
 i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

一個使用多層串流技術之轉碼器架構設計

於精細可調層次式到MPEG-1/2/4單一層次

式的位元流轉碼應用

A FGS-to-MPEG-1/2/4 Single-Layer Transcoder
with Multi-Layer Streaming Techniques

 研 究 生：陳韋霖

指導教授：蔣 迪 豪 博士

中華民國九十五年七月

 ii

一個使用多層串流技術之轉碼器架構設計於精細可調層

次式到MPEG-1/2/4單一層次式的位元流轉碼應用

A FGS-to-MPEG-1/2/4 Single-Layer Transcoder with
Multi-Layer Streaming Techniques

研 究 生：陳韋霖 Student: Wei-Lin Chen

指導教授：蔣 迪 豪 博士 Advisor: Dr. Tihao Chiang

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electrical Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao-Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

 iii

一個使用多層串流技術之轉碼器架構設計於精

細可調層次式到MPEG-1/2/4單一層次式的位

元流轉碼應用

研究生：陳韋霖 指導教授：蔣 迪 豪 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

本篇論文提出一個精細可調層次式到MPEG-1/2/4單一層次式的位元流轉碼

器架構，並應用兩個新發展的轉碼技術以改善現有異質環境轉碼的。多層轉碼技

術藉由傳送額外的加強層來補償異質性轉碼中的所造成的嚴重錯誤傳遞問題。位

元率-失真最佳化模型則在有限的通道頻寬下，提供一個在編碼效能以及傳輸位元

率之間最佳平衡點的編碼決策。實驗結果顯示所提出的使用多層轉碼技術的轉碼

架構與一般的架構相比較能夠提供非常良好的轉碼效能。整合所提出的冪次位元

率-失真模型以及多層轉碼技術，我們所提出的轉碼器架構，與被視為擁有最低轉

碼複雜度之一的簡化餘弦轉換域轉碼架構相比較，可達到最多5.8dB的影像訊號雜

訊比改善，且幾乎不增加其轉碼複雜度。與另一種擁有最佳轉碼品質的串接餘弦

轉換域轉碼架構相比，我們所提出的多層轉碼技術的轉碼架構在低位元率時有相

近的視訊品質，在高位元率時有0.2–1.4dB的影像訊號雜訊比損失，但轉碼複雜度

上只需其34.17%的計算複雜度。

 iv

A FGS-to-MPEG-1/2/4 Single-Layer Transcoder with
Multi-Layer Streaming Techniques

Student: Wei-Lin Chen Advisor: Dr. Tihao Chiang

Department of Electronic Engineering &
Institute of Electronics

National Chiao-Tung University

Abstract

In this thesis, we proposed a Fine Granularity Scalable (FGS) multi-layer to

MPEG-1/2/4 single-layer transcoding framework and used two new techniques,

multi-layers transcoding and R-D optimization modeling, to improve the poor

performance in heterogeneous transcoding. The multi-layer transcoding technique

provided heterogeneous drift error compensation via transmitting an additional

enhancement layer. The rate-distortion optimization modeling is used to achieve a better

tradeoff point between coding efficiency and transmission bit rate under limited channel

bandwidth. The experimental results showed the proposed Multi-layer Simplified

DCT-Domain Transcoder (MSDDT) architecture can provide a very good transcoding

performance compared to the conventional architectures. With the proposed power-law

R-D modeling in the proposed multi-layer transcoding techniques, the proposed

framework shows up to 5.8 dB PSNR gains over the SDDT architecture under the similar

transcoding complexity. Compared to the Cascaded DCT-Domain Transcoder (CDDT)

architecture, the MSDDT architecture has similar PSNR quality at low bit rate and about

0.2–1.4 dB loss in PSNR at high bit rate, but with only keeping 34.17% complexity

compared with cascaded decoder-encoder (DEC-ENC) architecture.

 v

誌 謝

研究所的兩年間，論文的完成，實在是仰賴很多人的協助與指導，在此獻上

誠摯的感謝。首先要感謝我的指導教授蔣迪豪老師，在研究的領域給了我很多建

議與幫助。

感謝實驗室的俊能學長，文孝學長，士豪學長，項群學長和志鴻學長，對於

我的論文研究提出寶貴的意見與建議。雖然我的研究主題歷經很長一段混沌未明

的階段，士豪學長還是在百忙之中抽空，指導了我很多，關於研究的方向以及研

究的態度。雖然我常常達不到學長要求的標準，他還是不厭其煩的給我意見與指

導，在這裡我要說聲感謝。另外，感謝實驗室的所有同學，讓我度過了很愉快的

兩年研究所生活。

感謝支持我的家人，雖然我很少抽的出時間回家，但家人的鼓勵與關懷是支

撐我最大的動力。感謝所有幫助過我的朋友，因為有你們，讓我在艱難與考驗中

成長。最後，僅以這篇論文，獻給所有陪我走過這一段日子的人，謝謝。

 vi

Contents

中文摘要 ... iii

Abstract...iv

誌 謝 ..v

Contents ..vi

List of Tables ... viii

List of Figures...ix

List of Notations ... xii

Chapter 1 Introduction...1

1.1. Overview of MPEG-21 Transcoding Systems .. 1

1.2. Scope of This Thesis ... 2

Chapter 2 State of the Art ..4

2.1. Transcoding Architectures... 4

2.1.1. Spatial-Domain Video Transcoding ..4

2.1.2. Frequency-Domain Video Transcoding ..7

2.2. Video Transcoding Techniques... 13

2.2.1. Intra-Refresh Technique..13

2.2.2. Rate Control Issues..15

2.3. Evaluation of Transcoding Architectures.. 15

2.3.1. Complexity Analysis ...16

2.3.2. Drift Error Analysis...16

2.3.3. Evaluation and Discussion ..19

Chapter 3 FGS to Single-Layer Transcoder ..21

3.1. Multi-Layer to Single-Layer Transcoding Framework 21

3.2. Design Issues of Heterogeneous Transcoding... 25

 vii

Chapter 4 Multi-Layer Transcoding Approach ...29

4.1. Drift Compensation with Additional Enhancement Layer................................ 29

4.2. Multi-Layer Transcoding with R-D Optimization .. 32

Chapter 5 Experimental Results ..41

5.1. Test Conditions.. 41

5.2. Rate-Distortion Performance... 42

5.2.1. MPEG-4 FGS to MPEG-1...42

5.2.2. MPEG-4 FGS to MPEG-2...47

5.2.3. MPEG-4 FGS to MPEG-4 SP ...56

5.3. Complexity Analysis ... 65

5.3.1. Module-wise Comparison ...65

5.3.2. Arithmetic Operations Comparison...66

Chapter 6 Conclusion ..71

Reference ...73

 viii

List of Tables

Table 1. Matrices Hi and Gi ...8

Table 2. Complexity analysis of four transcoding architectures16

Table 3. Different types of drift error..18

Table 4. Drift error analysis of four transcoding architectures ...19

Table 5. A summary of the toolsets in MPEG-1, MPEG-2, and MPEG-4........................26

Table 6. RMSE of the estimation of the (R, αopt) relationship using different models35

Table 7. Rate-distortion comparison for FGS-to-MPEG-1 transcoding47

Table 8. Rate-distortion comparison for FGS-to-MPEG-2@MP transcoding..................48

Table 9. Rate-distortion comparison for FGS-to-MPEG-4@SP transcoding64

Table 10. Module-wise complexity comparison of six transcoding architectures65

Table 11. Instructions required per block for each module...66

Table 12. Arithmetic complexity ratio for the six transcoding architectures compared to

the DEC-ENC architecture. ...68

 ix

List of Figures

Fig. 1. Video transcoding operations...2

Fig. 2. Cascaded decoder and encoder transcoder...2

Fig. 3. Cascaded Pixel-Domain Transcoder (CPDT) ..5

Fig. 4. Motion vector composition ..6

Fig. 5. Source block extraction problem ...7

Fig. 6. Cascaded DCT-Domain Transcoder (CDDT)..10

Fig. 7. Simplified DCT-Domain Transcoder (SDDT)...13

Fig. 8. Open-loop transcoder ...13

Fig. 9. Intra refresh in open-loop architecture...14

Fig. 10. FGS to single-layer CDDT...22

Fig. 11. FGS to single-layer transcoder...24

Fig. 12. Corresponding FGS encoder framework for MSDDT...30

Fig. 13. Multi-layer Simplified DCT-Domain Transcoder (MSDDT)..............................32

Fig. 14. General curve behaviors for different models..35

Fig. 15. MSE vs. bit rate when running MSDDT with various α, and R combinations for

Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower

right) at 256-Kbps BL bit rate ...36

Fig. 16. MSE vs. bit rate when running MSDDT with various α, and R combinations for

Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower

right) at 512-Kbps BL bit rate ...36

Fig. 17. MSE vs. bit rate when running MSDDT with various α, and R combinations for

Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower

right) at 1024-Kbps BL bit rate ...37

 x

Fig. 18. MSE vs. bit rate when running MSDDT with various α, and R combinations for

Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower

right) at 2048-Kbps BL bit rate ...37

Fig. 19. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left),

and Stefan (lower right) at 256-Kbps BL bit rate ..38

Fig. 20. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left),

and Stefan (lower right) at 512-Kbps BL bit rate ..38

Fig. 21. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left),

and Stefan (lower right) at 1024-Kbps BL bit rate ..39

Fig. 22. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left),

and Stefan (lower right) at 2048-Kbps BL bit rate ..39

Fig. 23. The fitting curve for (R, αopt) using the power-law model40

Fig. 24. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit

rate of 256 Kbps. (a) Foreman (b) Mobile (c) Stefan..43

Fig. 25. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit

rate of 512 Kbps. (a) Foreman (b) Mobile (c) Stefan..44

Fig. 26. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit

rate of 1024 Kbps. (a) Foreman (b) Mobile (c) Stefan..45

Fig. 27. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit

rate of 2048 Kbps. (a) Foreman (b) Mobile (c) Stefan..46

Fig. 28. FGS-to-MPEG-2@MP transcoding performance comparison under FGS

base-layer bit rate of 256 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan50

Fig. 29. FGS-to-MPEG-2@MP transcoding performance comparison under FGS

base-layer bit rate of 512 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan52

Fig. 30. FGS-to-MPEG-2@MP transcoding performance comparison under FGS

base-layer bit rate of 1024 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan54

Fig. 31. FGS-to-MPEG-2@MP transcoding performance comparison under FGS

base-layer bit rate of 2048 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan56

Fig. 32. FGS-to-MPEG-4@SP transcoding performance comparison under FGS

base-layer bit rate of 256 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan58

 xi

Fig. 33. FGS-to-MPEG-4@SP transcoding performance comparison under FGS

base-layer bit rate of 512 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan60

Fig. 34. FGS-to-MPEG-4@SP transcoding performance comparison under FGS

base-layer bit rate of 1024 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan62

Fig. 35. FGS-to-MPEG-4@SP transcoding performance comparison under FGS

base-layer bit rate of 2048 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan64

Fig. 36. Estimated operational complexity comparison of the six transcoding

architectures for Foreman ...70

 xii

List of Notations

Â DCT-domain representation of signal A

P Motion compensated 8×8 block

Q Reference 8×8 block

H, G Translation matrix

MC(i)(.) Motion compensation at decoder/encoder loops

IQ(.), Q(.) Inverse quantization and quantization

Xn The decoded frame at decoder-loop at time instance n

X*
n The reconstructed frame at encoder-loop at time instance n

Yn The reconstructed frame at decoder-loop at time instance n

∆Xn The residue at the encoder-loop at time instance n

BBn The base-layer residue coefficient at time instance n

En The enhancement-layer coefficient at time instance n

mv(i) Motion vector at decoder/encoder loops

S(.) Saturation

D Drift error

dp Incoherent error

dq Arithmetic error

RE The original enhancement-layer bit rate

Rε The error-layer bit rate

α The ratio of the original enhancement layer in the enhancement layers

αopt The rate-distortion optimized α

D(.) Distortion function

R Bit rate for both enhancement layers

IC Total instruction counts

 xiii

Φ Workload percentage of modules in transcoder

 1

Chapter 1

Introduction

In this chapter, we will briefly introduce the role that video transcoding plays in the

framework of MPEG-21 Universal Multimedia Access. The scope of this thesis is also

presented as a concluding remark.

1.1. Overview of MPEG-21 Transcoding Systems

In recent years, the popularity of internet has boosted the need for efficient

transmission of digital content. MPEG-21 provides a unified solution, Universal

Multimedia Access (UMA) [1], to construct a multimedia content delivery and rights

management framework. The primary concept of UMA is that any media resources

should be available to any users at anytime and anywhere. However, the diversity of

channel conditions and end-user capacities makes it a challenging task. It is inevitable

that many types of conversions should be performed as an intermediate interface between

server and terminal to accommodate different network constraints.

Video transcoding is a technique of transforming a pre-compressed video bitstream

from one format into another according to various network conditions and client devices.

As shown in Fig. 1, the context format is referred to as coding parameters such as the bit

rate, frame rate, spatial resolution, and coding syntax. One of the scenarios is a video

conferencing system on the internet where the participants may use different terminals.

Under this circumstance, a video transcoder (located at the transmitter, receiver, or

somewhere in the network) is needed for both dynamically adjusting the bit rate in

adaptation to each user’s available bandwidth and providing conversion across different

standards to enable content exchange. Hence, as media resources and communication

networks expand in heterogeneity, video transcoding is one of the essential components

for current and future multimedia systems to achieve inter-compatibility between

different platforms.

Fig. 1. Video transcoding operations

1.2. Scope of This Thesis

Various transcoding algorithms provide trade-off between the computational

complexity and reconstructed video quality [3]-[11]. In all, the most straightforward

approach of realizing transcoding functionality is to cascade a decoder and an encoder, as

shown in Fig. 2. The decoder decodes the original input video, and the encoder

re-encodes the decoded data subject to any new constraints. Such a cascaded transcoding

architecture which fully decodes the bitstream and re-encodes the video is treated as one

of the most complicated methods and is very much computationally intensive. In this

thesis, we aim to introduce more efficient techniques to balance the perceptual quality

and the computational complexity.

Fig. 2. Cascaded decoder and encoder transcoder

Based on the concepts of UMA, we build a simplified UMA model on the internet.

In this framework, the source video material is encoded and archived as MPEG-4 Fine

 2

 3

Granularity Scalable (FGS) bitstreams. In order to provide access to FGS coded

bitstreams with both FGS enabled devices and devices that only support single-layer

coding standards, a novel transcoder is proposed and implemented to convert the

bitstream from FGS format to other single-layer video formats including MPEG-4 Simple

Profile (SP), MPEG-2, and MPEG-1. Depending on the terminal capability, the universal

transcoder is capable of supporting video contents of different formats.

The remainder of this thesis is organized as follows. Chapter 2 classifies various

transcoding architectures and discusses the fundamental problems. In Chapter 3, a

framework for FGS to single-layer transcoding is introduced. Chapter 4 proposes the drift

compensation architecture. Experimental results and analysis are presented in Chapter 5.

Finally, Chapter 6 gives the concluding remarks.

 4

Chapter 2

State of the Art

In this chapter, we will explore the prior arts on homogeneous (with similar

standard) and heterogeneous (between different standards) video transcoding. An

overview of transcoding architectures and techniques is provided along with an

evaluation and discussion.

2.1. Transcoding Architectures

Efficient and effective transcoding architectures are needed to expand the

applications of multimedia information exchange. As mentioned in the previous chapter,

it is always possible to use a cascaded approach to perform transcoding. However the cost

is too high to be feasible. The following subsections introduce several transcoding

architectures that aim to reduce the computational complexity of the straightforward

decoder-encoder implementation. The rationale behind these transcoding architectures is

to reuse existed coding parameters or statistics from the input video bitstream. They may

be applied not only to simplify the computation, but also to maintain or even improve the

visual quality.

2.1.1. Spatial-Domain Video Transcoding
Fig. 3 illustrates the Cascaded Pixel-Domain Transcoder (CPDT) [3], which is very

similar to the brute-force method. It is a concatenation of a standard decoder and a

simplified encoder. The encoder does not perform full-scale motion estimation (ME).

Instead, it reuses the motion vectors as well as other information extracted from the input

video bitstream. It is shown in [12] that the macroblock mode decision and ME module

occupy about 70% of the overall encoder processing power. Hence, by avoiding these

computationally intensive operations, it can speed up the transcoding process by roughly

three times.

VLD Q1
-1 IDCT

DCTQ2VLC

Q2
-1

IDCT

Frame
Buffer

MV

−

+

Frame
Buffer

Input
Bitstream

Output
Bitstream

MC

MC

MV
Mapping

Fig. 3. Cascaded Pixel-Domain Transcoder (CPDT)

The prior works based on CPDT architecture focus on the improvement of new

motion vector (MV) information in the encoder-loop. Generally, a homogeneous

transcoder which is designed for bit rate adaptation requires no MV mapping operation.

The functional unit of MV Mapping presented in CPDT is used particularly for

transcoding which involves spatial resolution adjustment or heterogeneous format

change. However, since reduced resolution transcoding is beyond the scope of this thesis,

we will focus our attention to the problem of changes in the directionality of MVs in

heterogeneous transcoding. For instance, in the MPEG-4 standard [2], an inter-coded

macroblock comprises either one MV for the complete macroblock or four MVs, one for

 5

each non-transparent 8×8 pel blocks forming the 16×16 pel macroblock, whereas

MPEG-1/2 support only 16×16 prediction in progressive frames. For transcoding

bitstreams from MPEG-4 format into MPEG-1/2 format, problems arise when passing

MVs directly from the decoder to the encoder. Fig. 4 shows the way of multiple MVs

being merged to a single MV when the coding mode is different. Hence, a motion vector

mapping operation is required. A variety of methods have been discussed for deriving a

new MV from the four MVs available in the input bitstream information. Although these

methods are originally developed for reduced resolution transcoding, they are also

applicable in our scenario. One strategy is to select one of the incoming MVs in random

[14]. Weighted average taking into account the prediction error is presented in [13]. Some

other methods, such as median, majority, and average, are presented and compared in

[12]. To further improve the accuracy for prediction, MV refinement is performed in a

small search window around the composite MV [15]. Other issues related to

heterogeneous transcoding, such as picture type conversion [12] or frame rate reduction

[15]-[17], will not be mentioned later due to out of thesis scope.

Fig. 4. Motion vector composition

 6

CPDT is usually considered to be free of drift error, and used as the benchmark for

evaluating the performance. Although the reconstructed frames in the decoder-loop and

the encoder-loop don’t match due to heterogeneous quantization table and other

parameters, this CPDT will not introduce drifting error theoretically. The reason is that

the encoder-loop will reconstruct the new coding residues to avoid the improper MV

causing unexpected reconstruction mismatch. In addition, this CPDT is also flexible in

coding-parameter changes. Because the decoder-loop and the encoder-loop separate from

each other, more flexibilities are allowed to operate the transcoded video at different bit

rates, frame rates, picture resolutions, coding modes, and even different standards.

2.1.2. Frequency-Domain Video Transcoding
The frequency-domain based video transcoding operates the video decoding and

re-encoding in the transform domain. In contrast to the spatial-domain transcoding which

operates the video transcoding in the spatial domain, the frequency-domain (or called

transform-domain) transcoding architecture avoids three unnecessary transformations

(one backward transform in the decoder-loop and one forward/backward transform in the

encoder-loop) to achieve equal coding efficiency with lower complexity. This subsection

introduces the core techniques in frequency-domain transcoding and reviews two types of

commonly used frequency-domain transcoding architecture.

2.1.2.1. Generic Frequency-Domain Transcoder

Fig. 5. Source block extraction problem

Motion compensation in the DCT-domain (MC-DCT) is the core technique in

frequency-domain transcoding architecture. It operates the motion compensation (MC) in

DCT domain to reconstruct the video without converting to pixel domain. The related

researches in MC-DCT can be found in prior works [9], [18]-[20]. The design idea of

 7

MC-DCT is to build the relationship between the motion compensated 8×8 block (P) and

the related reference blocks (Q). Since the MV (∆x, ∆y) usually is not 8×8 block aligned

(see Fig. 5), the motion compensated block would cover at most four neighboring 8×8

blocks from the predicted MV center. The relationship in pixel domain is represented as

eqn. (1).

 8

G (1)
3

0
i i i

i=
= ∑P H Q

where Hi and Gi are listed in Table 1. Ik represents an identity matrix of size k×k. The

values of h0 and w0 are to be determined by the value of (∆x, ∆y) in MV (∆x, ∆y).

Table 1. Matrices Hi and Gi

Sub-block Position Hi Gi

Q0 Lower right 0h⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0

0w

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

Q1 Lower left 0h⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0
 08 w−⎡ ⎤

⎢ ⎥
⎣ ⎦

0 I

0 0

Q2 Upper right
08 h−

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

0w

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

Q3 Upper left
08 h−

⎡ ⎤
⎢ ⎥
⎣ ⎦

0 0
I 0

08 w−⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I

0 0

From eqn. (1), the motion compensated block P consists of the lower-right part of

sub-block Q0, the lower-left part of Q1, the upper-right part of Q2, and the upper-left part

of Q3. Each component is computed by the pre-multiplication of Hi, which shifts the

sub-block of interest vertically, and the post-multiplication of Gi, which shifts the

sub-block horizontally.

Since the DCT is a unitary orthonormal transform, it is distributive to matrix

multiplication. Hence, we can express the DCT representation of eqn. (1) as

 9

G (2)
3

0

ˆ ˆˆ ˆ
i i i

i=
= ∑P H Q

where the 2D-DCT of an 8×8 block A is represented as Â = DCT(A). The horizontal and

vertical displacement matrices can be pre-computed and stored in memory.

In eqn. (2), the extraction of a single 8×8 block requires up to 4 × 8 × 64 × 2 = 4096

floating-point multiplications, which are huge computations. To speed-up the MC-DCT

in [18], several faster implementations are proposed to improve the computation of eqn.

(2). In [19], MC-DCT is simplified through factorizing the displacement matrices into

relatively sparse matrices such that the number of computations required is reduced. The

work in [9] approximates the elements of Ĥi and Ĝi to binary numbers and replaces the

multiplication with shifters and adders. Another efficient computation method on

macroblock basis is derived in [20]. It utilizes shared information within a macroblock,

such as MV and common blocks, to yield substantial speedup in computation.

The generic frequency-domain transcoder is constructed with the MC-DCT

technique to allow entire transcoding operations in the frequency domain. Since MC can

be performed in the frequency domain, the operations of DCT and IDCT in Fig. 3 can be

saved to allow a structurally more efficient transcoding. Fig. 6 shows the design flow of

the Cascaded DCT-Domain Transcoder (CDDT) proposed in work [6], which operates

the transcoding without any DCT transformations in the frequency domain.

There are two design issues in the generic frequency-domain transcoding

architecture. The first is that MC-DCT may introduce reconstruction mismatches to cause

transcoding drift error. Ideally, CDDT is a functionally equivalent representation of

CPDT which is drift-free. However, the matrix multiplications in MC-DCT may

introduce operational precision mismatches, and frame reconstruction in the frequency

domain may introduce rounding errors. Although theses mismatches may cause drift, this

type of transcoding error only leads to slight quality degradation and is almost ignorable.

The second design issue is the operational complexity of the MC-DCT. The complexity

of CDDT highly depends on the MC-DCT implementation method, and the complexity of

MC-DCT depends on the complexity of matrix multiplication. Thus, applying an efficient

matrix multiplication in MC-DCT can highly improve the frequency-domain transcoding

efficiency.

Fig. 6. Cascaded DCT-Domain Transcoder (CDDT)

2.1.2.2. Simplified Frequency-Domain Transcoder

More complexity reduction can be achieved by analyzing and improving the

redundancy in CDDT. For real-time applications, the complexity in CDDT is still too

high to be used. To analyze the CDDT as shown in Fig. 6, we find the behavior of the

frame reconstruction in the decoder-loop and the encoder-loop is almost identical under

the assumption of the same MC behavior and the same quantization step size. The MC

behavior depends on video encoding standards and will not be an issue if both the

decoder-loop and encoder-loop specify the same MC structure. The quantization step size

is controlled by many encoding parameters such as the rate control. Therefore, to simplify

the CDDT architecture, the two frame reconstruction operations should be merged by

using a shared MC to compensate for the quantization mismatches between the

decoder-loop and the encoder-loop. Such an idea can be easily realized in homogeneous

 10

transcoding which uses the same MC structure. Some prior works in [7]-[9] design their

simplified transcoders based on such a design idea to save one more MC operation.

To identify the design idea, a brief derivation is provided as follows. From Fig. 6,

the residual in the encoder-loop is given by

 () ()()2 *
1,n n nX X MC X mv−= − 2 (3)

where MC(.) is the motion compensation process, the subscript on the variable indicates

time, and the superscript of “1” and “2” represents the decoder-loop and the

encoder-loop, respectively. Here, we denote a signal with quantization effect as

 ()()*X IQ Q X= (4)

where Q(.) and IQ(.) stand for quantization and inverse quantization, respectively. The

reconstructed signal in the decoder-loop is given by

 () ()()1
1,n n n

1X B MC Y mv−= + (5)

Substituting eqn. (5) into eqn. (3), we can yield

 () ()() () ()()1 1 2 *
1,n n n nX B MC Y mv MC X mv−= + − 2

1,− (6)

Assuming mv(1) = mv(2) (i.e., MVs are not recalculated) and the sub-pixel MCs in the

decoder-loop and encoder-loop perform the same interpolation filtering, it can be stated

that

 () ()() () ()()1 1 2,n
2,nMC X mv MC X mv= (7)

Based on the assumption that the MC is a linear operation, i.e., MC(X + Y, mv) = MC(X,

mv) + MC(Y, mv), we may rewrite eqn. (6) as

 ()()1*
1 1,n n n nX B MC Y X mv− −= + − (8)

From eqn. (8), the prediction residual in the encode-loop in the transcoder can be

obtained by adding the motion compensated frame differences to the incoming prediction

residual.

 11

Since Yn = Xn, we have

 ()()1*
1 1,n n n nX B MC X X mv− −= + − (9)

Furthermore, we may get the corresponding equivalent equation for Xn-1 – X*
n-1 by

applying eqn. (3).

()()
()()()
()()()

1* *
1 1 1 2 1

1* *
1 1 2

*
1*

1 1 2

*
1 1

,

,

,

n n n n n

n n n

n n n

n n

X X X MC X mv X

X X MC X mv

X X MC X mv

X X

− − − − −

− − −

− − −

− −

− = + −

= − −

= − −

= −

*

 (10)

Finally, eqn. (9) is reduced to

 ()()1*
1 1,n n n nX B MC X X mv− −= + − (11)

Based on eqn. (11), the architecture in Fig. 6 is transformed into the architecture in Fig. 7.

This is referred to as the Simplified DCT-Domain Transcoder (SDDT).

Significant complexity reduction is attained in SDDT. Compared to CPDT in Fig.

3, SDDT not only eliminates the DCT/IDCT, but also reduces the size requirement of

frame buffers by half. Only one MC loop is required to store the difference values

between the reconstructed pictures in the decoder-loop and the encoder-loop in this

architecture. This complexity reduction is achieved in sacrifice of the flexibility of

cascaded architectures. In the above derivation, SDDT assumes the MVs after the

transcoding to be the same as those before the transcoding in order to merge the two MCs.

This architecture is based on the assumption of using the same MC structure, so SDDT

has limited applications such as bit rate transcoding.

 12

Fig. 7. Simplified DCT-Domain Transcoder (SDDT)

Fig. 8. Open-loop transcoder

2.2. Video Transcoding Techniques

The video transcoding techniques are built upon the transcoding architectures

presented in Section 2.1, and used to improve the transcoding performance by adjusting

the encoding parameters. Two common transcoding techniques including intra

refreshment and rate control are reviewed.

2.2.1. Intra-Refresh Technique
To stop the drift propagation of errors introduced in reduced resolution transcoding,

an intra-refresh transcoding technique is proposed in [10]. The intra-refresh technique

adaptively forces the inter-coded blocks to be intra-coded based on drift estimation in the

compressed bitstream. Since intra-coded blocks will not use the other frames for image

reconstruction, this type of conversion stops the drift propagation.

 13

Fig. 9. Intra refresh in open-loop architecture

Fig. 9 shows an open-loop transcoder in which the intra-refresh technique is

applied. The module Inter-to-Intra Conversion in Fig. 9 either bypasses the inverse

quantized DCT coefficients or uses the reconstructed coefficients from the frame memory

instead according to the intra-refresh rate, which is the percentage of intra-coded

macroblocks in one frame. The intra-refresh rate is adaptively adjusted according to the

estimated value of drift. It should be noted that more bits are usually required for coding

intrablocks. Therefore, the intra-refresh operation and the rate control must be considered

jointly.

Although the intra-refresh technique demonstrates the ability to correct drift errors,

its effectiveness is achieved using additional MC and frame memory to reconstruct the

reference frame for the inter-to-intra conversions of the DCT coefficients. The

architecture in Fig. 9 may seem to require less memory and computation than CPDT and

CDDT. The reason is that the open-loop transcoder upon which the intra-refresh

technique is implemented needs no MC prediction loop at all. If the intrablock refresh

method is realized in close-loop architectures [11], the question whether complexity

reduction is possible remains debatable.

 14

 15

2.2.2. Rate Control Issues
The purpose of rate control is to provide better and consistent video quality under

the bandwidth constraint. It involves two basic steps, picture-layer bit allocation and

macroblock-layer rate control. The picture-layer bit allocation determines the target bit

budget for each frame. The macroblock-layer rate control adjusts the quantization

parameters for coding the macroblocks. Generally speaking, all rate-control algorithms

designed for video coding are applicable to transcoding.

Rate control in transcoding either targets at providing accurate bit rate adaptation or

improving the coding efficiency by exploiting the coding statistics collected from the

input compressed bitstream. The design issue for bit rate transcoding is actually the same

as that for conventional video coding. It is to allocate proper bits to a picture proportional

to its complexity such that the output rate would comply with the bit rate constraint. The

only difference lies in the availability of content characteristics for transcoding. A

straightforward implementation for bit rate transcoding might scale the input bits of each

frame, which can be easily obtained from the pre-encoded video streams, according to the

rate conversion ratio. Better bit allocation is possible by further exploiting the

correlations between the input and the output picture complexities [21]. In [22], a

ρ-domain rate-distortion model is adopted to obtain the optimal number of bits for each

frame. This frame-level rate-distortion information is pre-generated in the front-encoder

and transmitted to the transcoder as side information. The work in [9] derives the optimal

set of quantizer scales based on Lagrangian optimization.

2.3. Evaluation of Transcoding Architectures

In the previous sections, we have discussed the transcoding architectures and

transcoding techniques. Each architecture raises different design trade-off issue in

computational complexity and visual quality. This section analyzes these transcoding

architectures in terms of complexity and drift error.

 16

2.3.1. Complexity Analysis
Table 2 shows the complexity analysis for four types of transcoding architecture.

The first type referred to as DEC-ENC implements a straightforward method to fully

decode the input bitstream and fully encode the reconstructed video from the decoder

side. Such a method doesn’t save any computations and is the most computationally

intensive. It needs 1 ME, 3 DCT/IDCT, and 2 MC operations. Type II implements CPDT

architecture which reconstructs the video in pixel domain. Such a method saves 1 ME

compared to Type I. Type III implements CDDT architecture which is a generic

DCT-domain transcoder. This type of architecture saves 3 more DCT/IDCT operations

compared to Type II. Type IV shows the most competitive ability in computational

complexity compared to the first three types. It implements the simplified CDDT (also

referred to as SDDT) which saves 1 more MC operation and 1 more frame buffer

compared to Type III. From the viewpoint of computational complexity, Type I suffers

most efforts in transcoding and Type IV is the most computationally efficient architecture

which has more than 50% of computation reduction.

Table 2. Complexity analysis of four transcoding architectures

MC Type Transcoding

Architecture

ME Frame

Buffer

DCT/

IDCT Spatial Transform

I DEC-ENC 1 2 3 2 0

II CPDT 0 2 3 2 0

III CDDT 0 2 0 0 2

IV SDDT 0 1 0 0 1

2.3.2. Drift Error Analysis
Drift errors come from imperfect frame reconstruction during transcoding

procedure, and the imperfect frame reconstruction causes the mismatches to propagate

between frames. Analyzing the four architectures in Table 2, the mismatches come from

two major sources. The first type of mismatch comes from arithmetic operations

including rounding errors or precision conversion errors, and is also referred to as

arithmetic error in this thesis. We have identified three possible sources for the

arithmetic error. The first source of error relates to the floating-point operation in

transcoding. For example, different from pixel-domain MC, DCT-domain MC

reconstructs the video in the DCT domain through floating-point matrix multiplication.

But no processor can provide infinite precision to accurately manipulate these numeric

data. Mismatch is then introduced. The second and third sources of error are due to the

failed linearity assumption on which the derivation of SDDT is based, and hence are

unique to SDDT. In the derivation of SDDT, in order to merge the MC operations in the

decoder-loop and encoder-loop, we have assumed that MC is a linear operation which is

not strictly true in practical situations. The second source of error comes from the

saturation after the MC operation. In most standard video encoders, a clipping function is

required in front of the frame memory. It saturates the reconstructed pixel values to lie in

the range [0:255]. Taking into account the saturation, we can not reduce eqn. (6) into eqn.

(8).

()() ()()
()()

*
1

*
1 1

, ,

,

n n n n

n n n

1X B MC S Y mv MC S X mv

B MC S Y X mv

−

− −

= + −

≠ + −

−
 (12)

where S(.) denotes the saturation. In eqn. (12), the inequality is due to the nonlinear

property of the clipping operation. Thus, combining the two frame memories in the

derivation is inaccurate and the resultant architecture can produce errors. The third source

of error comes from the rounding operations in MC. When the MV is in half-pixel

precision, the MC calculates the half-samples by simple linear interpolation from the

neighboring actual samples. The interpolation performs a rounding operation to obtain

the closest integer. In CPDT and CDDT, the rounding function is applied to the

reconstructed coefficients in the decoder-loop and encoder-loop, respectively. However,

in SDDT, it is carried out with the differences. It can be shown that this mismatch might

introduce error.

 17

Let a, b be the values after half-pixel MC in the decoder-loop and the encoder-loop

in CDDT, respectively. For simplicity, consider only horizontal component of the MV

consists of half-pixel precision, then

() ()

() ()

1 1

* *
1 1

, 1,
2

, 1
2

n n

n n

Y i j Y i j
a round

,X i j X i j
b round

− −

− −

+ +⎛ ⎞
= ⎜ ⎟

⎝
⎛ ⎞+ +

= ⎜ ⎟
⎝ ⎠

⎠ (13)

where i, j denote the horizontal and vertical coordinates, respectively. The difference

signal should be

 () () () ()* *
1 1 1 1, 1, ,

2 2
n n n nY i j Y i j X i j X i j

a b round round− − − −⎛ ⎞+ + + +⎛ ⎞
− = − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

1,
 (14)

However, the value after the same half-pixel MC in SDDT would be

() ()() () ()()* *

1 1 1 1, , 1, 1,
2

n n n nY i j X i j Y i j X i j
c round − − − −

⎛ ⎞− + + − +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (15)

In general, a – b ≠ c. Therefore, the rounding function in sub-pixel MC causes error.

Table 3. Different types of drift error

Drift Error Type Sources Architectures Affected

Floating-point arithmetic CDDT, SDDT

Saturation in MC SDDT Arithmetic error

Rounding in MC SDDT

Incoherent error Incoherent MC structure SDDT

The second type of mismatch comes from incoherent frame reconstruction. Since

the decoder-loop and encoder-loop of the transcoder may come from two different

compression standards, the MC structure may use different reconstruction procedure

which causes the reconstruction mismatch. One example is the MPEG-4 to MPEG-2

transcoding in which MPEG-4 supports four MVs but MPEG-2 doesn’t. Such a mismatch

 18

 19

is referred to as incoherent error in this thesis. The above discussion is summarized in

Table 3.

Table 4 shows the drift error analysis of the four transcoding architectures. Type I

and Type II reconstructs the video in pixel domain which is a standard compliant flow, so

no drift error is involved. Type III which operates the MC in the DCT domain suffers

from the first type of mismatch in rounding errors and precision conversion errors. Type

IV which saves one more MC compared to Type III suffers from the same mismatch as

Type III, but it introduces another mismatch in incoherent errors. The preserved single

MC only implements the quantization error compensation. If heterogeneous transcoding

which involves incoherent MC structures is implemented, such a type of transcoding

architecture has no ability to compensate for these incoherent errors. Compared to the

arithmetic error, the incoherent error leads to more serious quality degradation in

transcoding.

Table 4. Drift error analysis of four transcoding architectures

Type Transcoding

Architecture

Types of Drift Error Effects

I DEC-ENC N/A N/A

II CPDT N/A N/A

III CDDT Arithmetic errors Minor

IV SDDT Arithmetic errors

+

Incoherent errors

Minor for coherent MC structure

Medium to serious for incoherent MC

structure

2.3.3. Evaluation and Discussion
A new design challenge is raised in striking the balance between computational

complexity and drift error reduction. From Table 2 and Table 4, Type I and II have the

highest computational complexity, but introduce no drift errors. Type III has the medium

complexity, but suffers from minor drift errors. Type IV has the lowest complexity, but

 20

introduces minor drift errors in coherent MC structure and medium to high drift errors in

incoherent MC structure. For real-time applications, we need the Type III’s drift error

performance and Type IV’s computational complexity. In this thesis, we will explore

another possibility to construct a multi-layer to single-layer transcoding architecture

based on Type IV, but compensate for the drift errors by introducing the multi-layer

transcoding technique.

 21

Chapter 3

FGS to Single-Layer Transcoder

In this thesis, we focus on building a transcoding framework for FGS to

single-layer transcoding. The multi-layer to single-layer transcoding framework is

constructed on the basis of simplified frequency-domain transcoding architecture

(SDDT) which is a single-layer to single-layer transcoding architecture. We extend this

SDDT architecture to be used in multi-layer to single-layer transcoding such as

FGS-to-MPEG-1/2/4. The design issues raised in homogeneous and heterogeneous

transcoding are also discussed.

3.1. Multi-Layer to Single-Layer Transcoding Framework

The proposed transcoding framework targets on using a unified structure for

converting MPEG-4 FGS multi-layer bitstream to MPEG-1/2/4 single-layer bitstream.

For real-time application which needs least computation, the SDDT with least

transcoding computation compared to the other spatial or frequency domain transcoding

architectures is adopted in this thesis. Since the SDDT is a single-layer to single-layer

transcoding architecture, it can not be applied directly to our target application of

FGS-to-MPEG-1/2/4 transcoding which is a multi-layer to single-layer transcoding.

Some modifications are needed to allow the SDDT architecture to be applied to our

FGS-to-MPEG-1/2/4 transcoding framework.

Fig. 10. FGS to single-layer CDDT

The proposed multi-layer to single-layer transcoding framework is to integrate the

SDDT with a FGS-to-single-layer transcoder. In previous days, many

FGS-to-single-layer transcoding works have been proposed. The authors in [24]

proposed a single MC architecture in the spatial domain for FGS-to-MPEG-4@SP

transcoding. Following a likewise work, we are able to integrate the SDDT with work

[24] to extend the SDDT functionality to be compatible with FGS scalability.

To provide a clear description about our multi-layer to single-layer transcoding

framework, Fig. 10 first shows the design flow chart for FGS-to-single-layer CDDT and

then follows the step-by-step derivation to FGS-to-single-layer SDDT as shown in Fig.

11. In the beginning, the decoder-loop in the transcoder receives two FGS coded

bitstreams including a base layer (BL) and an enhancement layer (EL). The reconstructed

picture in the decoder-loop is given by

 () ()()1
1,n n nY B MC Y mv−= + 1 (16)

 22

It should be noted that the EL is independent of the MC in the BL, and directly added to

the reconstructed coefficients after being bit-plane decoded.

 23

n n nX Y E= + (17)

Substituting eqns. (16) and (17) into eqn. (3), we may obtain

() ()()
() () ()()

() ()()() () ()()

2 2*
1

2 2*
1

1 1 2 *
1 1

,

 = ,

 = , ,

n n n

n n n

n n n n

X X MC X mv

Y E MC X mv

2B MC Y mv E MC X mv

−

−

− −

= −

+ −

+ + −

 (18)

Assuming mv(1) = mv(2), MC(1)(X, mv) = MC(2)(X, mv), and MC is a linear assumption, we

can derive eqn. (19) from eqn. (18).

 ()()1*
1 1,n n n n nX B MC Y X mv E− −= + − + (19)

Applying eqn. (17) into eqn. (19), we can yield

()()

() ()()

1*
1 1

1*
1 1 1

,

,

n n n n n

n n n n

X B MC Y X mv E

nB MC X E X mv E

− −

− − −

= + − +

= + − − +
 (20)

Replacing the frame differences with the residual differences as in eqn. (10), eqn. (20) is

reduced to

() ()()
() ()()

1*
1 1 1

1*
1 1 1

,

,

n n n n n n

n n n n

X B MC X X E mv E

nB MC X X E mv E

− − −

− − −

= + − − +

= + − − +
 (21)

This derivation for prediction residual as shown in eqn. (21) is very similar to eqn. (11)

which we have in SDDT, except for those enhancement-layer related terms. The

influence of the EL is in two ways. Firstly, the reconstructed frame as shown in eqn. (17)

contains the EL coefficients (En) for refinement. Secondly, the reconstructed frame with

EL refinement is used to reconstruct the next reference frame for the encoder-loop which

originally should use BL only to reconstruct pictures. The second influence will introduce

mismatches for those using the decoded set of MVs and residues without proper

correction. Different reconstructed frames are generated between the transcoder and

end-users, and such a mismatch will propagate frame by frame with obvious quality

degradation. To avoid the mismatches, the effects of EL in reconstructed frames must be

removed. One possible solution is to implement a full-scale ME for the correct MVs to be

used for the reconstruction from BL added with EL. But such a solution costs too much

computation. Another way is to remove the effects of EL from the reconstructed frames in

the encoder-loop. Therefore, the term of En-1 in eqn. (21) is added to avoid the

reconstruction mismatches between the transcoder and end-users. The proposed

multi-layer to single-layer transcoding framework is shown in Fig. 11. Based on this

framework, we are able to transcode the FGS bitstream to either format of MPEG-1/2/4

video bitstream by merely replacing the standard compliant entropy coder (VLC),

quantization table (Q2), etc.

Fig. 11. FGS to single-layer transcoder

The multi-layer to single-layer transcoding framework preserves the same

transcoding efficiency as the SDDT in computation. Compared to the CDDT shown in

Fig. 10, the proposed framework saves 1 MC operation and 1 frame memory, and 4 more

DCT/IDCT as compared to the CPDT.

Although the proposed multi-layer to single-layer transcoding framework is a

computationally efficient architecture, it suffers from the same problems as the SDDT

including arithmetic error and incoherent error which are mentioned in Chapter 2. To dig

 24

 25

deeper to see the problems, we have identified three possible sources to cause drift errors

in the proposed framework.

1. Rounding mismatches and precision conversion mismatches from MC-DCT.

2. Rounding mismatches and saturation mismatches from single MC

implementation in frequency domain.

3. Incoherent errors from heterogeneous transcoding.

The effects for the first and second types are minor and usually negligible. The third type

which is dedicated to the heterogeneous transcoding has dominant influences on drift

errors if the drift errors are not well-handled. In the next section, we will dedicate the

discussion to the design issues of heterogeneous transcoding.

3.2. Design Issues of Heterogeneous Transcoding

This section discusses the design issues to explore the exact drift error sources in

heterogeneous transcoding. As what we have discussed, the proposed framework has

three possible drift error sources. The first type including rounding mismatch and

precision conversion mismatch is dedicated to the MC-DCT problems. The matrix

operations in MC-DCT determine how serious this problem will be. For example, the

matrix operational results using integer precision representation is different from using

double precision representation. But, usually such a mismatch contributes minor drift

errors and is ignorable. The second type including rounding mismatch and saturation

mismatch is introduced by using single MC in the frequency domain. In eqn. (19), we

have assumed MC(Yn-1 – X*
n-1, mv) = MC(Yn-1, mv) – MC(X*

n-1, mv) under the

assumption that MC(.) has the linear characteristic. But the sub-pixel interpolation

operations in MC(.) contain rounding and saturation operations which are non-linear.

Such a type of mismatch is similar to the first type which is one kind of arithmetic errors

and will only introduce minor drift errors in general. The third type is the incoherent error

from heterogeneous transcoding. This type of mismatch comes from the incompatible

coding toolsets in various compression standards. To analyze this type of mismatch, we

need to survey the supported toolsets in these standards we want to support.

 26

Table 5. A summary of the toolsets in MPEG-1, MPEG-2, and MPEG-4

Features MPEG-1 MPEG-2 MPEG-4

Profiles N/A Main Fine Granularity Scalable

Processing Unit Macroblock Macroblock Macroblock

Picture Types I, P, B I, P, B I, P, B

Unconstrained MV Not supported Not supported Supported

4 MV Not supported Not supported Supported

Block Transform 8×8 DCT 8×8 DCT 8×8 DCT

Prediction Modes Frame only Field, frame Field, frame

Support Formats Progressive Progressive & interlaced Progressive & interlaced

Table 5 summaries the supported coding toolsets in MPEG-1, MPEG-2 and

MPEG-4. From this table, we can observe that the coding toolsets supported by MPEG-1

and MPEG-2 are quite similar, except for the interlaced mode support, entropy coding

tables and quantization tables, etc. MPEG-4 has more distinct differences in supported

coding toolsets compared to MPEG-1/2. According to eqn. (19), what we really need to

care is 4-MV and Unconstrained MV (UMV) which may fail our assumption of mv(1) =

mv(2). Four MV is to support the MC on 8×8 block basis. Since MPEG-1/2 does not

support MV for 8×8 block, we need to re-map these four 8×8 MVs into a new 16×16 MV

for coding. The UMV is to allow MPEG-4 MV to point out of the picture boundary, while

MPEG-1/2 doesn’t. To simplify the computation, only a simple clipping operation is used

to limit the UMV to lie inside the picture boundary.

Although the input MV can be modified to comply with the syntax in the

end-decoder, it is not the correct MV for the corresponding prediction error. In two MC

architectures such as CPDT and CDDT, the MC loop in the encoder-loop re-computes the

prediction residual according to the re-mapped MV. However, the same design flow is

not suitable for our multi-layer to single-layer transcoding framework, since in our

multi-layer to single-layer framework, it doesn’t allow the residue re-compilation. So, the

coding residues will not be able to match the motion compensated data for perfect

reconstruction. And then, obvious quality degradation occurs. To solve this problem, we

derive a new equation for the prediction residual in the encoder-loop in the transcoder by

taking into account these heterogeneous transcoding effects.

From eqn. (18), we modify the eqn. (18) into eqn. (22) by removing the assumption

of mv(1) = mv(2).

() ()()() () ()()()
() ()()() () ()()()

() ()() () ()()()
() () ()() () ()()()()

() ()() () ()()()
() () ()()() ()

1 1 2 2*
1 1

1 1 2 2*
1 1

2 2 2 2
1 1

2 2 2 2*
1 1

1 1 2 2
1 1

2 2 1*
1 1

, ,

 = , ,

 , ,

 = , ,

 , ,

 = ,

n n n n n

n n n n

n n

n n n n

n n

n n n n

X B MC Y mv E MC X mv

B MC Y mv E MC X mv

MC Y mv MC Y mv

B E MC Y mv MC X mv

MC Y mv MC Y mv

B E MC Y X mv MC

− −

− −

− −

− −

− −

− −

= + + −

+ + − +

−

+ + − +

−

+ + − + ()() () ()()()1 2
1 1, ,n nY mv MC Y mv− −− 2

(22)

Note that the difference between eqns. (19) and (22) is in the second term which is the

difference of using different MVs for MC. To integrate eqn. (10) into eqn. (22), we get a

new form as eqn. (23).

() ()()

() ()() () ()()

2 2*
1 1 1

1 1 2 2
1 1

,

 , ,

n n n n n n

n n

X B E MC X X E mv

MC Y mv MC Y mv

− − −

− −

= + + − − +

−
 (23)

In eqn. (23), the prediction error in the encoder-loop in a heterogeneous transcoder

comprises the original decoded prediction error from the input bitstreams (including BL

and EL) and an additional drift error term. The drift error (d) can be expressed as

() ()() () ()() () ()()2 2 1 1 2*

1 1 1 1 1, ,n n n n n

q p

d MC X X E mv MC Y mv MC Y mv

d d
− − − − −= − − + −

= +

2,
 (24)

where

 () ()()2 *
1 1 1,q n n nd MC X X E mv− − −= − − 2 (25)

and

 27

 () ()() () ()()1 1 2
1,p n nd MC Y mv MC Y mv−= − 2

1,− (26)

In eqn. (24), the drift error has been decomposed into two components. The first

component dq represents the arithmetic error which we may neglect as mentioned in

Section 3.1. This is a common drift error that has been observed in many other

transcoding works. In Fig. 11, the motion-compensated loop is used to compensate for

this type of error. The second component dp is from the heterogeneity of MC

implementation between the decoder-loop and encoder-loop. Since MPEG-1/2 supports

neither four MV MC nor unrestricted MC, the prediction residual of an inter-coded

macroblock should be compensated with the differences between the predictions formed

in the decoder-loop and encoder-loop. This type of error is also referred to as the

incoherent error in Section 2.3.2. This incoherent error may cause more than 2 dB quality

loss in PSNR depending on different GOP sizes or sequences.

Targeting on drift-free transcoding, the two types of drift errors dq and dp where dp

dominates how serious the drift errors in the proposed multi-layer to single-layer

transcoding framework will be should be eliminated. The component dp is composed of

the difference between the two MCs in the decoder-loop and the encoder-loop. For

homogeneous transcoding, dp can be easily eliminated since MC(1)(.) = MC(2)(.) under the

assumption of mv(1) = mv(2). But in heterogeneous transcoding with single MC

architecture, the unknown property of mv(1) = mv(2) and MC(1)(.) = MC(2)(.) makes the dp

unpredictable. First, mv(2) may come from various combinations in the cases of four MV

or UMV. Secondly, since only one MC is used, we can’t predict both MC(1)(.) and

MC(2)(.). Such two reasons make dp unable to be reconstructed perfectly theoretically.

The prior arts adopt various transcoding techniques such as intra refreshment to stop the

error propagation, but these methods only focus on eliminating the drift errors, but not

stopping the error generation. To perfectly stop the error generation, we need side

information to compensate for the dp. Therefore, in addition to the BL and EL, a third

auxiliary layer is introduced in the transcoding design to compensate for the incoherent

errors. Such a technique is called multi-layer transcoding technique in this thesis.

 28

 29

Chapter 4

Multi-Layer Transcoding Approach

In this chapter, a novel multi-layer transcoding approach is proposed to compensate

for the drifting error from the incoherent MC structure. This multi-layer transcoding

approach introduces an additional enhancement-layer (EL) bitstream containing the

pre-calculated incoherent errors. This pre-calculated error layer is used to compensate for

the errors in heterogeneous transcoding for the drift-free target. Under channel bandwidth

limitation, a rate-distortion model is presented to optimize the streaming in original

enhancement layer and this additional enhancement layer.

4.1. Drift Compensation with Additional Enhancement Layer

Severe drift error may be introduced in our multi-layer to single-layer transcoding

framework when transcoding operates across different video compression standards.

According to the analysis in Section 3.2, the reason is that the proposed SDDT

architecture only compensated for the arithmetic errors which primarily come from the

re-quantization process, but neglected the component of the incoherent errors, which

comes from the incoherent MC structures between different standards. However, as what

we demonstrated in Section 3.2, using single MC structure is unable to obtain enough

information for drift-free heterogeneous transcoding. As shown in eqn. (26), the required

information for compensating for the incoherent errors comes from the decoder-loop in

the transcoder (Yn-1), which is not available in the multi-layer to single-layer transcoding

framework with single MC. There were other drift-elimination schemes such as the intra

refresh technique, but they all suffer from the weakness of inexact compensation. Such

kinds of transcoding techniques only stop the error propagation by periodically update an

error-free block or an error-free frame passively. To aggressively solve this error drifting

problem, the error information should be available for compensation. Therefore, to

perform drift-free transcoding using the proposed multi-layer to single-layer framework

which is unable to generate such an error term on its own, we need these error information

to be transmitted from the front-encoder.

Base Layer
Bitstream

Original
Video Q1 VLC

Q1
-1

Frame
Buffer

DCT

IDCT

MC

ME

DCT Bit-Plane
Shift

Bit-Plane
VLC

Enhanecment
Layer Bitstream

Error Layer
Bitstream

MC

MV
Mapping

DCT Bit-Plane
Shift

Bit-Plane
VLC

−

+

+

−

+

−

Fig. 12. Corresponding FGS encoder framework for MSDDT

The multi-layer streaming technique is to pre-generate the incoherent errors dp in

the font-encoder due to that this encoder is able to generate the same information as the

decoder-loop in the transcoder. From eqn. (26), We can find that generating the mismatch

due to different MC structures requires only the reference pictures in the decoder-loop in

the transcoder, under the assumption of MC(1)(X, mv) = MC(2)(X, mv). Thus, we may

 30

pre-generate the incoherent errors in the front-encoder as eqn. (27) and transmit the errors

as side information to the transcoder.

 () ()() () ()()1 1 1
1,p n nd MC Y mv MC Y mv−= − 2

1,− (27)

Here, we also assumed that the MV mapping method is known in the front-encoder,

which is true since this FGS encoder is designed especially for our application. Fig. 12

shows the modified FGS front-encoder, in which an additional EL is introduced by

bit-plane coding the differences between the motion compensated predictions from

different MC structures of the decoder-loop and encoder-loop. In the following, we will

denote this additional EL as the error layer or EL2. Transferring of the component dp in

eqn. (27) to the front-encoder does not bear any burden, since the video content for

transcoding is mostly encoded in advance such that no real-time constraint is imposed.

With introducing this auxiliary layer as side information, we can simply

compensate for the drift error dp by bit-plane decoding the error layer bitstream. Fig. 13

shows the multi-layer to single-layer transcoding framework with the multi-layer

transcoding technique. This architecture is referred to as the Multi-layer Simplified

DCT-Domain Transcoder (MSDDT) in this thesis. In this architecture, the transcoding

efficiency of SDDT which requires only one frame store and one MC is preserved. But

since a third layer is introduced, we will need the corresponding VLD module for

decoding this auxiliary bitstream, in which the overhead produced on computation is

negligible. Hence, the structural simplicity of the original transcoding design is preserved

while both sources of drift error are perfectly compensated if the error layer is completely

received. The sole trade-off is that the transmission of the error layer bitstream requires

additional bandwidth.

 31

VLD Q1
-1 Q2 VLC

Q2
-1

Frame
Buffer

MC-
DCT

Output
Bitstream

−

+

MV

Error Layer
Bitstream

Base Layer
Bitstream

Enhancement
Layer Bitstream

Bit-Plane
VLD

Bit-Plane
Shift

Bit-Plane
VLD

Bit-Plane
Shift

MV
Mapping

Fig. 13. Multi-layer Simplified DCT-Domain Transcoder (MSDDT)

In summary, we implemented the multi-layer transcoding approach based on the

proposed multi-layer to single-layer transcoding framework to resolve the drift

propagation problem in heterogeneous transcoding. In an ideal case with infinite

bandwidth, this proposed architecture shown in Fig. 13 should be able to obtain the same

rate-distortion performance as CDDT. This is because both types of drift error (dq and dp)

can be perfectly compensated. But the available bandwidth is usually constrained in most

practical applications, and hence raises the issue of how to allocate the limited bandwidth

resources to both layers (EL and error layer) for efficient transmission. In the next

section, an optimized model is constructed for the selection of the enhancement layer and

the error layer.

4.2. Multi-Layer Transcoding with R-D Optimization

An R-D model is constructed to solve the multi-layer transcoding problems under

the limited channel bandwidth. To perform drift-free transcoding, an additional error

layer containing the coefficients of the incoherent errors is used as side information to be

transmitted to the transcoder. But since channel bandwidth is limited, the resource

 32

allocation for achieving the best transcoding performance and decoded video quality

becomes very important.

To model the resource allocation problem under the limited channel bandwidth,

eqn. (28) shows the relationship between the original enhancement layer (EL1) and the

error layer (EL2). Suppose the given bit rate for the two enhancement-layer bitstreams is

R. The solution is to find the best inter-layer ratio α to provide the best transcoding R-D

performance. The definition is given in eqn. (28) in which RE is the bit rate of EL1 and Rε
is the bit rate of EL2

 () s.t. and 1E E
E

E

R R R R R
R R R ε

ε

α α= = = = −
+

Rα (28)

Since FGS enables progressive transmission, both the EL and error layer are capable of

being arbitrarily truncated to any desired bit rate according to the inter-layer ratio (α) and

the given bit rate (R). Now, the problem is how to find the best α under given bit rate (R)

as shown in eqn. (29).

[]

() ()
0,1

arg min given opt ED R R Rε
α

α α
∈

= = + (29)

where D(.) is the distortion function.

To provide the optimized solution to eqn. (29), one solution is to exhaustively

search through all possible values of α in the range of [0, 1] for the one with the minimum

distortion. But such a method takes too much computation powers, and is not preferred.

One efficient but effective way to do is to build an R-D model to provide the best

transcoded R-D performance.

 33

To construct the relationship between R and αopt, a statistical method to observe

various sequences and bit rates is used. We simulated the MSDDT with various

combinations of R and α, where R ranges from 0 to 2560 Kbps with an interval of 256

Kbps and α from 0 to 1 with a step size of 0.05. To bind the influence from the

encoder-loop in the transcoder, constant quantization is used for re-encoding. The bit rate

of the BL is adjusted to 256, 512, 1024, and 2048 Kbps with TM5 rate control. Four

sequences including Akiyo, Foreman, Mobile, and Stefan in CIF format are used for

testing with GOP structure N = 15, M = 1 (i.e., IPPP…). Fig. 15 to Fig. 18 show the

resultant rate-distortion curves for various α, where the horizontal axis is the available bit

rate for all ELs (R) and the vertical axis is the distortion measure in mean square error

(MSE) of the transcoded video (D(.)). The dotted lines represent the interpolated

rate-distortion data for different values of α, and the bold lines indicate the rate-distortion

optimized inter-layer ratio αopt, where the distortion is minimized subject to the given bit

rate. Based on the results in Fig. 15 to Fig. 18, we may obtain the relationships between R

and αopt for different sequences and BL bit rates, as shown from Fig. 19 to Fig. 22.

From Fig. 19 to Fig. 22, these relationships exhibit similar properties such as being

monotonically increasing or being saturated with high input bit rate. This observation

makes it easier to construct a single model to predict all the others. Based on this idea, we

present a new model to describe the relationship between R and αopt. Four common

models are experimented for assessment, including linear, power-law, quadratic, and

exponential. Among them, the power-law and quadratic polynomial act as the most

promising candidates for modeling the actual relationships since they both demonstrate

resembling functional property as the results in Fig. 19 to Fig. 22, as shown in Fig. 14.

Table 6 shows the approximation of the curve using four different models and we can find

that the power-law model provides the best approximation results. So, the new model is

formulated in the equation as eqn. (30).

 b
opt aR cα = + (30)

where (a, b, c) is the set of model parameters.

 34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear
Exponential
Power-law
Quadratic

Fig. 14. General curve behaviors for different models

Table 6. RMSE of the estimation of the (R, αopt) relationship using different models

RMSE Linear Power-Law Quadratic Exponential

Akiyo 0.0411 0.01178 0.01929 0.0423

Foreman 0.09279 0.01757 0.06005 0.1001

Fig. 23 shows the fitting curve of the actual (R, αopt) data which is an averaged form of all

the experimented models. Note that this model provides statistical information. The

actual relationship between R and αopt may vary with the video content and the BL bit

rate. For example, for sequences with slow motion such as Akiyo, the amount of the

incoherent error in the video streams is minor such that αopt tends to saturate faster, or for

high BL bit rate such as Mobile@2048 Kbps, the contribution of the EL is insignificant

since the BL is already with very high video quality, thus αopt shows bias toward the error

layer when the bandwidth resource is limited. Through experimental results in later

chapter, it can be shown that the proposed power-law model with single parameter set is

capable of accommodating the variation in video characteristics and provides satisfying

transcoding performances compared to the optimized approach.

 35

0 500 1000 1500 2000 2500 3000
2

4

6

8

10

12

14
Akiyo CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

200
Foreman CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
100

200

300

400

500

600

700
Mobile CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600
Stefan CIF

Bit Rate (Kbps)

M
S

E

Fig. 15. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left),
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 256-Kbps BL bit rate

0 500 1000 1500 2000 2500 3000
2

3

4

5

6

7

8

9
Akiyo CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180
Foreman CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
100

200

300

400

500

600

700
Mobile CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
50

100

150

200

250

300

350

400

450

500

550
Stefan CIF

Bit Rate (Kbps)

M
S

E

Fig. 16. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left),
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 512-Kbps BL bit rate

 36

0 500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8
Akiyo CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180
Foreman CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
50

100

150

200

250

300

350

400

450

500

550
Mobile CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

500
Stefan CIF

Bit Rate (Kbps)

M
S

E

Fig. 17. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left),
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 1024-Kbps BL bit rate

0 500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7
Akiyo CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180
Foreman CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
50

100

150

200

250

300

350

400

450

500
Mobile CIF

Bit Rate (Kbps)

M
S

E

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

500
Stefan CIF

Bit Rate (Kbps)

M
S

E

Fig. 18. MSE vs. bit rate when running MSDDT with various α, and R combinations for Akiyo (upper left),
Foreman (upper right), Mobile (lower left), and Stefan (lower right) at 2048-Kbps BL bit rate

 37

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Akiyo CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Foreman CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mobile CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stefan CIF

Bit Rate (Kbps)

α
op

t

Fig. 19. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower
right) at 256-Kbps BL bit rate

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Akiyo CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Foreman CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mobile CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stefan CIF

Bit Rate (Kbps)

α
op

t

Fig. 20. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower
right) at 512-Kbps BL bit rate

 38

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Akiyo CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Foreman CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mobile CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Stefan CIF

Bit Rate (Kbps)

α
op

t

Fig. 21. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower
right) at 1024-Kbps BL bit rate

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Akiyo CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Foreman CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Mobile CIF

Bit Rate (Kbps)

α
op

t

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Stefan CIF

Bit Rate (Kbps)

α
op

t

Fig. 22. αopt vs. bit rate for Akiyo (upper left), Foreman (upper right), Mobile (lower left), and Stefan (lower
right) at 2048-Kbps BL bit rate

 39

0 500 1000 1500 2000 2500 3000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bit Rate (Kbps)

α
op

t

actual
pow

Fig. 23. The fitting curve for (R, αopt) using the power-law model

 40

 41

Chapter 5

Experimental Results

This chapter demonstrates the experimental results of the proposed multi-layer to

single-layer transcoder. R-D performance and complexity comparisons are provided to

show that the proposed transcoder can provide good transcoding qualities.

5.1. Test Conditions

The test conditions for the experiments of FGS multi-layer to MPEG-1/2/4 single

layer are presented as below. The source video sequences are first encoded and archived

as three FGS bitstreams consisting of the BL bitstream, the EL bitstream, and the

error-layer bitstream. The BL bitstream samples the source video sequence at 30 Hz.

- Video source format — CIF 30 fps

- Test video sequences — Foreman, Akiyo, Mobile, Foreman, etc.

- Video GOP structure — N = 15, M = 1 (i.e., IPPP…).

- Video bit rate for FGS base-layer bitstream — 256 Kbps, 512 Kbps, 1024

Kbps, 2048 Kbps with TM5 rate control.

- Video coding tools — no advanced coding tools in MPEG-4 FGS Profile such

as frequency weighting or selective enhancement are used in the FGS EL.

Five transcoding architectures are used for transcoding performance comparison.

 Cascaded Pixel-Domain Transcoder (CPDT)

 Cascaded DCT-Domain Transcoder (CDDT)

 Simplified DCT-Domain Transcoder (SDDT)

 42

 Modified Simplified DCT-Domain Transcoder where the inter-layer ratio α is

determined using the exhaustive search with a step size of 0.05 (MSDDT_Opt)

 Modified Simplified DCT-Domain Transcoder where the inter-layer ratio α is

determined using the proposed power-law model (MSDDT_Pow)

To simulate the possible channel bandwidth variation, the total bit rate of the

enhancement-layer bitstreams is truncated to bit rate ranging from 256 to 2048 Kbps with

an interval of 256 Kbps. The truncation of EL bitstream is implemented in the streaming

server through a simple frame-level bit allocation which averages the given bandwidth. In

the re-encoding process, the constant quantization step sizes (QPs) are employed, where

the set of QP used is chosen such that the output transcoded bit rate would approach the

total input bit rate (BL + ELs).

5.2. Rate-Distortion Performance

5.2.1. MPEG-4 FGS to MPEG-1
Fig. 24 to Fig. 27 show the rate-distortion performances of four transcoding

architectures, including CPDT, CDDT, SDDT, and MSDDT with the proposed

power-law model (MSDDT_Pow). We design a single parameter set of (a, b, c) =

(0.3476, 0.18573, -0.77644) for MSDDT_Pow for various BL bit rates. The target

scenario is to transcode MPEG-4 FGS bitstream into MPEG-1 bitstream. From Fig. 24 to

Fig. 27, we can find that SDDT suffers from serious quality degradation due to incoherent

errors in heterogeneous transcoding. Our proposed MSDDT_Pow running at 256-Kbps

base-layer bit rate provides up to 4.7 dB, 2.6 dB, and 3.8 dB gain in PSNR over the SDDT

for the Foreman, Mobile, and Stefan sequences, respectively. Compare with the CPDT

architecture which is usually treated as the transcoder golden reference, the proposed

MSDDT_Pow architecture under 256-Kbps base-layer bit rate has only 0.3–0.6 dB,

0.3–0.4 dB, and 0.3–1.1 dB loss in PSNR under various bit rates for the Foreman, Mobile,

and Stefan sequences, respectively. Table 7 summarizes the comparison results for the 4

types of transcoder architectures including CPDT, CDDT, SDDT and the proposed

MSDDT_Pow at about 1200 Kbps, 1200 Kbps, and 1300 Kbps for Foreman, Mobile, and

Stefan, respectively.

26

27

28

29

30

31

32

33

34

300 500 700 900 1100 1300 1500

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

CDDT

MSDDT_Pow

SDDT

(a)

20

21

22

23

24

25

600 800 1000 1200 1400

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

CDDT

MSDDT_Pow

SDDT

(b)

21

22

23

24

25

26

27

28

29

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B
)

CPDT

CDDT

MSDDT_Pow

SDDT

(c)

Fig. 24. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 256 Kbps.
(a) Foreman (b) Mobile (c) Stefan

 43

26

27

28

29

30

31

32

33

34

35

36

400 600 800 1000 1200 1400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(a)

20

21

22

23

24

25

26

600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(b)

21

22

23

24

25

26

27

28

29

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B) CPDT

CDDT

MSDDT_Pow

SDDT

(c)

Fig. 25. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 512 Kbps.
(a) Foreman (b) Mobile (c) Stefan

 44

26

27

28

29

30

31

32

33

34

35

36

400 600 800 1000 1200 1400

Bit Rate (Kbps)

PS
N

R
 (d

B) CPDT

CDDT

MSDDT_Pow

SDDT

(a)

20

21

22

23

24

25

26

27

600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(b)

21

22

23

24

25

26

27

28

29

30

400 600 800 1000 1200 1400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(c)

Fig. 26. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 1024
Kbps. (a) Foreman (b) Mobile (c) Stefan

 45

26

27

28

29

30

31

32

33

34

35

36

37

400 600 800 1000 1200 1400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(a)

20

21

22

23

24

25

26

27

600 800 1000 1200 1400 1600

Bit Rate (Kbps)

P
SN

R
(d

B)

CPDT
CDDT
MSDDT_Pow
SDDT

(b)

20

21

22

23

24

25

26

27

28

29

30

31

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Pow

SDDT

(c)

Fig. 27. FGS-to-MPEG-1 transcoding performance comparison under FGS base-layer bit rate of 2048
Kbps. (a) Foreman (b) Mobile (c) Stefan

 46

 47

Table 7. Rate-distortion comparison for FGS-to-MPEG-1 transcoding

PSNR (dB) CPDT CDDT MSDDT_Pow SDDT

Foreman - +0.2 -0.6 -5.3

Mobile - +0.3 -0.3 -2.9 256 Kbps

Stefan - +0.2 -1.1 -4.9

Foreman - 0 -0.3 -6.5

Mobile - +0.1 -0.5 -3.4 512 Kbps

Stefan - +0.2 -1 -5.7

Foreman - 0 -0.4 -7.2

Mobile - 0 -0.8 -4.3 1024 Kbps

Stefan - +0.2 -0.8 -6.2

Foreman - 0 -0.4 -7.4

Mobile - 0 -0.9 -4.5 2048 Kbps

Stefan - +0.2 -1 -6.8

5.2.2. MPEG-4 FGS to MPEG-2
Fig. 28 to Fig. 31 show the rate-distortion performances of five transcoding

architectures, including CPDT, CDDT, SDDT, MSDDT with the optimized approach

(MSDDT_Opt), and MSDDT with the proposed power-law model (MSDDT_Pow). We

design a single parameter set of (a, b, c) = (0.3476, 0.18573, -0.77644) for MSDDT_Pow

for various BL bit rates. The target scenario is to transcode MPEG-4 FGS bitstream into

MPEG-2 Main Profile bitstream. From Fig. 28 to Fig. 31, we can find that SDDT suffers

from considerable quality degradation due to incoherent errors in heterogeneous

transcoding. Our proposed MSDDT_Pow running at 256-Kbps base-layer bit rate

provides up to 2.4 dB, 5.9 dB, 3.4 dB, and 5.4 dB gain in PSNR over the SDDT for the

Akiyo, Foreman, Mobile, and Stefan sequences, respectively. Compare with the CDDT

architecture, the proposed MSDDT_Pow architecture running at 256-Kbps base-layer bit

rate has 0.4–0.6 dB, 0.4–0.8 dB, and 0.4–1.4 dB loss in PSNR under various bit rates for

 48

the Foreman, Mobile, and Stefan sequences, respectively. For the Akiyo sequence, the

MSDDT_Pow running at 256-Kbps base-layer bit rate can achieve almost the same

transcoding performance as the CDDT architecture, where the PSNR difference is within

0.1 dB. Another comparison is between the MSDDT using the optimized approach and

using the proposed model. From Fig. 28, we find that the MSDDT using the power-law

model has almost identical PSNR values as the MSDDT based on the optimized

exhaustive search running at 256-Kbps base-layer bit rate, which has at maximum a 0.3

dB difference. Table 8 summarizes the comparison results for the 5 types of transcoding

architectures including CPDT, CDDT, SDDT, MSDDT_Opt, and the proposed

MSDDT_Pow at about 650 Kbps, 2100 Kbps, 2000 Kbps, and 2200 Kbps for Akiyo,

Foreman, Mobile, and Stefan, respectively.

Table 8. Rate-distortion comparison for FGS-to-MPEG-2@MP transcoding

PSNR (dB) CPDT CDDT MSDDT_Opt MSDDT_Pow SDDT

Akiyo - -1.2 -1.2 -1.2 -3.6

Foreman - 0 -0.6 -0.6 -6.5

Mobile - +0.2 -0.6 -0.6 -4
256 Kbps

Stefan - +0.2 -1.2 -1.2 -6.6

Akiyo - -1.1 -1.1 -1.1 -3.4

Foreman - -0.2 -0.8 -0.8 -8.2

Mobile - +0.1 -0.8 -0.8 -4.6
512 Kbps

Stefan - +0.2 -1.2 -1.2 -7.3

Akiyo - -1.2 -1.2 -1.2 -3.3

Foreman - -0.3 -1 -1 -9.2

Mobile - +0.1 -0.4 -0.7 -5
1024 Kbps

Stefan - +0.1 -0.9 -1.1 -8.2

Akiyo - -1.6 -1.6 -1.6 -3.5

Foreman - -0.4 -0.8 -1 -9.6

Mobile - 0 -0.2 -1.2 -5.8
2048 Kbps

Stefan - +0.1 -0.5 -1.5 -8.7

32

33

34

35

36

37

38

39

40

41

42

100 300 500 700

Bit Rate (Kbps)

PS
N

R
 (d

B
)

CPDT

CDDT
MSDDT_Opt

MSDDT_Pow
SDDT

(a)

26

27

28

29

30

31

32

33

34

35

36

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(b)

19

20

21

22

23

24

25

26

27

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(c)

 49

20

21

22

23

24

25

26

27

28

29

30

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(d)

Fig. 28. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 256
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 50

32

33

34

35

36

37

38

39

40

41

42

100 300 500 700

Bit Rate (Kbps)

PS
N

R
 (d

B
) CPDT

CDDT

MSDDT_Opt

MSDDT_Pow
SDDT

(a)

26

27

28

29

30

31

32

33

34

35

36

37

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(b)

19

20

21

22

23

24

25

26

27

400 600 800 1000 1200 1400 1600 1800 2000 2200

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(c)

 51

20

21

22

23

24

25

26

27

28

29

30

31

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(d)

Fig. 29. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of 512
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 52

32

33

34

35

36

37

38

39

40

41

42

100 300 500 700

Bit Rate (Kbps)

PS
N

R
 (d

B
) CPDT

CDDT

MSDDT_Opt
MSDDT_Pow

SDDT

(a)

26

27

28

29

30

31

32

33

34

35

36

37

38

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(b)

19

20

21

22

23

24

25

26

27

28

300 500 700 900 1100 1300 1500 1700 1900 2100

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(c)

 53

20

21

22

23

24

25

26

27

28

29

30

31

32

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(d)

Fig. 30. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of
1024 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 54

32

33

34

35

36

37

38

39

40

41

42

43

100 300 500 700

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT
CDDT
MSDDT_Opt

MSDDT_Pow
SDDT

(a)

26

27

28
29

30

31

32
33

34

35

36
37

38

39

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(b)

19

20

21

22

23

24

25

26

27

28

29

300 500 700 900 1100 1300 1500 1700 1900 2100

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(c)

 55

20

21

22
23

24

25

26
27

28

29

30
31

32

33

300 500 700 900 1100 1300 1500 1700 1900 2100 2300

Bit Rate (Kbps)

PS
N

R
 (d

B)

CPDT

CDDT

MSDDT_Opt

MSDDT_Pow

SDDT

(d)

Fig. 31. FGS-to-MPEG-2@MP transcoding performance comparison under FGS base-layer bit rate of
2048 Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

5.2.3. MPEG-4 FGS to MPEG-4 SP
Fig. 32 to Fig. 35 show the rate-distortion performances of three transcoding

architectures, including CPDT, the FGS-to-MPEG-4@SP transcoder proposed in [24],

and MSDDT, for different BL bit rates. The target scenario is to transcode MPEG-4 FGS

bitstream into MPEG-4 Simple Profile bitstream, which is free of incoherent error. As

shown from Fig. 32 to Fig. 35, the three compared architectures share similar

rate-distortion performances. Table 9 summarizes the comparison results for the three

types of transcoding architectures including CPDT, work [24], and the proposed MSDDT

at about 550 Kbps, 1600 Kbps, 2200 Kbps, and 2300 Kbps for Akiyo, Foreman, Mobile,

and Stefan, respectively.

 56

36

37

38

39

40

41

42

43

100 300 500

Bit Rate (Kbps)

PS
N

R
 (d

B
) CPDT

MSDDT_Pow

FGS-to-SP

(a)

31

32

33

34

35

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

PS
N

R
 (d

B
)

CPDT

MSDDT_Pow

FGS-to-SP

(b)

23

24

25

26

27

28

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Bit Rate (Kbps)

P
S

N
R

 (d
B)

CPDT

MSDDT_Pow

FGS-to-SP

(c)

 57

25

26

27

28

29

30

31

500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Bit Rate (Kbps)

P
S

N
R

 (d
B)

CPDT

MSDDT_Pow

FGS-to-SP

(d)

Fig. 32. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 256
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 58

36

37

38

39

40

41

42

43

100 300 500

Bit Rate (Kbps)

P
S

N
R

 (d
B

) CPDT

MSDDT_Pow
FGS-to-SP

(a)

32

33

34

35

36

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

P
S

N
R

 (d
B

) CPDT

MSDDT_Pow

FGS-to-SP

(b)

23

24

25

26

27

28

400 600 800 1000 1200 1400 1600 1800 2000 2200

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

MSDDT_Pow

FGS-to-SP

(c)

 59

25

26

27

28

29

30

31

32

400 600 800 1000 1200 1400 1600 1800 2000 2200

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

MSDDT_Pow

FGS-to-SP

(d)

Fig. 33. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 512
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 60

36

37

38

39

40

41

42

43

100 300 500

Bit Rate (Kbps)

P
S

N
R

 (d
B

) CPDT

MSDDT_Pow
FGS-to-SP

(a)

33

34

35

36

37

38

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT
MSDDT_Pow

FGS-to-SP

(b)

23

24

25

26

27

28

29

400 600 800 1000 1200 1400 1600 1800 2000

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

MSDDT_Pow
FGS-to-SP

(c)

 61

25

26

27

28

29

30

31

32

33

400 600 800 1000 1200 1400 1600 1800 2000 2200

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT
MSDDT_Pow

FGS-to-SP

(d)

Fig. 34. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 1024
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

 62

36

37

38

39

40

41

42

43

44

100 300 500

Bit Rate (Kbps)

P
S

N
R

 (d
B

) CPDT

MSDDT_Pow
FGS-to-SP

(a)

33

34

35

36

37

38

400 600 800 1000 1200 1400 1600

Bit Rate (Kbps)

P
S

N
R

 (d
B

) CPDT

MSDDT_Pow
FGS-to-SP

(b)

23

24

25

26

27

28

29

30

400 600 800 1000 1200 1400 1600 1800 2000

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT
MSDDT_Pow

FGS-to-SP

(c)

 63

25

26

27

28

29

30

31

32

33

34

500 700 900 1100 1300 1500 1700 1900 2100

Bit Rate (Kbps)

P
S

N
R

 (d
B

)

CPDT

MSDDT_Pow
FGS-to-SP

(d)

Fig. 35. FGS-to-MPEG-4@SP transcoding performance comparison under FGS base-layer bit rate of 2048
Kbps (a) Akiyo (b) Foreman (c) Mobile (d) Stefan

Table 9. Rate-distortion comparison for FGS-to-MPEG-4@SP transcoding

PSNR (dB) CPDT MSDDT_Pow FGS-to-SP [24]

Akiyo - 0 +0.1

Foreman - 0 0

Mobile - +0.2 0
256 Kbps

Stefan - +0.1 0

Akiyo - 0 0

Foreman - -0.2 0

Mobile - +0.2 0
512 Kbps

Stefan - 0 0

Akiyo - 0 0

Foreman - -0.4 -0.1

Mobile - +0.1 +0.1
1024 Kbps

Stefan - 0 0

Akiyo - -0.4 0

Foreman - -0.2 +0.1

Mobile - 0 0
2048 Kbps

Stefan - 0 +0.2

 64

 65

5.3. Complexity Analysis

5.3.1. Module-wise Comparison
Table 10 shows the module-wise complexity comparison for the six transcoding

architectures. Type I which is referred to as DEC-ENC cascades a full decoder with a full

encoder, and takes the most computations compared with the other five architectures.

Type II which is referred to as CPDT saves 1 ME by reusing the decoded MVs. Type III

which is referred to as CDDT saves another 4 DCT/IDCT operations by operating

transcoding in the DCT domain. Type IV which is referred to as SDDT performs MC

using the residue differences only to reduce the requirement of two frame buffers to be

one. Type V is a simplified pixel-domain transcoder proposed in [24] which is a similar

form of Type IV, but requires 2 extra DCT/IDCT operations compared to Type IV to

allow this architecture operating in pixel domain. Type VI is our proposed multi-layer to

single-layer transcoder which uses the same transcoding architecture as Type IV, but with

a proposed multi-layer technique for handling the incoherent error problem. Type VI and

Type IV both require only 1 MC and 1 frame buffer. From Table 10, the proposed

transcoding framework shows the lowest computational complexity. Compared to Type

I, the proposed framework saves 1 ME, 1 frame buffer, 4 DCT/IDCT, and 1 MC.

Compared to Type II, 1 frame buffer, 4 DCT/IDCT, and 1 MC can be saved. Compared to

Type III, 1 frame buffer and 1 MC are saved.

Table 10. Module-wise complexity comparison of six transcoding architectures

MC Type Transcoding

Architecture

ME Frame

Buffer

DCT/

IDCT Spatial Transform

I DEC-ENC 1 2 4 2 0

II CPDT 0 2 4 2 0

III CDDT 0 2 0 0 2

IV SDDT 0 1 0 0 1

V Work [24] 0 1 2 1 0

VI Proposed 0 1 0 0 1

 66

5.3.2. Arithmetic Operations Comparison
To provide a more specific complexity analysis, the arithmetic instructions are

analyzed to provide the workload percentage analysis for the six transcoding

architectures. To build the relationship in complexity for the six architectures, Type I

which is the most computationally intensive is used as the reference for the other five

architectures. The representation of the complexity for the six architectures is shown in

percentage compared to Type I.

A. Arithmetic Instructions for Each Module

Table 11 shows the instruction counts for the modules in Table 10. The DCT and

IDCT modules which operate 8×8 forward and backward DCT take 672 and 912

adder/shifter instructions [25], respectively. The MC-DCT module which operates

DCT-domain MC instead of spatial-domain MC takes at most 810 adder/subtractor

instructions and 256 instructions for data movement [9]. The total instruction counts (IC)

for each module equal to the product of instruction counts and the corresponding cycle

per instruction (CPI). Here, we assume that the ALU and data movement instructions take

one clock cycle per instruction.

Table 11. Instructions required per block for each module

Add/sub

(Iadd/sub)

Data

movement

(Idata_mov)

Multi/div

(Imul/div)

Total

instructions

DCT [25] 672 64 0 736

IDCT [25] 912 64 0 976

MC (pixel) 0 64 0 64

MC-DCT [9] ≤ 810 ≤ 256 0 1066

B. Workload Analysis

Fig. 36-a shows the module-wise workload distribution for Type I under the

experiments using Foreman as the test sequence. From this pi chart, we can find ME

takes 54.4% (ΦME), Bit Plane VLD for FGS takes 30.2% (ΦFGS_VLD), DCT/IDCT take

13.6% (ΦDCT/IDCT), MC takes 0.3% (ΦMC), Q/IQ take 0.1% (ΦQ/IQ), VLC/VLD for base

layer take 1.0% (ΦBASE_VLC/VLD), and the others take the remaining parts (Φothers).

To convert the arithmetic instruction cycles into workload percentages, the

following relationship in eqn. (31) is used to build Table 12, where ΦTypeN is the fraction

of the computation time for each module in Type N. Table 12 shows the complexity ratio

(CR) for the six architectures compared with Type I.

 TypeN
TypeN TypeI

TypeI

IC
IC

Φ = ⋅Φ (31)

For illustration, Type VI which is proposed in this thesis takes only 35.66% of

computational power compared to Type I. From Table 10, Type VI saves 1 ME (54.35%),

3 IDCT plus 1DCT (13.61%), and 2 spatial-domain MC (0.29%), but needs another extra

MC-DCT. According to eqn. (31), the revised fraction for MC amounts to 0.29% × 1066

/ 128 = 2.42% of the overall complexity, where ICTypeVI = 1066 (1 MC-DCT) and ICTypeI

= 2 × 64 (2 pixel-domain MC). Since no instructions are needed for ME and DCT/IDCT,

the new workload percentage for these modules is 0%. Therefore, the complexity ratio of

Type VI is 0% (ΦME) + 0% (ΦDCT/IDCT) + 2.42% (ΦMC) + 31.75% (ΦFGS_VLD + ΦQ/IQ +

ΦBASE_VLC/VLD + Φothers) = 34.17%. The other derivations for Type II to V are similar and

shown in Table 12. The workload reduction is also represented as pi chart shown in Fig.

36 for the estimated complexity analysis for the six architectures in arithmetic operation

levels.

 67

 68

 Table 12. Arithmetic complexity ratio for the six transcoding architectures compared to the DEC-ENC
architecture.

Type I Type II Type III Architecture

 DEC-ENC CPDT CDDT

 workload(%) operations workload(%) operations workload(%) operations

ME 54.35 — 0 0 0 0

DCT/IDCT 13.61 3664 13.61 3664 0 0

MC 0.29 128 0.29 128 4.83 2132

Others 31.75 — 31.75 — 31.75 —

Total 100 45.65 36.58

Type IV Type V Type VI Architecture

 SDDT Work [24] Proposed

 workload(%) operations workload(%) operations workload(%) operations

ME 0 0 0 0 0 0

DCT/IDCT 0 0 6.36 1712 0 0

MC 2.42 1066 0.15 64 2.42 1066

Others 31.75 — 31.75 — 31.75 —

Total 34.17 38.26 34.17

54.35%

30.18%

13.61%

0.29%

0.09%

0.45%

0.83%

1.03%

ME
Bit Plane VLD
DCT/IDCT
VLC/VLD
MC
Q/IQ
Others

(a) Type I

30.18%

13.61%

0.29%

0.09%

0.45%

1.03%

0.83%

Bit Plane VLD
DCT/IDCT
VLC/VLD
MC
Q/IQ
Others

(b) Type II

30.18%

0.09%

0.45%

4.83%

0.83%

1.03%
Bit Plane VLD

MC-DCT

VLC/VLD

Q/IQ

Others

(c) Type III

 69

30.18%

0.09%

0.45%

1.03%

0.83%

2.42%

Bit Plane VLD

MC-DCT

VLC/VLD

Q/IQ

Others

(d) Type IV

30.18%
0.14%

0.45%

0.09

6.36%

0.83%

1.03%

Bit Plane VLD
DCT/IDCT
VLC/VLD
MC
Q/IQ
Others

(e) Type V

30.18%

0.09%

0.45%

1.03%

0.83%

2.42%

Bit Plane VLD

MC-DCT

VLC/VLD

Q/IQ

Others

(f) Type VI

Fig. 36. Estimated operational complexity comparison of the six transcoding architectures for Foreman

 70

 71

Chapter 6

Conclusion

In this thesis, we proposed a FGS multi-layer to MPEG-1/2/4 single-layer

transcoding framework using multi-layers transcoding techniques with R-D optimization.

This proposed framework is constructed based on the SDDT architecture which is

considered as one of the most computationally efficient transcoding architectures. To

resolve the drift propagation problem raised by SDDT architecture in heterogeneous

transcoding, two transcoding techniques, multi-layer transcoding and rate-distortion

optimized universal model are developed to improve it. The multi-layer transcoding

technique provides heterogeneous drift error compensation via transmitting additional

enhancement layer. The rate-distortion optimized universal model is used to achieve a

balance between coding efficiency and transmission bit rate under limited channel

bandwidth. The proposed framework could efficiently transcode the FGS to MPEG-1/2/4

bitstream in a shared architecture and achieves a better transcoding complexity and

transcoding quality balancing than conventional architectures.

The experimental results showed the proposed MSDDT architecture can provide a

very good transcoding performance compared to the conventional architectures. With the

proposed power-law model in the proposed multi-layer transcoding techniques, the

proposed framework shows up to 5.8 dB PSNR gains over the SDDT architecture under

the same transcoding complexity. Compared to the CDDT architecture, the MSDDT

architecture has similar PSNR quality at low bit rate and about 0.2–1.4 dB loss in PSNR

at high bit rate, but with only 34.17% of DEC-ENC transcoding complexity.

 72

For future works, to integrate multiple video coding standards into the proposed

design for single unified transcoding framework, the H.264 standard is treated as one of

the most challenging work due to its huge heterogeneities in coding tools compared to

existed standards.

73

Reference

[1] R. Mohan, J. R. Smith, and C.-S. Li, “Adapting multimedia Internet content for universal
access,” IEEE Trans. Multimedia, vol. 1, no. 1, pp. 104–114, Mar. 1999.

[2] ISO/IEC 14496–2: “Information technology—coding of audiovisual objects—part 2:
visual,” Geneva, 2000.

[3] H. Sun, W. Kwok, and J. W. Zdepski, “Architectures for MPEG compressed bitstream
scaling,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 2, pp. 191–199, Apr. 1996.

[4] A. Eleftheriadis, and D. Anastassiou, “Constrained and general dynamic rate shaping of
compressed digital video,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 396–399,
1995.

[5] Y. Nakajima, H. Hori, and T. Kanoh, “Rate conversion of MPEG coded video by
re-quantization process,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 408–411,
1995.

[6] W. Zhu, K. Yang, and M. Beacken, “CIF-to-QCIF video bitstream down-conversion in the
DCT domain,” Bell Labs. Tech. J., vol. 3, no. 3, pp. 21–29, July-Sep. 1998.

[7] D. G. Morrison, M. E. Nilson, and M. Ghanbari, “Reduction of the bit-rate of compressed
video while in its coded form,” in Proc. 6th Int. Workshop Packet Video, pp. D17.1–D17.4,
1994.

[8] G. Keesman, et al., “Transcoding of MPEG bitstreams,” Signal Process. Image Commun.,
vol. 8, no. 6, pp. 481–500, Sep. 1996.

[9] P. A. A. Assuncao, and M. Ghanbari, “A frequency-domain video transcoder for dynamic
bit-rate reduction of MPEG-2 bit streams,” IEEE Trans. Circuits Syst. Video Technol., vol. 8,
no. 8, pp. 953–967, Dec. 1998.

[10] P. Yin, et al., “Drift compensation for reduced spatial resolution transcoding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 12, no. 11, pp. 1009–1020, Nov. 2002.

[11] Y. Xu, et al., “MV-based adaptive transcoding technique for reduced spatial resolution,”
IEEE Int. Symp. Consumer Electron., pp. 324–327, Sep. 2004.

74

[12] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower spatial-temporal
resolutions and different encoding formats,” IEEE Trans. Multimedia, vol. 2, no. 2, pp.
101–110, June 2000.

[13] B. Shen, I. K. Ishwar, and V. Bhaskaran, “Adaptive motion-vector resampling for
compressed video downscaling,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 6, pp.
929–936, Sept. 1999.

[14] N. Bjork, and C. Christopoulos, “Transcoder architecture for video coding,” IEEE Trans.
Consum. Electron., vol. 44, no. 1, pp. 88–98, Feb. 1998.

[15] J. Youn, M.-T. Sun, and C.-W. Lin, “Motion vector refinement for high-performance
transcoding,” IEEE Trans. Multimedia, vol. 1, no. 1, pp. 30–40, Mar. 1999.

[16] M.-J. Chen, M.-C. Chu, and C.-W. Pan, “Efficient motion estimation algorithm for reduced
frame-rate video transcoder,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 4, pp.
269–275, Apr. 2002.

[17] J.-N. Hwang, T.-D. Wu, and C.-W. Lin, “Dynamic frame-skipping in video transcoding,” in
Proc. IEEE Workshop Multimedia Signal Processing, pp. 616–621, 1998.

[18] S.-F. Chang, and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT
compressed video,” IEEE J. Sel. Areas Commun., vol. 13, no. 1, pp. 1–11, Jan. 1995.

[19] N. Merhav, and V. Bhaskaran, “Fast algorithms for DCT-domain image downsampling and
for inverse motion compensation,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 3,
pp. 468–476, June 1997.

[20] J. Song, and B.-L. Yeo, “A fast algorithm for DCT-domain inverse motion compensation
based on shared information in a macroblock,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 10, no. 5, pp. 767–775, Aug. 2000.

[21] J. Xin, M.-T. Sun, and K. W. Chun, “Bit allocation for transcoding of pre-encoded video
streams,” Proc. SPIE: Visual Commun. Image Process., vol. 4671, pp. 164–171, Jan. 2002.

[22] A. Vetro, J. Cai, and C. W. Chen, “Rate-reduction transcoding design for wireless video
streaming,” J. Wirel. Commun. Mob. Comput., vol. 2, no. 6, pp. 625–641, Sep. 2002.

[23] J. Youn, M.-T. Sun, and J. Xin, “Video transcoder architectures for bit rate scaling of H.263
bit streams,” in Proc. ACM Multimedia, pp. 243–250, Nov. 1999.

[24] Y.-C. Lin, et al., “Efficient FGS-to-single layer transcoding,” in Proc. IEEE Int. Conf.
Consumer Electronics, pp. 134–135, June 2002.

75

[25] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images,” Trans. IEICE, vol.
E71, pp. 1095–1097, Nov. 1988.

76

自傳

陳韋霖: 1981年生於台灣省雲林縣。2004年畢業於台灣新竹的國立交通大學電機與

控制工程學系，之後進入該校的電子工程研究所攻讀碩士學位。以視訊轉碼為研

究主題。

Wei-Lin Chen was born in Yunlin, Taiwan, R.O.C., in 1981. He received the B.S. degree

in electrical control engineering from National Chiao-Tung University (NCTU),

Hsinchu, Taiwan, R.O.C., in 2004, where he is currently working toward the M.S. degree

in the Institute of Electronics Engineering. His research interest is in video transcoding.

	
	誌 謝
	
	Contents
	
	List of Tables
	
	List of Figures
	 List of Notations
	Chapter 1
	1.1. Overview of MPEG-21 Transcoding Systems
	1.2. Scope of This Thesis

	Chapter 2
	2.1. Transcoding Architectures
	2.1.1. Spatial-Domain Video Transcoding
	2.1.2. Frequency-Domain Video Transcoding
	2.1.2.1. Generic Frequency-Domain Transcoder
	2.1.2.2. Simplified Frequency-Domain Transcoder

	2.2. Video Transcoding Techniques
	2.2.1. Intra-Refresh Technique
	2.2.2. Rate Control Issues

	2.3. Evaluation of Transcoding Architectures
	2.3.1. Complexity Analysis
	2.3.2. Drift Error Analysis
	2.3.3. Evaluation and Discussion

	Chapter 3
	3.1. Multi-Layer to Single-Layer Transcoding Framework
	3.2. Design Issues of Heterogeneous Transcoding

	Chapter 4
	4.1. Drift Compensation with Additional Enhancement Layer
	4.2. Multi-Layer Transcoding with R-D Optimization

	Chapter 5
	5.1. Test Conditions
	5.2. Rate-Distortion Performance
	5.2.1. MPEG-4 FGS to MPEG-1
	5.2.2. MPEG-4 FGS to MPEG-2
	5.2.3. MPEG-4 FGS to MPEG-4 SP

	5.3. Complexity Analysis
	5.3.1. Module-wise Comparison
	5.3.2. Arithmetic Operations Comparison

	Chapter 6
	Reference
	 自傳

