
國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩

士 班

碩 士 論 文

H.264解碼器之資料交換層級系統模擬

Transaction Level Modeling of H.264 Decoder

 研 究 生：陳治傑

指導教授：蔣 迪 豪 博士

中華民國九十五年九月

 ii

H.264之資料交換層級系統模擬

Transaction Level Modeling of H.264 Decoder

研 究 生：陳治傑 Student: Chih-Chieh Chen

指導教授：蔣 迪 豪 博士 Advisor: Dr. Tihao Chiang

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao-Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年九月

 iii

H.264解碼器之資料交換層級系統模擬

研究生：陳治傑 指導教授：蔣 迪 豪 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

本篇論文中，我們介紹了一個在由上至下的設計流程中新的抽象層級稱之為

資料交換層級。此層級主要模擬的系統架構的資料流動。因為它抽象化了需多系

統層級所不需要資訊，因此它擁有較高的模擬速度。除此之外它，也可以當作系

統相關軟體開發的平台，幫助提早著手進行軟體開發。在我們的研究中使用 H.264

解碼器當作設計範例，除了 DRAM 控制介面是用 RTL 實現，其他的所有相關模組

都是以 SystemC 語言來撰寫。

對於個別獨立區塊的硬體設計，本篇論文針對了內部以及相互預測提供了一

套硬體架構。利用在解碼的過程中一個巨塊不會同時利用到內部以及相互預測的

特性，設計了一套既可以處理內部預測也可以處理相互預測單一硬體架構來增加

硬體使用效率以及降低成本。對於內部預測我們使用兩次一維的過濾器來實現二

維的過濾。對於內部預測，我們先將邊界點重組後在丟入過濾器中。與現有的設

計方式比較，我們的設計在使用較低的成本下還能提供較好的表現。

總結，本論文證明了利用資料交換層級確實能更有效率的模擬系統層級，並

且對於系統開發與評估有很大的幫助。可見資料交換層級將在未來的單一晶片系

 iv

統設計時代扮演著重要的角色。同時，論文中所提出的內部以及相互預測的硬體

架構相也表現出具有更好的硬體使用效率以及更低的成本的特性。

 v

Transaction Level Modeling of H.264 Decoder

Student: Chih-Chieh Chen Advisor: Dr. Tihao Chiang

Department of Electronic Engineering &
Institute of Electronics

National Chiao-Tung University

Abstract

In this thesis, we introduce transaction level modeling (TLM) which is a new level of

abstraction in the top-down design methodology. It mainly models the data flow of the

overall system architecture. Because it ignores some details that are not important for

system architecture, it can simulate faster and figure out problems about system earlier.

In addition, it serves as a platform for software development in the early stage. In our

study, we concentrate on H.264/AVC decoder as a pilot application. We implement the

individual modules in SystemC except for the DRAM controller that is implemented in

RTL.

As for the hardware design of individual module, we present a unified systolic

architecture for inter and intra predictions. To increase hardware utilization and

minimize cost, we combine inter and intra prediction by a reprogrammable FIR filter,

which is further implemented with systolic array. For inter prediction, the 2-D

interpolation is conducted through separable 1-D filtering. For intra prediction, the

boundary pixels are reshuffled before feeding into the systolic array. As compared with

 vi

state-of-art design approaches, our architecture provides higher performance while

maintaining relatively lower cost.

In conclusion, this work proves that TLM can model the system more efficient

and be helpful for design exploration. Thus, it will play a key role in SoC design era

with more complexity. In addition, our unified systolic architecture for inter and intra

predictions also shows that it has more hardware efficiency and lower cost.

誌 謝

研究所的兩年間，論文的完成，實在是仰賴很多人的協助與指導，在此獻

上誠摯的感謝。首先要感謝我的指導教授蔣迪豪老師，在研究的領域給了我很多

建議與幫助。

感謝實驗室的俊能學長，文孝學長，士豪學長，項群學長和志鴻學長，對

於我的論文研究提出寶貴的意見與建議。雖然我的研究主題歷經很長一段混沌未

明的階段，文孝學長以及志鴻學長還是在百忙之中抽空，指導了我很多，關於研

究的方向以及研究的態度。雖然我常常達不到學長要求的標準，他們還是不厭其

煩的給我意見與指導，在這裡我要說聲感謝。另外，感謝實驗室的所有同學，讓

我度過了很愉快的兩年研究所生活。

感謝支持我的家人，雖然我很少抽的出時間回家，但家人的鼓勵與關懷是

支撐我最大的動力。另外我也要感謝我的女友，不論我在高興或是難過的時候都

陪伴在我身邊。最後感謝所有幫助過我的朋友，因為有你們，讓我在艱難與考驗

中成長。最後，僅以這篇論文，獻給所有陪我走過這一段日子的人，謝謝。

 vii

Contents

Abstract in Chinese iii

Abstract in English v

Contents viii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Overview of Thesis . 1

1.1.1 Overview of H.264 . 1

1.1.2 Transaction Level Modeling . 3

1.1.3 System Level Modeling – H.264 Decoder 6

1.1.4 Module Design – Inter and Intra Predictions 7

1.2 Organization and Contributions . 8

2 Transaction Level Modeling 10

2.1 Introduction . 10

-viii-

CONTENTS

2.2 Definitions of Transaction Level Modeling . 11

2.2.1 Specification Model . 11

2.2.2 Implementation Model . 12

2.2.3 Transaction Level Model . 13

2.3 Design Flow with Transaction Level Modeling 15

2.4 Transaction Level Modeling with SystemC 18

2.4.1 Features of SystemC . 18

2.4.2 Implementation Using SystemC . 20

2.5 Summary . 23

3 Transaction Level Modeling of H.264 Decoder 25

3.1 Introduction . 25

3.2 Design Specification . 26

3.3 System Architecture . 26

3.3.1 Video Pipe . 28

3.3.2 System Schedule . 29

3.4 Bus Arbitration Policy . 30

3.4.1 Optimal Solution . 32

3.4.2 Expected Buffer Size . 32

3.4.3 Guidelines for Bus Arbitration . 39

3.4.4 Arbitration Policy In Our Design . 39

3.5 System Level TLM Modeling . 42

3.6 Summary . 43

4 Systolic-based Inter/Intra Predictions 45

4.1 Introduction . 45

4.2 Algorithm of Inter/Intra Predictions . 46

4.2.1 Inter Prediction . 46

4.2.2 Intra Prediction . 48

4.3 Unified Systolic-based Architecture . 49

4.3.1 Overview of Data Flow . 50

4.3.2 Data Flow of Inter Prediction . 50

4.3.3 Data Flow of Intra Prediction . 53

-ix-

CONTENTS

4.4 Complexity Analysis and Comparison . 55

4.5 Summary . 57

5 Concluding Remarks 58

5.1 Conclusion . 58

5.2 Future Work . 59

Bibliography 60

-x-

List of Tables

2.1 Characteristics of different abstraction models. 16

3.1 Level Limits I . 27

3.2 Level Limits II . 27

3.3 System Schedule . 31

4.1 Comparison of intra prediction . 55

4.2 Comparison of inter prediction. 56

-xi-

List of Figures

1.1 Traditional SoC design flow including hardware and software development. . . 4

1.2 Overview of the system architecture. 6

2.1 System models at different levels of abstraction [1]. 11

2.2 Example of the specification mode [1]. 12

2.3 Example of the implementation model [1]. 13

2.4 Four types of TLM. (a) The PE-assembly model. (b) The bus-arbitration model.

(c) The timing-accurate communication model. (d) The cycle-accurate compu-

tation model. [1] . 14

2.5 Design flow with transaction level modeling [2]. 16

2.6 Comparison of design schedule between the traditional design flow and the one

with transaction level modeling [2]. 18

2.7 Separated computation and communication in SystemC 19

2.8 Example of module implementation using sc_thread and sc_method. 21

2.9 Example of channel implementation and interface functions. 23

2.10 Top level connections for moduleA, moduleB, and the channel. 24

3.1 System architecture diagram[3][4]. 28

3.2 Deblocking process order in eight by eight block 29

-xii-

LIST OF FIGURES

3.3 Input and output configuration. 32

3.4 Input and output configuration with 3 PEs . 33

3.5 F values under the variations of β and Pj. 34

3.6 Bus arbitration policy based on the principle of reverse water-filling. 35

3.7 Input and output configuration with 3 PEs . 36

3.8 Input and output configuration with 3 PEs . 38

3.9 DRAM read and write operation . 40

3.10 Frame map to memory. 40

3.11 Memory map to frame. 41

3.12 Example of bus master switch. 42

3.13 Transaction level modeling at system level. 43

3.14 TLM module design example. 44

4.1 The 2-D interpolation for motion compensation with sub-pel precision. Note

that the 2-D filtering can be separated into 2 1-D filtering. 47

4.2 Intra prediction modes. (a) Directional modes. (b) Prediction of mode 5. (c)

DC mode. (d) Plane mode. 47

4.3 The adaptive filtering of boundary pixels for directional prediction of mode 5. . 48

4.4 Overview of the combined inter and intra predictions. 51

4.5 The unified systolic architecture for inter and intra predictions. 51

4.6 The operation of 6-tap filtering . 52

4.7 Input scheduling of the proposed systolic array that uses two-input broadcasting. 52

4.8 Data flow of sub-pel interpolation of chrominance samples. 53

4.9 Execution cycles for the P_4x4 mode. SA: Systolic array. (a) Luminance com-

ponent. F1 to F9 indicate the lines of motion-compensated full-pels. M1 to M9

are the lines of temporal results after the first filtering. T10 to T13 are the trans-

posed lines of M1 to M9. H0 to H3 are the final interpolated lines of sub-pels.

(b) Chrominance component. A to I indicate the motion-compensated full-pels.

T1 to T6 indicate the temporal results after the first filtering. R1 to R4 are the

final interpolated sub-pels . 54

4.10 Data paths for intra prediction. 55

-xiii-

CHAPTER 1

Introduction

1.1 Overview of Thesis

1.1.1 Overview of H.264

H.264 (also known as MPEG-4 AVC) is a video coding standard jointly developed by ITU-

T VCEG group and MPEG video group with a mission to significantly improve the coding

efficiency. As compared to the prior coding standards MPEG-1/-2/-4 and H.261/263, H.264

achieves a coding gain by a factor of 2. With such a revolutionary breakthrough, it attracts wide

attentions and is adopted in many applications such as streaming, storage, mobile networks,

portable multimedia devices, and high definition digital television.

The coding gain of H.264 is achieved by efficiently exploiting spatial and temporal redun-

dancy. For better temporal prediction, new coding tools such as long-term prediction, multi-

ple reference frames, motion compensation with variable block size, in-loop filter, and 1/4-pel

motion compensation are developed. In addition, for exploiting spatial redundancy, an intra

prediction technique is adopted. Further, to reduce bit rate, a context-adaptive entropy coder is

deployed. The following briefly summarizes the features of each coding tool.

-1-

Chapter 1. Introduction

• Long-Term Prediction: The prediction of a picture can refer to a prior coded picture

that is not right before the current one. For sequences with periodic content, long-term

prediction offers coding gain by having more flexibility on the selection of reference

picture.

• Motion Compensation with Variable Block Size and Multiple Reference Frames:

Motion compensation can be done by partitioning a macroblock into a few number of

sub-blocks and each sub-block can refer to a larger number of pictures that have been

coded and stored. The features of variable block size and multiple reference frames offer

better trade-off between texture and motion information as well as better adaptation for

macroblocks with varying characteristics.

• 1/4-pel and 1/8-pel Motion Compensation: The prediction can come from 1/4-pel sam-

ples (or 1/8-pel for chroma) that are generated by using the interpolation with full-pel

samples as input. The sub-pel motion compensation with higher accuracy improves the

prediction efficiency by reducing the aliasing from sampling.

• Intra Prediction: An intra-coded block can be predicted from the edges of the adja-

cent and previously-coded blocks. Particularly, the prediction can come from different

directions.

• Transform with Variable Block Size: The 4x4 integer transform and 8x8 DCT trans-

form can be adaptively selected for a macroblock. The 4x4 integer transform can remove

ringing artifact while the 8x8 DCT provides higher coding efficiency for smooth area. In

addition, a double transform could be applied for the DC coefficients belonging to the 16

4x4 blocks within a macroblock.

• Context-Adaptive Entropy Coding: The entropy coding is done in a context-adaptive

manner. The value of prior coded syntax elements (or bins) could be used to select the

probability model or table for the coding of following syntax elements (or bins). Higher

coding efficiency is achieved by using conditional probability models.

• In-loop De-Blocking Filter: A de-blocking filter is placed in the prediction loop to re-

move the blocking artifact for the reference picture so as to improve the quality of the

reference picture and prediction efficiency.

While more correlations are used for coding, it suggests that stronger data dependency

-2-

Chapter 1. Introduction

exhibit between successive computations and more buffers are required. Moreover, the very

different types of predictors imply that intensive computations are inevitable. Also, the het-

erogeneous building blocks and operations bring new challenges to a system design such as

synchronization, data flow control, error handling, buffering, software/hardware concurrency,

and so on.

With these design challenges, the SoC implementation for H.264 codec becomes much more

difficult than prior coding standards. Due to the complexity of H.264, a proper top-level archi-

tecture is the key to shorten design cycle and increase chances of first-time silicon success. With

a system having heterogeneous building blocks, the design regression would be time-consuming

and the loss of cost is significant if the system architecture has any errors. The following in-

troduces a new SoC design philosophy, transaction level modeling, which allows us to explore

the design spaces at system level by providing trade-off between implementation details and

simulation accuracy. In this thesis, we also present a H.264 decoder developed based on such a

design methodology.

1.1.2 Transaction Level Modeling

For ensuring the quality of the design, the SoC design flow involves various types of verification

and validation. Figure 1.1 shows the traditional design flow, which can be roughly partitioned

into two parts: (1) hardware development and (2) software development. As shown, the design

flow starts with the requirements of the applications, from which the specifications of the design

are defined. Further, according to the specifications, the tasks are partitioned and the system

architecture is determined. After that, the hardware and software developments are initiated.

For the hardware development, the design go through modeling at different levels of ab-

stractions, which include (1) algorithmic level, (2) RTL level, (3) gate level, and (4) physical

level. Different issues are addressed at different levels of abstractions. At algorithmic level,

the algorithms for the given task are studied. At this level of abstraction, we try to reduce the

complexity by minimizing the number of operations and the size of memory. Further, given the

algorithm, the RTL description maps the algorithm into hardware architecture. The data trans-

fer from one register to another register at the cycle boundary is captured. Further down to gate

level, the things happen in a cycle are extracted. The gate delay information within a pipeline

-3-

Chapter 1. Introduction

Requirement Definition

Specification
Development

Specification
Model

Hardware
RTL Development

FPGA
Prototype

Synthesis

System Architecture
Model Development

Software Development

System Integration
and Verification with RTL

Placement and Route

Chip Fabraction

Design regression

Figure 1.1: Traditional SoC design flow including hardware and software development.

stage is obtained. Thus, the timing is checked and the functionality is verified. After the syn-

thesis, the placement and route is conducted. More accurate timing information including wire

and gate delays can be extracted. As illustrated, while the design starts from algorithmic level

to physical level, more implementation details are discovered. The level of abstraction helps us

to develop the hardware in a hierarchical and efficient manner.

For the software development, it is developed and verified after the system prototype is

available. Normally, the system prototype is made of FPGA and board level components which

may include CPU, memory, bus, I/O interface and so on. The FPGA helps to verify the hardware

design while the other components emulate the target design. For verification, the interaction

between software and hardware as well as timing information are tested. Generally, the software

is verified and developed after the RTL descriptions of the hardware are available. After both

hardware and software are developed, the system integration and verification are done by using

either RTL or emulation board.

The traditional design flow poses some problems for the SoC design in which the system in-

cludes more functionality and has higher complexity. Firstly, errors or misunderstanding could

-4-

Chapter 1. Introduction

easily occur between software and hardware because of independent development. Secondly,

since system integration is started after software and hardware are available, any errors found in

this stage could incur time-consuming regression process, which makes time to market become

another issue. Thirdly, the complexity of the system could reach to a point that system level

RTL simulation become inefficiency and meaningless. Although using FPGA for emulation

could improve the efficiency, the emulation environment may not be exactly the same as the

target design. Thus, the verification may not be done thoroughly. In summary, the traditional

design flow cannot assure the reliability and quality of the design. It has difficulty to assure the

first-time design success. Apparently, we need a new design methodology that improves the

design quality and verification efficiency as well as reduces the time to market.

Recently, a modeling technique called transaction level modeling (TLM)[1][2][5][6] is pro-

posed to address the problems of SoC design. It introduces an additional level of abstraction

between system specification and RTL description. The purpose of TLM is to create a system

architecture model that address issues at system level while maintaining necessary modeling

accuracy. From the system perspective, the implementation details for each component are not

the focuses in the early development phase. Instead, we do care about the system parameters

such as the partition of tasks, the functionality of each component, the topology that connects

different components, the communication protocol between components, and so on. The TLM

is to hide unnecessary implementation details within a component and establish a system archi-

tecture model that describes the system behavior. Due to the absence of implementation details,

the TLM can simulate at a speed which is much faster than traditional RTL model. Also, it can

exactly model the target platform. With faster simulation speed, it further helps on the explo-

ration of design spaces and the reduction of the period for design regression. In addition, the

TLM model serves as the unified platform for detailed software and hardware development. By

using the TLM, the system verification and integration is started in the very beginning of the

design flow, which significantly improves the chances for first-time silicon success. In terms of

these advantages, the TLM nowadays attracts more attentions in the SoC design.

-5-

Chapter 1. Introduction

ARM 9
CPU

32-bits AHB Control Bus

128-bits AHB Control Bus

HDMI
Interface

Video Pipe-
CABAC,IQ/IDCT,DF,IIP,DeBlock,DeInterlacer

EMI

SDRAM0 SDRAM1 SDRAM2 SDRAM3

Hardware
Input

Interface
Bit-stream

FIFO

Figure 1.2: Overview of the system architecture.

1.1.3 System Level Modeling – H.264 Decoder

In this thesis, we propose a hardware architecture for the H.264 decoder that conforms to High

profile at Level 4 (HP@L4). Moreover, we verify the system architecture using TLM. Fig. 1.2

depicts our system architecture, which mainly consists of the following components:

1. ARM 9 CPU.

2. 32-bit AHB control bus.

3. 128-bit AHB data bus.

4. Dedicated hardware vide pipe.

5. External memory interface (EMI).

6. Hardware input interface.

7. HDMI interface.

In our architecture, the bitstream is input from the hardware input interface and the decoded

video is output through the HDMI interface. For the decoding, the ARM 9 CPU interprets the

sequence parameter set, picture parameter set, and slice header. Then, it programs the hardware

video pipe, which decodes the syntax elements under the slice data layer, via the 32-bit control

bus. Particularly, during the decoding, the decoded frames/fields and the associated motion

vectors are stored in the external DRAM. Thus, a dedicated 128-bit data bus is allocated for

those modules which need intensive access to the DRAM.

-6-

Chapter 1. Introduction

For the decoding of slice data layer, the hardware video pipe contains the modules CABAC,

IQ/IDCT, Data Fetch, Inter and Intra predictor, De-blocking, and De-interlacer. The CABAC

operates at macroblock level while the other modules conduct computation at logical 8x8 block

level, where each logical 8x8 block includes one 8x8 luma block and two 4x4 chroma blocks.

In addition, since the data fetch, de-blocking, and de-interlacer modules shares the DRAM and

the data bus, a bus arbitration policy is proposed to schedule the DRAM access. The details will

be presented in Chapter 3.

To verify the system architecture, we use the techniques of TLM. In particular, the CABAC,

IQ/IDCT, and de-blocking are done in pure C++ while the data fetch, inter and intra predic-

tions, as well as de-interlacer are modeled with approximate-timed TLM. In addition, the ex-

ternal memory interface and the DRAM are modeled at register-transfer-level (RTL); that is,

those modules are described in Verilog. Thorough the simulation, we show the advantages and

necessity of TLM. Also, we demonstrate how such a TLM model can be progressively refined.

1.1.4 Module Design – Inter and Intra Predictions

In addition to the system level modeling, we also propose a unified systolic-based architec-

ture for the inter and intra predictions in H.264 decoder. In H.264/AVC [7], the inter and intra

predictions are used to improve coding efficiency by using temporal and spatial redundancy.

Comparing with the existing standards H.261/2/3 and MPEG-1/2/4 [8], these prediction tech-

niques save up to 50% bit rates while providing similar perceptual quality.

However, the coding gain is at the cost of additional computations. In intra prediction,

the mode-adaptive predictor is generated by a 1-D filtering, which is conducted along with the

boundary pixels of a block. Similarly, the half-/quarter-pel predictor in the inter prediction is

produced through a separable 2-D filtering with the motion compensated blocks of variable

size. Both predictions require intensive filtering operations which poses challenges to real-time

applications. Moreover, the adaptive and irregular filtering makes hardware implementation

more difficult.

For the inter and intra predictions, most of the prior works implement the FIR filter based on

the traditional adder-tree structure [9][10][11][12][13][14][15], where filtering is implemented

by a number of adders and shifters. In such a straightforward implementation, common terms

-7-

Chapter 1. Introduction

between consecutive filtering operations are not reused. Moreover, multiple input samples are

simultaneously latched for one filtered output causing higher input bandwidth.

In addition to less efficient FIR design, the inter and intra predictions are generally im-

plemented by two separated modules due to the difference in their operations. However, in

decoder, the prediction mode of each macroblock is known in advanced. Thus, using separated

data paths for inter and intra predictions causes poor hardware utilization.

This thesis presents a unified systolic-based architecture for inter and intra predictions for

H.264/AVC decoder. To increase hardware utilization and minimize cost, we combine inter and

intra predictions by a re-programmable FIR filter, which is further implemented using systolic-

based array. For intra prediction, the boundary pixels are reshuffled before feeding into the

systolic-based array. For inter prediction, the 2-D interpolation is conducted through separa-

ble 1-D filtering. As compared with the state-of-the-art approaches, our architecture provides

higher performance while maintaining relatively lower cost and input bandwidth. Specifically,

up to 4x throughput improvement has been achieved. Moreover, the input bandwidth is signifi-

cantly reduced. Further, combining inter and intra predictions saves the cost by 22∼88%.

1.2 Organization and Contributions

In this thesis, we present a high level modeling technique, transaction level modeling (TLM),

for the SoC design. Moreover, we use H.264 video decoder as an example and use TLM to

verify the proposed system architecture. In addition, we also propose a unified systolic-based

architecture for intra and inter predictions in H.264 decoder. As compared with the state-of-

the-art designs, our design has higher throughput, but lower cost and power. For more details

of each part, the rest of this thesis is organized as follows:

Chapter 2 introduces the concept of TLM and shows its benefits in designing SoC. Firstly,

the bottleneck of traditional SoC design flow is presented. Then, we introduce the concept of

TLM and illustrate how the TLM can be realized by using SystemC.

Chapter 3 describes the system architecture of our H.264 decoder and addresses the design

issues at system level. Specifically, the design of the hardware video pipe, the system schedul-

ing, the buffer allocation, and the bus arbitration policy are described. In addition, an optimal

-8-

Chapter 1. Introduction

solution for the bus arbitration policy is proposed based on the assumption that the input and

output rates are of Poisson distribution. Lastly, the software architecture for the TLM is dis-

cussed.

Chapter 4 shows the proposed systolic-based architecture for the intra and inter predictions.

We show that combining inter and intra predictions by systolic-based architecture can signifi-

cantly reduce the cost while the performance is also improved.

Lastly, Chapter 5 summarizes our works and illustrates the research activities in the future.

-9-

CHAPTER 2

Transaction Level Modeling

2.1 Introduction

As described in the previous chapter, the traditional design methodology can not satisfy the

need for the design of complex system. The reason is that many unnecessary implementation

details are captured for the system-level modeling. Thus, the simulation speed could be so slow

that the verification at system level may not be done thoroughly.

Recently, a modeling technique called transaction level modeling (TLM) is proposed to ad-

dress the system-level modeling. The idea is to introduce another level of abstraction between

the system specification and its RTL implementation so that unnecessary implementation details

can be hid from the system-level modeling. As far as the system is concerned, the implemen-

tation details for each component are not the focuses in the early development phase. Instead,

the system parameters, such as the partition of the tasks, the functionality of each component,

the topology that connects different components, the communication protocol between compo-

nents, the memory hierarchy, and so on, are of more interest.

-10-

Chapter 2. Transaction Level Modeling

spec ification m odel

PE-assem bly model

Bus-arbitration model

Time-acc urate
c ommunication

model

Cycle-accurate
com putation

 m odel

Implem entation model

More Accurate

Computation

C
om

m
un

ic
at

io
n

More Accurate

Un-Timed

Un-Timed Approxiate
 -Timed

Approxiate
 -Timed

Cycle-
Timed

Cycle -
Timed

SM TLM

TLM

TLM

TLM

RTL
(1)

(2)

(3) (4)

(1)

(2)

(3)

(4)

(a) (b)

Figure 2.1: System models at different levels of abstraction [1].

This chapter presents four types of TLM including (1) the PE-assembly model, (2) the

bus-arbitration model, (3) the cycle-accurate computation model, and (4) the timing-accurate

communication model. In addition, we show the benefits of introducing TLM in the SoC design

flow. Lastly, we illustrate how TLM can be realized by using SystemC.

2.2 Definitions of Transaction Level Modeling

Figure 2.1 (a) shows the system models at different levels of abstraction. According to the mod-

eling accuracy in computation and communication, each model represents an operating point in

Figure 2.1 (b), where the bottom-left corner stands for the specification of the system while the

top-right corner denotes the detailed implementation at register-transfer level. Particularly, only

the four modules, PE-assembly model, bus-arbitration model, time-accurate communication

model, and cycle-accurate computation model, are considered as the TLM. In the following, we

will describe each model in detail.

2.2.1 Specification Model

Specification model describes the system functionality without any implementation details.

Generally, the specification model is described in high level languages such as C/C++, Java

-11-

Chapter 2. Transaction Level Modeling

v1 = a*a;

B1

v2 = v1+b*b;

B2

v3 = v1-b*b;

B3

v4 = v2+v3;
c=sequ(v4);

B4

v1

v2 v3

B2B3

Figure 2.2: Example of the specification mode [1].

and so on. Such a model normally has no concept of timing, system architecture, and hardware

implementation. Figure 2.2 illustrates an example of the specification model, in which the build-

ing blocks B1, B2, B3, and B4 define the operation of the system. In addition, the variables v1,

v2, and v3 represent the data transfer among different processes. As shown, the processes are

executed sequentially and the data transfer among processes is done by transferring the address

of the variables.

2.2.2 Implementation Model

Different from the specification model, the other extreme case is the implementation model,

which describes the system with detailed implementation and is usually done with the hardware

description languages such as Verilog, VHDL and so on. Normally, at this level of abstraction,

the data transfer is at register level and the timing is of cycle accurate. Figure 2.3 illustrates

an example of the implementation model, in which the PE1 and PE2 are the tasks executed

on micro-processors while the PE3 and PE4 represent the tasks done by customized hardware

modeled at register-transfer level (RTL). As you can see, the connections between all modules

are pin-accurate. Moreover, the task is executed in a cycle-by-cycle manner.

-12-

Chapter 2. Transaction Level Modeling

PE3

S0

S1

S2

S3

PE4

S0

S1

S2

S3

PE1 PE2

Interconnect Network

MOV r1,10
MUL r1,r1,r1
....

....
MLA r1,r2,r2,r1
....

Figure 2.3: Example of the implementation model [1].

2.2.3 Transaction Level Model

TLM provides more flexibility on selecting the level of abstraction for modeling. Generally,

TLM can be classified into four types: (1) the PE-assembly model, (2) the bus-abstraction

model, (3) the timing-accurate communication model, and (4) the cycle-accurate computation

model. Each model has its own property, characteristic, and design purpose.

2.2.3.1 PE-Assembly Model

The PE-assembly model is to verify the correctness of the functionality and the data flow. In

the PE-assembly model, the system is made up with multiple processing elements connected by

channels. Different PEs executes concurrently and the data transfer among PEs is done through

the channels, which are generally modeled by first-in-first-out (FIFO) buffer.

As compared to the specification model, the PE-assembly model has a rough view of system

architecture. The sequential operations are now replaced with concurrent computations. In

addition, the data transfer is modeled by FIFO, which is more similar to actual implementation.

Particularly, the channel at this level of abstraction does not use any bus protocol and arbitration

scheme. It is simply responsible for data transfer and synchronization. An example is shown in

Figure 2.4 (a), where the PE3 needs both the intermediate variables v1 and v2 for computation.

Note that the value of v1 is transmitted through the channel cv11 while the value of v2 is passed

-13-

Chapter 2. Transaction Level Modeling

PE3

PE2

v1 = a*a;

B1

v2 = v1+b*b;

B2

v3 = v1-b*b;

B3

v4 = v2+v3;
c=sequ(v4);

B4

v3

PE1

 cv11

 cv12

 cv2

PE3

PE2

v1 = a*a;

B1

v2 = v1+b*b;

B2

v3 = v1-b*b;

B3

v4 = v2+v3;
c=sequ(v4);

B4

v3

PE1

 cv11

 cv12

 cv2

PE4
Arbite r

1 2

3

1:master interface
2:slave interface
3:arbiter inte rface

(a) (b)

PE3

PE2

v1 = a*a;

B1

v2 = v1+b*b;

B2

PE1

 cv11

 cv12

 cv2

PE4
Arbiter

1 2

3

1:master interface
2:slave interface
3:arbiter interface
4:wrapper

4

S0

S1

S2

S3

PE3

PE2

v1 = a*a;

B1

v2 = v1+b*b;

B2

PE1

 cv11

 cv12

 cv2

PE4
Arbiter

1 2

3

1:master interface
2:slave interface
3:arbiter interface
4:wrapper

4

S0

S1

S2

S3

(c) (d)

Figure 2.4: Four types of TLM. (a) The PE-assembly model. (b) The bus-arbitration model.
(c) The timing-accurate communication model. (d) The cycle-accurate computation model. [1]

through the cv2. Also, the value of v1 is buffered in the cv11 before the value of v2 is pushed

into the cv2. In this example, the PE3 can only start the computation when both v1 and v2 are

buffered in the channel. As a result, the channels not only transfer the data but also synchronize

the computations among different PEs.

2.2.3.2 Bus-Arbitration Model

The bus-arbitration model is to further refine the communication part of the PE-assembly model.

Compared with the PE-assembly model, the bus-arbitration model includes more details in com-

munication part. In some platform-based designs, the data transfer among different modules

may not be through hard-wired connections. Instead, a centralized bus could be used to keep

flexibility. An example is shown in Figure 2.4 (b), where the data transfer among PE1, PE2 and

PE3 is done through a centralized bus. From the system perspective, the protocol of the bus and

its arbitration scheme are critical to the system performance. Thus, the bus-arbitration model

can help to verify the design of the communication part.

-14-

Chapter 2. Transaction Level Modeling

2.2.3.3 Timing-Accurate Communication Model

The timing-accurate communication model (as shown in Figure 2.4 (c)) is a refined version

of the bus-arbitration model. Compared with the bus arbitration model, the timing-accurate

communication model has more details in communication part. Precisely, the bus-arbitration

model only cares about whether the data transfer is correct in a specific method while the timing-

accurate communication model also considers the timing and signal transition for every data

transaction.

2.2.3.4 Cycle-Accurate Computation Model

The cycle-accurate model is also a refined version of the bus-arbitration model. Compared with

the timing-accurate communication model, the cycle-accurate computation model refines the

computation part instead of the communication part. However, depending on the requirement,

not all of the modules must be refined to cycle-accurate. An example is shown in Figure 2.4

(d), where only PE3 is refined in cycle-accurate while both PE1 and PE2 are remained the

same. Such flexibility allows us to provide trade-off between simulation speed and modeling

accuracy. Note that wrappers could be required to interface the modules modeled at different

levels of abstraction.

2.2.3.5 Comparison

Table 2.1 summaries the characteristics of different system models. As shown, different models

capture different degrees of accuracy in computation and communication. The specification

model and the implementation model represent the two extreme cases, where the system model

specifies the functionality of the system while the implementation model defines its implemen-

tation at register-transfer level. The models in between are the four types of TLM, which offers

the flexibility on selecting the simulation accuracy and speed.

2.3 Design Flow with Transaction Level Modeling

As described in Section 1.1.2, traditional design flow can not ensure the quality of the design

when the system complexity increases dramatically. This section presents a new SoC design

-15-

Chapter 2. Transaction Level Modeling

Table 2.1: Characteristics of different abstraction models.

Models Communication Computation Communication PE Interface Implementation
Time Time Scheme Detail

Specification Model no no variable (no PE) -

PE-Assembly Model no approximate message-passing abstract PE allocation,
channel process PE mapping

Bus-Arbitration Model approximate approximate abstract bus abstract bus topology,
channel bus arbitration

Timing-Accurate time/cycle approximate detailed bus abstract detailed bus
Communication Model accurate channel protocol
Cycle-Accurate approximate cycle accurate abstract bus pin accurate RTL/ISS PEs
Computation Model channel detailed bus protocol
Implementation model cycle accurate cycle accurate wire pin accurate or RTL/ISS PEs

Requirement Definition

Specification
Development

Specification
Model

System Architecture and
TLM Development

TLM

RTL

HW Refinement

SW
Design

and
Development

HW
Verification
Environment
Development

Figure 2.5: Design flow with transaction level modeling [2].

flow with TLM as the common platform for concurrent software and hardware development.

The new design flow mainly comprises two parts, which are (1) the new system-to-RTL exten-

sion and (2) the traditional RTL-to-layout flow. The first part is different from that used in the

past while the second part is remained the same.

Figure 2.5 depicts the new system-to-RTL extension. As shown, after the specification is

defined, the system architecture is developed and verified by using TLM. Upon the complete-

ness of the TLM model, it is used as an unique reference to both software and hardware teams.

-16-

Chapter 2. Transaction Level Modeling

For the software team, the embedded software is developed and verified based on the TLM

model. For the hardware team, the TLM serves as the golden model for the detailed implemen-

tation. Along with the development of software and hardware, the TLM model can be annotated

with more accurate timing information. Consequentially, not only the functionality but also the

timing can be jointly verified. Different from the traditional design flow, the new design flow

performs system integration and verification in the very beginning, which is the key for ensur-

ing the quality of the design. The following summarizes the functionality of TLM in the SoC

design flow:

1. Verification model for design space exploration.

2. Platform for early software development.

3. Specification and golden model for hardware development.

Nowadays, EDA tools are still not capable of automatically converting TLM to detailed

hardware implementation. The hardware refinement is still done through a traditional paper

specification and RTL coding. TLM appears to be an extra workload and unnecessary task.

However, it still brings many benefits that significantly reduces the time to market:

1. System integration at the early stages so that the potential problems can be found and

solved earlier.

2. Faster simulation speed while maintaining the accuracy of simulation.

3. Concurrent software and hardware development.

4. Platform for software/hardware co-design and co-verification.

5. Incremental hardware refinement and implementation details by means of hybrid abstrac-

tion level modeling.

To show the benefits of TLM, Figure 2.6 illustrates the timeline for the development of SoC.

The arrows highlight the differences between traditional design method and the one with TLM.

The time scale in the figure depends on the project size, system complexity, and the makeup

of the system component. Although writing a TLM model lengthens the architectural design

phase, it enables earlier software implementation and architecture verification. Therefore, the

design flow with TLM can reduce the overall development cycles. Besides, TLM has abilities

to provide earlier and more realistic hardware/software trade-off at a time when changes are

easier. Thus, the overall system quality is improved.

-17-

Chapter 2. Transaction Level Modeling

Figure 2.6: Comparison of design schedule between the traditional design flow and the one
with transaction level modeling [2].

2.4 Transaction Level Modeling with SystemC

The SoC systems typically contain application-specific hardware and software. Both the hard-

ware and software are developed with a very tight schedule. Moreover, the systems have very

rigorous constraints on performance. Therefore, the functional verification must be done thor-

oughly so as to avoid expensive and sometimes catastrophic failures. Obviously, traditional

hardware design languages such as VHDL and Verilog are not suitable for modeling at system

level due to the lack of capability for traversing through different levels of abstraction. For

improving the productivity, a design language for system level modeling is required.

2.4.1 Features of SystemC

SystemC, which is a class library built on top of the well established C++ language, is one of

the candidates for TLM. It accepts original C/C++ syntax and additionally introduces a simu-

lator that incorporates the concept of concurrent execution. The primary goal of SystemC is to

enable system level modeling that includes both software modules, hardware modules and the

combination of the two. With C++ syntax, it is easier to describe the behavior of a module in

the very beginning from there the implementation detail can be developed later. Moreover, the

simulator that includes the timing information allows us to model the concurrent execution of

different modules. Furthermore, there are many tools that support co-simulation with SystemC

-18-

Chapter 2. Transaction Level Modeling

Figure 2.7: Separated computation and communication in SystemC

and RTL. As a result, one of the advantages of using SystemC for modeling is that one can

develop models above RTL level and refine them to RTL level within the same environment.

To allow progressive refinement of system design, SystemC separates the computation and

the communication. An example is shown in Figure 2.7. The computation part may be com-

posed of different modules containing one or more processes while the communication part

implemented as "channel" can also include many processes. The different computation mod-

ules can exchange data through their ports connecting with channels by calling "interface func-

tions". The only thing the computation part knows about the communication is how to transfer

data between different modules by using interface functions of communication. With the sepa-

ration of computation and communication, the designs for these two parts can be independently

implemented and separately refined from algorithmic level to RTL level.

The capability of separated implementation for computation and communication is the key

for transaction level modeling. Such modeling philosophy allows us to implement the computa-

tion part and the communication part at different levels of abstractions. As described in Section

2.2, TLM may have different levels of timing resolution for computation and communication.

In the very beginning for developing TLM, the computation and communication parts may have

no concept about timing. The only thing one can verify at this stage is the correctness of func-

tionality and data flow, which is one of the purposes for system level verification. After detailed

micro-architecture is completed, one can refine the computation or the communication part to

have approximated timing or cycle-accurate timing. However, it should be noted that the more

details that are captured by the TLM, the slower is the simulation speed. In a special case where

both computation and communication parts are of cycle- and pin-accurate, the TLM will then

become almost the same as RTL. With such implementation details, the simulation speed could

-19-

Chapter 2. Transaction Level Modeling

be too slow to thoroughly verify the design. Thus, how to provide trade-off between simulation

speed and accuracy is critical to the completeness of system level verification.

2.4.2 Implementation Using SystemC

2.4.2.1 Modules and Processes

SystemC offers two types of methods for implementing the concurrent processes contained in a

channel or a module: sc_method and sc_thread.

The sc_method is the most basic type of simulation process. It works like "always" block

in Verilog language and can be triggered by clock, event, or any signals. Different from

sc_method, sc_thread is only invoked once and will not suspend itself until the wait function is

executed. The wait function is to suspend the execution of current process and hands over the

control of execution to other processes. Depending on whether the TLM is timed or untimed,

the events in wait function or the ones for triggering the sc_method can have timing informa-

tion. The resolution of timing information can be arbitrarily determined according to the details

that should be captured.

Figure 2.8 gives two examples of module implementation using the sc_thread and sc_method,

respectively. As shown in the figure, a module may consist of ports, processes, as well as mem-

ber functions and variables. The ports define the interface with which a module can commu-

nicate with the others. The processes, on the other hand, specify the operations for a module.

Further, the process can be encapsulated by sc_method or sc_thread so that it can be triggered

by a set of pre-defined events. In moduleA, the process is triggered whenever the signal con-

nected to the port of clk_p is changed. In this example, the moduleA firstly writes a value to

moduleB through the channel and then suspend for 1 cycle. When the next event is raised, the

moduleA further read a value form moduleB. On the other side of the channel, the moduleB

responses to the request of moduleA by setting or returning the internal variable "result", which

is increased by 1 whenever the process is triggered.

In SystemC, the simulation speed can be improved by reducing the number of context

switch. In the example of moduleA, one must suspend the execution of a process contained

in sc_thread so that the other processes can be granted for execution. Compared to traditional

hardware description languages such as Verilog and VHDL, one can control the number of con-

-20-

Chapter 2. Transaction Level Modeling

ModuleA.h

class moduleA :
public sc_module {
public:
 sc_in<bool> clk_p;
 sc_port<master_if> bus_port;

 void A_process();

 SC_CTOR(moduleA){
 SC_THREAD(A_process);
 sensitive << clk_p;
 dont_initialize();
 }
};

ModuleA.cpp

void moduleA::A_process() {
 int data;
 data=0;
 while(true){

bus_port->channel_write(&data);
cout << "writing data=" << data << endl;
wait();
bus_port->channel_read(&data);
cout << "reading data=" << data << endl;
wait();

 }
}

ModuleB.h
class moduleB : public slave_if ,
public sc_module
{
public:
 sc_in<bool> clk_p;

 void B_process();
 void mem_read(int *data);
 void mem_write(int *data);

 SC_CTOR(moduleB){
 SC_METHOD(B_process);
 sensitive << clk_p;
 dont_initialize();
 }
private:
 int result;
};

ModuleB.cpp

void moduleB::B_process() {
 result=result+1;
}
void moduleB::mem_read(int
*data) {
 *data=result;
}
void
moduleB::mem_write(int
*data) {
 result=*data;
}

Figure 2.8: Example of module implementation using sc_thread and sc_method.

text switch by properly determining when the execution should be switched to other processes.

However, it should also be noted that the number of context switch could be reduced at the cost

of losing model accuracy.

2.4.2.2 Channels and Interface Functions

For implementing the communication part, SystemC provides two types of channels: primitive

channel and hierarchical channel.

The primitive channel is created for providing simple and fast communications. In the

primitive channel, there is no hierarchy, ports, and methods. Besides, the primitive channel

-21-

Chapter 2. Transaction Level Modeling

uses the request-update mechanism to resolve the issue of concurrent read and write access;

that is, when a value is passed to a module through the primitive channel, and the read and write

operations are executed concurrently; the module will get the old value instead of the updated

one. Such a request-update mechanism is helpful in modeling the hardware pipeline when using

the primitive channel.

In contrast, the hierarchical channel is more flexible in a sense that it acts like a module.

Actually, in SystemC, the difference of hierarchical channel and module only exists in users’

minds. There is no difference from the perspective of the simulator. In other words, what can be

done in a module can also be done in a hierarchical channel. Normally, the hierarchical channel

is used to implement complex communication protocols with timed or untimed constraints.

The processes of a channel are implemented in the interface functions, which are the key for

separating the computation and the communication. For the process within a module, it com-

municates with other modules by calling the interface functions bound to the ports. Normally,

the definition of interface functions is kept untouched when the TLM is refined to different lev-

els of abstraction. This feature ensures that the computation part and the communication part

are independent because the changes in the computation part or the communication part will

not affect the other.

Figure 2.9 shows the channel that connects moduleA and moduleB, as well as the cor-

responding interface functions. In this example, when moduleA transmits data to moduleB

through the channel, the data will be added with random noise. In this example, you can see

that moduleA only knows how to use the interface functions for transmitting data. However,

the details about how the data is transferred are hid by the interface functions. Thus, when the

channel is refined, the way moduleA transmits data is still remained the same. This is the key

idea of separating the computation and communication.

Figure 2.10 shows the overall architecture of the example. Compare with figure 2.7, this

example keeps the rule of separating the computation part and the communication part. After

the interface function is well defined, the modules and the channels can be implemented at the

same time. It will also reduce the modeling time. In addition, you can exchange the modules

or the channels as you want only using the same interface function. As a result, IP reusable is

another benefit of separating the computation part and the communication part.

-22-

Chapter 2. Transaction Level Modeling

channel.h

class channel : public master_if,
public sc_module
{
public:
 sc_port<slave_if> slave_port;

 SC_CTOR(channel){
 }
 void channel_read(int *data);
 void channel_write(int* data);
};

channel.cpp

void channel::channel_read(int
*data)
{
 slave_port->mem_read(data);
 *data=*data+rand()/10000;
}
void channel::channel_write(int
*data)
{
*data=*data+rand()/10000;
slave_port->mem_write(data);
}

master_if.h

class master_if : public virtual sc_interface
{
public:
 // master interface
 virtual void channel_read(int *data)=0;
 virtual void channel_write(int *data)=0;
};

slave_if.h

class slave_if :
public virtual sc_interface
{
public:
 // slave interface
 virtual void mem_read(int
*data)=0;
 virtual void mem_write(int
*data)=0;
}

Figure 2.9: Example of channel implementation and interface functions.

2.5 Summary

This chapter introduces a modeling technique, transaction-level modeling (TLM), for system-

level modeling. Specifically, the TLM is to introduce another level of abstraction between

the specification model and the detailed RTL model. By hiding unnecessary implementation

details in the early development phase, the TLM enables the exploration of design spaces and

the verification of system architecture. Moreover, it serves as a virtual platform for concurrent

software and hardware development. With the TLM, the system integration and verification is

initiated in the very beginning, which ensures the quality of the design and increases the chances

of first-time silicon success.

-23-

Chapter 2. Transaction Level Modeling

Module A Channel Module B

clk_p

bus_port (master_if)

clk_p

slave_port (slave_if)

Call master_if functions
via bus_port

Implement master_if functions
and Call slave_if functions via
slave_port

Implement slave_if functions

Figure 2.10: Top level connections for moduleA, moduleB, and the channel.

For the implementation of TLM, we present the SystemC library. In the SystemC, there

are 3 major components, which are process, channel, and interface function. The processes

define the operations of a component and can be triggered by a set of predefined events. In

addition, the channel specifies the connections among different components and the interface

function provides the means for a component to communicate with the others. Within a com-

ponent, the processes can call the interface functions for data transaction without knowing the

detailed implementation of the interface functions. Consequentially, by well defining the inter-

face functions, the communication part and the computation part can be developed and refined

independently.

Another feature of the SystemC library is that the simulator is not preemptive; that is, the

designer must suspend the execution of a process so that the execution control can be switched

to another process. Thus, the frequency of context switch can be controlled by the designer,

which is a key to the trade-off between simulation speed and modeling accuracy. With so many

features, the SystemC library now becomes one of the most popular tools for TLM.

Due to the benefits of the TLM, it will become an essential step in the SoC design flow. In

the next chapter, we use H.264 video decoder as an example and demonstrate how TLM can be

used to describe the system architecture.

-24-

CHAPTER 3

Transaction Level Modeling of H.264

Decoder

3.1 Introduction

This chapter will describe the profile level of our H.264 decoder first. In most video coding

standard, different profile level will support different coding tools such as transform8x8, sup-

porting frame size, and MBAFF. As a result, the profile level definition is very important to the

complexity and cost of the overall system architecture. Next, the system architecture will be in-

troduced. The software and hardware partition, module partition and functionality, and system

scheduling are included. Then, some important issues are discussed such as buffer allocation,

control scheme, and so on. Finally, how we use SystemC to model our system of H2.64 decoder

in transaction level is shown up.

-25-

Chapter 3. Transaction Level Modeling of H.264 Decoder

3.2 Design Specification

In H.264 standard, there are many different profile levels which contain different coding tools

to improve the coding efficiency. Thus, different decoder design supporting for different profile

will be different in performance and cost. This section presents a design specification of decoder

conforming to high profile at level 4. Any bit-streams conforming to main/high profile with a

level lower than or equal to 4 shall be decoded. Specifically, the decoder supports the decoding

throughput up to 1920x1080i@60Hz. In the following, some properties of high profile and level

limits are listed.

1. Only I, P, and B slice types may be present.

2. No data partition.

3. Arbitrary slice order is not allowed.

4. No slice group and no redundant picture.

5. chroma_format_idc in the range of 0 to 1.

6. bit_depth_luma_minus8/bit_depth_chroma_minus8 equal to 0 only.

7. qpprime_y_zero_transform_bypass_flag equal to 0 only.

8. Up to 16 reference frames. (32 reference fields).

9. Vertical motion vector range does not exceed MaxVmvR as in Table 3.1.

10. Horizontal motion vector range does not exceed the range of -2048 to 2047.75

11. Up to 32 MVs per MB.

12. Number of bits per macroblock is not greater than 3200.

Moreover, Table 3.1 and Table 3.2 show more constraints of different profiles. With sum-

marizing these profile limits, we can start to design our micro-architecture of H.264 decoder to

satisfy all functionalities while minimizing the cost.

3.3 System Architecture

Figure 3.1 shows the overall architecture of this system, which is developed based on the ARM

platform. For the chip I/O, the compressed bit-stream is input via a hardware interface, which

communicates with the host by a bridge, and the decoded frames are output to the monitor

via HDMI interface. The reference pictures, decoded pictures, and MVs for each reference

-26-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Table 3.1: Level Limits I
Level Max Max Max Max Max Vertical MV Min Max
number macroblock frame decoded video CPB size component compression number

processing size picture bit rate MaxCPB range ratio of motion
rate MaxFS buffer size MaxBR (1000 bits/s, MaxVmvR MinCR vectors
MaxMBPS (MB/s) MaxDPB (1000 bits/s, 1200 bits/s, (luma frame per two
(MB/s) (1024 1200 bits/s, cpbBrVclFactor samples) consecutive

bytes for cpbBrVclFactor bits/s, or MBs
4:2:0) bits/s, or cpbBrNalFactor MaxMvsPer2Mb

cpbBrNalFactor bits/s)
bits/s)

1 1 485 99 148.5 64 175 [64,+63.75] 2 -
1b 1 485 99 148.5 128 350 [64,+63.75] 2 -
1.1 3 000 396 337.5 192 500 [128,+127.75] 2 -
1.2 6 000 396 891.0 384 1000 [128,+127.75] 2 -
1.3 11 880 396 891.0 768 2000 [128,+127.75] 2 -
2 11 880 396 891.0 2000 2000 [128,+127.75] 2 -
2.1 19 800 792 1 782.0 4000 4000 [256,+255.75] 2 -
2.2 20 250 1 620 3 037.5 4000 4000 [256,+255.75] 2 -
3 40 500 1 620 3 037.5 10000 10000 [256,+255.75] 2 32
3.1 108 000 3 600 6 750.0 14000 14000 [512,+511.75] 4 16
3.2 216 000 5 120 7 680.0 20000 20000 [512,+511.75] 4 16
4 245 760 8 192 12 288.0 20000 25000 [512,+511.75] 4 16

Table 3.2: Level Limits II

Level SliceRate MinLumaBiPredSize direct_8x8_inference_flag frame_mbs_only_flag
1 - - - 1
1b - - - 1
1.1 - - - 1
1.2 - - - 1
1.3 - - - 1
2 - - - 1
2.1 - - - -
2.2 - - - -
3 22 - 1 -
3.1 60 8x8 1 -
3.2 60 8x8 1 -
4 60 8x8 1 -

picture are stored in the external RAM. All the data access to external RAM will go through the

memory interface.

Inside the chip, there is an embedded CPU and two AHB buses, which are control bus and

data bus. The control bus is used by CPU for data flow control and the data bus is used by DF,

De-blocking and De-interlacer for data transfer between these modules and external RAM. In

addition to the AHB buses, there are backdoor-to-backdoor connections between modules. The

modules connected by backdoor channel make up a video pipe, where its input comes from

bit-stream FIFO and its output is drive to the HDMI interface. Particularly, the data between

modules are exchanged on block by block basis with block size being 8x8 except for CABAC.

-27-

Chapter 3. Transaction Level Modeling of H.264 Decoder

32-bit AHB Control Bus

External Memory Interface
S

SDRAM 0

CABAC
CAVLC

S

128-bit AHB Data Bus

Bit-stream
FIFO

ARM 9
CPU

M

Instruction
Memory

Data
Memory

IQ/IDCT
S

MB
Texture
Buffer

MB
Motion
Buffer

Data Fetch
S

Intra/Inter
Prediction

S

Subblock
Reconstruct

Buffer
DeBlocking

S,M

IIP
FIFO

DB
 FIFO

DeInterlacer
S,M

DI
 FIFO

SDRAM 1 SDRAM 2 SDRAM 3

Harddware Input Interface
M, M

Sync
 FIFO

HDMI
Interface

Subblock Processing Unit

NAL
Parsing

Figure 3.1: System architecture diagram[3][4].

In this system, after CABAC decodes the data above slice header, it will send an interrupt

to CPU and then CPU will fetch the information in the headers of sequence, picture, and slice

from CPU through control bus. According to the information in sequence, picture, and slice

headers, CPU can configure the modules in the video pipe through the control bus for various

decoding modes. Each module can also be independently tested by CPU. The following briefly

describes our video pipe and system schedule.

3.3.1 Video Pipe

In our H.264 decoder, our video pipe contains seven modules which are CABAC, IQ/IDCT,

Data Fetch(DF), Intra-Inter prediction(IIP), De-Blocking, and De-Interlacer. CABAC is the

first module in video pipe and the functionality of CABAC is decoding all bit-stream syntax.

Because our decoder processes luma and chroma components in parallel and CABAC can not

decode chroma components until all luma coefficients have decoded in one macroblock, it is

more efficient to make CABAC operate in macroblock level. Therefore, for saving the buffer

size, all other modules operate in eight-by-eight block.

After CABAC, IQ/IDCT and DF are following. The IQ/IDCT module does the inverse

-28-

Chapter 3. Transaction Level Modeling of H.264 Decoder

1
3

5
6

2
4

21
5

3
8 46

97
10

3 4
1 25

6 48
1 25

36
97

10

(a) (b) (c) (d)

Figure 3.2: Deblocking process order in eight by eight block

quantization and inverse discrete cosine transform of the residuals while the DF module is re-

sponsible for motion prediction and fetching reference block for Inter block and intra prediction

type decoding for Intra block. Following after the DF is IIP which produces the value of predic-

tion block for Intra and inter prediction and adds the results with the residuals from IQ/IDCT.

Because we let IQ/IDCT start earlier one eight by eight block than IIP, it can make sure that IIP

always has the corresponding residuals.

After that, de-blocking is performed for reducing the blocking effect. Because IQ/IDCT

starts earlier than IIP by one eight by eight block cycle for keeping the correct data order, we

use three eight by eight block buffers between IQ/IDCT, IIP, and De-Block. For example, when

IQ/IDCT is writing the third buffer and IIP is writing the second buffer, De-Block is reading

the first block buffer. In addition, because deblocking has specific process order in macroblock

level but our process unit is eight by eight block, we must change the process order shown in

Figure 3.2 and still follow the rule in specification. In Figure 3.2, (a), (b), (c), and (d) present

the eight by eight block order in zig-zag scan of one macroblock and the number means the

process order in one block..

The last module is De-Interlacer which will work only when the source sequence is field.

The functionality of De-Interlacer is to translate a field picture to a frame picture. Because the

algorithm of De-Interlacer will use the previous, current, and next one field in display order, it

will also need amount of bus bandwidth. Besides, the fields for De-Interlacer and for reference

may be different. As a result, it will also increase the size of external memory.

3.3.2 System Schedule

Without a system schedule to control data flow in video pipe, it is possible that the functionality

of whole system is wrong even if every module is well verified. This section describes briefly

-29-

Chapter 3. Transaction Level Modeling of H.264 Decoder

our system schedule shown in Table 3.3. In the beginning of decoding, we need a initial period

to decoding bitstream above slice header by CABAC and to set the control registers of every

hardware modules by ARM CPU. After that, all hardware modules start to decode one by one.

When CABAC starts to decode the second macroblock in current slice, the first macroblock is

fed into the following modules in eight by eight block unit. As a result, IQ/IDCT and DF, IIP,

and DeBlock process the different eight by eight block.

During the slice changes, the CABAC will detect the NAL unit first and start to decode the

slice header. When CABAC is decoding the slice, the hardware may stall depending on the time

the NAL unit is detected, slice header decoding speed of CABAC, and block decoding speed of

hardware modules. Table 3.3 shows the condition that hardware modules will stall. In addition,

when the picture changes, there is same condition as slice.

Looking into the hardware pipe, every module has different process time. As a result, when

a module finish current block, it does not mean that the module can process next block right

now because the input data may be not ready and it may over write the data which next stage is

using. In our decoder design, if one module is finished, it will not start again until all hardware

modules are finished. Thus, for supporting real-time decoding, all modules must make sure that

they can finish their job in time.

3.4 Bus Arbitration Policy

In our architecture, the data bus and the external memory are shared by the data fetch, deblock-

ing, and deinterlacer modules. The data fetch module reads the reference block from the exter-

nal memory for motion compensation. On the other hand, the deblocking module writes back

the reconstructed block. In addition, the deinterlacer further reads the decoded fields buffered in

the external memory for display. Due to limited resources, different modules must be scheduled

for the access of bus and external memory.

To prevent the hardware from stall, each module needs to allocate a local buffer, which acts

as a first-in-first-out (FIFO) buffer, to store the input/output data before it is granted for access-

ing the bus and memory. Particularly, the size of the local buffer is determined by how frequent

a module is granted for accessing the bus. Moreover, it also depends on the consumption or

-30-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Table 3.3: System Schedule

Field(t1) Field(t2)
8x8 CABAC IQ/IDCT IIP DeBlock DeInterlacer
Cycles and DF

Detect NAL Initial of sequence
Dec SPS
Set SPS_CR
Detect NAL Initial of fist picture
Dec PPS_0
Set PPS_CR[0]
Detect NAL Initial of first slice
Dec SH_0
Set SH_CR[0]

0 P0S0B0 B0
1 P0S0B1 P0S0B0 B1
2 P0S0B2 P0S0B1 P0S0B0 B2
3 P0S0B3 P0S0B2 P0S0B1 P0S0B0 B3
. . P0S0B3 P0S0B2 P0S0B1 .
. . . P0S0B3 P0S0B2 .
. . . . P0S0B3 .
479 P0S0B479 . . . B479
480 Bubble P0S0B479 . . Bubble

481 P0S1B0 Bubble P0S0B479 . B480
482 P0S1B1 P0S1B0 Bubble P0S0B479 B481
483 P0S1B2 P0S1B1 P0S1B0 Bubble B482
484 P0S1B3 P0S1B2 P0S1B1 P0S1B0 B483
. . P0S1B3 P0S1B2 P0S1B1 .
. . . P0S1B3 P0S1B2 .
. . . . P0S1B3 .
959 P0S1B479 . . . B959
.
.
.
.
. Detect NAL P0SNB479 Bubble
. Dec PPS_1
. Set PPS_CR[1]
. Detect NAL Bubble P0SNB479 Bubble
. Dec SH_1
. Set SH_CR[1]
0 P1S0B0 Bubble Bubble P0SNB479 B0
1 P1S0B1 P1S0B0 Bubble Bubble B1
2 P1S0B2 P1S0B1 P1S0B0 Bubble B2
. . P1S0B2 P1S0B1 P1S0B0 .
. . . P1S0B2 P1S0B1 .
. . . . P1S0B2 .

-31-

Chapter 3. Transaction Level Modeling of H.264 Decoder

λ
B u

Figure 3.3: Input and output configuration.

production rate of a module. With very different types of operations, different modules have

different input and output rates. Thus, our goal is to design a bus arbitration policy according

to these factors so that the total buffer size is minimized.

In the following, we present an optimal arbitration policy by assuming that the data arrival

rate (input/output rate) has Poisson distribution, which is widely used to solve such a queuing

problem and provides a good approximation to practical scenario. Then, from the optimal

solutions, we show the guidelines for designing the bus arbitration policy and buffer allocation.

After that, we present the bus arbitration policy and the buffer allocation scheme in our design.

3.4.1 Optimal Solution

3.4.2 Expected Buffer Size

The optimal bus arbitration policy is to minimize the sum of the expected buffer size. Before

we go further to describe the bus arbitration policy, the following firstly formulizes the expected

buffer size given the input and output rate. Figure 3.3 shows the configuration of the input and

output rate. Particularly, we assume

1. The input rate (arrival rate) is λ, where λ has Poisson distribution.

2. The output rate is μ, where μ stands for the consumption rate of a module and is also

characterized by Poisson distribution.

3. μ > λ.

Then, from the queuing theory, the expected buffer size E[B] can be derived as in Eq. (3.1).

E[B] =
λ

μ− λ
(3.1)

-32-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Memory
λ

2μ1μ 3μ Nμ

1B 2B 3B NB
1P 2P 3P NP

(a)

λ

1B

2B

NB

1P

2P

NP

1μ

2μ

Nμ

(b)

Figure 3.4: Input and output configuration with 3 PEs

3.4.2.1 Multiple Processing Elements with Consumption Model

To understand the cases with multiple processing elements that simultaneously read the memory

through a centralized bus, the configuration in Figure 3.3 is further extended to have multiple

processing elements. Figure 3.4 illustrates such a configuration, where we assume

1. There are N processing elements that share the bandwidth of a centralized bus, λ.

2. Each processing element retrieves the data stored in the memory through the centralized

bus.

3. The processing element j has a consumption rate of μj , where j = 1 ∼ N and μT =XN

j=1
μj > λ.

The goal is to find the probability Pj , i.e, the bus arbitration policy, that minimizes the sum

of the expected buffer size E[BTotal] = E[
XN

j=1
Bj] =

XN

j=1

Pjλ

μj−Pjλ
and satisfies the two

constraints:

1. μj > Pjλ.

2.
XN

j=1
Pj = 1, where 0 ≤ Pj ≤ 1.

The solution to the problem with the two constraints can be obtained by using the Lagrange

multiplier. According to the Lagrange optimization theory, the problem above can be for-

-33-

Chapter 3. Transaction Level Modeling of H.264 Decoder

kj Por P

),P(F β

10

λ
μ

≤β j

λ
μ

β−
λ
μ jj

λ
μ

>β k

λ
μ

β−
λ
μ kk

Figure 3.5: F values under the variations of β and Pj.

mulized as to find thePj that minimizes the following equation, whereP =(P1, P2,, Pj, ...PN)

and − 1
β2

is the Lagrange multiplier with β > 0.

F (P, β) =
NX
j=1

Pjλ

μj − Pjλ
− 1

β2

Ã
NX
j=1

Pj − 1
!

(3.2)

Principally, the P∗ =
¡
P ∗1 , P

∗
2 ,, P

∗
j , ...P

∗
N

¢
that minimizes Eq. (3.2) must be the root of the

following equation.

d

dPj
F (P, β) =

d

dPj

Ã
NX
j=1

Pjλ

μj − Pjλ
− 1

β2

Ã
NX
j=1

Pj − 1
!!

=
λμj¡

μj − Pjλ
¢2 − 1

β2
(3.3)

= 0

Thus, we can obtain the optimal P ∗j as follows. Note that we have excluded one of the two

solutions by imposing the constraint, μj > λP ∗j .

P ∗j =
μj
λ
− β

r
μj
λ

(3.4)

By inspecting the values of β and μj , it could happen that some of the processing elements

may have their P ∗j < 0. From Eq. (3.3), we learn that F (P, β), Pj , and β have a relationship

as shown in Figure 3.5. It can be observed that the minimum buffer size for those processing

elements with β >
q

μj
λ

is reached when the probability Pj is set to a negative value. However,

according to the constraint, Pj must be a value greater than 0. Thus, we must choose the

-34-

Chapter 3. Transaction Level Modeling of H.264 Decoder

β

λ
μ j

) Pis (whic h j
jj

λ

μ
β−

λ

μ

λ

μ
β j

λ

μ jArea filled with water

Figure 3.6: Bus arbitration policy based on the principle of reverse water-filling.

P∗ =
¡
P ∗1 , P

∗
2 ,, P

∗
j , ...P

∗
N

¢
that meet the constraints. From Fig. 3.5, setting the probability

Pj for those processing elements with β >
q

μj
λ

to zero will reach the optimal solution. Thus,

the bus arbitration policy shall be as follows:

P ∗j =

½μj
λ
− β

q
μj
λ

, when 0 ≤ β ≤
q

μj
λ

0 , when β >
q

μj
λ

¾
(3.5)

In Eq. (3.5), the value of β is further constrained by the fact that
XN

j=1
Pj = 1. With the

condition in Eq. (3.5), the value of β can be obtained by using the principle of reverse "water-

filling" conditions, which is also known as Kuhn-Tucker conditions. For better understanding,

Figure 3.6 illustrates an example for such an idea, where each processing element is allocated

with a square with its dimension being proportional to
q

μj
λ

. As shown, for each processing

element, the area filled with water is equal to β
q

μj
λ

. On the other hand, the area not filled with

water is equal to μj
λ
− β

q
μj
λ

and represent the value of Pj . Thus, the β is the water line when

the summation of the area not filled with water is equal to 1. For the processing elements with

their squares being completely filled with water, the Pj is set to 0.

3.4.2.2 Multiple Processing Elements with Production Model

The configuration in Figure 3.4 can also be altered to another extreme case, in which all the

processing elements write data to the memory through a centralized bus. Figure 3.7 illustrates

such a configuration, where we assume

1. There are M processing elements that share the bandwidth of a centralized bus, μ.

-35-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Memory
μ

1B 2B 3B NB
1q 2q 3q Nq

1λ 2λ 3λ Nλ

(a)

μ

1λ

2λ

Nλ

1B

2B

NB

1q

2q

Nq

(b)

Figure 3.7: Input and output configuration with 3 PEs

2. Each processing element writes the data to the memory through the centralized bus.

3. The processing element j has a production rate of λj , where j = 1 ∼ M and μ > λT =XM

j=1
λj .

The goal is to find the probability qj , i.e, the bus arbitration policy, that minimizes the sum

of the expected buffer size E[BTotal] = E[
XM

j=1
Bj] =

XM

j=1

λj
qjμ−λj and satisfies the two

constraints:

1. λj < qjμ.

2.
XM

j=1
qj = 1, where 0 ≤ qj ≤ 1.

As in Eq. (3.2), the optimal solution q∗ = (q∗1, q
∗
2,q

∗
j , ...q

∗
M) must be the root of the

following equation, where 1
α2

is the Lagrange multiplier with α > 0.

d

dPj
F (q, α) =

d

dPj

Ã
MX
j=1

λj
qjμ− λj

+
1

α2

Ã
MX
j=1

qj − 1
!!

=
−λμj

(qjμ− λj)
2 +

1

α2
(3.6)

= 0

-36-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Thus, we can obtain the optimal q∗j as follows. Note that we have excluded one of the two

solutions by imposing the constraint, λj < q∗jμ.

q∗j =
λj
μ
+ α

s
λj
μ

(3.7)

In Eq. (3.7), the value of α is further constrained by the factor that
XM

j=1
qj = 1 and 0 ≤ qj ≤

1. Since all the q∗j are positive number given α > 0, the q∗j that meet the two constraints must be

in [0, 1] . As a result, we can obtain the corresponding α by using the equation
XM

j=1
q∗j = 1.

Eq. (3.8) shows the value of α to reach q∗j , where λT =
XM

j=1
λj .

1 =
MX
j=1

q∗j

=
MX
j=1

Ã
λj
μ
+ α

s
λj
μ

!

=

λT + α
MX
j=1

p
λjμ

u
(3.8)

⇒ α =
u− λT
MX
j=1

p
λjμ

> 0

3.4.2.3 Generalization

In the previous two subsections, we derive the two extreme cases, in which all the processing

elements either write data to memory or read data from memory. In this subsection, we present

a generalized case as illustrated in Figure 3.8, where we assume:

1. The bus bandwidth is λ.

2. Assume there are N +M processing elements that share the bandwidth of a centralized

bus, where N denotes the number of processing elements that write data to memory and

M stands for the number of processing elements that read data from memory.

3. The expected size for the centralized memory is S.

-37-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Memory
λ

2μ1μ 3μ Nμ

1B 2B 3B NB
Nn Pλ1n Pλ 2n Pλ 3n Pλ

1B

2μ1μ 3μ Nμ

2B 3B NB
1)1(qn−λ 2)1(qn−λ 3)1(qn−λ Nqn)1(−λ

(a)

Memory

1B

2B

1B

NB

2B

MB

1μ

2μ

Nμ

1μ

2μ

Nμ

λnλ(1-n)

1nPλ
2nPλ

NPnλ

1n)1(q−λ

Mqn)1(−λ

2n)1(q−λ

(b)

Figure 3.8: Input and output configuration with 3 PEs

Goal: To find the probability qj and Pj ,which is the bus arbitration policy, that minimizes the

sum of the expected buffer size, E[BTotal] = E[
XM

j=1
Bj] + E[

XN

j=1
Bj] and satisfy the

constraints:

1. λ
0
> λ − λ

0
, where the λ

0
is the equivalent bandwidth for the processing elements that

read data from the memory. Note that λ
0
> 1

2
λ.

2. μj > λ
0
Pj .

3.
³
λ− λ

0
´
qj > μj .

To solve the problem, the procedure can be separated into two steps. In the first step, we

separate the bus bandwidth into two parts by the probability n, which is the probability that

the bus is used for reading data from memory. The first part λn stands for the equivalent

bandwidth that can be used to read data from the memory. On the other hand, the second part

λ(1− n) denotes the equivalent bandwidth for writing data to memory. From Eq. (3.1), n can

be determined using the expected size for the centralized memory S; that is, once the size of

the external memory is decided, the n is also fixed as 1+S
1+2S

.

In the second step, the optimal bus arbitration policy can be found by applying the equivalent

bandwidth for the two extreme cases. By substituting λ(1+S
1+2S

) in Eq(3.5), we will get the P ∗j as

-38-

Chapter 3. Transaction Level Modeling of H.264 Decoder

follows:

P ∗j =

½nÃμj(1+2S)

λ(1+S)
− β

r
μj(1+2S)

λ(1+S)

!
, when 0 ≤ β ≤

r
μj(1+2S)

λ(1+S)

0 , when β >

r
μj(1+2S)

λ(1+S)

¾
(3.9)

Similarly, substituting λ(S
1+2S

) in Eq(3.7), we will get the q∗j as follows:

q∗j =

⎛⎝ μ̄j(1 + 2S)

λS
+ α

s
μ̄j(1 + 2S)

λS

⎞⎠ (3.10)

3.4.3 Guidelines for Bus Arbitration

From these cases proposed above, we can find that allocating more time of using bus to the

module which consumes data faster is the way to minimize the total buffer size. In a real de-

sign, the environment maybe not fit the constraints in optimal cases. Consequently, the optimal

solution probably does not exist. However, only follow the trend, the approximated optimal

buffer size still be found out under the design constraints.

3.4.4 Arbitration Policy In Our Design

In our design, we use four 32-bits data bus and four external DRAMs for satisfying the data

requirement in HD sequence decoding. However, under the influence of DRAM behaviors, the

effective bus bandwidth becomes variable so that the ideal result can not be used in our design

directly. In the following, we will discuss how we arrange data in DRAM to maximize the bus

utilization and the arbitration policy in our design.

3.4.4.1 Data Arrangement In External DRAM

Figure 3.9 shows the DRAM behavior when the read or write command is executed. Because

it must spend few cycles to active the row and then the data will be read out or write in, it will

also reduce the effective bus bandwidth. As a result, how to arrange the data in DRAM is a very

important issue to improve the system architecture performance.

For speeding up the data fetch, we use two memories to store the luma block and use another

two memories to store the chroma block so that we can access luma block and chroma block

-39-

Chapter 3. Transaction Level Modeling of H.264 Decoder

A CT

0 1 2 3 4 5 6 7 8 9

R E AD

A 0

CLO CK

Command

D ata
A 1 A 2 A3

tRCD tCL

(a)

A C T

0 1 2 3 4 5 6

W R I T E

A 0

C L O C K

C o m m a n d

D a ta A 1 A 2 A 3

tR C D

(b)

Figure 3.9: DRAM read and write operation

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Bank
0

Bank
1

Bank
2

Bank
3

Bank
0

Bank
1

Bank
2

Bank
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Bank
0

Bank
1

Bank
2

Bank
3

Bank
0

Bank
1

Bank
2

Bank
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Bank
0

Bank
1

Bank
2

Bank
3

Bank
0

Bank
1

Bank
2

Bank
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Ban k
0

Ban k
1

Ban k
2

Ban k
3

Bank
0

Bank
1

Bank
2

Bank
3

Bank
0

Bank
1

Bank
2

Bank
3

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

64

64

Figure 3.10: Frame map to memory.

at the same time. Take luma block for example, Figure 3.10 and Figure 3.11 illustrate how the

luma block is stored in the memory.

As shown in Figure 3.10, the frame is divided into four parts. Each part is stored in the

different banks. This frame is stored in memory 0 and memory 1. We can see the enlargement

of a single bank; we change the memory per two pixels. The yellow part represents memory 0

and the orange part represents memory 1. The advantage of using two memories is it can reduce

almost half the latency to access data.

Each check represents one particular row in that bank. As we can see no consecutive rows

-40-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Memory 0

Bank0

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank1

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank2

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank3

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank0

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank1

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank2

Luma_R4

Luma_R3

Luma_R2

Luma_R1

Luma_C

Bank3

Memory 1

Figure 3.11: Memory map to frame.

in the same bank is put together. As a result, when we want to reference a block in the frame

the row-miss status will not appear. Only the row-hit status and bank-miss status occurs. As we

have mentioned in the previous chapter the row-miss status causes most bandwidth utilization

loss and longest latency. In this way, when we decrease the number of row-miss status we can

utilize the finite bandwidth and shorten the latency.

Figure 3.11 indicates the memory organization. There is one current frame and many refer-

ence frame need to be stored in the external memory. This is because this H.264 support multi

reference frame. There are eight banks in two memories. Each frame is stored in the eight

banks equally. This data arrangement leads to we can access data in memory 0 and memory 1

simultaneously. The proportion of data in each memory differs a lot will suffer a great memory

bandwidth loss.

3.4.4.2 Bus Arbitration

While the master of data bus switches, the probability of row miss during accessing data from

external DRAM is higher which will reduce the effective bus bandwidth. Therefore, we not

only design the data arrangement in DRAM to minimize the probability of row miss but also

adopt the deterministic bus arbitration policy to minimize the switches between masters. There

are three modules, DF, DeBlock, and Deinterlacer as bus masters in our decoder and all operate

in eight by eight block level. Consequently, our arbitration policy is that after one master fetches

-41-

Chapter 3. Transaction Level Modeling of H.264 Decoder

DeInterlacer DF

8x8 block level

BUS
master

21 29 84
DeBlock

cycle
count

Figure 3.12: Example of bus master switch.

all data it will use in one eight by eight block cycle, it will release the bus and change master.

Figure 3.12 shows the example of master switch in one eight by eight clock cycle.

3.5 System Level TLM Modeling

For verifying our system architecture efficiently, we model our H.264 decoder at transaction

level. Because the simulation speed is depending on how much details the model contains,

we choose the bus arbitration model to implement our decoder. The bus arbitration model

not only keeps the higher simulation speed but also can verify the system schedule and bus

arbitration. Figure 3.13 shows the TLM architecture which is corresponding to the one in Figure

3.1. The modules which name starts with FIFO are ping-pong buffers. We implement these

FIFOs with channel in SystemC and define their interface functions. Moreover, sync_channel

is also implemented with channel and is responsible for synchronizing all hardware modules.

When one module finishes the current block, it will pass a message through the interface of

sync_channel. Then, when syn_channel collects all messages of all modules, it will send back

a signal to all modules. All hardware modules will not decode next block until they receive the

signal.

For transaction design at transaction level, Figure 3.14 shows the concept about how we

implement all modules with sc_thread. First, we define the input and output ports connecting

with other modules. All data transmission is through channel by calling the interface functions

of ports. In the program part, the module will read input data through input channel in the

beginning. Then, the finite state machine decides which path the program will go through. In

the main program, the functionality can be composed of one or more functions and we can

decide to use wait function after the end of every function or only use once after all functions

are finished. The more wait functions we use, the more program switches happen. That will

influence the simulation speed. After all work is done, the module will send a finish signal to

-42-

Chapter 3. Transaction Level Modeling of H.264 Decoder

CABAC

IQIDCT

DF IIP

DeBlock DeInterlace

AHB

AHB

ARM

Bitstream
FIFO

FIFO_DeBlock

FIFO_IIPFIFO_DF

FIFO_IQIDCT FIFO_DeInterlacer

Sync_channel

Figure 3.13: Transaction level modeling at system level.

synchronization channel and stall until all modules finish their work.

3.6 Summary

In this chapter, we show the design target of our H.264 decoder. Because we only support to the

high profile, some features in H.264 specification can be not implemented to save the hardware

cost. The overall architecture including of video pipe, software/hardware partition, control

scheme and system schedule is also described. Moreover, the buffer allocation is discussed

in both ideal case and our design case. After these important issues about system design are

discussed, how to model it at transaction level is explained.

-43-

Chapter 3. Transaction Level Modeling of H.264 Decoder

Finite State
Machine

Behavior
1

Write_if

Behavior
2

Write_if

Behavior
3

Write_if

Wait
Wait

Wait

Cycles of Task

Emit_if @ posedge clk

Synchronization Event @ posedge clk

Read_if(ping-pong index)
Data and Control

Stage 1
Stage 2

Stage 3

Module A

Stage 3
Stage 1

Stage 2 Stage 3

CLK

Ping-Pong Channel In Ping-Pong Channel Out

Synchronization Channel

AHB Slave AHB Master

Notify Sync.
by Sync. Channel

Compute

Wait

Compute

Wait Wait

Compute

Emit_if

Wait

Stage 1

Figure 3.14: TLM module design example.

-44-

CHAPTER 4

Systolic-based Inter/Intra Predictions

4.1 Introduction

Spatial and temporal predictions are essential to video coding efficiency. The H.264/AVC [7]

simultaneously incorporates inter and intra predictions to remove temporal and spatial redun-

dancy. Comparing with the existing standards H.261/2/3 and MPEG-1/2/4 [8], these prediction

techniques save up to 50% bit rates while providing similar perceptual quality.

However, the coding gain is at the cost of additional computations. In intra prediction,

the mode-adaptive predictor is generated by a 1-D filtering, which is conducted along with the

boundary pixels of a block. Similarly, the half-/quarter-pel predictor in the inter prediction is

produced through a separable 2-D filtering with the motion compensated blocks of variable

size. Both predictions require intensive filtering operations which poses challenges to real-time

applications. Moreover, the adaptive and irregular filtering makes hardware implementation

more difficult.

For the inter and intra predictions, most of the prior works implement the FIR filter based on

the traditional adder-tree structure [9][10][11][12][13][14][15], where filtering is implemented

-45-

Chapter 4. Systolic-based Inter/Intra Predictions

by a number of adders and shifters. In such straightforward implementation, common terms

between consecutive filtering operations are not reused. Moreover, multiple input samples are

simultaneously latched for one filtered output causing higher input bandwidth.

In addition to less efficient FIR design, the inter and intra predictions are generally im-

plemented by two separated modules due to the difference in their operations. However, in

decoder, the prediction mode of each macroblock is known in advanced. Thus, using separated

data paths for inter and intra predictions causes poor hardware utilization.

In this chapter, we propose a unified filtering architecture for inter and intra predictions. We

share the data paths for both prediction modes so as to increase hardware utilization and reduce

cost. In addition, to minimize redundant computations, the FIR filtering is implemented by a

reprogrammable systolic-based architecture. Specifically, our design can fulfill the real time

requirement of high profile at level 4 while clocking at 150MHz.

The rest of this chapter is organized as follows: Section 2 briefly introduces the algorithms

of inter and intra predictions in H.264/AVC [7]. Section 3 presents our unified systolic-based

architecture. Section 4 compares this work with the state-of-the-art approaches. Lastly, Section

5 summarizes this work and gives concluding remarks.

4.2 Algorithm of Inter/Intra Predictions

The purpose of prediction is to employ spatial or temporal correlations to improve coding ef-

ficiency. Generally, the predictor of a block is created from image samples that are coded in

current frame or previously decoded frames. In the following, we briefly describe the algorithms

of inter and intra prediction in H.264/AVC [7].

4.2.1 Inter Prediction

Inter prediction creates the predictor of a block from previously coded frames. The purpose is

to use temporal correlation to achieve higher coding efficiency. Particularly, in H.264/AVC [7],

the prediction block is of variable size and the motion vector supports more accurate sub-pel

resolutions such as 1/2-, 1/4-, and 1/8-pel.

Due to the support of sub-pel resolutions, the inter prediction requires intensive computa-

-46-

Chapter 4. Systolic-based Inter/Intra Predictions

F1
F2
F3
F4
F5
F6
F7
F8
F9

H
1

H
2

H
3

H
4

9 pixel

9 pixel

9x9 Full-pel data
4x9

Intermediate
results

4x4 Final
interpolated

data

T
12

T
10

T
11

T
13

Figure 4.1: The 2-D interpolation for motion compensation with sub-pel precision. Note that
the 2-D filtering can be separated into 2 1-D filtering.

0

1

3 4
57

8

6

(a)

Pred[x,y]

p[x,y]
p[

x,
y]

X

Y

[-1,-1]

(b)

(c)

X

Y

1616

16

(d)

Figure 4.2: Intra prediction modes. (a) Directional modes. (b) Prediction of mode 5. (c) DC
mode. (d) Plane mode.

tions for interpolation. When the motion vector of a block points to a sub-pel position, the

predictor is generated by the interpolation of motion compensated full-pel samples that locate

in the reference frame. For instance, the 1/2-pel samples are interpolated from full-pel samples

using the 6-tap FIR filter (1, -5, 20, 20, -5, 1). To get a 4x4 block with an interpolation filter of

6 taps, a 9x9 block in the reference frame is required. As shown in Figure 4.1, the 2-D interpo-

lation is done by 2 separable 1-D filtering. Similarly, for the chrominance part, the filtering is

done in the same manner except that the interpolation filter is of 2-tap.

-47-

Chapter 4. Systolic-based Inter/Intra Predictions

 p[-1,3] p[-1,2] p[-1,1] p[-1,0] p[-1,-1] p[0,-1] p[1,-1] p[2,-1] p[3,-1]
Reordered Boundary Pixels

Adaptive Filtering1

Output Predictor

Pred[0,0]
Pred[1,2]

Pred[1,0]
Pred[2,2]

Pred[2,0]
Pred[3,2]

Pred[3,0]

Pred[3,1]Pred[2,1]
Pred[3,3]

Pred[1,1]
Pred[2,3]

Pred[0,1]
Pred[1,3]

Pred[0,2]Pred[0,3]

2 1 1 1

Figure 4.3: The adaptive filtering of boundary pixels for directional prediction of mode 5.

4.2.2 Intra Prediction

Intra prediction creates the predictor for a block using the boundary pixels in adjacent blocks.

The purpose is to use spatial correlation to improve coding efficiency.

In H.264/AVC [7], each macroblock can have one of the three prediction types, which are

I4x4MB, I8x8MB, and I16x16MB. For each type of predictions, the macroblock is firstly parti-

tioned into multiple sub-blocks (with size being NxN where N can be 4, 8, and 16). Then each

sub-block can be further assigned with directional modes, DC mode, or plane mode.

For directional modes, there are 8 different directions as illustrated in Figure 4.2 (a). For

better understanding, Figure 4.2 (b) uses mode 5 (i.e., vertical right direction) as an example

and Eq. (4.1) lists the corresponding formula for the two predictors, Pred[1,0] and Pred[3,0]. In

Figure 4.2 (b), these two predictors are marked with gray color. As expressed in Eq. (4.1), the

predictor is actually constructed by a linear combination of boundary pixels. By reordering the

boundary pixels, i.e., p[x, y] in Figure 4.2 (b), Figure 4.3 illustrates that all the predictors of a

sub-block can be obtained by adaptively filtering the boundary pixels. Different modes simply

differ in how the filtering is applied.

Pred [1, 0] = (P [0,−1] + P [1,−1] + 1)À 1

Pred [0, 3] = (P [−1, 2] + 2× P [−1, 1] + P [−1, 0] (4.1)

+2)À 2

In addition to directional modes, Figure 4.2 (c) and (d) depict the DC mode and plane mode,

respectively. The DC mode is useful for prediction in the low pass regions while the plane mode

-48-

Chapter 4. Systolic-based Inter/Intra Predictions

is effective for the regions with directional gradient. Particularly, the plane mode requires the

most computations among all the prediction modes. It is the critical path of intra prediction.

Specifically, the predictors of plane mode can be calculated by Eq. (4.2).

From Eq. (4.2), it can be noted that the values of predictors in the same row are increased by

a factor of “b”. On the other hand, the predictors in the same column are increased by a factor

of “c”. Thus, all the predictors can be calculated from an initial value M, which is the predictor

of the upper-left corner before rounding. In this chapter, we use such property to minimize the

number of operations.

Pred [x, y] =

ClipY [(a+ b× (x− 7) + c× (y − 7) + 16)À 5]

where

a = 16× (P [−1, 15] + P [15,−1]) ,

b = (5×H + 32)À 6 (4.2)

c = (5× V + 32)À 6

H =
X

(x0 + 1)× (P [8 + x0,−1]− P [6− x0,−1]) ,

V =
X

(y0 + 1)× (P [−1, 8 + y0]− P [−1, 6− y0]) .

In summary, both inter and intra predictions require intensive FIR filtering. An efficient

FIR implementation is necessary. In addition, the inter and intra predictions can actually share

processing elements since each macroblock is either coded in inter mode or intra mode. In the

following, we present a unified systolic-based architecture which efficiently combines inter and

intra predictions.

4.3 Unified Systolic-based Architecture

Systolic architecture includes a number of regular and modular processing elements (PEs) that

simultaneously process and pass data in a similar way. All PEs regularly pump data in and out

such that a regular data flow is maintained. In addition to modularity and regularity, systolic

architecture also features the properties of data broadcasting and low input bandwidth, which

-49-

Chapter 4. Systolic-based Inter/Intra Predictions

are desirable in hardware design.

In this chapter, we implement the FIR filtering with systolic-based architecture. Moreover,

we share the array of PEs for both inter and intra predictions. In addition, luminance and

chrominance components are processed sequentially to maximize the hardware utilization.

4.3.1 Overview of Data Flow

Figure 4.4 gives an overview of our system. The functional units enclosed by dash line represent

the inter and intra predictions. As shown, the filtering is performed using a unified systolic-

based array. For inter prediction, the input comes from the motion-compensated buffer. Herein,

we assume that the data is already transferred form frame memory to local memory. On the

other hand, the data is input from a line buffer that stores boundary pixels in adjacent blocks

when intra prediction is performed.

For details, Figure 4.5 shows the block diagram of our unified systolic-based array. It con-

sists of 6 PEs and each PE is responsible for the multiplication and addition of a filter tap. The

blocks denoted as S&M_n implement the multiplications of FIR filtering by using shifting and

addition. Moreover, these S&M_n blocks can dynamically reprogram the filter tap so as to

provide various filters for inter and intra predictions.

To fulfill the real-time requirements of high profile at level 4, we duplicate the proposed

architecture in Figure 4.5 by 3-fold to increase the throughput. In the following, we detail the

data flow for different prediction modes.

4.3.2 Data Flow of Inter Prediction

For the inter prediction, the luminance and chrominance components are processed differently.

However, all the computations are done by the same systolic-based arrays. The luminance

block requires a fixed, 6-tap filter while the chrominance block needs a dynamic, 2-tap filtering.

The actual filter used for chrominance part is determined by motion vectors. Particularly, to

increase the throughput, our reprogrammable architecture can be divided into two parts for

simultaneously processing Cb and Cr.

-50-

Chapter 4. Systolic-based Inter/Intra Predictions

Systolic array 3

IQ/IDCT De-blocking

Line
buffer

Mux

Motion-comp
ensated
buffer

Reconstruction

Systolic array 2
Systolic array 1

CABAC

MVP/IMP

Input
reorder

Figure 4.4: Overview of the combined inter and intra predictions.

MUXMUXMUXMUXMUXMUX

+ +
+ + +

+ + + +

DDD

D

M
U

X

MUX

Scalin
g

Scaling

MUX

D

M
U

X

M
U

X

D

S&M_1S&M_1S&M_1S&M_1

S&M_2 S&M_2M
U

X

M
U

X

data path of
intra prediction

data path of inter prediction
of chrominance part

Input 1

Input 2

Output

Bypass path

Output of inter
prediction of
chrominance

part

PE1 PE2 PE6PE5PE4PE3

Figure 4.5: The unified systolic architecture for inter and intra predictions.

4.3.2.1 Luminance component

The systolic-based array implementation of luminance interpolation, which requires 9 adders

and 5 registers, constructs the whole framework of unified systolic-based array as shown in

Figure 4.5. The size of the registers is 18-, 18-, 18-, 16- and 13-bit respectively from left to

right.

Using systolic implementation can more efficiently reuse the intermediate terms between

consecutive filtering operations. For better understanding, a filtering operation of 6-tap filter

is presented in Figure 4.6, where Xm,n denotes the motion-compensated full-pel samples, m

-51-

Chapter 4. Systolic-based Inter/Intra Predictions

X0,0 X0,1 X0,2 X0,3 X0,4 X0,5 X0,6 X0,7 X0,8 X1,0 X1,1

Output 1 1 -5 20 20 -5 1
Output 2 1 -5 20 20 -5 1
Output 3 1 -5 20 20 -5 1
Output 4 1 -5 20 20 -5 1

Figure 4.6: The operation of 6-tap filtering

Cycle time

PE6

PE5
PE4
PE3

PE2

PE1

Valid output..............

= First input wire = Second input wire

Valid output..............

X0,0 X0,1 X0,2 X0,3 X0,4 X0,5 X0,6 X0,7 X0,8

X1,0 X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7X1,8

X2,0 X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8

X3,0 X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

Input 1 :
Input 2 :

Figure 4.7: Input scheduling of the proposed systolic array that uses two-input broadcasting.

specifies the row index, and n indicates the column index. Based on the operation of a 6-tap

filtering, Figure 4.6 shows that Outputs 3 and 4 have the common term (X0,5 times 20). Using

conventional adder-tree architecture, the common terms will not be reused which introduces

redundant computations and higher power consumption. By mapping the 6-tap filtering into

systolic-based array, the intermediate results can be passed through the registers and reused in

different PEs.

Among a variety of systolic-based arrays, the form of input broadcasting is chosen because

of shorter critical path and higher throughput. In addition, the input broadcasting enables the

overlaps of different filtering operations. Several bubble cycles with invalid data output is con-

ducted between two adjacent rows if pixel data is fed into the systolic-based array one by one. In

order to increase the throughput, we broadcast two input lines to overlap filtering operations so

as to improve hardware utilization. Figure 4.7 illustrates the data flow of two-input broadcast-

ing. Each PE selects corresponding input line via multiplexer at different cycles. For example,

in the 7-th cycle, PE1, PE2, and PE3 select the first input while the other three PEs select the

second input. First valid data out is generated in the 6-th cycle.

-52-

Chapter 4. Systolic-based Inter/Intra Predictions

+ +

+ + + +

DD

S&M_1S&M_1S&M_1S&M_1

Cr
Cb

PE2 PE3 PE4 PE5

Figure 4.8: Data flow of sub-pel interpolation of chrominance samples.

4.3.2.2 Chrominance component

Chrominance component can be processed in the same manner as the luminance part. However,

the interpolation of chrominance component simply needs a 2-tap filter. To increase hardware

utilization, we partition the systolic-based array into two parts so as to simultaneously process

Cb and Cr.

For clarity, Figure 4.8 shows the data path for chrominance interpolation. As shown, the

samples of Cb and Cr blocks are fed into the systolic-based array simultaneously via two inputs

and each color component is separately filtered by a reconfigurable, 2-tap filter.

Inter prediction dominates the overall performance. Figure 4.9 illustrates the execution

cycles using the example of P_4x4 mode. Note that luminance and chrominance components

are processed in order. As shown, if the current block is coded in P_4x4 mode, the total number

of execution cycles is (27+6) = 33. Similarly, if it is coded in B_8x8 mode, the number of

execution cycles will be 152.

4.3.3 Data Flow of Intra Prediction

For the intra prediction, only parts of the PEs in the systolic-based array are used. Particularly,

the predictor is produced by the filtering of boundary pixels with the filter taps being (1, 2, 1)

or (1, 1). To calculate the predictor, the reshuffled boundary pixels are sequentially input to the

systolic-based array.

In Figure 4.5, the bold lines represent the data paths while the systolic-based array is re-

programmed for intra prediction. For clarity, Figure 4.10 simply shows the data paths for intra

-53-

Chapter 4. Systolic-based Inter/Intra Predictions

F1 F7 T13

M1

27 cycles

4

5

Input 1 of SA 1
Input 1 of SA 2
Input 1 of SA 3
Input 2 of SA 1
Input 2 of SA 2
Input 2 of SA 3

Output of SA 2
Output of SA 3

Output of SA 1

F2
F3

F8
F9

F4 T10
F5

F6

T11

T12

M2
M3

M4
M5
M6

M7
M8
M9

H0
H1
H2

H3

(a)

6 cycles

T1

Input 1 of SA 1

Input 1 of SA 2

Input 1 of SA 3

Output of SA 2

Output of SA 3

Output of SA 1 T2

T3 T4

T5 T6

R1 R2

R3 R4

A B C
D E F
G H I

T1

T2

T3

T4

T5

T6

Sy
st

ol
ic

 a
rr

ay

A B C

D E F

G H I

T1 T2

T3 T4

T5 T6

R1 R2

R3 R4

x

y

(b)

Figure 4.9: Execution cycles for the P_4x4 mode. SA: Systolic array. (a) Luminance compo-
nent. F1 to F9 indicate the lines of motion-compensated full-pels. M1 to M9 are the lines of
temporal results after the first filtering. T10 to T13 are the transposed lines of M1 to M9. H0 to
H3 are the final interpolated lines of sub-pels. (b) Chrominance component. A to I indicate the
motion-compensated full-pels. T1 to T6 indicate the temporal results after the first filtering. R1
to R4 are the final interpolated sub-pels

prediction. For different directional modes, the filter taps can be dynamically adjusted by con-

trolling the scaling and multiplexer. In the example of Figure 4.3, boundary pixels are fed into

the systolic-based array from P[-1, -1] to P[3, -1] with filter tap being (1, 1). Then, the input

order is reversed back from P[3, -1] to P[-1,3] with filter tap as (1, 2, 1). The boundary pixels

must be firstly reshuffled so that the data can be continuously processed by the systolic-based

array to minimize stalls and bubbles. Similar reshuffling technique can be applied for the other

modes.

For the DC mode and plane mode, feedback loops A and B are additionally created for

accumulation. In the plane mode, the intermediate data “H” and “V” are calculated by the

feedback loops in PE1 and PE2, respectively. It takes 24 cycles to obtain these intermediate

results. Then “a”, “b”, and “c” are calculated sequentially by PE1 within 6 cycles. After that,

the predictor of upper-left corner is calculated and all the other predictors will be produced

one by one in the next 260 cycles. Totally, 290 cycles are required for the worst case of intra

-54-

Chapter 4. Systolic-based Inter/Intra Predictions

+ +
D

D

M
U

X

Scaling Scaling

D

M
U

X

M
U

X

A B

1 1 12

PE1 PE2 PE3

Figure 4.10: Data paths for intra prediction.

Table 4.1: Comparison of intra prediction

Huang ’04 [9][10] Proposed
Architecture Adder tree Separates 1-D

systolic-based Array
Intra Mode Hardware Hardware
Prediction
Component PE x 4 SA x 3
of Adder > 4x3= 12 2x3 = 6
Execution cycle > 64 cycles/MB 290 cycles/MB
Critical path 2 adders 1 adder
of Input wires 13x4+7x4+8x4=112 2x3 = 6
SA: systolic-based array.

prediction.

In summary, both inter and intra predictions can be realized by one reconfigurable systolic-

based architecture. Specifically, our design consists of one set of systolic-based arrays. Each

array can be reprogrammed as a 2-, 3- and 6-tap filter.

4.4 Complexity Analysis and Comparison

This section shows the comparisons of different designs for the high profile at level 4. Table 4.1

compares our combined architecture with Huang’s architecture for intra prediction. Note that in

Huang’s work, inter and intra predictions are separated into two modules. Although our design

requires more cycles for intra prediction, our combined systolic-based architecture significantly

reduces the number of input wires which leads to lower input bandwidth and cost. Moreover,

-55-

Chapter 4. Systolic-based Inter/Intra Predictions

Table 4.2: Comparison of inter prediction.

Wang ’03 [11] Deng ’04 [13] Chen ’04 [14] Wang ’05 [15] Proposed

Architecture 1-D adder tree 2D pipelined Separated 1D Separated 1D Separated 1D
adder tree adder tree adder tree SA1

MVG Software N/A incomplete Hardware Hardware
Component FIR x 2 Pipelined FIR x 9 Horizontal FIR x 5 Horizontal FIR x 9 SA x 3

Vertical FIR x 11 Vertical FIR x 4
1/8 FIR x 3 N/A N/A 1/8 FIR x 2

Bilinear Bilinear Bilinear Bilinear Bilinear
of Adder 6x2+1+3x3=22 > 7x9=63 > 6x16=96 6x13 + 23x2 =124 9x3 + 3 = 30
Execution cycle 2560 cycles/MB 624 cycles/MB N/A 1120 cycles/MB 608 cycles/MB
Critical path 4 adders2 1 18-bit adders 4 adders3 4 adders3 2 adders4

of input wires 6x2 + 2x3 = 18 > 13x2= 26 > 6x11=66 6x4 + 4x2 = 32
Clock rate 629 MHz 153 MHz N/A 275 MHz 150 MHz
1. SA: systolic-based array.
2. A 18-bit adder + two 16-bit adders + a 13-bits adder + a 13-bit multiplexer + a 18-bit multiplexer
3. A 18-bit adder + two 16-bit adders + a 13-bits adder
4. A 18-bit adder + a 15-bit adder + a 13-bit multiplexer + two 16-bit multiplexers + a 18-bit multiplexer

the data paths are shared between inter and intra predictions which is more efficient from the

system perspective.

Table 4.2 further compares our architecture with the state-of-the-art designs for inter predic-

tion. At macroblock level, our unified systolic-based architecture consumes most cycle counts

when the macroblock is coded as B_8x8 mode. The number of cycle counts per macroblock

is 152x4=608 while the other designs need more than 624 cycles. Higher throughput has been

achieved. Particularly, as compared to Wang’s design [11], a 4x throughput improvement is

observed.

According to the highest throughput, our design can fulfill the real-time requirement of high

profile at level 4 while clocking at 150 MHz. However, the other designs need to operate at

higher clock rate due to poor throughput.

Comparing with the designs where the inter and intra predictions are separately imple-

mented, our unified systolic-based architecture has lower cost in terms of the number of adders.

The cost reduction is about 22∼88%. In addition, the proposed systolic-based architecture

features lower input bandwidth and power dissipation.

-56-

Chapter 4. Systolic-based Inter/Intra Predictions

4.5 Summary

The chapter presents a unified systolic-based architecture for inter and intra prediction in H.264/AVC

[7] decoder. We have shown that performing inter and intra predictions by systolic-based archi-

tecture can significantly reduce the cost while the performance is also improved. In addition,

shorter critical path is another notable feature. As compared with the state-of-the-art designs,

our design has higher throughput, but lower cost and power.

-57-

CHAPTER 5

Concluding Remarks

5.1 Conclusion

In this work, we point out how many problems the traditional design flow will face when the

design complexity is getting higher. Then, a new modeling technique called transaction level

modeling(TLM) is proposed to address the problems of SoC design. It introduces an additional

level of abstraction between system specification and RTL description. The purpose of TLM

is to create a system architecture model that address issues at system level while maintaining

necessary modeling accuracy.

For understanding the concept of TLM, we model a platform-based H.264 decoder that con-

forms to High profile at Level 4(HP@4). In our design architecture the ARM 9 CPU interprets

the sequence parameter set, picture parameter set, and slice header and then programs the hard-

ware video pipe via control bus. After that, the hardware video pipe will decode the slice data

layer. Because of platform-based design, our H.264 decoder is more flexible. As a result, the

TLM also can be used for exploration of design space. For example, we design our bus arbitra-

-58-

Chapter 5. Concluding Remarks

tion following the concept of optimal case solution. Then, TLM can be used for verify whether

this arbitration is workable or which arbitration has better performance.

Moreover, we also propose a unified systolic-based architecture for the hardware module of

inter and intra predictions. Using only one prediction type will be chosen in decoder, we com-

bine inter and intra predictions in single hardware architecture by reprogrammable FIR filter,

which is implemented with systolic-based array. Compared with other existing architectures,

our architecture indeed provides lower cost and higher hardware efficiency and still maintains

the performance at the same time.

5.2 Future Work

In our future work, we first integrate our system on the ConvergenSC and verify it with several

conformance bit-streams. Then, we can further refine our TLM model to cycle-accurate model

for verifying the functionality of all modules accurately. Finally, the RTL model will be de-

veloped based on TLM model and the functionality of RTL model can be verified with TLM

model by using software and hardware simulation. This methodology will improve the design

quality and chip robustness.

-59-

Bibliography

[1] L. Cai and D. Gajski, “Transactoin Level Modeling in System Level Design,” CECS Tech-

nical Report 03-10, March 28 2003.

[2] D. C.Black and J. Doovan, SYSTEMC: FROM THE GROUND UP. Kluwer Academic

Publisher, 2004.

[3] T. Liu, T. Lin, S. Wang, W. P. Lee, K. Hou, J. Yang, and C. Lee, “A 125uW, Fully Scalable

MPEG-2 and H.264/AVC Video Decoder for Mobile Application,” IEEE International

Solid-State Circuits Conference, pp. 402–403, 2006.

[4] C. Lin, J. Guo, H. Chang, Y. Yang, J. Chen, M. Ysai, and J. Wang, “A 160kGate 4.5kB

SRAM H.264 Video Decoder for HDTV Application,” IEEE International Solid-State

Circuits Conference, pp. 406–407, 2006.

[5] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti, “Transaction-

Level Models for AMBA Bus Architecture Using SystemC 2.0,” Design, Automation and

Test in Europe Conference and Exhibition, pp. 26–31, 2003.

-60-

BIBLIOGRAPHY

[6] I. Moussa, T. Grellier, and G. Nguyen, “Exploring SW Performance using SoC

Transaction-level Modeling,” Design, Automation and Test in Europe Conference and Ex-

hibition, pp. 120–125, 2003.

[7] “Information Technology - Coding of Audio-Visual Objects - Part 10: Advanced Video

Coding. Final Draft International Standard,” ISO/IEC FDIS 14496-10.

[8] J. F. Kossentini and P. Nasiopoulos, “A performance analysis of the ITU-T draft H.26L

video coding standard,” the 12th PacketVideo Workshop, Apr. 2002.

[9] Y. W. Huang, B. Y. Shieh, T. C. Chen, and L. G. Chen, “Hardware Architecture Design for

H.264/AVC Intra Frame Coder,” IEEE International Symposium on Circuits and Systems,

vol. 2, pp. 269–272, May 23-26 2004.

[10] ——, “Analysis, Fast Algorithm, and VLSI Architecture Design for H.264/AVC Intra

Frame Coder,” IEEE Trans. Circuits and Systems for Video Technology, vol. 15, no. 13,

pp. 378–401, March 2005.

[11] S. H. Wang and T. C. et al., “A platform-based MPEG-4 advanced video coding (AVC)

decoder with block level pipeling,” IEEE Pacific-Rim Conference on Multimedia, vol. 1,

pp. 51–55, 15-18 Dec 2003.

[12] ——, “A software-hardware co-implementation of MPEG-4 advanced video coding

(AVC) decoder with block level pipelinging,” Journal of VLSI Signal Processing, 2005.

[13] L. Deng, W. Gao, M. Hu, and Z. Ji, “An efficient VLSI architecture for MC interpola-

tion in AVC video coding,” Int’l MultiConference in Computer Science and Computer

Engineering, Jun.21-24 2004.

[14] T. C. Chen, Y. Huang, and L. Chen, “Fully utilized and reusable architecture for fractional

motion estimation of H.264/AVC,” IEEE International Conference on Acoustics, Speech

and Signal Processing, May 2004.

[15] S. Wang, T. Lin, T. Liu, and C. Lee, “A new motion compensation design for H.264/AVC

decoder,” IEEE International Symposium on Circuits and Systems, pp. 4558–4561, June

2005.

-61-

自傳

陳治傑: 1981年生於福建省連江縣。2004年畢業於台灣新竹的國立交通大學電子

工程學系，之後進入該校的電子工程研究所攻讀碩士學位。以視訊編碼為研究主

題。

Chih-Chieh Chen was born in Lienchiang, Taiwan, R.O.C., in 1981. He received the

B.S. degree in electrical engineering from National Chiao-Tung University (NCTU),

Hsinchu, Taiwan, R.O.C., in 2004, where he is currently working toward the M.S.

degree in the Institute of Electronics Engineering. His research interest is in video

coding.

 62

	國立交通大學.pdf
	
	誌 謝

	thesis_genius.pdf
	自傳.pdf
	自傳

