
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 25 April 2014, At: 06:25
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production
Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tprs20

Minimising makespan on parallel batch
processing machines with non-identical
ready time and arbitrary job sizes
S.H. Chung a , Y.T. Tai a & W.L. Pearn a
a Department of Industrial Engineering and Management , National
Chiao Tung University , Hsinchu, Taiwan, ROC
Published online: 30 Jun 2009.

To cite this article: S.H. Chung , Y.T. Tai & W.L. Pearn (2009) Minimising makespan on parallel
batch processing machines with non-identical ready time and arbitrary job sizes, International
Journal of Production Research, 47:18, 5109-5128, DOI: 10.1080/00207540802010807

To link to this article: http://dx.doi.org/10.1080/00207540802010807

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207540802010807
http://dx.doi.org/10.1080/00207540802010807
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Production Research
Vol. 47, No. 18, 15 September 2009, 5109–5128

Minimising makespan on parallel batch processing machines with

non-identical ready time and arbitrary job sizes

S.H. Chung*, Y.T. Tai and W.L. Pearn

Department of Industrial Engineering and Management,
National Chiao Tung University, Hsinchu, Taiwan, ROC

(Received 31 July 2007; final version received 16 December 2007)

This paper considers the parallel batch processing machine scheduling problem
which involves the constraints of unequal ready times, non-identical job sizes, and
batch dependent processing times in order to sequence batches on identical
parallel batch processing machines with capacity restrictions. This scheduling
problem is a practical generalisation of the classical parallel batch processing
machine scheduling problem, which has many real-world applications, partic-
ularly, in the aging test operation of the module assembly stage in the manu-
facture of thin film transistor liquid crystal displays (TFT-LCD). The objective
of this paper is to seek a schedule with a minimum total completion time for the
parallel batch processing machine scheduling problem. A mixed integer linear
programming (MILP) model is proposed to optimise the scheduling problem.
In addition, to solve the MILP model more efficiently, an effective compound
algorithm is proposed to determine the number of batches and to apply this
number as one parameter in the MILP model in order to reduce the complexity of
the problem. Finally, three efficient heuristic algorithms for solving the large-scale
parallel batch processing machine scheduling problem are also provided.

Keywords: parallel batch; scheduling; unequal ready time

1. Introduction

The existing and growing importance of parallel batch processing machines demands a
solution to its scheduling problem in order to improve efficiency of production. In this
paper, a parallel batch processing machine scheduling problem with a minimum makespan
criterion is presented, which has many real-world applications, particularly in the aging
test operation in the manufacture of thin film transistor liquid crystal displays (TFT-
LCD). On the batch processing machines in aging test operation, multiple jobs composed
of different product families can be simultaneously processed as a batch. The batch
processing times and batch ready times are dependent on the longest processing time and
the latest ready time of all the jobs in each batch, respectively. Notably, the parallel batch
processing machine scheduling problem is a multi-dimensional problem, which involves
the constraints of unequal ready times, non-identical job sizes, limited machine capacity,
and batch dependent processing times; the relationships among these dimensions is
depicted as Figure 1. The constraints of unequal ready times and non-identical job sizes
affect the determination of the number of batches which is based on the limited machine

*Corresponding author. Email: shchung@mail.nctu.edu.tw

ISSN 0020–7543 print/ISSN 1366–588X online

� 2009 Taylor & Francis

DOI: 10.1080/00207540802010807

http://www.informaworld.com

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

capacity and which then determines the batch processing times. Whenever batch
formations are altered, the batch processing times are consequently varied and the
batch sequence needs to be rescheduled in order to minimise the makespan. Since the
parallel batch processing machine scheduling problem involves batch formation and
scheduling with real-world constraints, it is an intractable problem for industrial planners
and theoretical researchers. Therefore, the development of efficient algorithms to form
appropriate batches and to arrange a suitable schedule for a parallel batch processing
machine scheduling problem is difficult but critical.

The scheduling problem investigated in this paper has as its motivating cause the aging
test operation in TFT-LCD manufacturing process. The TFT-LCD manufacturing
process consists of four basic stages: TFT array fabrication, colour filter fabrication, LCD
assembly, and module assembly, as shown in Figure 2. TFT array and colour filter
fabrications are similar to the semiconductor wafer fabrication, and their process steps are
also characterised by re-entrant flow. The LCD assembly simultaneously attaches the TFT
and colour filter and fills the gap between them with liquid crystal. The final stage, module
assembly, involves six steps in which the customer-specified components are assembled
into the cells:

(1) The COG (chip on glass) process.
(2) The attachment of the flexible printed circuit board (FPC).
(3) The bonding of the printed circuit board (PCB).
(4) The assembly of the backlight.
(5) The aging test.
(6) The inspection (as shown in Figure 3).

unequal ready times

limited machine capacity

non-identical job sizes

number of batches

batch
sequence

Cmax

batch dependent
processing times

Figure 1. The multiple dimensions of the parallel batch processing machine scheduling problem.

Module
Assembly

CF

TFT

Colour Filter Fabrication

LCD
Assembly

TFT Array Fabrication

Figure 2. The TFT-LCD process flow.

5110 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

At the end of the module assembly process, the aging test is undertaken by the only
batch server in the whole process to put the assembled modules with different product
families and unequal ready times into high temperature parallel batch processing
machines. These machines then run aging tests for several hours to detect defects before
the jobs are delivered; this batch production type is referred to as compatible product
families. The processing times in the aging test operation are dependent on the longest
processing time of all the jobs in the batch; they are generally longer than other serial
processing operations, in particular for LCD TV products which usually take six hours to
complete the aging test. Since the jobs with unequal ready times and long batch dependent
processing times are processed at the end of the module assembly, the development of
scheduling algorithms for the parallel batch processing machine scheduling problem is
essential with a minimum makespan criterion.

This paper investigates the parallel batch processing machine scheduling problem,
which involves constraints of unequal ready times, non-identical job sizes, limited machine
capacity, and batch dependent processing times, is a variation of the classical parallel
batch processing machine scheduling problem considered by Lee and Uzsoy (1999) and
Chang et al. (2004). Due to fiercer competition in the global TFT-LCD industry, the
manufacturing lead time in the throughout process for the module assembly stage has been
reduced to only one or two days. This has resulted in a lower WIP (work in process)
volume being maintained on the shop floor in order to accelerate the process. Due to the
low level of WIP, batches need to be formed by collecting non-identical size jobs with
unequal ready times at the aging test operation. The characteristic of unequal ready times
makes the parallel batch processing machine scheduling problem in the aging test
operation more complicated because it is sometimes advantageous to process a non-full
batch to avoid excessive delays in waiting for jobs with later ready times (Mönch et al.
2005). In other words, processing a full batch with late-ready-time jobs may cause a large
makespan. However, taking the information of unequal ready times into consideration can
lead to better decisions than those based only on the equal ready times of the system
(Mönch et al. 2005). In this paper, it is assumed that the ready times of jobs are known
before the determination of the parallel batch processing machines schedule.

To the best knowledge of the authors, the parallel batch processing machine scheduling
problem with unequal ready times and non-identical job sizes has not been considered by
the other researchers in this area. This problem can be represented by P/batch, rj,
compatible/Cmax, and involves batch formation and scheduling simultaneously. In this
paper, the scheduling problem is formulated as a mixed integer linear programming
(MILP) model to minimise the makespan. The programming model considers machine
capacity restrictions, unequal ready times, non-identical job sizes, and batch-dependent
processing times, in order to reflect real situations more accurately. A compound

COG process
FPC

attachment PCB bonding
Backlight
Assembly Aging test Inspection

Front end Back end

Figure 3. The six steps in the module assembly process.

International Journal of Production Research 5111

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

MILP-based algorithm is developed to determine the number of batches and to apply this

number as one parameter in running the proposed MILP model. Furthermore, three

efficient heuristic algorithms are also proposed. The best solution selected from the result

of the MILP model and that of the compound algorithm is used here as a convenient

reference point to assess the accuracy of the heuristic solutions. To demonstrate

the effectiveness and efficiency of all the proposed algorithms, a set of testing problems

is explored and a real-world problem is taken from a module assembly shop floor

in a TFT-LCD factory located in the Science-based Industrial Park in Hsinchu, Taiwan.
This paper is organised as follows. Section 2 provides the literature review, Section 3

presents the mathematical model for the problem and Section 4 presents the compound

MILP-based algorithm. Three heuristic algorithms are presented in Section 5 and the

computational comparisons are offered in Section 6. Finally, Section 7 provides the

conclusions.

2. Literature review

In recent years, much research has focused on providing solutions to the batch processing

machine (BPM) scheduling problems on a single or parallel batch processing machines.

Two models of a single BPM scheduling problem with the characteristics of a common job

processing time, unequal ready times and unequal due dates have been proposed by

Morton and Pentico (1993). The first model concerns the one-class case that allows

any two jobs with the same processing times to be simultaneously processed. Ikura and

Gimple (1986) have provided efficient algorithms for this model to find a feasible schedule

in order to minimise the final completion time under the assumption that ready times

and due dates are agreeable, i.e. ri4 rj implies di� dj. The second model considers the

multi-class case that only allows jobs of the same product type to be simultaneously

processed. This model is also referred to as incompatible product families. However,

the parallel batch processing machine scheduling problem investigated in this paper

considers the batch processing of compatible product families. It is assumed that jobs

belonging to different product families may be simultaneously processed. In problems
of this type, the batch processing time is computed by the longest job processing time

in that batch.
The literature regarding the BPM scheduling problems on a single or parallel batch

processing machines with compatible product families is shown in Table 1. However,

their solution procedures have assumed that the ready times for the parallel batch

processing machines are equal. This assumption prevents the developed procedure from

being directly applied to the parallel batch processing machine scheduling problem

investigated in this paper because the latter involves unequal ready times. Therefore, this

paper arises from the need in industry to consider jobs with unequal ready times,

non-identical job sizes and processing times, which are processed on identical parallel

batch processing machines.
The first researchers to address the batch processing scheduling problem arising in

a burn-in oven of the final test in the semi-conductor industry are Lee et al. (1992).
They used dynamic programming-based algorithms and heuristics for a number of

performance measures, such as maximum tardiness (Tmax), the number of tardy jobs

(�Ui), and maximum lateness time (Lmax) on a single batch processing machine. They have

also presented heuristics for the parallel batch processing machine scheduling problem

5112 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

with the minimum makespan (Cmax) and maximum lateness time (Lmax) criteria. They have
explored the area of scheduling batch processing machines and offered a classification
of complexity for the investigated problems.

For batch processing machine scheduling problems with compatible product family
characteristics, the single batch processing machine problem (Uzsoy 1994, Erramilli and
Mason 2006, Kashan et al. 2006) and the two batch processing machines in a flow shop
(Damodaran and Srihari 2004) do not take unequal ready times into consideration. Uzsoy
(1994) investigated the single batch processing machine scheduling problem with non-
identical job sizes to minimise the total completion times (�Ci) of the jobs and makespan.
He has also provided bin-packing-based heuristics for minimising makespan and has used
the branch and bound approach to minimise the total completion times. He also developed
effective heuristics for the criteria of minimum makespan and minimum total completion
time. Erramilli and Mason (2006) have investigated the multiple orders per job (MOJ)
problem on a single batch processing machine. They grouped different customer orders
into jobs and combined jobs into batches and scheduled them on a single batch processing
machine to minimise the total weighted tardiness (�wiTi) of orders. Damodaran and
Srihari (2004) have proposed two mathematical models with the minimum makespan
criterion to schedule batches of jobs on two machines in a flow shop. Kashan et al. (2006)
has addressed the need to minimise makespan by employing two different genetic
algorithms (GAs) for scheduling jobs with non-identical sizes on a single batch processing
machine. Unfortunately, all the above models do not consider the unequal ready time that
is a common phenomenon in module assembly factories.

Although Lee and Uzsoy (1999), Sung and Choung (2000), Sung et al. (2002), and
Van Der Zee (2004) have considered the characteristic of unequal ready times, they limited
their applications to a single batch processing machine and an identical job size. Lee and
Uzsoy (1999) have provided efficient heuristics to solve the scheduling problem arising in
the final test phase of semiconductor manufacturing. To minimise the maximum

Table 1. The literature related to the batch processing machine scheduling problem with compatible
product families.

References Shop type Ready time Job size
Performance
criterion

Lee et al. (1992) Single machine/parallel
machines

Unequal/equal Identical/identical Tmax, �Ui,
Lmax/Cmax,Lmax

Uzsoy (1994) Single machine Equal Non-identical Cmax,�Ci

Erramilli and
Mason (2006)

Single machine Equal Non-identical �wiTi

Damodaran and
Srihari (2004)

Two machines in a
flow shop

Equal Non-identical Cmax

Kashan et al. (2006) Single machine Equal Non-identical Cmax

Lee and Uzsoy (1999) Single machine Unequal Identical Cmax

Sung and
Choung (2000)

Single machine Unequal/equal Identical Cmax

Sung et al. (2002) Single machine Unequal Identical Cmax

Van Der Zee (2004) Single machine Dynamic arrival Identical �Fi

Chang et al. (2004) Parallel machines Equal Non-identical Cmax

This paper Parallel machines Unequal Non-identical Cmax

International Journal of Production Research 5113

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

completion time on a single batch processing machine with dynamic job arrivals, they

designed three algorithms (GRLPT, DELAY, and UPDATE) to find the approximate

solutions. Sung and Choung (2000) have presented a branch-and-bound algorithm and
several heuristics to solve the static and dynamic cases on a single batch processing

machine. Their objective was also to minimise the makespan of all jobs. Sung et al. (2002)

have considered a single batch processing machine with job families and dynamic job
arrivals. The performance measure used to evaluate a schedule is the minimum makespan.

Van Der Zee (2004) has also presented the dynamic control of a batch processing machine;

his objective was to find the minimum average flow time per product in the presence of

compatible product families.
More recently, the parallel batch processing machine scheduling problem with equal

ready time, non-identical job sizes, and the compatible product family characteristics is

considered by Chang et al. (2004). They have provided a mathematical model and

developed an algorithm based on simulated annealing (SA) approach to minimise
makespan. However, they have not included the unequal ready times in their model. At the

time this paper was being written, the authors were not aware of any other studies of the

parallel batch processing machine scheduling problem with unequal ready time,

non-identical job size, and compatible product family characteristics.

3. A mixed integer programming formulation

The mixed integer linear programming (MILP) model for the parallel batch processing

machine scheduling problem with unequal ready times and non-identical job sizes in order
to minimise the makespan is formulated in this section and is referred to as Model P. A set

of jobs is given to be processed in batches by identical parallel machines. Let the total

number of jobs be denoted by N and the number of batches be denoted by B. In this paper,

however, an individual job cannot be split into different batches due to the inconvenience
to practical management that might result. Let machine group M¼ {mk | k¼ 1, 2, . . . ,K},

contain the K parallel batch processing machines. Due to the fact that the unequal ready

times and batch dependent processing times are considered, they are associated with job
j and have a processing time denoted by pj and a ready time denoted by rj. The batch

processing time may vary, depending on the composite jobs. Term ptb is the longest

processing time of all the jobs processed simultaneously in the bth batch, and it represents

the batch processing time. The batch ready time is also the latest ready times of those
composite jobs. Each job has a non-identical job size (sj). A batch can be processed on a

machine on the condition that the accumulated size of those jobs in that batch does not

exceed the machine’s capacity (a maximum number of pieces can be processed

simultaneously on a machine) (S0). Each job in its associated batch is a candidate that
is processed without pre-emption on one machine. The parallel batch processing machine

scheduling problem is to form batches appropriately as well as to find a schedule for those

batches that satisfies the ready time restrictions without violating the machine capacity
constraints, while also achieving the objective of minimising makespan. Initially, it is

assumed that each job will be contained in an individual batch (B¼N). However, after the

mathematical model is solved, it may be that the better solution might require combining

more than one job into one batch. Hence, by using the proposed MILP model, the number
of batches required will be self-evident. Before the MILP model (Model P) is presented, the

notations used in the formulation are listed below.

5114 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

Indices

j job index, j¼ 1, 2, . . . ,N,
b batch index, b¼ 1, 2, . . . ,B,
k machine index, k¼ 1, 2, . . . ,K.

Decision variables

xjbk
1 if job j is assigned to batch b onmachinemk,
0 otherwise;

�

ybb0k
1 if batch b0 is scheduled following batch b onmachinemk,
0 otherwise;

�

zbk
1 if batch b is assigned tomachinemk,
0 otherwise;

�

tbk the starting time of batch b to be processed on machine mk,
Cmax the maximum completion time (makespan).

Model P

Minimise Cmax þ �
XB
b¼1

XK
k¼1

zbk ð1Þ

subject to

XB
b¼1

XK
k¼1

xjbk ¼ 1, for all j, ð2Þ

XK
k¼1

zbk � 1, for all b, ð3Þ

XN
j¼1

xjbk � Q1zbk, for all b, k, ð4Þ

XN
j¼1

XK
k¼1

sjxjbk � S0, for all b, ð5Þ

ptb � pj � xjbk, for all j, b, k, ð6Þ

Cmax � tbk þ ptb, for all b, k, ð7Þ

tbk � rjxjbk, for all j, b, k, ð8Þ

tbk þ ptb � tb0k þQ2ðybb0k � 1Þ � 0, for all b, k, b0 6¼ b, ð9Þ

ðybb0k þ yb0bkÞ �Q2ðzbk þ zb0k � 2Þ � 1, for all b, k, b0 6¼ b, ð10Þ

ðybb0k þ yb0bkÞ þQ2ðzbk þ zb0k � 2Þ � 1, for all b, k, b0 6¼ b, ð11Þ

International Journal of Production Research 5115

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

ðybb0k þ yb0bkÞ �Q2ðzbk þ zb0kÞ � 0, for all b, k, b0 6¼ b, ð12Þ

ðybb0k þ yb0bkÞ �Q2ðzb0k � zbk þ 1Þ � 0, for all b, k, b0 6¼ b, ð13Þ

ðybb0k þ yb0bkÞ �Q2ðzbk � zb0k þ 1Þ � 0, for all b, k, b0 6¼ b, ð14Þ

xjbk 2 f0,1g, for all j, b, k, ð15Þ

ybb0k 2 f0,1g, for all b, k, b0 6¼ b, ð16Þ

zbk 2 f0,1g, for all b, k, ð17Þ

Cmax � 0: ð18Þ

The bi-functional objective of Equation (1) of Model P is to minimise the maximum

completion time and the number of batches. The former is the main objective for the

scheduling problem and the latter is the subsidiary one in order to reduce the complexity of

the batch sequence. Therefore, the term � is a constant, which is chosen to be a sufficiently

small value which cannot affect the makespan. Constraint (2) guarantees that each job is

assigned to one batch and processed on exactly one machine. Constraint (3) ensures that

each batch is either processed once by one machine or not at all. Constraint (4) is a

contingent constraint. That is, if some jobs are assigned to batch b on machine mk

(xjbk¼ 1), then batch b should be assigned to machine mk (zbk¼ 1). Term Q1 is a constant

and is greater than the total number of jobs (N). Constraint (5) is the batch size constraint,

which requires that the sum of all the pieces of each job contained in each batch on one

machine be simultaneously processed and within the maximum machine capacity.

Constraint (6) ensures that the processing time of each batch is the longest processing

time of all the jobs simultaneously processed in a batch. Constraint (7) is the maximum

completion time (makespan) and is always greater than or equal to the sum of the starting

and processing times for each batch. Constraint (8) indicates that the starting time of each

batch is greater than or equal to the ready time of that batch. The ready time of a batch is

the latest ready time of all the jobs clustered in a batch. Term Q2 is the chosen constant

as it is sufficiently large in value to satisfy ybb0k¼ 0 or 1 which is required for constraints

(9) to (14). Constraint (9) ensures the satisfaction of the inequality in tbkþ ptb � tb0k,

if batch b precedes batch b
0

(ybb0k¼ 1). Constraints (10) to (14) are the precedence

constraints provided by Pearn et al. (2002). Constraints (10) and (11) guarantee that one

batch should precede another (ybb0kþ ybb0k¼ 1) if two batches are scheduled on the same

machine (zbkþ zb0k�2¼ 0). It should be noted that the precedent relationships (ybb0k)

between batches b and b
0

on machine mk may not be limited to direct ones. Constraint (12)

ensures that the precedence variables ybb0k and yb’bk should be set to zero (ybb0kþ yb’bk � 0)

if any two batches b and b
0

are not scheduled on the machine mk(zbkþ zb0k¼ 0). Constraint

(13) indicates the situation in which batch b is scheduled on machine mk and batch b
0

is

scheduled on another machine (zb0k� zbkþ 1¼ 0) and constraint (14) indicates the

situation in which batch b
0

is scheduled on machine mk and batch b is scheduled on another

machine (zbk� zb0kþ 1¼ 0). Constraints (15) to (17) indicate that xjbk, ybb0k, and zbk are

binary integer variables. Finally, constraint (18) indicates that the makespan is greater

5116 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

than or equal to zero. The total number of variables is NBKþB2KþBKþ 1 and the total

number of constraint equations is

ð9=2ÞB2Kþ 3NBK� ð3=2ÞBKþNþ 2Bþ 1,

where B is the number of batches.
To demonstrate the applicability of Model P, an illustrative example is considered.

The example involves two parallel batch processing machines (m1 and m2) and seven

independent jobs with various sizes and processing times, which are ready for different

starting times, as shown in Table 2. The seven jobs should be clustered into an appropriate

number of batches. Those batches are scheduled on the two identical machines. The batch

processing time is not affected by the machine processing it, but is dependent on the batch

formation. The maximum number of pieces of one batch in a machine is set at 450 pieces

in this example.
Model P is implemented using the software CPLEX OPL 3.5 to solve the seven-job

example. For the example investigated, the model contains 225 variables and

736 equations. The MILP model is run on a Pentium IV 3.2GHZ PC to obtain optimal

solutions. The four batches, b1, b2, b3, and b4, are actually formed and their batch

processing times are 90, 190, 200, and 290, respectively. Job 3 is grouped into b1 and

scheduled on Machine 1. Jobs 1, 2, and 4 are grouped into b2 and scheduled on Machine 2.

Moreover, jobs 6 and 7 are grouped into b3 which is scheduled on Machine 2 and

processed after b2. Job 5 is the only one in b4 and it is scheduled on Machine 1 and

processed after b1. The makespan of the example is 430 as shown in Figure 4 and the

computational time is 1041.3 CPU seconds.

4. Compound MILP-based algorithm

A compound MILP-based algorithm (CMA) improves the efficiency of the MILP model

proposed in Section 3. For the parallel batch processing machine scheduling problem

investigated in this paper, the number of batches and the composite jobs for each batch

determine the solution quality and efficiency. It is obvious that the probable numbers of

batches fall into the range, 1�B�N, in an N-job scheduling problem. The lower and

upper bound values of B are obtained when all the N jobs are combined with one batch

and each job is contained in an individual batch, respectively. However, exploring all the

possible numbers of batches would increase the run time to obtain the optimal solution.

Table 2. Job sizes, ready times, and processing times of the seven
independent jobs.

Job ID Size (pieces) Ready time Processing time

1 50 6 160
2 200 40 120
3 240 8 90
4 180 10 190
5 400 80 290
6 300 30 160
7 150 80 200

International Journal of Production Research 5117

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

Therefore, a relaxed MILP model (Model N) focuses on the batch formation and relaxes

all relative precedence constraints to obtain the lower bound of the number of batches.

Model N is then provided to reduce the search space for the parallel batch processing

machine scheduling problem and is applied in the CMA. In Model N, the precedence

variable (ybb0k) and precedence constraints (constraints (9) to (14)) are removed. Model N

uses
PB

b¼1

PK
k¼1 zbk as its objective function. Model N starts from a makespan lower

bound C0max, which is greater than the longest processing time of all the jobs.
In this section, the compound MILP-based algorithm (CMA) is developed. The

algorithm essentially consists of two phases. Phase I applies Model N to obtain the

lower bound of the number of batches, which can serve as a referenced batch number in

Model P. As mentioned earlier, it is sometimes advantageous to assign one more batch

than the referenced batch number obtained from Phase I of the CMA to avoid excessive

delays in waiting for the next scheduled late ready time job. Therefore, in Phase II,

the solution of the subsequent batch number is checked. The algorithm is stated as follows

and the flow chart is depicted in Figure 5.

Phase I: The number of batches is determined and applied to Model P

Step 1: Solve the following relaxed MILP model (Model N) in order to allow the number

of batches formed in the optimal solution to serve as lower bound batch numbers.

Model N:

Minimise
XB
b¼1

XK
k¼1

zbk ð19Þ

subject to constraints (2)–(8), and (15),

C0max � maxfpjg: ð20Þ

Step 2:Denote the number of lower-bound batches to be the candidate number and denote

it as BN. Apply BN as one parameter to Model P developed in Section 3. Denote the

solution obtained within the limited computational time as Z*.

Phase II: The solution of subsequent batch number is checked

Step 1: BN¼BNþ 1.

idle time

process time

0 32016080 240

m1

m2

400 480

4308 140
b4

b2

b1

98

40 430230
b3

b1 : job 3 b2 : job 1, job 2, job 4

b3 : job 6, job 7 b4 : job 5

Figure 4. An optimal solution for the seven-job example with two parallel batch processing
machines.

5118 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

Step 2: If BN�N, then the batch number BN is applied as one parameter to Model P.
Let the solution obtained from Model P be denoted as Z and go to Step 3. If the BN4N,
then let Z* be the final solution and stop the algorithm.

Step 3: If Z�Z*, then let Z* be the final solution and stop the algorithm. If Z5Z*,
then set Z as the new Z* and go back to Step 1.

It should be noted that the computational complexity of the original MILP model
(Model P) developed in Section 3 is reduced when the number of lower-bound batches is
obtained by using the algorithm of Phase I of the CMA. The greater the difference between
the number of jobs and the number of batches, the greater is the reduction in complexity.
For the example with seven jobs described in Section 3, the number of batches is four, and
it is obtained by using the algorithm in Phase I of the CMA. The composite jobs for these
batches are presented in Table 3.

Using fourbatches as the parameter forModelP, 97variables and316 constraint equations
are obtained. The solution is a makespan of 430 and is obtained within 1.3 CPU seconds by
using CPLEX OPL 3.5. Moreover, when the batch number is set to five using Step 1 of
Phase II of theCMA, themakespan is also 430 but the computational time is 10CPU seconds.
Therefore, the final solution of the example with seven jobs using the CMA is 430.

Start

Set Z=0, Z *=0

Check if BN ≤ N

BN=BN+1

Run Model P
based on BN

Set the solution
of Model P as Z

Check if Z ≥ Z∗ Set Z=Z *

End

Set solution of
CMA as Z *

no

yes

yes

noSolve Model N to
obtain the number

of batches BN.
Let BN be lower
bound of number

of batches.

Apply BN as a
parameter to

Model P

Set the final
solution of

Model P as Z *

Phase I Phase II

Figure 5. The flow chart of the compound MILP-based algorithm (CMA).

International Journal of Production Research 5119

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

5. Heuristic algorithms for large-scale problems

For small- and moderate-size parallel batch processing machine scheduling problems with
unequal ready times and non-identical job sizes, the mixed integer linear programming
model can provide optimal solutions within reasonable amounts of computational time.
However, for large-size parallel batch processing machine scheduling problems, solving the
mathematical model is computationally inefficient. Therefore, three heuristic algorithms
are proposed to generate efficient solutions for large problems. The proposed algorithms
incorporate the merits of the DELAY heuristic solution procedure proposed by Lee and
Uzsoy (1999) with some modifications in order to accommodate the parallel batch
processing machine environment. The DELAY heuristic algorithm allows for post-
ponement in processing a batch in order to accommodate a job that is due to arrive soon
and which might be combined with the delayed batch. This strategy can be used to avoid
unacceptable delays in the completion of scheduled batches. At other times, however, if the
expected job is due to arrive much later, it is not advantageous to delay processing as this
would cause excessive delays to jobs already waiting to be processed.

The three new heuristic algorithms include the characteristics of unequal ready times,
non-identical job sizes, and parallel batch processing machines; they are referred to as
Heuristic Algorithm 1 (H1), Heuristic Algorithm 2 (H2), and Mixed-strategy Heuristic
Algorithm (MixedH). The first two heuristic algorithms essentially consist of two phases.
Phase I of each modifies the DELAY algorithm (proposed by Lee and Uzsoy 1999) to
form appropriate batches by adding a machine capacity checking step in order to
accommodate the constraint of non-identical job sizes to enable the processing of batches
of varied numbers of jobs. Furthermore, in Phase II of the two algorithms, the original
single-machine scheduling idea proposed by Lee and Uzsoy (1999) is also extended to
accommodate a parallel batch processing machine environment. In this phase, the formed
batches are then assigned to parallel batch processing machines and sequenced according
to the batch ready times and batch processing times with a minimal makespan criterion.
Finally, a mixed-strategy approach is also proposed. Algorithm details are presented
as follows.

5.1 Heuristic algorithm 1 (H1)

Phase I: Batch formation (the modified DELAY algorithm; Lee and Uzsoy 1999)

Step 0: Let the available set be the set of jobs which are available to be selected as a batch.
Sort all jobs associated with ready times in ascending order of magnitude as an
unscheduled-job list. Index the ready times in the list as ri. Assign the first job on the
unscheduled-job list into the available set. Set the decision time point (t) as the ready time
of the first job (r1) in the available set and set i¼ 1 and b¼ 1.

Table 3. The composite jobs for each estimated batch.

Batch name Job ID Batch size

b2 1, 3, 7 440
b3 5 400
b6 6 300
b7 2, 4 380

5120 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

Step 1: Arrange the jobs associated with the processing times in the available set in
descending order of magnitude. Choose the required number of early jobs in the available
set which satisfy the constraint of machine capacity and place them in the candidate batch
(b). The longest processing time of all the jobs in batch b serves as the corresponding batch
processing time and is denoted as ptb.

Step 2: Check whether there is a job (j) on the unscheduled-job list which satisfies
constraints rj � tþ �ptb and pj � �ptb, where 0 � � � 1. If a job (j) satisfies the conditions,
then put job (j) into the candidate batch (b) and go to Step 3. Otherwise go to Step 4.

Step 3: If �q2bpq � ��ptb, or �q2bsq4S0 where 0 � � � 3 and � ¼
PN

j¼1 sj=S
0

l m
, then they

do not form a part of the candidate batch (b); therefore, let i¼ iþ 1, decision time point (t)
be ri, and then go to Step 5. Otherwise, go to Step 4.

Step 4: Form candidate batch (b), let t¼ tþ ptb, then remove those jobs which are formed
in batch b from the unscheduled-job list, set i¼ 1, b¼ bþ 1, and go to Step 6.

Step 5: Select the maximum time value between the current decision time point and the
smallest ready time in the unscheduled-job list as the new decision time point. Choose the
jobs which have ready times which are earlier than the new point in decision time (t) to
update the available set. Go back to Step 1 to reform the candidate batch.

Step 6: Repeat Step 5 until no more candidate jobs can be found on the unscheduled-
job list.

Phase II: Batch scheduling

Step 1: Calculate the batch ready time and batch process time for each batch.

Step 2: Sort the batch ready times in ascending order of magnitude.

Step 3: If the ready times of some of the batches are equal, then sort the batch processing
times in descending order of magnitude.

Step 4: Schedule the first batch into the first available machine and then remove the batch
from the batch list.

Step 5: Repeat Step 4 of Phase II until all batches are scheduled.

In Step 2 of Phase I, Lee and Uzsoy (1999) used parameter � to accommodate the
postponement idea of the DELAY heuristic algorithm. Parameter � can be used to
examine whether there exists a job with a ready time which is less than or equal to the
summation of the current decision time point and the � ptb time units. In addition, its
corresponding job processing time is greater than or equal to the � ptb. If such a job exists,
the job might be combined with the delayed batch to avoid delaying that job.

5.2 Heuristic algorithm 2 (H2)

In Phase II of Heuristic Algorithm 1 (H1), the batches are mainly scheduled based on their
batch ready times. If the number of batches to be processed is slightly greater than the
number of machines available to process them and, furthermore, if the processing times of
some batches are relatively short, then the result may be that H1 performs poorly because
the individual short-process-time batches have been assigned to different machines

International Journal of Production Research 5121

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

resulting in a longer makespan. In attempting to improve the solution, an alternative
approach which combines the ready and processing times is proposed. The algorithm is
described in the following.

Phase I: Batch formation
Use the same process as for Phase I of Heuristic Algorithm 1 (H1).

Phase II: Batch scheduling

Step 1: Calculate the batch ready times (r0b) and the batch process times (ptb), which are
determined by the latest ready time and the longest processing time of all the jobs in one
batch, respectively.

Step 2: Calculate Tb¼ r0bþ ptb.

Step 3: Assign batches on K parallel batch processing machines using the longest pro-
cessing time (LPT) rule (here it is assumed that the value of Tb represents the processing
time for the LPT rule).

Step 4: Sequence batches on each machine in ascending order based on batch ready times.

5.3 Mixed-strategy heuristic algorithm (MixedH)

In attempting to obtain better solutions, a mixed-strategy approach is presented. The
mixed-strategy approach first uses H1 and H2 algorithms to generate two complete
parallel batch processing machine scheduling problem solutions, then selects the best one.
This approach is referred to as the Mixed-strategy Heuristic Algorithm (MixedH).
MixedH also involves two phases. Phase I, as in Phase I of H1, determines the batch
formations. However, Phase II performs the solution procedures of Phase II of H1 and H2
simultaneously to determine the final sequence and to select the value with the minimum
makespan from the two solutions available.

6. Computational results and comparisons

For the purposes of testing the proposed algorithms and comparing them with the MILP
model, an experiment involving two computational tests was designed to generate a series
of problem instances. One computational test performed with small to moderate size
problems obtains the solution quality of the proposed heuristic algorithms by comparing
their solutions with the optimal solutions generated by the MILP model (Model P). The
other computational test involves the large size problem taken from a module assembly
process at a TFT-LCD factory in Hsinchu Science-based Industrial Park, Taiwan. In the
following, two computational results are provided.

6.1 Analysis of results from small and moderate size problems

The experimental design involves two essential characteristics, ready time variation and
processing time variation. These two variations are characterised by two magnitudes, large
(L) and small (S). Accordingly, the ready times in a problem are generated from uniform
distributions in [0, 300], [0, 100] for large and small variations, respectively. The processing
times are generated from uniform distributions in [90, 300], [100, 200] for large and small

5122 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

variations, respectively. The structure and data of the test problems are generated covering
a wide variety of scheduling problems encountered in industrial practice. A number of
machines and a number of jobs are alternated in order to get 16 problem configurations.
For each problem configuration, five problem instances are randomly generated. Thus,
80 different problem instances are generated which are either small or moderate in size.
The four different experimental factors are listed in Table 4. The aging oven can process a
batch in which the total number of pieces from all the jobs in that batch does not exceed
450 pieces. Without loss of generality, we assume that the size of each job is less than the
machine capacity (i.e. 450 pieces of panel). Once the batch processing begins, it is non-
preemptive until the batch is completely processed. Processing and ready times are
measured in minutes. All jobs should be formed as batches and be processed completely
by the minimum makespan.

Table 5 presents the solutions generated by all the proposed algorithms on the eight
small problem configurations with seven jobs in each. The values of the optimal solutions
are obtained by solving the MILP model (Model P), which is formulated in Section 3.
In Table 5, the problem configuration ‘7LL2’ represents the seven jobs with large ready
time and large processing time variations, which are processed on two batch machines.
In this testing, the run times of Model P and the CMA may vary for problem instances
with different configurations. However, the run times of the CMA are significantly faster
than for the original MILP model (Model P). All the solutions of the CMA are equal to the
values obtained from Model P; hence the solutions are optimal. In the three heuristic
algorithms, their performances are sensitive to the values of the parameters � and �
(as also concluded by Lee and Uzsoy 1999). This paper provides the experiments involving
the three heuristic algorithms to the testing problem instances using several values of �,
which are initially set to 0, 0.2, 0.4, 0.6, 0.8, and 1 (0 � � � 1) and �, which are initially set
to 0, 0.2, 0.4, . . . , 2.6, 2.8, and 3 (0 � � � 1). The best solution, obtained using one of the
parameter combinations, is selected as the final solution to the heuristic algorithm. It is
worthwhile to note that the MixedH obtains 34 (out of 40) optimal solutions within
0.8 CPU seconds for each problem instance.

Table 6 displays the results for the problem instances with 15 jobs and different
configurations and their performance comparisons in terms of the makespan obtained
using mathematical and heuristic algorithmic solutions. In theMILPmodel (Model P) and
Model N of the CMA, the depth-first search strategy (Wolsey 1998) is implemented by
choosing the most recently created node. To avoid the CPLEX routine which requires

Table 4. Experimental factors for small- and moderate-sized
problems.

Factor Value considered
Number
of values

Number of jobs (N) 7, 15 2
Ready time variation L, S 2
Processing time variation L, S 2
Number of machines (K) 2, 3 2
Total problem configurations 16
Instances per configuration 5

Total problem instances 80

International Journal of Production Research 5123

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

a tremendous amount of computation time, the maximum run time is set at 28,800 CPU
seconds. Furthermore, the nodes created cannot be greater than 1E06 in Phase II of the
CMA in order to check the subsequent batch numbers repeatedly. CPLEX could stop at
the pre-determined time without guaranteeing optimality for problems with high

Table 5. Run times and makespan results for 7-job problem instances.

MILP CMA H1 H2 MixedH

Problem
configuration Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec)

1 7LL2 459 2496.0 459 11.2 459 0.672 486 0.641 459 0.688
7LL3 379 8742.0 379 71.9 379 0.625 379 0.625 379 0.656
7LS2 395 501.2 395 13.7 395 0.609 401 0.609 395 0.672
7LS3 345 1032.0 345 21.4 365 0.625 345 0.625 345 0.656
7SL2 430 1041.3 430 11.2 430 0.656 480 0.625 430 0.676
7SL3 370 648.0 370 1.7 370 0.625 370 0.688 370 0.719
7SS2 346 1268.0 346 12.1 346 0.625 393 0.625 346 0.656
7SS3 289 15,475.0 289 66.3 289 0.609 306 0.625 289 0.672

2 7LL2 607 463.0 607 5.5 607 0.613 631 0.625 607 0.656
7LL3 540 15.8 540 6.2 568 0.609 540 0.609 540 0.656
7LS2 488 482.0 488 6.4 488 0.625 502 0.672 488 0.712
7LS3 418 2899.8 418 32.6 418 0.625 422 0.625 418 0.672
7SL2 561 450.0 561 18.3 570 0.641 575 0.609 570 0.719
7SL3 435 28,052.0 435 150.3 435 0.609 435 0.609 435 0.656
7SS2 348 1376.0 348 25.2 348 0.641 367 0.703 348 0.756
7SS3 267 20,714.0 267 115.9 267 0.625 267 0.609 267 0.688

3 7LL2 522 1.6 522 1.1 522 0.625 599 0.609 522 0.734
7LL3 522 7.5 522 5.3 522 0.641 522 0.594 522 0.672
7LS2 455 1.3 455 1.1 455 0.609 471 0.594 455 0.672
7LS3 455 10.0 455 3.0 455 0.641 455 0.609 455 0.672
7SL2 424 693.3 424 8.7 424 0.641 468 0.609 424 0.734
7SL3 332 7389.2 332 4.4 358 0.625 332 0.672 332 0.692
7SS2 330 461.8 330 11.0 345 0.625 343 0.594 343 0.656
7SS3 303 23,341.0 303 85.0 318 0.625 303 0.609 303 0.813

4 7LL2 630 1606.0 630 13.1 656 0.609 656 0.609 656 0.672
7LL3 543 41721.0 543 64.8 619 0.625 543 0.625 543 0.672
7LS2 411 7.7 411 2.9 411 0.625 530 0.594 411 0.656
7LS3 411 12.4 411 6.8 411 0.672 411 0.609 411 0.734
7SL2 512 4209.9 512 7.7 512 0.625 534 0.672 512 0.756
7SL3 425 31,346.8 425 117.8 465 0.625 425 0.703 425 0.741
7SS2 313 462.8 313 9.6 317 0.625 336 0.609 317 0.641
7SS3 258 22,398.0 258 61.6 261 0.625 258 0.609 258 0.641

5 7LL2 574 1306.8 574 6.4 592 0.641 590 0.641 590 0.656
7LL3 555 7.6 555 5.3 555 0.625 555 0.609 555 0.655
7LS2 453 1.6 453 0.7 454 0.625 453 0.703 453 0.741
7LS3 453 10.9 453 4.8 453 0.609 453 0.719 453 0.741
7SL2 498 3310.0 498 15.6 498 0.625 534 0.609 498 0.766
7SL3 398 43,339.0 398 134.2 398 0.719 398 0.609 398 0.752
7SS2 371 3748.0 371 23.1 393 0.609 373 0.672 373 0.741
7SS3 294 22,360.0 294 96.1 298 0.625 294 0.609 294 0.719

Note: The underlined values represent the best solutions for each problem instance from among all
of the algorithms.

5124 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

computational complexity. However, the depth-first search strategy can incorporate the
strong branching rule (Wolsey 1998) causing the variable selection based on partially
solving a number of sub-problems with tentative branches in order to find the most
promising branch. Table 6 shows that the performances of the CMA are reasonably good;

Table 6. Run times and makespan results for 15-job problem instances.

MILP CMA H1 H2 MixedH

Problem
configuration Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec) Cmax

Time
(sec)

1 15LL2 592 28,800.0 579 786.8 610 0.844 612 0.797 610 0.947
15LL3 552 28,800.0 552 15.3 552 0.781 552 0.781 552 0.931
15LS2 467 250.6 467 5.1 467 0.781 467 0.766 467 0.916
15LS3 467 7471.3 467 19.8 467 0.797 467 1.031 467 1.041
15SL2 532 28,800.0 532 1096.2 532 0.813 575 0.766 532 0.994
15SL3 382 28,800.0 382 2789.5 382 0.875 382 0.875 382 0.947
15SS2 372 28,800.0 372 1252.5 409 0.828 392 0.766 392 0.931
15SS3 276 28,800.0 275 2225.0 303 0.938 275 0.766 275 0.994

2 15LL2 614 28,800.0 605 3756.1 629 0.813 713 0.766 629 0.978
15LL3 565 642.0 565 17.4 565 0.797 565 0.750 565 0.947
15LS2 498 28,800.0 498 3063.0 516 0.797 551 0.797 516 0.931
15LS3 478 28,800.0 478 31.6 478 0.813 478 0.750 478 0.931
15SL2 500 28,800.0 475 1085.9 475 0.813 537 0.750 475 0.963
15SL3 380 28,800.0 380 150.7 380 0.797 380 0.750 380 0.916
15SS2 380 28,800.0 374 8478.0 380 0.781 403 0.766 380 0.947
15SS3 293 28,800.0 293 183.9 293 0.797 293 0.750 293 0.931

3 15LL2 505 28,800.0 505 902.3 505 0.797 596 0.750 505 0.963
15LL3 442 28,800.0 442 48.2 442 0.781 442 0.750 442 0.916
15LS2 455 28,800.0 455 872.4 467 0.781 498 0.750 467 0.931
15LS3 424 28,800.0 424 18.8 426 0.875 426 0.813 426 0.963
15SL2 425 28,800.0 425 999.0 428 0.797 466 0.750 428 0.931
15SL3 323 28,800.0 314 1089.0 323 0.797 314 0.766 314 0.931
15SS2 375 28,800.0 375 1290.0 393 0.781 420 0.750 393 0.916
15SS3 318 28,800.0 306 3012.9 315 0.797 306 0.750 306 0.947

4 15LL2 495 28,800.0 495 1185.0 516 0.797 546 0.750 516 0.931
15LL3 445 28,800.0 445 16.9 445 0.859 469 0.813 445 0.978
15LS2 435 28,800.0 422 997.7 435 0.781 456 0.828 435 0.947
15LS3 370 28,800.0 370 1275.5 375 0.781 390 0.734 375 0.892
15SL2 459 28,800.0 459 1323.0 473 0.797 473 0.750 473 0.910
15SL3 369 28,800.0 369 219.0 369 0.781 369 0.766 369 0.947
15SS2 384 28,800.0 383 1437.0 403 0.766 410 0.734 403 0.916
15SS3 327 28,800.0 327 3684.0 331 0.781 331 0.750 331 0.916

5 15LL2 553 28,800.0 553 1014.7 586 0.828 590 0.766 586 0.963
15LL3 538 813.0 538 13.1 538 0.797 538 0.781 538 0.916
15LS2 454 28,800.0 454 472.2 464 0.875 488 0.828 464 0.994
15LS3 451 28,800.0 451 22.7 451 0.859 451 0.828 451 0.993
15SL2 517 28,800.0 477 1483.9 505 0.797 517 0.750 505 0.916
15SL3 363 28,800.0 350 697.5 363 0.828 363 0.750 363 0.916
15SS2 374 28,800.0 368 3138.0 390 0.797 390 0.750 390 0.900
15SS3 324 28,800.0 321 4298.0 368 0.813 326 0.750 326 0.947

Note: The underlined values represent the best solutions for each problem instance from among all
of the algorithms.

International Journal of Production Research 5125

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

that is, with all the problem instances it achieved better solutions than the original MILP
model (Model P). Furthermore, the three heuristic algorithms perform well and efficiently.
As seen in Table 6, due to its solution strategy, the MixedH provides the best solutions of
all three heuristic algorithms for all problem configurations.

Table 7 displays the performance comparisons among the five algorithms in terms of
(1) average rank, (2) average run times, (3) number of problem instances receiving the best
solutions, and (4) number of optimal solutions. The results indicate that the CMA can
obtain 40 (out of 40) optimal solutions for the seven-job test problem instances and it can
perform remarkably well for the 15-job problem instances. The CMA significantly speeds
up the original MILP model in test problem instances. It should also be noted that all three
heuristic algorithms run very fast. With the 80 problem instances tested, it was found that
two of them required more than 1 CPU seconds on a Pentium IV 3.2GHz PC. To access
the accuracy of the heuristic solutions, the best solution selected from the CMA and the
original MILP model (Model P) is used for each problem instance as a convenient
reference point. The average percentage deviations between the MixedH and the selected
best solutions are 0.36% and 1.8% for seven-job and 15-job problem instances,
respectively. The percentage deviation is defined as (VMixedH�V)/V, where VMixedH and
V are the values for each problem instance which is obtained using the MixedH and the
two mathematically based algorithms, respectively. The CMA may perform inefficiently as
the number of jobs increases to the large scale usual in real-world factories. Thus, if the
computational time is a primary concern, MixedH can solve real-world problems well.

6.2 Analysis of the result based on the large scaled problem

To demonstrate the applicability of the MixedH heuristic algorithm in real world
problems, the following problem taken from a module assembly process of a TFT-LCD
factory in Hsinchu Science-based Industrial Park, Taiwan, is considered. For the parallel
batch processing machine scheduling problem in the aging test operation, there are 100
jobs (which can be categorised into 35 product families) to be processed on six identical
aging test machines arranged in parallel. The maximum batch size in one machine is 450
pieces of panel. It is assumed that the job testing recipes require the same testing
temperature, which is normally set to a high temperature (55�C).

Table 7. Comparisons of the five algorithms.

Problem MILP CMA H1 H2 MixedH

7-job Average rank among the five algorithmsa 1 1 2.23 2.9 1.3
Average run times (in CPU seconds) 7335.3 31.5 0.629 0.630 0.696
Number of problem instances receiving
the best solutions

40 40 25 19 34

Number of optimal solutions 40 40 25 19 34
15-job Average rank among the five algorithmsa 1.6 1 2.3 3.1 1.95

Average run times (in CPU seconds) 26149 1362 0.810 0.776 0.943
Number of problem instances receiving
the best solutions

26 40 15 15 19

Number of optimal solutions 4 4 4 4 4

Note: aThe smallest rank value indicates the best solutions among all algorithms.

5126 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

In order to solve the real-world aging test problem with unequal ready times and

non-identical job sizes using the MixedH algorithm, the program codes of the three

heuristic algorithms are written in Visual Basic 6.0. As a result, theMixedH algorithm runs

quite efficiently. In fact, theMixedH algorithm takes 6.8 CPU seconds to obtain makespan

1330 on six aging test machines.

7. Conclusions

This paper tackled the parallel batch processing machine scheduling problem with unequal

ready times, non-identical job sizes, limited machine capacity, and batch dependent

processing times. This problem is a variation of the classical parallel batch processing

machine scheduling problem, which has many real-world applications. To the best

knowledge of the authors, the parallel batch processing machine scheduling problem has

not been considered before. In this paper, the scheduling problem is formulated as a mixed

integer linear programming model considering batch formation and batch scheduling

simultaneously. To reduce the complexity associated with a search of all probable numbers

of batches, an effective compound MILP-based algorithm (CMA) is proposed to pre-

determine the number of batches and then to apply the number as a parameter of the

MILP model. From the computational tests conducted in the paper, the CMA significantly

outperforms the original MILP model (Model P) within the limited computational time.

Furthermore, if the computational time is a primary concern, three efficient heuristic

algorithms are also developed for solving large-scale problems. The performances of the

three heuristic algorithms are quite satisfactory. In particular, the MixedH shows its

superiority with respect to run time and solution quality, which are essential for real-world

factories to schedule their batch processing machines. A real-world problem taken from

a module assembly shop floor at a TFT-LCD factory is solved by using MixedH to obtain

the near optimal solution within a few CPU seconds. From this investigation, two possible

concerns might be useful in further research. The first involves solving a batch processing

machine scheduling problem which involves continuous multiple-batch operations. The

second is the need to minimise the maximum completion time involved in the consid-

eration of setup times for the parallel batch processing machine scheduling problem with

unequal ready times and incompatible product families.

References

Chang, P.Y., Damodaran, P., and Melouk, S., 2004. Minimising makespan on parallel batch

processing machines. International Journal of Production Research, 42, 4211–4220.
Damodaran, P. and Srihari, K., 2004. Mixed integer formulation to minimise makespan in a

flow shop with batch processing machines. Mathematical and Computer Modelling, 40,

1465–1472.
Erramilli, V. and Mason, S.J., 2006. Multiple orders per job compatible batch scheduling. IEEE

Transactions on Electronics Packaging Manufacturing, 29 (4), 285–296.
Ikura, Y. and Gimple, M., 1986. Efficient scheduling algorithms for a single batch processing

machine. Operations Research Letters, 5, 61–65.
Kashan, A.H., Karimi, B., and Jolai, F., 2006. Effective hybrid genetic algorithm for minimising

makespan on a single-batch-processing machine with non-identical job sizes. International

Journal of Production Research, 44, 2337–2360.

International Journal of Production Research 5127

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

Lee, C.Y. and Uzsoy, R., 1999. Minimising makespan on a single batch processing machine with
dynamic job arrivals. International Journal of Production Research, 37 (1), 219–236.

Lee, C.Y., Uzsoy, R., and Martin-Vega, L.A., 1992. Efficient algorithms for scheduling semi-
conductor burn-in operations. Operations Research, 40 (4), 764–775.

Mönch, L., et al., 2005. Heuristic scheduling of jobs on parallel batch machines with incompatible
job families and unequal ready times. Computer & Operations Research, 32, 2731–2750.

Morton, T.E. and Pentico, D.W., 1993. Heuristic scheduling systems: with applications to production

systems and project management. New York: John Wiley & Sons.
Pearn, W.L., Chung, S.H., and Yang, M.H., 2002. Minimising the total machine workload for the

wafer probing scheduling problem. IIE Transactions, 34, 211–220.

Sung, C.S. and Choung, Y.I., 2000. Minimising makespan on a single burn-in oven in semiconductor
manufacturing. European Journal of Operational Research, 120, 559–574.

Sung, C.S., et al., 2002. Minimising makespan on a single burn-in oven with job families and

dynamic job arrivals. Computer & Operations Research, 29, 995–1007.
Uzsoy, R., 1994. Scheduling of a single batch processing machines with non-identical job sizes.

International Journal of Production Research, 32, 1615–1635.
Van Der Zee, D.J., 2004. Dynamic scheduling of batch servers with compatible product families.

International Journal of Production Research, 42, 4803–4826.
Wolsey, L.A., 1998. Integer programming. 1st ed. New York: John Wiley & Sons.

5128 S.H. Chung et al.

D
ow

nl
oa

de
d

by
 [

N
at

io
na

l C
hi

ao
 T

un
g

U
ni

ve
rs

ity
]

 a
t 0

6:
25

 2
5

A
pr

il
20

14

