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Process capability indices have been widely used in the manufacturing industry
for measuring process reproduction capability according to manufacturing
specifications. Processes with univariate data have been investigated extensively,
but are comparatively neglected for processes with multivariate data. Chou
(Chou, Y.M., 1994. Seclecting a better supplier by testing process capability
indices. Quality Engineering, 6, 427-438) developed a procedure using univariate
C, to determine whether or not two processes are equally capable, which allows
one to select the supplier with better quality. However, for processes with multiple
characteristics, no methods are available for comparing two processes with
multivariate data. In this paper, we consider the supplier selection problem based
on manufacturing precision in which the processes involve multiple quality
characteristics. We derive the distribution of the corresponding test statistic, and
calculate critical values required for the comparison purpose. A real-world
application is presented for justification.

Keywords: process capability; multiple quality characteristics; critical value

1. Introduction

Process capability indices have been widely used in the manufacturing industry for
measuring process reproduction capability conforming to the manufacturing specifica-
tions. In current industry practice customers often require their suppliers to provide
process capability for certain product characteristics in the supply chain partnership.
Process capability indices also can be used as a benchmark for quality improvement
activities. C,, C,x and C,,,,, are some well-known indices used in the industry for evaluating
process performance, but limited to cases with single engineering specification. Most
research work has dealt with statistical properties estimating/testing the univariate indices.
Kotz and Lovelace (1998), Kotz and Johnson (2002) and Spiring et al. (2003) provided a
compact survey and comprehensive discussions on process capability indices over
recent years.

Process capability indices, which establish the relationships between the actual process
performance and the manufacturing specifications, have been the focus of recent research
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in quality assurance and process capability analysis. The precision index C, is the first
process capability index which appeared in the literature, which is defined in Kane (1986)
as:

_USL-LSL

B 60 ’

where USL and LSL are the upper and lower specification limits, and o is the process
standard deviation. The index C, was designed to measure the magnitude of the overall
process variation relative to the manufacturing tolerance, which is used for controlled
normal processes. Clearly, the index measures manufacturing precision, which reflects
product quality consistency (uniformity), an important criterion for judging product
quality. A small value of C, implies that the product quality is not consistent causing
complaints from the customers not only damaging marketing potentials but also incurring
more repair cost.

The use of capability indices was first explored within the automotive industry. Ford
Motor Company (1984) has used C, to keep track of the process performance and to
reduce process variation. Recently, the manufacturing industry has been making extensive
efforts to implement statistical process control in their plants and supply bases. Capability
indices have received increasing usage not only in capability assessments, but also in the
evaluation of purchasing decisions, which are becoming the standard tools for quality
reporting. Proper understanding and use are essential for the company to maintain
capable product supplies. Process precision measures using C, for normal, truncated
normal, contaminated normal processes based on one single, multiple, (X, R), or (X, S)
control chart samples, have been investigated extensively. Examples include Kane (1986),
Cheng and Spiring (1989), Chou and Owen (1989), Chan et al. (1991), Kirmani et al.
(1991), Kocherlakota (1992), Pearn et al. (1992, 1998, 2004, 2006), Pearn and Wu (2004),
Pearn and Chang (2005). Clearly, in using the C, index for measuring process precision,
product uniformity would be the primary concern rather than the process yield.

Although some multivariate capability indices have been proposed, no statistical
properties of those indices are discussed. In this paper, we develop a statistical test
procedure using the estimator of MC, (multivariate extension of C,) to judge whether the
capability of one process is superior to another process. A real-world application is
presented to justify the proposed methodology. Practitioners can use the proposed
procedure in making reliable decisions for their in-plant applications.

G

2. Process with multiple characteristics

Most research has been devoted to capability measures with a single process/quality
characteristic. However, it is quite common that the manufactured product involves more
than one quality characteristic. That is, it requires several different characteristics for
adequate product description. Each of those characteristics must satisfy certain
specifications. The assessed quality of a product depends on the combined effects of
those characteristics rather than on their individual values. For example, automobile paint
usually has a range of light reflective abilities and a range of adhesion abilities (see Taam
et al. 1993). A paint that satisfies one criterion but not the other is considered undesirable.
Those characteristics are related to each other through the composition of the paint. It is
therefore natural to consider a bivariate characterisation of this paint.
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For tolerance region of processes with multiple characteristics, most researchers take
an ellipsoidal or a rectangular region. For more complex engineering specifications, the
tolerance region would be rather complicated. For instance, a drawing of a connecting
rod in a combustion engine consists of crank-bore inner diameter, pin-bore inner diameter,
rod length, bore true-location and so on (see Taam et al. 1993). In multivariate processes,
we usually assume that the process characteristics X follows the multivariate normal
distribution N, (1, Y "), where v is the characteristic dimensions, p is the mean vector, and
> is the variance-covariance matrix of X. Also T is the target vector, X is the sample
mean vector and S is the sample covariance matrix. For processes with multivariate data,
Taam et al. (1993) defined the multivariate capability index MC,

_vol.(modified tolerance region)  vol.(modified tolerance region)
Pvol (X = 'S X = ) k(@] (2 9073) P IBI VAT (v/2 + DI

()

where k,(¢) is the 99.73th percentile of the x> distribution with v degrees of freedom, Y] is
the determinant of ), and I'(-) is the gamma function. Note that, if MC, is less than I,
then the process variation is greater than the specified range of variation. It indicates that
the process precision is not adequate with respect to the specifications (product quality is
not uniform/consistent).

3. Comparing two multivariate processes using MC,

An estimator of MC,, can be expressed as

A vol.(modified tolerance region) vol.(modified tolerance region)

C,= . — = 2
77 yol.(estimated 99.73% process region) (WX%,0,9973)‘)/2|S|I/Z[F(V/2 + 1! @

where S is the silmple variance-covariance matrix, and |S| is the determinant of S. From
Equation (1), MC, can be rewritten as MCP(|S|/|E|)_1/2. Let X = (X1, X5,....X,) be an
n-dimensional vector of measurements taken from a multivariate normal distribution with
mean vector = (i, 1o, ..., M1, , target vector T, process variance-covariance matrixAZ.
Using the following theorem (Theorem 1), we may obtain the distribution of MC,.
Chou (1994) developed a procedure using univariate C, to determine whether or not two
processes are equally capable, which allows one to select the supplier with better quality.
However, for processes with multiple characteristics (multivariate data), no methods are
available for comparing two processes with multivariate data. For this purpose, we
consider the problem of comparing two multivariate processes using MC,. The hypothesis
testing would be as follows: Hy: MC,; < MC,, (process 1 is not better than process 1I)
versus Hy: MC,>MC,, (process I is better than process II). The critical value ¢ can be
determined as:

A

Mc MCy(1S11/151]) 2
PYMEr . mc, =mC, :a:P{ (S11/1%1)

MCp(1S21/122]) 2

A

> c|MCpy =MC,,2} =«
MC

P{(|:>*1|/|21|)‘”2

(1S:1/1 |)“/2>c}=“:P{(lszmz2|)>cz}:“ ©
2 2

(IS11/1%10)
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Theorem 1:  The distribution of the generalised variance |S| of a sample X1, X5, ..., X,, from
N1, Y") is the same as the distribution of |>_|/(n—1)" times the product of v independent
factors, the distribution of the ith factor being the x> distribution with n—i degrees of
freedom.

Proof: See Anderson (2003), p. 268.

Lemma 1: Let x~ x> and y~ x>_, be independently distributed. Let 22 =4xy.
Then z ~ X%n—2'

Proof: See Srivastava and Khatri (1979), p. 82.

From the above theorem, |S|/|Y| is distributed as x> | x x2_, x --- x x>_,/(n —1)".
For v=2, Equation (3) becomes

Pl =1 o) 06 =1
(=1 Xoo1 X X2 (= 1) (3, _a)’/4

(Referring to Lemma 1, we can derive x>, x x>, ~ (x3,_4)°/4, see Corollary 1 in the
Appendix.)

(Ba/2r2=4)" 1y~ 1 s — 2y
>c2}:a:P = 3 ! 1222 42>52 =«
X%n,,4/2n1—4) (ny — 1)"(2m — 4)

4wwﬁm—w
(2 — 1% (B, _o)°

> (o — 1)*(2ny — 4)
(m — 1)* 2np — 4)?

c("z —1)(2n; —4)
(m —1)@2ny —4)°

2
= P{(F2112—4,2n1—4) >c } =a= 4o -41-a =

Thus, the critical value can be expressed as

(n —1)(2ny —4)

= Fop_40m 41—« . 4
¢ = Foanaom-a1-a T 3, g “4)
For v=3, Equation (3) can be expressed as
B x Bt ooy
(m — 1)’ Xz%]—l x X;%I—z x Xil—z
2 L) 3
Xon—4\ Xnm—3(m1 — 1) 2
=a=P - 5 >t =a
X2n174 X11173 (l’l2 - l)
X%nz—él : iz—,z ) 4 ) 3 1 3
Ll () Emen - m -y m -y L
oo | G2 2y — 4 (m = 3) (my — 1)°
2}1]74 n|73
2 3
2 2 (2ny —4)" (m —=3)(m —1) }
= P (Fon,—gom—a) % Fy 3,3 >c¢C = . 5
{( m=on=4) * Fip-an-3 Q2ny — 4y (12 = 3) (m — 1)° ®
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Let z=xy, where x ~ (Fa,—-4. 20,-4 )2, v~ Fy,_3 n,—3, then Equation (5) can be expres-

25 AN TS T e o
sed as [; @A n=3)n =17/ @m= n=3m =" ¢ (4o — | — . Thus, the critical value can be

expressed as

ey =4 =3) (1 — 1)
- \/F (1= @2ny — 4y (m = 3) (ny — 1) ©

where

(@m—4)/4-2) (i

(m—3)/2—1
)

_ Gmi2nm—8)/2 _ (121m—6)/
(1 n (2ny —4) ﬁ) (1 n (ny —3) >
2n —4) (n1 —3)(z/x)
21ty — A\ @I/ 3\ (=32
[[(2ny + 2ny — 8)/210((n2 + ny — 6)/2)(2’11 — 4) (nl — 3)

k(ny,ny) =

[[(2ny — 4)/2]T[(2n1 — 4)/2]T[(n2 — 3)/2]T((2n1 — 3)/2] ’
F.() = fotfz(z)dz =1 —a, and F;!(-) is the inverse function of F.(-); see Corollary 2 in
the Appendix.

Tables 1 to 3 display the critical values for various sample sizes in the case with v=2
under test levels « =0.05, « =0.025 and « =0.01. Tables 4 to 6 display the critical values
for various sample sizes in the case of v=3 under ¢ =0.05, «=0.025 and «=0.01.
For practical and convenient purpose, a step-by-step procedure is provided below:

Step 1: Determine the sample size n; for each supplier and the «-risk (the chance of
incorrectly rejecting a better supplier).

Step 2: Take a random sample from each process and calculate the sample covariance
matrix.

A A
Step 3: Calculate the test statistic MC,/MCp, and the critical value c.

Table 1. Critical value for testing Hy: MC, < MC,, under «=0.05 (v=2).

n2

nl 10 20 30 40 50 60 70 80 90 100

10 2.33 2.31 2.29 2.29 2.28 2.28 2.28 2.27 2.27 2.27
20 1.81 1.74 1.71 1.69 1.68 1.68 1.67 1.67 1.65 1.66
30 1.68 1.60 1.56 1.54 1.52 1.51 1.51 1.50 1.50 1.49
40 1.62 1.53 1.49 1.46 1.45 1.44 1.43 1.42 1.42 1.41
50 1.59 1.49 1.44 1.42 1.40 1.39 1.38 1.37 1.37 1.36
60 1.57 1.46 1.42 1.39 1.37 1.36 1.35 1.34 1.34 1.33
70 1.55 1.45 1.40 1.37 1.35 1.34 1.33 1.32 1.31 1.31
80 1.54 1.43 1.38 1.35 1.33 1.32 1.31 1.30 1.30 1.29
90 1.53 1.42 1.37 1.34 1.32 1.31 1.30 1.29 1.28 1.28
100 1.52 1.41 1.36 1.33 1.31 1.30 1.29 1.28 1.27 1.27

2dx, forx,z>0
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Table 2. Critical value for testing Hy: MC, < MC,, under o =0.025 (v=2).
n2
nl 10 20 30 40 50 60 70 80 90 100
10 2.76 2.69 2.67 2.65 2.64 2.64 2.63 2.63 2.63 2.63
20 2.06 1.94 1.89 1.87 1.85 1.84 1.83 1.83 1.82 1.82
30 1.89 1.75 1.70 1.67 1.65 1.63 1.62 1.62 1.61 1.61
40 1.81 1.67 1.61 1.57 1.55 1.54 1.53 1.52 1.51 1.50
50 1.76 1.62 1.55 1.52 1.50 1.48 1.47 1.46 1.45 1.44
60 1.74 1.58 1.52 1.48 1.46 1.44 1.43 1.42 1.41 1.40
70 1.72 1.56 1.50 1.46 1.43 1.41 1.40 1.39 1.38 1.38
80 1.70 1.55 1.48 1.44 1.41 1.39 1.38 1.37 1.36 1.35
90 1.69 1.55 1.46 1.42 1.40 1.38 1.36 1.35 1.35 1.34
100 1.68 1.52 1.45 1.41 1.39 1.37 1.35 1.34 1.33 1.32
Table 3. Critical value for testing Hy: MC, < MC,, under a =0.01 (v=2).
n2
nl 10 20 30 40 50 60 70 80 90 100
10 3.37 3.25 3.20 3.17 3.16 3.15 3.14 3.14 3.13 3.13
20 2.39 2.21 2.14 2.10 2.08 2.06 2.05 2.04 2.03 2.03
30 2.15 1.96 1.88 1.83 1.81 1.79 1.78 1.77 1.76 1.75
40 2.05 1.84 1.76 1.71 1.68 1.66 1.65 1.64 1.63 1.62
50 1.99 1.78 1.69 1.64 1.61 1.59 1.58 1.56 1.55 1.55
60 1.95 1.74 1.65 1.60 1.57 1.54 1.53 1.51 1.50 1.50
70 1.93 1.71 1.62 1.57 1.53 1.51 1.49 1.48 1.47 1.46
80 1.91 1.69 1.59 1.54 1.51 1.49 1.47 1.45 1.44 1.43
90 1.89 1.67 1.58 1.52 1.49 1.47 1.45 1.43 1.42 1.41
100 1.88 1.66 1.56 1.51 1.47 1.45 1.43 1.42 1.41 1.40
Table 4. Critical value for testing Hy: MC, < MC,, under o =0.05 (v=3).
n2
nl 10 20 30 40 50 60 70 80 90 100
10 2.94 3.14 3.19 3.21 3.22 3.23 3.24 3.24 3.24 3.25
20 1.95 2.00 1.99 1.99 1.99 1.98 1.98 1.98 1.98 1.97
30 1.73 1.75 1.73 1.72 1.71 1.70 1.70 1.69 1.69 1.69
40 1.64 1.64 1.61 1.60 1.59 1.58 1.57 1.56 1.56 1.56
50 1.59 1.58 1.55 1.53 1.52 1.50 1.50 1.49 1.49 1.48
60 1.56 1.54 1.51 1.48 1.47 1.46 1.45 1.44 1.44 1.43
70 1.53 1.51 1.48 1.45 1.44 1.43 1.42 1.41 1.40 1.40
80 1.51 1.49 1.45 1.43 1.41 1.40 1.39 1.38 1.38 1.37
90 1.50 1.47 1.44 1.41 1.40 1.38 1.37 1.36 1.36 1.35
100 1.49 1.46 1.42 1.40 1.38 1.37 1.36 1.35 1.34 1.34
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Table 5. Critical value for testing Hy: MC,; < MC,, under o =0.025 (v=3).

n2

nl 10 20 30 40 50 60 70 80 90 100

10 3.64 3.81 3.84 3.86 3.87 3.87 3.88 3.88 3.88 3.88
20 2.29 2.28 2.26 2.24 2.23 222 2.22 2.21 2.21 2.21
30 2.01 1.96 1.92 1.90 1.88 1.87 1.86 1.85 1.85 1.84
40 1.89 1.82 1.78 1.75 1.73 1.71 1.70 1.70 1.69 1.68
50 1.82 1.75 1.70 1.66 1.64 1.63 1.61 1.60 1.60 1.59
60 1.78 1.70 1.64 1.61 1.59 1.57 1.56 1.55 1.54 1.53
70 1.75 1.66 1.61 1.57 1.55 1.53 1.51 1.50 1.49 1.49
80 1.73 1.64 1.58 1.54 1.52 1.50 1.48 1.47 1.46 1.46
90 1.71 1.62 1.56 1.52 1.49 1.48 1.46 1.45 1.44 1.43
100 1.70 1.60 1.54 1.50 1.48 1.46 1.44 1.43 1.42 1.41

Table 6. Critical value for testing Hy: MC, < MC,, under o =0.01 (v=3).

n2

nl 10 20 30 40 50 60 70 80 90 100

10 4.68 4.79 4.81 4.81 4.82 4.82 4.82 4.82 4.82 4.82
20 2.76 2.67 2.62 2.58 2.56 2.55 2.54 2.53 2.52 2.52
30 2.38 2.25 2.18 2.14 2.11 2.09 2.08 2.06 2.06 2.05
40 2.22 2.07 1.99 1.94 1.91 1.89 1.87 1.86 1.85 1.84
50 2.13 1.97 1.88 1.83 1.80 1.78 1.76 1.75 1.74 1.73
60 2.07 1.90 1.82 1.77 1.73 1.71 1.69 1.67 1.66 1.65
70 2.03 1.86 1.77 1.72 1.68 1.66 1.64 1.62 1.61 1.60
80 2.00 1.83 1.74 1.68 1.65 1.62 1.60 1.58 1.57 1.56
90 1.98 1.80 1.71 1.65 1.62 1.59 1.57 1.55 1.54 1.53
100 1.96 1.78 1.69 1.63 1.60 1.57 1.55 1.53 1.52 1.51

Step 4. 1If MACp]/]\/?C,,z > ¢, then we reject Hy and conclude that MC,; > MCp,. From the
definition of ¢, it is clear that the value of MC,;/MC,, must be higher than the original
target value for the true MC,;/MCy,. The power of the test can be also computed below:
The power of the test, 8, is given by

VAN
ﬁ(MC’”) _pl MG M L )

MCp ]\/?sz MCy
Take v=2, and 3, Equation (7) can be expressed as

(=1 (2m —4) (Msz)}
(m —1)Q2n = 4HMCp) |’

P{F2}73—4,2n|—4 >c

21 — 4% (ny — 3) (ny — 1) (MC,p)?
P{(F211z—4,2n1—4)2*Fl12—3,n|—3 > Cz( ! ) (o ) = 1) (MCy) .

(2ny — 4)* (2 = 3) (m; — 1)* (MC,y)?
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4. A real-world application

To illustrate how the proposed method can be applied to the actual data collected from the
factories, we present a real-world example of an electronic component manufacturer
making ceramic multilayer capacitors applicable to consumer electronics, telecommunica-
tions, automotive parts, and data processing devices. The capacitor consists of a
rectangular ceramic block in which a number of interleaved electrodes are contained.
A cross section of the ceramic multi-layer capacitor structure is depicted in Figure 1.
For a detailed model of the ceramic multilayer capacitor investigated, all the electrical
characteristics are displayed in Table 7.

Consider a production process with multiple characteristics following a multivariate
normal distribution, which is taken from a multilayer capacitor factory in Taiwan
adapting the six-sigma quality improvement program. To compare product quality
between a supplier versus another, 50 random samples are taken from the two processes.
The quality control of the process involves the simultaneous control of the layer thickness,
the layer length, and the layer width. The lower and upper specification limits for layer
thickness, layer length, and layer width have been set to [1.45, 1.75], [3.0, 3.4] and [1.45,
1.75], respectively. The sample covariance matrices are summarised below, where
S| represents the data from supplier I, and S, represents the data from supplier II.

0.00193 0.00046 0.00086 0.00236  0.00029 0.00003
S1 =1 0.00046 0.00097 0.00075 |, S> = 0.00029 0.00176 0.00097
0.00086 0.00075 0.00167 0.00003 0.00097 0.00161

Terminations

Electrodes
P

.
)

>

e ———
o &;m 2 e
e /

Ceramic material

Figure 1. Structure of a ceramic multi-layer capacitor.

Table 7. Specification of Y5V/BME/1206/22uF/6.3V.

Capacitance range

Tolerance on capacitance after 1000 hours

Rated voltage Ui (DC)

Test voltage (DC) for 1 minute

Tan D (Note 1)

Insulation resistance after 1 minute at Uy (DC)

Maximum capacitance change as a function of temperature
Ageing

Terminations

Resistance to soldering heat

22uF, Size 1206

—20% to +80%

6.3V

2.5x UR

<12.50%

Rins. x C>500s

+30% to —80%

Typically, 12.5% per time decade
NiSn plated

260°C, 10sec
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To compare the two processes, we consider a test with null hypothesis
Hy:MC, < MC,, against the alternative hypothesis H,: MC,,; >MC,,, where MC,; and
MC,, represent the process capability indices of the two suppliers respectively. The test
procedure can be described as:

Step 1. For the two suppliers with sample sizes n; =n, =50, set the confidence level as
0.05.

Step 2: Calculate the sample covariance. From the above result, we obtain

0.00193 0.00046 0.00086 0.00236  0.00029 0.00003
S1 =1 0.00046 0.00097 0.00075 |, S2 = 0.00029 0.00176 0.00097
0.00086 0.00075 0.00167 0.00003 0.00097 0.00161

A A
Step 3: Calculate the test statistic MC,/MCp, and critical value c:
AC B ‘3—‘71 x (0.3/2) x (0.4/2) x (0.3/2)
rl |Sl|l/2(7f X Xg,o,9973)3/2[r(2'5)]_1
A 4 0.3/2 0.4/2 0.3/2
c=3 T/g / )ZX ( /3/2 x( /_1) — 1.28415.
2 [S2]/<(r x X3,0,9973) [I'(2.5)]

= 2.13239,

A N
Therefore, MC,/MC,, =2.13239/1.28415=1.6605, and ¢ =1.52 (refer to Table 4).

Step 4:  As 1.6605>1.52, we conclude that with 95% confidence process (supplier) I is
superior to process (supplier) II. In order to show the sensitivity of the test
procedure, the power curve of the test is depicted in Figure 2 under the ratio value of
MC,/MC,,=0.8 to 2.3.

5. Conclusions

Processes with multiple quality characteristics are quite common in the manufacturing
industry. Processes with univariate data have been investigated extensively, but are

oB

0.6
powar
0.4 F

0z

008 d 12 14 18 18 3 22
MCp1/MCp2

Figure 2. Power curve of testing.
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comparatively neglected for processes with multivariate data. Chou (1994) developed
a procedure using univariate C, to determine whether or not two processes are equally
capable, which allows one to select the supplier with better quality. However, for processes
with multiple characteristics, no methods are available for comparing two processes with
multivariate data. In this paper, we considered the supplier selection problem based on
manufacturing precision in which the processes involve multiple quality characteristics.
We developed an effective test procedure for practitioners to make reliable decisions
in their in-plant applications involving supplier selections.
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Appendix

C0r011ary21: If x>_, and x>_, are mutually independently distributed, then x>_, x x>_, is distributed
as (x3,_4)" /4.

Proof: Let x; ~ x2_, and x, ~ x2_,. The joint pdf of x, and x, is given by
(1/2)(”—1)/2x’14/2*3/267x|/2 (1/2)('7—2)/2xg/2*267x;/2

172 ) CE1e

Let zy=x; and z, = 2,/X1X;. Using the transformation method, the solution is x;=z; and
Xy = z% /4z, and the Jacobian of the transformation is

1 0

V4
J= Z% o :—2
Tijm 2| 2z

So, we find that the joint p.d.f. of z;z; is

(1/2)("—1)/22117/2—3/26—21/2 (1/2)("*2)/2(25/421)”/Z*ZC—(:§/421)/2
X
[l(n—1)/2] [l(n —2)/2]

5)
x —.,0 < z1,2p < o0.
221

f:l,lz(zla 22) =

Then, the marginal density function of z, is obtained as follows:

dZ]

- /30 (1/2)n= D232 p1/2 L /2D 4z, )2 Gl L
T Pl = 1/2] T(n = 2)/2] 2

00
— — —Z —72 z
=C| x5 3 x/ zZ, V2 o212 G/4207202,.0 < 25 < 00
0

where
c (1/2)2n79/2
= .
[l(n—1)/2] x I'l(n — 2)/2]
Let
h(z>) :/ 21_1/2 X 6_21/2_(2%/42')/2d21.
0
Hence
/ g2 [V B e e
W(z)=—— x/ z, x e ST\ RE gy
4Zl 0
Now, let
3
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Using variable transformation technique, we obtain

, 1 o0 (22 /vy 1
h (22) — (_ 5) x /(; W—1/2 x 8_”/2_(A2/4M)/2dw — (_ E) x h(Zz).

The above equation gives A(z;) = e(=?/2t%)_ where C» is a constant. Thus, the p.d.f. of z, can be
obtained as below, where C3 = C; x e~<2. Therefore, we have z; ~ x3, 4,

fa@)=Crxe @ x A xe = Cyx 8V e 0 <z <00
Corollary 2: x ~ (Fa,_a, 2,41,4)2, v~ Fy,_3 -3, if z=Xxy, then the p.d.f. of z is

1\ ym-ay4-2 (E) (=]
2 X

| +wﬁ (2n2+2n,—8)/2 . (> — 3)E (my+n1—6)/2
Qn—4) "7 (m —3)x

dx, for x,z>0

foo) = /0 k(1. n2)

where

Wty — 4\ @2 g g\ (=3))2
Pl@n + 201 = 8)/20T[(n2 + 11 = 6)/2] <2n§ = 4) (n? - 3)

[[(2ny — 4)/2]0((2ny — 4)/2]0[(n2 — 3)/2]T[(2m — 3)/2]

k(nl’ }’l2) =

Proof: Let ¢ ~ (Fay,—420,-4), X= 2, where

F[(2n2 + 2711 — 8)/2] [(2”2*4)/2*1
[ — D2 — D2~ [ famy — 4\ \ I
1+ t
(1G9

for t > 0.

S0 =%

Using the transformation method, ¢ = \/x, and J = 1/2,/x (Jacobian), so the p.d.f. of x is

f (x) _ F[(2n2 + 21’11 — 8)/2] N %x(2n2_4)/4_1
P2y — 4)/2]0[(20 — 4)/2] | 2y — 4 Cm2m—8)/2°
( * (2’71 - 4) x)

for x> 0.
Now, let z=xy given x ~ (F2n2,4~2m,4)2, ¥ ~ Fy,_3,,—3. Using the transformation method, x =x,
y=1z/x, and J=1/x (Jacobian), so the joint pdf of x and z is

1 om-4a-2 (Z>‘"2’3)/ >l

fx,z(x, z) = k(ny,ny) 2 ;

- (2712 _ 4) f (2ny+2n;-8)/2 - (}’12 _ 3) z (nmy+n;—6)/2°
= 2. )x -
(2 —4) (m —3)x

for x,z >0,

21y — 4 (2ny—4)/2 _3 (m2—3)/2
T[22 + 211 — 8)/2]T[(n2 + my — 6)/2]( 22 "
2ny — 4 n —3

[[(2ny — 4)/2]0[(2my — 4)/2]0[(n2 — 3)/2]T[(2n1 = 3)/2]

k(ny, m) =
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Then the marginal density function of z is obtained as follows:

lx(2ng—4)/4—2 (E) (n2=3)/2-1

14(2)= fo " km.ma) 2 x

i+ (2ny — 4)\/_ (2n242n; —8)/2 NG (m—3)z (n2+n1—6)/
(2 1—4) (n1—3)x

5 dx, for x,z >0,

where

P 4 (2my—4)/2 _3 (m—3)/2
T2y + 21y = 8)/2]T[(n2 + 1y = 6)/ 21( - 4) (:2 3)
| —

Ko, m) = T[(2m — &)/ — 47210 — 3),/2I0@n — 3)/2]

The programs for Table 4, 5 and 6.

< Statistics
<« Graphics ‘Graphics’
<« Statistics ‘Continuous Distributions’

= Table [k, {k, 10, 100, 10}]
n>=Table [p, {p, 10, 100, 10}]

Ky = Table [ki [i,j].{i,10}.{j, 10}

Fori=1i<10i=i+1,

For[j=1j<10j=j+1,

_ Gamma [(2 (i} # 2 = mi [fi] — 8)/2)) * Gamma () m 1] — 6)/2)] % (2 nalfil] — 4)/2 = mi[fl) = 4)C 072wl — 3)/m [l — ™D

Al Gamma[((2  nz[[j]] — 4)/2)] * Gamma[((2 * n,[[i]] — 4)/2)] * Gamma[((n[[j]] — 3))/2] * Gammal[((n;[[i]] — 3)/2)]

0.5 % x2lill-4/4-2 4 (/)02 001-9/2-1

P[i.j] = Find Root[N Integrate [A[i.j] G =82
(14 (@ maofTJT] = 4)/2 5 my [[i]] — 4) = /R) 0 (1 (2] = 3)/m[[il] = 3)) * (/%))

o[G0y 1) «m)’

{2.0.1}.{x.0.00}] == 0.95,{t,0,100}];
PP [i] = t/.PLi:

— o (2l =4\ mallill - 3) il - 1
b= s‘”{”"[‘“ (Genn =) (tn =) * (=) J
1
K,

(Table 4 result)

K, = Table[ka[i.j],{i,10}.{j,10}];

For[i=1Li<10ji=i+1,

For[j=1,/<10j=j+1,

Gammal[((2  maffj]] + 2  my [[i]] — 8)/2)] + Gamma[((ma[j]] + m [[i]] — 6)/2)] * (2 mal[j]] — 4)/2 * m [[i]] - 4))“*“2[“”‘4’“*(:fh”;%)("zmwz
Gammal((2 # ma[[j]] — 4)/2)] » Gammal((2 # n[[i]] — 4)/2)] * Gamma[((na[[]] - 3)/2)]  Gamma[((n [[i]] — 3)/2)] ’

0.5 % x@malll=4/9-2 . (/) (@alll=3/2)-1
(14 (@ malill — 4)/2 # m [1l] — 4) 5 R) 2020972, [f) — 3)/m G - 3) = /o)™ 2 )

Allj] =

P5[i,j] = FindRoot[NIntegrate[A[i.j] * (

{2,0,t},{x,0,00}] == 0.975,{t,0,100}]:
PPy[ij] = t/.Pafi;
ko[l = Sqrt[ PPfi.j] s ((2 # nafil] = 4)/2 s m[[iT] — 4))*+(((naT71] = 3)/m[liT] = 3)) ([T = D/na[Gl - 1)°;
1
Ka

(Table 5 result)
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K3 = Table[ks[i.j].{i.10},{j,10}]:
Forfi=1li<10i=i+]1,
For[j=17<10=j+1,
Gammal((2 « na(l) # 2.+ 0 (i) = 8)/2)) + Gammal((na[[l 1) = 6)/2) * (2 mail) = 4)/2 = m i) = )"0 (o[l 3)/m ) = 3)) "0V
Gammal(2 + na[[i] - 4)/2)] + Gamma((2  m [il] - 4)/2] + Gammal((na[Gl] — 3)/2)] « Gammal(n [il] - 3)/2)] ‘
0.5 5 x@lll=/4-2 4 (/O=l1-3)/2)-1
(1 (@ malll] = 472 s [] = 4) 5 %) 2O D20 alfl] = 3)/m 0] - 3)# (z/x))“f“’”*"‘”‘”"”)‘

Alij] =

P;[i,j] = FindRoot[NIntegrate[A[ij] <

(2.0,1).{x.0,00)] == 0.99,{t,0,100};
PPs[ij] = t/.Ps[ijl:
ks[i.i] = Sart| PP3i.i] # (((2 # nal[jl] — 4)/2 % ny [[i]] — 4)*((ma[]] — 3)/m[[i1] - 3)) s (i [0 = D/malli]] — 1)° 5
1
K;

(Table 6 result)



