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利用化學機械研磨技術製作新穎多晶矽薄膜電晶體結構及

其電性模擬 

 
 
 
 

研究生：楊國良                  指導教授：張國明 博士 

                                          桂正楣 博士 

 
 
 

國立交通大學 

電子工程學系  電子研究所碩士班 

 
 

摘要 

 
     本篇論文中，我們將探討和比較利用化學機械研磨技術所製作的新穎結構，此新

穎結構具有加厚的汲/源極和一個薄通道。從模擬的結果來看，因為較厚的源/汲極，在

較厚的通道內的側向電場能被降低，所以漏電流可能會降低。而且成功的使漏電流下降

了一個數量級。我們提供了一個使用化學機械研磨技術的新穎堆疊結構取代傳統的堆疊

式結構，而且此製程能完全的與傳統四道製程相容。 
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Abstract 

 
In this thesis, the characteristics of the novel structure of poly-Si TFTs with thick S/D 

and thin channel by using CMP process have been investigated and compared. From the 

simulated results, the lateral electric field in the thicker channel near the drain region can be 

reduced with the thick S/D region, so the off-state current could be decreased. Moreover, we 

have succeeded to reduce the off-state current at least 1 orders. We proposed the novel 

staggered structure with CMP technology instead of conventional staggered structure, and the 

fabrication processes are fully compatible with the conventional four-mask ones. This 

structure may be an attractive device structure for future high-perform large-area device 

application. 
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Chapter 1 

Introduction 

 

1.1 Overview of Low Temperature Polycrystalline Silicon (LTPS) 

Thin-film Transistors (TFTs) 

 

Polycrystalline Silicon (poly-Si) thin-film transistors (TFTs) fabricated at low temperature 

have attracted attention for high-density SRAMs [1][2], linear image sensors [3], 

photodetector amplifier [4], and nonvolatile memories [5] etc, especially peripheral driving 

circuits in AMLCDs [6]-[9]. 

Recrystallization technology is important for low temperature Poly-Si TFTs because of the 

grain size, grain boundary and intragranular defects [10], which influence the performance of 

Poly-Si TFTs. To achieve the bigger grain size, better performance and low temperature 

process, we have some useful recrystallization technologies: solid phase crystallization (SPC) 

[11], eximer laser annealing (ELA) [12]-[14], and metal-induced lateral crystallization (MILC) 

[15]-[17] etc. In this paper, we used SPC method to recrystallize the poly-Si TFTs. 

In generally, poly-Si TFTs have two structures: top-gate coplanar structure and 

bottom-gate structure as shown in Figure 1-1. The top-gate TFTs are mainly used in AMLCD 

application because their self-aligned source/drain regions provide low parasitic capacitances 

and are suitable for device scaling down. On the other hand, Bottom-gate TFTs have better 

interface and higher plasma hydrogenation rate than top-gate TFTs, but they have lower 

current and need extra process steps for backside exposure and difficult fabrication. 

The dominant leakage current mechanism in poly-Si TFTs is the field emission via the 

grain boundary traps by a high electric field near the drain [18]. Therefore, reducing the 
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lateral electric field near the drain junction is needed. For example, using a lightly doping 

drain (LDD) structure can reduced the lateral electric field [19][20]. The LDD structure 

certainly not only reduces the electric field but also enhances source/drain series resistance 

that limits the on-state current. 

Besides LDD structure, many device structures are used to enhance poly-Si TFTs 

performance, such as offset gate [21][22], gate-overlapped LDD [23]-[25], multi-channel 

structure [26]. 

 

1.2 Issues in LTPS TFTs  

 

Although we usually use the poly-Si TFTs instead of the amorphous TFTs for the high 

mobility, the poly-Si TFTs suffer from the high leakage current in the off-state operation and 

kink effect in the on-state operation. Besides, under the long-term operation, the stability of 

the poly-Si TFTs is a major issue. The hot carrier effect is also an important reliability in 

LTPS TFTs. 

It is well known that there are three kinds of the leakage current mechanisms in poly-Si 

TFTs [27]. First, when the drain voltage is very low, the leakage current is governed by 

thermally generated carriers via trap states, which is denoted by G in Figure 1-2. Second, 

when the drain voltage is in the intermediate range, the leakage current is generated by the 

thermionic field emission of electrons indicated as T1 in Figure 1-2. In this case the electrons 

in the valence band are thermally excited to the trap states, and then tunnel to the conduction 

band quantum mechanically. The leakage current therefore increases with the gate voltage due 

to the narrowing of the barrier width. Third, when the gate voltage is high enough, the leakage 

current is governed by the field enhanced tunneling which is denoted by T2 and T1 in Figure 

1-2. Obviously, decreasing the drain electric field is helpful to reducing the leakage current. 
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1.3 Motivations 

 

The high off-state leakage current and the on-state kink effect are the influences on the 

properties of poly-Si TFTs, which even have higher on-state current than the amorphous Si 

TFTs. In this study, we used the Damascene process to form the thin channel with partially 

thicker region structure, which not only effectively reduces the drain electric field but also 

shows a low leakage current [28][29]. Besides, we also combine thick S/D and thin channel to 

achieve the purposes of low off-state current and drain electric field. In this process, an 

additional mask will not be required. 

 

1.4 Thesis Organization 

 

In chapter 1, a brief overview of LTPS TFT technology and related applications were 

introduced. 

In chapter 2, the simulations of the novel LTPS TFTs, including the lateral electric field, 

the potential distribution, and the current flow, will be described. 

In chapter 3, the fabrication process flow of the novel LTPS TFT device and experimental 

recipes will be presented. 

In chapter 4, we will show the electrical properties of the novel poly-Si TFT device, which 

contain transfer characterization and output characterization 

Finally, conclusions and future work as well as suggestion for further research are given in 

chapter 5. 
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Chapter 2 

Simulations of the Novel LTPS TFT’s Structures 

 

2.1 The Structures of Novel LTPS TFT’s 

 

In this thesis, we provide a new architecture, which combines thicker source/drain, thin 

channel and damascene-gate structure, and use MEDICI to simulate the structure. Figure 2-1 

shows the structure of the proposed poly-Si TFTs. The thickness of the channel is 500 Å. Gate 

oxide thickness is also 500 Å. The thick source/drain has different thickness with 1000 Å, 

2000 Å, and 3000 Å, respectively. The partial thicker channel thickness is the same as the 

source/darin. We also simulated the conventional coplanar structure with 500 Å channel layer. 

 

2.2 The Results of Simulations 

 

We primarily simulated the electric field in the on-state and off-state operation and the 

effects of electric fields to the current flow distribution. The sampling positions are shown in 

Figure 2-2. The line A is located below the thick source/drain surface 100 Å. The line B lies to 

the middle position between the surface of thick source/drain and the channel surface. The 

line C is under the channel surface 100 Å. 

Figure 2-3 shows the simulated the lateral electric fields of a conventional TFT and the 

proposed TFTs in the off-state operation. Obviously, the electric field of the proposed TFT is 

lower than which of a conventional TFT. Figure 2-4 shows the potential distributions of the 

proposed TFTs and a conventional TFT to confirm the electric field. The results predict that 
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the leakage current can be reduced by lowering the lateral electric field near the drain region. 

For example of the damascene-gated structure with 3000 Å Source/Drain, the reduction 

percent of the maximum lateral electric fields near the drain region are 17.84 %, 55.40 %, and 

60.03 % at three sampling points, respectively, compared with the conventional ones. 

Moreover, the maximum lateral electric field near the drain region is reduced with increasing 

the source/drain thickness of the damascene-gated structure. The values and reduction percent 

of the maximum lateral electric fields near the drain region in off-state operation are shown in 

the Table I. 

On the other hand, in the on-state operation, Figure 2-5 shows the simulated current flow. 

Obviously, the main current path is near the channel surface. It means that the primary 

influence on the on-state current is the surface lateral electric field near the drain region. The 

on-state electric field is shown in the Figure 2-6. Although the maximum lateral electric fields 

at the line B and C of proposed structure are higher than which of conventional structure, the 

on-state current is not affected remarkably. The lower lateral electric field at line A may result 

the on-state current reducing slightly, and it is expected to suppress the kink effect. Table II 

show the values and reduction percent of the maximum lateral electric fields near the drain 

region in on-state operation 

In Figure 2-3 and 2-6, it is noted that larger the electric fields of proposed TFT from 11.5 

nm to 12 nm along the channel direction result from the sampling line crossing the oxide 

layer.  

 

2.3 Summary 

 

It clearly shows that the lateral electric field near the drain region of the proposed TFT is 

lower than which of the conventional TFT. The simulated results show that the lateral electric 
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field near the drain region can be effectively reduced by the proposed structure, and it can be 

expected that the better performance of the proposed structures would be obtained. 
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Chapter 3 

Experimental of the Novel Structure LTPS TFTs 

 

3.1 The Fabrication Process Flow of Low Temperature Poly-Si TFTs 

 

The poly-Si TFTs were fabricated on 6-inch-diameter p-type silicon wafer. Figure 3-1 

shows the process flow of the proposed poly-Si TFTs. The undoped amorphous silicon (α-Si) 

film was initially deposited on 500 nm thermally oxide silicon (100) wafers by low 

temperature chemical vapor deposition (LPCVD) system with silane (SiH4) gas at 620 ℃. 

The deposition pressure was 160 mtorr. Then the solid phase crystallization (SPC) process 

was carried out with 600 ℃, 24 hours. A 400 nm TEOS oxide film was deposited at 300 ℃ 

as passivation layer by PECVD. Then, the chemical-mechanical polishing (CMP) process was 

used to flat the surface of TEOS oxide. Gate regions were patterned by reactive ion etching 

and wet etching. The 50 nm-thick TEOS gate oxide was deposited by PECVD at 300 ℃, 

sequentially the 400 nm poly-Si film was formed by LPCVD at 620 ℃. Afterwards, CMP 

process polished the additional poly-Si to form the damascene gate. The passivation oxide 

layer was removed by the wet etching. Then the region of source, drain and gate were doped 

by a self-aligned phosphorus implantation. The dopants were activated at 600 ℃ in N2 

ambient for 24 hours. Next, a 300 nm TEOS oxide for a passivation layer was deposited by 

PECVD at 300 ℃, and the contact lithography was carried out. After opening the contact 

holes, a 500 nm Al was deposited by the thermal coater and the metal pad was patterned. 

Finally, the samples were sintered at 400 ℃ for 30 minutes in N2 ambient. The main 

processes of fabrication are shown in Figure 3-1. 

Figure 3-2 shows the conventional poly-Si TFTs to compare with the novel structure in the 
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same run. 

The detail fabrication process flows are listed as follows. 

 

1. (100) orientation Si wafer 

2. Initial clean 

3. Thermal wet oxidation at 980 ℃ to grow 500 nm thermal SiO2 in furnace 

4. α-Si (100 nm, 200 nm and 300 nm) film was deposited by LPCVD at 620 ℃ in SiH4 

gas 

5. SPC was carried out with 600 ℃ for 24 hrs 

6. Mask#1: define S/D 

7. Poly-Si film was dry etched by poly-etcher system 

8. 400 nm TEOS oxide was deposited by PECVD at 300 ℃  

9. Flatting the surface by CMP process 

10. Post clean 

11. Mask#2: define gate 

12. Oxide and poly-Si film were dry etched, poly-Si need to leave 50 nm as channel 

13. Oxide was wet lateral etched 

14. RCA clean 

15. 50 nm TEOS gate dielectric deposition by PECVD at 300 ℃ 

16. 400 nm poly-Si gate was deposited by LPCVD at 620 ℃ in SiH4 gas 

17. CMP process to remove the additional poly-Si 

18. Post clean 

19. Passivation oxide layer were removed by wet etching 

20. Ion implantation: P31, 5×1015 cm-2, 50 KeV (100 nm), 70 KeV (200 nm) ,100 KeV (300 

nm) 

21. Dopants activation in N2 ambient at 600 ℃ for 24 hrs 
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22. Initial clean 

23. 300 nm TEOS oxide film was deposited by PECVD at 300 ℃ for the passivation layer 

24. Mask#3: open contact holes 

25. Wet etching by B.O.E 

26. 500 nm Al thermal evaporation 

27. Mask#4: Al pads definition 

28. Etching Al 

29. Al sintering at 400 ℃ in N2 ambient for 30 min 

 

3.2 Methods of Device Parameter Extraction 

 

Many methods have been proposed to extract the characteristic parameters of poly-Si TFT. 

In this section, the methods of parameter extraction used in this research are described. 

 

3.2.1 Determination of Threshold Voltage (Vth) 

 

The threshold voltage Vth is an important MOSFET parameter required for the channel 

length-width and series resistance measurement. However, Vth is a voltage that is not uniquely 

defined. Various definitions exist and the reason for this can be found in the ID - VGS curve. 

One of the most common threshold voltage measurement techniques is the VGS of drain 

current of (W/L) × 10-7 A at VD = 5 V. 

 

3.2.2 Determination of the On/off Current ratio 
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On/off current ratio is one of the most important parameters of poly-Si TFTs. The leakage 

current mechanism in poly-Si TFTs is different from MOSFET. In MOSFET, the channel is 

composed of single-crystalline silicon and the leakage current is due to the tunneling of 

minority carrier from drain region to accumulation layer located in channel layer region. 

However, in poly-Si TFTs, the channel is composed of polycrystalline silicon. A large amount 

of trap densities in grain boundary attribute a lot of defect states in energy band gap to 

enhance the tunneling effect. Therefore, the leakage current due to the tunneling effect is 

much larger in poly-Si TFTs than in single-crystalline devices. When the voltage drops 

increase, the band gap width decrease and the tunneling effect becomes worse. Normally, we 

can observe this effect in typical poly-Si TFT ID-VG characteristics where the magnitude of 

leakage current will reach a minimum and then increase as the gate voltage decrease/increase 

for n/p-channel TFTs. 

 There are a lot of ways to specify the on and off current. In this thesis, the on current is 

defined as the drain current when gate voltage equal to 30 V and drain voltage is 5 V. The off 

current is specified as the minimum leakage current in linear operation mode for usual cases. 

 

V5VatplotVIofcurrentMinimum
V5VatplotVIofcurrentMaximum

I
Iratiocurrentoff/on

DSGSDS

DSGSDS

min

on

=−
=−

==    (Eq. 3.1) 
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Chapter 4 

The Characteristics of the Novel Damascene-gated 

Low-temperature Poly-Si TFTs with Staggered 

Source/Drain Regions 

 

In this chapter, we will discuss the device performances of our novel structure of the 

poly-Si TFTs, and also compare with the conventional TFTs. We measured the thickness of 

the films by n&k analyzer, and the I-V characteristics of poly-Si TFTs by HP4156 

semiconductor parameter analyzer. 

 

4.1 The Characteristics of the Novel Damascene-gated Low-temperature 

Poly-Si TFTs with Staggered Source/Drain compared with the 

Conventional TFTs 

 

Figure 4-1 ~ Figure 4-8 show the IDS – VGS transfer characteristics of the proposed 

structure compared with conventional structure. In the negative gate voltage, the leakage 

current of the proposed structures are lower than which of the conventional structure. In the 

chapter 2, we have simulated that the lateral electric field near the drain region of the 

proposed structure is lower than that of the conventional structure, which can suppress the 

leakage current. On the other hand, the proposed structures have a slightly lower on-state 

current because of the lower lateral electric field in on-state operation, but the on/off current 

ratio is affected lightly. 
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Figure 4-9 ~ Figure 4-12 show the measured IDS – VDS output characteristics of the 

proposed TFTs and the conventional ones. In the theory, the lower lateral electric field near 

the drain region is considered that can suppress the kink effect. However, the kink effect is not 

suppressed obviously at high driving voltage. It is considered that there are too many grain 

boundary traps with the increase of the thickness of the S/D region, and the reduction of the 

lateral electric field near the drain region is limited. 

 

4.2 Comparisons of the Leakage Current in Off-State Operation and the 

On/Off Current Ratio 

 

The leakage current in off-state (Ileak) is defined as the drain current (IDS) at the negative 

voltage (VGS = -15 V). For the proposed structure with W/L = 10 µm/5 µm in Figure 4-3, the 

leakage current (Ileak) of the proposed structures with 100-nm, 200-nm, 300-nm source/drain 

thickness decreased 0.71, 1.23 and 1.36 order of magnitude, respectively. In the other sizes, 

the leakage currents of the proposed structure with 300-nm source/drain thickness are all 

decreased over one order of magnitude at least. 

On the other hand, the minimum leakage current (Imin) of the proposed structures are 

slightly increased than that of the conventional structure. This is because the proposed 

structure has more grain boundary traps in the channel near the thicker source/drain region. 

The on/off current ratio of the conventional structure, and the proposed structures of W/L = 10 

µm/5 µm with 100-nm, 200-nm, 300-nm source/drain thickness are 1.58×107, 1.14×107, 1.38×

107, and 1.24×107, respectively. Table III lists the on-state currents (Ion), the minimum leakage 

current (Imin), on/off current ratio (Ion/Imin), and off-state currents (Ileak) of the conventional and 

three kinds of proposed structures with different dimensions. 



 13

 

4.3 The Output Characteristics of the Proposed Structures Compared with 

the Conventional Structure 

 

As shown in Figure 4-9 ~ Figure 4-12, the kink effect of the proposed structures is 

considered to be suppressed due to the lower electric field near the drain region. At the low 

driving voltage (|VGS - Vth| = 10 V), the kink current of the proposed structure is much smaller 

than that of the conventional structure with W/L = 10 µm/5 µm and W/L = 5 µm/5 µm. As the 

driving voltage increasing, the kink effect becomes more significant. Although the lateral 

electric field near the drain region is decreased, it maybe due to large amount of grain 

boundary traps exists in the thicker channel near the source/drain region. 

 

4.4 Comparison of the Proposed Structure and the Conventional Staggered 

Structure with Five Masks 

 

Figure 4-13 shows the transfer characteristics of the proposed TFT and the conventional 

TFT with staggered source and drain region. It clearly presents that the curve of the proposed 

structure is almost the same with that of the conventional structure with staggered source and 

drain region (five masks). Therefore, we proposed a new fabrication with CMP process 

technology instead of an additional lithography step, and more simple than the conventional 

five-mask steps staggered source/drain structure. 
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Chapter 5 

Conclusions and future work 

 

5.1 Conclusions 

 

In this thesis, a novel low-temperature poly-Si TFT with a thicker source/drain region 

and thin channel by using CMP process was proposed and investigated. Although, in our 

proposed structure, more grain boundary traps existed in the thicker channel region and lower 

lateral electric field would cause the on/off current ratio slightly decreasing, lower lateral 

electric field would substantially reduce the leakage current in off-state operation. Moreover, 

the fabrication processes of the proposed structure are simple and no additional mask step is 

needed. We proposed the novel staggered structure with CMP technology instead of 

conventional staggered structure, and the fabrication processes are fully compatible with the 

conventional four-mask ones. This structure may be an attractive device structure for future 

high-perform large-area device application. 

 

5.2 Future work 

 

We have proposed a damascene-gated low-temperature poly-Si TFTs with a thicker 

source/drain region and thin channel to improve the conventional low-temperature poly-Si 

TFTs performance. However, in order to further improve device electrical characteristics and 

apply to glass substrates, there will be still some works worth of being investigated. 

In this experiment, the kink effect of the proposed structures was not significantly 
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suppressed due to large number of the grain boundary traps near the drain region existence. It 

is well known that NH3 or H2 plasma could significantly reduce the grain boundary traps due 

to the formation of S≣N and S-H bonds [30]. Moreover, recrystallization is also an important 

technology. SPC process obtains the small grain size. Using laser annealing can enlarge the 

grain size, and further decreasing the grain boundary traps. 

In the simulation, there are only three kinds of the thickness of the source/drain region. 

We can simulate more different thickness of the source/drain region to optimize. Moreover, 

changing the location of the sampling line to study the variation of lateral electrical field 

which mainly affects the simulated spread current is need to be investigated. Besides, the 

change of the lateral electrical field by varying the thickness of the sidewall oxide is also an 

attractive topic. 
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Table I 

 

Off-state 
operation 

Conventional 
structure 

Damascene-gated 
100 nm 

A 

Damascene-gated 
100 nm 

B 

Damascene-gated 
100 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

2.13 1.83 1.51 1.38 

reduction percent 0 14.08 % 29.11 % 35.21 % 
 
 
 

Off-state 
operation 

Conventional 
structure 

Damascene-gated 
200 nm 

A 

Damascene-gated 
200 nm 

B 

Damascene-gated 
200 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

2.13 1.76 1.07 1.11 

reduction percent 0 17.37 % 49.77 % 47.89 % 
 
 
 

Off-state 
operation 

Conventional 
structure 

Damascene-gated 
300 nm 

A 

Damascene-gated 
300 nm 

B 

Damascene-gated 
300 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

2.13 1.83 1.51 1.38 

reduction percent 0 17.84 % 55.40 % 60.03 % 
 
 
 

Table I. The simulated maximum lateral electric field near the drain region of the 
conventional and the damascene-gated TFTs at the three sampling points. The maximum was 
simulated  at VGS = 0 V and VDS = 20 V  
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Table II 

 

On-state 
operation 

Conventional 
structure 

Damascene-gated 
100 nm 

A 

Damascene-gated 
100 nm 

B 

Damascene-gated 
100 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

0.110 0.083 0.120 0.261 

reduction percent 0 25.45 %   
 
 
 

On-state 
operation 

Conventional 
structure 

Damascene-gated 
200 nm 

A 

Damascene-gated 
200 nm 

B 

Damascene-gated 
200 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

0.110 0.082 0.094 0.272 

reduction percent 0 25.45 % 15.45 %  
 
 
 

On-state 
operation 

Conventional 
structure 

Damascene-gated
300 nm 

A 

Damascene-gated 
300 nm 

B 

Damascene-gated 
300 nm 

C 
the maximum 
lateral electric 
field (MV/cm) 

0.110 0.082 0.093 0.258 

reduction percent 0 25.45 % 15.45 %  
 
 
 

Table II. The simulated maximum lateral electric field near the drain region of the 
conventional and the damascene-gated TFTs at the three sampling points. The maximum was 
simulated  at VGS = 30 V and VDS = 20 V  
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Table III 

 

W/L = 5 µm/5 µm Conventional 
structure 

Damascene-gated 
100 nm 

Damascene-gated 
200 nm 

Damascene-gated 
300 nm 

Ion (A) 6.63×10-5 5.35×10-5 7.48×10-5 6.5×10-5 

Imin (A) 4.29×10-12 5.99×10-12 5.63×10-12 7.35×10-12 

on/off current ratio 1.55×107 8.93×106 1.13×107 8.84×106 

Ileak (A) 4.28×10-8 2.23×10-8 1.62×10-8 8.01×10-9 

Ileak Reduction 
magnitude  0.28 0.42 0.73 

 
 

W/L = 10 µm/5 µm Conventional 
structure 

Damascene-gated 
100 nm 

Damascene-gated 
200 nm 

Damascene-gated 
300 nm 

Ion (A) 1.40×10-4 1.18×10-4 1.53×10-4 1.34×10-4 

Imin (A) 8.87×10-12 1.04×10-11 1.11×10-11 1.08×10-11 

on/off current ratio 1.58×107 1.14×107 1.38×107 1.24×107 

Ileak (A) 1.90×10-7 3.71×10-8 1.11×10-8 1.24×10-8 

Ileak Reduction 
magnitude  0.71 1.23 1.36 

 
 

W/L = 5 µm/15 µm Conventional 
structure 

Damascene-gated 
100 nm 

Damascene-gated 
200 nm 

Damascene-gated 
300 nm 

Ion (A) 3.53×10-5 2.37×10-5 2.7×10-5 2.54×10-5 

Imin (A) 2.4×10-12 2.61×10-12 2.59×10-12 3.13×10-12 

on/off current ratio 1.47×107 9.08×106 1.04×107 8.12×106 

Ileak (A) 7.42×10-8 3.37×10-8 6.16×10-9 7.63×10-9 

Ileak Reduction 
magnitude  0.34 1.08 0.99 

 
 

W/L = 10 µm/5 µm Conventional 
structure 

Damascene-gated 
100 nm 

Damascene-gated 
200 nm 

Damascene-gated 
300 nm 

Ion (A) 5.36×10-5 3.97×10-5 4.99×10-5 4.83×10-5 

Imin (A) 3.96×10-12 4.70×10-12 4.92×10-12 5.67×10-12 

on/off current ratio 1.35×107 8.45×106 1.01×107 8.52×106 

Ileak (A) 8.81×10-8 7.87×10-8 4.69×10-8 8.81×10-9 

Ileak Reduction 
magnitude  0.05 0.27 1 

 
 

Table III. The characteristics of the drain current in IDS – VGS plot of the conventional and 
proposed TFTs with different size at VDS= 5 V 
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Fig. 1-1(a) The top-gate coplanar TFT 

 
 

 
 

Fig. 1-1(b) The bottom-gate TFT 
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Fig. 1-2 The basic structure of an n-channel poly-Si TFT and its band diagram with the three 
kinds of leakage current mechanisms. G: The generation current, T1: the thermionic field 
emission current, T2: the field emission current, Efns: quasi-Fermi level of electron at the 
source, Efp : quasi-Fermi level of hole, Efnd : quasi-Fermi level of electron at the drain. 
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Fig. 2-1 The simulated proposed structure 
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Fig. 2-2 The sampling positions of the damascene-gated and conventional structures 
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Fig. 2-3(a) The simulated lateral electric field of the conventional structure in off-sate 
operation 
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Fig. 2-3(b) The simulated lateral electric field of the 300 nm damascene-gated structure in 

off-sate operation 
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Fig. 2-3(c) The simulated lateral electric field of the 100 nm damascene-gated structure in 
off-sate operation 
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Fig. 2-3(d) The simulated lateral electric field of the 200 nm damascene-gated structure in 

off-sate operation 
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Fig. 2-4(a) The simulated potential distribution of the conventional structure in off-sate 

operation 
 
 
 

 
 

Fig. 2-4(b) The simulated potential distribution of the 100 nm damascene-gated structure in 
off-sate operation 
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Fig. 2-4(c) The simulated potential distribution of the 200 nm damascene-gated structure in 
off-sate operation 

 

 
 

Fig. 2-4(d) The simulated potential distribution of the 300 nm damascene-gated structure in 
off-sate operation 
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Fig. 2-5(a) The simulated current flow of the conventional structure in off-sate operation 
 
 
 
 

 

 
Fig. 2-5(b) The simulated current flow of the 100 nm damascene-gated structure in off-sate 

operation 
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Fig. 2-5(c) The simulated current flow of the 200 nm damascene-gated structure in off-sate 
operation 

 
 

Fig. 2-5(d) The simulated current flow of the 300 nm damascene-gated structure in off-sate 
operation 
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Fig. 2-6(a) The simulated lateral electric field of the conventional structure in on-sate 
operation 
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Fig. 2-6(b) The simulated lateral electric field of the 300 nm damascene-gated structure in 
on-sate operation 
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Fig. 2-6(c) The simulated lateral electric field of the 100 nm damascene-gated structure in 

on-sate operation 
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Fig. 2-6(d) The simulated lateral electric field of the 200 nm damascene-gated structure in 
on-sate operation 
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Fig. 2-7(a) The simulated potential distribution of the conventional structure in on-sate 

operation 
 
 

 
 

Fig. 2-7(b) The simulated potential distribution of the 100 nm damascene-gated structure in 
on-sate operation 
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Fig. 2-7(c) The simulated potential distribution of the 200 nm damascene-gated structure in 
on-sate operation 

 
 

Fig. 2-7(d) The simulated potential distribution of the 300 nm damascene-gated structure in 
on-sate operation 
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(a) Thermal oxidation 
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(b) LPCVD α-Si, Mask #1, RIE, SPC 
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(c) TEOS oxide deposition, CMP 
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(d) Mask #2, RIE, wet etching 
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(f) CMP process 
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(g) B.O.E. etching 
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(h) Implantation and activation 
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(i) Passivation layer 
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(j) Al electrodes 

 
Fig. 3-1 Process flow of fabricating low-temperature damascene-gated TFTs with thick S/D 

and thin channel 
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Fig. 3-2 The conventional TFT 
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Fig. 4-1 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
TFTs for VDS = 5 V; W/L = 5 µm/5 µm 
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Fig. 4-2 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
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TFTs for VDS = 10 V; W/L = 5 µm/5 µm 
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Fig. 4-3 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
TFTs for VDS = 5 V; W/L = 10 µm/5 µm 
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Fig. 4-4 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
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TFTs for VDS = 10 V; W/L = 10 µm/5 µm 
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Fig. 4-5 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
TFTs for VDS = 5 V; W/L = 5 µm/15 µm 
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Fig. 4-6 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
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TFTs for VDS = 10 V; W/L = 5 µm/15 µm 
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Fig. 4-7 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
TFTs for VDS = 5 V; W/L = 10 µm/15 µm 
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Fig. 4-8 IDS – VGS transfer characteristics of the proposed structure and conventional structure 
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TFTs for VDS = 10 V; W/L = 10 µm/15 µm 
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Fig. 4-9 IDS – VDS output characteristics of the proposed structure and conventional structure 
TFTs; W/L = 5 µm/5 µm 

 

0 10 20 30
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

0.00055

0.00060

L=5 µm, W=10 µm
|VGS-Vth|=10 V, 15 V, 20 V

 

 

 conventional structure
 prop. 100 nm
 prop. 200 nm
 prop. 300 nm

dr
ai

n 
cu

rr
en

t, 
I D

S (A
)

drain voltage, VDS (V)

 
 

Fig. 4-10 IDS – VDS output characteristics of the proposed structure and conventional structure 
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TFTs; W/L = 10 µm/5 µm 
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Fig. 4-11 IDS – VDS output characteristics of the proposed structure and conventional structure 
TFTs; W/L = 5 µm/15 µm 
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Fig. 4-12 IDS – VDS output characteristics of the proposed structure and conventional structure 
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TFTs; W/L = 10 µm/15 µm 
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Fig. 4-13 IDS – VGS transfer characteristics of the proposed structure and conventional 
structure with five masks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


