

Fig.2-1 Small-signal equivalent circuit model for a SiGe HBT in the forward active region.

Fig.2-2 Equivalent circuit for a SiGe HBT at open-collector bias condition.

Fig.2-3 (a) Plot of $\text{Re}(Z_{22}-Z_{21})$, $\text{Re}(Z_{11}-Z_{12})$, and $\text{Re}(Z_{12})$ versus $1/I_B$, freq = 1.0GHz. (b) Evolution of the $\text{Im}(Z_{11}-Z_{12})$, $\text{Im}(Z_{12})$, and $\text{Im}(Z_{22}-Z_{21})$ versus ω when the device is biased at high base current density (I_B=40 mA).

Fig.2-4 Small-signal equivalent circuit model for a SiGe HBT biased at $V_{CE}=0$ and reverse and/or low forward base voltage after de-embedding the "open" dummy pad.

Fig. 2-5 Measured capacitances $(C_{bep}+C_{\pi})$ and $(C_{bcp}+C_{bcx}+C_{bci})$ versus the expression of $(1-V_j/V_{Pj})^{-mj}$.

(a)

(b)

Fig.2-6 (a) Small-signal equivalent circuit model for a SiGe HBT biased at $V_{BE}=0$ and forward and/or low reverse collector voltage after de-embedding the "open" dummy pad and removing the extrinsic inductances, extrinsic base resistance and extrinsic collector resistance. (b) Application of the T $\leftrightarrow \Pi$ transformation to the HBT device equivalent circuit shown in (a).

Fig.2-7 Frequency dependencies of the extracted $R_{\rm bi}$ for a SiGe HBT biased at $V_{BE}{=}0V$ and $V_{CE}{=}3V.$

Fig.2-8 Frequency dependencies of the extracted ωC_{π} for a SiGe HBT biased at V_{BE} =0V and V_{CE} =3V.

Fig.2-9 Plot of $Re(Y_{11,k})$ versus ω^2 for the calculation of C_{bci} for a SiGe HBT biased at V_{BE} =0V and V_{CE} =3V.

Fig.2-10 Plot of frequency dependence of the extracted $Re(Y_{sub})$ and $Re(Y_{22,k}+Y_{21,k})$ biased at $V_{BE}=0V$ and $V_{CE}=3V$.

Fig.2-11 Plot of frequency dependence of the extracted $Im(Y_{sub})$ and $Im(Y_{22,k}+Y_{21,k})$ biased at V_{BE} =0V and V_{CE} =3V.

Fig.2-12 Plot of $Im(Y_{sub})/(\omega Re(Y_{sub}))$ and $Re(Y_{sub})$ versus 1/ ω for a SiGe HBT biased at V_{BE} =0V and V_{CE} =3V.

Fig.2-13 Collector-voltage dependence of the extracted C_{sub} , R_{bk} and C_{bk} for a SiGe HBT biased at V_{BE} =0V and V_{CE} =3V.

Fig.2-14 Small-signal equivalent circuit model of intrinsic SiGe HBT in common collector configuration.

Fig.2-15 Plot of $Re(A_{c,12}/A_{c,22})$ and $Re(A_{c,12}/|A_c|)$ versus frequency. V_{BE} =0.83V, V_{CE} =3V, I_C =1.516mA, and I_B =9.136µA.

Fig.2-16 Plot of Im(A_{c,11}) versus ω . V_{BE}=0.83V, V_{CE}=3V, I_C=1.516mA, and I_B=9.136µA.

Fig.2-17 Plot of $Im(A_{c,12}/|A_c|)$ versus 1/ ω . V_{BE}=0.83V, V_{CE}=3V, I_C=1.516mA, and I_B=9.136µA.

Fig.2-18 Plot of $Im(A_{c,11}/A_{c,21})$ versus 1/ ω . V_{BE} =0.83V, V_{CE} =3V, I_C =1.516mA, and I_B =9.136 μ A.

Fig.2-19 Frequency dependence of extracted $1/R_{\pi}$ for a SiGe HBT biased at V_{BE} =0.83V, V_{CE} =3V, I_C =1.516mA, and I_B =9.136µA.

Fig.2-20 Frequency dependence of extracted g_{m0} and τ for a SiGe HBT biased at V_{BE} =0.83V, V_{CE} =3V, I_{C} =1.516mA, and I_{B} =9.136 μ A.

Fig.2-21 Measured and simulated S₁₁ and S₂₂ of the $4\times0.24\times32$ µm² SiGe HBT in the frequency range of 1–20 GHz biased at V_{BE}=0.83V, V_{CE}=3V, I_B=9.136µA, and I_C=1.516mA.

Fig.2-22 Measured and simulated S₁₂ and S₂₁ of the $4\times0.24\times32$ µm² SiGe HBT in the frequency range of 1–20 GHz biased at V_{BE}=0.83V, V_{CE}=3V, I_B=9.136µA, and I_C=1.516mA.