, the transconductance enhancement 

becomes more prominent with decreasing channel length. This is explained by the 

splitting of the degeneracy at the conduction band edges under uniaxial strain [24] as 

mentioned above. Fig. 3.9 exhibits the percentage increase of the saturation current for 

the split samples relative to the placebo devices (i.e., w/o SiN capping). From Fig. 3.9, 

it can be seen that similar trend to that shown in Fig. 3.8 is observed.  

Fig. 3.10 shows the results of charge pumping measurement for some splits (i.e., 

placebo (thermal budget), REF, and SiN). First, we focus on the impact of thermal 
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budget associated with the SiN deposition. From the figure, we find that a large amount 

of interface states is generated during SiN capping process as compared with the 

samples without the capping layer, implying that the channel strain indeed causes the 

increase of interface states at the Si/SiO2 interface. Nevertheless, it is well known that 

hydrogen species can effectively passivate the dangling bonds at the Si/SiO2 interface. 

For the LPCVD system used for SiN deposition in this study, SiH2Cl2 and NH3 were 

employed as the reaction precursors, so the reaction chamber would be filled with 

hydrogen species during the deposition process. The hydrogen species would in turn 

passivate the interface trap states at the Si/SiO2 interface. Although this factor should 

not be ignored, in this figure such effect obviously is masked by the channel strain. In 

other words, the number of interface states passivated by the hydrogen species is much 

less than that generated by the channel strain.   

On the other hand, the figure also proves that the annealing performed in N2 tends 

to reduce the interface states density, indicating this factor (thermal budget of the 

deposition) alone is beneficial for improving the interface properties. From Fig. 3.10, 

impacts of the three factors, namely, channel, incorporated hydrogen species, and the 

thermal budget, on interface state density are identified. 

Comparisons of charge pumping current between the strain and placebo samples 

are shown in Fig. 3.11. The placebo sample exhibits the lowest charge pumping current 
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among all splits, while the device with TEOS buffer layer exhibits the highest. The 

curve of the device with POLY/SiN is slightly higher than that with SiN, but less than 

that with TEOS buffer layer. The results indicate that the TEOS buffer layer can 

effectively block the diffusion of hydrogen into the channel region, while such barrier 

effect seems to be reduced for the POLY buffer layer. It has been pointed out previously 

that the poly-silicon is a diffusion barrier of the hydrogen [39]. But it should be noted 

that, the precursor gas (SiH4) for deposition is also H-containing. Before the SiN 

deposition, the abundant hydrogen species may have spread to the Si/SiO2 interface to 

passivate the interface states. In summary, TEOS buffer layer has been shown to be 

more effective in blocking the hydrogen diffusion into the Si/SiO2 interface. 

3.1.2 Short Channel effect 

Threshold voltage (Vth) roll-off characteristics of the placebo (thermal budget) and 

REF splits are shown in Fig. 3.12. The results are obtained at VDS = 0.05 V. From the 

figure, both splits depict reverse-short-channel-effect (RSCE). This can probably be 

explained by boron segregation at the implant-damaged regions located near the edge of 

the channel [40]. Devices with additional thermal budget show improved 

reverse-short-channel-effect [40]. It might be related to the redistribution of dopants that 

effectively reduces the boron segregation effect, explaining the suppression of the 

RSCE shown in Fig. 3.12. 
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In Fig. 3.13, it is worth noting that the placebo samples depict the 

reverse-short-channel-effect (RSCE). However, this phenomenon is not observed on 

three SiN-capped splits (SiN, TEOS/SiN, POLY/SiN). Instead, theses three splits 

exhibit similar and significant threshold voltage roll-off trend. It is believed that the 

bandgap narrowing effect is the culprit to accelerate the Vth roll-off in the strained 

channel device [28, 41]. The strain stress may also result in the channel dopants 

redistribution [42, 43]. In brief, the channel strain associated with the SiN capping 

devices (SiN, TEOS/SiN, POLY/SiN) would lead to aggravated Vth roll-off. 

Drain induced barrier lowing (DIBL) is another pointer in evaluating the short 

channel effects. We use the interpolation method to calculate DIBL effect for all splits. 

The results are shown in Fig. 3.14. It is clearly seen that there is no distinguishable 

difference among all splits. It appears that devices with SiN capping and buffer layers 

will not complicate the DIBL effect of the samples.  

3.2 Hot Carrier Degradation of Locally Strained 

NMOSFETs with Buffer Layer 

A hot carrier with sufficient energy can create more charge carriers through impact 

ionization. For NMOSFET devices, holes generated by impact ionization are collected 

by the substrate. Fig. 3.15 shows the substrate current (Isub) versus gate voltage for all 

splits of devices at VD of 4.6 V. It can be seen that the three strained-channel splits 
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exhibit almost identical maximum substrate current which are much higher than that of 

placebo sample. This result shows clearly that the channel strain plays an important part 

in affecting the generation of channel hot electrons and the associated impact ionization 

process. Bandgap narrowing and mobility enhancement, both due to channel strain, are 

mainly responsible for enhancing the ionization rate [44]. So the SiN-capped devices 

show larger substrate current than the placebo samples.  

Hot-carrier effects and the induced degradation were investigated to study the 

impact of the SiN capping and buffer layers. As discussed above, it is expected that the 

split with SiN capping (i.e. SiN) would show aggravated hot carrier degradation. Fig. 

3.16 and Fig. 3.17 show threshold voltage shift and increased interface state density, 

respectively, as a function of stress time for all splits that received hot-electron stressing 

at VDS = 4.6 V and VGS at maximum substrate current. All devices are with channel 

width/length = 10µm/0.5µm. As expected, the split with SiN capping shows the worst 

hot carrier degradation, and the use of buffer layer apparently improves hot carrier 

degradation. We assume that the bandgap narrowing effect and the increased carrier 

mobility in the strained channel devices [44, 45] are the two primary culprits for the 

aggravated hot carrier degradations. These two factors may increase the substrate 

current in the device, as evidenced in Fig. 3.15, and lead to higher degradation.  

The H-passivated bonds at the interface also play a role in the hot-carrier 
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degradation process. Since the hot carriers tend to break the Si-H bonds during the 

process, the higher the amount of the Si-H density, the severer the degradation. The 

TEOS buffer layer can block the diffusion of hydrogen species into the channel region, 

less broken Si-H bonds and thus less interface states are generated during the stressing 

as compared with the SiN-capped devices. As a consequence, better reliability is 

achieved, as evidenced in Fig. 3.16 and Fig. 3.17. For the devices with POLY buffer 

layer, less improvement is achieved due to higher amount of Si-H bonds, as stated 

above. Fig. 3.18 illustrates the 10-year reliability projections for the four splits. Lifetime 

is defined as 40mV of ΔVth. The observed trend is the same as that shown in Fig. 3.16. 

Strained devices show poor hot carrier reliability than placebo device, although the use 

of buffer layer can alleviate hot carrier degradation. 

Typical results of hot-electron stressing for the four splits of samples are shown in 

Fig. 3.19 and Fig. 3.20. Channel width and length of the test devices are 10μm and 0.5

μm, respectively. The devices are stressed at VDS = 4.9 V and VGS at maximum 

substrate current. The ID-VG characteristics at VDS = 0.05 V are measured before and 

after the stress to evaluate the degradation caused by the hot electrons. As shown in Fig. 

3.19 and Fig. 3.20, the degradation is the worst in the SiN-capped sample without buffer 

layer among the four splits. The aggravation is alleviated in the devices with buffer 

layer (i.e. TEOS/SiN, POLY/SiN), though the resultant degradation is still worse than 
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that of the placebo counterpart.  

3.3 Analysis of the Lateral Distribution of Interface 

Trap Density 

The measurement methods presented in Section 2.5 was used to extract lateral 

distribution of interface trap state. It should be noted that the local Vth and Vfb, across 

the channel of MOSFET, are not uniform due to the lateral doping variation, as shown 

in Fig. 3.21. In order to detect the interface state, the voltage pulses applied during 

measurement must undergo alternating accumulation and inversion cycles. Therefore, 

there should be no Icp when the high-level voltage (Vh) is lower than the minimum Vth 

under the gate. Only after Vh starts to exceed the local Vth in the channel will Icp begin 

to grow. Before Vh reaches the maximum local Vh in the channel, only interface states 

residing near the drain side will contribute to Icp, as the needed electrons cannot yet 

flow to the drain side from the source.  

We choose the placebo split as an example. If we assume that the interface state 

density is spatially uniform along the channel, which can be written as 

ICP = q · f · W · L · Nit.                         (3-1) 

where f is the gate pulse frequency, W is the channel width, and L is the channel 

length. Since Vth is not uniformly distributed, when Vh reaches the maximum local Vth 

in the channel, only interface state residing near the drain side (i.e., the shadow region 
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in Fig. 3.21) will contribute to Icp. In Fig. 3.22, the corresponding Icp(Vh) comes from 

the interface state distributed in the region between the gate edge and the position where 

its local Vth equals Vh, i.e., 

( )     cp h itI V q f N W x=                          (3-2) 

where x represents the distance from the gate edge to the position where Vth (x) = Vh. 

Comparing (3-1) and (3-2), we can derive 

( )
max,cp

hcp

I
VLI

x =                              (3-3) 

Fig.3.23 shows the local Vth versus distance x of the placebo sample. The local Vth 

decreases sharply as x is smaller than 0.09 µm. We can therefore presume that the drain 

junction is near x = 0.09 µm.  

After subjecting to 100 second of hot carrier stress (VG@Isubmax and VDS = 4.9 V), 

the incremental charge pumping current (∆Icp), as shown in Fig. 3.24, at a given Vh is 

proportional to the number of generated interface traps from the gate edge to the point x. 

∆Icp can be written as 

( )
0

  
x

cp itI q f W N x dx∆ = ∫                        (3-4) 

Therefore, the Nit(x) generated by the hot carrier stress can be expressed as 

follows: 

( ) 1 1
   

cp cp h
it

h

d I d I dVN x
dx q f W dV dx q f W
∆ ∆

= =                 (3-5) 
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The relationship of hdV
dx

 versus x can be derived from Vh versus x, so the lateral 

distribution, Nit (x), could be obtained from the procedure mentioned above.  

By the same procedure, the derived profiles of the interface states for all splits of 

devices could be extracted by Eq.(3-5), and the result are shown in Fig. 3.25. From this 

figure we can directly probe the position-dependent damage characteristics by 

calculating the amount of interface states generated by the hot-carrier stress at different 

regions. We can see that the major damage region is confined within 0.1 µm near the 

drain edge in all splits. This is reasonable since the hot-carrier effect is known to be 

localized in nature. It is obviously seen that the interface state generation sharply 

increases in SiN-capped sample (i.e. SiN, TEOS/SiN, POLY/SiN) near the drain region, 

but the buffer layer samples show smaller degradation than the SiN-capping split 

without buffer layer. These results are consistent with those mentioned above in Section 

3.2. In short, channel strain is responsible for the aggravated hot carrier degradations 

observed in SiN-capped samples. However, the devices with buffer layer show 

alleviated hot carrier degradation and improved device reliability. 
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Chapter 4 
Summary and Conclusion 

4.1 Summary and Conclusion 

In this thesis, the effects of LPCVD SiN layer and the associated deposition 

process on the device characteristics and hot-electron degradation are investigated. A 

novel scheme involving the insertion of a buffer layer between the SiN and the gate for 

improving the device reliability was proposed and demonstrated. Several important 

phenomena are observed and summarized as follows:  

(1) The buffer layer before SiN deposition would not degrade the device 

performance. For example, the enhancement ratio of transconductance in the device 

with the buffer layer is found to be around to 33% at a channel length of 0.4μm, which 

is essentially identical to the enhancement ratio observed in the SiN-capped device.  

(2) The thermal budget associated with the deposition of the SiN capping layer 

could reduce the interface states and alleviate the reverse short-channel effect, although 

the poly-depletion effect becomes worse. The bandgap narrowing effect due to the 

channel strain may result in further lowering in Vth as the channel length is shortened.  

(3) The TEOS buffer layer could prevent hydrogen species from diffusion during 

processing. POLY buffer layer does not depict the same barrier effect as TEOS, owing 
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to the use of the H-containing precursor (e.g. SiH4) in the deposition step. 

(4) Hot-electron degradation is adversely affected when the SiN is deposited over 

the gate as compared with the placebo samples. When a buffer layer is capped prior to 

the SiN deposition, although still worse than the placebo ones, significant improvement 

over that without the buffer could be obtained. From the measurement of the 

distribution of interface trap density, enhance edge effects caused by the hot carrier 

stress are resolved.  

In this work, we found that hydrogen species is the primary culprit for aggravated 

reliabilities in strained devices. The insertion of a buffer layer serves to alleviate the 

device hot-carrier degradations. Optimization of SiN deposition process and/or use of 

the new buffer layer (e.g., high-k film) are thus essential for the implementation of the 

uniaxial strain in NMOS devices. 
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Fig. 1.1 Gate length scaling as a function of the year of introduction for technology 
node [1]. 
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Fig. 1.3 Splitting of light hole band and heavy hole band with biaxial and uniaxial 

strains in low electric field (solid line) and high electric field (dash line) [22]. 
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Fig. 2.1 Schematic cross section of the locally-strained-channel NMOSFT. 
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Fig. 2.2 Setup structure for charge pumping measurement. 
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Fig. 2.3 Measurement setup of single-junction charge pumping measurement. 
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Fig. 3.1 Capacitance-Voltage(C-V) characteristics of NMOSFETs processed with 
different thermal budgets. Channel width/channel length = 50μm/50μm.  
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Fig. 3.2 Solid solubility of various elements in Si as a function of temperature [37]. 
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Fig. 3.3 Capacitance-Voltage(C-V) characteristics of different splits of NMOSFETs. 
Channel width/channel length = 50μm/50μm.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Gate Voltage(V)
-2 -1 0 1 2

C
ap

ac
ita

nc
e(

pF
)

5

10

15

20

25

30

Placebo (Thermal Budget)
SiN    
TEOS/SiN
POLY/SiN



 45

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.4 Cumulative probability distribution of poly-gate sheet resistance for all splits of 
samples. The film thickness is 150nm. Doping was done by As-ion implantation at a 
dose of 3x1015 cm-2 and an energy of 10KeV. All samples received an RTA at 900℃ for 
30sec. Note that the REF split skips the thermal treatment associated with the SiN 
deposition.  
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Fig. 3.5 Subthreshold and transconductance characteristics of different splits of 
NMOSFETs characterized at 25℃. Channel width/channel length = 10μm/0.5μm. 
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Fig. 3.6 Subthreshold swing for different splits of NMOSFETs. Channel width/channel 
length = 10μm/0.5μm. 
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Fig. 3.7 Output characteristics of NMOSFETs for different splits, measured at 25℃. 
Channel width/channel length = 10μm/0.5μm. 
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Fig. 3.8 Transconductance enhancement for different splits as a function of channel 
length, measured at 25°C. 
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Fig. 3.9 Drain current enhancement for different splits as a function of channel length, 
measured at 25°C. The saturation current was measured at VG-Vth = 2V and VDS = 2V.  
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Fig. 3.10 Charge pumping current for the placebo, REF, and SiN splits. Channel 
width/channel length = 10µm/0.5µm. 
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Fig. 3.11 Charge pumping current for different splits of NMOSFETs. Channel 
width/channel length = 10μm/0.5μm. 
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Fig. 3.12 Threshold voltage roll-off as a function of channel length for the placebo and 
REF splits. 
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Fig. 3.13 Threshold voltage roll-off as a function of channel length for all splits. 
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Fig. 3.14 Drain induced barrier lowing (DIBL) for different splits of NMOSFETs as a 
function of channel length. DIBL was evaluated by measuring the drain current change 
as VDS was increased at some fixed gated voltage below threshold voltage.  
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Fig. 3.15 Substrate current versus gate voltage for different splits of NMOSFETs. 
Channel width/channel length = 10μm/0.5μm. 
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Fig. 3.16 Threshold voltage shift after hot-electron stressing performed at VDS=4.9V and 
VGS at maximum substrate current for all splits of devices with channel width/channel 
length = 10μm/0.5μm.  
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Fig. 3.17 Interface trap density generation measured after hot-electron stressing 
performed at VDS=4.9V and VGS at maximum substrate current for all splits of devices 
with channel width/channel length = 10μm/0.5μm.  
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Fig. 3.18 10-year lifetime projection for the placebo, SiN, TEOS/SiN, and POLY/SiN 
samples. 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Fig. 3.19 Subthreshold characteristics and transconductance of devices before and after 
5000 sec hot-electron stressing. Channel width/channel length = 10μm/0.5μm. (a) 
Placebo sample. (b) SiN sample. 
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(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Fig. 3.20 Subthreshold characteristics and transconductance of devices before and after 
5000 sec hot-electron stressing. Channel width/channel length = 10μm/0.5μm. (a) 
TEOS/SiN sample. (b) Poly/SiN sample.  
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Fig. 3.21 Variation of local threshold voltage and flat-band voltage across the device 
channel caused by the variation of lateral doping concentration.  
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Fig. 3.22 Derivation of the relationship between local threshold voltage and lateral 
distance x from the single-junction charge pumping data of the Placebo device. 
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Fig. 3.23 Extracted lateral profile of local threshold voltage near the graded drain 
junction in the placebo sample. 
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Fig. 3.24 Charge pumping current before and after 100 second hot-electron stressing 
(VG@Isubmax and VDS=4.9V). Channel width/channel length = 10μm/0.5μm. 
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Fig. 3.25 Lateral profile of interface state generation under different split conditions.  
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