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Student : Meng-Hsiu Tsai Advisor : Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

An intelligent video surveillance system.usually performs the tasks of
background modeling, motion detection, and tracking. In this thesis, a
level set function is used to record-the moving objects for these three
operations. The background model'“is first constructed before the
background subtraction is performed for the motion detection. Then, a
mobile camera keeps tracking the moving objects with a region tracking
model. The original region tracking model is modified to alleviate the
interference of cluttered environment. The relation between two level
surfaces of successive two frames is taken into consideration. The
probability model built from the statistic property of an image is also
included. Finally, an integrated surveillance system is proposed. Different
units in the surveillance system may choose appropriate contour models

to solve their problems.
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Chapter 1. Introduction

The applications of visual surveillance systems are getting more and more
popular. Image capture devices become more available today. Moreover, powerful
computers make complex digital image process more realizable. To make the image
acquisition process more valuable, visual surveillance systems become smarter than
before. Here, the analysis of moving objects could be the first important step. Some
associated topics will be introduced and a brief introduction of this thesis will be

given at the end of this chapter.

The visual surveillance system proposed in [20] is shown as Figure 1-1. A
complete surveillance system may contain multiple cameras. These cameras cooperate
with each other and the acquired information is fused. The tasks after the video
acquisition step can be divided into two parts..One is motion detection and the other

one is motion tracking.

In Figure 1-1, the detection part contains “efivironment modeling”, “motion
segmentation”, and “object classification”=TThe environment or the background
should be modeled before the moving objects can be recognized. Ahmed Elgammal et
al [18] proposed a way to model the foreground and background by using
nonparametric kernel density functions. In [19], a graph method like a finite state
machine records the status of each pixel. The motion region is stored in a layer map.
In [21], salient motion is detected without background information. This approach can
resolve problems caused by Iluminance variation and slight movement of the

background. (ex. wavering trees in an outdoor scene).



1 Eavironment modeling 1 Euvironment modeling
! !
1 roiion segmentation 1 Moiion segmentation
! !
T Object classification ] Object classification
v v
—— I'racking 4 Tracking
+ Behavior understanding Personal + Behavior understanding Personal
and description identification and description identification
| |
< <
g Fusion of I|1fu|'nu=|tin:31:'mn multiple cameras

Figure1-1 General framework of a visual surveillance system [20].

Regarding tracking, there exist many different methods for the tracking of
objects in image sequences. Mean-shift [17] is a robust method to track an ellipse or
rectangle region. Even though the size of the tracking window may change adaptively,
this method doesn’t extract the boundary of moving objects. On the other hand, the
snake model [1] proposed by Kass builds an energy function to control contour
propagation. The contour finally locates at the boundary of an object to reach a local
minimum of the energy function. Micheal Isard and Andrew Blake use B-spline
curves to parameterize the contour for their CONDENSATION algorithm [22]. To
further improve the performance of the snake model, Nikos Paragios et al [23] use the
Geodesic Active Contours model to detect and track moving objects. The contours are
described by a level surface. The level-set theory constructs the relation between the
contours and the level surface. This level surface is very useful in the recording of
multiple objects. In [25], the residuals of several frames after motion compensation

are collected by a 3-dimensional level set function. This is a method to accomplish the



contour tracking for sequences acquired by a mobile camera.

Level set theory is a very powerful tool to handle contours. Once the contour
propagation model is defined, it can be implemented by a level surface. The snake
model [1] can be transformed into a geodesic active contour model based on [2]. The
optimal contour propagation can be found by using the steepest descent method. Then,
an associate level surface is obtained. The active region model proposed in [7][24]
takes the statistical property into account. The “active contours without edges” model
[5] 1s even more robust in the classification of the image data into two regions in the
statistical sense. This model can be used to decompose the background subtraction
result into motion region and static region. On the other hand, the region tracking
model [8] tracks the most similar regions in two successive frames. This model is
very useful for sequences acquired by a mobile camera [9][10]. In Section 3.2, a
further improved model will be proposed. The maximum likelihood (ML) and

maximum a posteriori (MAP) estimations are then discussed in Section 3.3.

There are many issues about gmplémenting the level set theory. Distance
transform is a main topic. The “two-pass,algerithm” offers a way to approximate a
distance transform. On the other hand, partial differential equations may cause
problems since all computations are done in the discrete domain. The essentially
non-oscillatory (ENO) polynomial interpolation [ L1][12][13] has to be used to avoid
errors. The re-initialization is also-introduced *in [12][13] to make the contour
propagation more stable. A larger value of time step can be used with re-initialization
to speed up the evolution. On the other hand, Roman Goldenberg et al [26] proposed
a fast geodesic active contour model. The computation of divergence is decomposed
based on the additive operator splitting (AOS) scheme. In [27], the computation of
PDE is completely unnecessary. The level surface is replaced by 4 values to represent
the inside and outside regions and the contours. The contours are evaluated by the
“check in” and “check out” subroutines. In [28], Yonggang Shi et al applied their fast

level set method to the tracking problem.

Some basic backgrounds about the contours and level set theory are introduced
in Chapter 2. Chapter 3 introduces new contour models to deal with motion detection
and region tracking problems. Chapter 4 discusses some implementation issues. A
simple method 1s proposed to build the background. Finally an integrated system with
background modeling, motion detection, and region tracking is proposed. The

conclusions and the future work are made in Chapter 5.






Chapter 2. Active Contours

The basic concept of active contour can be found in Kass’s paper in [1]. An
active contour is named as ‘“snake” at the first time. The shape and the propagation of
a contour are controlled by the internal and the external forces. The curvature of the
contour determines the internal force, while the image characteristics on the contour
define the external force. The contour stops propagating when the sum of the internal

force and the external force reaches a local minimal.

However, Kass’s method has some limitations. The main drawback is that a good
initialization is required. Another drawback is that multiple contours require multiple
initializations. In comparison, based on the level surface, multiple contours can be
described at the same time. The level set theory relates the contour propagation model
with the update of the level surface. Finally the adoption of the ‘“active region”

concept makes the contour model moreirobust:

2.1 Snake Model

The snake model was first
proposed by Kass in 1988 [1]. As
shown in Figure 2-1, the red curve

is initialized in the left image. The

contour propagates toward the

object’s boundary to minimize the
energy function. When the contour Figure2-1 Snake Model.

touches the boundary, as shown in

the right image, it corresponds to

the minimal energy. In general, the energy function contains internal energy, image

energy, and additional constraints.

1 1 1
E(C)(p)] = a ]0 Esnt(C®)dp + B /D Eimg(C0))dp + 7 [D Feon(C(p))dp

(Eq. 2-1)



Here, E

or the inverse of curvature, of the contour. If the curvature of the contour is large, the

(C(p)) denotes the internal energy. This term depends on the smoothness,

int

contour contains higher energy. Otherwise, the internal energy is low.

Eing (C(P)) denotes the image energy. This term is affected by the property of the
image data on the contour. Intensity values, colors, or edges are usually used to define
the image energy term. For example: a pixel with a higher gradient value contains

lower energy.

E.n (C(P)) denotes the constrained energy. The additional constraint can be used to

make the results more desirable.

This snake model needs to be supervised by user and the determination of the
parameters o [ y are case by case. Because the solution is a local minimum, the
initial curve must be preset near the boundary. Besides, every contour needs its own
energy function. Multiple contours need their corresponding individual energy
functions. Because the number of objects in the image is usually initially unknown,

this contour model is inadequate for the object contour tracking problem.

To overcome these drawbacks, the snake. model can be transformed into a
“geodesic active contour” model, This model combines the internal energy and the
image energy in one product term for every -contour. Then, multiple contours can be

described in a single energy function.

2.2 Geodesic Active Contour

In the geodesic active contour model, the classical snake model is rewritten as
~ L= 2 an 2 ! ~
EC)=a [ [C'(@)| da+A[ [C'@| da-2[ [VI(C(a))|dg (Eq. 2-2)

where C(q): [0,1] — R’ represents a parameterized planar curve, and
1(x): [0, a]x [O,b] — R" denotes the image data at the position X. The first two terms
are the internal energy terms. The integration of ‘C'(q)‘ is the length of the contour.
The integration of ‘C ”(q)‘ represents the bending property of the curve. Minimizing
this energy function means that the length and the curvature of the contour must be as

small as possible. In other words, the curve tends to become a small circle if there is



no other force.

The negative term is used to make the image energy near the boundary small.
When the contour touches the object’s boundary, the integral of ‘VI(C(q))‘ is very

large. Then the total value of the energy function reaches its minimum.

The snake propagation can be split into two steps. When the contour does not
reach the boundary of the object, the energy is minimized by shortening the contour
and making the contour smoother. The energy decreases rapidly when the contour

touches the boundary with high gradient values.

Defining a decreasing function g(X):[0,4+00]—> R" such that g(x)—>0 as

X — o, (Eq. 2-1) becomes a general energy function by taking £ =0:
1 = 2 1 — )
EC)=a [ [C'(@)| da+ ] g([vI(C@))’ dg (Eq. 2-3)

The above energy minimization problem is equivalent to finding a geodesic curve
in the Riemannian space. The details are baséd on the Riemannian geometry. The
derivation in [2] uses the Maupertuis’ Principle [ 3] to prove that minimizing (Eq. 2-3)

is equivalent to minimizing
1 2 =
L, = [, a(vHCanh i€ @) da (Eq. 2-4)

Readers can find another proof in [4]. (Eq. 2-4) is called the geodesic active
contour model. It can be viewed as calculating the length of C(q) weighted by
g(‘VI (C (q))‘). When the contour passes by the boundary of the object, the value of
g(‘VI(C(q))‘) is small and the energy is minimized. The addition of ‘C'(q)‘ and
g(VI(C(@))) in (Eq. 2-3) is transformed into the multiplication in (Eq. 2-4). This
model can define multiple contours in one energy function because the property of

each contour is described in one product term.

Now the propagation of the contour can be derived from (Eq. 2-4) by the
Euler-Lagrange approach. Assume the contour C(t,q)=[x(t,q) y(t,q)] is
controlled by the parameter Qe [0,1] and the time t. In order to find the variation of

Lr with respect to time t, the derivative of Lg in (Eq. 2-4) is computed as:

SLCw) - SoCam|C,emlda + [ 9Cta) LIC,ta|d

(Eq. 2-5)



In the first term of (Eq. 2-5), we have

d = d T
G 9CEa) = o((xt.a) y&.aI)

_ 99(C(t.q) dx  ag(C(t,q)) dy
OX dt oy dt

=(va(C(t.0).C,(t.0)).
(Eq. 2-6)

where <é,b> is the inner product of vectors a and b .

Then, the first term of (Eq. 2-5) becomes

[ dtg(C(t )[C,t.0)|da=[ (VoCt.a).C t.a)[C,t.alda. (Eq.2-7)

Now consider the second term of (Eq. 2-5).

Since ‘Cq (t,q)‘2 = <Cq (t,q),(fq (t,q)> and %<U,U> = 2<U,Ut> , we have

dic a2 d [[Cataf | <Cq<t1 a:C, (t.0))

dt dt| [C e .t

2(C, 4.0, Cat DJETER A, . .C, .0) 5 Gt
C,t.a) |

Thus, %\c‘q (t.0) = (C.ta.Cuttm) _ < C, (L.9)

- ,Cy(1,0) ) =(T(t,0),C, (t,0)),
C, (t.0)|

(Eq. 2-8)

C,(t,q)
C,(t.0)

where T(t,q) = is the unit tangent vector on the contour C(t,q).

Use (Eq. 2-8), the second term in (Eq. 2-5) becomes

[ g(c‘:(t,q»%\c‘:q(t,qﬂ do=] gCt.a)(Tt.a).Ceta))da. (Eq.29)



and set

a=g(Ctq)T(t.q)
du = [;—q g(C(t,q))} T(t,q) dg+g(C(t,q)) T,(t,q) dg

= (Vg(C(t,0)),C,(t.a)) T(t,q) dg + g(C(t, a)) T, (t, ) da.

where (;j—qg(é(t,q))=<Vg(é(t,q)),éq(t,q)> is similar to (Eq. 2-6) and

dv = th (t,g)dg, v= Ct (t,q) . With the above deduction, (Eq. 2-9) becomes

(sCt.ayTea.Ce) -[(Cta.[vecta.c,ca)Te.a+CtaT,t.a) dg

The first term is eliminated because the contour starts and ends at the same point.

Hence, now we have
~ [, (Cut. ) (Va(C(t,9).C, () Tta))dg - | (C.(t,0),9(C(t,0) T, (t.a)) dg
— [ (vg(€(t.q)).C, .Y Cilt. ). Tt} dg -] a(Ct.) (€. t.0). T,t.q)) dg.
(Eq. 2-10)

Combining (Eq. 2-7) and (Eq. 2-10),(Eq. 2-5) becomes

d

SLa(Cb)- [ (Va(©).C)[Cy| - (Va(©).C,)(C.. T)-a(C) (C..T, ) dg

(Eq. 2-11)
Furthermore, the parameter ( is transformed to the arc-length S, which is defined as
s@ = "[Ca(@]dq,or & —c,|
ol d ’ dq al’ (Eq. 2-12)
On the other hand, recall that C =[x y]. From (Eq. 2-12), we have

(Eq. 2-13)

Similarly,

(Eq. 2-14)



Hence, (Eq. 2-11) can be derived as follows
%LR Can=["[[Va(©).C.) - (Va(©).C,)(C..T) - 9(C) (C..T.)] S, | dg

ZIOL<C>< [Vg(é)—<Vg(C),Cs>f— g((—;).fs],ét> ds |

(@]

Since Vg(C)= <Vg((f),f>-f +<Vg(é), N>~ N and Cs=—q =T, we have

%LR G (1) = jOL(C’< (Va©)N)N-g©)T.], C,)ds. (Eq. 2-15)

(@]}

d

In (Eq. 2-15), the variation of the tangent vector on the contour T, has a relation
with the normal vector N in terms of the curvature x . What follows will prove the

relation that T, =x N .

Any tangent vector on the contour has the*x component and y component. If

T= ;[XS y.|", then the tangential angle ¢ is defined as

2 2
VXs Y5

¢ = tan " (ﬁ) .

X

Then, the curvature x is defined as the variation rate of ¢ with respect to the

arc-length s. That is,

K__d_¢_d ta'n_l(ys/xs)_ 1 Yes Xs = X5 ¥ _ Vs Xs = X5 Y
ds ds 1+(y, /%) X; x2+yl o
. . N1 [_ ys Xs ]T
Because the unit normal vectoris N = ——--=—_, we have

[v?2 2
XS+yS

k N _ Xss ys2 — X YsYss yssX52 — X Y Xg .
(st N y52 )3/2 (st N ysz )3/2 (Eq. 2-16)

T

Now, consider the variation of the tangential vector with respect to arc-length s. Here,

we have

10



o x ey (e P xx r 2y,

S

E\/X:_Fysz_ st+y§
y52 Xs X Xgs + Y5 yss) Xss ys2 — XYY
= ( (Xzz )3/2 (st N y52 )3/2 and
L A A LS e AL S AN B R S SRS
ds /—x§+yf ( 52 )3/2 ( Py )3/2 :
Hence, we have
-r _ Xss y32 XY Yss yss s — XY Xss '
s (X2 N y2)3/2 (X ry )3/2 (Eq. 2-17)

From (Eq. 2-16) and (Eq. 2-17), we have T, =x N.

If T, in(Eq.2-15) is replaced by & N we have

S

%LR(C(U) =IOL(C‘)< [<Vg(C),N>N —g(C)k N], Ct> ds

According to the steepest-descent method, the best way to propagate the C with

respect to time t is

C, =(9(€) x~(vg(©).N))N. (Eq. 2-18)

2.3 Level Set Theory

The Geodesic Active Contour model in the previous section describes how the
contour propagates along its normal vector. The propagation speed is proportional to a
scalar function, which is dominated by <Vg(C), N> and the curvature x. This
model can be transformed into an associated level set function. Multiple contours can

then be split or merged by updating the level surface.

11



An example of level surface is shown in Figure 2-2. The right image is the level
surface corresponding to the left image. The function of the level surface is called a
level set function. The sign of the level set function is negative inside the object,
while positive outside the object. The level curve with zero value corresponds to the
boundaries in the left image. The magnitude of the level set function depends on the
nearest distance from the contour. The positions near the contour have smaller
magnitudes, while those far away from the contour have larger magnitudes. The
contour propagation problem is then transformed into the updating of the level set
function. All properties, like the normal vector and curvature, can be directly

computed from the level set function.

Level Surface and Contours

Figure2-2 Level Surface and Contours

Consider a contour C(t) =[x(t) y(t)]". A level set function which depends on the
contour C(t) and the time't is
@ (C(t),1): {R*x[0,T)} > R.

The position of the contour is the zero level set of the level set function. Hence,

@ (C(t),t)=0 and thus a—¢dx+a—¢dy+a—¢dt=0.
0X oy ot

This equation can be rewritten as
v\, 00
ot/ ot
oC

If E: F(x) N, where F(x) is a speed function of the curvature x, the above

equation becomes

12




9 Vo, Fx)N) (Eq. 2-19)

Recall (Eq. 2-18), F(x)=g(C) K—<Vg(é), N> .

Because the contour is the level curve of ¢ (C(t),t) where ¢ (C(t),t)=0, the
relative change of ¢ (C(t),t) along the contour C is zero. If we differentiate

@ (C(t),t) with respect to the arc-length s, we have

0.=0 and ¢, =X, +¢,¥,=(Ve.C,)=0.

This means that the vector V¢ is orthogonal to the tangential vector Cs . Hence, the

normal vector N can be defined as N = —m. Applying it to the (Eq. 2-19), we
Vol
have
A S0 S Eumpnty o K ?|- g.
0P _ |5 i (1) 2LV F i) [v (Eq. 2-20)
ot |V(p|

This equation builds the relation’ between curve-propagation and the level set function.

The following derivation will show that the curvature x can be estimated from
the level set function ¢@ (C(t),t). Considering the second derivative of ¢ (C(t),t)
with respect to s, we have
o9,

0’ 0
85(/2) =£(¢’st +¢yys): os

o,
Xs + @, X +Eys +¢yyss

= (wxx Xs + (/)xy ys ) Xs + (¢yxxs + ¢yy ys ) ys + Dy Xss + ¢y yss

= 0 Xe 20, XY, O Yo + P X + 0, Y =0. (Eq. 2-21)

On the other hand, we have the fact that

N= [_ys Xs] =_v¢= — @ Py
Vv Vel | Joirep ol +e
2 2
Assume r:&.Then we have
X+,

13



o, =rYys, ¢y:_rxs'

Recall that the curvature x is expressed as

_ Yes Xs — X ¥s
2 2 :
Xs +Ys

From the above two equations, we have

1
K(st + ysz): (yssxs - Xssys): _?(¢yyss +¢xxss)'
Hence, ¢,X,+¢,Ys=—k r(xs2 + ysz)

Using the above equation, (Eq. 2-21) becomes:

_ P T200 XY 0 Y0 0Py — 20,00, + Py,
ric +y:) rlos +o;) |

\/ + ¢
Because /X. +Y. =1, we have<T = A .+ o,

2 . 2 + 2
_ PPy TPy PxPy TPy Px d'V(|V—(pJ , (Eq. 2-22)

((/Jf " ¢)5 )3/2

where div(A) denotes the divergence of the vector A .

Now, the updating equation of the level set function in (Eq. 2-20) becomes

op
¥ <v F()| ¢|> F(x)|[Vo|

- (g(C)K—Wg(C), N>)|v¢| = [ g(C)K+<Vg(C) (p|>} Vol (Eq. 2-23)

and the curvature x is estimated by (Eq. 2-22).

14



2.4 Active Region Model

The geodesic active contour model introduced in the previous section produces
proper contour information along the object boundary as shown in Figure 2-3. The
initial curve must be totally outside the object; otherwise, an undesired result may be

produced as shown in Figure 2-4.

-

B

Initialization

5 iterations

Initialization

17 iterations

20 iterations

23 iterations

27 iterations

32 iterations

Figure2-4 Geodesic Active Contour with bad initialization.
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The original energy equation (Eq. 2-2) only considers the properties along the
contours. Minimization of this energy function makes contours move toward the
boundary of the object. When the initial contour crosses the boundaries of objects,
like the situation in Figure 2-4, the contours move toward the boundaries but the
region information is lost. A more robust model is introduced in this section which

takes the region information into account.

Consider a posteriori segmentation density function p,(P(R)|1), where P(R)
is the partition status of region R and | is the input image. The density function is

decomposed into

p(1[P(R))

p(P(R)) (Eq. 2-24)
p(l)

P, (P(RY[1) =

based on the Bayes’ Rule.

p(P(R)) is assumed to be equally possible so p(P(R))=1/Z, where Z is the
number of partition regions. p(l) is constant and is ignored. The above equation

becomes:
p, (P(R)[1) = p@ {P(RMN.= p(l | {R,.Rs ).

where Ra is the interior region  (with thelevel function value ¢ <0) and Rg is the

exterior region (with the level function value '@ > 0):

Assume the intensity distributions‘in'Raand Rg are independent . Then,
p,(P(R)[1)=p([I IR, ][R ])= p(11R,)P(IRy).

Again, assume that intensity values of the pixels within each region also are
independent of each other. Then, the maximum a posteriori problem is equivalent to

maximizing the following equation:

P (PR =TT paCt(s) [T Ps(1(s).

seRp seRg

The energy function of the region part is modeled by using the [-log( )] function
of the above probability density function. That is,

E(P(R) =~ log[p(1(x, )] dxdy - [[ Tog[ps (1(x,y)] dxdy . (Eq. 2-25)

In order to apply the Euler-Lagrange equation to the minimization of (Eq. 2-25),
the double integration must be transformed to the form of contour line integration

similar to (Eq. 2-4). The transformation in [6] applies Stoke’s Theorem, which is

16



expressed as

ﬂ VXA-d§=§C A-dl, (Eq. 2-26)

b
o
7]

imall C

where (VxA)-Ai= limT is the curl of A.

S—0

The concept of the Stoke’s Theorem is
illustrated in Figure 2-5. The curl of A is
the integration of A-dS in the small
surface region of the small contours on the
surface S. The integration of Vx A on the
open surface S 1is equivalent to the

integration of A along the contour C. The

integrations of A on the small contours Figure2-5 Stoke’s Theorem
are cancelled with each other on the surface
S.

If the vector field A= (P(x,¥),Q0xy)), then

P

VA | SAREE 45 0Q 0P
oX .0y 01 ox 0y
P "Q 10

According to (Eq. 2-26),

I Gr-oaxay=f, [P Q]mﬂ; (POx.Y)X, +Q(x. )Y, ) ds

If properly choosing P and Q , a scalar function f is decomposed as

For example, if we define

Qxy)=> [ flty)dt and Pluy)=— [ f(x)at.

then

E=[[, fley)dxdy=[ (Puy)x +Qy)y.)ds  (Eq. 227)

17



and

(;_E:IL(Z_TXS+P ;t %—?yJQ dt jds =[] (A.C)+(AC,) |ds.
) (2)
(Eq. 2-28)

Because
dx /-~ <\ dy
Crg PGy

if we use the integral by part formula and define U = A, dv=C_ds, da= A, ds,

M = (A,

and V =C,, we have

.[OL(z) ds =<A’Ct>: _I0L<Ct’A5> ds = _J.0L<C"A5> ds

The first term is dropped since the contour starts and ends at the same point. Hence,

(Eq. 2-28) becomes
&1 (a8 dmealle) -(a.c) .

Based on the steepest descent method,

In the x direction,

d oQ oP oP 6Q 0Q 0P
_PX’ - ==Xt Xt s s s | T AL AL s
ds () (8x axyj (8x ayyj (6x 8ny (8x 8y)y

In the y direction,

a [P LRy 1[99, ,9R Q 9Q_9okP 1,
dSQ(X,y) [ayx ayst_(aXXs+ayst (ayxs ayys] (ax ay} s

Recall that f(X, y) (@—Z—P) and because N = [-Y, X,],we have
y

C.,=f(x,y)N. (Eqg. 2-29)

The above derivation is summarized here. In order to minimize the double
integration of the scalar function f(X,y), the energy function is transformed to (Eq.
2-27) by the Stoke’s theorem. Then, (Eq. 2-29) is derived based on the

18



Euler-Lagrange approach. Hence, the minimization of ”R f (X, y) dxdy is simply
equivalent to propagate the curve in the normal direction with the magnitude f (x, y) .

Now the minimization of (Eq. 2-25) can be obtained from (Eq. 2-29). That is,

oc _ ~log(P,(1)) Ny —log(Py (1)) Npg -

Recall that Ra is the interior region (level function value ¢ <0) and Rg is the exterior

region (with the level function value ¢ >0). Because N, =—N.,, we define
N = N., =—N,; . Hence,

C _ oo P _
= log[PA(I)j N . (Eq. 2-30)

Combining the “geodesic active contour” model in (Eq. 2-4) and the “active

region” model in (Eq. 2-25), the energy function is modified as

E [M]=a[ g(vI(C@))|C'(@)fdy+

Geodesic Active Contour

(1-a)| - [[ tog[p, (106 ] dxdy — [[og[ps (1(x, y)] dxdy |, (Eq. 2-31)

Active Region Model
where « is the weighting of the two models and I' denotes the contour which
produces the regions Ra and Rg and is described by the parameter (.

From the result of (Eq. 2-23) and (Eq. 2-30), minimizing E [F] is equivalent to

updating the level surface using the following equation:

%za(g(l(X, )« Vo|+(Va(l(x. y)),V¢>)+(1—a)log(EiE: ;J Vol

(Eq. 2-32)

Figure 2-6 shows the evolution of the above equation with « =0.5. The contour
moves both inward and outward and stops at the boundaries of the objects. When the
objects are located outside the image, as shown in Figure 2-7, the new model can

successfully extract the boundaries of the truncated objects.
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Ideally, the whole motion object may locate within the image. However,
sometimes parts of the objects are truncated by the image frame if the pan and tilt
angles of the active camera is not adequate. In this imperfect situation, the new model

is desirable for the extraction of the boundary.

s <

Initialization

20 iterations 24 iterations 37 iterations

Figure2-6 Convergence of a :

Initialization

22 iterations 28 iterations 32 iterations 36 iterations 40 iterations

Figure 2-7 Convergence of active contours with some objects are partly outside the

image.

Although the new model performs well when the initialization curve does not

completely encompass the objects, the initial curve must still contain enough

20



information of objects. In Figure 2-8, the initial curve is too small and it produces a

bad result. Hence, the initial curve should be as large as possible under the constraint

of computational time.

|

Initialization

4 iterations

8 iterations

12 iterations

16 iterations

Figure2-8 Convergence of active contours when the initial curve is too small.
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Chapter 3. Detection and

Tracking of Moving Objects

At the beginning of this chapter, the “active contours without edges” issue is first
introduced. It is a model which statistically classifies the image data into two regions.
Then the background subtraction result is analyzed based on the “active contours
without edges” model. Under this approach, multiple moving regions can be

successfully detected.

Region tracking is accomplished by estimating the morphing operation between
two successive frames. The inter-frame image data are compensated pixel-wisely to
approximate the morphing procedure.In the: current frame, the pixels with smaller
error difference with respect to the pixel, inside the contours in the previous frame
have a force to push the contour outward. ‘A new region tracking model, which
considers the level surface constructed in the previous frame, is proposed. Finally, the
statistic property is taken into- considérationto cope with the interference of a

cluttered environment.

3.1 Motion Detection with Background

The motion region in the image can be obtained by background subtraction.
Figure 3-1(c) shows the subtraction result of the background in (a) and the Frame 180
in (b). Obviously, the active contour model which needs the edge information will not
work well in the difference image in Figure 3-1(c). For this case, the new “active
contour model without edges” proposed in [5] may be able to properly classify the

image data in Figure 3-1(c) and extract the motion regions in the image.
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(a) Background (b) Frame 180 (c) Background Subtraction

Figure3-1 Background Subtraction. (a) Background Image. (b) Frame 180.

(c) Background subtraction result.

3.1.1. Active Contours without Edges

Define a curve C which d1V1des the image mto two regions. The energy function

is defined as follows: : S

E=F(C)+F, ()= lu(x, y) —c,| “dxdy,

u(x y) c| dxdy I

|n5|de(C) outside(C)
(Eq. 3-1)
J.inside ©) u (X’ y) dXdy J.outside ©) u (X’ y) dXdy
where ¢, = , C, = .
Iinside ©) dXdy Ioutside(C) Xdy

Here, u(X,y) is the image data at (X,y), and C;, C; are the average intensity values
inside and outside the contour C, respectively. The value of F,(C)andF,(C)have
four different combinations which are illustrated in Figure 3-2. In Figure 3-2 (a), the
values outside the contour are unique and thus F,(C) = 0. The image data inside the
contour contains two distinct values and thus F, (C) > 0. The same analysis can be
applied to Figure 3-2 (b). Now the image data outside the contour contains two values
and thus F, (C) > 0. If the contour shown in Figure 3-2 (c) passes across the objects,
both F,(C)andF,(C)are non-zero. When the contours match the boundary of the

objects, F,(C)andF,(C)become zero and the energy function reaches its minimum.
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(@)F(C)>0,F(C)=0 | (b)F (C)=0,F,(C)>0

()F(©)>0,F(C)>0 | (dF(C)=0,F(C)=0

Figure 3-2 F,(C) and F,(C). Four
situations of F (C)andF,(C) with
different contours. When the image
data inside and outside the contours
are not uniform, the values of
F,(C) or F,(C) produce a positive
value. Only when the contours
matches the boundaries of the
objects, both F(C) and F,(C) are
zero and the energy function in (Eq.

3-1) reaches its minimum.

The updating equation of the level set function is to be derived from (Eq. 3-1).

ch,is expressed as

nt, _n.'-i'i 3-1) becomes

E=] [uxy)—c| H(poy) dxdy + [ [u(x y)—c,| (1= H(p(x y))) dxdy

+ [ [VH(p(x, y))| dxdy (Eq. 3-2)

The first two terms are the new “without edges” models and the last term represents

the length of the contours. According to the geodesic contour model mentioned in

Section 2.2, the contour propagates based on the following equation:

€, =(9(€) x~(vg(©),N))N.

In this case, the weighting g(C)=1 and the above equation is simplified to be

C =« N.

(Eq. 3-3)

According to the active region model in Section 2.4, the first two terms in (Eq. 3-2)

contribute the propagation force

Ct :|U(Xa 3/)_(31|2 Nlnside +|U(X’ y)—c2|2 NOUtSide
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=(]u(x,y)—cl|2—|u(x,y)—c2|2)N. (Eq. 3-4)

Combining (Eq. 3-3) and (Eq. 3-4) and applying the level set theory, the updating

equation becomes

d [V
d_(f: lux,y)—c,|” =|u(x, y)—c,|’ +dlv(|v—z|ﬂ|V¢|. (Eq. 3-5)

The result of active contours without edges is shown in Figure 3-3.

. Iteration 10 Iteration 15
M‘ 03.38 , c,=163.51 ¢1=98.21, ¢,=164.00

Iteration 0 Iteration 5 _ .
c=117.73 , ¢c,=154.46 ¢;=109.8 , c;=15

Iteration 20 Iteration 25 Iteration 30 Iteration 32
¢1=92.37 , ¢,=164.00 ¢1=84.56 , ¢c,=164.00 ¢;=80.12, ¢,=164.00 ¢1=80.00 , ¢,=164.00

Figure3-3 Active contours without edges. ¢; and ¢, are the average values inside and

outside the contours, respectively.

Because there are only two values in the image, the above simple case makes the
energy function reach zero. When the image is blurred or added with some noise, the
new model may still work well but the energy function reaches a non-zero minimum.

Some non-trivial examples will be shown as follows.

Figure 3-4 shows the contour propagation in a blurred image. The blurred image

is filtered by a Gaussian smoothing low-pass filter with the standard deviation 5.
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Iteration 0
¢;=121.69 , ¢,=135.69

Iteration 5
¢=116.28 , ¢,=139.67

Iteration 10
c¢=113.24 , ¢c,=141.33

Iteration 15
¢;=110.47 , ¢c,=141.69

Iteration 20
¢=106.22 , c,=141.68

Iteration 25
€1=99.62, ¢,=141.92

Iteration 30
¢1=94.93, ¢,=141.96

Iteration 33
¢1=94.68 , ¢c,=141.93

Figure3-4 Apply the “active conto
image. ¢; and c, are t

respectively.

edges” method to the Gaussian smoothed

‘values inside and outside the contours,

Iteration 0
¢=119.17 , ¢,=152.36

Iteration 5
¢;=109.39, ¢,=160.18

Iteration 10
¢;=102.86 , ¢,=164.27

Iteration 15
¢1=98.30, ¢,=165.11

Iteration 20
¢1=93.14 , ¢,=165.06

Iteration 25
¢1=85.94, ¢c,=164.91

Iteration 30
¢:=80.77 , ¢c,=164.74

Iteration 33
¢1=80.39 , ¢,=164.67

Figure3-5 Apply the “active contours without edges” approach to the image with

Gaussian noise.

27

The standard deviation of the noise is 30.




When this model is applied to a noisy image, some defects may appear as shown
in Figure 3-5. Because the terms inside the integrals in (Eq. 3-1) are not continuous
functions in the image spatial domain, some fragmented contours may be produced by
the noise. The variation of the histogram inside and outside the contour is shown in
Figure 3-6. It shows that the contours propagate toward the minimum of (Eq. 3-1) in
the statistical sense. The blue bar is the histogram of the whole image, the red bar is
the histogram of the inside region, and the green bar is the histogram of the outside
region. The distributions of the inside and outside regions become more concentrated

around the peak of the mean values.

Hestogram of Image Data
120 Histograen of Image Date

300 = " i W | B Intensity
Ietengity Ll .

Iteration 0 Iteration 10

Histogram of Image Data Histagram of kmage Data

Interisty

Iteration 20 Iteration 30

Figure 3-6 Statistical histogram of Figure 3-5. The blue bar is the histogram of the whole
image, the red bar is the histogram of the inside region, and the green bar is the

histogram of the outside region.

To overcome the defects in Figure 3-5, the input image is pre-filtered by a
Gaussian low-pass filter before the contour propagation starts. The result of the
pre-filtered noise image is show in Figure 3-7. The standard deviation of the noise is

now 80, which is much larger than the case in Figure 3-5.
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Iteration 0 Iteration 5 Iteration 10 Iteration 15
¢;=119.96 , ¢c,=143.85 ¢;=113.08, ¢,=149.33 ¢;=109.00, ¢,=151.90 ¢;=105.57 , ¢,=152.18

Iteration 25 Iteration 30 Iteration 33
€1=95.32, ¢,=151.93 ¢1=90.23, ¢,=151.79 ¢1=90.06 , ¢c,=151.75

Iteration 0 Iteration 12 Iteration 24 Iteration 36
¢;=163.91, c,=135.84 ¢;=162.64, ¢c,=134.20 c=162.11 , c,=132.45 ¢=162.15, ¢,=129.49

Iteration 48 Iteration 60 Iteration 72 Iteration 88
¢=161.87 , ¢,=123.99 c=161.45, ¢,=116.87 ¢;=160.28 , ¢,=102.35 ¢;=158.05, ¢,=89.60

Figure 3-8 Apply the “active contours without edges” approach to the image with
improper initialization. The standard deviation of the noise is 20. Note that ¢, is larger

than c,. The region “inside” the contours is actually the background region.
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Recall the active region model in Section 2.4. An undesirable result is produced
if the initialization curve is too small to gather the information of the objects. Figure
3-8 shows the result based on the new model when the initial contour is very small.
The new model successfully classifies the two regions in the image, but now the
background region becomes the “inside” region while the objects are classified as the
“outside” regions. Also note that the required iteration number increases because of

the poor initialization.

3.1.2.Background Subtraction

Return to the case of Figure 3-1. The “active contours without edges” model is to
be applied to the background subtracted image in Figure 3-1 (c). The difference values
in the static regions are very small. Hence, the average value outside the contours
approaches zero. The input images may contain some noise. Hence, a low-pass

filtering process is applied to the difference image first.

The evolution of level set,theory is computationally expensive, and the
computational time is proportional [to jthe size of'the level surface. Because very
precise positions of the objects are not necessary -in real applications, the image
difference image can be processed block=wisely. Assume the block size is N x N, the
sum of absolute difference (SAD).of each block is-obtained by

SAD,; ()= |u ((i=DN+ p,(j=DN +a)-B(i—DN +p,(j-DN +aq),

p=1 q=1
where B denotes the background image.

The “active contours without edges” model classifies the SAD data into two
regions which maps to the motion and static parts of the image. The contour

propagation is shown in Figure 3-9.

A large initial contour produces a large magnitude of the level set function in the
center of the image. If the initial contours are split into small contours, the required
iteration number decreases because the level set function may reach the convergence
magnitudes more easily. Figure 3-10 shows the contour propagation with small
contours initialization. The required iteration number decreases from 74 in Figure 3-9
to 26 in Figure 3-10.
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Figure 3-9 Classify the difference image data of Frame 180 and Frame 1 of the “Hall” test

sequence.
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Figure 3-10 Classify the difference image data of Frame 180 and Frame 1 of the “Hall”

test sequence. The initial contour is replaced by a few small contours.

Figure 3-11 show the result which applies the “active contours without edges”

model to the hall sequences. Frame 1 is used as the background. Figure 3-12 shows

the comparison of the required time of two different initializations. There is no object

in the first few frames. Hence, the level set evolution is not performed if the

maximum SAD is less than a pre-selected threshold value.
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Frame 197

Frame 240

Frame 292

Figure 3-11 Apply the “active conto

ut edges” model to the hall sequences.

Frame 1 is taken as the background. Multiple objects are successfully

identified based on the level set approach.
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Figure 3-12

Comparison of required
time of two different
initializations. The solid
line denotes the required
time based on the large
contour, while the dot
line denotes the required
time based on the set of

small contours.




3.2 Region Tracking

When a camera is not static, both objects and background in the sequences
change frame by frame. The background subtraction technique fails in this case
because the static background is no longer available. Characteristics of the moving

objects must be properly modeled in another way.

3.2.1. Region Tracking without Motion Computation

In [6] the regions are characterized by the probability models based on the
Bayes’ rule and MDL. Regions compete against each other and finally the image data
within the same region will contain similar characteristics. Nikos Paragios and Rachid
Deriche [7] implemented the region competition by using the level-set theory.
Adbol-Reza Mansouri [8] further built another region tracking model via the use of
the morphing concept so that the movement of the specific region can be properly
tracked. Alper Yilmaz et al [9][10] applied the région tracking concept to the video

surveillance sequences acquired’by a.mebile camera.

Assume the image domain 15 €2 _and a preset region Rg in the reference frame
| "', The goal is to find a region R; which is very similar to Ry in the current frame
I " even if both translation and deformation of the object occur. The above statement
1s expressed as

R, = argmax P(R, =R/ 1", " R,). (Eq. 3-6)

This means that the desired region R; corresponds to the maximum value of the
well-defined probability model P. In order to define the probability model P, (Eq. 3-6)

is rewritten as the following equation based on the Bayes’ rule:

R, =argmax P(1" |I"",R,,R, =R) P(R =R[1"",R)).  (Eq.3-7)

The intensity probabilities inside and outside the region R are assumed to be

independent. Then we define

P,(I"(®)|1"",R,), if XeR

PA"(X)[1™,R ,R, =R) = ,
(F®] 0o R =R) {Pom(ln(X)u“-l,Ro), if XxeR®
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where R and R ¢ are the inside and outside regions in the reference frame 1™,
respectively; and X is the spatial position in the image. Assume again that the

intensity values at different pixels are independent. (Eq. 3-7) then becomes

R, = argmax [H R, (1" (%) | I“,Ro)j[H P (1"(%) | I“,Ro)j PR, =R[1""R,).

X<R %<RE

The negative log-likelihood function of P(R, =R|[1",1"",R)) is

E(R,=R[I"I",R))=

—j log P, (1"(X)[1"",R,) dX — j logP,, (1"x)|1"",R,) dX —logP(R, =R|I"",R,)
2 e

(Eq. 3-8)

and (Eq. 3-6) is now transformed to
R, = argmin E(R, =R|1",1"",R,).

This means that the optimal R, ,is obtained by minimizing E(R, =R|I",1"",R,).

In the equation, P, (1"(X){}"* R,) is"the probability of the intensity value
inside the region R with the information of the reference frame 1" and the preset

region Ro. If a morphing function y(1(X)) relates 1" and 1" as

1" (®) = 1" (W (X)) + u(X) (Eq. 3-9)

where £ (X) is the small error value after the morphing procedure. The probability

model can be defined as

(l "(X)-1 “; (V/(X)) ]’ (Eq. 3-10)
20

w(X)eR,

P.(1"()[1",Ry) = sup eXp(
where “sup” means the least upper bound of a set. Similarly,

Pu(1"(X) [ 1", Ry) = sup exp

y(X)eR;

(1"-1"w )
252 : (Eq. 3-11)
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The probability model describes that the maximum probability occurs when the
difference of the intensity values between the current frame and the morphing result
of the reference (previous) frame is minimum. If considering color images, intensity

difference can be replaced by color difference.

Now consider the third term of (Eq. 3-8). It can be defined as

—logP(R, =R [I",R)) =4 f do, (Eqg. 3-12)

R

which describes the shape prior of the contours. The coefficient A denotes the
weight. The length of the contours tends to be as small as possible under the

restriction of the region information defined in (Eq. 3-10) and (Eq. 3-11).

Use (Eq. 3-10), (Eq. 3-11), and (Eq. 3-12) to substitute the terms in (Eq. 3-8), the
likelihood functional becomes

ER, =R[I",I",R,) =

[ int {(' - n;l(V’(X))zJ dx -+ it ((' L0 -1 n;l(V’(X))szx+/1 § do.
2 v(DER, 20 PGS 20 3R
Note that the least upper bound “sup’-isTreplaced by the greatest lower bound “inf”
because of the negative log.

The morphing operator |(w(X)) can be simplified as “matching pixels” around
a search range 0 in the reference frame. The constant o can also be ignored. The

above functional is now simplified as
E(R,=R[I"I",R)) =

: n g oo, 5\ Ao : n g g . )2 A
'F[i<;gfi€R0(l (X) - 1" (x+72)) dx+ch qugé,r%ffeRg(' (X) - 1" (x+72)) dx+/1idp.

Use the Euler-Lagrange derivation mentioned in previous sections, the likelihood

functional is minimized by propagating the contour in the direction:
ot \lf=sx+2R, | z]<5,%+2e RS

oC ( inf  (I"(X)— 1™ (x+2)f = inf (ln(i)—lnl(i+2))2+ﬂK)N,

where x is the curvature of the contour C,and N is the normal vector. Apply the
level set theory described in Section 2.3, the corresponding updating equation of the

35



level surface is

6_‘”:( inf  (I"()-1""(x+2)] - inf (I”(>‘<)—I”‘1(>‘<+7))2+/1KJIV¢|

ot |z|<8,%+2eRy | z|<5.x+ze R §
(Eq. 3-13)

(Eq. 3-13) means that the contour moves outward if the square error inside Ry is
smaller than the square error outside Ro. If the pixel is far away from the boundary,
one term in (Eq. 3-13) doesn’t exist because of the limited search range. The
inexistent term is set to be a very large value. Helpful implementation details can be
found in [8].

Define the minimum square error found inside Ry as Vi,:

Vo= inf (1" -1""(x+2)) (Eq. 3-14)

N 2] <6 5+ 7eR,
and the minimum square error found outsideRo as Vout

= Sinf ARSI (x+2)f (Eq. 3-15)

Ut s xtzeRE

Replace the first two terms in (Eq. 3-13) by (Eq: 3-14) and (Eq. 3-15), the region

tracking force F which update the level surface.is
F=V, -V,. (Eqg. 3-16)

If F >0, the level surface moves upward and the contour propagates inward. On the

other hand, F <0 causes the contour to propagate outward.

Figure 3-13 contains two successive frames in the “car-phone” test sequences.
The face region is pre-defined in the reference frame in Figure 3-13 (a). The pixels
with F less than zero in the current frame are marked as green points in Figure 3-13
(b). The level surface moves down at the green points and moves up at the other
locations. The level surface is updated by the force F until the final convergence is
obtained. Note that even though the scene changes out of the car, the green region in

the current frame may still properly estimate the face region in Figure 3-13 (a).
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(a) Reference frame. (b) Current frame

Figure 3-13 The force F defined by the region tracking model. (a) The pre-defined
region in the reference frame. (b) The pixels where F <0 in the current

frame.

In Figure 3-13 (b), there are many cracked points outside the face region with
F <0. The false detection may cause problem if the intensities or the color values
inside and outside the object are tog Similar. The' background may be classified inside
the contours and make the contour growrmcorrectly A new region tracking model is

to be proposed to eliminate these cracked pomts and tq) increase the robustness.

} -"_n " 'u

3.2.2. A New Region "I."'r'ack'in'g Model

Because the frame rate is assumed to be very high, the inter-frame difference of
the level surface should be very small. The new level surface can be roughly
estimated by apply the morphing to the level surface of the reference frame. This

procedure can be written as
0" (X)) =" (y(X)+u,

where ¢ is the level surface and y denotes the morphing operation. A pixel-wise
matching can be used to simplify the morphing operation. u is the error value
between the correct and estimated level surface. The morphing operation often results
in cracked effects similar to Figure 3-13(b). The level surface produced by morphing
is severely discontinuous as shown in Figure 3-14 (b). A simple low pass mean filter

can alleviate this discontinuity and produce a smoother surface.

Besides the low-pass filtering, the re-initialization is used to make the surface
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preserve the property |V(p| =1. How to get the new surface is summarized in the
following equation:

n
(oestimate

(X) = reinitialize {Lowpass Filtering(go "X+ Z))}. (Eg. 3-17)

The re-initialization step is introduced in Chapter 4.

Level Surface ater Morphing

(@) ¢"'(X)

(b) o™ (x+2)

(C) ¢ers1timate()—()
Figure 3-14 Apply the morphing operator to the level surface of the reference frame. (a) The
level surface of the reference frame. (b)!Morphing result. (¢c) Apply a low-pass

filtering and the re-initialization to the surface in (b). (c) is used to estimate the
new level surface in the current frame:

The difference between Figure .3-14 (b) and (¢) provides the information about
the reliability of the morphing operation. If the difference is very large, the morphing

operation on the pixel is not very reliable because the inter-frame difference should be
small. Now the probability models in (Eq. 3-10) and (Eq. 3-11) are modified as

("1 R =exp( <P, inf ("0-1"x+0)f | (€q.318

and

P (1" () [17,Ry) = eXP(_ P, .HzH<5ir*1fz Rc(l "(X) - 1" (X + 7))2j, (Eq. 3-19)

where

202

P —exp {_ (Painse (V=0 (R+2))? }

is a weight which estimates the reliability of the morphing operation. Then the level
surface updating equation in (Eq. 3-13) becomes
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6_‘/’{( inf  (I"()-1""(x+2)] - inf (I"(>‘<)—I"‘1(>‘<+2))2)-P¢,+/1K}|V<0|

ot 2] <0.x+2€R, | 2)<5.%+2€ R
=[(Viy ~Vou)- P, + 241 |Vo|.

The additional weight P, suppresses the effect of (V;,—V,,) if the square
error ((oe's‘ﬁmate(f() —p" (X + 2))2 is large. Figure 3-15 (a) is the same image shown in
Figure 3-14 (b). The green points in Figure 3-15 (b) are generated by the Boolean
equation below the figure. The suppressed pixels are eliminated because of the

negative threshold. The false detected points are obviously reduced in Figure 3-15 (b).

(a) Figure 3-13 (b) “ &b) [(Vin _Vout) ’ P(p < _8] or [(oestimate < 0]

Figure 3-15 The region force with and without the weight P, . The cracked false
detected points are reduced by adding P, . The influence of the
surrounding environment is reduced and makes the region tracking model

more robust.

Figure 3-16 shows the region tracking results of the car-phone sequences. The
level surface is only updated inside the green rectangle. Since the points far away
from the object always find the points outside the Ry in the reference frame, the
computation far away from the object is unnecessary. Because the level surface is
only updated inside the rectangle, it results in discontinuous on the boundary of the
rectangle. The discontinuity can be smoothed by the re-initialization at the end of the

whole operation.
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L__& W |

Frame 220 Frame 270 Frame 320 Frame 380

Figure 3-16 The car-phone test sequences. The face region is defined in the first frame. The
level surface is only updated inside the green rectangle. The face is successfully
tracked even though the scene changes outside the car.

AN EF T

Frame 78 Frame 82 Frame 86 Frame 90

Figure 3-17 Football sequences. The camera moves very quickly and the target is blurred in

some frames. The contour does not grow incorrectly due to the use of
@ers]timate()_() in (Eq 3'17)
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Figure 3-17 and Figure 3-18 shows the result of the football sequences. The sequences
contain some interference of the clutter environment. Figure 3-17 is the result which
applies the new model. The contour does not grow incorrectly because the new level
surface is pre-estimated. The original tracking model produces the erroneous result

shown as Figure 3-18.

Frame 58 Frame 64 Frame 70 Frame 80

Figure 3-18 Football sequences with original region tracking model. The contour grows

e of the environment clutter.
¥

C—— e T ————

Frame 92 Frame 98 Frame 106 Frame 110

Figure 3-19 Track a small target in the coastguard sequence. The level surface with higher
resolution is only evaluated inside the green rectangle. More computational
resources can be allotted to a specific region and produce a higher quality

result.

Figure 3-19 shows the result of the coastguard sequences. Because the target is small,
it is beneficial that the level surface updates only inside the small green rectangle.

More computational resource can be reserved for updating the level surface with
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higher resolution. A low resolution level surface is used in Figure 3-20. Although the
tracker cannot get a fine boundary of the small boat, the essential position information
is not lost. Selecting the scalability (or resolution) of the level surface is a tradeoff

between the computational cost and the quality.

cost. The essentlalhposlﬁfan:ts:sﬂccegsi’ully tracked but the fine boundary of

I.‘F|

the object is lost.

3.3 Probability Model

The region tracking model in the previous section builds the probability model
based on the difference of intensity or color. Ideally every pixel in the current frame
must search for the minimum-square-error point in the entire reference frame. A
limited search range can reduce the computational cost. So far, only local

characteristic is taken into account.

in (Eq. 3-8) are modeled by (Eq. 3-10) and (Eq. 3-11)
in [8]. In this section, P, and P,, will be obtained by actually gathering the statistics

>0 in

The original P, and P

out

of the image data. The searching procedure in (Eq. 3-10) and (Eq. 3-11) will be used

as the prior model for the maximum a posteriori (MAP) method.
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3.3.1.Kernel Density Estimation

Assume the intensity value is between 0 and 255. If the probability of every
value from 0 to 255 is counted, no obvious “mode” or characteristics can be found
from this density function because the accumulated number for each intensity value is
too small. For color images, an impractical 256° storage space is required. It is better
to classify the image points with similar intensity into “bins”. For example, if the
value between 0 and 255 is divided into 8 “bins”, the points with value between 0 and
31 belong to the same bin and the characteristics of the data can be modeled by 8

counting numbers.
If the sampled data clusters near the boundaries of the bins, this may produce a
poor estimation. A kernel may be chosen to “smooth” [14] the distribution in the

statistical space. This technique is called Kernel Density Estimation (KDE). The

kernel density estimator is expressed by

0- i

where n is the number of d-dimensional datapoints, and h is the bandwidth of the

J (Eq. 3-20)

kernel K. The vector X is a scalar for gray level image data. The Epanechnikov

kernel 1s

K_(x) =105 ¢'d 20—, [x|=1
; 0, otherwise.

and the multivariate normal kernel is

K, (X) = (27) "2 exp(—%”z”z)
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Figure 3-21

of the

hins = 16, bandwidth = 8

.oz
0.1
0.005 -
0.006 -
0.004 -
0.002 -
The blue line is the histogram
gray-level Lena image. 0.
The red line is the kernel

density estimation result.

1 1 1
100 150 200 250 300

Figure 3-21 shows an example of kernel density estimation. The blue line is the

histogram of the gray-level Lena image. The red line is the kernel density estimation
result with 16 bins. The bandwidth, o'f'theh normal kernel is 8. The bandwidth selection

is a very important issue in kerncl densﬁ:r stlmatlon Figure 3-22 (a) shows the result

when the bandwidth is too small it causes under—smoothed If the bandwidth is too
large, the over-smoothed result is shoWn in Flgure 3-22 (b). A good bandwidth

selection can be based on rnany crlterlbns such as the mean integrated squared error

(MISE) and the approximate mean mtegratgd”square error (AMISE).
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(a) Under Smoothed Estimate.

(b) Over Smoothed Estimate.

Figure3-22 TImproper kernel bandwidth selection. If the bandwidth is too small, it causes

under-smoothed. If the bandwidth is too large, it causes over-smoothed.
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Kernel density estimation is widely used in analyzing data distribution. The
mean shift approach [15] is derived based on this probability model and may cluster
the data into groups. Dorin Comaniciu et al. use the mean shift algorithm to deal with
image segmentation [16] and object tracking [17] problem. The mean shift algorithm
shifts the data in the direction of the greatest gradient of its distribution density
function. Although the derivative result doesn’t have to do the kernel density
estimation, the mean shift tracking algorithm cannot track the boundary of the moving
object. Now the probability model built by the kernel density estimation is going to be
applied to the likelihood energy function shown in (Eq. 3-8).

3.3.2. ML and MAP Estimation

'__ _ _1 .'A‘. -
1 y 0
- a A

o= 0o

(a) Reference Frame | (b) Current Frame | ()P, (1" 1"",R,)) | ()P, (1" |1"",R,)

L L L L L — L L
0 50 100 150 200 280 300 1) 50 100 180 200 250 300

(e) Histogram of R;. (f) Histogram of R, in (a).

Figure 3-23 Maximum likelihood. (a) The preset contours which define the objects in
the reference frame. (b) The objects move in the current frame. (c) The
probability of inside region in the current frame. (d) The probability of
outside region in the current frame. (e) and (f) are the histograms inside

and outside the contours in (a).

The maximum likelihood can be illustrated by Figure 3-23. (a) is the current
frame with slight noise and the contours define the objects. The inside region is R,

and the outside region is R, . The histograms of R, and R, are shown in (¢) and (f),
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respectively. The peak intensity value is 80 inside and 164 outside. Then in (b) the
objects move. In order to estimate the objects’ new positions, (c) shows the
probability inside the objects in the current frame and (d) shows the outside

probability.

Replacing P, (1" |1"",R,) and P, (1"|1"",R,) in (Eq. 3-8), the energy
function becomes the active region model as expressed in (Eq. 2-25). This is called a

Maximum Likelihood (ML) estimate.

For color images, P, and P,

are built in the RGB space. Figure 3-24 shows
the color image case. (a) and (b) are the reference and the current frame, respectively.
The preset region is defined in the reference frame. Then the probability of the inside
region in the current frame is shown in (c), which is similar to Figure 3-23 (c). The

distribution is estimate by dividing the RGB space into 16 x16x16 bins.

(b) Current Frame.

Figure 3-24 Maximum likelihood
estimation. (a) Define the object in the
reference frame. (b) The current frame.
(c) The probability of the inside region
according to the distribution in the
RGB space. The RGB space is divided
into 16x16x16 bins.

(c) The probability of the inside region.
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In Figure 3-24 (c), the background regions with color similar to the inside region
also have high probability. If the moving object touches these regions, the ML
estimator may misclassify the background region as a foreground region. A more
reliable estimator with the maximum a posteriori (MAP) criterion will be proposed as

follows.

Assume the inside probability in the current frame with 1", 1", and R, are

given is represented as P(IN [ 1", 1", R,).
Based on the Bayes’ Rule,

P(N)R, (1" [1",R))
P(IN)P, (1" [ I™,R,)+ P(OUT)P, (I" [ I™,R,)
_ PAN) B, (1" [ 1™, Ry)
~ PAN) R, (1" [1™,R))+(1=P(IN) P, (1" [ 1", R,)

PN [I", 1™, R,) =

(Eq. 3-21)

Also note that P(OUT | 1",1"™",R)) =d== PN | 1", 1" R,).

The terms P, (1" | 1"",R,)" and P, (1" [1"",R,) can be obtained by the same
way as Figure 3-23 (c¢) and (d)-But now a 3-dimentsonal distribution from the kernel
density estimation is considered for ¢olorpmages. The prior P(IN) is assumed to be
1/Z for every pixel in the Active’Region Model‘in Section 2.4. Z is the number of

regions. Z is equal to 2 because now we only consider inside and outside probabilities.

Since the inside region is known in the reference frame, the prior part can be
estimated more reasonable instead of setting a fixed number. The block matching is
used as shown in Figure 3-25. The current frame is divided into many blocks. Every
block finds the most matched region in the reference frame as the motion estimation
does. Then the prior P(IN) of the Block( i, j ) is estimated based on the proportion

of Ro. All pixels in the block use the same prior value.
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Reference Frame Current Frame

Black (i, j)

Ro - ~

\/\
<

Search Range

Figure 3-25 Obtain the prior information. The current frame is divided into many
blocks. Every block finds the most matched region within a search
range in the reference frame. Then the proportion of Ry is used to
estimate the prior P(IN) for all pixels of Block( i, j ) in the current

frame.

The above method is similar to the extended version in [8]. The prior P,;(IN) of
Block( i, j ) is estimated to be

Z X & Block RO ()_( A 2)

RN = (Block Size)?

(Eq. 3-22)

where

- . = el e o2
Z= arg{r;mZXEBlock(l () — 1" (x+ Z))

|7 <
with Rg being 1 inside and 0 outside.

Figure 3-26 shows the individual terms for the MAP estimation. The predicted

inside region is more accurate than the maximum likelihood model.

Figure 3-27 shows how to merge the inside information from the new tracking
model and the probability model. The region tracking model can track the details of
the inside region, but it produces false detection more easily. The probability model
may fail if the colors inside and outside are too similar, but it offers robust
information for regions with lager area. The total information can be obtained by

merging these two components with different amounts of weight.
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(@) P,(I"[1™,R,) (b) Py (1" 11™.R,)

(c) P(IN) (d) P(NJI" 1™ R)

Figure 3-26 The probability characteristic of the ctrrent frame in Figure 3-24 (b). (a)
and (b) are the color wetsion-of Figure 3-23 (c¢) and (d). (c) is the prior

information obtained by (Eq. 3-22).:(d) is the MAP estimation from (Eq.
3-21).

[Uf’r :3' P, <—€] 07 [Pospimase < 0] n

I PUINB(I* | IR
P(IN|I" 1" R) = — (| 2 T
P(IN)E, (I* | 1™, B) + PIOUT)B,,(I* | ", Ry)

Figure 3-27 Merge the inside information of the new region tracking model and the
probability model. The total inside information can be formed by using

different amounts of weight for the two components.
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Figure 3-28 shows the experimental result of real sequences. The camera moves
with the person and the background changes. The region tracking model is applied
and successfully tracks the person. The tracked region does not get affected by the

surrounding clutters.

Frame 430 Frame 450 Frame 470 Frame 480

Figure 3-28 The experimental result of real sequences acquired in the laboratory.

The contour of the person is preset in the first frame.
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Chapter 4.
Implementation Issues and

Experimental Results

This chapter discusses some implementation issues. First we show how to create
a signed distance function. The level set can be evaluated more easily when the level
surface is a signed distance function. Then the partial differential equations (PDE) are
implemented based on the essentially non-oscillatory (ENO) polynomial interpolation
scheme. Finally the re-initialization step makes the propagation of the contours more

robust.

A complete system with “detection|and tracking is constructed. The system

contains “background modeling”, “motion detection”, and “region tracking” steps. A

simple background modeling method is briefly described in this chapter.

4.1 Implementation Issues

4.1.1. Distance Transform

A binary image which represents the objects will be transformed into a distance
function. Generating a distance function is very important when the level set theory is
performed. Figure 4-1 (a) is a binary input image. The value 1 represents the object.
The binary map in Figure 4-1 (a) will be transformed to (b). The values in (b) outside
the object depend on their distance away from the object. The distance values inside

the object are zero.
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0 0 1 1 0 0 2 |1 0 0 1 2

0 1 1 1] 0 0 1 o[l 0] O 1 | 2

0 1 1 1 1 0 1 o[ 0] 0] O 1

0 1 1 1 0 0 1 0 0 0 1 | 2

0 0 0 0 0 0 J2 1 1 1 | V2 | 45
(a) Input binary image. (b) Distance Transform of (a).

Figure4-1 Distance Transform. In (b), the values outside the object depend on

their distance away from the object.

A simple 1-D example is shown in Table 4-1. A binary map b(x) is 1 inside the

object and 0 outside the object.

Step 1: The object region is set to be zero while the background region is set to be
an “as large as possible” value.

Step 2: Use a three-tap mask Mj= [MymMg,-M3]*= [ 1, 0, Inf. ] to scan from left to
right.
d(x) = min{b(x — 1) + My, b(¥)+m,, b(x + )+ m, }

Step 3: Use a three-tap mask M= [.Inf. , 0,1 ]'to scan from right to left similar as
Step 2.

Table4-1 Create the 1D distance function.

X 1 2 3 4 5 6 7 8 9 10 11
b(x) 0 0 0 0 1 1 1 0 0 0 0
Step1 | Inf. | Inf. | Inf. | Inf. 0 0 0 Inf. | Inf. | Inf. | Inf.
Step2 | Inf. | Inf. | Inf. | Inf. 0 0 0 1 2 3 4
Step 3 4 3 2 1 0 0 0 1 2 3 4

The above evolution is called a “Two-pass Algorithm.” The distance value is

accumulated when M; scans in one direction, and then M5 scans in the other direction.

In the two dimensional case, the masks are:
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\/5 1 \/5 Inf  Inf Inf
M, =| 1 0 Inf|, M,=|Inf O 1

Inf Inf Inf V21 2

M; scans from top-left to bottom-right, while M, scans from bottom-right to top-left.

The Inf. is a preset large value. The 2D example is shown in Figure 4-2.

A 1"
b
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s
b

o
=
S
!
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(a) Scanning by M; from top-left to | (b) Scanning by M, from bottom-right to

bottom-right. top-left.

Figure 4-2 Two-pass algorithm in 2D. The binary. input image
is shown as the right star image. The first pass

accumulates the=distance value from top-left to

bottom-right, while‘the second pass accumulates

the distance value from bottom-right to top-left.

There are many different distance measures that create different distance
functions. Four popular measures, Euclidean, City Block, Chessboard, and
Quasi-Euclidean, are shown in Figure 4-3. The center point denotes the location of the
object, so the center value is zero. The values of the City Block and the Chessboard
measure are integers and are suitable for hardware implementation. The Euclidean
measure is more precise but it contains floating point numbers. The Quasi-Euclidean
measure can compute more points at one time and speed up the computation. These

matrices can be decomposed into M; and M; for the two-pass algorithm.
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Euclidean City Block Chessboard Quasi-Euclidean

Figure4-3 Four distance measures for creating a distance function.

A signed distance function is required in the level set evolution. The function
value is negative inside the object and is positive outside the object. The above
method only produces positive distance values outside the object. Negative distance
values inside the object can be obtained by inverting the input binary image before
performing the two pass algorithm and changing the sign of the final result. The
surface near the boundary of the object is not smooth because both inside and outside
distance values start from 1. Hence, the distance values outside the object are
decreased by 0.5 and the values inside the objectare increased by 0.5. This makes the

absolute difference of two points**‘across’-the zero-value boundary equal to 1.

Assume ¢, is set to be an arbitrary negative value if inside the object and an
arbitrary positive value if outside the ebject-“The transformation Dist(x) denotes the
distance transform of the binary image-X. The signed distance function ¢ is

generated by
¢ =[Dist(u(=¢;,)) = 0.5]-u (¢;,) —[Dist (u(¢;,)) = 0.5]-u (=¢;,)

where U(X) is a Heaviside function:

I, if x>0
u(x) = . .
0, if x<0
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4.1.2. Solve PDE Numerically

The partial differential equation (PDE) of the level set theory has the form
9 =F|Vol, (Eq. 4-1)

where ¢ is the time varying level set function according to the velocity function F
and the gradient value of ¢. The velocity function F depends on the curvature of the

contour or whatever contour propagation model defined in the previous chapters.

Consider a 1-D signed distance level set function shown as the solid blue line in
Figure 4-4. The object locates in the interval [-5, 5]. The boundary of the object is at
-5 and 5 where the value of the level set function is zero. The green line is the velocity
function F which is -1 in [-10, -4] and 2 in [-3, 10]. When (Eq. 4-1) is implemented in

the discrete time domain, there are two choices to approximate V¢ :

Dip=0,., -0, (Eq. 4-2)
or

Do =9i-9¢,. (Eq. 4-3)

If we only choose (Eq. 4-2) or"(Eq. 4-3) to approximateVe¢, the differentiation
information will propagate in one direction and the level surface erroneously drifts
one pixel after each time step. This error propagation is shown in Figure 4-4. If only
D/ ¢ is used to approximate Vg, the level set function disobeys the original
meaning of the PDE described in (Eq. 4-1).

\ / 4 ) . L '..
- 4 Increas¢ incorrectly!!

Figure4-4 Error propagation result due to improper approximation of V.
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Equation with the form of (Eq. 4-1) is called a Hamilton-Jacobi Equation. The
essentially non-oscillatory (ENO) polynomial interpolation is introduced in [11] to
solve the PDE numerically. [12] [13] and [4] contain some practical applications.
Here, (Eq. 4-1) is simplified as a one dimensional problem and is implemented via the

following equations:

" =" + At [max(F,0)-V*+min(F,0)-V ], (Eq. 4-4)

where
V' =[max(D; ¢, 0)> + min(D;"p, 0)*]""* (Eq. 4-5)
V™ =[max(D; ¢, 0)> + min(D; ¢, 0)*]"* (Eq. 4-6)

and D, ¢ ,D; ¢ are defined in (Eq. 4-2) and (Eq. 4-3), respectively. The time step
At controls the propagation speed. The choice of At is a tradeoff between the
propagation speed and the stability. With this scheme, a positive F is multiplied with
V* while a negative F is multiplied with: 1Vi =

The level set function is updated by (Eq. 4-4) and the results of ten iterations
with the ENO scheme are shown in Figure 4-5. The level set function propagates
properly with respect to the velocity funetions The left zero surface value in Time 0
appears at -5 with velocity F = <1..The zero_value propagates toward -6 after ten
iterations with time step 0.1. In the same way, the right zero surface value propagate
from 5 to 3 with F =2,

However, the glitches of the level set function occur at the discontinuous points
of F and the level surface. The value of the level set function inside the object finally
“breaks” because of the glitch effects. These glitch effects can be eliminated by the

re-initialization process that is to be introduced in the next section.
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Tirne 0 Tirne 2

Tirne 10

Figure4-5 The propagation of the 1-D level set function. The solid blue line is the level

set function and the green line is the value of the velocity function.
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4.1.3. Re-initialization

In order to eliminate the glitch effects and increase the robustness, frequent
re-initializations should be applied. Re-initialization creates a new signed distance
function according to the sign property of the level set function. This procedure

eliminates the glitch effects and makes the contour propagation more stable.

The computation of a signed distance function is very expensive. If the time step
is small, re-initialization is not necessary before the glitch effect “breaks” the negative
region of the level set function. However, the penalty is that more iterations are
required to propagate the level set function to the solution of the partial differential

equation.

The re-initialization problem can be defined by another differential equation:
+|Vo|=1, if >0
ou+|Vo|=1, if 9>0 (Eq. 4-7)

9. —|Nol==1, if p<0

The solution of this PDE is constrained: by the.preset initial region R in the 2-D
image space. The region inside the object is sct to-be an arbitrary negative value

while the region outside the object is settorberan arbitrary positive value.

(Eq. 4-7) means that if |Vg0| is. greater than 1 when ¢ >0, we decrease the
level function by (| Vo | -1).If |V(p| is greater than 1 when ¢ <0, we increase the
level function by (| Vg0| —1). When the level function doesn’t change with respect to

time, thatis, ¢, =0, then | Vgp| =1 and a signed distance level function is obtained.

(Eq. 4-7) can be integrated into one equation with a similar form like (Eq. 4-1)

for implementation:

9, +S(@)(|Ve|-1)=0, (Eq. 4-8)
where S(¢) is a sign function defined as

S(gp):{ 1, if >0

~1, if p<0

Because the difference of the level set function between each time step is not
very large, the re-initialization scheme in (Eq. 4-8) can efficiently approximate a
signed distance function for the next time step. The demonstration of (Eq. 4-8) is

shown in Figure 4-6. The green line is the preset level set function and the blue line
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shows the propagation of the level set function according to the re-initialization

procedure.
lteration 0 Iteration 4
B B
4+ 4 4+ E
2 . _

2t i 2F J
At 1 s J
1 1 L 1 1 1 1 1 1 L 1 L 1
10 -8 ] 4 -2 1] 10 10 g ] 4 2 0 2 4 5] g 10
lteration & Iteration 12
B B

2t i 2F J
At 1 s J
1 1 L 1 1 1 1 1 1 L 1 L 1
10 -8 ] 4 -2 1] 10 10 g ] 4 2 0 2 4 5] g 10
lteration 16 Iteration 20

B T B T T T

4+ 1 4+ 4
2+ B 2+ B

2h 4 2 1

s 4 At 1

w0 & 6 4 2 0 0 w & 6 4 2 0 2 4 & 8 1
Figure 4-6 Re-initialization demonstration of (Eq. 4-8). The green line is the preset level

function and the blue line shows the variation of the level function according to

the re-initialization procedure. The time step is set to be 0.5.
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Now the re-initialization procedure is applied to the propagation of the level
function with the same velocity force shown in Figure 4-5. The result is in Figure 4-7.
Note that the glitches in Figure 4-5 are eliminated and the object region with negative

values is not broken.

Time 0 Time 2

Figure 4-7 The propagation of the level set function with velocity F in Figure 4-5 and adopt
the re-initialization at the end of each time step. The glitches in Figure 4-5 are

eliminated.
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The above level set function propagation and re-initialization scheme can be

extended to a two-dimensional version for image processing. The termV " andV~
which approximate V¢ in (Eq. 4-5) and (Eq. 4-6) are modified as

V' =[max(D; o, 0)> + min(D;}'p, 0)° +max(D;} o, 0)* + min(D; o, 0)*]"?
(Eg. 4-9)
and

V™ =[max(D{'p, 0)* + min(D; '@, 0)* + max(D; ¢, 0)* + min(D; ¢, 0)*]"?,

(Eq. 4-10)

where
DTJX P =@, —Pi,j
Df;? =i —Piaj

DTJy O= Qi i Pij

D;,}I¢’ =05 @it -

Then, (Eq. 4-4) can be generalized into‘the 2-D space. Figure 4-8 demonstrates the
re-initialization scheme in 2-D space.. The“level set function is initially set to be -1
inside the objects and 1 outside the objects. The level set function is updated by using
(Eq. 4-8). The time step is set to be 0.5. The iteration stops when the maximum
absolute difference of the level function between two iterations is less than ten times

smaller than the preset time step.

Here is a short summary. In order to solve the partial differential equation (Eq.
4-1), the essentially non-oscillatory (ENO) polynomial interpolation is used. The
spatial gradient of the level set function V¢ is approximated by (Eq. 4-9) and (Eq.
4-10). When the level function propagates, glitches are produced because of the
discontinuity of the level function ¢ and the wvelocity function F. The
re-initialization procedure is applied at the end of each time step. The re-initialization
can be viewed as solving another PDE as (Eq. 4-8). Because the level set surfaces
before and after the evolution of (Eq. 4-1) in one time step are very close, using (Eq.
4-8) to re-initialize the surface is more efficient than to create a new signed distance

function again.
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Iteration 0

lteration & Iteration 16

lteration 26 Iteration 37

e

Figure 4-8 The re-initialization in two dimension space. The level function is initially set to

be -1 inside the objects and 1 outside the objects.
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4.2 Build Background

In real surveillance system, the background image must be modeled. Even if the
camera is static, the first acquired image can’t be used as the background because it
may contain moving objects. The background is obtained by analyzing successive

images after a period of time. This is called background modeling.

Ahmed Elgammal et al [18] proposed a way to model the foreground and
background by using nonparametric kernel density functions. Although the Gaussian
form of the density function can be implemented by a lookup table, the modeling
method in [18] needs many sample frames to make the model more reliable. The
storage and the computational time increase simultaneously. In this thesis, a simpler

background modeling procedure will be introduced in this section.

4.2.1. Motion Detection without Background

The motion part in sequences, 'can be extracted more easily by inter-frame
difference. Boundaries of the moving ‘objects are identified by setting a threshold on
the absolute difference result.

Manipulating the image data pixel by pixel is very sensitive to noise. Hence, the
inter-frame difference image is divided into many blocks and the sum of the absolute
difference (SAD) within each block is used to identify the variation property. If the
SAD of the block is above a predefined threshold, the block is classified as a motion
block; otherwise, the block may be located on the background or the interior region of

a moving object.

Experiments of different threshold value are shown in Figure 4-9. The value d
represents the average difference per pixel in the block. If the SAD of the block is
beyond d x (block size)*, the block is marked as a motion block. The “black” pixels
in Figure 4-9 indicate the motion blocks. The block size is 8x8. When d = 0, every
block in the image is detected as motion block. As the d value increases, the number
of detected blocks decreases. From the experiment result, d = 5 is chosen empirically.
In this example with the 8x8 block size, a block is classified as a motion block if the
sum of absolute difference SAD > 5x (8)> =320.
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Figure 4-9 Motion Detection by thresholding the inter-frame difference image. The
black pixels represents the motion block with the measurement d.

The size of block affects the storage requirement of the detection result. A
smaller block size produces more blocks and the required storage increases. A smaller
block is also more sensitive to ngise. However, a smaller block size provides a better

precision for the positioning of moving objects.

In the case d = 5 in Figure 4-9, only'the boundary of the moving object is
detected. A more solid result is expeeted; otherwise, the center of the moving object
may become the background region. The property of the level surface evolution in the
level set theory may help classifying these cracked points. The level surface is

updated by the following equation:

a(l’ij

Z ((d x (motion block)? )- SAD, )| Vo

) (Eq. 4-11)
where U(X) is the unit step function and

SAD,; =" > | 1 ((-DN+p,(j=DN+q)— I, ((=DN+ p,(j-DN +q)|.

p=1 g=1

(Eq. 4-12)

Here, N is the block size. The level surfaces moves upward if the SAD is less than
d x (motion block)” .

Dilation and erosion are used to link the boundary of the moving objects. In

Figure 4-10 (b) and Figure 4-10 (c), 3x3 and 5x5 structuring elements are applied,
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respectively. The result with the 3x3 structuring element still contains discontinuity on

the boundary of the moving object. The result of the 5x5 structuring element is better.

Figure 4-10 (d) is the result which applies (Eq. 4-11). The contour propagation is

shown in Figure 4-11.

(a) Delete the isolated points

VER G e gnE 1
R ;

w— R

(b) Closing with 3x3 structure element
e VR CpaaTER L8

(c) Closing with 5x5 structure element

(d) Use (Eq. 4-11)

Figure4-10 Make a solid detection result. (a) The blue blocks show the original SAD

detection result. (b) Morphological closing with a 3x3 structuring

element. (c) Morphological closing with a 5x5 structuring element. (d)

Fill the hole inside the moving object via (Eq. 4-11)
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Iteration 1 Iteration 4 Iteration 7 Iteration 10

Iteration 13 Iteration 16 Iteration 19 Iteration 22

Figure4-11 Contour propagation using (Eq. 4-11).

4.2.2.Background Modeling

If the motion regions are extracted, the background can be built by accumulating
the static image data. In the Video Surveillance and Monitoring (VSAM) project [19]
at Carnegie Mellon University,a layered detéction method is proposed. Every pixel in
the image has three states: ftransient, static, and- background. Pixels with high
inter-frame difference value are defined as transient pixels. Otherwise, their states are
defined to be static. Static pixels become background pixels if they keep their “static”
state for a long enough time. The relationship between these three states is defined
graphically. Moreover, the motion regions detected at different times are store in

different layered maps so this method may deal with the occlusion problem.

If the initial background information is not available, the information has to be
extracted from the sequences which contain moving objects. A preset background
model is not adequate in a practical surveillance system because the background may
change over time. Two types of blocks are defined using the graph concept in [19].
One is the “background” block, while the other is the “motion” block. The “static”
block is not necessary here because the static region inside the moving objects is
included in the motion region based on the method mentioned in Section 4.2.1. If a
block is defined as a non-motion block in successive n frames, the averaged RGB
values are defined as background. If the block remains static less than n frames, then

we reset the counter and clear the accumulated value in the buffer.

The test sequences are shown in Figure 4-12. The accumulation map is shown in

Figure 4-13. The intensity denotes the accumulated number from 0 to n. The motion
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region in the map is black because the accumulation number is reset to zero. When the
person leaves its original position, the static background information occupied by the
person is accumulated. Eventually the values of the entire accumulation map are n and
the background modeling is completed. In this case, n is set to be 30. The background
is built after 90 frames or about 3 seconds. The background modeling time strongly
depends on the displacement of the moving object. If the object keeps moving in the

same position, the background can’t be built until the object leaves the position.

Frame 50 Frame 60 ; F rlnhe'm = Frame 80 Frame 90

Figure4-12 Test sequences fof_ backgrdﬁ;id;mgde}inig.

Frame 1 Frame 10 Frame 20 Frame 30 Frame 40

}

Frame 50 Frame 60 Frame 70 Frame 80 Frame 90

Figure4-13 Background modeling process with n = 30. The white regions are the
background region.

When n increases, the required number of frames increases. Figure 4-14 (a) and

(b) show the results of n=230 and n =60, respectively. The discontinuous regions in

67




the pink ellipses are due to the different intensity values from different frames. The
discontinuous defects can be tolerated because the subtraction data will be classified
by the “active contours without edges” model. A larger n costs extra consuming time

and does not necessarily produce a better result.

(a) n =30 needs 91 frames (3.03 seconds) (b) n =60 needs 580 frames (19.33 seconds)

Figure 4-14 Background modehng usmg d1ffe1:ent ns. (a) n = 30, (b) n = 60. The
discontinuous reglcms in @e' p}nk q:lhpses are due to the different intensity

values from dlfferent frames _' =

4.3 Experimental Results

A simplified version of Figure 1-1 is shown in Figure 4-15. Every camera system
contains “background modeling”, “background subtraction” and “region tracking”
processes. Figure 4-16 shows the flow chart about how to control these three

processes.

The camera is kept static at the beginning. Both background and moving objects
may appear in the camera. The background information must be accumulated for a
period of time. Once the background is built, the background subtraction method can
be used. The motion region is detected for several frames to ensure reliability of the
background information. If the area of the motion region is not stable, then the
background must be remodeled again. The system enters the “region tracking” state
when the motion region is defined. The area of the tracked region may unreasonably

shirk or expand because of the imperfection of the region tracking process. If the area
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changes more than 50% of the original region, the systems restarts the background

modeling again.

Environment Modeling Environment Modeling
Motion Detection Motion Detection
A A
Tracking Tracking

v \4

Fuse I nformation from multiple cameras

Figure4-15 A simplified version of Figute 1-1. Every camera contains “background

99 ¢

modeling”, “background subtraction” and “region tracking” processes.
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Block-wise Background Modeling
(Section 4.2)

v

Every block
is modeled?

Background Subtraction
(Section 3.1)

v

Area variation
< 40%

cnt >
region_cnt ?

No

Yes,cnt=cnt+1

Area
variation

< 50%

Yes Region Tracking
(Section 3.2, 3.3)

Figure 4-16 Flow chart of a single camera’s system. This figure shows the details

about how to control the process of every camera in Figure 4-15.
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Figure 4-17 is the simulation result of Figure 4-16. The images with green grids
and blue masks are in the background modeling state. When the background is
modeled in all blocks, a background subtraction result like Frame 80 is obtained.
Then the frames with a green rectangle represent the region tracking results. The
camera changes its pan and tilt angles to locate the moving object in the center of the
image. If the area of the tracked region varies too much, as shown in Frame 96 or

Frame 265, the system restarts the background modeling process.

In Frame 370, two motion regions are detected. This is because the person had
stayed in front of the white board for a long enough time. Some part of the person is

modeled as background. The system only tracks the bigger region.

From Frame 640 to Frame 680, the person stands at the same position for a long
time. The person is modeled as a part of the background. No motion region is detected
and the camera remains static. The new motion region is defined when the person
turns around. The system tracks the new motion region and locates it in the center of

the image. <AL,

o

These 480x320 images ax:e: ctualjlaf cxﬁ‘ac’qed from a sequence of 640x480

images, which are acquired by- 31 statlc camm*a to 91mulate the images acquired by a

moving camera. The system 1& S1mu1|at y s1ng ‘MATLAB on a Pentium IV 3.0
GHz computer. The required comp “aﬁbnaI f*‘ e 1splotted in Figure 4-18.

Frame 96 Frame 100 Frame 120 Frame 140
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Frame 255
T '"".""=|'I'I.=F.

Frame 400

Frame 420

Frame 440

Frame 375

- ik 3

Frame 395

Frame 265

Frame 380

sy
W

Frame 460
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1K

Frame 740

Frame 750

Frame 760

Frame 770
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Frame 860

Frame 870

Frame 880

Frame 889

Figure 4-17 The simulation result of Figure 4-16. The images with green grid and

blue mask are in the background modeling status. When the

background is modeled in all blocks, a background subtraction result

is obtained. The frames with a green rectangle represent the tracking

results.

i A

.

AL

1 1
200 300

1 1
800 700

Frame Mumber

800

Figure 4-18 The consuming time of processing the sequence in Figure 4-17. The

frames with small time consuming are in the status of background

modeling or background subtraction. The frames with a relatively

large time consuming are in the status of region tracking.




Chapter 5. Conclusions

In this thesis, different active contour models are applied to dealing with the
motion detection and region tracking problems. The information of the moving
objects is obtained and classified based on the “active contour without edges” model.
Some previous works about contour modeling is introduced in Chapter 2. In this

thesis, contour models are all implemented based on the level set theory.

When the background is static, the motion region can be obtained by subtracting
the background. The absolute difference data can be classified by the “active contour
without edges” model. In order to locate the moving objects in the center of the image,
the camera must change its pan and tilt angles. As the camera moves, the background
subtraction can no longer be used. In this thesis, we adopt the region tracking model

to identify moving objects.

The region tracking model is used to find in.the current image the region which
is similar to the region defined.in the previous frame. The original region tracking
model has some problems when the color of the moving object is very similar to that
of the surrounding clutter. According“to the level surface constructed from the
previous frame, a reliability weight is“introduced to suppress erroneous estimations.
This is because it is reasonable to assume that'the unknown level surface in the new

frame should be very similar to that in the previous frame.

The statistical property is also taken into consideration in this thesis. A method
that can estimate the prior probability is proposed for the maximum a posteriori (MAP)
estimation. The probability model can strengthen the information of the inside region

and eliminate the regions which should be outside.

A background modeling method is proposed and the static region is accumulated.
The motion region is extracted by collecting the inter-frame difference results. A

simple model is proposed to update the level surface.

A surveillance system is built based on background modeling, motion detection,
and region tracking. The system restarts the background modeling if the background
model is not perfect or if the area of the tracked region varies too dramatically.
Because the region tracking process does not need the background information, the

camera can be moved to always locate the moving objects in the center of the image.
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In order to reduce the computational cost, a low-resolution level surface is used
in this thesis. That is, the input image data is smoothed and down sampled before
being processed. This results in problems in thin regions, such as the neck and limbs
of a person. This is because the magnitude of the level surface in these thin regions is
too small. To deal with this problem, the input image can be interpolated to increase
the areas of thin regions. Then, we may use an associated high-resolution level
surface to accomplish the region tracking task. The evolution will become more stable

if the maximum magnitude of the level surface becomes larger inside the objects.
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