H. 264;:];%?3@ =7~ E'ﬁ[pﬁ\%gmy ~ ﬁﬁ?{—

Transaction Level Modeling of H.264 Decoder

(T f@? lljif

st Ao D& ok

H.264 0 eV k] & 1 7gt b = R LR
Transaction Level Modeling of H.264 Decoder

’ﬁE /= BﬁliF",]’ffﬁ Student: Chih-Chieh Chen
?‘F’Iﬁlf’;#; :}Ej(SIS ﬁj Advisor: Dr. Tihao Chiang

CRR N

BV R R R 7T

e

A Thesis
Submitted to Department of-Electronics Engineering & Institute of Electronics
College of Electrical and-Computer Engineering
National ‘Chiao-Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

Pl Ao Do s

H. 26458555 2V R 1 H0 i S AT

[GcEaRRR s R g

CERE RS 2

RS P

.

¢%ﬁ?§ﬁﬁ¢ HE> S5 5 = e e *ﬁuﬁ%ﬁﬁ?ﬁﬁlﬁﬁwiﬁl% ARV B
PRI R o R o RN AR SR A o PR S %
R %: TS PR g ﬁﬁ HUBHE R o [R= 9t & ST ;51 B
AR 11 RIDEA TR RT3 PO] H264
Fefi A i f 5 ERFTESL] > [DRAM il /7 [P rhLH] RTL #43 FHEIUFP’T‘EJW%%T%E
:[?ﬁqi_f SystemC nm[?}?ﬁ'ﬂr

PP R G VIRIPRRERT » o Ry ST) AR R A
SR P SO = TR QYRR R LI A S
AL FERE T RIS A T R TR - R
TRPRIF T 0o [R5 % o SR RISEHIES P15 7 Ty~ REpO3ERcas < 82
REEFSENR o SO SRR 25 PR P R AT He e 3 SRR - LR R
el FO L Y (IR RET T R R ESAORS R O A -

A iqﬂ/ ARV FR R USRI E ISR OB SR o T

PR AR R AR E EUNAORYED o B SLRRIC SRR A I i

R PP R0 - (R e R O e ST
i’fﬁ;%ﬁwj FFIEE | R ﬁlﬁf@ﬁg @ FgSR T R KRS 4 E[ffﬁr] 1 o

Transaction Level Modeling of H.264 Decoder

Student: Chih-Chieh Chen Advisor: Dr. Tihao Chiang

Department of Electronic Engineering &
Institute of Electronics
National Chiao-Tung University

Abstract

In this thesis, we introduce transaction level modeling (TLM) which is a new level of
abstraction in the top-down design methodology. 1t mainly models the data flow of the
overall system architecture. Because it ignores some details that are not important for
system architecture, it can simulate faster and figure out problems about system earlier.
In addition, it serves as a platform for software development in the early stage. In our
study, we concentrate on H.264/AVC decoder as a pilot application. We implement the
individual modules in SystemC except for the DRAM controller that is implemented in
RTL.

As for the hardware design of individual module, we present a unified systolic
architecture for inter and intra predictions. To increase hardware utilization and
minimize cost, we combine inter and intra prediction by a reprogrammable FIR filter,
which is further implemented with systolic array. For inter prediction, the 2-D
interpolation is conducted through separable 1-D filtering. For intra prediction, the

boundary pixels are reshuffled before feeding into the systolic array. As compared with

state-of-art design approaches, our architecture provides higher performance while
maintaining relatively lower cost.

In conclusion, this work proves that TLM can model the system more efficient
and be helpful for design exploration. Thus, it will play a key role in SoC design era
with more complexity. In addition, our unified systolic architecture for inter and intra

predictions also shows that it has more hardware efficiency and lower cost.

Vi

T

PR I G o o A S RLIIRELS ¢ ool o gt
EORGE FR R RS AP 7 L
HRERED -

RBUWRG PR > VYRR ARPR - PREPRARDER -
BEES IR AR IR L R - MRS 0 R LR B
PIRVPEEY » ¥ R R PR AL e i fra T e ,%gwpr
e[l | « BEIRES A T EIF RO o 9 PR T HH
FRIRUARTS RS TS ISR L9t - W R T [l 3
SE 3 RNEl P R A iF"[o

R R L BEIRS I‘BL’J/‘?EIEIUH'[E%F&. AR N
VUG OE] - IS RSRS8O S T LS
=5 2k - iR %mﬁﬁﬁ?ﬂwwy’WBa@ﬁ’%ﬂdﬁgﬁﬂﬁ
[%o i B JSEERITR » RRAFTT S S FREI O - B

vii

Contents

Abstract in Chinese i
Abstract in English %
Contents viii
List of Tables Xi
List of Figures xii
1 Introduction 1
1.1 Overviewof Thesis 1
111 Overviewof H264 1

1.1.2 Transaction Level Modeling 3

1.1.3 System Level Modeling — H.264 Decoder 6

1.1.4 Module Design — Inter and Intra Predictions 7

1.2 Organization and Contributions 8

2 Transaction Level Modeling 10
2.1 Introduction 10

-viii-

CONTENTS

2.2

2.3
2.4

2.5

Definitions of Transaction Level Modeling
2.2.1 SpecificationModel,
2.2.2 Implementation Model
2.2.3 Transaction Level Model

Design Flow with Transaction Level Modeling

Transaction Level Modeling with SystemC
2.4.1 Featuresof SystemC
2.4.2 Implementation Using SystemC

Summary

Transaction Level Modeling of H.264 Decoder

3.1
3.2
3.3

3.4

3.5
3.6

Introduction
Design Specification
System Architecture L
331 VideoPipeobi 0 i o
3.3.2 SystemSchedule . [.- . w e L
Bus Arbitration Policy = . = . . . A oL da L L
3.4.1 Optimal Solution . T e L L
3.4.2 ExpectedBufferSize «..
3.4.3 Guidelines for Bus Arbitration
3.4.4 Arbitration Policy InOur Design.
System Level TLM Modeling.

SUMMArY

Systolic-based Inter/Intra Predictions

4.1
4.2

4.3

Introduction
Algorithm of Inter/Intra Predictions
42.1 InterPrediction,
422 IntraPrediction,
Unified Systolic-based Architecture
431 OverviewofDataFlow
43.2 DataFlow of Inter Prediction
4.3.3 DataFlow of Intra Prediction

-iX-

CONTENTS

4.4 Complexity Analysisand Comparison 55
45 SUMMAary 57
5 Concluding Remarks 58
51 Conclusion e 58
52 Future WOrk o 59
Bibliography 60

List of Tables

2.1

3.1
3.2
3.3

4.1
4.2

Characteristics of different abstractionmedels. 16
Level LIMitS | o b e e o e e 27
Level Limits Il oo e 27
System Schedule 31
Comparison of intra prediction 55
Comparison of inter prediction., . 56

-Xi-

List of Figures

11
1.2

2.1
2.2
2.3
2.4

2.5
2.6

2.7
2.8
2.9

Traditional SoC design flow including hardware and software development. . .

Overview of the systemarchitecture.«

System models at different levels of abstraction [1].
Example of the specificationmode [1].
Example of the implementation model [1].
Four types of TLM. (a) The PE-assembly model. (b) The bus-arbitration model.

(c) The timing-accurate communication model. (d) The cycle-accurate compu-

tationmodel. [1]
Design flow with transaction level modeling [2].
Comparison of design schedule between the traditional design flow and the one

with transaction level modeling[2].
Separated computation and communication in SystemC
Example of module implementation using sc_thread and sc_method.

Example of channel implementation and interface functions.

2.10 Top level connections for moduleA, moduleB, and the channel.

3.1
3.2

System architecture diagram[3][4].
Deblocking process order in eight by eight block

-Xii-

LIST OF FIGURES

3.3 Inputand output configuration.
3.4 Input and output configurationwith3PEs
3.5 Fvaluesunderthe variationsof Sand P;.
3.6 Bus arbitration policy based on the principle of reverse water-filling.
3.7 Input and output configurationwith3PEs
3.8 Input and output configurationwith3PEs
3.9 DRAMread and write operation
3.10 Framemapto memory.
3.11 Memory maptoframe.
3.12 Example of bus master switch. L.
3.13 Transaction level modeling at system level.

3.14 TLM module designexample.,

4.1 The 2-D interpolation for motion compensation with sub-pel precision. Note
that the 2-D filtering can be. separated into 2 1-D filtering.
4.2 Intra prediction modes. (@) Directional.modes. (b) Prediction of mode 5. (c)
DCmode. (d)Planemade. . . . &0 oL o0
4.3 The adaptive filtering of boundary-pixels for-directional prediction of mode 5. .
4.4 Overview of the combined-inter and intra.predictions.
4.5 The unified systolic architecture for inter and intra predictions.

4.6 The operation of 6-tap filtering

4.7 Input scheduling of the proposed systolic array that uses two-input broadcasting.

4.8 Data flow of sub-pel interpolation of chrominance samples.
4.9 Execution cycles for the P_4x4 mode. SA: Systolic array. (a) Luminance com-
ponent. F1 to F9 indicate the lines of motion-compensated full-pels. M1 to M9
are the lines of temporal results after the first filtering. T10 to T13 are the trans-
posed lines of M1 to M9. HO to H3 are the final interpolated lines of sub-pels.
(b) Chrominance component. A to I indicate the motion-compensated full-pels.
T, to Tg indicate the temporal results after the first filtering. R; to R, are the
final interpolated sub-pels

4.10 Data paths for intra prediction.

-Xiii-

35

40
41
42
43

47

47
48
51
51
52
52
53

55

CHAPTER 1

Introduction

1.1 Overview of Thesis

1.1.1 Overview of H.264

H.264 (also known as MPEG-4 AVC) is a video coding standard jointly developed by ITU-
T VCEG group and MPEG video group with a mission to significantly improve the coding
efficiency. As compared to the prior coding standards MPEG-1/-2/-4 and H.261/263, H.264
achieves a coding gain by a factor of 2. With such a revolutionary breakthrough, it attracts wide
attentions and is adopted in many applications such as streaming, storage, mobile networks,
portable multimedia devices, and high definition digital television.

The coding gain of H.264 is achieved by efficiently exploiting spatial and temporal redun-
dancy. For better temporal prediction, new coding tools such as long-term prediction, multi-
ple reference frames, motion compensation with variable block size, in-loop filter, and 1/4-pel
motion compensation are developed. In addition, for exploiting spatial redundancy, an intra
prediction technique is adopted. Further, to reduce bit rate, a context-adaptive entropy coder is

deployed. The following briefly summarizes the features of each coding tool.

-1-

Chapter 1. Introduction

e Long-Term Prediction: The prediction of a picture can refer to a prior coded picture
that is not right before the current one. For sequences with periodic content, long-term
prediction offers coding gain by having more flexibility on the selection of reference
picture.

e Motion Compensation with Variable Block Size and Multiple Reference Frames:
Motion compensation can be done by partitioning a macroblock into a few number of
sub-blocks and each sub-block can refer to a larger number of pictures that have been
coded and stored. The features of variable block size and multiple reference frames offer
better trade-off between texture and motion information as well as better adaptation for
macroblocks with varying characteristics.

e 1/4-pel and 1/8-pel Motion Compensation: The prediction can come from 1/4-pel sam-
ples (or 1/8-pel for chroma) that are generated by using the interpolation with full-pel
samples as input. The sub-pel motion compensation with higher accuracy improves the
prediction efficiency by reducing the aliasing:from sampling.

e Intra Prediction: An intra-coded block can be predicted from the edges of the adja-
cent and previously-coded:-blocks. -Particularly,-the prediction can come from different
directions.

e Transform with Variable Block 'Size: “The 4x4 integer transform and 8x8 DCT trans-
form can be adaptively selected for a macroblock. The 4x4 integer transform can remove
ringing artifact while the 8x8 DCT provides higher coding efficiency for smooth area. In
addition, a double transform could be applied for the DC coefficients belonging to the 16
4x4 blocks within a macroblock.

e Context-Adaptive Entropy Coding: The entropy coding is done in a context-adaptive
manner. The value of prior coded syntax elements (or bins) could be used to select the
probability model or table for the coding of following syntax elements (or bins). Higher
coding efficiency is achieved by using conditional probability models.

e In-loop De-Blocking Filter: A de-blocking filter is placed in the prediction loop to re-
move the blocking artifact for the reference picture so as to improve the quality of the
reference picture and prediction efficiency.

While more correlations are used for coding, it suggests that stronger data dependency

Chapter 1. Introduction

exhibit between successive computations and more buffers are required. Moreover, the very
different types of predictors imply that intensive computations are inevitable. Also, the het-
erogeneous building blocks and operations bring new challenges to a system design such as
synchronization, data flow control, error handling, buffering, software/hardware concurrency,
and so on.

With these design challenges, the SoC implementation for H.264 codec becomes much more
difficult than prior coding standards. Due to the complexity of H.264, a proper top-level archi-
tecture is the key to shorten design cycle and increase chances of first-time silicon success. With
a system having heterogeneous building blocks, the design regression would be time-consuming
and the loss of cost is significant if the system architecture has any errors. The following in-
troduces a new SoC design philosophy, transaction level modeling, which allows us to explore
the design spaces at system level by providing trade-off between implementation details and
simulation accuracy. In this thesis, we also present a H.264 decoder developed based on such a

design methodology.

1.1.2 Transaction Level Modeling

For ensuring the quality of the design, the SoC design flow involves various types of verification
and validation. Figure 1.1 shows the traditional design flow, which can be roughly partitioned
into two parts: (1) hardware development and (2) software development. As shown, the design
flow starts with the requirements of the applications, from which the specifications of the design
are defined. Further, according to the specifications, the tasks are partitioned and the system
architecture is determined. After that, the hardware and software developments are initiated.
For the hardware development, the design go through modeling at different levels of ab-
stractions, which include (1) algorithmic level, (2) RTL level, (3) gate level, and (4) physical
level. Different issues are addressed at different levels of abstractions. At algorithmic level,
the algorithms for the given task are studied. At this level of abstraction, we try to reduce the
complexity by minimizing the number of operations and the size of memory. Further, given the
algorithm, the RTL description maps the algorithm into hardware architecture. The data trans-
fer from one register to another register at the cycle boundary is captured. Further down to gate

level, the things happen in a cycle are extracted. The gate delay information within a pipeline

-3-

Chapter 1. Introduction

—P{ Requirement Definition

Specification
Dewelopment

Specification
Model

| System Architecture Design regression
Model Dewelopment

v

Hardware FPGA
RTL Dewvelopment Prototype

| ; 3

Synthesis Software Dewelopment

v

System Integration =
A and Verification with RTL [

Placement and Route

v

Chip Fabraction

Figure 1.1: Traditional SoC design flow including-hardware and software development.

stage is obtained. Thus, the timing is checked-and the functionality is verified. After the syn-
thesis, the placement and route is conducted. IMore accurate timing information including wire
and gate delays can be extracted. As illustrated, while the design starts from algorithmic level
to physical level, more implementation details are discovered. The level of abstraction helps us
to develop the hardware in a hierarchical and efficient manner.

For the software development, it is developed and verified after the system prototype is
available. Normally, the system prototype is made of FPGA and board level components which
may include CPU, memory, bus, 1/O interface and so on. The FPGA helps to verify the hardware
design while the other components emulate the target design. For verification, the interaction
between software and hardware as well as timing information are tested. Generally, the software
is verified and developed after the RTL descriptions of the hardware are available. After both
hardware and software are developed, the system integration and verification are done by using
either RTL or emulation board.

The traditional design flow poses some problems for the SoC design in which the system in-

cludes more functionality and has higher complexity. Firstly, errors or misunderstanding could

-4-

Chapter 1. Introduction

easily occur between software and hardware because of independent development. Secondly,
since system integration is started after software and hardware are available, any errors found in
this stage could incur time-consuming regression process, which makes time to market become
another issue. Thirdly, the complexity of the system could reach to a point that system level
RTL simulation become inefficiency and meaningless. Although using FPGA for emulation
could improve the efficiency, the emulation environment may not be exactly the same as the
target design. Thus, the verification may not be done thoroughly. In summary, the traditional
design flow cannot assure the reliability and quality of the design. It has difficulty to assure the
first-time design success. Apparently, we need a new design methodology that improves the
design quality and verification efficiency as well as reduces the time to market.

Recently, a modeling technique called transaction level modeling (TLM)[1][2][5][6] is pro-
posed to address the problems of SoC design. It introduces an additional level of abstraction
between system specification and RTL description. The purpose of TLM is to create a system
architecture model that address issues at system-level while maintaining necessary modeling
accuracy. From the system perspective, the implementation details for each component are not
the focuses in the early development phase. Instead, we do care about the system parameters
such as the partition of tasks, the functionality of each component, the topology that connects
different components, the communication praotocol between components, and so on. The TLM
is to hide unnecessary implementation details within a component and establish a system archi-
tecture model that describes the system behavior. Due to the absence of implementation details,
the TLM can simulate at a speed which is much faster than traditional RTL model. Also, it can
exactly model the target platform. With faster simulation speed, it further helps on the explo-
ration of design spaces and the reduction of the period for design regression. In addition, the
TLM model serves as the unified platform for detailed software and hardware development. By
using the TLM, the system verification and integration is started in the very beginning of the
design flow, which significantly improves the chances for first-time silicon success. In terms of

these advantages, the TLM nowadays attracts more attentions in the SoC design.

Chapter 1. Introduction

| SDRAMO | SDRAML1 SDRAM2 | SDRAM3 |

Hal'rr?,;ﬁtare Bit-stream Video Pipe— HDMI
Interface HIFQ CABAC,|Q/IDCT,DF, 11P,DeBlock, Delnterlacer Interface

Figure 1.2: Overview of the system architecture.

1.1.3 System Level Modeling — H.264 Decoder

In this thesis, we propose a hardware.architecture for the H.264 decoder that conforms to High
profile at Level 4 (HP@L4). Moreover, we-Verify.the system architecture using TLM. Fig. 1.2
depicts our system architecture, which mainly consists of the following components:
1. ARM 9 CPU.
32-bit AHB control bus.
128-bit AHB data bus.
Dedicated hardware vide pipe.
External memory interface (EMI).
Hardware input interface.

HDMI interface.

N g s~ WD

In our architecture, the bitstream is input from the hardware input interface and the decoded
video is output through the HDMI interface. For the decoding, the ARM 9 CPU interprets the
sequence parameter set, picture parameter set, and slice header. Then, it programs the hardware
video pipe, which decodes the syntax elements under the slice data layer, via the 32-bit control
bus. Particularly, during the decoding, the decoded frames/fields and the associated motion
vectors are stored in the external DRAM. Thus, a dedicated 128-bit data bus is allocated for

those modules which need intensive access to the DRAM.

Chapter 1. Introduction

For the decoding of slice data layer, the hardware video pipe contains the modules CABAC,
IQ/IDCT, Data Fetch, Inter and Intra predictor, De-blocking, and De-interlacer. The CABAC
operates at macroblock level while the other modules conduct computation at logical 8x8 block
level, where each logical 8x8 block includes one 8x8 luma block and two 4x4 chroma blocks.
In addition, since the data fetch, de-blocking, and de-interlacer modules shares the DRAM and
the data bus, a bus arbitration policy is proposed to schedule the DRAM access. The details will
be presented in Chapter 3.

To verify the system architecture, we use the techniques of TLM. In particular, the CABAC,
IQ/IDCT, and de-blocking are done in pure C++ while the data fetch, inter and intra predic-
tions, as well as de-interlacer are modeled with approximate-timed TLM. In addition, the ex-
ternal memory interface and the DRAM are modeled at register-transfer-level (RTL); that is,
those modules are described in Verilog. Thorough the simulation, we show the advantages and

necessity of TLM. Also, we demonstrate how such a TLM model can be progressively refined.

1.1.4 Module Design — Inter and Intra.Predictions

In addition to the system level modeling;-we-also propose a unified systolic-based architec-
ture for the inter and intra predictions in H.264 decoder. In H.264/AVC [7], the inter and intra
predictions are used to improve coding efficiency by using temporal and spatial redundancy.
Comparing with the existing standards H.261/2/3 and MPEG-1/2/4 [8], these prediction tech-
niques save up to 50% bit rates while providing similar perceptual quality.

However, the coding gain is at the cost of additional computations. In intra prediction,
the mode-adaptive predictor is generated by a 1-D filtering, which is conducted along with the
boundary pixels of a block. Similarly, the half-/quarter-pel predictor in the inter prediction is
produced through a separable 2-D filtering with the motion compensated blocks of variable
size. Both predictions require intensive filtering operations which poses challenges to real-time
applications. Moreover, the adaptive and irregular filtering makes hardware implementation
more difficult.

For the inter and intra predictions, most of the prior works implement the FIR filter based on
the traditional adder-tree structure [9][10][11][12][13][14][15], where filtering is implemented

by a number of adders and shifters. In such a straightforward implementation, common terms

-7-

Chapter 1. Introduction

between consecutive filtering operations are not reused. Moreover, multiple input samples are
simultaneously latched for one filtered output causing higher input bandwidth.

In addition to less efficient FIR design, the inter and intra predictions are generally im-
plemented by two separated modules due to the difference in their operations. However, in
decoder, the prediction mode of each macroblock is known in advanced. Thus, using separated
data paths for inter and intra predictions causes poor hardware utilization.

This thesis presents a unified systolic-based architecture for inter and intra predictions for
H.264/AVC decoder. To increase hardware utilization and minimize cost, we combine inter and
intra predictions by a re-programmable FIR filter, which is further implemented using systolic-
based array. For intra prediction, the boundary pixels are reshuffled before feeding into the
systolic-based array. For inter prediction, the 2-D interpolation is conducted through separa-
ble 1-D filtering. As compared with the state-of-the-art approaches, our architecture provides
higher performance while maintaining relatively lower cost and input bandwidth. Specifically,
up to 4x throughput improvement has been achieved. Moreover, the input bandwidth is signifi-

cantly reduced. Further, combining inter and intra predictions saves the cost by 22~88%.

1.2 Organization and‘Contributions

In this thesis, we present a high level modeling technique, transaction level modeling (TLM),
for the SoC design. Moreover, we use H.264 video decoder as an example and use TLM to
verify the proposed system architecture. In addition, we also propose a unified systolic-based
architecture for intra and inter predictions in H.264 decoder. As compared with the state-of-
the-art designs, our design has higher throughput, but lower cost and power. For more details
of each part, the rest of this thesis is organized as follows:

Chapter 2 introduces the concept of TLM and shows its benefits in designing SoC. Firstly,
the bottleneck of traditional SoC design flow is presented. Then, we introduce the concept of
TLM and illustrate how the TLM can be realized by using SystemC.

Chapter 3 describes the system architecture of our H.264 decoder and addresses the design
issues at system level. Specifically, the design of the hardware video pipe, the system schedul-

ing, the buffer allocation, and the bus arbitration policy are described. In addition, an optimal

Chapter 1. Introduction

solution for the bus arbitration policy is proposed based on the assumption that the input and
output rates are of Poisson distribution. Lastly, the software architecture for the TLM is dis-
cussed.

Chapter 4 shows the proposed systolic-based architecture for the intra and inter predictions.
We show that combining inter and intra predictions by systolic-based architecture can signifi-
cantly reduce the cost while the performance is also improved.

Lastly, Chapter 5 summarizes our works and illustrates the research activities in the future.

CHAPTER 2

Transaction Level Modeling

2.1 Introduction

As described in the previous chapter, the traditional design methodology can not satisfy the
need for the design of complex system. The reason is that many unnecessary implementation
details are captured for the system-level modeling. Thus, the simulation speed could be so slow
that the verification at system level may not be done thoroughly.

Recently, a modeling technique called transaction level modeling (TLM) is proposed to ad-
dress the system-level modeling. The idea is to introduce another level of abstraction between
the system specification and its RTL implementation so that unnecessary implementation details
can be hid from the system-level modeling. As far as the system is concerned, the implemen-
tation details for each component are not the focuses in the early development phase. Instead,
the system parameters, such as the partition of the tasks, the functionality of each component,
the topology that connects different components, the communication protocol between compo-

nents, the memory hierarchy, and so on, are of more interest.

-10-

Chapter 2. Transaction Level Modeling

A

specification model More Accurate

(3)
wt @@
Timed
(2) &)
Approxiate__ @ @

-Timed

1)
% {6// iy Un-Timed__@ @

Un-Timed Approxiate Cycle- More Accurate
-Timed Timed
Implementation model .
Computation

@) (b)

Communication

Figure 2.1: System models at different levels of abstraction [1].

This chapter presents four types of TLM including (1) the PE-assembly model, (2) the
bus-arbitration model, (3) the cyclesaccurate computation model, and (4) the timing-accurate
communication model. In addition, we show'the benefits of introducing TLM in the SoC design

flow. Lastly, we illustrate how TLLM can be‘realized by-using SystemC.

2.2 Definitions of Transaction Level Modeling

Figure 2.1 (a) shows the system models at different levels of abstraction. According to the mod-
eling accuracy in computation and communication, each model represents an operating point in
Figure 2.1 (b), where the bottom-left corner stands for the specification of the system while the
top-right corner denotes the detailed implementation at register-transfer level. Particularly, only
the four modules, PE-assembly model, bus-arbitration model, time-accurate communication
model, and cycle-accurate computation model, are considered as the TLM. In the following, we

will describe each model in detail.

2.2.1 Specification Model

Specification model describes the system functionality without any implementation details.

Generally, the specification model is described in high level languages such as C/C++, Java

-11-

Chapter 2. Transaction Level Modeling

B4
VA = \2+v3;
c=sequ(vd);

Figure 2.2: Example of the specification mode [1].

and so on. Such a model normally has no concept of timing, system architecture, and hardware
implementation. Figure 2.2 illustrates an example of the specification model, in which the build-
ing blocks B1, B2, B3, and B4 define_the operation of the system. In addition, the variables v1,
v2, and v3 represent the data transfer among different processes. As shown, the processes are
executed sequentially and the data transfer among processes is done by transferring the address

of the variables.

2.2.2 Implementation Model

Different from the specification model, the other extreme case is the implementation model,
which describes the system with detailed implementation and is usually done with the hardware
description languages such as Verilog, VHDL and so on. Normally, at this level of abstraction,
the data transfer is at register level and the timing is of cycle accurate. Figure 2.3 illustrates
an example of the implementation model, in which the PE1 and PE2 are the tasks executed
on micro-processors while the PE3 and PE4 represent the tasks done by customized hardware
modeled at register-transfer level (RTL). As you can see, the connections between all modules

are pin-accurate. Moreover, the task is executed in a cycle-by-cycle manner.

-12-

Chapter 2. Transaction Level Modeling

PEL PE2
MOV r1,10
MUL ri,r1rl MLA r1,r2,r2,r1

== M

C Interconnect Network)
s s | = s s

PE4 PE3

—n

o0

Figure 2.3: Example of the implementation model [1].

2.2.3 Transaction Level Model

TLM provides more flexibility on selecting the level of abstraction for modeling. Generally,
TLM can be classified into four'types: (1) -the RPE-assembly model, (2) the bus-abstraction
model, (3) the timing-accurate communication model,-and (4) the cycle-accurate computation

model. Each model has its own property, characteristic, and design purpose.

2.2.3.1 PE-Assembly Model

The PE-assembly model is to verify the correctness of the functionality and the data flow. In
the PE-assembly model, the system is made up with multiple processing elements connected by
channels. Different PEs executes concurrently and the data transfer among PEs is done through
the channels, which are generally modeled by first-in-first-out (FIFO) buffer.

As compared to the specification model, the PE-assembly model has a rough view of system
architecture. The sequential operations are now replaced with concurrent computations. In
addition, the data transfer is modeled by FIFO, which is more similar to actual implementation.
Particularly, the channel at this level of abstraction does not use any bus protocol and arbitration
scheme. It is simply responsible for data transfer and synchronization. An example is shown in
Figure 2.4 (a), where the PE3 needs both the intermediate variables v1 and v2 for computation.

Note that the value of v1 is transmitted through the channel cv11 while the value of v2 is passed

-13-

Chapter 2. Transaction Level Modeling

PEL PE4
Bl Arbiter

V1 = a*a, ll
— e I
ii (| €e21D (]I
Y
VG2 (2
PE2 (|2 |
PE2
B2 . B4
B2 1:master interface VA = V2B
— (2 D— V2 = v1+b*b; 2:slave interface T .
V2= Vb W =2 hg; 3:arbiter interface c=sequ(wd);
c=sequ(v4);
(a) (b)
PE4 PE4
Arbiter Arbiter
PEL PE3 PE1 PE3
Bl Bl
w=ag MG M @ ‘ v=a @ .
N N\
il n N N
) G &) © s © ©
il / il I /
PE2 (]| 1) @ / PE2 {li 1) @ /
O 'O
B2 L:master interface @ B2 1:master interface @
V2 = Vl+b*b; 2:slawe interface V2 = V1+b*Db; 2:slawe interface
3:arbiter interface 3:arbiter interface
4:wrapper m 4:wrapper m
(©) (d)

Figure 2.4: Four types of TLM.:(a) The PE-assembly. model. (b) The bus-arbitration model.
(c) The timing-accurate communication model. (d) The cycle-accurate computation model. [1]

through the cv2. Also, the value of v1'is buffered in the cv11 before the value of v2 is pushed
into the cv2. In this example, the PE3 can only start the computation when both v1 and v2 are
buffered in the channel. As a result, the channels not only transfer the data but also synchronize

the computations among different PEs.

2.2.3.2 Bus-Arbitration Model

The bus-arbitration model is to further refine the communication part of the PE-assembly model.
Compared with the PE-assembly model, the bus-arbitration model includes more details in com-
munication part. In some platform-based designs, the data transfer among different modules
may not be through hard-wired connections. Instead, a centralized bus could be used to keep
flexibility. An example is shown in Figure 2.4 (b), where the data transfer among PE1, PE2 and
PE3 is done through a centralized bus. From the system perspective, the protocol of the bus and
its arbitration scheme are critical to the system performance. Thus, the bus-arbitration model

can help to verify the design of the communication part.

-14-

Chapter 2. Transaction Level Modeling

2.2.3.3 Timing-Accurate Communication Model

The timing-accurate communication model (as shown in Figure 2.4 (c)) is a refined version
of the bus-arbitration model. Compared with the bus arbitration model, the timing-accurate
communication model has more details in communication part. Precisely, the bus-arbitration
model only cares about whether the data transfer is correct in a specific method while the timing-
accurate communication model also considers the timing and signal transition for every data

transaction.

2.2.3.4 Cycle-Accurate Computation Model

The cycle-accurate model is also a refined version of the bus-arbitration model. Compared with
the timing-accurate communication model, the cycle-accurate computation model refines the
computation part instead of the communication part. However, depending on the requirement,
not all of the modules must be refined.to'cycle-accurate. An example is shown in Figure 2.4
(d), where only PE3 is refined in.cycle-accurate while both PE1 and PE2 are remained the
same. Such flexibility allows us-to‘provide trade-off between simulation speed and modeling
accuracy. Note that wrappers could be required-to interface the modules modeled at different

levels of abstraction.

2.2.3.5 Comparison

Table 2.1 summaries the characteristics of different system models. As shown, different models
capture different degrees of accuracy in computation and communication. The specification
model and the implementation model represent the two extreme cases, where the system model
specifies the functionality of the system while the implementation model defines its implemen-
tation at register-transfer level. The models in between are the four types of TLM, which offers

the flexibility on selecting the simulation accuracy and speed.

2.3 Design Flow with Transaction Level Modeling

As described in Section 1.1.2, traditional design flow can not ensure the quality of the design

when the system complexity increases dramatically. This section presents a new SoC design

-15-

Chapter 2. Transaction Level Modeling

Table 2.1: Characteristics of different abstraction models.

Figure 2.5: Design flow with transaction level modeling [2].

I—»

Dewvelopment

Specification
Model

System Architecture and
TLM Development

sSw
Design

R

and .
Deeloprment <—>| HW Refinement |<—>

) 4

RTL

HW
\erification
Environment

Dewvelopment

Models Communication Computation =~ Communication PE Interface Implementation
Time Time Scheme Detail

Specification Model no no variable (no PE) -
PE-Assembly Model no approximate message-passing abstract PE allocation,

channel process PE mapping
Bus-Arbitration Model approximate approximate abstract bus abstract bus topology,

channel bus arbitration
Timing-Accurate time/cycle approximate detailed bus abstract detailed bus
Communication Model accurate channel protocol
Cycle-Accurate approximate cycle accurate abstract bus pin accurate RTL/ISS PEs
Computation Model channel detailed bus protocol
Implementation model cycle accurate cycle accurate wire pin accurate or RTL/ISS PEs

—>| Requirement Definition
v
Specification

flow with TLM as the common platform for concurrent software and hardware development.

The new design flow mainly comprises two parts, which are (1) the new system-to-RTL exten-

sion and (2) the traditional RTL-to-layout flow. The first part is different from that used in the

past while the second part is remained the same.

Figure 2.5 depicts the new system-to-RTL extension. As shown, after the specification is

defined, the system architecture is developed and verified by using TLM. Upon the complete-

ness of the TLM model, it is used as an unique reference to both software and hardware teams.

-16-

Chapter 2. Transaction Level Modeling

For the software team, the embedded software is developed and verified based on the TLM
model. For the hardware team, the TLM serves as the golden model for the detailed implemen-
tation. Along with the development of software and hardware, the TLM model can be annotated
with more accurate timing information. Consequentially, not only the functionality but also the
timing can be jointly verified. Different from the traditional design flow, the new design flow
performs system integration and verification in the very beginning, which is the key for ensur-
ing the quality of the design. The following summarizes the functionality of TLM in the SoC

design flow:

1. Verification model for design space exploration.
2. Platform for early software development.

3. Specification and golden model for hardware development.

Nowadays, EDA tools are still not capable of automatically converting TLM to detailed
hardware implementation. The hardware refinement is still done through a traditional paper
specification and RTL coding. TLM appears to.be‘an extra workload and unnecessary task.

However, it still brings many bengfits that significantly-reduces the time to market:

1. System integration at the early stages-so that'the potential problems can be found and
solved earlier.

Faster simulation speed while maintaining the accuracy of simulation.

Concurrent software and hardware development.

Platform for software/hardware co-design and co-verification.

a > w0 DN

Incremental hardware refinement and implementation details by means of hybrid abstrac-

tion level modeling.

To show the benefits of TLM, Figure 2.6 illustrates the timeline for the development of SoC.
The arrows highlight the differences between traditional design method and the one with TLM.
The time scale in the figure depends on the project size, system complexity, and the makeup
of the system component. Although writing a TLM model lengthens the architectural design
phase, it enables earlier software implementation and architecture verification. Therefore, the
design flow with TLM can reduce the overall development cycles. Besides, TLM has abilities
to provide earlier and more realistic hardware/software trade-off at a time when changes are

easier. Thus, the overall system quality is improved.

-17-

Chapter 2. Transaction Level Modeling

Schedule Motivation

Architectura
Design

SW Development

SW Verification Y W
: Ce————
HW Design - ; 3
HW Functional : 2
Verification '-: - ":- =
HW Implementation S e ; 3 3
System Verification : m —
T T T2 T3 T4 TS T6 W T8 19

Figure 2.6: Comparison of design schedule between the traditional design flow and the one
with transaction level modeling [2].

2.4 Transaction Level Modeling with SystemC

The SoC systems typically contain application-specific hardware and software. Both the hard-
ware and software are developed-with a-very-tight.schedule. Moreover, the systems have very
rigorous constraints on performance. Therefore, the functional verification must be done thor-
oughly so as to avoid expensive and semetimes catastrophic failures. Obviously, traditional
hardware design languages such as VHDL and Verilog are not suitable for modeling at system
level due to the lack of capability for traversing through different levels of abstraction. For

improving the productivity, a design language for system level modeling is required.

2.4.1 Features of SystemC

SystemC, which is a class library built on top of the well established C++ language, is one of
the candidates for TLM. It accepts original C/C++ syntax and additionally introduces a simu-
lator that incorporates the concept of concurrent execution. The primary goal of SystemC is to
enable system level modeling that includes both software modules, hardware modules and the
combination of the two. With C++ syntax, it is easier to describe the behavior of a module in
the very beginning from there the implementation detail can be developed later. Moreover, the
simulator that includes the timing information allows us to model the concurrent execution of

different modules. Furthermore, there are many tools that support co-simulation with SystemC

-18-

Chapter 2. Transaction Level Modeling

¥

&

Module1 Hierarchical I Module2

| Channel

4 E=——rnd

o=

L — {

Figure 2.7: Separated computation and communication in SystemC

and RTL. As a result, one of the advantages of using SystemC for modeling is that one can
develop models above RTL level and refine them to RTL level within the same environment.

To allow progressive refinement of system design, SystemC separates the computation and
the communication. An example is shown in Figure 2.7. The computation part may be com-
posed of different modules containing one or more processes while the communication part
implemented as "channel™ can also include many processes. The different computation mod-
ules can exchange data through their:ports connecting with channels by calling "interface func-
tions". The only thing the computation part knows.about the communication is how to transfer
data between different modules by using interface functions of communication. With the sepa-
ration of computation and communigation, the designs for these two parts can be independently
implemented and separately refined from algorithmic level to RTL level.

The capability of separated implementation for computation and communication is the key
for transaction level modeling. Such modeling philosophy allows us to implement the computa-
tion part and the communication part at different levels of abstractions. As described in Section
2.2, TLM may have different levels of timing resolution for computation and communication.
In the very beginning for developing TLM, the computation and communication parts may have
no concept about timing. The only thing one can verify at this stage is the correctness of func-
tionality and data flow, which is one of the purposes for system level verification. After detailed
micro-architecture is completed, one can refine the computation or the communication part to
have approximated timing or cycle-accurate timing. However, it should be noted that the more
details that are captured by the TLM, the slower is the simulation speed. In a special case where
both computation and communication parts are of cycle- and pin-accurate, the TLM will then

become almost the same as RTL. With such implementation details, the simulation speed could

-19-

Chapter 2. Transaction Level Modeling

be too slow to thoroughly verify the design. Thus, how to provide trade-off between simulation

speed and accuracy is critical to the completeness of system level verification.

2.4.2 Implementation Using SystemC
2.4.2.1 Modules and Processes

SystemC offers two types of methods for implementing the concurrent processes contained in a
channel or a module: sc_method and sc_thread.

The sc_method is the most basic type of simulation process. It works like "always" block
in Verilog language and can be triggered by clock, event, or any signals. Different from
sc_method, sc_thread is only invoked once and will not suspend itself until the wait function is
executed. The wait function is to suspend the execution of current process and hands over the
control of execution to other processes. Depending on whether the TLM is timed or untimed,
the events in wait function or the ones for triggering the sc_method can have timing informa-
tion. The resolution of timing information can be arbitrarily determined according to the details
that should be captured.

Figure 2.8 gives two examples'of module implementation using the sc_thread and sc_method,
respectively. As shown in the figure, a‘module:may consist of ports, processes, as well as mem-
ber functions and variables. The ports define the interface with which a module can commu-
nicate with the others. The processes, on the other hand, specify the operations for a module.
Further, the process can be encapsulated by sc_method or sc_thread so that it can be triggered
by a set of pre-defined events. In moduleA, the process is triggered whenever the signal con-
nected to the port of clk_p is changed. In this example, the moduleA firstly writes a value to
moduleB through the channel and then suspend for 1 cycle. When the next event is raised, the
moduleA further read a value form moduleB. On the other side of the channel, the moduleB
responses to the request of moduleA by setting or returning the internal variable "result”, which
is increased by 1 whenever the process is triggered.

In SystemC, the simulation speed can be improved by reducing the number of context
switch. In the example of moduleA, one must suspend the execution of a process contained
in sc_thread so that the other processes can be granted for execution. Compared to traditional

hardware description languages such as Verilog and VHDL, one can control the number of con-

-20-

Chapter 2. Transaction Level Modeling

/I\/IoduIeA.h h

class moduleA:

public sc_module {

public:
sc_in<bool>clk_p;
sc_port<master_if>bus_port;

wvoid A _process();

SC_CTOR(module AY{
SC_THREAD(A process);

/I\/IoduIeA.cpp

~

wvoid moduleA:: A process() {

int data;

data=0;

while(true){
bus_port->channel_write(&data);
cout << 'Writing data=" << data << endl;
wait();
bus_port->channel_read(&data);
cout << "reading data="<< data << endl;

sensitive << clk_p; wait();
dont_initialize(); }
} }
+
\ VAN
/I\/IoduIeB.h \ fl\/loduIeB.cpp

AN

class moduleB : public slave_if ,
public sc_module
{
public:
sc_in<bool> clk_p;

wvoid B_process();
woid mem_read(int *data);
wvoid mem_write(int *data);

SC_CTOR(moduleB){
SC_METHOD(B_process);
sensitive << clk _p;
dont_initialize();

>

private:
int result;

Q

wvoid moduleB::B_process() {
result=result+1;

wvoid moduleB::mem_read(int
*data) {

*data=result;
}
wvoid
moduleB::mem_write(int
*data) {

result="*data;

}

AN

J

Figure 2.8: Example of module implementation using sc_thread and sc_method.

text switch by properly determining when the execution should be switched to other processes.
However, it should also be noted that the number of context switch could be reduced at the cost

of losing model accuracy.

2.4.2.2 Channels and Interface Functions

For implementing the communication part, SystemC provides two types of channels: primitive
channel and hierarchical channel.
The primitive channel is created for providing simple and fast communications. In the

primitive channel, there is no hierarchy, ports, and methods. Besides, the primitive channel

-21-

Chapter 2. Transaction Level Modeling

uses the request-update mechanism to resolve the issue of concurrent read and write access;
that is, when a value is passed to a module through the primitive channel, and the read and write
operations are executed concurrently; the module will get the old value instead of the updated
one. Such a request-update mechanism is helpful in modeling the hardware pipeline when using
the primitive channel.

In contrast, the hierarchical channel is more flexible in a sense that it acts like a module.
Actually, in SystemC, the difference of hierarchical channel and module only exists in users’
minds. There is no difference from the perspective of the simulator. In other words, what can be
done in a module can also be done in a hierarchical channel. Normally, the hierarchical channel
is used to implement complex communication protocols with timed or untimed constraints.

The processes of a channel are implemented in the interface functions, which are the key for
separating the computation and the communication. For the process within a module, it com-
municates with other modules by calling the interface functions bound to the ports. Normally,
the definition of interface functions.is kept untouched when the TLM is refined to different lev-
els of abstraction. This feature ensures that the computation part and the communication part
are independent because the changes in the computation part or the communication part will
not affect the other.

Figure 2.9 shows the channel that connects moduleA and moduleB, as well as the cor-
responding interface functions. In this example, when moduleA transmits data to moduleB
through the channel, the data will be added with random noise. In this example, you can see
that moduleA only knows how to use the interface functions for transmitting data. However,
the details about how the data is transferred are hid by the interface functions. Thus, when the
channel is refined, the way moduleA transmits data is still remained the same. This is the key
idea of separating the computation and communication.

Figure 2.10 shows the overall architecture of the example. Compare with figure 2.7, this
example keeps the rule of separating the computation part and the communication part. After
the interface function is well defined, the modules and the channels can be implemented at the
same time. It will also reduce the modeling time. In addition, you can exchange the modules
or the channels as you want only using the same interface function. As a result, IP reusable is

another benefit of separating the computation part and the communication part.

-22-

Chapter 2. Transaction Level Modeling

/Channel.h

~

/master_if. h \

class chanrel : public master_if,
public sc_module

{
public:

sc_port<slawve_if> slave_port;
SC_CTOR(chanrel){

wvoid channel_read(int *data);
void channel_write(int* data);

2
\

class master_if : public virtual sc_interface
{
public:

// master interface

virtual void chanrel_read(int *data)=0;
virtual void channel_write(int *data)=0;
2

J

@annel.cpp

- J
N)

slave_if.h

wvoid channel::channel_read(int
*data)

slave_port->mem_read(data);
*data=*data+rand()/10000;
}
wvoid channel::channel_write(int
*data)
{
*data=*data+rand()/10000;
slave_port->mem_write(data);

}

-

class slave_if :
public virtual sc_interface
{
public:

// slawve interface

virtual void mem_read(int
*data)=0;

virtual void mem_write(int
*data)=0;
}

N J

Figure 2.9: Example of channel implementation and interface functions.

2.5 Summary

of first-time silicon success.

This chapter introduces a modeling technique, transaction-level modeling (TLM), for system-
level modeling. Specifically, the TLM is to introduce another level of abstraction between
the specification model and the detailed RTL model. By hiding unnecessary implementation
details in the early development phase, the TLM enables the exploration of design spaces and
the verification of system architecture. Moreover, it serves as a virtual platform for concurrent
software and hardware development. With the TLM, the system integration and verification is

initiated in the very beginning, which ensures the quality of the design and increases the chances

-23-

Chapter 2. Transaction Level Modeling

bus_port (master_if) slave_port (slave_if)

Module A Module B
o
clk_p
Call master_if functions Implement master_if functions Implement slave_if functions
via bus_port and Call slave_if functions via
slave_port

Figure 2.10: Top level connections for moduleA, moduleB, and the channel.

For the implementation of TLM, we present the SystemC library. In the SystemC, there
are 3 major components, which are process, channel, and interface function. The processes
define the operations of a component and can be triggered by a set of predefined events. In
addition, the channel specifies the connections among different components and the interface
function provides the means for a component to communicate with the others. Within a com-
ponent, the processes can call the interface functions for data transaction without knowing the
detailed implementation of the interface functions..Consequentially, by well defining the inter-
face functions, the communication part jand the computation part can be developed and refined
independently.

Another feature of the SystemC library s that the simulator is not preemptive; that is, the
designer must suspend the execution of a process so that the execution control can be switched
to another process. Thus, the frequency of context switch can be controlled by the designer,
which is a key to the trade-off between simulation speed and modeling accuracy. With so many
features, the SystemC library now becomes one of the most popular tools for TLM.

Due to the benefits of the TLM, it will become an essential step in the SoC design flow. In
the next chapter, we use H.264 video decoder as an example and demonstrate how TLM can be

used to describe the system architecture.

-24-

CHAPTER 3

Transaction Level Modeling of H.264

Decoder

3.1 Introduction

This chapter will describe the profile level of our H.264 decoder first. In most video coding
standard, different profile level will support different coding tools such as transform8x8, sup-
porting frame size, and MBAFF. As a result, the profile level definition is very important to the
complexity and cost of the overall system architecture. Next, the system architecture will be in-
troduced. The software and hardware partition, module partition and functionality, and system
scheduling are included. Then, some important issues are discussed such as buffer allocation,
control scheme, and so on. Finally, how we use SystemC to model our system of H2.64 decoder

in transaction level is shown up.

-25-

Chapter 3. Transaction Level Modeling of H.264 Decoder

3.2 Design Specification

In H.264 standard, there are many different profile levels which contain different coding tools
to improve the coding efficiency. Thus, different decoder design supporting for different profile
will be different in performance and cost. This section presents a design specification of decoder
conforming to high profile at level 4. Any bit-streams conforming to main/high profile with a
level lower than or equal to 4 shall be decoded. Specifically, the decoder supports the decoding
throughput up to 1920x1080i@60Hz. In the following, some properties of high profile and level
limits are listed.

1. Only I, P, and B slice types may be present.
No data partition.
Avrbitrary slice order is not allowed.
No slice group and no redundant picture.
chroma_format_idc in the range.of 0 to-1:
bit_depth_luma_minus8/bit=depth-,chroma, minus8 equal to 0 only.
gpprime_y_zero_transform_bypass_flag equal to'0 only.

Up to 16 reference frames. (32 referencefields).

© © N o g M w D

\ertical motion vector range does-not exeeed MaxVmvR as in Table 3.1.

[EEN
©

Horizontal motion vector range does not exceed the range of -2048 to 2047.75

[EEY
[EEY

. Up to 32 MVs per MB.
12. Number of bits per macroblock is not greater than 3200.
Moreover, Table 3.1 and Table 3.2 show more constraints of different profiles. With sum-
marizing these profile limits, we can start to design our micro-architecture of H.264 decoder to

satisfy all functionalities while minimizing the cost.

3.3 System Architecture

Figure 3.1 shows the overall architecture of this system, which is developed based on the ARM
platform. For the chip 1/O, the compressed bit-stream is input via a hardware interface, which
communicates with the host by a bridge, and the decoded frames are output to the monitor

via HDMI interface. The reference pictures, decoded pictures, and MVs for each reference

-26-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Table 3.1: Level Limits |

Level Max Max Max Max Max Vertical MV Min Max
number | macroblock | frame decoded video CPB size component compression | number
processing size picture bit rate MaxCPB range ratio of motion
rate MaxFS | buffersize | MaxBR (1000 bitsfs, MaxVmvR MinCR vectors
MaxMBPS (MB/s) | MaxDPB (1000 bitsf/s, 1200 bits/s, (luma frame per two
(MBI/s) (1024 1200 bits/s, cpbBrVclFactor | samples) consecutive
bytes for cpbBrVclFactor | bits/s, or MBs
4:2:0) bits/s, or cpbBrNalFactor MaxMvsPer2Mb
cpbBrNalFactor | hits/s)
bits/s)
1 1485 99 148.5 64 175 64,+63.75 2
1b 1485 99 148.5 128 350 64,+63.75 2
11 3000 396 3375 192 500 128,+127.75 2
12 6 000 396 891.0 384 1000 128,+127.75 2
13 11880 396 891.0 768 2000 128,+127.75 2
2 11 880 396 891.0 2000 2000 128,+127.75 2
2.1 19 800 792 1782.0 4000 4000 256,+255.75 2
2.2 20 250 1620 30375 4000 4000 256,+255.75 2 -
3 40 500 1620 30375 10000 10000 256,+255.75 2 32
3.1 108 000 3600 6 750.0 14000 14000 512,+511.75 4 16
3.2 216 000 5120 7 680.0 20000 20000 512,+511.75 4 16
4 245 760 8192 12 288.0 20000 25000 512,+511.75 4 16
Table 3.2: Level Limits 1
Level | SliceRate | MinLumaBiPredSize j|idirect 8x8_inference_flag | frame_mbs_only flag
1 - - - 1
1b - - - 1
1.1 - - - 1
1.2 - - - 1
13 - - - 1
2 - - = 1
21 |- - - -
22 |- :] :
3 22 - 1 -
3.1 60 8x8 1 -
3.2 60 8x8 1 -
4 60 8x8 1 -

picture are stored in the external RAM. All the data access to external RAM will go through the
memory interface.

Inside the chip, there is an embedded CPU and two AHB buses, which are control bus and
data bus. The control bus is used by CPU for data flow control and the data bus is used by DF,
De-blocking and De-interlacer for data transfer between these modules and external RAM. In
addition to the AHB buses, there are backdoor-to-backdoor connections between modules. The
modules connected by backdoor channel make up a video pipe, where its input comes from
bit-stream FIFO and its output is drive to the HDMI interface. Particularly, the data between

modules are exchanged on block by block basis with block size being 8x8 except for CABAC.

-27-

Chapter 3. Transaction Level Modeling of H.264 Decoder

: T T T)
’ SDRAM 0 ‘ SDRAM 1 ‘ SDRAM 2 | SDRAM 3 ‘

—
Harddware Input Interface External Memory Interface
M, M s
1
1
Subb/ock Processing Unit Sync e ™
NAL
Parsing
1P
FIFO
Bit-stream DB DI
I FIFO FIFO
MB Intra/Inter oMY

fed Interface
Prediction

S

Motion | DataSFetch
Buffer

Subblock
Reconstruct
Buffer

MB T
Texture | il IQ/ISDCT

CABAC
CAVLC
S

Delnterlacer
S,M

DeBlocking
sS,M

Buffer

Instruction Data AR)
Memory Memory CPU

Figure 3.1: System architecture diagram[3][4].

In this system, after CABAC.decodes the data above slice header, it will send an interrupt
to CPU and then CPU will fetchithe information in the headers of sequence, picture, and slice
from CPU through control bus. According to the information in sequence, picture, and slice
headers, CPU can configure the modules‘in‘the video pipe through the control bus for various
decoding modes. Each module can also be independently tested by CPU. The following briefly

describes our video pipe and system schedule.

3.3.1 Video Pipe

In our H.264 decoder, our video pipe contains seven modules which are CABAC, 1Q/IDCT,
Data Fetch(DF), Intra-Inter prediction(1IP), De-Blocking, and De-Interlacer. CABAC is the
first module in video pipe and the functionality of CABAC is decoding all bit-stream syntax.
Because our decoder processes luma and chroma components in parallel and CABAC can not
decode chroma components until all luma coefficients have decoded in one macroblock, it is
more efficient to make CABAC operate in macroblock level. Therefore, for saving the buffer
size, all other modules operate in eight-by-eight block.

After CABAC, IQ/IDCT and DF are following. The 1Q/IDCT module does the inverse

-28-

Chapter 3. Transaction Level Modeling of H.264 Decoder

IR R SR

nl
1
~

1Y
> ¢

(0]
NNy

©

L4
2 1g

— ’s 3

(a) (b) (c) (d)
Figure 3.2: Deblocking process order in eight by eight block

1O

2
4

o
~
E=3
-+

guantization and inverse discrete cosine transform of the residuals while the DF module is re-
sponsible for motion prediction and fetching reference block for Inter block and intra prediction
type decoding for Intra block. Following after the DF is IIP which produces the value of predic-
tion block for Intra and inter prediction and adds the results with the residuals from 1Q/IDCT.
Because we let IQ/IDCT start earlier one eight by eight block than IIP, it can make sure that 1P
always has the corresponding residuals.

After that, de-blocking is performed for reducing the blocking effect. Because 1Q/IDCT
starts earlier than 1IP by one eight'by eightblock cycle for keeping the correct data order, we
use three eight by eight block buffers between 1Q/IDCT, IIP, and De-Block. For example, when
IQ/IDCT is writing the third buffer and HP-is-writing the second buffer, De-Block is reading
the first block buffer. In addition, because debloeking has specific process order in macroblock
level but our process unit is eight by eight block, we must change the process order shown in
Figure 3.2 and still follow the rule in specification. In Figure 3.2, (a), (b), (c), and (d) present
the eight by eight block order in zig-zag scan of one macroblock and the number means the
process order in one block..

The last module is De-Interlacer which will work only when the source sequence is field.
The functionality of De-Interlacer is to translate a field picture to a frame picture. Because the
algorithm of De-Interlacer will use the previous, current, and next one field in display order, it
will also need amount of bus bandwidth. Besides, the fields for De-Interlacer and for reference

may be different. As a result, it will also increase the size of external memory.

3.3.2 System Schedule

Without a system schedule to control data flow in video pipe, it is possible that the functionality

of whole system is wrong even if every module is well verified. This section describes briefly

-29-

Chapter 3. Transaction Level Modeling of H.264 Decoder

our system schedule shown in Table 3.3. In the beginning of decoding, we need a initial period
to decoding bitstream above slice header by CABAC and to set the control registers of every
hardware modules by ARM CPU. After that, all hardware modules start to decode one by one.
When CABAC starts to decode the second macroblock in current slice, the first macroblock is
fed into the following modules in eight by eight block unit. As a result, IQ/IDCT and DF, 1IP,
and DeBlock process the different eight by eight block.

During the slice changes, the CABAC will detect the NAL unit first and start to decode the
slice header. When CABAC is decoding the slice, the hardware may stall depending on the time
the NAL unit is detected, slice header decoding speed of CABAC, and block decoding speed of
hardware modules. Table 3.3 shows the condition that hardware modules will stall. In addition,
when the picture changes, there is same condition as slice.

Looking into the hardware pipe, every module has different process time. As a result, when
a module finish current block, it does not mean that the module can process next block right
now because the input data may be not ready and it may over write the data which next stage is
using. In our decoder design, if ane module is‘finished, it will not start again until all hardware
modules are finished. Thus, for supporting real-time decoding, all modules must make sure that

they can finish their job in time.

3.4 Bus Arbitration Policy

In our architecture, the data bus and the external memory are shared by the data fetch, deblock-
ing, and deinterlacer modules. The data fetch module reads the reference block from the exter-
nal memory for motion compensation. On the other hand, the deblocking module writes back
the reconstructed block. In addition, the deinterlacer further reads the decoded fields buffered in
the external memory for display. Due to limited resources, different modules must be scheduled
for the access of bus and external memory.

To prevent the hardware from stall, each module needs to allocate a local buffer, which acts
as a first-in-first-out (FIFO) buffer, to store the input/output data before it is granted for access-
ing the bus and memory. Particularly, the size of the local buffer is determined by how frequent

a module is granted for accessing the bus. Moreover, it also depends on the consumption or

-30-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Table 3.3: System Schedule

Field(tl) Field(t2)
8x8 CABAC 1Q/IDCT P DeBlock Delnterlacer
Cycles and DF

Detect NAL Initial of sequence
Dec SPS
Set SPS_CR
Detect NAL Initial of fist picture
DecPPS 0
Set PPS_CR][0]
Detect NAL Initial of first slice
Dec SH 0
Set SH_CR]0]
0 POSOBO BO
1 POSOB1 POSOBO B1
2 P0OS0OB2 POSOB1 POS0OBO B2
3 POSOB3 POSOB2 POSOB1 POSOBO B3
POSOB3 P0OS0B2 POSOB1
POSOB3 POS0B2
: : POSOB3 :
479 POS0B479 : B479
480 Bubble POS0B479 Bubble
481 POS1B0 Bubble POSOB479 | . B480
482 POS1B1 POS1BO Bubble POSOB479 | B481
483 P0S1B2 POS1B1 P0OS1B0 Bubble B482
484 P0OS1B3 P0S1B2 P0OS1B1 POS1B0 B483
POS1B3 P0S1B2 POS1B1
POS1B3 P0S1B2
. . POS1B3 .
959 P0S1B479 B959
Detect NAL POSNB479 Bubble
Dec PPS_1
Set PPS_CR[1]
Detect NAL Bubble POSNB479 Bubble
DecSH 1
. Set SH_CR[1]
0 P1S0BO0 Bubble Bubble POSNB479 | BO
1 P1S0B1 P1S0BO0 Bubble Bubble B1
2 P1S0B2 P1S0OB1 P1S0BO Bubble B2
P1S0B2 P1S0B1 P1S0BO
P1S0B2 P1S0B1
P1S0B2

-31-

Chapter 3. Transaction Level Modeling of H.264 Decoder

v
vs]

v

Figure 3.3: Input and output configuration.

production rate of a module. With very different types of operations, different modules have
different input and output rates. Thus, our goal is to design a bus arbitration policy according
to these factors so that the total buffer size is minimized.

In the following, we present an optimal arbitration policy by assuming that the data arrival
rate (input/output rate) has Poisson distribution, which is widely used to solve such a queuing
problem and provides a good approximation to practical scenario. Then, from the optimal
solutions, we show the guidelines for designing the bus arbitration policy and buffer allocation.

After that, we present the bus arbitration policy and the buffer allocation scheme in our design.

3.4.1 Optimal Solution

3.4.2 Expected Buffer Size

The optimal bus arbitration policy'is'to minimize the sum of the expected buffer size. Before
we go further to describe the bus arbitration policy, the following firstly formulizes the expected
buffer size given the input and output rate. Figure 3.3 shows the configuration of the input and

output rate. Particularly, we assume

1. The input rate (arrival rate) is A, where X\ has Poisson distribution.
2. The output rate is u, where y stands for the consumption rate of a module and is also
characterized by Poisson distribution.

3. 1> A

Then, from the queuing theory, the expected buffer size E[B] can be derived as in Eq. (3.1).

BB = 2~ (3.1)

-32-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Memory
Al
Py Pzl Ps P
’B1HBzHBs‘ m
............... (1)
(a)

Figure 3.4: Input and output configuration with 3 PEs

3.4.2.1 Multiple Processing Elements with Consumption Model

To understand the cases with multiple processing elements that simultaneously read the memory
through a centralized bus, the configuration-in-Figure 3.3 is further extended to have multiple

processing elements. Figure 3.4 illustrates such aconfiguration, where we assume

1. There are N processing elements that share the bandwidth of a centralized bus, \.
2. Each processing element retrieves the data stored in the memory through the centralized
bus.

3. The processing element j has a consumption rate of j.;, where j = 1 ~ N and ;. =

Z;V_l i > A

The goal is to find the probability P;, i.e, the bus arbitration policy, that minimizes the sum

of the expected buffer size E[Brow] = E[Y B = > Mi@j < and satisfies the two
J= J= J

constraints:

1 p; > Py
N
2. § jzle:LWhereonggl.

The solution to the problem with the two constraints can be obtained by using the Lagrange

multiplier. According to the Lagrange optimization theory, the problem above can be for-

-33-

Chapter 3. Transaction Level Modeling of H.264 Decoder

B> [Re

(O—p P;0rP,

Figure 3.5: F values under the variations of 5 and P;.

mulized as to find the P; that minimizes the following equation, where P = (P, P,, P;, ...Py)

and —% is the Lagrange multiplier with 3 > 0.

N N
F(P,) = Z% - % (ZPj — 1) (3.2)

=1
Principally, the P* = (P}, Py,+PrF, ... Py).that minimizes Eq. (3.2) must be the root of the

following equation.

d s LBSE B 1 (&
—FP,ﬁ = J - — P -1
imF e = Bl gt (25))

ALt 1
_ 1 33
(=) -

= 0

Thus, we can obtain the optimal P; as follows. Note that we have excluded one of the two

solutions by imposing the constraint, j; > AP;.

Mg 1
=X ﬁ\/z (34)

By inspecting the values of 3 and ., it could happen that some of the processing elements
may have their P < 0. From Eq. (3.3), we learn that F'(P, 3), P;, and 3 have a relationship
as shown in Figure 3.5. It can be observed that the minimum buffer size for those processing
elements with 5 > \/g is reached when the probability P; is set to a negative value. However,

according to the constraint, P; must be a value greater than 0. Thus, we must choose the

-34-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Area filled wjth water B

Figure 3.6: Bus arbitration policy based on the principle of reverse water-filling.

P* = (Pf,P;, ..., P;,...P}) that meet the constraints. From Fig. 3.5, setting the probability
P; for those processing elements with 5 > “—Af to zero will reach the optimal solution. Thus,

the bus arbitration policy shall be as follows:

b_p %,whenogﬁg\/g
- e 65
0 ,When 3 > /3

In Eq. (3.5), the value of 3 is further constrained by the fact that Zjvl P; = 1. With the
condition in Eq. (3.5), the value of 5 can be obtained by using the principle of reverse "water-
filling™ conditions, which is also known as - Kuhn-Tucker conditions. For better understanding,
Figure 3.6 illustrates an example for such an idea, where each processing element is allocated
with a square with its dimension being proportional to “TJ As shown, for each processing
element, the area filled with water is equal to 5 “73 On the other hand, the area not filled with
water is equal to %l — Bﬁ and represent the value of P;. Thus, the /3 is the water line when
the summation of the area not filled with water is equal to 1. For the processing elements with

their squares being completely filled with water, the P; is set to 0.

3.4.2.2 Multiple Processing Elements with Production Model

The configuration in Figure 3.4 can also be altered to another extreme case, in which all the
processing elements write data to the memory through a centralized bus. Figure 3.7 illustrates

such a configuration, where we assume

1. There are M processing elements that share the bandwidth of a centralized bus, .

Chapter 3. Transaction Level Modeling of H.264 Decoder

(a)
q: Bi (= //I?:
a: [B, | 7 2

Figure 3.7: Input and output configuration with 3 PEs

2. Each processing element writes the data;to the memory through the centralized bus.

3. The processing element j has & production rate.of \;, where j =1 ~ M and px > Ap =
M
ijl A

The goal is to find the probability g¢;, i.€; thebus arbitration policy, that minimizes the sum

of the expected buffer size E[Broul = E[Zj\il B;] = ZM

j= 1‘1]“

and satisfies the two

constraints:

LA <gjp
22 q; =1, where 0 < ¢; < 1.

As in Eg. (3.2), the optimal solution g* = (g7, g3, ...}, ---¢3;) Must be the root of the

following equation, Where 5 1S the Lagrange multiplier with o > 0.

d d [N
e = g (S v (D))
= 1
B (q'u—ui')2+§ =
— 0

-36-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Thus, we can obtain the optimal ¢; as follows. Note that we have excluded one of the two

solutions by imposing the constraint, \; < g; u.

>
>

J + «

- J (3.7)
il

qj = ?;'
M

In Eq. (3.7), the value of « is further constrained by the factor that Z 4= land0 < g¢; <
‘7:

1. Since all the ¢; are positive number given o > 0, the ¢; that meet the two constraints must be

M
in [0, 1] . As a result, we can obtain the corresponding « by using the equation Z 1q;‘ = 1.
]:

M
Eg. (3.8) shows the value of « to reach ¢;, where Ay = Z

J=1

Al

M
L =24
j=1

M
B

=1 H

MM
Xl oy A
7=1

— — (3.8)

U

— A\
= o= Y A >0

— T
> VA
=1

3.4.2.3 Generalization

In the previous two subsections, we derive the two extreme cases, in which all the processing
elements either write data to memory or read data from memory. In this subsection, we present

a generalized case as illustrated in Figure 3.8, where we assume:

1. The bus bandwidth is \.

2. Assume there are N + M processing elements that share the bandwidth of a centralized
bus, where N denotes the number of processing elements that write data to memory and
M stands for the number of processing elements that read data from memory.

3. The expected size for the centralized memory is S.

-37-

Chapter 3. Transaction Level Modeling of H.264 Decoder

[(Ba] [B2] [Ba] e =
N A(l-n)ql/i(l'n)ng(l,n)q3 TTTnyan
y
Memory —— e T —
|B:| [B2] |Bas| oo B

(a)
—@—_ B \a-na
= 14(1%n)q2
_’@—’E(n)qx(l-n)
: : Memory;
: — :/1 1-n)gm
— @ B /O
(b)

Figure 3.8: Input and output configuration with 3 PEs

Goal: To find the probability ¢; and £;,which is the bus arbitration policy, that minimizes the
sum of the expected buffer size; E[Brotat] = E{Zilﬁj] + E[Z;V:l Bj] and satisfy the
constraints:

1. X' > A —)\, where the \" is the'equivalent bandwidth for the processing elements that

read data from the memory. Note that A" > %)\.

2. ;> NP

&(A—X)%>uf

To solve the problem, the procedure can be separated into two steps. In the first step, we
separate the bus bandwidth into two parts by the probability »n, which is the probability that
the bus is used for reading data from memory. The first part An stands for the equivalent
bandwidth that can be used to read data from the memory. On the other hand, the second part
A(1 — n) denotes the equivalent bandwidth for writing data to memory. From Eqg. (3.1), n can
be determined using the expected size for the centralized memory S; that is, once the size of
the external memory is decided, the n is also fixed as fj—fg

In the second step, the optimal bus arbitration policy can be found by applying the equivalent
bandwidth for the two extreme cases. By substituting)\(ﬁ) in Eq(3.5), we will get the P as

1+2S

-38-

Chapter 3. Transaction Level Modeling of H.264 Decoder

follows:

J

w;(1+25) w;(1+25) w,; (1+25)
n (TS s D)) ,when0 < 5 < N1TD)
{ } (3.9)

0 , when 5 > e

Similarly, substituting A(-3=) in Eq(3.7), we will get the ¢ as follows:

fi;(1+2S)

- " A T2) 3.10
b XS XS (3.10)

3.4.3 Guidelines for Bus Arbitration

From these cases proposed above, we can find that allocating more time of using bus to the
module which consumes data faster is the way to minimize the total buffer size. In a real de-
sign, the environment maybe not fit the constraints in optimal cases. Consequently, the optimal
solution probably does not exist. However, only follow the trend, the approximated optimal

buffer size still be found out under the design.constraints.

3.4.4 Arbitration Policy In. Qur Design

In our design, we use four 32-bits databus and four external DRAMSs for satisfying the data
requirement in HD sequence decoding. However, under the influence of DRAM behaviors, the
effective bus bandwidth becomes variable so that the ideal result can not be used in our design
directly. In the following, we will discuss how we arrange data in DRAM to maximize the bus

utilization and the arbitration policy in our design.

3.4.4.1 Data Arrangement In External DRAM

Figure 3.9 shows the DRAM behavior when the read or write command is executed. Because
it must spend few cycles to active the row and then the data will be read out or write in, it will
also reduce the effective bus bandwidth. As a result, how to arrange the data in DRAM is a very
important issue to improve the system architecture performance.

For speeding up the data fetch, we use two memories to store the luma block and use another

two memories to store the chroma block so that we can access luma block and chroma block

-39-

Chapter 3. Transaction Level Modeling of H.264 Decoder

CLOCK]
Command QD

tRCD

Data

0
CLOCK
Com mand QD

tRCD

Data

Plr|lo|loflr|lr|lololr|lr oo
Plr|lo|loflr|lr|lololr|lr oo
Plr|lo|lolr|lr|lololr|lr oo
Plr|lo|loflr|lr|lololr|lr oo
Plr|lo|lolr|lr|lololr|lr oo
Plr|lo|loflr|lr|lololr|lr oo

rlr|loloflr|lr|lolofr|lr oo

klr|lo|loflkr|lr|lololr|lr oo

klr|lo|loflkr|lr|lololr|lr oo

rlr|lo|lolr|lr|lolofr|lr oo

klr|lo|loflkr|lr|lololr|lr oo

rlr|lololr|lr|lololr|lr oo

Figure 3.10: Frame map to memory.

at the same time. Take luma block for example, Figure 3.10 and Figure 3.11 illustrate how the
luma block is stored in the memory.

As shown in Figure 3.10, the frame is divided into four parts. Each part is stored in the
different banks. This frame is stored in memory 0 and memory 1. We can see the enlargement
of a single bank; we change the memory per two pixels. The yellow part represents memory 0
and the orange part represents memory 1. The advantage of using two memories is it can reduce
almost half the latency to access data.

Each check represents one particular row in that bank. As we can see no consecutive rows

-40-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Memory 0

Memory 1

Bank0

Luma_R1

Bank1

Luma_R1

Bank2

Luma_R1

Bank3

Luma R1

Luma_C

Luma.C

Luma_C

Luma C

Bank0

Luma_R1

Bankl

Luma_R1

Bank2

Bank3

- - - -
Luma_RL

Luma R1

Luma_C

Luma C

Luma_C

Luma C

Figure 3.11: Memory map to frame.

in the same bank is put together. As a result, when we want to reference a block in the frame
the row-miss status will not appear. Qnly the row-hit status and bank-miss status occurs. As we
have mentioned in the previous chapter the row-miss‘status causes most bandwidth utilization
loss and longest latency. In this way, when we decrease the number of row-miss status we can
utilize the finite bandwidth and shorten the latency.

Figure 3.11 indicates the memory organization. There is one current frame and many refer-
ence frame need to be stored in the external memory. This is because this H.264 support multi
reference frame. There are eight banks in two memories. Each frame is stored in the eight
banks equally. This data arrangement leads to we can access data in memory 0 and memory 1
simultaneously. The proportion of data in each memory differs a lot will suffer a great memory

bandwidth loss.

3.4.4.2 Bus Arbitration

While the master of data bus switches, the probability of row miss during accessing data from
external DRAM is higher which will reduce the effective bus bandwidth. Therefore, we not
only design the data arrangement in DRAM to minimize the probability of row miss but also
adopt the deterministic bus arbitration policy to minimize the switches between masters. There
are three modules, DF, DeBlock, and Deinterlacer as bus masters in our decoder and all operate

in eight by eight block level. Consequently, our arbitration policy is that after one master fetches

-41-

Chapter 3. Transaction Level Modeling of H.264 Decoder

8x8 block level

cycle >
count 21 29 84
BUS DeBlock ‘ Delnterlacer ‘ DF

master

Figure 3.12: Example of bus master switch.

all data it will use in one eight by eight block cycle, it will release the bus and change master.

Figure 3.12 shows the example of master switch in one eight by eight clock cycle.

3.5 System Level TLM Modeling

For verifying our system architecture efficiently, we model our H.264 decoder at transaction
level. Because the simulation speed is depending on how much details the model contains,
we choose the bus arbitration model to implement our decoder. The bus arbitration model
not only keeps the higher simulation‘speed but also can verify the system schedule and bus
arbitration. Figure 3.13 shows theTLM architecture which is corresponding to the one in Figure
3.1. The modules which name starts with FIFO are ping-pong buffers. We implement these
FIFOs with channel in SystemC and define-their interface functions. Moreover, sync_channel
is also implemented with channel and"is responsible for synchronizing all hardware modules.
When one module finishes the current block, it will pass a message through the interface of
sync_channel. Then, when syn_channel collects all messages of all modules, it will send back
a signal to all modules. All hardware modules will not decode next block until they receive the
signal.

For transaction design at transaction level, Figure 3.14 shows the concept about how we
implement all modules with sc_thread. First, we define the input and output ports connecting
with other modules. All data transmission is through channel by calling the interface functions
of ports. In the program part, the module will read input data through input channel in the
beginning. Then, the finite state machine decides which path the program will go through. In
the main program, the functionality can be composed of one or more functions and we can
decide to use wait function after the end of every function or only use once after all functions
are finished. The more wait functions we use, the more program switches happen. That will

influence the simulation speed. After all work is done, the module will send a finish signal to

-42-

Chapter 3. Transaction Level Modeling of H.264 Decoder

AHB |
g >
|

1 >
Bitstream r
FIFO ' Sync_channel !—"—
' A
1 FIFO_DeBlock
PR, V.
y FIFO_IQIDCT FIFO_Delnterlacer
' = v v A4
. (]
1
' —1 1QIDCT — »> |:| »{ DeBlock Delnterlace
ARM :
| O
|
| CABAC [«
|
|
|
|
] FIFO_DF FIFO_IIP
|
| [
| - DF 1P«
|
|
L e e T e T N B £ - - - e e e e- = e--ememe m e === === e =
AHB

Figure 3.13: Transaction level modeling at system level.

synchronization channel and stall until all modules finish their work.

3.6 Summary

In this chapter, we show the design target of our'H.264-decoder. Because we only support to the
high profile, some features in H.264 specification can be not implemented to save the hardware
cost. The overall architecture including of video pipe, software/hardware partition, control
scheme and system schedule is also described. Moreover, the buffer allocation is discussed
in both ideal case and our design case. After these important issues about system design are

discussed, how to model it at transaction level is explained.

-43-

Chapter 3. Transaction Level Modeling of H.264 Decoder

AHB Slave AHB M aster

Ping-Pong Channel In Ping-Pong Channel Out
Module A

CLK

e

Synchronization Channel

Read_if(ping-pong index)
Data and Control

Finite State
Machine

Beh avior Behavior Behavior
1 2 3
Write_if Write_if Write__if

2

e

N
N

zes

Cycles of TasR

4
N
| Emit_if @ posedge clk | g
[}
Synchronization Event @ posedge clk Vv
Stage 1 Stage 1
Stage 3 . Sta_qe 2 o " Stage 3 >
l Wait -
Compute Wait
Wait Wait -
Compute Compute
. Notify Sync.
Emit_if by Sync. Channel

Figure 3.14: TLM module design example.

-44-

CHAPTER 4

Systolic-based Inter/Intra Predictions

4.1 Introduction

Spatial and temporal predictions are essential to video coding efficiency. The H.264/AVC [7]
simultaneously incorporates inter and intra predictions to remove temporal and spatial redun-
dancy. Comparing with the existing standards H.261/2/3 and MPEG-1/2/4 [8], these prediction
techniques save up to 50% bit rates while providing similar perceptual quality.

However, the coding gain is at the cost of additional computations. In intra prediction,
the mode-adaptive predictor is generated by a 1-D filtering, which is conducted along with the
boundary pixels of a block. Similarly, the half-/quarter-pel predictor in the inter prediction is
produced through a separable 2-D filtering with the motion compensated blocks of variable
size. Both predictions require intensive filtering operations which poses challenges to real-time
applications. Moreover, the adaptive and irregular filtering makes hardware implementation
more difficult.

For the inter and intra predictions, most of the prior works implement the FIR filter based on

the traditional adder-tree structure [9][10][11][12][13][14][15], where filtering is implemented

-45-

Chapter 4. Systolic-based Inter/Intra Predictions

by a number of adders and shifters. In such straightforward implementation, common terms
between consecutive filtering operations are not reused. Moreover, multiple input samples are
simultaneously latched for one filtered output causing higher input bandwidth.

In addition to less efficient FIR design, the inter and intra predictions are generally im-
plemented by two separated modules due to the difference in their operations. However, in
decoder, the prediction mode of each macroblock is known in advanced. Thus, using separated
data paths for inter and intra predictions causes poor hardware utilization.

In this chapter, we propose a unified filtering architecture for inter and intra predictions. We
share the data paths for both prediction modes so as to increase hardware utilization and reduce
cost. In addition, to minimize redundant computations, the FIR filtering is implemented by a
reprogrammable systolic-based architecture. Specifically, our design can fulfill the real time
requirement of high profile at level 4 while clocking at 150MHz.

The rest of this chapter is organized as follows: Section 2 briefly introduces the algorithms
of inter and intra predictions in H.264/AVC [7].Section 3 presents our unified systolic-based
architecture. Section 4 compares this work with the state-of-the-art approaches. Lastly, Section

5 summarizes this work and gives concluding remarks.

4.2 Algorithm of Inter/Intra Predictions

The purpose of prediction is to employ spatial or temporal correlations to improve coding ef-
ficiency. Generally, the predictor of a block is created from image samples that are coded in
current frame or previously decoded frames. In the following, we briefly describe the algorithms

of inter and intra prediction in H.264/AVC [7].

4.2.1 Inter Prediction

Inter prediction creates the predictor of a block from previously coded frames. The purpose is
to use temporal correlation to achieve higher coding efficiency. Particularly, in H.264/AVC [7],
the prediction block is of variable size and the motion vector supports more accurate sub-pel
resolutions such as 1/2-, 1/4-, and 1/8-pel.

Due to the support of sub-pel resolutions, the inter prediction requires intensive computa-

-46-

Chapter 4. Systolic-based Inter/Intra Predictions

9x9 Full-pel data |nterArf1)1(§diate _4x4 Final
interpolated
DL resylis. ... data
F1 G = e TSN
F2 , . ‘ .
i~ —_— —
© F4 T
2 F5 — [EEEE 3 HH E
T Fé e | -
F7 — > T | T
F8 el
F9 — 1 :

..............

Figure 4.1: The 2-D interpolation for motion compensation with sub-pel precision. Note that
the 2-D filtering can be separated into 2 1-D filtering.

16
A

VIVIVIV
(©) (d)

Figure 4.2: Intra prediction modes. (a) Directional modes. (b) Prediction of mode 5. (c) DC
mode. (d) Plane mode.

tions for interpolation. When the motion vector of a block points to a sub-pel position, the
predictor is generated by the interpolation of motion compensated full-pel samples that locate
in the reference frame. For instance, the 1/2-pel samples are interpolated from full-pel samples
using the 6-tap FIR filter (1, -5, 20, 20, -5, 1). To get a 4x4 block with an interpolation filter of
6 taps, a 9x9 block in the reference frame is required. As shown in Figure 4.1, the 2-D interpo-
lation is done by 2 separable 1-D filtering. Similarly, for the chrominance part, the filtering is

done in the same manner except that the interpolation filter is of 2-tap.

-47-

Chapter 4. Systolic-based Inter/Intra Predictions

<
<%

Reordered Boundary Pixels kg
[p[-1,3]] p[12]\ pl-1,1] | p[lo]\p[l -11[pl0,-11] p[1,-1]] p[2,-1]] pI3,-11]
27 e 1\/1 Adaptive Filtering

Pred[0,0]] Pred[1,0]] Pred[2,0]]|[Pred[3,0]]
Pred[l 2] Pred[2 2] Pred[3 2]

Output Predictor

Figure 4.3: The adaptive filtering of boundary pixels for directional prediction of mode 5.

4.2.2 Intra Prediction

Intra prediction creates the predictor for a block using the boundary pixels in adjacent blocks.
The purpose is to use spatial correlation to improve coding efficiency.

In H.264/AVC [7], each macroblock can have one of the three prediction types, which are
14x4MB, 18x8MB, and 116x16MB. For each type of predictions, the macroblock is firstly parti-
tioned into multiple sub-blocks (with'size being.NXN where N can be 4, 8, and 16). Then each
sub-block can be further assigned with directional modes, DC mode, or plane mode.

For directional modes, there -are 8. different directions as illustrated in Figure 4.2 (a). For
better understanding, Figure 4.2 (b) uses mode 5 (I:€., vertical right direction) as an example
and Eq. (4.1) lists the corresponding formula for the two predictors, Pred[1,0] and Pred[3,0]. In
Figure 4.2 (b), these two predictors are marked with gray color. As expressed in Eq. (4.1), the
predictor is actually constructed by a linear combination of boundary pixels. By reordering the
boundary pixels, i.e., p[X, y] in Figure 4.2 (b), Figure 4.3 illustrates that all the predictors of a
sub-block can be obtained by adaptively filtering the boundary pixels. Different modes simply
differ in how the filtering is applied.

Pred[1,0] = (P[0, —1] +P[1,—-1]+1) > 1
Pred[0,3] = (P[-1,2] + 2 x P[=1,1] + P[~1,0] (4.1)

+2) > 2

In addition to directional modes, Figure 4.2 (c) and (d) depict the DC mode and plane mode,

respectively. The DC mode is useful for prediction in the low pass regions while the plane mode

-48-

Chapter 4. Systolic-based Inter/Intra Predictions

is effective for the regions with directional gradient. Particularly, the plane mode requires the
most computations among all the prediction modes. It is the critical path of intra prediction.
Specifically, the predictors of plane mode can be calculated by Eq. (4.2).

From Eq. (4.2), it can be noted that the values of predictors in the same row are increased by
a factor of “b”. On the other hand, the predictors in the same column are increased by a factor
of “c”. Thus, all the predictors can be calculated from an initial value M, which is the predictor
of the upper-left corner before rounding. In this chapter, we use such property to minimize the

number of operations.

Pred [z, y] =

ClipY [(a+bx (x—=T)+cx (y—T7)+16) > 5]

where

a =16 x (P[—1,15] + P [15, —1]),

b=(5x H+32)>6 4.2)
c=(BxV+32)>6

H=> (2/41) X (P8R, 1] - P[6 — 2/, —1]),

V= (y + 1) XPEL8+] —P[-1,6 —y/]).

In summary, both inter and intra predictions require intensive FIR filtering. An efficient
FIR implementation is necessary. In addition, the inter and intra predictions can actually share
processing elements since each macroblock is either coded in inter mode or intra mode. In the
following, we present a unified systolic-based architecture which efficiently combines inter and

intra predictions.

4.3 Unified Systolic-based Architecture

Systolic architecture includes a number of regular and modular processing elements (PEs) that
simultaneously process and pass data in a similar way. All PEs regularly pump data in and out
such that a regular data flow is maintained. In addition to modularity and regularity, systolic

architecture also features the properties of data broadcasting and low input bandwidth, which

-49-

Chapter 4. Systolic-based Inter/Intra Predictions

are desirable in hardware design.
In this chapter, we implement the FIR filtering with systolic-based architecture. Moreover,
we share the array of PEs for both inter and intra predictions. In addition, luminance and

chrominance components are processed sequentially to maximize the hardware utilization.

4.3.1 Overview of Data Flow

Figure 4.4 gives an overview of our system. The functional units enclosed by dash line represent
the inter and intra predictions. As shown, the filtering is performed using a unified systolic-
based array. For inter prediction, the input comes from the motion-compensated buffer. Herein,
we assume that the data is already transferred form frame memory to local memory. On the
other hand, the data is input from a line buffer that stores boundary pixels in adjacent blocks
when intra prediction is performed.

For details, Figure 4.5 shows the block:diagram of our unified systolic-based array. It con-
sists of 6 PEs and each PE is responsible for;the:multiplication and addition of a filter tap. The
blocks denoted as S&M_n implement the multiplications of FIR filtering by using shifting and
addition. Moreover, these S&M-n blocks-can-dynamically reprogram the filter tap so as to
provide various filters for inter and intra predictions:

To fulfill the real-time requirements of high profile at level 4, we duplicate the proposed
architecture in Figure 4.5 by 3-fold to increase the throughput. In the following, we detail the

data flow for different prediction modes.

4.3.2 Data Flow of Inter Prediction

For the inter prediction, the luminance and chrominance components are processed differently.
However, all the computations are done by the same systolic-based arrays. The luminance
block requires a fixed, 6-tap filter while the chrominance block needs a dynamic, 2-tap filtering.
The actual filter used for chrominance part is determined by motion vectors. Particularly, to
increase the throughput, our reprogrammable architecture can be divided into two parts for

simultaneously processing Cb and Cr.

-50-

Chapter 4. Systolic-based Inter/Intra Predictions

Reconstruction

Systolic al

Systolic array 1

ay 2

Systoli¢ arr

y 3

I

Line
buffer’

buffer

|

I

I

|

|

|

: Mux
|

I |Motion-comp
: ensated

|

Input
reorder

De-blocking

Input 1

Input 2
v +
Scalin|| Mux

Bypass path

Output

Output of inter

prediction of
chrominance
part

[sam 2]

[sem 2]

! data path of
I intra prediction
[}

data path of inter prediction
of chrominance part

Figure 4.5: The unified systolic architecture for inter and intra predictions.

4.3.2.1 Luminance component

The systolic-based array implementation of luminance interpolation, which requires 9 adders

and 5 registers, constructs the whole framework of unified systolic-based array as shown in

Figure 4.5. The size of the registers is 18-, 18-, 18-, 16- and 13-bit respectively from left to

right.

Using systolic implementation can more efficiently reuse the intermediate terms between

consecutive filtering operations. For better understanding, a filtering operation of 6-tap filter

is presented in Figure 4.6, where X,,,, denotes the motion-compensated full-pel samples, m

-51-

Chapter 4. Systolic-based Inter/Intra Predictions

Xo,0 | Xo1 [Xoz | Xoaz | Xoa [Xos | Xos | Xoz [Xos | Xuo [X1a
Outputi| 1 | -5|20)|20)|-5] 1

OQutput 2 1 -5 1 20| 20 -5 1
Output 3 1 -5 120 20| -5 1
Output 4 1 -5 120|120 | -5 1

Figure 4.6: The operation of 6-tap filtering

= First input wire %/ = Second input wire

Input 1 : Xoo0 Xo1 Xo,2 Xo0,3Xo4 Xo,5 Xo,6 X0,7 Xog X2,0X2,1 X2,2 X23Xz4 Xo5 X2,6X2.7X2.8
Input 2 : XLo X1,1 Xl,Z X1‘3X1,4 X1,5 XLE XL X1 Xs,o X3,1 X32 X33 ><3,4 X35 X36 X3,7 Xag
]]]]]]] ' [] LI}

SRR SSNR

PE¢
PEs
PE,
PE;]]]
PE,
PEl]]]]]

///

S NN > 4,; 2
\\W//,”’///,”/////,‘IL\“\”’ /'/ >

Valid output.............. Valld output
Cycle time >

Figure 4.7: Input scheduling of the proposed:systolic array that uses two-input broadcasting.

specifies the row index, and n indicates the column index. Based on the operation of a 6-tap
filtering, Figure 4.6 shows that Outputs-3-and:4-have the common term (X, 5 times 20). Using
conventional adder-tree architecture;.the commen.terms will not be reused which introduces
redundant computations and higher power consumption. By mapping the 6-tap filtering into
systolic-based array, the intermediate results can be passed through the registers and reused in
different PEs.

Among a variety of systolic-based arrays, the form of input broadcasting is chosen because
of shorter critical path and higher throughput. In addition, the input broadcasting enables the
overlaps of different filtering operations. Several bubble cycles with invalid data output is con-
ducted between two adjacent rows if pixel data is fed into the systolic-based array one by one. In
order to increase the throughput, we broadcast two input lines to overlap filtering operations so
as to improve hardware utilization. Figure 4.7 illustrates the data flow of two-input broadcast-
ing. Each PE selects corresponding input line via multiplexer at different cycles. For example,
in the 7-th cycle, PE1, PE2, and PE3 select the first input while the other three PEs select the

second input. First valid data out is generated in the 6-th cycle.

-52-

Chapter 4. Systolic-based Inter/Intra Predictions

PE,» PE; PE, PEs
Cr - -
Cb - -»

1 l A 4 v
[sam_1] [sam_1] S&M_1 S&M_1

e e
L2]

\e

/)

Figure 4.8: Data flow of sub-pel interpolation of chrominance samples.

4.3.2.2 Chrominance component

Chrominance component can be processed in the same manner as the luminance part. However,
the interpolation of chrominance component simply needs a 2-tap filter. To increase hardware
utilization, we partition the systolic-based array into two parts so as to simultaneously process
Cband Cr.

For clarity, Figure 4.8 shows the data path for chrominance interpolation. As shown, the
samples of Cb and Cr blocks are fed into the systolic-based array simultaneously via two inputs
and each color component is separately: filteredby a reconfigurable, 2-tap filter.

Inter prediction dominates the overall performance. Figure 4.9 illustrates the execution
cycles using the example of P_4x4 mode. Note that luminance and chrominance components
are processed in order. As shown, if the current block is coded in P_4x4 mode, the total number
of execution cycles is (27+6) = 33. Similarly, if it is coded in B_8x8 mode, the number of

execution cycles will be 152.

4.3.3 Data Flow of Intra Prediction

For the intra prediction, only parts of the PEs in the systolic-based array are used. Particularly,
the predictor is produced by the filtering of boundary pixels with the filter taps being (1, 2, 1)
or (1, 1). To calculate the predictor, the reshuffled boundary pixels are sequentially input to the
systolic-based array.

In Figure 4.5, the bold lines represent the data paths while the systolic-based array is re-

programmed for intra prediction. For clarity, Figure 4.10 simply shows the data paths for intra

-53-

Chapter 4. Systolic-based Inter/Intra Predictions

|
|
Input 1 of SA 1— = = — 1
Input 1 of SA 2=—p F2 F8 I
Input 1 of SA 3—p F3 F9 :
Input 2 of SA 1—p = = I
Input 2 of SA 2_>‘<_4_> F5 T11 :
Input 2 of SA 3—>, Fo ™ ‘
,,,,,, e e __ ' _
Output of SA 1— M1 M4 M7 Ho H |
Output of SA 22— M2 M5 M8 H1 |
Output of SA 3—p 5> [ws M6 M9 H2 |
\
< 27 cycles >
(a)
fXAP
| |
T Input 1of SAL—|A|B|C|Ti|T5| s,
D] E|F | T Ta T/
? Input1of SA2— D E|F [T2] 4] T6]
1 2 g InputlofSAS—P: GlH| I |
(&] | |
D] -2 T - |
*i Output of SA1—1 | T | T, Ri|Ry|
%) Output of SA 2— | [T5| Ty Rs Ry |
Output of SA 3— | | Ts| To !
1] <+—6 cycles—!

(b)

Figure 4.9: Execution cycles for the P+4x4'mode. SA: Systolic array. (a) Luminance compo-
nent. F1 to F9 indicate the lines of:-motion-compensated full-pels. M1 to M9 are the lines of
temporal results after the first filtering. T10-to T13 are-the transposed lines of M1 to M9. HO to
H3 are the final interpolated lines of sub-pels. (b) Chrominance component. A to I indicate the
motion-compensated full-pels. T; to Tg Indicate the temporal results after the first filtering. Ry
to R, are the final interpolated sub-pels

prediction. For different directional modes, the filter taps can be dynamically adjusted by con-
trolling the scaling and multiplexer. In the example of Figure 4.3, boundary pixels are fed into
the systolic-based array from P[-1, -1] to P[3, -1] with filter tap being (1, 1). Then, the input
order is reversed back from P[3, -1] to P[-1,3] with filter tap as (1, 2, 1). The boundary pixels
must be firstly reshuffled so that the data can be continuously processed by the systolic-based
array to minimize stalls and bubbles. Similar reshuffling technique can be applied for the other
modes.

For the DC mode and plane mode, feedback loops A and B are additionally created for
accumulation. In the plane mode, the intermediate data “H” and *“V” are calculated by the
feedback loops in PE1 and PE2, respectively. It takes 24 cycles to obtain these intermediate
results. Then “a”, “b”, and “c” are calculated sequentially by PE1 within 6 cycles. After that,
the predictor of upper-left corner is calculated and all the other predictors will be produced

one by one in the next 260 cycles. Totally, 290 cycles are required for the worst case of intra

-54-

Chapter 4. Systolic-based Inter/Intra Predictions

PE, PE2 PE3
vl I B 1

TR

Figure 4.10: Data paths for intra prediction.

Table 4.1: Comparison of intra prediction

Huang ’04 [9][10] Proposed

Architecture Adder tree Separates 1-D
systolic-based Array

Intra Mode Hardware Hardware
Prediction
Component PEXx 4 SAXx3
of Adder > 4%3=12 2x3 =6
Execution cycle >64 cycles/MB 290 cycles/MB
Critical path 2-adders 1 adder
of Input wires 13x4+7x4+8x4=112 2x3=6

SA: systolic-based array.

prediction.
In summary, both inter and intra predictions can be realized by one reconfigurable systolic-
based architecture. Specifically, our design consists of one set of systolic-based arrays. Each

array can be reprogrammed as a 2-, 3- and 6-tap filter.

4.4 Complexity Analysis and Comparison

This section shows the comparisons of different designs for the high profile at level 4. Table 4.1
compares our combined architecture with Huang’s architecture for intra prediction. Note that in
Huang’s work, inter and intra predictions are separated into two modules. Although our design
requires more cycles for intra prediction, our combined systolic-based architecture significantly

reduces the number of input wires which leads to lower input bandwidth and cost. Moreover,

-55-

Chapter 4. Systolic-based Inter/Intra Predictions

Table 4.2: Comparison of inter prediction.

Wang 03 [11] Deng 04 [13] Chen ’04 [14] Wang ’05 [15] Proposed
Architecture 1-D adder tree 2D pipelined Separated 1D Separated 1D Separated 1D
adder tree adder tree adder tree SA!
MVG Software N/A incomplete Hardware Hardware
Component FIRx 2 Pipelined FIR x 9 | Horizontal FIR x5 | Horizontal FIR x 9 SAX3
Vertical FIR x 11 Vertical FIR x 4
1/8FIRx 3 N/A N/A 1/8FIR x 2
Bilinear Bilinear Bilinear Bilinear Bilinear
of Adder 6x2+1+3x3=22 > 7x9=63 > 6x16=96 6x13 +23x2=124 | 9x3+3=30
Execution cycle | 2560 cyclessMB | 624 cyclessMB N/A 1120 cyclessMB | 608 cycles/MB
Critical path 4 adders? 1 18-bit adders 4 adders® 4 adders® 2 adders®
of input wires | 6x2 +2x3 =18 > 13x2= 26 > 6x11=66 6x4 + 4x2 = 32
Clock rate 629 MHz 153 MHz N/A 275 MHz 150 MHz

1. SA: systolic-based array.

2. A 18-bit adder + two 16-bit adders + a 13-bits adder + a 13-bit multiplexer + a 18-bit multiplexer

3. A 18-bit adder + two 16-bit adders + a 13-bits adder

4. A 18-bit adder + a 15-bit adder + a 13-bit multiplexer + two 16-bit multiplexers + a 18-bit multiplexer
the data paths are shared between inter and intra predictions which is more efficient from the
system perspective.

Table 4.2 further compares our architecture with-the state-of-the-art designs for inter predic-
tion. At macroblock level, our unified systolic-based architecture consumes most cycle counts
when the macroblock is coded as B_8x8 mode. The number of cycle counts per macroblock
is 152x4=608 while the other designs need more than 624 cycles. Higher throughput has been
achieved. Particularly, as compared to Wang®s design [11], a 4x throughput improvement is
observed.

According to the highest throughput, our design can fulfill the real-time requirement of high
profile at level 4 while clocking at 150 MHz. However, the other designs need to operate at
higher clock rate due to poor throughput.

Comparing with the designs where the inter and intra predictions are separately imple-
mented, our unified systolic-based architecture has lower cost in terms of the number of adders.
The cost reduction is about 22~88%. In addition, the proposed systolic-based architecture

features lower input bandwidth and power dissipation.

-56-

Chapter 4. Systolic-based Inter/Intra Predictions

4.5 Summary

The chapter presents a unified systolic-based architecture for inter and intra prediction in H.264/AVC
[7] decoder. We have shown that performing inter and intra predictions by systolic-based archi-
tecture can significantly reduce the cost while the performance is also improved. In addition,
shorter critical path is another notable feature. As compared with the state-of-the-art designs,

our design has higher throughput, but lower cost and power.

-57-

CHAPTER 5

Concluding Remarks

5.1 Conclusion

In this work, we point out how many problems the traditional design flow will face when the
design complexity is getting higher. Then, a new modeling technique called transaction level
modeling(TLM) is proposed to address the problems of SoC design. It introduces an additional
level of abstraction between system specification and RTL description. The purpose of TLM
is to create a system architecture model that address issues at system level while maintaining
necessary modeling accuracy.

For understanding the concept of TLM, we model a platform-based H.264 decoder that con-
forms to High profile at Level 4(HP@4). In our design architecture the ARM 9 CPU interprets
the sequence parameter set, picture parameter set, and slice header and then programs the hard-
ware video pipe via control bus. After that, the hardware video pipe will decode the slice data
layer. Because of platform-based design, our H.264 decoder is more flexible. As a result, the

TLM also can be used for exploration of design space. For example, we design our bus arbitra-

-58-

Chapter 5. Concluding Remarks

tion following the concept of optimal case solution. Then, TLM can be used for verify whether
this arbitration is workable or which arbitration has better performance.

Moreover, we also propose a unified systolic-based architecture for the hardware module of
inter and intra predictions. Using only one prediction type will be chosen in decoder, we com-
bine inter and intra predictions in single hardware architecture by reprogrammable FIR filter,
which is implemented with systolic-based array. Compared with other existing architectures,
our architecture indeed provides lower cost and higher hardware efficiency and still maintains

the performance at the same time.

5.2 Future Work

In our future work, we first integrate our system on the ConvergenSC and verify it with several
conformance bit-streams. Then, we can further refine our TLM model to cycle-accurate model
for verifying the functionality of all’modules accurately. Finally, the RTL model will be de-
veloped based on TLM model and the functionality of RTL model can be verified with TLM
model by using software and hardware simulation. This methodology will improve the design

quality and chip robustness.

-59-

Bibliography

[1] L. Caiand D. Gajski, “Transactoin Level Modeling in System Level Design,” CECS Tech-
nical Report 03-10, March 28 2003.

[2] D. C.Black and J. Doovan, SYSTEMC: FROM THE GROUND UP. Kluwer Academic
Publisher, 2004.

[3] T.Liu, T.Lin, S. Wang, W. P. Lee, K. Hou, J. Yang, and C. Lee, “A 125uW, Fully Scalable
MPEG-2 and H.264/AVC Video Decoder for Mobile Application,” IEEE International
Solid-State Circuits Conference, pp. 402-403, 2006.

[4] C. Lin, J. Guo, H. Chang, Y. Yang, J. Chen, M. Ysai, and J. Wang, “A 160kGate 4.5kB
SRAM H.264 Video Decoder for HDTV Application,” IEEE International Solid-State
Circuits Conference, pp. 406-407, 2006.

[5] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti, “Transaction-
Level Models for AMBA Bus Architecture Using SystemC 2.0,” Design, Automation and
Test in Europe Conference and Exhibition, pp. 26-31, 2003.

-60-

BIBLIOGRAPHY

[6]

I. Moussa, T. Grellier, and G. Nguyen, “Exploring SW Performance using SoC
Transaction-level Modeling,” Design, Automation and Test in Europe Conference and Ex-

hibition, pp. 120-125, 2003.

[7] “Information Technology - Coding of Audio-Visual Objects - Part 10: Advanced Video

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Coding. Final Draft International Standard,” ISO/IEC FDIS 14496-10.

J. F. Kossentini and P. Nasiopoulos, “A performance analysis of the ITU-T draft H.26L
video coding standard,” the 12th PacketVideo Workshop, Apr. 2002.

Y. W. Huang, B. Y. Shieh, T. C. Chen, and L. G. Chen, “Hardware Architecture Design for
H.264/AVC Intra Frame Coder,” IEEE International Symposium on Circuits and Systems,
vol. 2, pp. 269-272, May 23-26 2004.

——, “Analysis, Fast Algorithm, and VLSI Architecture Design for H.264/AVC Intra
Frame Coder,” IEEE Trans. Circuits and Systems for Video Technology, vol. 15, no. 13,

pp. 378-401, March 2005.

S. H. Wang and T. C. et al;, “A platferm-based MPEG-4 advanced video coding (AVC)
decoder with block level pipeling,” IEEE Pacific-Rim Conference on Multimedia, vol. 1,

pp. 51-55, 15-18 Dec 2003.

—, “A software-hardware co-implementation of MPEG-4 advanced video coding

(AVC) decoder with block level pipelinging,” Journal of VLSI Signal Processing, 2005.

L. Deng, W. Gao, M. Hu, and Z. Ji, “An efficient VLSI architecture for MC interpola-
tion in AVC video coding,” Int’l MultiConference in Computer Science and Computer

Engineering, Jun.21-24 2004.

T. C. Chen, Y. Huang, and L. Chen, “Fully utilized and reusable architecture for fractional
motion estimation of H.264/AVC,” IEEE International Conference on Acoustics, Speech

and Signal Processing, May 2004.

S. Wang, T. Lin, T. Liu, and C. Lee, “A new motion compensation design for H.264/AVC
decoder,” IEEE International Symposium on Circuits and Systems, pp. 4558-4561, June
2005.

-61-

Fiim

i 19817 AT T 55 - 20045 RIFOHC TIOR3 S
DR VS R T ARSI S0 o PR

@O

Chih-Chieh Chen was born in Lienchiang, Taiwan, R.O.C., in 1981. He received the
B.S. degree in electrical engineering from National Chiao-Tung University (NCTU),
Hsinchu, Taiwan, R.O.C., in 2004, where heis, currently working toward the M.S.
degree in the Institute of Electronics Engineering. His research interest is in video

coding.

62

	國立交通大學.pdf
	
	誌 謝

	thesis_genius.pdf
	自傳.pdf
	自傳

