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摘     要 

本篇論文提出一個精細可調層次式到MPEG-1/2/4單一層次式的位元流轉碼

器架構，並應用兩個新發展的轉碼技術以改善現有異質環境轉碼的。多層轉碼技

術藉由傳送額外的加強層來補償異質性轉碼中的所造成的嚴重錯誤傳遞問題。位

元率-失真最佳化模型則在有限的通道頻寬下，提供一個在編碼效能以及傳輸位元

率之間最佳平衡點的編碼決策。實驗結果顯示所提出的使用多層轉碼技術的轉碼

架構與一般的架構相比較能夠提供非常良好的轉碼效能。整合所提出的冪次位元

率-失真模型以及多層轉碼技術，我們所提出的轉碼器架構，與被視為擁有最低轉

碼複雜度之一的簡化餘弦轉換域轉碼架構相比較，可達到最多5.8dB的影像訊號雜

訊比改善，且幾乎不增加其轉碼複雜度。與另一種擁有最佳轉碼品質的串接餘弦

轉換域轉碼架構相比，我們所提出的多層轉碼技術的轉碼架構在低位元率時有相

近的視訊品質，在高位元率時有0.2–1.4dB的影像訊號雜訊比損失，但轉碼複雜度

上只需其34.17%的計算複雜度。 
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Abstract 

In this thesis, we proposed a Fine Granularity Scalable (FGS) multi-layer to 

MPEG-1/2/4 single-layer transcoding framework and used two new techniques, 

multi-layers transcoding and R-D optimization modeling, to improve the poor 

performance in heterogeneous transcoding. The multi-layer transcoding technique 

provided heterogeneous drift error compensation via transmitting an additional 

enhancement layer. The rate-distortion optimization modeling is used to achieve a better 

tradeoff point between coding efficiency and transmission bit rate under limited channel 

bandwidth. The experimental results showed the proposed Multi-layer Simplified 

DCT-Domain Transcoder (MSDDT) architecture can provide a very good transcoding 

performance compared to the conventional architectures. With the proposed power-law 

R-D modeling in the proposed multi-layer transcoding techniques, the proposed 

framework shows up to 5.8 dB PSNR gains over the SDDT architecture under the similar 

transcoding complexity. Compared to the Cascaded DCT-Domain Transcoder (CDDT) 

architecture, the MSDDT architecture has similar PSNR quality at low bit rate and about 

0.2–1.4 dB loss in PSNR at high bit rate, but with only keeping 34.17% complexity 

compared with cascaded decoder-encoder (DEC-ENC) architecture. 
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Chapter 1   

Introduction 

In this chapter, we will briefly introduce the role that video transcoding plays in the 

framework of MPEG-21 Universal Multimedia Access. The scope of this thesis is also 

presented as a concluding remark. 

1.1. Overview of MPEG-21 Transcoding Systems 

In recent years, the popularity of internet has boosted the need for efficient 

transmission of digital content. MPEG-21 provides a unified solution, Universal 

Multimedia Access (UMA) [1], to construct a multimedia content delivery and rights 

management framework. The primary concept of UMA is that any media resources 

should be available to any users at anytime and anywhere. However, the diversity of 

channel conditions and end-user capacities makes it a challenging task. It is inevitable 

that many types of conversions should be performed as an intermediate interface between 

server and terminal to accommodate different network constraints.   

Video transcoding is a technique of transforming a pre-compressed video bitstream 

from one format into another according to various network conditions and client devices. 

As shown in Fig. 1, the context format is referred to as coding parameters such as the bit 

rate, frame rate, spatial resolution, and coding syntax. One of the scenarios is a video 

conferencing system on the internet where the participants may use different terminals. 

Under this circumstance, a video transcoder (located at the transmitter, receiver, or 

somewhere in the network) is needed for both dynamically adjusting the bit rate in 

adaptation to each user’s available bandwidth and providing conversion across different 



standards to enable content exchange. Hence, as media resources and communication 

networks expand in heterogeneity, video transcoding is one of the essential components 

for current and future multimedia systems to achieve inter-compatibility between 

different platforms. 

 

Fig. 1. Video transcoding operations 

1.2. Scope of This Thesis 

Various transcoding algorithms provide trade-off between the computational 

complexity and reconstructed video quality [3]-[11]. In all, the most straightforward 

approach of realizing transcoding functionality is to cascade a decoder and an encoder, as 

shown in Fig. 2. The decoder decodes the original input video, and the encoder 

re-encodes the decoded data subject to any new constraints. Such a cascaded transcoding 

architecture which fully decodes the bitstream and re-encodes the video is treated as one 

of the most complicated methods and is very much computationally intensive. In this 

thesis, we aim to introduce more efficient techniques to balance the perceptual quality 

and the computational complexity. 

 

Fig. 2. Cascaded decoder and encoder transcoder 

Based on the concepts of UMA, we build a simplified UMA model on the internet. 

In this framework, the source video material is encoded and archived as MPEG-4 Fine 
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Granularity Scalable (FGS) bitstreams. In order to provide access to FGS coded 

bitstreams with both FGS enabled devices and devices that only support single-layer 

coding standards, a novel transcoder is proposed and implemented to convert the 

bitstream from FGS format to other single-layer video formats including MPEG-4 Simple 

Profile (SP), MPEG-2, and MPEG-1. Depending on the terminal capability, the universal 

transcoder is capable of supporting video contents of different formats.  

The remainder of this thesis is organized as follows. Chapter 2 classifies various 

transcoding architectures and discusses the fundamental problems. In Chapter 3, a 

framework for FGS to single-layer transcoding is introduced. Chapter 4 proposes the drift 

compensation architecture. Experimental results and analysis are presented in Chapter 5. 

Finally, Chapter 6 gives the concluding remarks. 
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Chapter 2   

State of the Art 

In this chapter, we will explore the prior arts on homogeneous (with similar 

standard) and heterogeneous (between different standards) video transcoding. An 

overview of transcoding architectures and techniques is provided along with an 

evaluation and discussion. 

2.1. Transcoding Architectures 

Efficient and effective transcoding architectures are needed to expand the 

applications of multimedia information exchange. As mentioned in the previous chapter, 

it is always possible to use a cascaded approach to perform transcoding. However the cost 

is too high to be feasible. The following subsections introduce several transcoding 

architectures that aim to reduce the computational complexity of the straightforward 

decoder-encoder implementation. The rationale behind these transcoding architectures is 

to reuse existed coding parameters or statistics from the input video bitstream. They may 

be applied not only to simplify the computation, but also to maintain or even improve the 

visual quality.  

2.1.1. Spatial-Domain Video Transcoding  
Fig. 3 illustrates the Cascaded Pixel-Domain Transcoder (CPDT) [3], which is very 

similar to the brute-force method. It is a concatenation of a standard decoder and a 

simplified encoder. The encoder does not perform full-scale motion estimation (ME). 



Instead, it reuses the motion vectors as well as other information extracted from the input 

video bitstream. It is shown in [12] that the macroblock mode decision and ME module 

occupy about 70% of the overall encoder processing power. Hence, by avoiding these 

computationally intensive operations, it can speed up the transcoding process by roughly 

three times. 

VLD Q1
-1 IDCT

DCTQ2VLC

Q2
-1

IDCT

Frame 
Buffer

MV

−

+

Frame 
Buffer

Input 
Bitstream

Output 
Bitstream

MC

MC

MV 
Mapping

 

Fig. 3. Cascaded Pixel-Domain Transcoder (CPDT) 

The prior works based on CPDT architecture focus on the improvement of new 

motion vector (MV) information in the encoder-loop. Generally, a homogeneous 

transcoder which is designed for bit rate adaptation requires no MV mapping operation. 

The functional unit of MV Mapping presented in CPDT is used particularly for 

transcoding which involves spatial resolution adjustment or heterogeneous format 

change. However, since reduced resolution transcoding is beyond the scope of this thesis, 

we will focus our attention to the problem of changes in the directionality of MVs in 

heterogeneous transcoding. For instance, in the MPEG-4 standard [2], an inter-coded 

macroblock comprises either one MV for the complete macroblock or four MVs, one for 
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each non-transparent 8×8 pel blocks forming the 16×16 pel macroblock, whereas 

MPEG-1/2 support only 16×16 prediction in progressive frames. For transcoding 

bitstreams from MPEG-4 format into MPEG-1/2 format, problems arise when passing 

MVs directly from the decoder to the encoder. Fig. 4 shows the way of multiple MVs 

being merged to a single MV when the coding mode is different. Hence, a motion vector 

mapping operation is required. A variety of methods have been discussed for deriving a 

new MV from the four MVs available in the input bitstream information. Although these 

methods are originally developed for reduced resolution transcoding, they are also 

applicable in our scenario. One strategy is to select one of the incoming MVs in random 

[14]. Weighted average taking into account the prediction error is presented in [13]. Some 

other methods, such as median, majority, and average, are presented and compared in 

[12]. To further improve the accuracy for prediction, MV refinement is performed in a 

small search window around the composite MV [15]. Other issues related to 

heterogeneous transcoding, such as picture type conversion [12] or frame rate reduction 

[15]-[17], will not be mentioned later due to out of thesis scope. 

 

Fig. 4. Motion vector composition 
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CPDT is usually considered to be free of drift error, and used as the benchmark for 

evaluating the performance. Although the reconstructed frames in the decoder-loop and 

the encoder-loop don’t match due to heterogeneous quantization table and other 

parameters, this CPDT will not introduce drifting error theoretically. The reason is that 

the encoder-loop will reconstruct the new coding residues to avoid the improper MV 

causing unexpected reconstruction mismatch. In addition, this CPDT is also flexible in 



coding-parameter changes. Because the decoder-loop and the encoder-loop separate from 

each other, more flexibilities are allowed to operate the transcoded video  at different bit 

rates, frame rates, picture resolutions, coding modes, and even different standards.  

2.1.2. Frequency-Domain Video Transcoding 
The frequency-domain based video transcoding operates the video decoding and 

re-encoding in the transform domain. In contrast to the spatial-domain transcoding which 

operates the video transcoding in the spatial domain, the frequency-domain (or called 

transform-domain) transcoding architecture avoids three unnecessary transformations 

(one backward transform in the decoder-loop and one forward/backward transform in the 

encoder-loop) to achieve equal coding efficiency with lower complexity. This subsection 

introduces the core techniques in frequency-domain transcoding and reviews two types of 

commonly used frequency-domain transcoding architecture. 

2.1.2.1. Generic Frequency-Domain Transcoder 

 

Fig. 5. Source block extraction problem 

Motion compensation in the DCT-domain (MC-DCT) is the core technique in 

frequency-domain transcoding architecture. It operates the motion compensation (MC) in 

DCT domain to reconstruct the video without converting to pixel domain. The related 

researches in MC-DCT can be found in prior works [9], [18]-[20]. The design idea of 
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MC-DCT is to build the relationship between the motion compensated 8×8 block (P) and 

the related reference blocks (Q). Since the MV (∆x, ∆y) usually is not 8×8 block aligned 

(see Fig. 5), the motion compensated block would cover at most four neighboring 8×8 

blocks from the predicted MV center. The relationship in pixel domain is represented as 

eqn. (1). 
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G  (1) 
3

0
i i i

i=
= ∑P H Q

where Hi and Gi are listed in Table 1. Ik represents an identity matrix of size k×k. The 

values of h0 and w0 are to be determined by the value of (∆x, ∆y) in MV (∆x, ∆y). 

Table 1. Matrices Hi and Gi

Sub-block Position Hi Gi

Q0 Lower right 0h⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0
 

0w

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

 

Q1 Lower left 0h⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0
 08 w−⎡ ⎤

⎢ ⎥
⎣ ⎦

0 I

0 0
 

Q2 Upper right
08 h−

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

0w

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

 

Q3 Upper left 
08 h−

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

08 w−⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0
 

 

From eqn. (1), the motion compensated block P consists of the lower-right part of 

sub-block Q0, the lower-left part of Q1, the upper-right part of Q2, and the upper-left part 

of Q3. Each component is computed by the pre-multiplication of Hi, which shifts the 

sub-block of interest vertically, and the post-multiplication of Gi, which shifts the 

sub-block horizontally. 

Since the DCT is a unitary orthonormal transform, it is distributive to matrix 

multiplication. Hence, we can express the DCT representation of eqn. (1) as 
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G  (2) 
3

0

ˆ ˆˆ ˆ
i i i

i=
= ∑P H Q

where the 2D-DCT of an 8×8 block A is represented as Â = DCT(A). The horizontal and 

vertical displacement matrices can be pre-computed and stored in memory.  

In eqn. (2), the extraction of a single 8×8 block requires up to 4 × 8 × 64 × 2 = 4096 

floating-point multiplications, which are huge computations. To speed-up the MC-DCT 

in [18], several faster implementations are proposed to improve the computation of eqn. 

(2). In [19], MC-DCT is simplified through factorizing the displacement matrices into 

relatively sparse matrices such that the number of computations required is reduced. The 

work in [9] approximates the elements of Ĥi and Ĝi to binary numbers and replaces the 

multiplication with shifters and adders. Another efficient computation method on 

macroblock basis is derived in [20]. It utilizes shared information within a macroblock, 

such as MV and common blocks, to yield substantial speedup in computation. 

The generic frequency-domain transcoder is constructed with the MC-DCT 

technique to allow entire transcoding operations in the frequency domain. Since MC can 

be performed in the frequency domain, the operations of DCT and IDCT in Fig. 3 can be 

saved to allow a structurally more efficient transcoding. Fig. 6 shows the design flow of 

the Cascaded DCT-Domain Transcoder (CDDT) proposed in work [6], which operates 

the transcoding without any DCT transformations in the frequency domain.

There are two design issues in the generic frequency-domain transcoding 

architecture. The first is that MC-DCT may introduce reconstruction mismatches to cause 

transcoding drift error. Ideally, CDDT is a functionally equivalent representation of 

CPDT which is drift-free. However, the matrix multiplications in MC-DCT may 

introduce operational precision mismatches, and frame reconstruction in the frequency 

domain may introduce rounding errors. Although theses mismatches may cause drift, this 

type of transcoding error only leads to slight quality degradation and is almost ignorable. 

The second design issue is the operational complexity of the MC-DCT. The complexity 

of CDDT highly depends on the MC-DCT implementation method, and the complexity of 

MC-DCT depends on the complexity of matrix multiplication. Thus, applying an efficient 



matrix multiplication in MC-DCT can highly improve the frequency-domain transcoding 

efficiency. 

 

Fig. 6. Cascaded DCT-Domain Transcoder (CDDT) 

2.1.2.2. Simplified Frequency-Domain Transcoder 

More complexity reduction can be achieved by analyzing and improving the 

redundancy in CDDT. For real-time applications, the complexity in CDDT is still too 

high to be used. To analyze the CDDT as shown in Fig. 6, we find the behavior of the 

frame reconstruction in the decoder-loop and the encoder-loop is almost identical under 

the assumption of the same MC behavior and the same quantization step size. The MC 

behavior depends on video encoding standards and will not be an issue if both the 

decoder-loop and encoder-loop specify the same MC structure. The quantization step size 

is controlled by many encoding parameters such as the rate control. Therefore, to simplify 

the CDDT architecture, the two frame reconstruction operations should be merged by 

using a shared MC to compensate for the quantization mismatches between the 

decoder-loop and the encoder-loop. Such an idea can be easily realized in homogeneous 

 10



transcoding which uses the same MC structure. Some prior works in [7]-[9] design their 

simplified transcoders based on such a design idea to save one more MC operation. 

To identify the design idea, a brief derivation is provided as follows. From Fig. 6, 

the residual in the encoder-loop is given by 

 ( ) ( )( )2 *
1,n n nX X MC X mv−= − 2  (3) 

where MC(.) is the motion compensation process, the subscript on the variable indicates 

time, and the superscript of “1” and “2” represents the decoder-loop and the 

encoder-loop, respectively. Here, we denote a signal with quantization effect as 

 ( )( )*X IQ Q X=  (4) 

where Q(.) and IQ(.) stand for quantization and inverse quantization, respectively. The 

reconstructed signal in the decoder-loop is given by 

 ( ) ( )( )1
1,n n n

1X B MC Y mv−= +  (5) 

Substituting eqn. (5) into eqn. (3), we can yield   

 ( ) ( )( ) ( ) ( )( )1 1 2 *
1,n n n nX B MC Y mv MC X mv−= + − 2

1,−   (6) 

Assuming mv(1) = mv(2) (i.e., MVs are not recalculated) and the sub-pixel MCs in the 

decoder-loop and encoder-loop perform the same interpolation filtering, it can be stated 

that 

 ( ) ( )( ) ( ) ( )( )1 1 2,n
2,nMC X mv MC X mv=  (7) 

Based on the assumption that the MC is a linear operation, i.e., MC(X + Y, mv) = MC(X, 

mv) + MC(Y, mv), we may rewrite eqn. (6) as 

 ( )( )1*
1 1,n n n nX B MC Y X mv− −= + −  (8) 

From eqn. (8), the prediction residual in the encode-loop in the transcoder can be 

obtained by adding the motion compensated frame differences to the incoming prediction 

residual.  
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Since Yn = Xn, we have 

 ( )( )1*
1 1,n n n nX B MC X X mv− −= + −  (9) 

Furthermore, we may get the corresponding equivalent equation for Xn-1 – X*
n-1 by 

applying eqn. (3). 

 

( )( )
( )( )( )
( )( )( )

1* *
1 1 1 2 1

1* *
1 1 2

*
1*

1 1 2

*
1 1

,

,

,

n n n n n

n n n

n n n

n n

X X X MC X mv X

X X MC X mv

X X MC X mv

X X

− − − − −

− − −

− − −

− −

− = + −

= − −

= − −

= −

*

 (10) 

Finally, eqn. (9) is reduced to 

 ( )( )1*
1 1,n n n nX B MC X X mv− −= + −  (11) 

Based on eqn. (11), the architecture in Fig. 6 is transformed into the architecture in Fig. 7. 

This is referred to as the Simplified DCT-Domain Transcoder (SDDT). 

Significant complexity reduction is attained in SDDT. Compared to CPDT in Fig. 

3, SDDT not only eliminates the DCT/IDCT, but also reduces the size requirement of 

frame buffers by half. Only one MC loop is required to store the difference values 

between the reconstructed pictures in the decoder-loop and the encoder-loop in this 

architecture. This complexity reduction is achieved in sacrifice of the flexibility of 

cascaded architectures. In the above derivation, SDDT assumes the MVs after the 

transcoding to be the same as those before the transcoding in order to merge the two MCs. 

This architecture is based on the assumption of using the same MC structure, so SDDT 

has limited applications such as bit rate transcoding. 
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Fig. 7. Simplified DCT-Domain Transcoder (SDDT) 

 

Fig. 8. Open-loop transcoder 

2.2. Video Transcoding Techniques 

The video transcoding techniques are built upon the transcoding architectures 

presented in Section 2.1, and used to improve the transcoding performance by adjusting 

the encoding parameters. Two common transcoding techniques including intra 

refreshment and rate control are reviewed. 

2.2.1. Intra-Refresh Technique 
To stop the drift propagation of errors introduced in reduced resolution transcoding, 

an intra-refresh transcoding technique is proposed in [10]. The intra-refresh technique 

adaptively forces the inter-coded blocks to be intra-coded based on drift estimation in the 

compressed bitstream. Since intra-coded blocks will not use the other frames for image 

reconstruction, this type of conversion stops the drift propagation. 
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Fig. 9. Intra refresh in open-loop architecture 

Fig. 9 shows an open-loop transcoder in which the intra-refresh technique is 

applied. The module Inter-to-Intra Conversion in Fig. 9 either bypasses the inverse 

quantized DCT coefficients or uses the reconstructed coefficients from the frame memory 

instead according to the intra-refresh rate, which is the percentage of intra-coded 

macroblocks in one frame. The intra-refresh rate is adaptively adjusted according to the 

estimated value of drift. It should be noted that more bits are usually required for coding 

intrablocks. Therefore, the intra-refresh operation and the rate control must be considered 

jointly. 

Although the intra-refresh technique demonstrates the ability to correct drift errors, 

its effectiveness is achieved using additional MC and frame memory to reconstruct the 

reference frame for the inter-to-intra conversions of the DCT coefficients. The 

architecture in Fig. 9 may seem to require less memory and computation than CPDT and 

CDDT. The reason is that the open-loop transcoder upon which the intra-refresh 

technique is implemented needs no MC prediction loop at all. If the intrablock refresh 

method is realized in close-loop architectures [11], the question whether complexity 

reduction is possible remains debatable. 
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2.2.2. Rate Control Issues 
The purpose of rate control is to provide better and consistent video quality under 

the bandwidth constraint. It involves two basic steps, picture-layer bit allocation and 

macroblock-layer rate control. The picture-layer bit allocation determines the target bit 

budget for each frame. The macroblock-layer rate control adjusts the quantization 

parameters for coding the macroblocks. Generally speaking, all rate-control algorithms 

designed for video coding are applicable to transcoding. 

Rate control in transcoding either targets at providing accurate bit rate adaptation or 

improving the coding efficiency by exploiting the coding statistics collected from the 

input compressed bitstream. The design issue for bit rate transcoding is actually the same 

as that for conventional video coding. It is to allocate proper bits to a picture proportional 

to its complexity such that the output rate would comply with the bit rate constraint. The 

only difference lies in the availability of content characteristics for transcoding. A 

straightforward implementation for bit rate transcoding might scale the input bits of each 

frame, which can be easily obtained from the pre-encoded video streams, according to the 

rate conversion ratio. Better bit allocation is possible by further exploiting the 

correlations between the input and the output picture complexities [21]. In [22], a 

ρ-domain rate-distortion model is adopted to obtain the optimal number of bits for each 

frame. This frame-level rate-distortion information is pre-generated in the front-encoder 

and transmitted to the transcoder as side information. The work in [9] derives the optimal 

set of quantizer scales based on Lagrangian optimization. 

2.3. Evaluation of Transcoding Architectures 

In the previous sections, we have discussed the transcoding architectures and 

transcoding techniques. Each architecture raises different design trade-off issue in 

computational complexity and visual quality. This section analyzes these transcoding 

architectures in terms of complexity and drift error. 
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2.3.1. Complexity Analysis 
Table 2 shows the complexity analysis for four types of transcoding architecture. 

The first type referred to as DEC-ENC implements a straightforward method to fully 

decode the input bitstream and fully encode the reconstructed video from the decoder 

side. Such a method doesn’t save any computations and is the most computationally 

intensive. It needs 1 ME, 3 DCT/IDCT, and 2 MC operations. Type II implements CPDT 

architecture which reconstructs the video in pixel domain. Such a method saves 1 ME 

compared to Type I. Type III implements CDDT architecture which is a generic 

DCT-domain transcoder. This type of architecture saves 3 more DCT/IDCT operations 

compared to Type II. Type IV shows the most competitive ability in computational 

complexity compared to the first three types. It implements the simplified CDDT (also 

referred to as SDDT) which saves 1 more MC operation and 1 more frame buffer 

compared to Type III. From the viewpoint of computational complexity, Type I suffers 

most efforts in transcoding and Type IV is the most computationally efficient architecture 

which has more than 50% of computation reduction. 

Table 2. Complexity analysis of four transcoding architectures 

MC Type Transcoding  

Architecture 

ME Frame 

Buffer

DCT/

IDCT Spatial Transform 

I DEC-ENC 1 2 3 2 0 

II CPDT 0 2 3 2 0 

III CDDT 0 2 0 0 2 

IV SDDT 0 1 0 0 1 

  

2.3.2. Drift Error Analysis  
Drift errors come from imperfect frame reconstruction during transcoding 

procedure, and the imperfect frame reconstruction causes the mismatches to propagate 

between frames. Analyzing the four architectures in Table 2, the mismatches come from 

two major sources. The first type of mismatch comes from arithmetic operations 



including rounding errors or precision conversion errors, and is also referred to as 

arithmetic error in this thesis. We have identified three possible sources for the 

arithmetic error. The first source of error relates to the floating-point operation in 

transcoding. For example, different from pixel-domain MC, DCT-domain MC 

reconstructs the video in the DCT domain through floating-point matrix multiplication. 

But no processor can provide infinite precision to accurately manipulate these numeric 

data. Mismatch is then introduced. The second and third sources of error are due to the 

failed linearity assumption on which the derivation of SDDT is based, and hence are 

unique to SDDT. In the derivation of SDDT, in order to merge the MC operations in the 

decoder-loop and encoder-loop, we have assumed that MC is a linear operation which is 

not strictly true in practical situations. The second source of error comes from the 

saturation after the MC operation. In most standard video encoders, a clipping function is 

required in front of the frame memory. It saturates the reconstructed pixel values to lie in 

the range [0:255]. Taking into account the saturation, we can not reduce eqn. (6) into eqn. 

(8). 

 
( )( ) ( )( )
( )( )

*
1

*
1 1

, ,

,

n n n n

n n n

1X B MC S Y mv MC S X mv

B MC S Y X mv

−

− −

= + −

≠ + −

−
 (12) 

where S(.) denotes the saturation. In eqn. (12), the inequality is due to the nonlinear 

property of the clipping operation. Thus, combining the two frame memories in the 

derivation is inaccurate and the resultant architecture can produce errors. The third source 

of error comes from the rounding operations in MC. When the MV is in half-pixel 

precision, the MC calculates the half-samples by simple linear interpolation from the 

neighboring actual samples. The interpolation performs a rounding operation to obtain 

the closest integer. In CPDT and CDDT, the rounding function is applied to the 

reconstructed coefficients in the decoder-loop and encoder-loop, respectively. However, 

in SDDT, it is carried out with the differences. It can be shown that this mismatch might 

introduce error. 
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Let a, b be the values after half-pixel MC in the decoder-loop and the encoder-loop 

in CDDT, respectively. For simplicity, consider only horizontal component of the MV 

consists of half-pixel precision, then 

 

( ) ( )

( ) ( )

1 1

* *
1 1

, 1,
2

, 1
2

n n

n n

Y i j Y i j
a round

,X i j X i j
b round

− −

− −

+ +⎛ ⎞
= ⎜ ⎟

⎝
⎛ ⎞+ +

= ⎜ ⎟
⎝ ⎠

⎠  (13) 

where i, j denote the horizontal and vertical coordinates, respectively. The difference 

signal should be 

 ( ) ( ) ( ) ( )* *
1 1 1 1, 1, ,

2 2
n n n nY i j Y i j X i j X i j

a b round round− − − −⎛ ⎞+ + + +⎛ ⎞
− = − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

1,
 (14) 

However, the value after the same half-pixel MC in SDDT would be 

 
( ) ( )( ) ( ) ( )( )* *

1 1 1 1, , 1, 1,
2

n n n nY i j X i j Y i j X i j
c round − − − −

⎛ ⎞− + + − +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (15) 

In general, a – b ≠ c. Therefore, the rounding function in sub-pixel MC causes error.  

Table 3. Different types of drift error 

Drift Error Type Sources Architectures Affected 

Floating-point arithmetic CDDT, SDDT 

Saturation in MC SDDT Arithmetic error 

Rounding in MC SDDT 

Incoherent error Incoherent MC structure SDDT 

 

The second type of mismatch comes from incoherent frame reconstruction. Since 

the decoder-loop and encoder-loop of the transcoder may come from two different 

compression standards, the MC structure may use different reconstruction procedure 

which causes the reconstruction mismatch. One example is the MPEG-4 to MPEG-2 

transcoding in which MPEG-4 supports four MVs but MPEG-2 doesn’t. Such a mismatch 
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is referred to as incoherent error in this thesis. The above discussion is summarized in 

Table 3. 

Table 4 shows the drift error analysis of the four transcoding architectures. Type I 

and Type II reconstructs the video in pixel domain which is a standard compliant flow, so 

no drift error is involved. Type III which operates the MC in the DCT domain suffers 

from the first type of mismatch in rounding errors and precision conversion errors. Type 

IV which saves one more MC compared to Type III suffers from the same mismatch as 

Type III, but it introduces another mismatch in incoherent errors. The preserved single 

MC only implements the quantization error compensation. If heterogeneous transcoding 

which involves incoherent MC structures is implemented, such a type of transcoding 

architecture has no ability to compensate for these incoherent errors. Compared to the 

arithmetic error, the incoherent error leads to more serious quality degradation in 

transcoding. 

Table 4. Drift error analysis of four transcoding architectures 

Type Transcoding 

Architecture 

Types of Drift Error Effects 

I DEC-ENC N/A N/A 

II CPDT N/A N/A 

III CDDT Arithmetic errors Minor 

IV SDDT Arithmetic errors 

+  

Incoherent errors 

Minor for coherent MC structure 

Medium to serious for incoherent MC 

structure 

 

2.3.3. Evaluation and Discussion 
A new design challenge is raised in striking the balance between computational 

complexity and drift error reduction. From Table 2 and Table 4, Type I and II have the 

highest computational complexity, but introduce no drift errors. Type III has the medium 

complexity, but suffers from minor drift errors. Type IV has the lowest complexity, but 
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introduces minor drift errors in coherent MC structure and medium to high drift errors in 

incoherent MC structure. For real-time applications, we need the Type III’s drift error 

performance and Type IV’s computational complexity. In this thesis, we will explore 

another possibility to construct a multi-layer to single-layer transcoding architecture 

based on Type IV, but compensate for the drift errors by introducing the multi-layer 

transcoding technique. 
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Chapter 3  

FGS to Single-Layer Transcoder 

In this thesis, we focus on building a transcoding framework for FGS to 

single-layer transcoding. The multi-layer to single-layer transcoding framework is 

constructed on the basis of simplified frequency-domain transcoding architecture 

(SDDT) which is a single-layer to single-layer transcoding architecture. We extend this 

SDDT architecture to be used in multi-layer to single-layer transcoding such as 

FGS-to-MPEG-1/2/4. The design issues raised in homogeneous and heterogeneous 

transcoding are also discussed. 

3.1. Multi-Layer to Single-Layer Transcoding Framework 

The proposed transcoding framework targets on using a unified structure for 

converting MPEG-4 FGS multi-layer bitstream to MPEG-1/2/4 single-layer bitstream. 

For real-time application which needs least computation, the SDDT with least 

transcoding computation compared to the other spatial or frequency domain transcoding 

architectures is adopted in this thesis. Since the SDDT is a single-layer to single-layer 

transcoding architecture, it can not be applied directly to our target application of 

FGS-to-MPEG-1/2/4 transcoding which is a multi-layer to single-layer transcoding. 

Some modifications are needed to allow the SDDT architecture to be applied to our 

FGS-to-MPEG-1/2/4 transcoding framework. 



 

Fig. 10. FGS to single-layer CDDT 

The proposed multi-layer to single-layer transcoding framework is to integrate the 

SDDT with a FGS-to-single-layer transcoder. In previous days, many 

FGS-to-single-layer transcoding works have been proposed. The authors in [24] 

proposed a single MC architecture in the spatial domain for FGS-to-MPEG-4@SP 

transcoding. Following a likewise work, we are able to integrate the SDDT with work 

[24] to extend the SDDT functionality to be compatible with FGS scalability. 

To provide a clear description about our multi-layer to single-layer transcoding 

framework, Fig. 10 first shows the design flow chart for FGS-to-single-layer CDDT and 

then follows the step-by-step derivation to FGS-to-single-layer SDDT as shown in Fig. 

11. In the beginning, the decoder-loop in the transcoder receives two FGS coded 

bitstreams including a base layer (BL) and an enhancement layer (EL). The reconstructed 

picture in the decoder-loop is given by 

 ( ) ( )( )1
1,n n nY B MC Y mv−= + 1  (16) 
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It should be noted that the EL is independent of the MC in the BL, and directly added to 

the reconstructed coefficients after being bit-plane decoded. 
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n n nX Y E= +  (17) 

Substituting eqns. (16) and (17) into eqn. (3), we may obtain 

 

( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )

2 2*
1

2 2*
1

1 1 2 *
1 1

,

        = ,

        = , ,

n n n

n n n

n n n n

X X MC X mv

Y E MC X mv

2B MC Y mv E MC X mv

−

−

− −

= −

+ −

+ + −

 (18) 

Assuming mv(1) = mv(2), MC(1)(X, mv) = MC(2)(X, mv), and MC is a linear assumption, we 

can derive eqn. (19) from eqn. (18). 

 ( )( )1*
1 1,n n n n nX B MC Y X mv E− −= + − +  (19) 

Applying eqn. (17) into eqn. (19), we can yield 

 
( )( )

( ) ( )( )

1*
1 1

1*
1 1 1

,

,

n n n n n

n n n n

X B MC Y X mv E

nB MC X E X mv E

− −

− − −

= + − +

= + − − +
 (20) 

Replacing the frame differences with the residual differences as in eqn. (10), eqn. (20) is 

reduced to 

 
( ) ( )( )
( ) ( )( )

1*
1 1 1

1*
1 1 1

,

,

n n n n n n

n n n n

X B MC X X E mv E

nB MC X X E mv E

− − −

− − −

= + − − +

= + − − +
 (21) 

This derivation for prediction residual as shown in eqn. (21) is very similar to eqn. (11) 

which we have in SDDT, except for those enhancement-layer related terms. The 

influence of the EL is in two ways. Firstly, the reconstructed frame as shown in eqn. (17) 

contains the EL coefficients (En) for refinement. Secondly, the reconstructed frame with 

EL refinement is used to reconstruct the next reference frame for the encoder-loop which 

originally should use BL only to reconstruct pictures. The second influence will introduce 

mismatches for those using the decoded set of MVs and residues without proper 



correction. Different reconstructed frames are generated between the transcoder and 

end-users, and such a mismatch will propagate frame by frame with obvious quality 

degradation. To avoid the mismatches, the effects of EL in reconstructed frames must be 

removed. One possible solution is to implement a full-scale ME for the correct MVs to be 

used for the reconstruction from BL added with EL. But such a solution costs too much 

computation. Another way is to remove the effects of EL from the reconstructed frames in 

the encoder-loop. Therefore, the term of En-1 in eqn. (21) is added to avoid the 

reconstruction mismatches between the transcoder and end-users. The proposed 

multi-layer to single-layer transcoding framework is shown in Fig. 11. Based on this 

framework, we are able to transcode the FGS bitstream to either format of MPEG-1/2/4 

video bitstream by merely replacing the standard compliant entropy coder (VLC), 

quantization table (Q2), etc. 

 

Fig. 11. FGS to single-layer transcoder 

The multi-layer to single-layer transcoding framework preserves the same 

transcoding efficiency as the SDDT in computation. Compared to the CDDT shown in 

Fig. 10, the proposed framework saves 1 MC operation and 1 frame memory, and 4 more 

DCT/IDCT as compared to the CPDT. 

Although the proposed multi-layer to single-layer transcoding framework is a 

computationally efficient architecture, it suffers from the same problems as the SDDT 

including arithmetic error and incoherent error which are mentioned in Chapter 2. To dig 
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deeper to see the problems, we have identified three possible sources to cause drift errors 

in the proposed framework. 

1. Rounding mismatches and precision conversion mismatches from MC-DCT.  

2. Rounding mismatches and saturation mismatches from single MC 

implementation in frequency domain. 

3. Incoherent errors from heterogeneous transcoding. 

The effects for the first and second types are minor and usually negligible. The third type 

which is dedicated to the heterogeneous transcoding has dominant influences on drift 

errors if the drift errors are not well-handled. In the next section, we will dedicate the 

discussion to the design issues of heterogeneous transcoding. 

3.2. Design Issues of Heterogeneous Transcoding 

This section discusses the design issues to explore the exact drift error sources in 

heterogeneous transcoding. As what we have discussed, the proposed framework has 

three possible drift error sources. The first type including rounding mismatch and 

precision conversion mismatch is dedicated to the MC-DCT problems. The matrix 

operations in MC-DCT determine how serious this problem will be. For example, the 

matrix operational results using integer precision representation is different from using 

double precision representation. But, usually such a mismatch contributes minor drift 

errors and is ignorable. The second type including rounding mismatch and saturation 

mismatch is introduced by using single MC in the frequency domain. In eqn. (19), we 

have assumed  MC(Yn-1 – X*
n-1, mv) =  MC(Yn-1, mv) – MC(X*

n-1, mv) under the 

assumption that MC(.) has the linear characteristic. But the sub-pixel interpolation 

operations in MC(.) contain rounding and saturation operations which are non-linear. 

Such a type of mismatch is similar to the first type which is one kind of arithmetic errors 

and will only introduce minor drift errors in general. The third type is the incoherent error 

from heterogeneous transcoding. This type of mismatch comes from the incompatible 

coding toolsets in various compression standards. To analyze this type of mismatch, we 

need to survey the supported toolsets in these standards we want to support. 
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Table 5. A summary of the toolsets in MPEG-1, MPEG-2, and MPEG-4 

Features MPEG-1 MPEG-2 MPEG-4 

Profiles N/A Main Fine Granularity Scalable 

Processing Unit Macroblock Macroblock Macroblock 

Picture Types I, P, B I, P, B I, P, B 

Unconstrained MV Not supported Not supported Supported 

4 MV Not supported Not supported Supported 

Block Transform 8×8 DCT 8×8 DCT 8×8 DCT 

Prediction Modes Frame only Field, frame Field, frame 

Support Formats Progressive Progressive & interlaced Progressive & interlaced 

 

Table 5 summaries the supported coding toolsets in MPEG-1, MPEG-2 and 

MPEG-4. From this table, we can observe that the coding toolsets supported by MPEG-1 

and MPEG-2 are quite similar, except for the interlaced mode support, entropy coding 

tables and quantization tables, etc. MPEG-4 has more distinct differences in supported 

coding toolsets compared to MPEG-1/2. According to eqn. (19), what we really need to 

care is 4-MV and Unconstrained MV (UMV) which may fail our assumption of mv(1) = 

mv(2). Four MV is to support the MC on 8×8 block basis. Since MPEG-1/2 does not 

support MV for 8×8 block, we need to re-map these four 8×8 MVs into a new 16×16 MV 

for coding. The UMV is to allow MPEG-4 MV to point out of the picture boundary, while 

MPEG-1/2 doesn’t. To simplify the computation, only a simple clipping operation is used 

to limit the UMV to lie inside the picture boundary. 

Although the input MV can be modified to comply with the syntax in the 

end-decoder, it is not the correct MV for the corresponding prediction error. In two MC 

architectures such as CPDT and CDDT, the MC loop in the encoder-loop re-computes the 

prediction residual according to the re-mapped MV. However, the same design flow is 

not suitable for our multi-layer to single-layer transcoding framework, since in our 

multi-layer to single-layer framework, it doesn’t allow the residue re-compilation. So, the 

coding residues will not be able to match the motion compensated data for perfect 

reconstruction. And then, obvious quality degradation occurs. To solve this problem, we 



derive a new equation for the prediction residual in the encoder-loop in the transcoder by 

taking into account these heterogeneous transcoding effects. 

From eqn. (18), we modify the eqn. (18) into eqn. (22) by removing the assumption 

of mv(1) = mv(2). 
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Note that the difference between eqns. (19) and (22) is in the second term which is the 

difference of using different MVs for MC. To integrate eqn. (10) into eqn. (22), we get a 

new form as eqn. (23). 

 
( ) ( )( )

( ) ( )( ) ( ) ( )( )

2 2*
1 1 1

1 1 2 2
1 1

,

  , ,

n n n n n n

n n

X B E MC X X E mv

MC Y mv MC Y mv

− − −

− −

= + + − − +

−
 (23) 

In eqn. (23), the prediction error in the encoder-loop in a heterogeneous transcoder 

comprises the original decoded prediction error from the input bitstreams (including BL 

and EL) and an additional drift error term. The drift error (d) can be expressed as 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 1 1 2*

1 1 1 1 1, ,n n n n n

q p

d MC X X E mv MC Y mv MC Y mv

d d
− − − − −= − − + −

= +

2,
 (24) 

where 

 ( ) ( )( )2 *
1 1 1,q n n nd MC X X E mv− − −= − − 2  (25) 

and 
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 ( ) ( )( ) ( ) ( )( )1 1 2
1,p n nd MC Y mv MC Y mv−= − 2

1,−  (26) 

In eqn. (24), the drift error has been decomposed into two components. The first 

component dq represents the arithmetic error which we may neglect as mentioned in 

Section 3.1. This is a common drift error that has been observed in many other 

transcoding works. In Fig. 11, the motion-compensated loop is used to compensate for 

this type of error. The second component dp is from the heterogeneity of MC 

implementation between the decoder-loop and encoder-loop. Since MPEG-1/2 supports 

neither four MV MC nor unrestricted MC, the prediction residual of an inter-coded 

macroblock should be compensated with the differences between the predictions formed 

in the decoder-loop and encoder-loop. This type of error is also referred to as the 

incoherent error in Section 2.3.2. This incoherent error may cause more than 2 dB quality 

loss in PSNR depending on different GOP sizes or sequences. 

Targeting on drift-free transcoding, the two types of drift errors dq and dp where dp 

dominates how serious the drift errors in the proposed multi-layer to single-layer 

transcoding framework will be should be eliminated. The component dp is composed of 

the difference between the two MCs in the decoder-loop and the encoder-loop. For 

homogeneous transcoding, dp can be easily eliminated since MC(1)(.) = MC(2)(.) under the 

assumption of mv(1) = mv(2). But in heterogeneous transcoding with single MC 

architecture, the unknown property of mv(1) = mv(2) and MC(1)(.) = MC(2)(.) makes the dp 

unpredictable. First, mv(2) may come from various combinations in the cases of four MV 

or UMV. Secondly, since only one MC is used, we can’t predict both MC(1)(.) and 

MC(2)(.). Such two reasons make dp unable to be reconstructed perfectly theoretically. 

The prior arts adopt various transcoding techniques such as intra refreshment to stop the 

error propagation, but these methods only focus on eliminating the drift errors, but not 

stopping the error generation. To perfectly stop the error generation, we need side 

information to compensate for the dp. Therefore, in addition to the BL and EL, a third 

auxiliary layer is introduced in the transcoding design to compensate for the incoherent 

errors. Such a technique is called multi-layer transcoding technique in this thesis. 
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Chapter 4  

Multi-Layer Transcoding Approach 

In this chapter, a novel multi-layer transcoding approach is proposed to compensate 

for the drifting error from the incoherent MC structure. This multi-layer transcoding 

approach introduces an additional enhancement-layer (EL) bitstream containing the 

pre-calculated incoherent errors. This pre-calculated error layer is used to compensate for 

the errors in heterogeneous transcoding for the drift-free target. Under channel bandwidth 

limitation, a rate-distortion model is presented to optimize the streaming in original 

enhancement layer and this additional enhancement layer. 

4.1. Drift Compensation with Additional Enhancement Layer 

Severe drift error may be introduced in our multi-layer to single-layer transcoding 

framework when transcoding operates across different video compression standards. 

According to the analysis in Section 3.2, the reason is that the proposed SDDT 

architecture only compensated for the arithmetic errors which primarily come from the 

re-quantization process, but neglected the component of the incoherent errors, which 

comes from the incoherent MC structures between different standards. However, as what 

we demonstrated in Section 3.2, using single MC structure is unable to obtain enough 

information for drift-free heterogeneous transcoding. As shown in eqn. (26), the required 

information for compensating for the incoherent errors comes from the decoder-loop in 

the transcoder (Yn-1), which is not available in the multi-layer to single-layer transcoding 

framework with single MC. There were other drift-elimination schemes such as the intra 

refresh technique, but they all suffer from the weakness of inexact compensation. Such 



kinds of transcoding techniques only stop the error propagation by periodically update an 

error-free block or an error-free frame passively. To aggressively solve this error drifting 

problem, the error information should be available for compensation. Therefore, to 

perform drift-free transcoding using the proposed multi-layer to single-layer framework 

which is unable to generate such an error term on its own, we need these error information 

to be transmitted from the front-encoder. 
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Fig. 12. Corresponding FGS encoder framework for MSDDT 

The multi-layer streaming technique is to pre-generate the incoherent errors dp in 

the font-encoder due to that this encoder is able to generate the same information as the 

decoder-loop in the transcoder. From eqn. (26), We can find that generating the mismatch 

due to different MC structures requires only the reference pictures in the decoder-loop in 

the transcoder, under the assumption of MC(1)(X, mv) = MC(2)(X, mv). Thus, we may 
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pre-generate the incoherent errors in the front-encoder as eqn. (27) and transmit the errors 

as side information to the transcoder. 

 ( ) ( )( ) ( ) ( )( )1 1 1
1,p n nd MC Y mv MC Y mv−= − 2

1,−  (27) 

Here, we also assumed that the MV mapping method is known in the front-encoder, 

which is true since this FGS encoder is designed especially for our application. Fig. 12 

shows the modified FGS front-encoder, in which an additional EL is introduced by 

bit-plane coding the differences between the motion compensated predictions from 

different MC structures of the decoder-loop and encoder-loop. In the following, we will 

denote this additional EL as the error layer or EL2. Transferring of the component dp in 

eqn. (27) to the front-encoder does not bear any burden, since the video content for 

transcoding is mostly encoded in advance such that no real-time constraint is imposed. 

With introducing this auxiliary layer as side information, we can simply 

compensate for the drift error dp by bit-plane decoding the error layer bitstream. Fig. 13 

shows the multi-layer to single-layer transcoding framework with the multi-layer 

transcoding technique. This architecture is referred to as the Multi-layer Simplified 

DCT-Domain Transcoder (MSDDT) in this thesis. In this architecture, the transcoding 

efficiency of SDDT which requires only one frame store and one MC is preserved. But 

since a third layer is introduced, we will need the corresponding VLD module for 

decoding this auxiliary bitstream, in which the overhead produced on computation is 

negligible. Hence, the structural simplicity of the original transcoding design is preserved 

while both sources of drift error are perfectly compensated if the error layer is completely 

received. The sole trade-off is that the transmission of the error layer bitstream requires 

additional bandwidth. 
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Fig. 13. Multi-layer Simplified DCT-Domain Transcoder (MSDDT) 

In summary, we implemented the multi-layer transcoding approach based on the 

proposed multi-layer to single-layer transcoding framework to resolve the drift 

propagation problem in heterogeneous transcoding. In an ideal case with infinite 

bandwidth, this proposed architecture shown in Fig. 13 should be able to obtain the same 

rate-distortion performance as CDDT. This is because both types of drift error (dq and dp) 

can be perfectly compensated. But the available bandwidth is usually constrained in most 

practical applications, and hence raises the issue of how to allocate the limited bandwidth 

resources to both layers (EL and error layer) for efficient transmission. In the next 

section, an optimized model is constructed for the selection of the enhancement layer and 

the error layer. 

4.2. Multi-Layer Transcoding with R-D Optimization 

An R-D model is constructed to solve the multi-layer transcoding problems under 

the limited channel bandwidth. To perform drift-free transcoding, an additional error 

layer containing the coefficients of the incoherent errors is used as side information to be 

transmitted to the transcoder. But since channel bandwidth is limited, the resource 
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allocation for achieving the best transcoding performance and decoded video quality 

becomes very important. 

To model the resource allocation problem under the limited channel bandwidth, 

eqn. (28) shows the relationship between the original enhancement layer (EL1) and the 

error layer (EL2). Suppose the given bit rate for the two enhancement-layer bitstreams is 

R. The solution is to find the best inter-layer ratio α to provide the best transcoding R-D 

performance. The definition is given in eqn. (28) in which RE is the bit rate of EL1 and Rε 
is the bit rate of EL2 

 ( ) s.t.  and 1E E
E

E

R R R R R
R R R ε

ε

α α= = = = −
+

Rα  (28) 

Since FGS enables progressive transmission, both the EL and error layer are capable of 

being arbitrarily truncated to any desired bit rate according to the inter-layer ratio (α) and 

the given bit rate (R). Now, the problem is how to find the best α under given bit rate (R) 

as shown in eqn. (29). 

 
[ ]

( ) ( )
0,1

arg min  given opt ED R R Rε
α

α α
∈

= = +  (29) 

where D(.) is the distortion function. 

To provide the optimized solution to eqn. (29), one solution is to exhaustively 

search through all possible values of α in the range of [0, 1] for the one with the minimum 

distortion. But such a method takes too much computation powers, and is not preferred. 

One efficient but effective way to do is to build an R-D model to provide the best 

transcoded R-D performance. 
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To construct the relationship between R and αopt, a statistical method to observe 

various sequences and bit rates is used. We simulated the MSDDT with various 

combinations of R and α, where R ranges from 0 to 2560 Kbps with an interval of 256 

Kbps and α from 0 to 1 with a step size of 0.05. To bind the influence from the 

encoder-loop in the transcoder, constant quantization is used for re-encoding. The bit rate 

of the BL is adjusted to 256, 512, 1024, and 2048 Kbps with TM5 rate control. Four 

sequences including Akiyo, Foreman, Mobile, and Stefan in CIF format are used for 

testing with GOP structure N = 15, M = 1 (i.e., IPPP…). Fig. 15 to Fig. 18 show the 



resultant rate-distortion curves for various α, where the horizontal axis is the available bit 

rate for all ELs (R) and the vertical axis is the distortion measure in mean square error 

(MSE) of the transcoded video (D(.)). The dotted lines represent the interpolated 

rate-distortion data for different values of α, and the bold lines indicate the rate-distortion 

optimized inter-layer ratio αopt, where the distortion is minimized subject to the given bit 

rate. Based on the results in Fig. 15 to Fig. 18, we may obtain the relationships between R 

and αopt for different sequences and BL bit rates, as shown from Fig. 19 to Fig. 22. 

From Fig. 19 to Fig. 22, these relationships exhibit similar properties such as being 

monotonically increasing or being saturated with high input bit rate. This observation 

makes it easier to construct a single model to predict all the others. Based on this idea, we 

present a new model to describe the relationship between R and αopt. Four common 

models are experimented for assessment, including linear, power-law, quadratic, and 

exponential. Among them, the power-law and quadratic polynomial act as the most 

promising candidates for modeling the actual relationships since they both demonstrate 

resembling functional property as the results in Fig. 19 to Fig. 22, as shown in Fig. 14. 

Table 6 shows the approximation of the curve using four different models and we can find 

that the power-law model provides the best approximation results. So, the new model is 

formulated in the equation as eqn. (30). 

 b
opt aR cα = +  (30) 

where (a, b, c) is the set of model parameters. 
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Fig. 14. General curve behaviors for different models 

Table 6. RMSE of the estimation of the (R, αopt) relationship using different models 

RMSE Linear Power-Law Quadratic Exponential 

Akiyo 0.0411 0.01178 0.01929 0.0423 

Foreman 0.09279 0.01757 0.06005 0.1001 

 

Fig. 23 shows the fitting curve of the actual (R, αopt) data which is an averaged form of all 

the experimented models. Note that this model provides statistical information. The 

actual relationship between R and αopt may vary with the video content and the BL bit 

rate. For example, for sequences with slow motion such as Akiyo, the amount of the 

incoherent error in the video streams is minor such that αopt tends to saturate faster, or for 

high BL bit rate such as Mobile@2048 Kbps, the contribution of the EL is insignificant 

since the BL is already with very high video quality, thus αopt shows bias toward the error 

layer when the bandwidth resource is limited. Through experimental results in later 

chapter, it can be shown that the proposed power-law model with single parameter set is 

capable of accommodating the variation in video characteristics and provides satisfying 

transcoding performances compared to the optimized approach. 
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Fig. 15. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left), 
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 256-Kbps BL bit rate 
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Fig. 16. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left), 
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 512-Kbps BL bit rate 
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Fig. 17. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left), 
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 1024-Kbps BL bit rate 
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Fig. 18. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left), 
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 2048-Kbps BL bit rate 
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Fig. 19. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower 
right) at 256-Kbps BL bit rate 
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Fig. 20. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower 
right) at 512-Kbps BL bit rate 
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Fig. 21. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower 
right) at 1024-Kbps BL bit rate 
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Fig. 22. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower 
right) at 2048-Kbps BL bit rate 

 39



0 500 1000 1500 2000 2500 3000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bit Rate (Kbps)

α
op

t

 

 

actual
pow

 

Fig. 23. The fitting curve for (R, αopt) using the power-law model 
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Chapter 5  

Experimental Results 

This chapter demonstrates the experimental results of the proposed multi-layer to 

single-layer transcoder. R-D performance and complexity comparisons are provided to 

show that the proposed transcoder can provide good transcoding qualities. 

5.1. Test Conditions 

The test conditions for the experiments of FGS multi-layer to MPEG-1/2/4 single 

layer are presented as below. The source video sequences are first encoded and archived 

as three FGS bitstreams consisting of the BL bitstream, the EL bitstream, and the 

error-layer bitstream. The BL bitstream samples the source video sequence at 30 Hz.  

- Video source format — CIF 30 fps 

- Test video sequences — Foreman, Akiyo, Mobile, Foreman, etc. 

- Video GOP structure — N = 15, M = 1 (i.e., IPPP…). 

- Video bit rate for FGS base-layer bitstream — 256 Kbps, 512 Kbps, 1024 

Kbps, 2048 Kbps with TM5 rate control. 

- Video coding tools — no advanced coding tools in MPEG-4 FGS Profile such 

as frequency weighting or selective enhancement are used in the FGS EL. 

Five transcoding architectures are used for transcoding performance comparison. 

 Cascaded Pixel-Domain Transcoder (CPDT) 

 Cascaded DCT-Domain Transcoder (CDDT)  

 Simplified DCT-Domain Transcoder (SDDT)  
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 Modified Simplified DCT-Domain Transcoder where the inter-layer ratio α is 

determined using the exhaustive search with a step size of 0.05 (MSDDT_Opt) 

 Modified Simplified DCT-Domain Transcoder where the inter-layer ratio α is 

determined using the proposed power-law model (MSDDT_Pow)  

To simulate the possible channel bandwidth variation, the total bit rate of the 

enhancement-layer bitstreams is truncated to bit rate ranging from 256 to 2048 Kbps with 

an interval of 256 Kbps. The truncation of EL bitstream is implemented in the streaming 

server through a simple frame-level bit allocation which averages the given bandwidth. In 

the re-encoding process, the constant quantization step sizes (QPs) are employed, where 

the set of QP used is chosen such that the output transcoded bit rate would approach the 

total input bit rate (BL + ELs). 

5.2. Rate-Distortion Performance 

5.2.1. MPEG-4 FGS to MPEG-1 
Fig. 24 to Fig. 27 show the rate-distortion performances of four transcoding 

architectures, including CPDT, CDDT, SDDT, and MSDDT with the proposed 

power-law model (MSDDT_Pow). We design a single parameter set of (a, b, c) = 

(0.3476, 0.18573, -0.77644) for MSDDT_Pow for various BL bit rates. The target 

scenario is to transcode MPEG-4 FGS bitstream into MPEG-1 bitstream. From Fig. 24 to 

Fig. 27, we can find that SDDT suffers from serious quality degradation due to incoherent 

errors in heterogeneous transcoding. Our proposed MSDDT_Pow running at 256-Kbps 

base-layer bit rate provides up to 4.7 dB, 2.6 dB, and 3.8 dB gain in PSNR over the SDDT 

for the Foreman, Mobile, and Stefan sequences, respectively. Compare with the CPDT 

architecture which is usually treated as the transcoder golden reference, the proposed 

MSDDT_Pow architecture under 256-Kbps base-layer bit rate has only 0.3–0.6 dB, 

0.3–0.4 dB, and 0.3–1.1 dB loss in PSNR under various bit rates for the Foreman, Mobile, 

and Stefan sequences, respectively. Table 7 summarizes the comparison results for the 4 

types of transcoder architectures including CPDT, CDDT, SDDT and the proposed 



MSDDT_Pow at about 1200 Kbps, 1200 Kbps, and 1300 Kbps for Foreman, Mobile, and 

Stefan, respectively. 

26

27

28

29

30

31

32

33

34

300 500 700 900 1100 1300 1500

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

CDDT

MSDDT_Pow

SDDT

 
(a) 

20

21

22

23

24

25

600 800 1000 1200 1400

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

CDDT

MSDDT_Pow

SDDT

 
(b) 

21

22

23

24

25

26

27

28

29

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B
)

CPDT

CDDT

MSDDT_Pow

SDDT

 
(c) 

Fig. 24. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 256 Kbps. 
(a) Foreman (b) Mobile (c) Stefan 
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Fig. 25. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 512 Kbps. 
(a) Foreman (b) Mobile (c) Stefan 
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Fig. 26. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 1024 
Kbps. (a) Foreman (b) Mobile (c) Stefan 
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Fig. 27. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 2048 
Kbps. (a) Foreman (b) Mobile (c) Stefan 
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Table 7. Rate-distortion comparison for FGS-to-MPEG-1 transcoding 

PSNR (dB) CPDT CDDT MSDDT_Pow SDDT 

Foreman - +0.2 -0.6 -5.3 

Mobile - +0.3 -0.3 -2.9 256 Kbps 

Stefan - +0.2 -1.1 -4.9 

Foreman - 0  -0.3  -6.5  

Mobile - +0.1 -0.5  -3.4  512 Kbps 

Stefan - +0.2 -1  -5.7  

Foreman - 0  -0.4  -7.2  

Mobile - 0  -0.8  -4.3  1024 Kbps 

Stefan - +0.2 -0.8  -6.2  

Foreman - 0  -0.4  -7.4  

Mobile - 0  -0.9  -4.5  2048 Kbps 

Stefan - +0.2 -1  -6.8  

 

5.2.2. MPEG-4 FGS to MPEG-2 
Fig. 28 to Fig. 31 show the rate-distortion performances of five transcoding 

architectures, including CPDT, CDDT, SDDT, MSDDT with the optimized approach 

(MSDDT_Opt), and MSDDT with the proposed power-law model (MSDDT_Pow). We 

design a single parameter set of (a, b, c) = (0.3476, 0.18573, -0.77644) for MSDDT_Pow 

for various BL bit rates. The target scenario is to transcode MPEG-4 FGS bitstream into 

MPEG-2 Main Profile bitstream. From Fig. 28 to Fig. 31, we can find that SDDT suffers 

from considerable quality degradation due to incoherent errors in heterogeneous 

transcoding. Our proposed MSDDT_Pow running at 256-Kbps base-layer bit rate 

provides up to 2.4 dB, 5.9 dB, 3.4 dB, and 5.4 dB gain in PSNR over the SDDT for the 

Akiyo, Foreman, Mobile, and Stefan sequences, respectively. Compare with the CDDT 

architecture, the proposed MSDDT_Pow architecture running at 256-Kbps base-layer bit 

rate has 0.4–0.6 dB, 0.4–0.8 dB, and 0.4–1.4 dB loss in PSNR under various bit rates for 
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the Foreman, Mobile, and Stefan sequences, respectively. For the Akiyo sequence, the 

MSDDT_Pow running at 256-Kbps base-layer bit rate can achieve almost the same 

transcoding performance as the CDDT architecture, where the PSNR difference is within 

0.1 dB. Another comparison is between the MSDDT using the optimized approach and 

using the proposed model. From Fig. 28, we find that the MSDDT using the power-law 

model has almost identical PSNR values as the MSDDT based on the optimized 

exhaustive search running at 256-Kbps base-layer bit rate, which has at maximum a 0.3 

dB difference. Table 8 summarizes the comparison results for the 5 types of transcoding 

architectures including CPDT, CDDT, SDDT, MSDDT_Opt, and the proposed 

MSDDT_Pow at about 650 Kbps, 2100 Kbps, 2000 Kbps, and 2200 Kbps for Akiyo, 

Foreman, Mobile, and Stefan, respectively. 

Table 8. Rate-distortion comparison for FGS-to-MPEG-2@MP transcoding 

PSNR (dB) CPDT CDDT MSDDT_Opt MSDDT_Pow SDDT

Akiyo - -1.2 -1.2 -1.2 -3.6 

Foreman - 0 -0.6 -0.6 -6.5 

Mobile - +0.2 -0.6 -0.6 -4 
256 Kbps 

Stefan - +0.2 -1.2 -1.2 -6.6 

Akiyo - -1.1 -1.1 -1.1 -3.4 

Foreman - -0.2 -0.8 -0.8 -8.2 

Mobile - +0.1 -0.8 -0.8 -4.6 
512 Kbps 

Stefan - +0.2 -1.2 -1.2 -7.3 

Akiyo - -1.2 -1.2 -1.2 -3.3 

Foreman - -0.3 -1 -1 -9.2 

Mobile - +0.1 -0.4 -0.7 -5 
1024 Kbps 

Stefan - +0.1 -0.9 -1.1 -8.2 

Akiyo - -1.6 -1.6 -1.6 -3.5 

Foreman - -0.4 -0.8 -1 -9.6 

Mobile - 0 -0.2 -1.2 -5.8 
2048 Kbps 

Stefan - +0.1 -0.5 -1.5 -8.7 
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Fig. 28. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 256 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 29. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 512 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 30. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 
1024 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 31. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 
2048 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 

5.2.3. MPEG-4 FGS to MPEG-4 SP 
Fig. 32 to Fig. 35 show the rate-distortion performances of three transcoding 

architectures, including CPDT, the FGS-to-MPEG-4@SP transcoder proposed in [24], 

and MSDDT, for different BL bit rates. The target scenario is to transcode MPEG-4 FGS 

bitstream into MPEG-4 Simple Profile bitstream, which is free of incoherent error. As 

shown from Fig. 32 to Fig. 35, the three compared architectures share similar 

rate-distortion performances. Table 9 summarizes the comparison results for the three 

types of transcoding architectures including CPDT, work [24], and the proposed MSDDT 

at about 550 Kbps, 1600 Kbps, 2200 Kbps, and 2300 Kbps for Akiyo, Foreman, Mobile, 

and Stefan, respectively. 
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Fig. 32. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 256 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 33. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 512 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 34. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 1024 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 
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Fig. 35. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 2048 
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan 

Table 9. Rate-distortion comparison for FGS-to-MPEG-4@SP transcoding 

PSNR (dB) CPDT MSDDT_Pow FGS-to-SP [24]

Akiyo - 0 +0.1 

Foreman - 0 0 

Mobile - +0.2 0 
256 Kbps 

Stefan - +0.1 0 

Akiyo - 0 0 

Foreman - -0.2 0 

Mobile - +0.2 0 
512 Kbps 

Stefan - 0 0 

Akiyo - 0 0 

Foreman - -0.4 -0.1 

Mobile - +0.1 +0.1 
1024 Kbps 

Stefan - 0 0 

Akiyo - -0.4 0 

Foreman - -0.2 +0.1 

Mobile - 0 0 
2048 Kbps 

Stefan - 0 +0.2 
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5.3. Complexity Analysis 

5.3.1. Module-wise Comparison 
Table 10 shows the module-wise complexity comparison for the six transcoding 

architectures. Type I which is referred to as DEC-ENC cascades a full decoder with a full 

encoder, and takes the most computations compared with the other five architectures. 

Type II which is referred to as CPDT saves 1 ME by reusing the decoded MVs. Type III 

which is referred to as CDDT saves another 4 DCT/IDCT operations by operating 

transcoding in the DCT domain. Type IV which is referred to as SDDT performs MC 

using the residue differences only to reduce the requirement of two frame buffers to be 

one. Type V is a simplified pixel-domain transcoder proposed in [24] which is a similar 

form of Type IV, but requires 2 extra DCT/IDCT operations compared to Type IV to 

allow this architecture operating in pixel domain. Type VI is our proposed multi-layer to 

single-layer transcoder which uses the same transcoding architecture as Type IV, but with 

a proposed multi-layer technique for handling the incoherent error problem. Type VI and 

Type IV both require only 1 MC and 1 frame buffer. From Table 10, the proposed 

transcoding framework shows the lowest computational complexity. Compared to Type 

I, the proposed framework saves 1 ME, 1 frame buffer, 4 DCT/IDCT, and 1 MC. 

Compared to Type II, 1 frame buffer, 4 DCT/IDCT, and 1 MC can be saved. Compared to 

Type III, 1 frame buffer and 1 MC are saved. 

Table 10. Module-wise complexity comparison of six transcoding architectures 

MC Type Transcoding  

Architecture 

ME Frame  

Buffer 

DCT/ 

IDCT Spatial Transform 

I DEC-ENC 1 2 4 2 0 

II CPDT 0 2 4 2 0 

III CDDT 0 2 0 0 2 

IV SDDT 0 1 0 0 1 

V Work [24] 0 1 2 1 0 

VI Proposed 0 1 0 0 1 
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5.3.2. Arithmetic Operations Comparison 
To provide a more specific complexity analysis, the arithmetic instructions are 

analyzed to provide the workload percentage analysis for the six transcoding 

architectures. To build the relationship in complexity for the six architectures, Type I 

which is the most computationally intensive is used as the reference for the other five 

architectures. The representation of the complexity for the six architectures is shown in 

percentage compared to Type I.  

A. Arithmetic Instructions for Each Module 

Table 11 shows the instruction counts for the modules in Table 10.  The DCT and 

IDCT modules which operate 8×8 forward and backward DCT take 672 and 912 

adder/shifter instructions [25], respectively. The MC-DCT module which operates 

DCT-domain MC instead of spatial-domain MC takes at most 810 adder/subtractor 

instructions and 256 instructions for data movement [9]. The total instruction counts (IC) 

for each module equal to the product of instruction counts and the corresponding cycle 

per instruction (CPI). Here, we assume that the ALU and data movement instructions take 

one clock cycle per instruction. 

Table 11. Instructions required per block for each module 

 
Add/sub   

(Iadd/sub) 

Data 

movement  

(Idata_mov) 

Multi/div 

(Imul/div) 

Total  

instructions  

DCT [25] 672 64 0 736 

IDCT [25] 912 64 0 976 

MC (pixel) 0 64 0 64 

MC-DCT [9] ≤ 810 ≤ 256 0 1066 

 

 



B. Workload Analysis 

Fig. 36-a shows the module-wise workload distribution for Type I under the 

experiments using Foreman as the test sequence. From this pi chart, we can find ME 

takes 54.4% (ΦME), Bit Plane VLD for FGS takes 30.2% (ΦFGS_VLD), DCT/IDCT take 

13.6% (ΦDCT/IDCT), MC takes 0.3% (ΦMC), Q/IQ take 0.1% (ΦQ/IQ), VLC/VLD for base 

layer take 1.0% (ΦBASE_VLC/VLD), and the others take the remaining parts (Φothers). 

To convert the arithmetic instruction cycles into workload percentages, the 

following relationship in eqn. (31) is used to build Table 12, where ΦTypeN is the fraction 

of the computation time for each module in Type N. Table 12 shows the complexity ratio 

(CR) for the six architectures compared with Type I. 

 TypeN
TypeN TypeI

TypeI

IC
IC

Φ = ⋅Φ  (31) 

For illustration, Type VI which is proposed in this thesis takes only 35.66% of 

computational power compared to Type I. From Table 10, Type VI saves 1 ME (54.35%), 

3 IDCT plus 1DCT (13.61%), and 2 spatial-domain MC (0.29%), but needs another extra 

MC-DCT. According to eqn. (31), the revised fraction for MC amounts to 0.29% × 1066 

/ 128 = 2.42% of the overall complexity, where ICTypeVI = 1066 (1 MC-DCT) and ICTypeI 

= 2 × 64 (2 pixel-domain MC). Since no instructions are needed for ME and DCT/IDCT, 

the new workload percentage for these modules is 0%. Therefore, the complexity ratio of 

Type VI is 0% (ΦME) + 0% (ΦDCT/IDCT) + 2.42% (ΦMC) + 31.75% (ΦFGS_VLD + ΦQ/IQ + 

ΦBASE_VLC/VLD + Φothers) = 34.17%. The other derivations for Type II to V are similar and 

shown in Table 12. The workload reduction is also represented as pi chart shown in Fig. 

36 for the estimated complexity analysis for the six architectures in arithmetic operation 

levels.  
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 Table 12. Arithmetic complexity ratio for the six transcoding architectures compared to the DEC-ENC 
architecture. 

Type I Type II Type III Architecture 

  DEC-ENC CPDT CDDT 

  workload(%) operations workload(%) operations workload(%) operations

ME 54.35 — 0 0 0 0 

DCT/IDCT 13.61 3664 13.61 3664 0 0 

MC 0.29 128 0.29 128 4.83 2132 

Others 31.75 — 31.75 — 31.75 — 

Total 100  45.65  36.58  

 

Type IV Type V Type VI Architecture 

  SDDT Work [24] Proposed 

  workload(%) operations workload(%) operations workload(%) operations

ME 0 0 0 0 0 0 

DCT/IDCT 0 0 6.36 1712 0 0 

MC 2.42 1066 0.15 64 2.42 1066 

Others 31.75 — 31.75 — 31.75 — 

Total 34.17  38.26  34.17  
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(e) Type V 
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Fig. 36. Estimated operational complexity comparison of the six transcoding architectures for Foreman 
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Chapter 6  

Conclusion 

In this thesis, we proposed a FGS multi-layer to MPEG-1/2/4 single-layer 

transcoding framework using multi-layers transcoding techniques with R-D optimization. 

This proposed framework is constructed based on the SDDT architecture which is 

considered as one of the most computationally efficient transcoding architectures. To 

resolve the drift propagation problem raised by SDDT architecture in heterogeneous 

transcoding, two transcoding techniques, multi-layer transcoding and rate-distortion 

optimized universal model are developed to improve it. The multi-layer transcoding 

technique provides heterogeneous drift error compensation via transmitting additional 

enhancement layer. The rate-distortion optimized universal model is used to achieve a 

balance between coding efficiency and transmission bit rate under limited channel 

bandwidth. The proposed framework could efficiently transcode the FGS to MPEG-1/2/4 

bitstream in a shared architecture and achieves a better transcoding complexity and 

transcoding quality balancing than conventional architectures.  

The experimental results showed the proposed MSDDT architecture can provide a 

very good transcoding performance compared to the conventional architectures. With the 

proposed power-law model in the proposed multi-layer transcoding techniques, the 

proposed framework shows up to 5.8 dB PSNR gains over the SDDT architecture under 

the same transcoding complexity. Compared to the CDDT architecture, the MSDDT 

architecture has similar PSNR quality at low bit rate and about 0.2–1.4 dB loss in PSNR 

at high bit rate, but with only 34.17% of DEC-ENC transcoding complexity.  
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For future works, to integrate multiple video coding standards into the proposed 

design for single unified transcoding framework, the H.264 standard is treated as one of 

the most challenging work due to its huge heterogeneities in coding tools compared to 

existed standards. 
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