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基於等位函數法之運動物體偵測與追蹤 

 

 研究生：蔡孟修          指導教授：王聖智 博士 

 
 

國 立 交 通 大 學 

電子工程學系 電子研究所碩士班 

 

中文摘要 

 

監控系統中的單一攝影裝置通常包含建立背景模型、偵測運動物

體、追蹤運動物體等三個步驟。在本論文中，我們將討論如何在這些

步驟當中，運用等位函數法來記錄運動物體的輪廓。在整個運動偵測

與追蹤的過程中，我們首先建立環境模型以利於使用「背景相減法」

來達成運動物體偵測。當使用動態攝影機來追蹤運動物體時，由於背

景資訊會隨時間改變，此時需要改採「區塊追蹤模型」才能持續追蹤

運動物體。為了減低背景環境的干擾，原始的區塊追蹤模型會被加以

修改，以考慮前後兩張畫面等位函數曲面之間的交互關係。此外，利

用畫面中統計特性加入機率預測的模型，可增強區塊追蹤的強韌性。

論文最後會提出一套整合的監控系統架構，架構中的不同元件會選擇

採用適當的輪廓模型來分別解決運動物體偵測與追蹤的問題。
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Abstract 

 

 An intelligent video surveillance system usually performs the tasks of 

background modeling, motion detection, and tracking. In this thesis, a 

level set function is used to record the moving objects for these three 

operations. The background model is first constructed before the 

background subtraction is performed for the motion detection. Then, a 

mobile camera keeps tracking the moving objects with a region tracking 

model. The original region tracking model is modified to alleviate the 

interference of cluttered environment. The relation between two level 

surfaces of successive two frames is taken into consideration. The 

probability model built from the statistic property of an image is also 

included. Finally, an integrated surveillance system is proposed. Different 

units in the surveillance system may choose appropriate contour models 

to solve their problems. 
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Chapter 1. Introduction 
  
 The applications of visual surveillance systems are getting more and more 
popular. Image capture devices become more available today. Moreover, powerful 
computers make complex digital image process more realizable. To make the image 
acquisition process more valuable, visual surveillance systems become smarter than 
before. Here, the analysis of moving objects could be the first important step. Some 
associated topics will be introduced and a brief introduction of this thesis will be 
given at the end of this chapter.  
 
 The visual surveillance system proposed in [20] is shown as Figure 1-1. A 
complete surveillance system may contain multiple cameras. These cameras cooperate 
with each other and the acquired information is fused. The tasks after the video 
acquisition step can be divided into two parts. One is motion detection and the other 
one is motion tracking.  
 
 In Figure 1-1, the detection part contains “environment modeling”, “motion 
segmentation”, and “object classification”. The environment or the background 
should be modeled before the moving objects can be recognized. Ahmed Elgammal et 
al [18] proposed a way to model the foreground and background by using 
nonparametric kernel density functions. In [19], a graph method like a finite state 
machine records the status of each pixel. The motion region is stored in a layer map. 
In [21], salient motion is detected without background information. This approach can 
resolve problems caused by luminance variation and slight movement of the 
background. (ex. wavering trees in an outdoor scene).  
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Figure 1-1  General framework of a visual surveillance system [20].  
 
 Regarding tracking, there exist many different methods for the tracking of 
objects in image sequences. Mean-shift [17] is a robust method to track an ellipse or 
rectangle region. Even though the size of the tracking window may change adaptively, 
this method doesn’t extract the boundary of moving objects. On the other hand, the 
snake model [1] proposed by Kass builds an energy function to control contour 
propagation. The contour finally locates at the boundary of an object to reach a local 
minimum of the energy function. Micheal Isard and Andrew Blake use B-spline 
curves to parameterize the contour for their CONDENSATION algorithm [22]. To 
further improve the performance of the snake model, Nikos Paragios et al [23] use the 
Geodesic Active Contours model to detect and track moving objects. The contours are 
described by a level surface. The level-set theory constructs the relation between the 
contours and the level surface. This level surface is very useful in the recording of 
multiple objects. In [25], the residuals of several frames after motion compensation 
are collected by a 3-dimensional level set function. This is a method to accomplish the 
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contour tracking for sequences acquired by a mobile camera.  
 

Level set theory is a very powerful tool to handle contours. Once the contour 
propagation model is defined, it can be implemented by a level surface. The snake 
model [1] can be transformed into a geodesic active contour model based on [2]. The 
optimal contour propagation can be found by using the steepest descent method. Then, 
an associate level surface is obtained. The active region model proposed in [7][24] 
takes the statistical property into account. The “active contours without edges” model 
[5] is even more robust in the classification of the image data into two regions in the 
statistical sense. This model can be used to decompose the background subtraction 
result into motion region and static region. On the other hand, the region tracking 
model [8] tracks the most similar regions in two successive frames. This model is 
very useful for sequences acquired by a mobile camera [9][10]. In Section 3.2, a 
further improved model will be proposed. The maximum likelihood (ML) and 
maximum a posteriori (MAP) estimations are then discussed in Section 3.3.  
 

There are many issues about implementing the level set theory. Distance 
transform is a main topic. The “two-pass algorithm” offers a way to approximate a 
distance transform. On the other hand, partial differential equations may cause 
problems since all computations are done in the discrete domain. The essentially 
non-oscillatory (ENO) polynomial interpolation [11][12][13] has to be used to avoid 
errors. The re-initialization is also introduced in [12][13] to make the contour 
propagation more stable. A larger value of time step can be used with re-initialization 
to speed up the evolution. On the other hand, Roman Goldenberg et al [26] proposed 
a fast geodesic active contour model. The computation of divergence is decomposed 
based on the additive operator splitting (AOS) scheme. In [27], the computation of 
PDE is completely unnecessary. The level surface is replaced by 4 values to represent 
the inside and outside regions and the contours. The contours are evaluated by the 
“check in” and “check out” subroutines. In [28], Yonggang Shi et al applied their fast 
level set method to the tracking problem.  
 
 Some basic backgrounds about the contours and level set theory are introduced 
in Chapter 2. Chapter 3 introduces new contour models to deal with motion detection 
and region tracking problems. Chapter 4 discusses some implementation issues. A 
simple method is proposed to build the background. Finally an integrated system with 
background modeling, motion detection, and region tracking is proposed. The 
conclusions and the future work are made in Chapter 5.  
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Chapter 2. Active Contours 
 The basic concept of active contour can be found in Kass’s paper in [1]. An 
active contour is named as “snake” at the first time. The shape and the propagation of 
a contour are controlled by the internal and the external forces. The curvature of the 
contour determines the internal force, while the image characteristics on the contour 
define the external force. The contour stops propagating when the sum of the internal 
force and the external force reaches a local minimal.  

 
 However, Kass’s method has some limitations. The main drawback is that a good 
initialization is required. Another drawback is that multiple contours require multiple 
initializations. In comparison, based on the level surface, multiple contours can be 
described at the same time. The level set theory relates the contour propagation model 
with the update of the level surface. Finally the adoption of the “active region” 
concept makes the contour model more robust.  
 
 

2.1  Snake Model 

 The snake model was first 
proposed by Kass in 1988 [1]. As 
shown in Figure 2-1, the red curve 
is initialized in the left image. The 
contour propagates toward the 
object’s boundary to minimize the 
energy function. When the contour 
touches the boundary, as shown in 
the right image, it corresponds to 
the minimal energy. In general, the energy function contains internal energy, image 
energy, and additional constraints.  

 
(Eq. 2-1)

 

Figure 2-1  Snake Model. 
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Here, ))((int pCE  denotes the internal energy. This term depends on the smoothness, 
or the inverse of curvature, of the contour. If the curvature of the contour is large, the 
contour contains higher energy. Otherwise, the internal energy is low.  

))(( pCEimg  denotes the image energy. This term is affected by the property of the 
image data on the contour. Intensity values, colors, or edges are usually used to define 
the image energy term. For example: a pixel with a higher gradient value contains 
lower energy.  

))(( pCEcons  denotes the constrained energy. The additional constraint can be used to 
make the results more desirable.  

 This snake model needs to be supervised by user and the determination of the 
parameters α、β、γ  are case by case. Because the solution is a local minimum, the 
initial curve must be preset near the boundary. Besides, every contour needs its own 
energy function. Multiple contours need their corresponding individual energy 
functions. Because the number of objects in the image is usually initially unknown, 
this contour model is inadequate for the object contour tracking problem. 

 To overcome these drawbacks, the snake model can be transformed into a 
“geodesic active contour” model. This model combines the internal energy and the 
image energy in one product term for every contour. Then, multiple contours can be 
described in a single energy function.  

 

2.2  Geodesic Active Contour 
In the geodesic active contour model, the classical snake model is rewritten as 

   ∫ ∫∫ ∇−+=
1

0

1

0

21

0

2
))(()('')(')( dqqCIdqqCdqqCCE

vvvv
λβα  (Eq. 2-2) 

where [ ] 21,0:)( RqC →
v

represents a parameterized planar curve, and 

[ ] [ ] +→× RbaxI ,0,0:)(  denotes the image data at the position x. The first two terms 

are the internal energy terms. The integration of )(' qC
v

 is the length of the contour. 

The integration of )('' qC
v

 represents the bending property of the curve. Minimizing 

this energy function means that the length and the curvature of the contour must be as 

small as possible. In other words, the curve tends to become a small circle if there is 
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no other force.  

The negative term is used to make the image energy near the boundary small. 

When the contour touches the object’s boundary, the integral of ))(( qCI
v

∇  is very 

large. Then the total value of the energy function reaches its minimum.  

The snake propagation can be split into two steps. When the contour does not 

reach the boundary of the object, the energy is minimized by shortening the contour 

and making the contour smoother. The energy decreases rapidly when the contour 

touches the boundary with high gradient values.  

Defining a decreasing function +→+∞ Rxg ],0[:)(  such that 0)( →xg  as 

∞→x , (Eq. 2-1) becomes a general energy function by taking 0=β : 

∫∫ ∇+=
1

0

21

0

2
)))((()(')( dqqCIgdqqCCE

vv
α             (Eq. 2-3) 

The above energy minimization problem is equivalent to finding a geodesic curve 
in the Riemannian space. The details are based on the Riemannian geometry. The 
derivation in [2] uses the Maupertuis’ Principle [3] to prove that minimizing (Eq. 2-3) 
is equivalent to minimizing  

      dqqCqCIgLR )(')))(((
1

0

vv
∇= ∫  (Eq. 2-4) 

Readers can find another proof in [4]. (Eq. 2-4) is called the geodesic active 

contour model. It can be viewed as calculating the length of )(qC
v

 weighted by 

)))((( qCIg
v

∇ . When the contour passes by the boundary of the object, the value of 

)))((( qCIg
v

∇  is small and the energy is minimized. The addition of )(' qC
v

 and 

)))((( qCIg
v

∇  in (Eq. 2-3) is transformed into the multiplication in (Eq. 2-4). This 

model can define multiple contours in one energy function because the property of 

each contour is described in one product term.  

Now the propagation of the contour can be derived from (Eq. 2-4) by the 
Euler-Lagrange approach. Assume the contour TqtyqtxqtC )],(),([),( =

v
 is 

controlled by the parameter [ ]1,0∈q  and the time t. In order to find the variation of 
LR with respect to time t, the derivative of LR in (Eq. 2-4) is computed as:  

))(( tCL
dt
d

R

v
dqqtC

dt
dqtCgdqqtCqtCg

dt
d

qq ),()),((),()),((
1

0

1

0

vvvv
∫∫ +=  

(Eq. 2-5)
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In the first term of (Eq. 2-5), we have 

)))],(),(([)),(( Tqtyqtxg
dt
dqtCg

dt
d

=
v

 

dt
dy

y
qtCg

dt
dx

x
qtCg

∂
∂

+
∂

∂
=

)),(()),((
vv

),()),,(( qtCqtCg t

vv
∇= , 

(Eq. 2-6)

where ba
vv,  is the inner product of vectors av  and b

v
. 

Then, the first term of (Eq. 2-5) becomes 

dqqtCqtCqtCgdqqtCqtCg
dt
d

qtq ∫∫ ∇=
1

0

1

0
),(),()),,((),()),((

vvvvv
.    (Eq. 2-7) 

Now consider the second term of (Eq. 2-5).  

Since ),(),,(),(
2

qtCqtCqtC qqq

vvv
=  and tuuuu

dt
d vvvv ,2, = , we have 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

),(

),(),,(

),(

),(
),(

2

qtC

qtCqtC

dt
d

qtC

qtC

dt
dqtC

dt
d

q

qq

q

q
q v

vv

v

v
v

 

2
),(

),(),(),,(),(),(),,(2

qtC

qtC
dt
dqtCqtCqtCqtCqtC

q

qqqqtqq

v

vvvvvv
−

= . 

Thus, ),(),,(),(,
),(
),(

),(

),(),,(
),( qtCqtTqtC

qtC
qtC

qtC

qtCqtC
qtC

dt
d

tqtq
q

q

q

tqq
q

vvv
v

v

v

vv
v

=== , 

(Eq. 2-8) 

where 
),(
),(

),(
qtC
qtC

qtT
q

q
v

v
v

=  is the unit tangent vector on the contour ),( qtC
v

.  

Use (Eq. 2-8), the second term in (Eq. 2-5) becomes  

      dqqtCqtTqtCgdqqtC
dt
dqtCg tqq ),(),,()),((),()),((

1

0

1

0

vvvvv
∫∫ = . (Eq. 2-9) 

Then, we may apply the “integration by part” formula ∫∫ −= udvvuvdu vvvvvv ,,,  
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and set  
),()),(( qtTqtCgu

vvv =  

dqqtTqtCgdqqtTqtCg
dq
dud q ),()),((),()),((

vvvvv +⎥
⎦

⎤
⎢
⎣

⎡
=  

dqqtTqtCgdqqtTqtCqtCg qq ),()),((),(),()),,((
vvvvv

+∇= , 

where ),()),,(()),(( qtCqtCgqtCg
dq
d

q

vvv
∇=  is similar to (Eq. 2-6) and 

dqqtCvd tq ),(
vv = , ),( qtCv t

vv = . With the above deduction, (Eq. 2-9) becomes  

 [ ] dqqtTqtCgqtTqtCqtCgqtCqtCqtTqtCg qqtt ∫ +∇−
1

0

1

0
),()),((),(),()),,((),,(),(),,()),((

vvvvvvvvv
 

The first term is eliminated because the contour starts and ends at the same point. 
Hence, now we have 

 

dqqtTqtCqtCgdqqtTqtCqtCqtCg

dqqtTqtCgqtCdqqtTqtCqtCgqtC

qttq

qtqt

∫∫

∫∫
−∇−=

−∇−

1

0

1

0

1

0

1

0

),(),,()),((),(),,(),()),,((

),()),((),,(),(),()),,((),,(
vvvvvvv

vvvvvvv

.

(Eq. 2-10)
 
Combining (Eq. 2-7) and (Eq. 2-10), (Eq. 2-5) becomes 

dqTCCgTCCCgCCCgtCL
dt
d

qttqqtR ∫ −∇−∇=
1

0
,)(,),(),())((
vvvvvvvvvvv

 

(Eq. 2-11) 

Furthermore, the parameter q is transformed to the arc-length s, which is defined as 

      ')'()(
0 ' dqqCqs
q

q∫=
v

, or qC
dq
ds v

= .  (Eq. 2-12) 

On the other hand, recall that ][ yxC =
v

. From (Eq. 2-12), we have 

qsq CC
dq
ds

ds
Cd

dq
CdC

vv
vv

v
⋅=== .                  (Eq. 2-13) 

Similarly, 

 qsq CTT
vvv

⋅= .                          (Eq. 2-14) 
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Hence, (Eq. 2-11) can be derived as follows 

[ ] dqCTCCgTCCCgCCgtCL
dt
d

qsttstR

vvvvvvvvvvv
∫ −∇−∇=

1

0
,)(,),(),())((  

[ ] dsCTCgTCCgCg
CL

tss∫ ⋅−∇−∇=
)(

0
,)(),()(

v vvvvvvv
. 

Since NNCgTTCgCg
vvvvvvv

⋅∇+⋅∇=∇ ),(),()(  and T
C
C

C
q

q
s

v
v

v
v

== , we have 

))(( tCL
dt
d

R

v [ ] dsCTCgNNCg
CL

ts∫ −∇=
)(

0
,)(),(

v vvvvvv
.       (Eq. 2-15) 

In (Eq. 2-15), the variation of the tangent vector on the contour sT
v

 has a relation 

with the normal vector N
v

 in terms of the curvatureκ . What follows will prove the 

relation that NTs

vv
κ= . 

Any tangent vector on the contour has the x component and y component. If 

[ ]T
ss

ss

yx
yx

T
22

1
+

=
v

, then the tangential angle φ  is defined as 

)(tan 1

s

s

x
y−=φ . 

Then, the curvature κ  is defined as the variation rate of φ  with respect to the 

arc-length s. That is, 

2222

1

)/(1
1)/(tan

ss

ssssss

s

ssssss

ss

ss

yx
yxxy

x
yxxy

xyds
xyd

ds
d

+
−

=
−

+
===

−φκ . 

Because the unit normal vector is 
[ ]

22
ss

T
ss

yx

xy
N

+

−
=

v
, we have 

     
( ) ( )

T

ss

sssssss

ss

sssssss

yx

xyxxy

yx

yyxyx
Nk

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−

+

−
= 2/322

2

2/322

2v
. (Eq. 2-16) 

Now, consider the variation of the tangential vector with respect to arc-length s. Here, 

we have 
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( ) ( )
22

2/12222

22

22
2
1

ss

sssssssssssss

ss

s

yx

xyyxxyxyxx

yx
x

ds
d

+

++−+
=

+

−

 

( ) ( )
( ) ( ) 2/322

2

2/322

22

ss

sssssss

ss

sssssssssss

yx
yyxyx

yx
yyxxxyxx

+

−
=

+

+−+
=  and 

( ) ( )
( ) ( ) 2/322

2

2/322

22

22
ss

sssssss

ss

sssssssssss

ss

s

yx

xyxxy

yx

yyxxyyxy

yx

y
ds
d

+

−
=

+

+−+
=

+
. 

 
Hence, we have 

   
( ) ( )

T

ss

sssssss

ss

sssssss
s

yx

xyxxy

yx

yyxyx
T

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−

+

−
= 2/322

2

2/322

2v
 (Eq. 2-17) 

From (Eq. 2-16) and (Eq. 2-17), we have NTs

vv
κ= .  

If sT
v

 in (Eq. 2-15) is replaced by N
v

κ , we have 

[ ] dsCNkCgNNCgtCL
dt
d CL

tR ∫ −∇=
)(

0
,)(),())((

v vvvvvvv
. 

According to the steepest-descent method, the best way to propagate the C
v

 with 
respect to time t is  

      ( )NNCgCgCt

vvvvv
),()( ∇−= κ . (Eq. 2-18) 

 

 

2.3  Level Set Theory 

The Geodesic Active Contour model in the previous section describes how the 

contour propagates along its normal vector. The propagation speed is proportional to a 

scalar function, which is dominated by NCg
vv

),(∇  and the curvature κ . This 

model can be transformed into an associated level set function. Multiple contours can 

then be split or merged by updating the level surface.  
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An example of level surface is shown in Figure 2-2. The right image is the level 
surface corresponding to the left image. The function of the level surface is called a 
level set function. The sign of the level set function is negative inside the object, 
while positive outside the object. The level curve with zero value corresponds to the 
boundaries in the left image. The magnitude of the level set function depends on the 
nearest distance from the contour. The positions near the contour have smaller 
magnitudes, while those far away from the contour have larger magnitudes. The 
contour propagation problem is then transformed into the updating of the level set 
function. All properties, like the normal vector and curvature, can be directly 
computed from the level set function.  

 

  Figure 2-2  Level Surface and Contours 
 
Consider a contour TtytxtC )]()([)( =

v
. A level set function which depends on the 

contour )(tC
v

 and the time t is  
RTRttC →× )},0[{:)),(( 2v

ϕ . 

The position of the contour is the zero level set of the level set function. Hence, 

0)),(( =ttC
v

ϕ  and thus 0=
∂
∂

+
∂
∂

+
∂
∂ dt

t
dy

y
dx

x
ϕϕϕ . 

This equation can be rewritten as 

0, =
∂
∂

+
∂
∂

∇
tt

C ϕϕ
v

. 

If NF
t

C v
v

)(κ=
∂
∂ , where )(κF  is a speed function of the curvature κ , the above 

equation becomes 
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      NF
t

v
)(, κϕϕ

∇−=
∂
∂

 (Eq. 2-19) 

Recall (Eq. 2-18), NCgCgF
vvv

),()()( ∇−= κκ .  

Because the contour is the level curve of )),(( ttC
v

ϕ  where 0)),(( =ttC
v

ϕ , the 
relative change of )),(( ttC

v
ϕ  along the contour C

v
 is zero. If we differentiate 

)),(( ttC
v

ϕ  with respect to the arc-length s, we have 

0=sϕ  and 0, =∇=+= ssysxs Cyx
v

ϕϕϕϕ . 

This means that the vector ϕ∇  is orthogonal to the tangential vector sC
v

. Hence, the 

normal vector N
v

 can be defined as 
ϕ
ϕ

∇
∇

−=N
v

. Applying it to the (Eq. 2-19), we 

have 

ϕκ
ϕ
ϕκϕϕ

∇=
∇
∇

∇=
∂
∂ )()(, FF

t
.             (Eq. 2-20) 

This equation builds the relation between curve propagation and the level set function.  

 
The following derivation will show that the curvature κ  can be estimated from 

the level set function )),(( ttC
v

ϕ . Considering the second derivative of )),(( ttC
v

ϕ  
with respect to s, we have 

 

     ( ) ssys
y

ssxs
x

sysx yy
s

xx
s

yx
ss

ϕ
ϕ

ϕϕϕϕϕ
+

∂

∂
++

∂
∂

=+
∂
∂

=
∂
∂

2

2

 

( ) ( ) ssyssxssyysyxssxysxx yxyyxxyx ϕϕϕϕϕϕ +++++=  

   02 22 =++++= ssyssxsyyssxysxx yxyyxx ϕϕϕϕϕ . (Eq. 2-21) 

On the other hand, we have the fact that 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

−

+

−
=

∇
∇

−=
+

−
=

222222
yx

y

yx

x

ss

ss

yx

xyN
ϕϕ

ϕ

ϕϕ

ϕ
ϕ
ϕv

. 

Assume 
22

22

ss

yx

yx
r

+

+
=

ϕϕ
. Then we have 
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sysx xryr −== ϕϕ , . 
 
Recall that the curvature κ  is expressed as 

22
ss

ssssss

yx
yxxy

+
−

=κ . 

From the above two equations, we have 

( ) ( ) )(122
ssxssyssssssss xy

r
yxxyyx ϕϕκ +−=−=+ . 

Hence,  ( )22
ssssyssx yxryx +−=+ κϕϕ . 

Using the above equation, (Eq. 2-21) becomes:  

( ) ( )22

22

22

22 22

yx

xyyyxyxyxx

ss

syyssyxsxx

ryxr
yyxx

ϕϕ
ϕϕϕϕϕϕϕϕϕϕ

κ
+

+−
=

+

++
= . 

 

Because 122 =+ ss yx , we have 22

22

22

yx

ss

yx

yx
r ϕϕ

ϕϕ
+=

+

+
=  and 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

=
+

+−
=

ϕ
ϕ

ϕϕ

ϕϕϕϕϕϕϕ
κ div

yx

xyyyxyxyxx
2/322

22 2
,       (Eq. 2-22) 

where )(Adiv
v

 denotes the divergence of the vector A
v

.  

Now, the updating equation of the level set function in (Eq. 2-20) becomes  

 
ϕκ

ϕ
ϕκϕϕ

∇=
∇
∇

∇=
∂
∂ )()(, FF

t
 

( ) ϕ
ϕ
ϕκϕκ ∇⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇
∇

∇+=∇∇−= ),()(),()( CgCgNCgCg
vvvvv

. (Eq. 2-23) 

and the curvature κ  is estimated by (Eq. 2-22).  
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2.4  Active Region Model 

The geodesic active contour model introduced in the previous section produces 
proper contour information along the object boundary as shown in Figure 2-3. The 
initial curve must be totally outside the object; otherwise, an undesired result may be 
produced as shown in Figure 2-4.  

 

  
Initialization 5 iterations 10 iterations 15 iterations 20 iterations 

  
25 iterations 30 iterations 35 iterations 40 iterations 48 iterations 

Figure 2-3  Geodesic Active Contour initialized totally outside the objects.  

 

  
Initialization 3 iterations 6 iterations 10 iterations 14 iterations 

  
17 iterations 20 iterations 23 iterations 27 iterations 32 iterations 

Figure 2-4  Geodesic Active Contour with bad initialization.  
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The original energy equation (Eq. 2-2) only considers the properties along the 
contours. Minimization of this energy function makes contours move toward the 
boundary of the object. When the initial contour crosses the boundaries of objects, 
like the situation in Figure 2-4, the contours move toward the boundaries but the 
region information is lost. A more robust model is introduced in this section which 
takes the region information into account.  

Consider a posteriori segmentation density function )|)(( IRPps , where )(RP  
is the partition status of region R and I  is the input image. The density function is 
decomposed into 

))((
)(

))(|()|)(( RPp
Ip

RPIpIRPps =                (Eq. 2-24) 

based on the Bayes’ Rule. 

))(( RPp  is assumed to be equally possible so ZRPp /1))(( = , where Z is the 
number of partition regions. p(I) is constant and is ignored. The above equation 
becomes:  

{ }),|())(|()|)(( BAs RRIpRPIpIRPp =≡ , 

where RA is the interior region (with the level function value 0<ϕ ) and RB is the 
exterior region (with the level function value 0>ϕ ). 

Assume the intensity distributions in RA and RB are independent . Then, 

[ ] [ ] )|()|()||()|)(( BABAs RIpRIpRIRIpIRPp =∩= . 

Again, assume that intensity values of the pixels within each region also are 
independent of each other. Then, the maximum a posteriori problem is equivalent to 
maximizing the following equation:  

∏∏
∈∈

=
BA Rs

B
Rs

As sIpsIpIRPp ))(())(()|)((~ . 

The energy function of the region part is modeled by using the [-log( )] function 
of the above probability density function. That is, 

[ ] [ ] dydxyxIpdydxyxIpRPE
BA R

B
R

A ∫∫∫∫ −−= ),((log),((log))(( . (Eq. 2-25) 

In order to apply the Euler-Lagrange equation to the minimization of (Eq. 2-25), 
the double integration must be transformed to the form of contour line integration 
similar to (Eq. 2-4). The transformation in [6] applies Stoke’s Theorem, which is 
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expressed as 

∫∫∫ ⋅=⋅×∇
CR

ldAsdA
vvvv

,                  (Eq. 2-26) 

where 
S

sdA
nA Csmall

S

∫ ⋅
=⋅×∇

→

vv

vv

0
lim)(  is the curl of A

v
.  

The concept of the Stoke’s Theorem is 
illustrated in Figure 2-5. The curl of A

v
 is 

the integration of sdA vv
⋅  in the small 

surface region of the small contours on the 
surface S. The integration of A

v
×∇  on the 

open surface S is equivalent to the 
integration of A

v
 along the contour C. The 

integrations of A
v

 on the small contours 
are cancelled with each other on the surface 
S.  

If the vector field )),(),,(( yxQyxPA =
v

, then  

)(ˆ

0

ˆˆˆ

y
P

x
Qk

QP
zyx

kji

A
∂
∂

−
∂
∂

=
∂
∂

∂
∂

∂
∂

=×∇
v

. 

According to (Eq. 2-26),  

[ ] ( )∫ ∫∫∫ +=⎥
⎦

⎤
⎢
⎣

⎡
=

∂
∂

−
∂
∂

C

L

ssR
dsyyxQxyxP

dy
dx

QPdydx
y
P

x
Q

0
),(),()( . 

If properly choosing P and Q , a scalar function  f  is decomposed as  

( ) )(,
y
P

x
Qyxf

∂
∂

−
∂
∂

= . 

For example, if we define 

( ) ( )∫=
x

dtytfyxQ
0

,
2
1,  and ( ) ( )∫−=

y
dttxfyxP

0
,

2
1, ,  

then 

( ) ( )∫∫∫ +==
L

ssR
dsyyxQxyxPdydxyxfE

0
),(),(,       (Eq. 2-27) 

 

Figure 2-5  Stoke’s Theorem  

C
S 
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and 

dsCACAds
dt

dy
Qy

dt
dQ

dt
dx

Px
dt
dP

dt
dE L

stst

L s
s

s
s ∫∫

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=⎟

⎠
⎞

⎜
⎝
⎛ +++=

0

)2()1(

0
,,
43421

vv

43421

vv
. 

(Eq. 2-28) 

Because  

dt
dyCA

dt
dxCA sysx

vvvv
,,)1( += ,  

if we use the integral by part formula and define Au
vv = , dsCvd st

vv = , dsAud s

vv = , 

and tCv
vv = , we have 

∫∫∫ −=−=
L

st

L

st

L

t

L
dsACdsACCAds

0000
,,,)2(
vvvvvv

. 

The first term is dropped since the contour starts and ends at the same point. Hence, 

(Eq. 2-28) becomes 

[ ]∫ ⎟
⎠
⎞⎜

⎝
⎛ −=

L

tst

T

sysx dsCACCACA
dt
dE

0
,,,,
vvvvvv

. 

Based on the steepest descent method,  

[ ] T

sysxst CACAAC
vvvvvv

,,−= . 

In the x direction, 

( ) sssssss y
y
P

x
Qy

x
Qx

x
Py

y
Px

x
Py

x
Qx

x
PyxP

sd
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−,  .

In the y direction, 

( ) sssssss x
y
P

x
Q

y
y

Q
x

y
Py

y
Q

x
x
Q

y
y

Q
x

y
PyxQ

sd
d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−, . 

Recall that ( ) )(,
y
P

x
Qyxf

∂
∂

−
∂
∂

=  and because ][ ss xyN −=
v

, we have 

NyxfCt

vv
),(= .                  (Eq. 2-29) 

The above derivation is summarized here. In order to minimize the double 
integration of the scalar function ( )yxf , , the energy function is transformed to (Eq. 
2-27) by the Stoke’s theorem. Then, (Eq. 2-29) is derived based on the 
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Euler-Lagrange approach. Hence, the minimization of ( ) dydxyxf
R∫∫ ,  is simply 

equivalent to propagate the curve in the normal direction with the magnitude ( )yxf , .  

Now the minimization of (Eq. 2-25) can be obtained from (Eq. 2-29). That is,  

( )( ) ( )( ) RBBRAA NIPNIP
t
C vv

loglog −−=
∂
∂ . 

Recall that RA is the interior region (level function value 0<ϕ ) and RB is the exterior 
region (with the level function value 0>ϕ ). Because RBRA NN

vv
−= , we define 

RBRA NNN
vvv

−== . Hence,  

( )
( ) N
IP
IP

t
C

A

B
v

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
∂ log .                  (Eq. 2-30) 

Combining the “geodesic active contour” model in (Eq. 2-4) and the “active 
region” model in (Eq. 2-25), the energy function is modified as  

[ ] +∇=Γ ∫
4444 34444 21

Contour  Active  Geodesic

)(')))(((
1

0
dqqCqCIgE α  

( ) [ ] [ ]
4444444444 34444444444 21

ModelRegion    Active

),((log),((log1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−− ∫∫∫∫ dydxyxIpdydxyxIp

BA R
B

R
Aα ,  (Eq. 2-31) 

where α  is the weighting of the two models and Γ  denotes the contour which 
produces the regions RA and RB and is described by the parameter q. 

From the result of (Eq. 2-23) and (Eq. 2-30), minimizing [ ]ΓE  is equivalent to 
updating the level surface using the following equation: 

( ) ( )( )( ) ( ) ( )
( ) ϕαϕϕκαϕ

∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∇∇+∇=

∂
∂

IP
IPyxIgyxIg

t A

Blog1,,),( . 

(Eq. 2-32) 

 Figure 2-6 shows the evolution of the above equation with 5.0=α . The contour 
moves both inward and outward and stops at the boundaries of the objects. When the 
objects are located outside the image, as shown in Figure 2-7, the new model can 
successfully extract the boundaries of the truncated objects.  
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Ideally, the whole motion object may locate within the image. However, 
sometimes parts of the objects are truncated by the image frame if the pan and tilt 
angles of the active camera is not adequate. In this imperfect situation, the new model 
is desirable for the extraction of the boundary. 

 

  
Initialization 4 iterations 8 iterations 12 iterations 16 iterations 

  
20 iterations 24 iterations 28 iterations 32 iterations 37 iterations 

Figure 2-6  Convergence of active contours with region information.  

 

  
Initialization 4 iterations 8 iterations 12 iterations 18 iterations 

  
22 iterations 28 iterations 32 iterations 36 iterations 40 iterations 

Figure 2-7  Convergence of active contours with some objects are partly outside the 
image.  

 

Although the new model performs well when the initialization curve does not 
completely encompass the objects, the initial curve must still contain enough 
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information of objects. In Figure 2-8, the initial curve is too small and it produces a 
bad result. Hence, the initial curve should be as large as possible under the constraint 
of computational time.  

 

  
Initialization 4 iterations 8 iterations 12 iterations 16 iterations 

Figure 2-8  Convergence of active contours when the initial curve is too small.  
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Chapter 3. Detection and 

Tracking of Moving Objects  
 
At the beginning of this chapter, the “active contours without edges” issue is first 

introduced. It is a model which statistically classifies the image data into two regions. 
Then the background subtraction result is analyzed based on the “active contours 
without edges” model. Under this approach, multiple moving regions can be 
successfully detected.  
 

Region tracking is accomplished by estimating the morphing operation between 
two successive frames. The inter-frame image data are compensated pixel-wisely to 
approximate the morphing procedure. In the current frame, the pixels with smaller 
error difference with respect to the pixel inside the contours in the previous frame 
have a force to push the contour outward. A new region tracking model, which 
considers the level surface constructed in the previous frame, is proposed. Finally, the 
statistic property is taken into consideration to cope with the interference of a 
cluttered environment.  

 
 

3.1  Motion Detection with Background 
 
 The motion region in the image can be obtained by background subtraction.  
Figure 3-1(c) shows the subtraction result of the background in (a) and the Frame 180 
in (b). Obviously, the active contour model which needs the edge information will not 
work well in the difference image in Figure 3-1(c). For this case, the new “active 
contour model without edges” proposed in [5] may be able to properly classify the 
image data in Figure 3-1(c) and extract the motion regions in the image.  
 
 



24 

 

(a) Background (b) Frame 180 (c) Background Subtraction

Figure 3-1  Background Subtraction. (a) Background Image. (b) Frame 180.  

(c) Background subtraction result.  
 
 

3.1.1. Active Contours without Edges 

 Define a curve C which divides the image into two regions. The energy function 
is defined as follows:  

∫∫ −+−=+=
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(Eq. 3-1) 

where 
∫

∫
=

)(

)(
1

),(

Cinside

Cinside

dxdy

dxdyyxu
c , 

∫
∫

=
)(

)(
2

),(

Coutside

Coutside

dxdy

dxdyyxu
c .  

 Here, ),( yxu  is the image data at (x,y), and c1 , c2 are the average intensity values 
inside and outside the contour C, respectively. The value of )(1 CF and )(2 CF have 
four different combinations which are illustrated in Figure 3-2. In Figure 3-2 (a), the 
values outside the contour are unique and thus 0)(2 =CF . The image data inside the 
contour contains two distinct values and thus 0)(1 >CF . The same analysis can be 
applied to Figure 3-2 (b). Now the image data outside the contour contains two values 
and thus 0)(2 >CF . If the contour shown in Figure 3-2 (c) passes across the objects, 
both )(1 CF and )(2 CF are non-zero. When the contours match the boundary of the 
objects, )(1 CF and )(2 CF become zero and the energy function reaches its minimum.  
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(a) 0)(,0)( 21 => CFCF  (b) 0)(,0)( 21 >= CFCF

 
(c) 0)(,0)( 21 >> CFCF  (d) 0)(,0)( 21 == CFCF

Figure 3-2 )(1 CF  and )(2 CF . Four 
situations of )(1 CF and )(2 CF  with 
different contours. When the image 
data inside and outside the contours 
are not uniform, the values of 

)(1 CF or )(2 CF produce a positive 
value. Only when the contours 
matches the boundaries of the 
objects, both )(1 CF and )(2 CF are 
zero and the energy function in (Eq. 
3-1) reaches its minimum.  

 
 The updating equation of the level set function is to be derived from (Eq. 3-1). 
First we define the Heaviside function H, which is expressed as 

⎩
⎨
⎧

>
≤

=
0,0
0,1

)(
zif
zif

zH  . 

If the length of the contours is taken into account, (Eq. 3-1) becomes  

∫∫ ΩΩ
−−+−= dxdyyxHcyxudxdyyxHcyxuE ))),((1(),()),((),( 2

2
2

1 ϕϕ  
 

∫Ω ∇+ dxdyyxH )),((ϕ (Eq. 3-2)

The first two terms are the new “without edges” models and the last term represents 
the length of the contours. According to the geodesic contour model mentioned in 
Section 2.2, the contour propagates based on the following equation:  

( )NNCgCgCt

vvvvv
),()( ∇−= κ . 

In this case, the weighting 1)( =Cg
v

 and the above equation is simplified to be 

NCt

vv
κ= .                       (Eq. 3-3) 

According to the active region model in Section 2.4, the first two terms in (Eq. 3-2) 
contribute the propagation force 
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vvv 2

2
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1 ),(),( −+−=  



26 

( )Ncyxucyxu
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1 ),(),( −−−= .               (Eq. 3-4) 

Combining (Eq. 3-3) and (Eq. 3-4) and applying the level set theory, the updating 
equation becomes 
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The result of active contours without edges is shown in Figure 3-3.  

 
Iteration 0 

c1=117.73 , c2=154.46 
Iteration 5 

c1=109.8 , c2=159.99 
Iteration 10 

c1=103.38 , c2=163.51 
Iteration 15 

c1=98.21 , c2=164.00 

 
Iteration 20 

c1=92.37 , c2=164.00 
Iteration 25 

c1=84.56 , c2=164.00 
Iteration 30 

c1=80.12 , c2=164.00 
Iteration 32 

c1=80.00 , c2=164.00 

Figure 3-3  Active contours without edges. c1 and c2 are the average values inside and 
outside the contours, respectively.  

  
 Because there are only two values in the image, the above simple case makes the 
energy function reach zero. When the image is blurred or added with some noise, the 
new model may still work well but the energy function reaches a non-zero minimum. 
Some non-trivial examples will be shown as follows.  

 Figure 3-4 shows the contour propagation in a blurred image. The blurred image 
is filtered by a Gaussian smoothing low-pass filter with the standard deviation 5.  
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Iteration 0 

c1=121.69 , c2=135.69 
Iteration 5 

c1=116.28 , c2=139.67 
Iteration 10 

c1=113.24 , c2=141.33 
Iteration 15 

c1=110.47 , c2=141.69 

 
Iteration 20 

c1=106.22 , c2=141.68 
Iteration 25 

c1=99.62 , c2=141.92 
Iteration 30 

c1=94.93 , c2=141.96 
Iteration 33 

c1=94.68 , c2=141.93 

Figure 3-4  Apply the “active contours without edges” method to the Gaussian smoothed 
image. c1 and c2 are the average values inside and outside the contours, 
respectively.  

 

 
Iteration 0 

c1=119.17 , c2=152.36 
Iteration 5 

c1=109.39, c2=160.18 
Iteration 10 

c1=102.86 , c2=164.27 
Iteration 15 

c1=98.30 , c2=165.11 

 
Iteration 20 

c1=93.14 , c2=165.06 
Iteration 25 

c1=85.94 , c2=164.91 
Iteration 30 

c1=80.77 , c2=164.74 
Iteration 33 

c1=80.39 , c2=164.67 

Figure 3-5  Apply the “active contours without edges” approach to the image with 
Gaussian noise.  The standard deviation of the noise is 30.  
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When this model is applied to a noisy image, some defects may appear as shown 
in Figure 3-5. Because the terms inside the integrals in (Eq. 3-1) are not continuous 
functions in the image spatial domain, some fragmented contours may be produced by 
the noise. The variation of the histogram inside and outside the contour is shown in 
Figure 3-6. It shows that the contours propagate toward the minimum of (Eq. 3-1) in 
the statistical sense. The blue bar is the histogram of the whole image, the red bar is 
the histogram of the inside region, and the green bar is the histogram of the outside 
region. The distributions of the inside and outside regions become more concentrated 
around the peak of the mean values.  
 

  
Iteration 0 Iteration 10 

  
Iteration 20 Iteration 30 

Figure 3-6  Statistical histogram of Figure 3-5. The blue bar is the histogram of the whole 
image, the red bar is the histogram of the inside region, and the green bar is the 
histogram of the outside region.  

 
 To overcome the defects in Figure 3-5, the input image is pre-filtered by a 
Gaussian low-pass filter before the contour propagation starts. The result of the 
pre-filtered noise image is show in Figure 3-7. The standard deviation of the noise is  
now 80, which is much larger than the case in Figure 3-5.  
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Iteration 0 

c1=119.96 , c2=143.85 
Iteration 5 

c1=113.08, c2=149.33 
Iteration 10 

c1=109.00 , c2=151.90 
Iteration 15 

c1=105.57 , c2=152.18 

 
Iteration 20 

c1=101.52 , c2=152.00 
Iteration 25 

c1=95.32 , c2=151.93 
Iteration 30 

c1=90.23 , c2=151.79 
Iteration 33 

c1=90.06 , c2=151.75 

Figure 3-7  Apply the “active contours without edges” approach to the image with 
Gaussian noise. The standard deviation of the noise is 80.  
 

 
Iteration 0 

c1=163.91 , c2=135.84 
Iteration 12 

c1=162.64, c2=134.20 
Iteration 24 

c1=162.11 , c2=132.45 
Iteration 36 

c1=162.15 , c2=129.49 

 
Iteration 48 

c1=161.87 , c2=123.99 
Iteration 60 

c1=161.45, c2=116.87 
Iteration 72 

c1=160.28 , c2=102.35 
Iteration 88 

c1=158.05 , c2=89.60 

Figure 3-8  Apply the “active contours without edges” approach to the image with 
improper initialization. The standard deviation of the noise is 20. Note that c1 is larger 
than c2. The region “inside” the contours is actually the background region.  
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Recall the active region model in Section 2.4. An undesirable result is produced 
if the initialization curve is too small to gather the information of the objects. Figure 
3-8 shows the result based on the new model when the initial contour is very small. 
The new model successfully classifies the two regions in the image, but now the 
background region becomes the “inside” region while the objects are classified as the 
“outside” regions. Also note that the required iteration number increases because of 
the poor initialization. 
 

3.1.2. Background Subtraction 

 Return to the case of Figure 3-1. The “active contours without edges” model is to 
be applied to the background subtracted image in Figure 3-1 (c). The difference values 
in the static regions are very small. Hence, the average value outside the contours 
approaches zero. The input images may contain some noise. Hence, a low-pass 
filtering process is applied to the difference image first.  

 The evolution of level set theory is computationally expensive, and the 
computational time is proportional to the size of the level surface. Because very 
precise positions of the objects are not necessary in real applications, the image 
difference image can be processed block-wisely. Assume the block size is NN × , the 
sum of absolute difference (SAD) of each block is obtained by  

( ) ( )∑∑
= =

+−+−−+−+−=
N

p

N

q
tji qNjpNiBqNjpNiutSAD

1 1
)1(,)1()1(,)1()( , 

where B denotes the background image.  

 The “active contours without edges” model classifies the SAD data into two 
regions which maps to the motion and static parts of the image. The contour 
propagation is shown in Figure 3-9.  

 
A large initial contour produces a large magnitude of the level set function in the 

center of the image. If the initial contours are split into small contours, the required 
iteration number decreases because the level set function may reach the convergence 
magnitudes more easily. Figure 3-10 shows the contour propagation with small 
contours initialization. The required iteration number decreases from 74 in Figure 3-9 
to 26 in Figure 3-10.  
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Iteration 0 Iteration 11 Iteration 22 Iteration 33 

Iteration 44 Iteration 55 Iteration 66 Iteration 74 

Figure 3-9  Classify the difference image data of Frame 180 and Frame 1 of the “Hall” test 
sequence.  

  
  

Iteration 0 Iteration 4 Iteration 8 Iteration 12 

Iteration 16 Iteration 20 Iteration 24 Iteration 26 

Figure 3-10  Classify the difference image data of Frame 180 and Frame 1 of the “Hall” 
test sequence. The initial contour is replaced by a few small contours.  

  
 Figure 3-11 show the result which applies the “active contours without edges” 
model to the hall sequences. Frame 1 is used as the background. Figure 3-12 shows 
the comparison of the required time of two different initializations. There is no object 
in the first few frames. Hence, the level set evolution is not performed if the 
maximum SAD is less than a pre-selected threshold value.  
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Frame 35 Frame 47 Frame 91 

   
Frame 116 Frame 153 Frame 197 

   
Frame 240 Frame 260 Frame 292 

Figure 3-11  Apply the “active contours without edges” model to the hall sequences. 
Frame 1 is taken as the background. Multiple objects are successfully 
identified based on the level set approach.  

 
Figure 3-12  
Comparison of required 
time of two different 
initializations. The solid 
line denotes the required 
time based on the large 
contour, while the dot 
line denotes the required 
time based on the set of 
small contours.  
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3.2  Region Tracking 

 When a camera is not static, both objects and background in the sequences 
change frame by frame. The background subtraction technique fails in this case 
because the static background is no longer available. Characteristics of the moving 
objects must be properly modeled in another way.  
 

3.2.1. Region Tracking without Motion Computation 

 In [6] the regions are characterized by the probability models based on the 
Bayes’ rule and MDL. Regions compete against each other and finally the image data 
within the same region will contain similar characteristics. Nikos Paragios and Rachid 
Deriche [7] implemented the region competition by using the level-set theory. 
Adbol-Reza Mansouri [8] further built another region tracking model via the use of 
the morphing concept so that the movement of the specific region can be properly 
tracked. Alper Yilmaz et al [9][10] applied the region tracking concept to the video 
surveillance sequences acquired by a mobile camera.  

 Assume the image domain is Ω  and a preset region R0 in the reference frame 

1−nI . The goal is to find a region R1 which is very similar to R0 in the current frame 
nI  even if both translation and deformation of the object occur. The above statement 

is expressed as  

),,|(maxargˆ
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11 RIIRRPR nn

R

−

Ω⊂
== .            (Eq. 3-6) 

This means that the desired region R1 corresponds to the maximum value of the 
well-defined probability model P. In order to define the probability model P, (Eq. 3-6) 
is rewritten as the following equation based on the Bayes’ rule:  
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The intensity probabilities inside and outside the region R are assumed to be 
independent. Then we define  
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where R and R c are the inside and outside regions in the reference frame I n-1, 
respectively; and xv  is the spatial position in the image. Assume again that the 
intensity values at different pixels are independent. (Eq. 3-7) then becomes  
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and (Eq. 3-6) is now transformed to  
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This means that the optimal 1R̂  is obtained by minimizing ),,|( 0
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 In the equation, ),|)(( 0
1 RIxIP nn

in
−v  is the probability of the intensity value 

inside the region R with the information of the reference frame I n-1 and the preset 

region R0. If a morphing function ))(( xI vψ  relates I n-1 and I n as  

)())(()( 1 xxIxI nn vvv µψ += − ,                (Eq. 3-9) 

where )(xvµ  is the small error value after the morphing procedure. The probability 
model can be defined as  
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where “sup” means the least upper bound of a set. Similarly,  
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 The probability model describes that the maximum probability occurs when the 
difference of the intensity values between the current frame and the morphing result 
of the reference (previous) frame is minimum. If considering color images, intensity 
difference can be replaced by color difference.  

 Now consider the third term of (Eq. 3-8). It can be defined as 

∫
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− ==−
R

n dRIRRP ρλ),|(log 0
1

1 ,               (Eq. 3-12) 

which describes the shape prior of the contours. The coefficient λ  denotes the 
weight. The length of the contours tends to be as small as possible under the 
restriction of the region information defined in (Eq. 3-10) and (Eq. 3-11).  

 Use (Eq. 3-10), (Eq. 3-11), and (Eq. 3-12) to substitute the terms in (Eq. 3-8), the 
likelihood functional becomes  
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Note that the least upper bound “sup” is replaced by the greatest lower bound “inf” 
because of the negative log.  
 The morphing operator ))(( xI vψ  can be simplified as “matching pixels” around 
a search range δ in the reference frame. The constant σ  can also be ignored. The 
above functional is now simplified as  
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 Use the Euler-Lagrange derivation mentioned in previous sections, the likelihood 
functional is minimized by propagating the contour in the direction:  
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where κ  is the curvature of the contour C
v

, and N
v

 is the normal vector. Apply the 
level set theory described in Section 2.3, the corresponding updating equation of the 
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level surface is  
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(Eq. 3-13) 

 (Eq. 3-13) means that the contour moves outward if the square error inside R0 is 
smaller than the square error outside R0. If the pixel is far away from the boundary, 
one term in (Eq. 3-13) doesn’t exist because of the limited search range. The 
inexistent term is set to be a very large value. Helpful implementation details can be 
found in [8].  

 Define the minimum square error found inside R0 as Vin: 
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           (Eq. 3-14) 

and the minimum square error found outside R0 as Vout  
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.          (Eq. 3-15)  

Replace the first two terms in (Eq. 3-13) by (Eq. 3-14) and (Eq. 3-15), the region 
tracking force F which update the level surface is  

outin VVF −= .                      (Eq. 3-16) 

If 0>F , the level surface moves upward and the contour propagates inward. On the 
other hand, 0<F  causes the contour to propagate outward.  

 Figure 3-13 contains two successive frames in the “car-phone” test sequences. 
The face region is pre-defined in the reference frame in Figure 3-13 (a). The pixels 
with F less than zero in the current frame are marked as green points in Figure 3-13 
(b). The level surface moves down at the green points and moves up at the other 
locations. The level surface is updated by the force F until the final convergence is 
obtained. Note that even though the scene changes out of the car, the green region in 
the current frame may still properly estimate the face region in Figure 3-13 (a).  
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(a) Reference frame. (b) Current frame 

Figure 3-13  The force F defined by the region tracking model. (a) The pre-defined 
region in the reference frame. (b) The pixels where 0<F  in the current 
frame.  

 
 In Figure 3-13 (b), there are many cracked points outside the face region with 

0<F . The false detection may cause problem if the intensities or the color values 
inside and outside the object are too similar. The background may be classified inside 
the contours and make the contour grow incorrectly. A new region tracking model is 
to be proposed to eliminate these cracked points and to increase the robustness.  
 
 

3.2.2. A New Region Tracking Model 

 Because the frame rate is assumed to be very high, the inter-frame difference of 
the level surface should be very small. The new level surface can be roughly 
estimated by apply the morphing to the level surface of the reference frame. This 
procedure can be written as  

( ) µψϕϕ += − )()( 1 xx nn vv , 

where ϕ  is the level surface and ψ  denotes the morphing operation. A pixel-wise 
matching can be used to simplify the morphing operation. µ  is the error value 
between the correct and estimated level surface. The morphing operation often results 
in cracked effects similar to Figure 3-13(b). The level surface produced by morphing 
is severely discontinuous as shown in Figure 3-14 (b). A simple low pass mean filter 
can alleviate this discontinuity and produce a smoother surface.  

 Besides the low-pass filtering, the re-initialization is used to make the surface 
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preserve the property 1=∇ϕ . How to get the new surface is summarized in the 
following equation:  

( ){ })()( 1 zxFilteringLowpasszereinitialix nn
estimate

vvv += −ϕϕ . (Eq. 3-17)

The re-initialization step is introduced in Chapter 4.  
 

 

(a) )(1 xn v−ϕ  (b) )(1 zxn vv +−ϕ  (c) )(xn
estimate

vϕ  

Figure 3-14  Apply the morphing operator to the level surface of the reference frame. (a) The 
level surface of the reference frame. (b) Morphing result. (c) Apply a low-pass 
filtering and the re-initialization to the surface in (b). (c) is used to estimate the 
new level surface in the current frame.  

 

 The difference between Figure 3-14 (b) and (c) provides the information about 
the reliability of the morphing operation. If the difference is very large, the morphing 
operation on the pixel is not very reliable because the inter-frame difference should be 
small. Now the probability models in (Eq. 3-10) and (Eq. 3-11) are modified as  
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is a weight which estimates the reliability of the morphing operation. Then the level 
surface updating equation in (Eq. 3-13) becomes  



39 

( ) ( ) ϕκλϕ
ϕ

δδ
∇⎥⎦

⎤
⎢⎣
⎡ +⋅⎟

⎠
⎞

⎜
⎝
⎛ +−−+−=

∂
∂ −

∈+≤

−

∈+≤
PzxIxIzxIxI

t
nn

Rzxz

nn

Rzxz c

21

,

21

,
)()(inf)()(inf

00

vvvvvv
vvvvvv

 

ϕκλϕ ∇+⋅−= ])[( PVV outin . 

 The additional weight ϕP  suppresses the effect of )( outin VV −  if the square 

error ( ) 21 )()( zxx nn
estimate

vvv +− −ϕϕ is large. Figure 3-15 (a) is the same image shown in 

Figure 3-14 (b). The green points in Figure 3-15 (b) are generated by the Boolean 

equation below the figure. The suppressed pixels are eliminated because of the 

negative threshold. The false detected points are obviously reduced in Figure 3-15 (b).  

 

  

(a)  Figure 3-13 (b) (b) ]0[    ])([ <−<⋅− estimateoutin orPVV ϕεϕ

Figure 3-15  The region force with and without the weight ϕP . The cracked false 

detected points are reduced by adding ϕP . The influence of the 

surrounding environment is reduced and makes the region tracking model 

more robust.  
  
 Figure 3-16 shows the region tracking results of the car-phone sequences. The 
level surface is only updated inside the green rectangle. Since the points far away 
from the object always find the points outside the R0 in the reference frame, the 
computation far away from the object is unnecessary. Because the level surface is 
only updated inside the rectangle, it results in discontinuous on the boundary of the 
rectangle. The discontinuity can be smoothed by the re-initialization at the end of the 
whole operation.  
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Frame 1 Frame 50 Frame 100 Frame 150 

Frame 220 Frame 270 Frame 320 Frame 380 

Figure 3-16  The car-phone test sequences. The face region is defined in the first frame. The 
level surface is only updated inside the green rectangle. The face is successfully 
tracked even though the scene changes outside the car.  

 

Frame 50 Frame 52 Frame 54 Frame 58 

Frame 62 Frame 65 Frame 70 Frame 74 

Frame 78 Frame 82 Frame 86 Frame 90 

Figure 3-17  Football sequences. The camera moves very quickly and the target is blurred in 

some frames. The contour does not grow incorrectly due to the use of 

)(xn
estimate

vϕ  in (Eq. 3-17). 
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Figure 3-17 and Figure 3-18 shows the result of the football sequences. The sequences 
contain some interference of the clutter environment. Figure 3-17 is the result which 
applies the new model. The contour does not grow incorrectly because the new level 
surface is pre-estimated. The original tracking model produces the erroneous result 
shown as Figure 3-18. 
 
 

Frame 58 Frame 64 Frame 70 Frame 80 

Figure 3-18  Football sequences with original region tracking model. The contour grows 

incorrectly because of the interference of the environment clutter. 
  

 
Frame 65 Frame 72 Frame 78 Frame 85 

 
Frame 92 Frame 98 Frame 106 Frame 110 

Figure 3-19  Track a small target in the coastguard sequence. The level surface with higher 
resolution is only evaluated inside the green rectangle. More computational 
resources can be allotted to a specific region and produce a higher quality 
result.  

 
Figure 3-19 shows the result of the coastguard sequences. Because the target is small, 
it is beneficial that the level surface updates only inside the small green rectangle. 
More computational resource can be reserved for updating the level surface with 
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higher resolution. A low resolution level surface is used in Figure 3-20. Although the 
tracker cannot get a fine boundary of the small boat, the essential position information 
is not lost. Selecting the scalability (or resolution) of the level surface is a tradeoff 
between the computational cost and the quality.  
 
 

 
Frame 65 Frame 72 Frame 78 Frame 85 

 
Frame 92 Frame 98 Frame 106 Frame 110 

Figure 3-20  Use a level surface with lower resolution. This reduces large computational 
cost. The essential position is successfully tracked but the fine boundary of 
the object is lost.  

 
 

3.3  Probability Model 

 The region tracking model in the previous section builds the probability model 
based on the difference of intensity or color. Ideally every pixel in the current frame 
must search for the minimum-square-error point in the entire reference frame. A 
limited search range can reduce the computational cost. So far, only local 
characteristic is taken into account.  

 The original inP  and outP  in (Eq. 3-8) are modeled by (Eq. 3-10) and (Eq. 3-11) 
in [8]. In this section, inP  and outP  will be obtained by actually gathering the statistics 
of the image data. The searching procedure in (Eq. 3-10) and (Eq. 3-11) will be used 
as the prior model for the maximum a posteriori (MAP) method.  
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3.3.1. Kernel Density Estimation 

 Assume the intensity value is between 0 and 255. If the probability of every 
value from 0 to 255 is counted, no obvious “mode” or characteristics can be found 
from this density function because the accumulated number for each intensity value is 
too small. For color images, an impractical 256 3 storage space is required. It is better 
to classify the image points with similar intensity into “bins”. For example, if the 
value between 0 and 255 is divided into 8 “bins”, the points with value between 0 and 
31 belong to the same bin and the characteristics of the data can be modeled by 8 
counting numbers.  
 
 If the sampled data clusters near the boundaries of the bins, this may produce a 
poor estimation. A kernel may be chosen to “smooth” [14] the distribution in the 
statistical space. This technique is called Kernel Density Estimation (KDE). The 
kernel density estimator is expressed by  
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where n is the number of d-dimensional data points, and h is the bandwidth of the 
kernel K. The vector xv  is a scalar for gray level image data. The Epanechnikov 
kernel is  
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Figure 3-21  
The blue line is the histogram 
of the gray-level Lena image. 
The red line is the kernel 
density estimation result.  

 
 
 Figure 3-21 shows an example of kernel density estimation. The blue line is the 
histogram of the gray-level Lena image. The red line is the kernel density estimation 
result with 16 bins. The bandwidth of the normal kernel is 8. The bandwidth selection 
is a very important issue in kernel density estimation. Figure 3-22 (a) shows the result 
when the bandwidth is too small, it causes under-smoothed. If the bandwidth is too 
large, the over-smoothed result is shown in Figure 3-22 (b). A good bandwidth 
selection can be based on many criterions such as the mean integrated squared error 
(MISE) and the approximate mean integrated square error (AMISE).  
 
 

  
(a) Under Smoothed Estimate. (b) Over Smoothed Estimate. 

Figure 3-22  Improper kernel bandwidth selection. If the bandwidth is too small, it causes 
under-smoothed. If the bandwidth is too large, it causes over-smoothed.  
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 Kernel density estimation is widely used in analyzing data distribution. The 
mean shift approach [15] is derived based on this probability model and may cluster 
the data into groups. Dorin Comaniciu et al. use the mean shift algorithm to deal with 
image segmentation [16] and object tracking [17] problem. The mean shift algorithm 
shifts the data in the direction of the greatest gradient of its distribution density 
function. Although the derivative result doesn’t have to do the kernel density 
estimation, the mean shift tracking algorithm cannot track the boundary of the moving 
object. Now the probability model built by the kernel density estimation is going to be 
applied to the likelihood energy function shown in (Eq. 3-8).  
 
 

3.3.2. ML and MAP Estimation 
 

    
(a) Reference Frame (b) Current Frame (c) ),|( 0

1 RIIP nn
in

− (d) ),|( 0
1 RIIP nn

out
−

  
(e) Histogram of 0R . (f) Histogram of cR0  in (a). 

Figure 3-23 Maximum likelihood. (a) The preset contours which define the objects in 
the reference frame. (b) The objects move in the current frame. (c) The 
probability of inside region in the current frame. (d) The probability of 
outside region in the current frame. (e) and (f) are the histograms inside 
and outside the contours in (a).  

 
The maximum likelihood can be illustrated by Figure 3-23. (a) is the current 

frame with slight noise and the contours define the objects. The inside region is 0R  
and the outside region is cR0 . The histograms of 0R  and 

cR0  are shown in (e) and (f), 
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respectively. The peak intensity value is 80 inside and 164 outside. Then in (b) the 
objects move. In order to estimate the objects’ new positions, (c) shows the 
probability inside the objects in the current frame and (d) shows the outside 
probability.  
 
 Replacing ),|( 0

1 RIIP nn
in

−  and ),|( 0
1 RIIP nn

out
−  in (Eq. 3-8), the energy 

function becomes the active region model as expressed in (Eq. 2-25). This is called a 

Maximum Likelihood (ML) estimate.  

 For color images, inP  and outP  are built in the RGB space. Figure 3-24 shows 

the color image case. (a) and (b) are the reference and the current frame, respectively. 

The preset region is defined in the reference frame. Then the probability of the inside 

region in the current frame is shown in (c), which is similar to Figure 3-23 (c). The 

distribution is estimate by dividing the RGB space into 161616 ××  bins.  

 

 

(a) Reference Frame.  (b) Current Frame.  

Figure 3-24  Maximum likelihood 
estimation. (a) Define the object in the 
reference frame. (b) The current frame. 
(c) The probability of the inside region 
according to the distribution in the 
RGB space. The RGB space is divided 
into 161616 ××  bins.  

(c) The probability of the inside region.  
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 In Figure 3-24 (c), the background regions with color similar to the inside region 
also have high probability. If the moving object touches these regions, the ML 
estimator may misclassify the background region as a foreground region. A more 
reliable estimator with the maximum a posteriori (MAP) criterion will be proposed as 
follows.  
 
 Assume the inside probability in the current frame with nI , 1−nI , and 0R  are 
given is represented as ),,|( 0

1 RIIINP nn − .  

Based on the Bayes’ Rule,  
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Also note that ),,|(1),,|( 0
1

0
1 RIIINPRIIOUTP nnnn −− −= . 

 The terms ),|( 0
1 RIIP nn

in
−  and ),|( 0

1 RIIP nn
out

−  can be obtained by the same 

way as Figure 3-23 (c) and (d). But now a 3-dimentsonal distribution from the kernel 

density estimation is considered for color images. The prior )(INP  is assumed to be 

1/Z for every pixel in the Active Region Model in Section 2.4. Z is the number of 

regions. Z is equal to 2 because now we only consider inside and outside probabilities.  

 

 Since the inside region is known in the reference frame, the prior part can be 

estimated more reasonable instead of setting a fixed number. The block matching is 

used as shown in Figure 3-25. The current frame is divided into many blocks. Every 

block finds the most matched region in the reference frame as the motion estimation 

does. Then the prior )(INP  of the Block( i , j ) is estimated based on the proportion 

of R0. All pixels in the block use the same prior value.  
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Figure 3-25  Obtain the prior information. The current frame is divided into many 
blocks. Every block finds the most matched region within a search 
range in the reference frame. Then the proportion of R0 is used to 
estimate the prior )(INP  for all pixels of Block( i , j ) in the current 
frame.  

 

 The above method is similar to the extended version in [8]. The prior )(INP ji  of 
Block( i , j ) is estimated to be 

2

0

) (

)(
)(

SizeBlock

zxR
INP Blockx

ji

vv
v +

=
∑ ∈ , (Eq. 3-22)

where 

( )∑ ∈
−

≤
+−=

Blockx
nn

z
zxIxIz v

v

vvvv 21 )()(minarg
δ

 

with R0 being 1 inside and 0 outside. 

 Figure 3-26 shows the individual terms for the MAP estimation. The predicted 
inside region is more accurate than the maximum likelihood model.  

Figure 3-27 shows how to merge the inside information from the new tracking 
model and the probability model. The region tracking model can track the details of 
the inside region, but it produces false detection more easily. The probability model 
may fail if the colors inside and outside are too similar, but it offers robust 
information for regions with lager area. The total information can be obtained by 
merging these two components with different amounts of weight. 
 

Reference Frame Current Frame

Search Range 

Block ( i , j ) 
R0 
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(a) ),|( 0

1 RIIP nn
in

−  (b) ),|( 0
1 RIIP nn

out
−  

  
(c) )(INP  (d) ),,|( 0

1 RIIINP nn −  

Figure 3-26  The probability characteristic of the current frame in Figure 3-24 (b). (a) 
and (b) are the color version of Figure 3-23 (c) and (d). (c) is the prior 
information obtained by (Eq. 3-22). (d) is the MAP estimation from (Eq. 
3-21).  

  

 

Figure 3-27  Merge the inside information of the new region tracking model and the 
probability model. The total inside information can be formed by using 
different amounts of weight for the two components. 
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 Figure 3-28 shows the experimental result of real sequences. The camera moves 
with the person and the background changes. The region tracking model is applied 
and successfully tracks the person. The tracked region does not get affected by the 
surrounding clutters.  
 

 
Frame 48 Frame 50 Frame 70 Frame 90 

 
Frame 110 Frame 130 Frame 150 Frame 170 

 
Frame 190 Frame 210 Frame 230 Frame 250 

 
Frame 270 Frame 290 Frame 310 Frame 330 

 
Frame 350 Frame 370 Frame 390 Frame 410 

 
Frame 430 Frame 450 Frame 470 Frame 480 

Figure 3-28  The experimental result of real sequences acquired in the laboratory. 
The contour of the person is preset in the first frame.  
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Chapter 4.  

Implementation Issues and 

Experimental Results 
 

This chapter discusses some implementation issues. First we show how to create 
a signed distance function. The level set can be evaluated more easily when the level 
surface is a signed distance function. Then the partial differential equations (PDE) are 
implemented based on the essentially non-oscillatory (ENO) polynomial interpolation 
scheme. Finally the re-initialization step makes the propagation of the contours more 
robust.  

 
A complete system with detection and tracking is constructed. The system 

contains “background modeling”, “motion detection”, and “region tracking” steps. A 
simple background modeling method is briefly described in this chapter.  

 
 

4.1  Implementation Issues 

4.1.1. Distance Transform 

 A binary image which represents the objects will be transformed into a distance 
function. Generating a distance function is very important when the level set theory is 
performed. Figure 4-1 (a) is a binary input image. The value 1 represents the object. 
The binary map in Figure 4-1 (a) will be transformed to (b). The values in (b) outside 
the object depend on their distance away from the object. The distance values inside 
the object are zero.  
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0 0 0 0 0 0 
0 0 1 1 0 0 
0 1 1 1 0 0 
0 1 1 1 1 0 
0 1 1 1 0 0 
0 0 0 0 0 0  

5 2 1 1 2  5  
2 1 0 0 1 2 

1 0 0 0 1 2  
1 0 0 0 0 1 
1 0 0 0 1 2  
2 1 1 1 2  5   

(a) Input binary image. (b) Distance Transform of (a). 

Figure 4-1  Distance Transform. In (b), the values outside the object depend on 
their distance away from the object.  

 
 A simple 1-D example is shown in Table 4-1. A binary map b(x) is 1 inside the 
object and 0 outside the object.  

Step 1:  The object region is set to be zero while the background region is set to be 
an “as large as possible” value. 

Step 2:  Use a three-tap mask M1 = [m1, m2, m3] = [ 1, 0, Inf. ] to scan from left to 
right.  

{ }321 )1(,)(,)1(min)( mxbmxbmxbxd ++++−=  

Step 3:  Use a three-tap mask M2 = [ Inf. , 0, 1 ] to scan from right to left similar as 
Step 2.  

 
 

Table 4-1  Create the 1D distance function. 
x 1 2 3 4 5 6 7 8 9 10 11 

b(x) 0 0 0 0 1 1 1 0 0 0 0 
Step 1 Inf. Inf. Inf. Inf. 0 0 0 Inf. Inf. Inf. Inf. 
Step 2 Inf. Inf. Inf. Inf. 0 0 0 1 2 3 4 
Step 3 4 3 2 1 0 0 0 1 2 3 4 
 
 The above evolution is called a “Two-pass Algorithm.” The distance value is 
accumulated when M1 scans in one direction, and then M2 scans in the other direction. 
In the two dimensional case, the masks are:  
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M1 scans from top-left to bottom-right, while M2 scans from bottom-right to top-left. 
The Inf. is a preset large value. The 2D example is shown in Figure 4-2.  
 

  
(a) Scanning by M1 from top-left to 

bottom-right.  
(b) Scanning by M2 from bottom-right to 

top-left.  

Figure 4-2  Two-pass algorithm in 2D. The binary input image 
is shown as the right star image. The first pass 
accumulates the distance value from top-left to 
bottom-right, while the second pass accumulates 
the distance value from bottom-right to top-left.  

 
 
 There are many different distance measures that create different distance 
functions. Four popular measures, Euclidean, City Block, Chessboard, and 
Quasi-Euclidean, are shown in Figure 4-3. The center point denotes the location of the 
object, so the center value is zero. The values of the City Block and the Chessboard 
measure are integers and are suitable for hardware implementation. The Euclidean 
measure is more precise but it contains floating point numbers. The Quasi-Euclidean 
measure can compute more points at one time and speed up the computation. These 
matrices can be decomposed into M1 and M2 for the two-pass algorithm.  
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2  1 2  
1 0 1 

2  1 2   

2 1 2 
1 0 1 
2 1 2  

1 1 1 
1 0 1 
1 1 1  

8 5  2 5  8
5 2  1 2  5

2 1 0 1 2 
5 2  1 2  5
8 5  2 5  8 

Euclidean City Block Chessboard Quasi-Euclidean 

Figure 4-3  Four distance measures for creating a distance function.  
 
 A signed distance function is required in the level set evolution. The function 
value is negative inside the object and is positive outside the object. The above 
method only produces positive distance values outside the object. Negative distance 
values inside the object can be obtained by inverting the input binary image before 
performing the two pass algorithm and changing the sign of the final result. The 
surface near the boundary of the object is not smooth because both inside and outside 
distance values start from 1. Hence, the distance values outside the object are 
decreased by 0.5 and the values inside the object are increased by 0.5. This makes the 
absolute difference of two points “across” the zero-value boundary equal to 1.  

 Assume inϕ  is set to be an arbitrary negative value if inside the object and an 

arbitrary positive value if outside the object. The transformation Dist(x) denotes the 

distance transform of the binary image x. The signed distance function ϕ  is 

generated by  

)(]5.0))(([)(]5.0))(([ inininin uuDistuuDist ϕϕϕϕϕ −⋅−−⋅−−=  

where )(xu  is a Heaviside function: 
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4.1.2. Solve PDE Numerically 

 
 The partial differential equation (PDE) of the level set theory has the form 

ϕϕ ∇= Ft ,                             (Eq. 4-1) 

where ϕ  is the time varying level set function according to the velocity function F 
and the gradient value of ϕ . The velocity function F depends on the curvature of the 
contour or whatever contour propagation model defined in the previous chapters.  

Consider a 1-D signed distance level set function shown as the solid blue line in 
Figure 4-4. The object locates in the interval [-5, 5]. The boundary of the object is at 
-5 and 5 where the value of the level set function is zero. The green line is the velocity 
function F which is -1 in [-10, -4] and 2 in [-3, 10]. When (Eq. 4-1) is implemented in 
the discrete time domain, there are two choices to approximate ϕ∇ : 

iiiD ϕϕϕ −= +
+

1                      (Eq. 4-2) 
or 

1−
− −= iiiD ϕϕϕ .                     (Eq. 4-3) 

If we only choose (Eq. 4-2) or (Eq. 4-3) to approximate ϕ∇ , the differentiation 
information will propagate in one direction and the level surface erroneously drifts 
one pixel after each time step. This error propagation is shown in Figure 4-4. If only 

ϕ+iD  is used to approximate ϕ∇ , the level set function disobeys the original 
meaning of the PDE described in (Eq. 4-1).  

 

 

Figure 4-4  Error propagation result due to improper approximation of ϕ∇ . 
 
 

Increase incorrectly!!
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Equation with the form of (Eq. 4-1) is called a Hamilton-Jacobi Equation. The 
essentially non-oscillatory (ENO) polynomial interpolation is introduced in [11] to 
solve the PDE numerically. [12] [13] and [4] contain some practical applications. 
Here, (Eq. 4-1) is simplified as a one dimensional problem and is implemented via the 
following equations:  

])0,min()0,[max(1 −++ ⋅∇+⋅∇∆+= FFtnn ϕϕ ,         (Eq. 4-4) 
where 

2/122 ])0,min()0,max([ ϕϕ +−+ +=∇ ii DD            (Eq. 4-5) 

2/122 ])0,min()0,max([ ϕϕ −+− +=∇ ii DD            (Eq. 4-6) 

and ϕ+iD , ϕ−iD are defined in (Eq. 4-2) and (Eq. 4-3), respectively. The time step 
t∆  controls the propagation speed. The choice of t∆  is a tradeoff between the 

propagation speed and the stability. With this scheme, a positive F is multiplied with 
+∇  while a negative F is multiplied with −∇ .  

 The level set function is updated by (Eq. 4-4) and the results of ten iterations 
with the ENO scheme are shown in Figure 4-5. The level set function propagates 
properly with respect to the velocity function F. The left zero surface value in Time 0 
appears at -5 with velocity F = -1. The zero value propagates toward -6 after ten 
iterations with time step 0.1. In the same way, the right zero surface value propagate 
from 5 to 3 with F = 2.  

However, the glitches of the level set function occur at the discontinuous points 
of F and the level surface. The value of the level set function inside the object finally 
“breaks” because of the glitch effects. These glitch effects can be eliminated by the 
re-initialization process that is to be introduced in the next section. 
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Figure 4-5  The propagation of the 1-D level set function. The solid blue line is the level 
set function and the green line is the value of the velocity function.  

 
 
 
 

-5 5 

3 -6

10 

9
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4.1.3. Re-initialization 

In order to eliminate the glitch effects and increase the robustness, frequent 
re-initializations should be applied. Re-initialization creates a new signed distance 
function according to the sign property of the level set function. This procedure 
eliminates the glitch effects and makes the contour propagation more stable.  

The computation of a signed distance function is very expensive. If the time step 
is small, re-initialization is not necessary before the glitch effect “breaks” the negative 
region of the level set function. However, the penalty is that more iterations are 
required to propagate the level set function to the solution of the partial differential 
equation.  

The re-initialization problem can be defined by another differential equation:  

⎩
⎨
⎧

<−=∇−
>=∇+

0,1
0,1

ϕϕϕ
ϕϕϕ

if
if

t

t .               (Eq. 4-7) 

The solution of this PDE is constrained by the preset initial region R in the 2-D 
image space. The region inside the object is set to be an arbitrary negative value 
while the region outside the object is set to be an arbitrary positive value.  

(Eq. 4-7) means that if ϕ∇  is greater than 1 when 0>ϕ , we decrease the 
level function by )1( −∇ϕ . If ϕ∇  is greater than 1 when 0<ϕ , we increase the 
level function by )1( −∇ϕ . When the level function doesn’t change with respect to 
time, that is, 0=tϕ , then 1=∇ϕ  and a signed distance level function is obtained.  

(Eq. 4-7) can be integrated into one equation with a similar form like (Eq. 4-1) 
for implementation:  

0)1()( =−∇+ ϕϕϕ St ,               (Eq. 4-8) 

where )(ϕS  is a sign function defined as  
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Because the difference of the level set function between each time step is not 
very large, the re-initialization scheme in (Eq. 4-8) can efficiently approximate a 
signed distance function for the next time step. The demonstration of (Eq. 4-8) is 
shown in Figure 4-6. The green line is the preset level set function and the blue line 
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shows the propagation of the level set function according to the re-initialization 
procedure.  

 

Figure 4-6  Re-initialization demonstration of (Eq. 4-8). The green line is the preset level 
function and the blue line shows the variation of the level function according to 
the re-initialization procedure. The time step is set to be 0.5.  
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 Now the re-initialization procedure is applied to the propagation of the level 
function with the same velocity force shown in Figure 4-5. The result is in Figure 4-7. 
Note that the glitches in Figure 4-5 are eliminated and the object region with negative 
values is not broken.  

Figure 4-7  The propagation of the level set function with velocity F in Figure 4-5 and adopt 
the re-initialization at the end of each time step. The glitches in Figure 4-5 are 
eliminated.  

-5 5 10 

3 -6 9 



61 

 
 The above level set function propagation and re-initialization scheme can be 
extended to a two-dimensional version for image processing. The term +∇ and −∇  
which approximate ϕ∇  in (Eq. 4-5) and (Eq. 4-6) are modified as  

2/12222 ])0,min()0,max()0,min()0,max([ ϕϕϕϕ y
ji

y
ji

x
ji

x
ji DDDD +−+−+ +++=∇  

(Eq. 4-9) 
and 
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x
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(Eq. 4-10) 
where 
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Then, (Eq. 4-4) can be generalized into the 2-D space. Figure 4-8 demonstrates the 
re-initialization scheme in 2-D space. The level set function is initially set to be -1 
inside the objects and 1 outside the objects. The level set function is updated by using 
(Eq. 4-8). The time step is set to be 0.5. The iteration stops when the maximum 
absolute difference of the level function between two iterations is less than ten times 
smaller than the preset time step.  
 
 Here is a short summary. In order to solve the partial differential equation (Eq. 
4-1), the essentially non-oscillatory (ENO) polynomial interpolation is used. The 
spatial gradient of the level set function ϕ∇  is approximated by (Eq. 4-9) and (Eq. 
4-10). When the level function propagates, glitches are produced because of the 
discontinuity of the level function ϕ  and the velocity function F. The 
re-initialization procedure is applied at the end of each time step. The re-initialization 
can be viewed as solving another PDE as (Eq. 4-8). Because the level set surfaces 
before and after the evolution of (Eq. 4-1) in one time step are very close, using (Eq. 
4-8) to re-initialize the surface is more efficient than to create a new signed distance 
function again.  
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Figure 4-8  The re-initialization in two dimension space. The level function is initially set to 
be -1 inside the objects and 1 outside the objects. 
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4.2  Build Background 

 In real surveillance system, the background image must be modeled. Even if the 
camera is static, the first acquired image can’t be used as the background because it 
may contain moving objects. The background is obtained by analyzing successive 
images after a period of time. This is called background modeling.  

 Ahmed Elgammal et al [18] proposed a way to model the foreground and 
background by using nonparametric kernel density functions. Although the Gaussian 
form of the density function can be implemented by a lookup table, the modeling 
method in [18] needs many sample frames to make the model more reliable. The 
storage and the computational time increase simultaneously. In this thesis, a simpler 
background modeling procedure will be introduced in this section.  
 

4.2.1. Motion Detection without Background 

 The motion part in sequences can be extracted more easily by inter-frame 
difference. Boundaries of the moving objects are identified by setting a threshold on 
the absolute difference result.  

 Manipulating the image data pixel by pixel is very sensitive to noise. Hence, the 
inter-frame difference image is divided into many blocks and the sum of the absolute 
difference (SAD) within each block is used to identify the variation property. If the 
SAD of the block is above a predefined threshold, the block is classified as a motion 
block; otherwise, the block may be located on the background or the interior region of 
a moving object.  

 Experiments of different threshold value are shown in Figure 4-9. The value d 
represents the average difference per pixel in the block. If the SAD of the block is 
beyond 2)( sizeblockd × , the block is marked as a motion block. The “black” pixels 
in Figure 4-9 indicate the motion blocks. The block size is 88× . When d = 0, every 
block in the image is detected as motion block. As the d value increases, the number 
of detected blocks decreases. From the experiment result, d = 5 is chosen empirically. 
In this example with the 8x8 block size, a block is classified as a motion block if the 
sum of absolute difference 320)8(5 2 =×>SAD .  
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d = 0 d = 2 d = 3 d = 5 

 
d = 7 d = 11 d = 15 d = 19 

Figure 4-9  Motion Detection by thresholding the inter-frame difference image. The 
black pixels represents the motion block with the measurement d.  

 

 The size of block affects the storage requirement of the detection result. A 
smaller block size produces more blocks and the required storage increases. A smaller 
block is also more sensitive to noise. However, a smaller block size provides a better 
precision for the positioning of moving objects.  
 
 In the case d = 5 in Figure 4-9, only the boundary of the moving object is 
detected. A more solid result is expected; otherwise, the center of the moving object 
may become the background region. The property of the level surface evolution in the 
level set theory may help classifying these cracked points. The level surface is 
updated by the following equation:  

( )( ) ϕ
ϕ

∇−×=
∂

∂
ji

ji SADdu
t

2block)(motion , (Eq. 4-11) 

where )(xu  is the unit step function and  

( ) ( )∑∑
= =

− +−+−−+−+−=
N

p

N

q
ttji qNjpNiIqNjpNiISAD

1 1
1 )1(,)1()1(,)1( . 

 (Eq. 4-12) 

Here, N is the block size. The level surfaces moves upward if the SAD is less than 
2block)(motion ×d .  

 Dilation and erosion are used to link the boundary of the moving objects. In 
Figure 4-10 (b) and Figure 4-10 (c), 3x3 and 5x5 structuring elements are applied, 
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respectively. The result with the 3x3 structuring element still contains discontinuity on 
the boundary of the moving object. The result of the 5x5 structuring element is better. 
Figure 4-10 (d) is the result which applies (Eq. 4-11). The contour propagation is 
shown in Figure 4-11.  
 
 

(a) Delete the isolated points (b) Closing with 3x3 structure element 

(c) Closing with 5x5 structure element (d) Use (Eq. 4-11) 

Figure 4-10  Make a solid detection result. (a) The blue blocks show the original SAD 
detection result. (b) Morphological closing with a 3x3 structuring 
element. (c) Morphological closing with a 5x5 structuring element. (d) 
Fill the hole inside the moving object via (Eq. 4-11)  
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Iteration 1 Iteration 4 Iteration 7 Iteration 10 

 
Iteration 13 Iteration 16 Iteration 19 Iteration 22 

Figure 4-11  Contour propagation using (Eq. 4-11). 
 
 

4.2.2. Background Modeling 

 If the motion regions are extracted, the background can be built by accumulating 
the static image data. In the Video Surveillance and Monitoring (VSAM) project [19] 
at Carnegie Mellon University, a layered detection method is proposed. Every pixel in 
the image has three states: transient, static, and background. Pixels with high 
inter-frame difference value are defined as transient pixels. Otherwise, their states are 
defined to be static. Static pixels become background pixels if they keep their “static” 
state for a long enough time. The relationship between these three states is defined 
graphically. Moreover, the motion regions detected at different times are store in 
different layered maps so this method may deal with the occlusion problem.  

 If the initial background information is not available, the information has to be 
extracted from the sequences which contain moving objects. A preset background 
model is not adequate in a practical surveillance system because the background may 
change over time. Two types of blocks are defined using the graph concept in [19]. 
One is the “background” block, while the other is the “motion” block. The “static” 
block is not necessary here because the static region inside the moving objects is 
included in the motion region based on the method mentioned in Section 4.2.1. If a 
block is defined as a non-motion block in successive n frames, the averaged RGB 
values are defined as background. If the block remains static less than n frames, then 
we reset the counter and clear the accumulated value in the buffer.  

 The test sequences are shown in Figure 4-12. The accumulation map is shown in 
Figure 4-13. The intensity denotes the accumulated number from 0 to n. The motion 
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region in the map is black because the accumulation number is reset to zero. When the 
person leaves its original position, the static background information occupied by the 
person is accumulated. Eventually the values of the entire accumulation map are n and 
the background modeling is completed. In this case, n is set to be 30. The background 
is built after 90 frames or about 3 seconds. The background modeling time strongly 
depends on the displacement of the moving object. If the object keeps moving in the 
same position, the background can’t be built until the object leaves the position.  

 

  

 Frame 1 Frame 10 Frame 20 Frame 30 Frame 40 

  

Frame 50 Frame 60 Frame 70 Frame 80 Frame 90 

Figure 4-12  Test sequences for background modeling.  
 
 

  

 Frame 1 Frame 10 Frame 20 Frame 30 Frame 40 

  

Frame 50 Frame 60 Frame 70 Frame 80 Frame 90 

Figure 4-13  Background modeling process with n = 30. The white regions are the 
background region.  

 
 When n increases, the required number of frames increases. Figure 4-14 (a) and 
(b) show the results of n = 30 and n = 60, respectively. The discontinuous regions in 
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the pink ellipses are due to the different intensity values from different frames. The 
discontinuous defects can be tolerated because the subtraction data will be classified 
by the “active contours without edges” model. A larger n costs extra consuming time 
and does not necessarily produce a better result.  
 

(a) n = 30 needs 91 frames (3.03 seconds) (b) n = 60 needs 580 frames (19.33 seconds) 

Figure 4-14  Background modeling using different n’s. (a) n = 30, (b) n = 60. The 
discontinuous regions in the pink ellipses are due to the different intensity 
values from different frames.  

 

4.3  Experimental Results 
 
 A simplified version of Figure 1-1 is shown in Figure 4-15. Every camera system 
contains “background modeling”, “background subtraction” and “region tracking” 
processes. Figure 4-16 shows the flow chart about how to control these three 
processes.  
 
 The camera is kept static at the beginning. Both background and moving objects 
may appear in the camera. The background information must be accumulated for a 
period of time. Once the background is built, the background subtraction method can 
be used. The motion region is detected for several frames to ensure reliability of the 
background information. If the area of the motion region is not stable, then the 
background must be remodeled again. The system enters the “region tracking” state 
when the motion region is defined. The area of the tracked region may unreasonably 
shirk or expand because of the imperfection of the region tracking process. If the area 
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changes more than 50% of the original region, the systems restarts the background 
modeling again.  
 

 
 

Figure 4-15  A simplified version of Figure 1-1. Every camera contains “background 
modeling”, “background subtraction” and “region tracking” processes.  
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Environment Modeling 
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Tracking 

……

Fuse Information from multiple cameras 
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Figure 4-16  Flow chart of a single camera’s system. This figure shows the details 
about how to control the process of every camera in Figure 4-15.  
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Figure 4-17 is the simulation result of Figure 4-16. The images with green grids 

and blue masks are in the background modeling state. When the background is 
modeled in all blocks, a background subtraction result like Frame 80 is obtained. 
Then the frames with a green rectangle represent the region tracking results. The 
camera changes its pan and tilt angles to locate the moving object in the center of the 
image. If the area of the tracked region varies too much, as shown in Frame 96 or 
Frame 265, the system restarts the background modeling process.  

In Frame 370, two motion regions are detected. This is because the person had 
stayed in front of the white board for a long enough time. Some part of the person is 
modeled as background. The system only tracks the bigger region.  

From Frame 640 to Frame 680, the person stands at the same position for a long 
time. The person is modeled as a part of the background. No motion region is detected 
and the camera remains static. The new motion region is defined when the person 
turns around. The system tracks the new motion region and locates it in the center of 
the image.  

These 480×320 images are actually extracted from a sequence of 640×480 
images, which are acquired by a static camera, to simulate the images acquired by a 
moving camera. The system is simulated by using MATLAB on a Pentium IV 3.0 
GHz computer. The required computational time is plotted in Figure 4-18.  
 
 

 
Frame 0 Frame 20 Frame 40 Frame 60 

 
Frame 80 Frame 84 Frame 88 Frame 92 

 
Frame 96 Frame 100 Frame 120 Frame 140 
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Frame 160 Frame 180 Frame 200 Frame 220 

 
Frame 230 Frame 235 Frame 240 Frame 245 

 
Frame 250 Frame 255 Frame 260 Frame 265 

 
Frame 270 Frame 290 Frame 310 Frame 330 

 
Frame 350 Frame 370 Frame 375 Frame 380 

 
Frame 385 Frame 390 Frame 395 Frame 398 

 
Frame 400 Frame 420 Frame 440 Frame 460 
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Frame 480 Frame 500 Frame 520 Frame 540 

 
Frame 545 Frame 553 Frame 561 Frame 570 

 
Frame 578 Frame 586 Frame 594 Frame 602 

 
Frame 610 Frame 618 Frame 620 Frame 640 

 
Frame 665 Frame 670 Frame 680 Frame 690 

 
Frame 700 Frame 710 Frame 720 Frame 730 

 
Frame 740 Frame 750 Frame 760 Frame 770 
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Frame 780 Frame 800 Frame 820 Frame 840 

 
Frame 860 Frame 870 Frame 880 Frame 889 

Figure 4-17  The simulation result of Figure 4-16. The images with green grid and 
blue mask are in the background modeling status. When the 
background is modeled in all blocks, a background subtraction result 
is obtained. The frames with a green rectangle represent the tracking 
results.  

 
 

 

Figure 4-18  The consuming time of processing the sequence in Figure 4-17. The 
frames with small time consuming are in the status of background 
modeling or background subtraction. The frames with a relatively 
large time consuming are in the status of region tracking.  
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Chapter 5. Conclusions 
In this thesis, different active contour models are applied to dealing with the 

motion detection and region tracking problems. The information of the moving 
objects is obtained and classified based on the “active contour without edges” model. 
Some previous works about contour modeling is introduced in Chapter 2. In this 
thesis, contour models are all implemented based on the level set theory.  
 
 When the background is static, the motion region can be obtained by subtracting 
the background. The absolute difference data can be classified by the “active contour 
without edges” model. In order to locate the moving objects in the center of the image, 
the camera must change its pan and tilt angles. As the camera moves, the background 
subtraction can no longer be used. In this thesis, we adopt the region tracking model 
to identify moving objects.  
 
 The region tracking model is used to find in the current image the region which 
is similar to the region defined in the previous frame. The original region tracking 
model has some problems when the color of the moving object is very similar to that 
of the surrounding clutter. According to the level surface constructed from the 
previous frame, a reliability weight is introduced to suppress erroneous estimations. 
This is because it is reasonable to assume that the unknown level surface in the new 
frame should be very similar to that in the previous frame.  
 

The statistical property is also taken into consideration in this thesis. A method 
that can estimate the prior probability is proposed for the maximum a posteriori (MAP) 
estimation. The probability model can strengthen the information of the inside region 
and eliminate the regions which should be outside.  
 
 A background modeling method is proposed and the static region is accumulated. 
The motion region is extracted by collecting the inter-frame difference results. A 
simple model is proposed to update the level surface.  
 

A surveillance system is built based on background modeling, motion detection, 
and region tracking. The system restarts the background modeling if the background 
model is not perfect or if the area of the tracked region varies too dramatically. 
Because the region tracking process does not need the background information, the 
camera can be moved to always locate the moving objects in the center of the image.  
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 In order to reduce the computational cost, a low-resolution level surface is used 
in this thesis. That is, the input image data is smoothed and down sampled before 
being processed. This results in problems in thin regions, such as the neck and limbs 
of a person. This is because the magnitude of the level surface in these thin regions is 
too small. To deal with this problem, the input image can be interpolated to increase 
the areas of thin regions. Then, we may use an associated high-resolution level 
surface to accomplish the region tracking task. The evolution will become more stable 
if the maximum magnitude of the level surface becomes larger inside the objects.  
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