MHP 421 2 B3+ & 5%
3+ Xilink ML310s% 5 b 2 2% 2t 3 15,

Design and Implementation of
an MHP Video and 'Graphics Subsystem
on Xilinx ML310 Platform

g4 i mE
R g #

MHP L1 % B]455 % %
5 Xilink ML310 T &+ 2 2% 320 9 1

Design and I mplementation of
an MHP Video and Graphics Subsystem
on Xilinx ML310 Platform

Frd mi Student: Min-Hong Chen
I ERR: g gL Advisor: Dr. Hsueh-Ming Hang

R = 2 < 7
,ﬁe

® F 1 2 B X x - ;: i

FAodu.sm <
A Thesis

Submitted to Department-of Electronics Engineering & Institute of Electronics
College of Electrical-and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
In
Electronics Engineering

2006

HsinChu, Taiwan, Republic of China

4y
S
2

MHP 4831 2]2
* Xilink ML310 & 5 F 2 %322 |

EE

A e A& P rE A Xilink ML310T 5 F ofe & Linux 2 2 X Window
System % > # B - B#F @ 9 MHP gk 2 B2, x st - MHP (Multimedia
Home Platform)%_d¢ DVB Consortium=>+ 2003 & #1 2> B 37 Z_enfici= T 4L P 1
Btz L8 > v iR AR R 2§ AR o BT P
I WA AR PRAE o

27 F I MHP #7372 a2 Bl » AP R 7 T e (53
Bem AAPE 2d Sun #5372 JavaME, Persona Basis Profile £ 5 MHP
GEF R T Lo 72 Bt JavaT S A543 Xilink ML310 T 5 b oo e E A
" % FFmpeg 4 0 MPEG-2 3 5 1 B 12 2 MPEG-2 430 {445 B Jbh =

\«

ko I ¥ Kv i IMF Lite FFE o e > NP R-FiE 2 ha i

AN

Microwindows § fen AWT k3t & » £ ¥ 30— B3 s i 2 {7
L R
Aopergs e MHPARIUZ B3 % 53k 27 AWT 8 B2 32 IMF 431
FT et i 0 @ HEH AR BB TR %%fﬁﬁ%{ CimERE RS
TR FERME B DOESL o RS Am %E T & Xilink ML310 T
o g E MHP & svenw (7o

Design and I mplementation of
an MHP Video and Graphics Subsystem
on Xilinx ML310 Platform

Student: Min-Hong Chen Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

The purpose of this study isito. designtand implement a simplified MHP (Multimedia
Home Platform) video and graphies subsystem on the Xilinx ML310 platform under the
Linux and X Window System. MHP is.an‘open-DTV-middleware standard developed by the
DVB Consortium in 2003. It enables the reception-and execution of interactive applications
with TV programs.

To accomplish our goal of displaying the MPEG-2 video together with the MHP
specified graphics mode s, we have done the following tasks. We choose the Personal Basis
Profile of Java ME as the base for developing the MHP video and graphics subsystem and
port it to the Xilinx ML310 platform. We extract the MPEG-2 demultiplexer and MPEG-2
video decoder from the FFmpeg libraries and modify and include them into our framework.
Then, we also modify the IMF Lite and combine it with the FFmpeg MPEG-2 decoder. Lastly,
the build-up of the above items is integrated with the Microwindows-based Java AWT in an
efficient way.

The proposed system is able to provide the AWT graphics and the JMF video
presentation services, including norma presentation, arbitrary clipping, scaling and
positioning of the MPEG-2 video. It aso provides video and graphics composition. Finally, an
implementation of the designed MHP video and graphics subsystem has been successfully
demonstrated on the ML 310 platform.

Acknowledgement

| would like to show my sincere appreciation to my advisor, Professor
Hsueh-Ming Hang. Under his guidance, | had a clear direction of my research
topic and | overcame the difficulties encountered in the process of my M.S.
degree. | not only learned in the technical field, but aso the active attitude of
research from my advisor. | would also like to sincerely appreciate Professor
Chun-Jen Tsa. He gave me many suggestions about the design and
Implementation.

| am also very willing to thank all' the:members of the Communication and
Digital Signal Processing Lab, especialy-Dr. Feng-Cheng Chang. | learned a lot
from his knowledge and experience of system development. The kindness of
everyone in our Lab made me have a colorful and memorable time in the past
two years.

Finally, | dedicate this volume to my family: my parents, my grandparents,
and my brothers. Their support and encouragement helps me to focus on my

research and study without distraction.

Table of Contents

PR - = —
ADSEraCt —-==m e e i
Acknowledgement —-----mmmmm s s iii
Table of CONtENtS ==—-===mmmm e iv
TG O I = o vi
List of Figures viii
Chapter 1 Introduction ----=#=mss ot m e 1
Chapter 2 Background — -----=====mmm oo 3
2.1 Digital TV OVEIVIEW =mmmmmmmm oo oo 3

2.2 Digita Video Broadcasting ------=-=-===mmmmmmm oo 3

2.3 MultimediaHome Platform = =--==-========mmm e 4
2.3.1 Architecture of MHP =-=-m o e 5

2.3.2 MHP Platform Profiles -===-====mmm e 6

2.3.3 DVB-JApplication Model -----=-==mmmm e 7

2.3.4 DVB-JPlatform APl - 8

2.3.5 MHP Graphics Model ~ ----======mm e 9

2.3.6 Extensionsto IMF in MHP === e e e e 12

Chapter 3 Development Environment -------------------mmmommmmommeeo 14

3.1 ODJECHIVES mmmmmmm oo 14

3.2 Target Platform and Development ToolS — -----------=-=---m-mmmmmmmom oo 14
3.2.1 Xilinx ML310 Platform = ----=-=-mmmmmmmmmmm oo oo 15

3.2.2 TINYX oo e e 16

3.2.3 Sun Personal Basis Profile Reference Implementation ----------------- 17

3.2.4 Microwindows-Based AWT -----mmmmmmmmmm oo oo 18

3.2.5 JMF Lite = e e e e e e 20

3.2.6 FFMpeg --=----mmemmmm e e 24
Chapter 4 Design and Implementation ---------==-=-====-mmmmmmmmmeeeo- 25
4.1 Modified IMF Implementation,_ ----------==-=====-mmmm oo 25
4.1.1 FFmpeg-Based MPEG-2 VideoDecoder ---------------------mm-mmmomoem- 27

4.1.2 Video Clipping and'SCaling #==-===mmnmmmmmmm oo oo 29

4.1.3 Background and Component=Based Player Presentation --------------- 33

4.2 Video and Graphics Integration. . ===2=-------=-mmm oo 33
4.2.1 Original AWT Graphics Architecture ---------=--==-mmmmmmmmmmm e 34

4.2.2 Modified Graphics Architecture = -----------=-=-m-mmmmmmmmommomm oo 38

4.2.3 AWT GraphicsUpdate ------------=--=-mmmmmmommm oo 39

4.2.4 Background Video Update ------=====m=mmmmmmmmmmemo oo 43

4.2.5 Component-Based Video Update ------------=-=-m--m-mmmmmmm oo 46

4.3 Performance Profiling ------=-=-=-mmmmmmm oo 51
Chapter 5 Conclusion and Future Work — -------=-==--mmmmmmmmeem oo 55
Bibliography — --------mmmm o 57

List of Tables

Table 3.1
Table3.2

Table4.1
Table4.2
Table4.2
Table4.3

Table4.4

Java ME Configurations ----=-=-=-=n=nmmmmm oo oo oo 17
Profilesof CDC ------mmm oo e 18
Mapping table of FFmpegController and FFmpeg APl --------—----=--—--——- 28
Profiling results of the execution time of different frame numbers =~ -------- 52
Profiling results of the video scaling time ~ ---------------=-=-m-mememomomemeeo- 53
Profiling results of the composition'time --------------==-=====mmsmcmmem - 54
Profiling results of the screenblittingtime ----------------=--=--—--- oo co——- 54

vi

List of Figures

Figure2.1
Figure2.2
Figure 2.3
Figure2.4
Figure2.5

Figure 2.6

Figure3.1
Figure 3.2
Figure 3.3
Figure3.4
Figure 3.5
Figure 3.6

Figure 3.7

Figure4.1
Figure4.2
Figure4.3
Figure4.4
Figure4.5
Figure 4.6

Figure4.7

MHP architecture

MHP system block diagram

Xlet lifecycle state machine diagram

An example of MHP display stack -

Background, video, and graphics pipeline

MHP composition rule

Xilinx ML310 platform high-level bl ock diagram

Architecture of the X Window: System

Architecture of the origina Microwindows

Architecture of Microwindowsin Sun PBP 1.0.2 RI

Class diagram of JIMF Player
State transition diagram of JIMF Controller

Architecture of IMF Lite

Architecture of the modified JMF implementation using FFmpeg

Class diagram of the modified JMF implementation using FFmpeg
Sequence diagram of the modified JIMF implementation using FFmpeg
Flowchart of the MPEG-2 demultiplexing and decoding using FFmpeg
Process of video format cConversion ----------==-===mmmmmmm oo
Process of the modified video format conversion

Coordinate transformation in the modified video format conversion ---

Vii

10

12

15
16
19
20
21
22
23

30
31
32

Figure4.8 Architecture of the original AWT of SunPBP1.0.2RI ------------m-mm---
Figure4.9 Anexample of AWT graphics update —---------------=-m--m-mmmmmmmmmeo e
Figure4.10 Pseudo code of AWT graphicsupdate — ---------==-===m=mmmmmmmmmmemm oo
Figure4.11 Modified graphics architecture = ----------=-=-m-m-mmmm oo
Figure4.12 An example of the modified AWT graphics update ---

Figure4.13 Pseudo code of the modified AWT graphics update — ----------=--=-=------
Figure4.14 An example of background video update — ----------=--=--=mmmmmmmmmmeeee-

Figure4.15 Pseudo code of background video update =~ ----------------------

Figure4.16 An example of component-based video update ----------==------===------
Figure4.17 Pseudo code of component-based video update -------------====---------

Figure4.18 Scenario of typica EPG usage ------------------

Figure4.19 Scenario of profilings — --=--z=-------------=--------

viii

Chapter 1

| ntroduction

The transition from analog TV to digital TV (DTV) is happening now. Many countries
around the world have set a deadline for discontinuing the analog TV broadcasting. Television
stations will continue providing both analog and digital services until the deadline. Then, all
analog broadcasting will be terminated. DTV is a more advanced technology in that it can
provide interactive video/audio and.data services, which is not possible by the analog
broadcast systems

Digital Video Broadcasting(DVB) is one of the most widely adopted DTV transmission
standards in the world. The DVB ~Multimedia Home Platform (DVB-MHP) defines a
Java-based platform for developing interactive DTV applications. In addition to providing
abstractions for many DVB and MPEG-2 concepts, it defines interfaces for features such as
network card control, application download, and layered graphics model, and so on.

A full MHP system is very complicated. It is composed of various functional components.
In this thesis, we focus on the video and graphics subsystem. A simplified design to integrate
video and graphicsis proposed and implemented on a processor-based platform.

This thesis is organized as follows In Chapter 2, a brief overview of the DTV
technology is provided, which includes the DVB standards, the MHP architecture, the MHP
progranming models, and the graphics model. Chapter 3 describes the objectives of the
proposed design, as well asthe reference software, and the target environment to develop and
deploy the implementation. Chapter 4 describes the limitations of the reference software for

devel oping the video and graphics subsystem. According to these limitations, modifications of

the standard video/graphics system and new functionalities are proposed and implemented.
Several profiling results are also provided at the end of this chapter. Based on these results, a
discusson of the execution time performance of the MHP video and graphics subsystem is

provided. Chapter 5 includes the conclusion remarks and a few possible future work items.

Chapter 2

Background

2.1 Digital TV Overview

Digital television (DTV) is an advanced broadcasting technology. By transmitting the
video and audio information in digita format, such as the MPEG-2 Transport Stream
(MPEG-2 TS), a digital broadcaster can deliver information more efficiently than an analog
broadcaster can do.

By taking advantage of the-digital data compression techniques, the conventional 6-MHz
bandwidth for an analog channel can carry 4 to-6 digital standard-definition television (SDTV)
channels or one high-definition television (HDTV) channel. An SDTV program has similar
quality to the best TV pictures in an analog broadcast system and an HDTV program has
higher resolution for dramatically better picture and sound quality than what is availablein an
analog broadcast system.

DTV technologies can be used to provide interactive services with TV programs This
interactivity would introduce various types of pay-per-view services as well as new
possibilities for Electronic Program Guide (EPG), home-shopping, and interactive television

shows.

2.2 Digital Video Broadcasting

Digital Video Broadcasting (DVB) is a suite of open standards for DTV transmission

based on MPEG-2 Transport Stream. DVB systems may transmit data through satellite, cable,

3

terrestrial television, or terrestrial television for handhelds, as defined by the standards of
DVB-S, DVB-C, DVB-T, and DVB-H, respectively. These standards define the physical layer
and the data link layer of a distribution system. DVB systems have been adopted in most of
the European, Asian and South American countries.

DVB hastwo major competitive standards, the Advanced Television Systems Committee
(ATSC) and the Integrated Services Digital Broadcasting (ISDB). Most countries in the world
adopted the DVB standards. Some other countries adopted ATSC, including the U.S., Canada,
Mexico and South Korea. ISDB isdeveloped by Japan for digital television and digital audio
broadcasting.

The Ministry of Transportation and Communication (MOTC) of Taiwan originaly
considered ATSC in 1997. However, over-the-air TV broadcasters and manufacturers tended
to adopt DVB, because it is superior in mobile reception, indoor reception and less
interference by obstacles in metropolises. In June.2000, the MOTC of Taiwan adopted the
DVB-T standard for DTV broadcasting.

In the DVB structure, each MPEG-2Transport Stream is known as a multiplex. Within a
multiplex, each group of elementary streams that makes up a single TV channdl is called a
serviceor a program Each TV show in aserviceis known as an event. An MPEG-2 Transport
Stream physically groups a set of services together, but services in DVB systems can also be
logically grouped as well. A logical group of services is caled a bouquet. A set of MPEG-2

Transport Streamsthat share some common service information is called a network.

2.3 Multimedia Home Platform

Multimedia Home Platform (MHP) [1] is an open middleware standard devel oped by the
DVB Consortium in 2003. It is a technical solution for the DTV receiver, which enables the
reception and presentation of applications in a vendor, author and broadcaster neutral
framework. Applications from various service providers will be interoperable with different

MHP implementations in a horizontal market, where applications, networks, and MHP

terminals can be made available by independent providers. The various aspects of an MHP

system are described in the following sections.

2.3.1 Architectureof MHP

A full MHP system is composed of three layers as shown in Figure 2.1. The resources
layer is a collection of hardware devices and basic software, including the tuner,
demultiplexer, media decoder, graphics subsystems, 1/O devices, processor, memory
subsystem, operating system, and so on. The system software layer provides an abstract view
of the resources to MHP applications. This middle layer separates MHP applications from
specific hardware and operating system, hence enables the portability of MHP applications.
An important component of the system software is the application manager, a'so known as a
navigator, which is responsible for managing the lifecycle of al MHP applications. MHP
applications implement interactive services as software running on an MHP system. The

applications are written to the MHPAPIs provided by the system software. [1, pp.42]

[D
MHP application
. J
MHP API
[D
System software [Application J
manager
p J
[N
Resources
) J

Figure 2.1 MHP architecture

Source: [1, Figure 4, pp.42]

Figure 2.2 shows the various components that compose a full MHP system, and the
interface between an MHP system and MHP applications. MHP applications use the MHP AP,

which is shown as the bold border enclosing the applications in Figure 2.2, to access the

actual resources of an MHP system. The components comprising a full MHP system can be

categorized into the following groups:

B Serviceinformation and selection, including the tuner, CA subsystem, demultiplexer,

DVB serviceinformation, CA control, and tuner control.

B Data access, including the MPEG-2 section filter, DSM-CC, storage media control,

and | P over the return channdl.

B Presentation, including media control, media decoder, user interaction, graphics,

and integration of video and graphics.

Audio Video
output output

Remote control /
keyboard / mouse

t 1t ¢

+ e Graphi P User Storage Media
[raphics € Interaction APl Control
A (Remote 5
N (]
Media Media Abgiication] | Program H
[]
Decoder Control l TCP/IP }‘_.
A
CA Tuner UL (he Service (Other(s) "
Section . . DSM-CC |
Control Control . Information | over
i’ - | uppap |
A A A A A A A — =i ~
: ']
Demux [[ceedeccccnan R
-] [}
i lecccccccae decccccccccnaa)
CA <
A
Tuner |g
A v
Network Interaction

Source: [1, Figure 6, pp.45]

2.3.2 MHPPIlatform Profiles

Figure 2.2 MHP system block diagram

Channel

The MHP specification defines three profiles as part of the specification [1, pp.29] to

provide different capabilities of MHP implementations for specific application areas. The

threeprofiles are:

B Enhanced Broadcasting Profile: this profile is the most basic profile of the three. It

combines digital broadcast of audio and video services with downloaded MHP
applications to enable local interactivity. It does not need an interaction channel.

B nteractive Broadcasting Profile: this profile enables a range of interactive services
associated with or independent of the audio-visual services. This profile requires an
interaction channel.

B Internet Access Profile: this profileis added in MHP 1.1 specification. It isintended
to provide Internet services. It also allows to link between those Internet services

and broadcast services.

2.3.3 DVB-JApplication Model

The MHP specification defines_ two @pplication models. DVB-J and DVB-HTML [1,
pp.64-68] [2]. Currently, DVB-J is;more frequently used than the other. Thus, a brief
description of the DV B-J application model will be presented in this section.

DVB-J applications are different from-typical Java applications. Instead, they have a
lifecycle similar to that of Java applets The canventional Java application model assumes that
only one application is executed in a Java VM. An application has complete control of its
lifecycle including terminating the Java VM in which it runs. In the DTV environment,
however, several applications may be executed in the same JavaVM, similar to that there are
multiple Java applets running in the Java VM invoked by the browser.

Because of the similarities between DVB-J applications and Java applets, a DVB-J
application iscalled an Xlet whichis defined by the Java TV API. The JavaTV API is adopted
into the MHP standard to specify the DV B-J application model. The application manager is
responsiblefor starting and stopping Xlets as well as controlling them in other ways.

There are four states in the lifecycle of an Xlet: Loaded, Paused, Acti ve, and
Dest r oyed. The Xlet state machine model is illustrated by Figure 2.3. When an Xlet has

been loaded into memory but not initialized yet, it isin the Loaded state. After the Xlet has

been initialized successfully, or after the return of the invocation of Xl et . pauseXl et ()
onanActi ve Xlet, it transitions to the Paused state. An Xlet in the Paused state should
minimize its usage of resources. An Xlet enters the Act i ve state from the Paused state
after the Xl et . start Xl et () method returns successfully. An Xlet is functioning and
providing service when in the Act i ve state. An Xlet entersthe Dest r oyed state from any
other statewhen Xl et . dest r oy Xl et () method returns successfully. A Dest r oyed Xlet

releases al of its resources and is terminated.

.

destroyXl et () Loaded
initXet()
dest.royXlet ()
Dest royed |-& Paused
pauseXl et () T l start Xl et ()
Active

destroyXl et () e

Figure 2.3 Xlet lifecycle state machine diagram

Source: [1, Figure 11, pp.66]

2.34 DVB-J Platform API

The DVB-J platform [1, pp.104] [3] is an environment on which DVB-J applications are
executed, which includes a Java VM and a set of Java class libraries that implement the MHP
API. The MHP API has its roots in a number of other standards. On the one hand, the MHP
standard is designed to be interoperable with existing standards, and on the other hand, the
integration approach avoids re-inventing the wheel. The MHP APl is composed of the
following APIs:

B Java Platform 1.1 API: it is the most basic API that all the other APIs are built on
top of. It is also known as the Personal Java A pplication Environment (PJAE).

B Java Media Framework (JMF) 1.0 API: it supports broadcast media presentation
and control.

B Java TV 1.0 API: it provides service and service information access, broadcast

pipeline control, broadcast data access, and application lifecycle management.

B Home Audio Video Interoperable (HAVi) 1.1 Level2 User Interface API: it defines
the MHP graphics model and a Javarbased user interface solution suitable for
consumer device display.

B Digital Audio Visual Council (DAVIC) 1.4 API: it provides low-level APIs for
MPEG concepts and resource management.

B Java Secure Sockets Extension (JSSE) 1.0.2 API: it supports security management.

B DVB core API: it providesvarious extension APIs to those aforementioned APIs

2.35 MHP Graphics Modé

The MHP graphics model [1, pp.197-204] is defined by the HAVi 1.1 API. Each screen
connected to an MHP receiver has three kinds of planes. They are, from back to front, a
background plane, one or more video planes, and one or more graphics planes Figure 2.4
shows an example of the MHP display stack.

A background plane is represented by an instance of HBackgr oundDevi ce and is
capable of displaying single solid color, a still image, or a video drip, depending on the
capability of the MHP receiver.

An MHP application can control MPEG-2 video on the video plane outside the AWT
hierarchy. Multiple video planes may be supported to provide features like picture-in-picture
if there are multiple MPEG-2 video decoders. A video plane is represented by an instance of
HVi deoDevi ce.

An MHP application can request a contiguous rectangular region of the graphics plane to

draw objects, including component-based videos, user interface components, and graphical

objects. A graphics plane is represented by an instance of HGr aphi csDevi ce.

I User's view
Graphics plane

Video plane

Background plane

Figure 2.4 An example of MHP display stack
Source: [1, Figure 16, pp.197]

The final display output on the screen is represented by an instance of HScr een, which
isthe composition of HBackgr oundDevi ce, HVi deoDevi ce, and HG aphi csDevi ce.
The background, video, and graphics pipelines are illustrated by Figure 2.5. It shows that
applications have full control over the source of the content that enters the different pipelines.
Furthermore an application can control clipping, scaling and positioning of the content at

different stagesin the different pipelines.

10

HBackgr oundDevi ce

-
-
e

ackgroun Background Scale/
data decoder g position

JMF extensions

“ce
-
-
-
-
-
o

Scale/

MPEG video .
after ETRI54 Clip/ Video Scdle/ HScr een
. Position/ 0sition
upsampling Pan-scan T
HG aphi csDevi ce + Screen

e
-
-
-
-
-
.o,

Graphics Graphics) Scale/
composition Graphics osition
@ Processing Control by
function application

Figure 2.5 Background, video, and graphics pipeline

Source: [1, Figure22, pp.203]

Figure 2.6 shows the MHP-composition‘rules. There are three steps to compose the final
output for display:
Step 1l The graphics components are ‘composed following the traditiona AWT
graphics model using Porter-Duff rules.
Step 2 The background and video planes are composed using the Porter-Duff rule
SRC. The video plane has aphavalues of either 0.0 or 1.0.
Step 3 The results are composed together using the SRC_OVER rule with the

graphics results as the source and the results of the background/video composition

as the destination.
The Porter-Duff rules are alpha composition rules for combining source and destination
pixels to achieve blending and transparency with graphics, image, and video. The color and

alpha components produced by the composition operation are computed as follows:

Cd=Csx Fs+Cd x Fd
Ad=Asx Fs+Ad x Fd

11

, Where the abbreviations are used:

B Cs one of the color components of the source pixel.

B Cd: one of the color components of the destination pixel.

B As aphacomponent of the source pixel.

B Ad: alphacomponent of the destination pixel.

B Fs fraction of the source pixel that contributes to the output.

B Fd: fraction of the destination pixel that contributes to the output.
Each Porter-Duff composition rule is specified by Fs and Fd. For example, the SRC rule is
specified by Fs=1 and Fd=0, which means that the source pixel is copied to the destination
and the destination is not used as input. The SRC_OVER rule is specified by Fs=1 and

Fd=(1-As), which means that the source is composed over the destination.

Combines with SRC,
SRC_OVER, or
CLEAR rules

Always combines
with SRC_OVER «
rule

Always combines
with SRC rule

Figure 2.6 MHP composition rules

Source: [1, Figure 24, pp.204]

2.3.6 Extensonsof IMFin MHP

In the desktop JMF implementations, the video content is aways presented in an AWT

12

component. The MHP specification, however, defines that a video can be presented either on
the video plane or on the graphics planeas an AWT component. These two different ways of
video presentation result in two kinds of JIMF Pl ayer s, that is, background JMF Pl ayer
and component-based JIMF Pl ayer [1, pp.210-213].

A background JMF Pl ayer presents video on the video plane independent of the AWT
hierarchy. On the contrary, a component-based JIMF Pl ayer presents video inside an AWT
component, and follows the positioning and resizing rules of an AWT component. The video
is always scaled to the full size of the component. Support for component-based Pl ayer sis
not mandatory in all MHP profiles.

The MHP specification also defines many Cont r ol sthat provide a JMF Pl ayer with
additional functionalities to control the video format conversion, including clipping, scaling,
and positioning of a video. These extended Cont r ol srelated to video format conversion are
enumerated as follows

B javax.tv.AWVi deoSi'zeCont rol ; it supports scaling, positioning, and

clipping of a background video-in the screen:coordinate space.

B org. dvb. nedi a. Backgr.oundVi deoPr esent at i onCont r ol : it supports

setting and querying of the video presentation for abackground Pl ayer .

B org.dvb. nedi a. Vi deoFor mat Control : it enables applications to get

information associated with the format and aspect ratio of the video.

B org.dvb. nedi a. Vi deoPresent ati onControl : it supports setting and

guerying the video presentation.

13

Chapter 3

Development Environment

3.1 Objectives

The objectives of thisthesis are to design and implement avideo and graphics subsystem
conforming to the MHP graphics model in an embedded system environment. The system
should providethe following functionalities:

B |t provides a single background plane;. a single video plane, and a single graphics

plane.

B |t supports drawing AWT rcomponents and graphics primitives on the graphics

plane using the Porter-Duff composition rules.

B It wpports IMF background MPEG-2 video Pl ayer and component-based

MPEG-2 video Pl ayer .
B |t upports arbitrarily clipping, scaling, and positioning of an MPEG-2 video.
B |t supports graphics plane and video plane composition using the Porter-Duff
SRC _OVERTule.
The embedded system environment used for deployment is described in the following

sections

3.2 Target Platform and Development Tools

To emulate a resource-constrained DTV set-top box, the Xilinx ML310 platform is

chosen as the target environment. The hardware and software configurations are described in

14

the following sections.

3.2.1 Xilinx ML310 Platform

The Xilinx ML310 platform [4, pp.17] is a prototyping board targeting on the
development of embedded system and system-on-chip application. The high-level block
diagram of the ML310 platform is shown in Figure 3.1.

CF |€»| System ACE BGMB
RS232
SMBus nglill—vs[p])eed
PPC405
SPI
XC2VP30 _
GPIO / LEDs FF896 FPGA - ngrt:];/s[geed
RI45 f€> Et;elré‘et I]]]

PCI slots

Parallel
Port

Figure 3.1 Xilinx ML 310 platform high-level block diagram

Source: [4, Figure 2-2, pp.17]

The Virtex-1l XC2VP30-FF896 FPGA has two embedded PowerPC 405 processors
clocked at 300 MHz maximally. The 512 MB CompactFlash card contains a DOS FAT16

filesystem partition and a Linux EXT3 filesystem partition. The DOS filesystem partition

15

contains a set of ACE filesto run board diagnostics, as well as to demonstrate the operation of

various operating systems such as MontaVista Linux, VxWorks, and QNX.

3.22 TinyX

The X Window System [5] [6], also known as X or X11, is a windowing system widely
used in the UNIX, Linux, and other UNIX-like operating systems. It is designed as
client-server architecture. An X server handles the actua graphics display through direct
access to graphics device drivers. It also handles the interaction with users, including reading
the mouse and the keyboard events through kernel device drivers. All the information is
relayed to X clientsin the form of X events X clients are applications that communicate with
an X server by receiving X events and issuing requests.

An X client and an X server communicate with each other through the X protocol
delivered over a network on top:of TCP/IP.or an inter-process communication mechanism.
The X protocol provides network-transparency: the X-client and server may run on the same
machine or on different ones, passibly. with-different hardware architectures and operating

systems. Figure 3.2 illustrates the architecture of the X Window System.

Keyboard Mouse Screen
A
Y \ 4
X server
A ,)
i ¢ User s local machine
X client X client
L~
network %/
Y
X client Remote machine

Figure 3.2 Architecture of the X Window System

16

TinyX [7] isan X server implementation included in the MontaVista Linux Professional
Edition 3.1 shipped with the Xilinx ML310 platform. It is a stripped-down X server based on
XFree86. Specificaly, TinyX servers are targeted towards resource-constrained environments.
The TinyX communicates with the graphics hardware through the Linux framebuffer device
and hence has no hardware acceleration. The MontaVista Linux kernel has a built-in driver for

Matrox Millennium Il graphics card currently.

3.2.3 Sun Personal Basis Profile Reference lmplementation

The Java Platform, Micro Edition (Java ME) provides a runtime environment for Java
applications running on resource-constrained consumer and embedded devices. The Java ME
is further defined by Configurations and Profiles [8, pp.7-11].

A Configuration is a basic set of APIs and virtual machine features needed to support a
certain range of devices. Currently, there are two Java ME Configurations: the Connected
Limited Device Configuration (CLDC) and the Connected Device Configuration (CDC).
Table 3.1 provides a short description forthe CLDC and CDC.

Table 3.1 Java ME Configurations

CLDC CDC

128 KB to 512 KB total memory | >= 256 KB RAM and >= 512 KB
Memory with <= 256 KB RAM and <= 256 | ROM

KB ROM
Java VM KVM. Accommodated to memory | CVM. Supports full Java virtua
l[imitation machine specification
Target mobile phones and low-end PDAs | DTV set-top box, Vol P phones,
) network printers, routers, residential
devices

gateways
Source: [8, Table 2, pp.10]

A Profileis an additiona set of APIs that support a narrower range of devices. A Profile
isbuilt on a specific Configuration. Table 3.2 describes the various CDC Profiles.

The PersonalJava Application Environment (PJAE) specified in the MHP DVB-J

17

platform requirements has completed the End of Life process and is no longer supported by
Sun. Personal Profile is positioned as the migration from the PJAE. To address the need of
DTV that is less capable than those characterized by Personal Profile, Personal Basis Profile

[9] isdefined as a subset of Personal Profile which is appropriate for DTV.

Table 3.2 Profiles of CDC

Profile Description

FPisthe most basic CDC profile. In combination with the class
Foundation Profile | library provided by CDC, FP provides basic application-support

(FP) classes such as network support and 1/0 support. FP excludes
any support for graphics or GUI services

PBP provides a structure for building lightweight component
Personal Basis Profile | toolkits based on AWT, JavaBeans runtime support, and support

(PBP) for the Xet application model. In addition, PBP includes all of
the FPAPIs
Personal Profile PP provides full AWT support, applet support, and limited bean
(PP) support. In addition, PP includes all of the PBPAPIs

Source: [8, Table 3, pp.11]

Sun released an open-source Personal Basis Profile 1.0.2 Reference Implementation (RI).

The PBP 1.0.2 RI includes a full-featured Java VM caled CVM and a set of class libraries
supporting CDC 1.0 API, FP1.0 API, and PBP 1.0 API. The AWT of the PBP 1.0.2 RI is

implemented using the Microwindows modified by Sun. The origina and modified

Microwindows will be described in the next section.

3.24 Microwindows-based AW T

Microwindows [10] is an open-source windowing system for resource-constrained
devices It brings some of the features of modern windowing systems without the over-killed
requirements of atypica desktop windowing system, such as the X Window System and the
Microsoft Windows. The project was renamed from Microwindows to Nano-X Wndow

System in January 2005, as a result of conflicts with Microsoft's registered trademark,

18

Windows.

Microwindows has athree-layered design asillustrated in Figure 3.3. The lowest layer is
the device driver layer. A typical implementation of Microwindows links at least one screen,
mouse and keyboard driver into the system. This layer provides a uniform interface to
perform the hardware-specific operations. This design allows various hardware devices to be
added to Microwindows without affecting the way the entire system works

The middle layer is the device-independent graphic engine. It provides the core graphics
functionalitieswhich invoke the screen, mouse and keyboard drivers to communicate with the
hardware. User applications must never cal the core graphics engine routines directly, but
rather through the application programming interface layer.

The top layer is the application programming interface layer. Microwindows supports
two variants of APIs the Microwindows API and the Nano-X API. The former is compliant to
the Microsoft Win32 API and thelatter is similar to the Xlib API. These routines handle
client/server activity, window manager' activities, ‘and applications requests for graphics

output. Both the APIs run on top-of the core graphics engine and device drivers.

Applications

Application programming interface layer

Graphics engine layer
P & Y Microwindows

Device driver layer

srccccccccccccaa,
‘eceecoccoccscscscccccaa?

Xlib & Linux framebuffer

X server device SVGAlib

Graphics hardware

Figure 3.3 Architecture of the original Microwindows

Sun made alot of modifications on Microwinodws to make it work in the Sun PBP 1.0.2

RI. The modified Microwindows architectureis shown in Figure 3.4. Only X11 screen device

19

driver is supported and the API layer is modified significantly. Neither the Microwindows API
nor the Nano-X API is supported because the Java AWT API plays the same role as they do.
Sun replaced the original API layer by the Microwindows AWT layer to link the Java AWT

API against the Microwindows graphics engine.

Java applications

JavaAWT

Microwindows AWT (Java side)

Microwindows AWT (native side)

Graphics engine

I
I
I
|
I Microwindows
I
I
I
I
|

X 11 driver
[Framebuffer
L driver
XTib & I(
X server I Virtual
Graphics framebuffer
hardware | L

Figure 3.4 Architecture of Microwinodwsin Sun PBP 1.0.2 Rl

3.25 JMFLite

Java Media Framework (JMF) is an API for incorporating time-based media into Java
applications. The Java TV and MHP API both rely on the IMF API to control audio and video

media streams. Figure 3.5 shows the class diagram of aJMF Pl ayer .

20

Duration

0 TimeBase l
Z \

Controller [MediaHandler}(}-—— DataSourcel
AN éﬁ
I Playerl

Figure 3.5 Classdiagram of IMF Pl ayer

On the top of the class hierarchy is the C ock interface. A Cl ock contains a
Ti meBase that keeps a time-based time tracking the passage of time much like a crystal
oscillator. A Cl ock itself keeps the current position within a media stream called media time.
Cl ock defines two states: St opped and St arit ed. A Cl ock’s mediatime is running and
synchronized to the time-base time when in-the St ar t ed state. When in the St opped state,
the mediatime is stopped and not'synchronized to the time-base time.

Control | er extends Cl ock and provides additional functionalities such as resource
allocation, event generation, and a mechanism for obtaining additional Cont r ol s attached to
aController. Controll er subdivides O ock’s St opped state into five resource
alocation phases. Unrealized, Realizing, Realized, Prefetching, and
Pr ef et ched. The state transition of aCont r ol | er isshown in Figure 3.6.

When a Controller is instantiated, it is in the Unrealized stae. An
Unreal i zed Control | er does not have enough information and resources to be useful
to control media. When Control | er.real i ze() isinvoked to make a transition to the
Real i zed state, it goes through the transent Real i zi ng state. A Real i zi ng
Cont r ol | er isin the process of preparing to acquire the information and resources needed
to present media. Once a Cont r ol | er moves to the Real i zed state, it acquires al the

resources needed except for those that may imply exclusive use of a scarce system resource,

21

such as the MPEG-2 video decoder hardware.

deal | ocate(),
Posts Deal | ocat eEvent

Unreal i zed

realize()

Real i zi ng

Posts
Real i zeConpl et eEvent

Real i zed deal | ocate(),

Posts Deal | ocat eEvent

prefetch()
Pr ef et chi ng

Posts
Pr ef et chConpl et eEvent

Pr ef et ched

syncStart (),
Posts St ar t Event

stop(),
Posts St opEvent

Started

Figure 3.6 JMF Cont r ol 1 er statetransition diagram

When Control |l er. prefeteh() is invoked, a Realized Control |l er will
make a transition to the Pr ef et ched state through the transient Pr ef et chi ng state. A
Control |l er is said to be in the Pref et chi ng state when it is in the process of
performing some critical tasks to minimize the startup latency, such as to acquire scarce
hardware resources, to fill buffers with media data, or to perform other start-up processing.
When finished, aCont r ol | er movesto the Pr ef et ched state. Oncea Control | er is
Pr ef et ched, it iscapable of starting as quickly as possible.

There are two variants of state transition methods which can induce state changes. The
forward transition methods, includingr eal i ze() ,prefetch(),andsyncStart (), are
executed asynchronously and return immediately. When the requested operation is complete,
a Controller posts a Controll erEvent indicating that the target state has been
reached. The backward transition methods, including st op() and deal | ocat e(), can

induce atransition back to a previous state. These methods are executed synchronously.

22

By JMF specification, “a Control is an object that provides a way to affect some aspects
of a Controller’s operation in a specific way”. The advantage of Cont r ol interfaceisthat it
affords Control | er extended functionality without having to create a subclass. For
instance, Cont r ol s are typically used to provide functionalities such as volume control,
audio and subtitle language choice, or video format conversion control.

A Medi aHandl er is responsible for reading and managing media content delivered
from a Dat aSour ce and it aways has exactly one Dat aSour ce attached to it. The
Dat aSour ce abstracts the media protocol-handlers.

Pl ayer isaMedi aHandl er for presenting and controlling time-based media. It aso
extends the Control | er and Dur ati on interfaces. It relaxes some restrictions that a
Control | er imposes on what methods can be called when the Control l er isin a
particular state. Pl ayer aso provides ways to manage a group of Control | er sand to
obtain AWT components associated with it.

JMF Lite [11, pp.18] is a IME implementation included in Sun Java TV 1.0 Reference
Implementation. It is designed in,two" layers. a' cross-platform porting layer and a
platform-specific layer. The former is responsible for matching content with players and
managing those players and thelatter includes an MPEG-2 video decoder and renderer based

on Microsoft Active Movie. The IMF Lite architecture is shown in Figure 3.7.

JMF application
JMF API
o —— —— —— —— — — — —
Porting layer |
Active-Movie-based
MPEG-2 player (Java side) | JMF Lite

Active-Movie-based
MPEG-2 player (native side) |

Active Movie library

Figure 3.7 Architecture of JMF Lite

23

3.2.6

FFmpeg

FFmpeg [12] is a set of open-source and crossplatform libraries for multimedia

applications. It consists of the following components:

ffmpeg: acommand line transcoding tool.

ffserver: amultimedia streaming server for live broadcasts over HTTP or RSTP.
ffplay: a simple media player based on SDL and other FFmpeg libraries.

libavcodec: a library containing all video/audio encoders and decoders that are used
by FFmpeg.

libavformat: alibrary containing al demultiplexers and multiplexers that handle the
file formats used by FFmpeg. Several URL protocol handlers are also included in
thislibrary.

libavutil: alibrary contai ning:routines.common to different parts of FFmpeg.

24

Chapter 4

Design and I mplementation

4.1 Modified IMF Implementation

According to the MHP specification, a IMF implementation must provide the following
functionalities:

B Extracts the video stream fromran MPEG-2 Transport Stream

B Decodesthe MPEG-2 video stream

B Clips and scales the decoded video
Although the JMF Lite included in'the Sun Java TV 1.0 Rl can meet the first two
requirements in the Microsoft Windows environment, the adoption of the proprietary Active
Movie library causes it not to be working on the ML310 platform. The first task is to replace
the Active Movie library by the open-source FFmpeg libraries, and port the JIMF Lite to the
ML310 platform.

The MPEG-2 demultiplexer and the MPEG-2 video decoder in the modified IMF
implementation are based on the libavformat and libavcodec library of FFmpeg, respectively
[13]. The architecture of the modified JMF implementation is illustrated by Figure 4.1.
Because of the two-layered design of JMF Lite, the cross-platform porting layer can be left

unaffected.

25

JMF application

JMF AP

Porting layer

FFmpeg-based
MPEG-2 player (Javaside)

\

FFmpeg-based
MPEG-2 player (native side)

FFmpeg API

libavcodec libavformat

\

Figure 4.1 Architecture of the modified JM F implementation using FFmpeg

Ti neBase M— Syst enli neBase
é é Handl er
Cock | Medi adl ock (MPEG-2 player)
Zs 5 9
. FFmpegControl | er
Controller }4— Medi aControl | er m (Javaside)
AN VAN i
Pl ayer M— Medi aPl ayer FFnpegCont r ol | er
PAN (native side)
libavcodec libavformat

Figure 4.2 Class diagram of the modified JM F implementation using FFmpeg

Figure 4.2 shows the class diagram of the modified JIMF implementation. The design is
developed on the originad JMF Lite architecture. The left column, including Ti neBase,
Cl ock, Control |l er, and Pl ayer, are pat of the JMF API. The middle column,
including Syst enili neBase, Medi aCl ock, Medi aControl | er, and Medi aPl ayer,
are part of the JMF Lite porting layer. The right column, including Handl er and

FFnpegCont r ol | er, areimplemented based on the FFmpeg API and the ML 310 platform.

26

4.1.1 FFmpeg-Based MPEG-2 Video Decoder

Figure 4.3 illustrates the sequence diagram of the modified IMF implementation. A IMF

application calsreal i ze(), prefetch(), and start (), to make aPl ayer change

state forwardly. The state transition operations are accomplished by calling doReal i ze(),

doPref et ch(), and doSt art (), on FFnpegCont r ol | er, respectively. The FFmpeg

APIs mapped to the FFnpegCont r ol | er invocationsare listed in Table 4.1

Application

realize()

JMF Lite
porting layer

doReal i ze()

Real i zeConpl et eEvent

prefetch()

FFnpegControl | er FFmpeg

FFmpeg API calls
mappedtor eal i ze()
listed in Table 4.1

doPrefet ch()

Pr ef et chConpl et eEvent

start()

St art Event

FFmpeg API calls
mapped to pr ef et ch()
listedin Table 4.1

doStart ()

EndOF Medi aEvent

FFmpeg API calls
mappedtost art ()
listed in Table 4.1

Figure 4.3 Sequence diagram of the modified JM F implementation using FFmpeg

27

Table 4.1 Mappingtable of FFnpegCont r ol | er and FFmpeg API

FFnpegControl | er FFmpeg AP

av_open_input file
av_find streaminfo
avcodec find decoder
avcodec_open
avcodec_al l oc_frane
avm(nure=ﬂll

doReal i ze

doPref etch None

av_read_packet
doSt art avcodec_decode vi deo
I ng_convert

av_free
doDeal | ocat e avcodec_cl ose
av_close input file

av_free
doCl ose avcodec_cl ose
av close input file

The flowchart of MPEG-2 démultiplexing and MPEG-2 video decoding using FFmpeg is
illustrated by Figure 4.4. It can be described by the following steps:

Step 1 Checks if there are remaining data bytes in the buffer. If yes, goes to Step 2,
otherwise goesto Step 4.

Step 2 Cals FFmpeg avcodec_decode_vi deo() to decode a chunk of data
bytes in the buffer. Once the frame data are decoded, they are taken off from the
buffer. Then, goes to the Step 3.

Step 3 Determines if a complete frame has been decoded. If yes, terminates this
process otherwise goesto Step 1.

Step 4 Cals FFmpeg av_read_packet () to read a packet from the MPEG-2
Transport Stream. Then determines whether the packet is a video packet or not. If
yes, goesto Step 5, otherwise goesto Step 4 again.

Step 5 Putsthe video packet datainto the buffer, and then goesto Step 1.

28

Get next frame

No
Is bytesRemaining > 0?
Yes

avcodec decode video ()

Y

Decreases bytesRemaining

N
[s a complete frame decoded?
Yes

T

av_read packet()

No

Is it a video stream packet?

Yes

Increases bytesRemaining

Figure 4.4 Flowchart of MPEG-2 demultiplexing and decoding using FFmpeg
Source: [13]

4.1.2 Video Clipping and Scaling

After an MPEG-2 video frame is decoded, the IMF implementation then clips and scales
it as necessary. For convenience, the decoded frame is stored as an X image using the
MIT-SHM extension [5] [6]. To save the memory bandwidth for transferring the frame data,
the dimension of the original frame may be smaller than the full-screen size For example, the
dimension of the original frame may be QCIF and the size of a video display device is
720x 576. Hence, there should be a stretch operation before the frame is actually rendered on
the screen.

According to the MHP specifications, the clipping and scaling operations are performed
against thefull-screen video frame after upsampling [1, pp.203, Figure 22]. The process of the

video format conversion is illustrated by Figure 4.5. The major problem of this approach is

29

that it requires an upsampling operation and a scaling operation which are very

time-consuming.

Upsampling

<

hll
\“

\
7
-

Decoded video

Clipping region

Transformed video

Upsampled full-screen video =
= on final screen

Figure 4.5:Process of video for mat conversion

In this thesis, a modified approach is proposed to produce a pseudo full-screen video
frame instead of a physical one. The clipping and scaling operations are performed directly
against the decoded video frame with an appropriate coordinate transformation. The MHP
applications continue to make requests of clipping and scaling to the pseudo full-screen video
frame because the coordinate transformation is transparent to the MHP API. Figure 4.6

illustrates the process of video format conversion of the proposed approach.

30

| ||||||I||\

Scaling

’
|

| |

——
——&
/

el “
—4 =< W
| Y s N
— ko — ———

PR o |

!|

Decoded video

]
!i

l !Ii!!“:

il h-!

i

i i }

|| ~|
i
{

Clipping region
Transformed video
on final screen

full-screenvideo

Figure 4.6 Process of the'modifi ed video format conversion

Figure 4.7 illustrates the coordinate transformation. The dimension of the decoded video
frame is WoxHo and the dimension of the full-screen video frame is WF xHf . The
clipping region has a dimension of Wsx Hs and originates at (Xs, Ys). The video after
clipping and scaling has a dimension of Wdx Hd and is positioned at (Xd, Yd) . A pixel
(X1, Y1) in the region of the transformed video corresponds to the pixel (X2, Y2) in the

pseudo full-screen video. The transformation between (X1, Y1) and (X2,Y2) isasfollows:

X2 = Xs+(X1-Xd) x
Wd

Y2 = YsH(Y1-Yd)x 2>
Hd

31

Wi
A 2
(Xd, Yd) Wd

504 | T (X1, YD

A

Hf Transformed video

on final screen

X2, Y2

D% \

, \ Clipping region
Xs’, Ys')
Ho Pseudo upsampled

full-screen video

Figure 4.7 Coordinatetransformation in the modified video format conversion

The clipping region in the pseudo full-screen video is projected from the decoded video.
The pixel (X2, Y2) inthe pseudo full-screen video is projected from the pixel (X2', Y2') in

the decoded video using the following transformation:

X2' = X2><V\£
WE

Y2' = YZXQ
Hf

32

Combining these two transformations, the pixel (X1, Y1) in the transformed video on
the final screen is projected from the pixel (X2',Y2') in the decoded video using the

following transformation:

X2' = (Xs + (X1-Xd) x 18) WO
wd © W

Ho
Hf

. Hs
Y2 :(Ys+(Y1-Yd)xm)x
Although the modified approach eliminates the upsampling operation, the overhead of
coordinate transformation can not be ignored. One of the problems is that the current
implementation is written in C language. This could be improved by re-writing it using
assembly code. The other problem is that the PowerPC 405 takes 4 and 35 cycles for a
multiply and divide operation, respectively. Software multiplication and division can be

avoided if the coordinate transformation is implemented using the FPGA or other dedicated

hardware.

4.1.3 Background and Component-Based Player Presentation

Presentation of an MPEG-2 video after the video format conversion is not handled by the
JMF implementation itself. The video content needs to be composed with the background
plane and AWT graphics whether the video is presented using a background Pl ayer or a
component-based Pl ayer . The JMF implementation provides a mechanism for MHP
applications to change the video presentation mode. The actual work of presentation is
delegated to a functional unit responsible for the composition of the background plane, video

content, and AWT graphics. This functional unit will be described in Section 4.2.

4.2 Video and Graphics|ntegration

The main task of the proposed MHP video and graphics subsystem is focused on how to
integrate video and graphics efficiently. First, we explain how the Microwindows-based Java

AWT framework works. Then, a graphics model is proposed to overcome the limitations of

33

the original AWT framework to integrate the video and graphics efficiently.

4.2.1 Original AWT GraphicsArchitecture

The AWT of the Sun PBP 1.0.2 RI is alightweight framework, which means that the
AWT components do not have native widget toolkit peers except for the top-level container.
When an AWT component's r epai nt () method is called, the repaint request will be
forwarded to its parent containers until it reaches the top-level container. A top-level container
isthe only heavyweight AWT component which is simply arectangular drawing region on the
native graphics system.

In the Sun PBP 1.0.2 RI, the top-level container isj ava. awt . W ndow and its native
peer is an X window. Once the repaint request is forwarded to j ava. awt . W ndow, an
AWT update event is posted and putiinto the, AWT event queue. Later, the AWT event
dispatch thread takes the update event off the AWT event queue, and dispatches it to
j ava. amt . W ndow. The java.awt.Wndow. update() method is invoked in
response to receiving the update event. Insidethe updat e() method, the top-level container
first clears the update region by filling it with the container’s background color. Then the
top-level container draws all the descendant components clipped by the update region.

Figure 4.8 shows the AWT graphics model. In the Sun PBP 1.0.2 RI, all the graphics
operations are performed against the off-screen buffer and then updated to the on-screen X
Window. The use of an off-screen buffer is two-fold. One is to reduce the flickers and the

other isto provide apha composition in X 11-based environment.

X Window

Off-screen buffer

// with alpha channel

Figure 4.8 Architecture of theoriginal AWT of Sun PBP 1.0.2 RI

34

The AWT of Sun PBP 1.0.2 RI is based on the modified Microwindows which runs on
top of X11. PBP 1.0 AWT API supports three Porter-Duff composition rules: SRC_OVER,
CLEAR, and SRC. When SRC_OVER composition rule is applied, the final pixel value
depends both on the source pixel value and the destination pixel value. The alpha composition
operation is very time-consuming because it has to be performed pixel-by-pixel. If the alpha
composition operation is performed directly to the on-screen X Window, users may notice the
pixel-by-pixel flickers which is very annoying. Using the double-buffering technique, the
graphicsisfirst drawn on the off-screen buffer and then is blitted to the on-screen X Window
all at once.

Moreover, X does not support the transparency and translucency directly. An X Window
cannot hold apha information. Therefore, each time the graphics is drawn to the X Window,
the alpha information is dropped. By drawing graphics to the off-screen buffer that has an
alpha channel, the alpha information of the ‘graphics can be retained. Thus, the apha
composition can be achieved.

Figure 4.9 illustrates an example of “AWT- graphics update and Figure 4.10 shows the
pseudo code of the process. In this.example, there are two AWT components a pha-blended
together; one is a rectangle in the back and the other is an oval in the front. An AWT update
event is posted when the oval component changes its color. Because X does not support direct
alpha-composition, the update process consists of severa off-screen operations and on-screen

refreshes.

35

X Window

Clears update region

Off-screen buffer
Ay
—;’I/
y = & 44
y L = 4
Ay

(a) Clearsthe updateregion of the off-screen buffer

X Window

Draws rectangular
AWT component

Off-screen buffer,

(b) Drawstherectangular AWT component to the off-screen buffer

X Window

Blits off-screen
buffer to X Window

Off-screen buffer

(c) Blitsthe off-screen buffer to the X Window

36

X Window

Draws oval AWT

component

Off-screen buffer

/

(d) Drawsthe oval AWT component to the off-screen buffer

o1 X Windtﬂvi

Blits off-screen
buffer to X Window

(e) Blitsthe off-screen buffer to the X Window

Figure 4.9 An example of AWT graphicsupdate

j ava. awm . W ndow
S

updat e()

{
The update region isthe
bounds of the repainted

AWT component;
Calscl ear Rect'() ;

pai nt ()<
}

pai nt ()
{

For each child component
{
Callspai_nt () ;
}
}

j ava. awtl. Corrponent]

¥

repai nt ()

Forwardsto W ndow. updat e(),

}

pai nt ()
{
Draws graphics primitives,
for example, fills an oval or
arectangle,

}

(

cl earRect ()

Microwindows graphics

{
Clears the update region //
of the off-screen buffer //

by filling it with 1l
background color; /[Figure 4.9(a
}
fillOval ()
{

Draws afilled oval to the //
off-screen buffer clipped //
by the update region; /I Figure 4.9(d)

Blits the off-screen buffer //

to X Window clipped by //

the update region; /I Figure4.9(e)
}

fid | Rectangl e()

{
Drawsafilled rectangle to

the off-screen buffer clipped //
by the update region; Il Figure 4.9(b)

Blits the'off-screen buffer //
to X"Window clipped by //
the update region; /I Figure 4.9(c)

Figure 4.10 Pseudo code of AWT graphics update

4.2.2 Modified GraphicsArchitecture

The AWT of the Sun PBP 1.0.2 RI does not provide the stacked planes such as
background plane, video plane, and graphics plane. To present video together with AWT
graphics and to aphablend the graphics over the video at the same time, the AWT graphics
architecture of the Sun PBP 1.0.2 RI is not sufficient. A graphics model is designed to support

alphablending graphics over video as shown in Figure 4.11.

38

X Window

X Pixmap

Off-screen buffer
with alpha channel

SN

Figure4.11 Modified graphics architecture

An X Pixmap [5] [6] isinserted between the X Window and the off-screen buffer. It isan
X-specific off-screen resource similar to the off-screen buffer allocated by mal | oc(). The
off-screen buffer plays the role of the graphics.plane in the MHP graphics model. All AWT
graphics operations are performed against the off-screen buffer as in the ordinary graphics
architecture. The X Pixmap is designed to be the composition buffer of the video plane and
the graphics plane. When the video content istendered to the X Pixmap, the AWT graphics in
the off-screen buffer is aphablended over the video and the result is stored to the X Pixmap.
Likewise, once AWT graphics is drawn to the off-screen buffer, it is alpha-blended with the
video and the result is stored to the X Pixmap. The X Window represents the final display
device. The double-buffering technique is applied with the X Pixmap being the back buffer
and the X Window being the primary surface.

As described in Section 4.1.2, the IMF implementation stores the decoded video and the
transformed video as X Image structures. The video is rendered to the X Pixmap by a simple
XPut | mage() cal or an XShnPPut | nage() cal when the X Imageis alocated in shared

memory.

4.2.3 AWT GraphicsUpdate

This section describes how AWT graphics update is handled in the modified graphics

39

architecture. Figure 4.12 shows an example of AWT graphics update and Figure 4.13 shows
the pseudo code of this process In this example, there are three components on the screen: a
background video in the back, a component-based video in the middle, and a rectangular
AWT component in the front. An AWT update event is posted when the AWT component

changes color and the update region is the bounds of the AWT component.

Decoded video

X Window

X Pixmap

Transformed video

Clears update region

(a) Clearstheupdateregion of the off-screen buffer

Decoded video

X Window

X Pixmap

Off-screen bufft
Transformed video screen bufler

Draws component-based video

(b) Draws the component-based video to the off-screen buffer

40

Decoded video

Transformed video

Draws AWT component £

(c) DrawstheAWT component to the off-screen buffer

Decoded video

X Window

X Pixmap

N . Off-screen buffer
Transformed video

Clears update region

(d) Clearsthe update region of the X Pixmap

Decoded video

X Window

Draws background video X Pixmap

Transformed video

(e) Drawsthebackground video to the X Pixmap

41

Decoded video

X Window

X Pixmap

Transformed video Off-screen buffer

Alpha blends off-screen
buffer over X Pixmap

previous step

(f) Alpha-blends the off-screen buffer over X Pixmap

Decoded video

X Window

Blits X Pixmap

to X Wind
¢ oW X Pixmap

Transformed video

(9) Blits X Pixmap to X Window

Figure 4.12 An example of the modified AWT graphics update

42

[java. awt . W ndow]
updat e()

{
The update region isthe
bounds of the repainted f
AWT component;

Video and graphicsintegrator]

updat eGr aphi cs() ™
{

Clears the update region //

of X Pixmap by filling it //

with background color; // Figure 4.12(d)

Callscl ear Rect (3

pai nt ()5
}

pai nt ()

Draws background video to //
X Pixmap clipped by the //
update region; /l Figure4.12(e)

For each child ¢
Or €ach ehifc componer Alpha-blends the off-screen //

{ . .
; . buffer over X Pixmap clipped //
Call t(); X
} spaint () by the update region, and put //
the result to X Pixmap; /I Figure 4.12(f)

} Callsupdat & aphi cs(); Blits the update region of //

X Pixmap to X Window; // Figure 4.12(q)

\ _— }

7 \ v

j ava. awt . Conmponent]

i nt
repaint () [Microwindowsgraphics]
Forwards to W ndow. updat'e ()4 fl ear.Rect ())
} Clears the update region 1
ai nt (3 of the off-screen buffer I
{p / by filling it with completely //
Draws graphics primitived transparent color; Il Figure 4.12(a)
for example, fillsarectangle }
} J fill Rectangle()

Drawsafilled rectangleto //

[\i sual Conponent] the off-screen buffer clipped //
by the update region; I/l Figure 4.12(c)

pai nt ()
{ }
Draws component-based //
video to the off-screen //
buffer; /I Figure 4.12(b)

}

\

Figure 4.13 Pseudo code of the modified AWT graphics update

4.2.4 Background Video Update

This section describes how background video update is handled in the modified graphics
architecture. Figure 4.14 illustrates an example of background video update and Figure 4.15

shows the pseudo code of the process. Like the previous example in Section 4.2.3, there are

43

three components on the screen; abackground video in the back, a component-based video in
the middle, and a rectangular AWT component in the front. The background video updates
when the next video frame is decoded. The update region is the bounds of the background

video.

Decoded video

X Window

e, =4

Clips and scales

decoded video X Pixmap

Transformed video

(a) Clips and scales decoded background video

Decoded video

X Window

X Pixmap

Transformed video

(b) Drawsthe background video to X Pixmap

Decoded video

X Window

X Pixmap

Transformed video

Alpha blends off-screen
buffer over X Pixmap
X Pixmap in
previous step

(c) Alpha-blendsthe update region of the off-screen buffer over X Pixmap

X Pixmap

Decoded video

=

Blits X Pixmap
to X Window

Off-screen buffer

_—

Transformed video

(d) Blits the update region of X Pixmap to X Window

Figure 4.14 An example of background video update

45

(Video and graphics integrator]
updateVideo ()

{

The update region is the bounds
of the background video;

[
(lBackground JMF Player] r
start ()

{

While next video frame available

{

Decodes next frame;

Draws background video to //

Clips and scales the decoded // X Pixmap; // Figure 4.14(b)

video; // Figure 4.14(a) Alpha-blends the off-screen //

buffer over X Pixmap clipped //

If this is a background Player by the update region, and put //

{ D man: :
Calls updateVIdeo () the result to X Pixmap; /I Figure 4.14(c)
} Blits the update region of //
) } X Pixmap to X Window; // Figure 4.14(d)
3

\ v

Figure 4.15 Pseudo code of background video update

4.2.5 Component-Based Video Update

This section describes how ,component-based video update is handled in the modified
graphics architecture. Figure 4.15 illustrates an example of component-based video update
and Figure 4.16 shows the pseudo code of the pracess. Like the previous two examples in
Section 4.2.3 and Section 4.2.4, there arethree components on the screen; a background video
in the back, a component-based video in the middle, and an oval AWT component in the front.
An AWT update event is posted when the next frame of the component-based video is
decoded. The update region is the bounds of the component-based video. The update process
is similar to that described in section 4.2.3, except that the AWT update event is originated

from component-based video update instead of normal AWT component update.

46

Decoded video

X Window
Clips and scales .
decode video X Pixmap
Off-screen buffer
Transformed video
(a) Clips and scales decoded component-based video
Decoded video
f—
X Window
X Pixmap
Transformed video :,/i
A Off-screen buffer
Clears update region //""
(b) Clearsthe update region of the off-screen buffer
Decoded video
X Window
X Pixmap

Transformed video

Off-screen buffer

Draws component-based video

(c) Draws the component-based video to the off-screen buffer

47

X Window

Decoded video
X Pixmap

Transformed video

Draws AWT component
(d) Drawsthe AWT component to the off-screen buffer

X Window

Decoded video
X Pixmap

Off-screen buffer

Transformed video
Clears update region

(e) Clearsthe updateregion of X Pixmap
X Window

Decoded video

Draws background video "
/ ﬂff—saeen buffer

(f) Draws the background video to X Pixmap

X Pixmap

Transformed video

48

Decoded video

X Window

&
=

X Pixmap
Off-screen buffer
Transformed video
Alpha blends off-screen
buffer over X Pixmap
X Pixmap in

previous step

(9) Alpha-blends the off-screen buffer over X Pixmap

Decoded video

X Window

Blits X Pixr.n'ap.

to X Window X Pixmap

Transformed video

(h) Blits X Pixmap to X Window

Figure 4.16 An example of component-based video update

49

j ava.awt . W ndow

updat e()

of the component-based

Cadllscl ear Rect ()=

pai nt ()7
}

pai nt ()

Cdlspai nt ()
}

}

The update region is the bounds

For each child component

calsupdat eGr aphi cs ()

video;

&

r =1
f L 7ava. awt . Conponerﬂ

pai nt ()
{

Draws graphics primitiv

}

€S,

for example, draws aoval;

\ &

(
| MiCrowindows graphics

cl earRect ()

{
Clears the update region
of the off-screen buffer

transparent color;

}

fill oval &
{

by the update region;
}

by filling it with completely //

Draws afilled ova tothe //
off-screen buffer clipped //

/)
Il

/I Figuré 4.16(d)

/I Figure 4.16(d)

Component-based IMF Pl ayer

start()

{

While next video frame available
{

Decodes next frame;

Clips and sCales the decoded //
video; Il Figure4.16(a)

If thisis acomponent-based Pl ayer

CallsVi sual Conponent . r epai at{).;

}
}
}
— —
Vi suad Conponent
repai nt()
{
Forwards to W ndow. updat e() ;
}
pai nt ()
{
Draws:component-based video //
to the off- screen buffer; Il Figure 4.16(c)
}

Video and graphicsintegrator

updat eG aphi cs(Y

Clearsthe update region //
of X Pixmap by filling it //
with background color; // Figure4.16(€)

Draws background video to I
X Pixmap clipped by the update //
region; /I Figure4.16(f)

Alpha-blends the off-screen //
buffer over X Pixmap clipped //
by the update region, and put //
the result to X Pixmap; /I Figure 4.16(Q)

Blits the update region of //
X Pixmap to X Window; // Figure 4.16(h)

Figure 4.17 Pseudo code of component-based video update

50

4.2.6 PerformanceProfiling

Because there are no dedicated profiling tools on the ML310 platform to evaluate the
execution time performance, several scenarios are chosen and the execute time of a specific
function is measured instead. These scenarios simulate typical DTV video and graphics
presentations. A complicated scenario would be that a user navigates available services while
watching a program. On the video plane, the video content of the service that users are
currently watching is presented. At the same time, users select the EPG to navigate other
services available. The GUI components of the EPG are presented on the graphics plane,
including severa menu items and a component-based video to preview the video content of

the service that users want to navigate. This scenario isillustrated as Figure 4.18.

\ Graphics plane

Video plane
and
background plane

Figure 4.18 Scenario of typical EPG usage

To simulate this scenario, the EPG GUI components are simplified to a component-based
video and a full-screen-sized translucent AWT component as illustrated in Figure 4.19. The
decoded video has a dimension of QCIF. The background video presented on the video plane
is stretched to have a dimension of 640x480. The component-based video presented in the
graphics plane has a dimension of the original decoded video, and therefore no video scaling
operation is needed. Both the component-based video and the background video have 2418

frames. The following profiling results are based on the combinations of the three elements:

51

the component-based video, the full-screen transucent AWT component, and the full-screen

background video.

Component-based
video

Full-screen translucent
AWT component

Full-screen
background video

Figure 4.19 Scenario of profilings

The complete video and graphics pipeline consists of four stages. video decoding, video
clipping and scaing, video and graphics composition, and screen blitting. The profiling
results listed below are to investigate the'execution time of video scaling and composition of
video and graphics. The screen blitting stage is first excluded from the pipeline because it is
handled by the TinyX server. Finally, a number of profilings are performed to investigate the
time taken up by the screen blitting stage.

To exclude the contribution of the time spent on application initialization and cleanup, a
set of profilings are performed based on background video with different frame numbers. The
results are listed in Table 4.2. The initidization and cleanup time can be neglected when the

number of framesis large enough.

Table 4.2 Profiling results of the execution time of different frame numbers.

Number of frames Execution time (sec)
5 5
221 58
859 210
2418 589

52

The first set of profilings is to evaluate the time spent on full-screen background video
scaling. The results are summarized in Table 4.3. The video scaling takes up a maor portion

of the total timefrom 51% to 70%.

Table 4.3 Profiling resultsof the video scaling time.

: . Per centage of
. Scaling No scaling N
Condition scaling time
(sec) (sec) (%)

Background video
Translucent AWT component 1044 507 51.4
Component-based video

Background video

734 316 56.9
Translucent AWT component
Background video | 793 282 64.4
Component-based video
Background video 589 176 70.1

The second set of profilings isto determine the;time spent on the video and graphics
composition. The results are summarized in-Table 4.4. The composition does not take up as
much time as scaling does. It can aso be found that whether composing or not does not make
significant difference when there is only background video. The reason is that the graphics
plane is completely transparent because there are no AWT components on it. The only work to
do is to check that each pixel on the graphics plane is transparent, and no composition

computations are performed.

53

Table 4.4 Profilings of the compostion time

. _ Per centage of
Condition Composing No composing composing time

(sec) (sec) %)
Background video
Translucent AWT component 1044 796 23.8
Component-based video
Background video 734 537 6.8
Translucent AWT component
Background video | 703 715 0.8
Component-based video
Background video 589 543 7.8

The third set of profilings is to evauate the time spent on X Pixmap to X Window
blitting. The results are summarized in Table 4.5. The blitting takes up more time than scaling
or composition does. In fact, this partion of time has little relationship with the architecture or
algorithm of the proposed MHPR.video and graphics subsystem. The inefficient framebuffer

manipulation of the TinyX server:contributes most of the performance lossin this case.

Table 4.5 Profilingsofithe screen blitting time

- I Per centage of
. Blitting No blitting e
Condition blitting time
(sec) (sec) (%)

Background video
Translucent AWT component 1731 1044 687
Component-based video

Background video

Translucent AWT component 1239 734 205
Background video 1448 203 45.2
Component-based video

Background video 1096 589 46.3

54

Chapter 5

Conclusion and Future Work

In this thesis, a simplified video and graphics subsystem of MHP is proposed and
implemented. This proposed system conforms to the MHP graphics model as closely as
possible. To achieve thisgoal, severa important steps were gone through:

B A comprehensive understanding of the MHP specifications is the first necessary
step, especialy on the sections about the graphics model and the composition
pipeline.

B An in-depth knowledge of the‘target-environment -- the Xilinx ML310 platform,
including the Linux operating system andthe underlying X11 graphics system.

B Choose the appropriate Java platform and its reference implementation -- Java ME,
CDC, and PBP. The Sun PBP 1.0.2 RI isagood starting point.

B The JMF Lite reference implementation is used as the media framework of the
video and graphics subsystem.

B FFmpeg libraries are studied and the MPEG-2 demultiplexer and MPEG-2 video
decoder are extracted.

B Extended functionalities of the JMF Lite are implemented to support for clipping
and scaling of an MPEG-2 video.

B Integration of the modified JMF implementation and Microwindows-based Java
AWT. A video can be presented on the video plane or on the graphics plane. The
final screen is the composition of the background plane, video plane and graphics

plane.

55

However, afew points are worth to continue to work on:
B Implement al the HAVI APIs. The MHP specification suggests that applications
should use HAVi APIsrather than AWT APIs.
B Replace the X Window System by a hardware framebuffer and its associated
graphics rendering operations
We can partition the video and graphics MHP subsystem into two parts. Thefirst part does not
consume much processing power, such asthe IMF Pl ayer state management. Thusit can be
implemented by pure software. The second part requires extensive processing power, such as
video scaling, video and graphics composition, and so on. This part is a good target for

software-hardware-coworking.

56

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

ETSI TS 101 812 V1.3.1, “Digita Video Broadcasting (DVB); Multimedia Home
Platform (MHP) Specification 1.0.3”, June 2003.

Steve Morris, http://www.interactivetvweb.org/tutorial/javatv/xletintro.shtml, “An

Introduction to Xlets’, 2004

Steve Morris, http://www.interactivetvweb.org/tutorial/mhp/mhp_background.shtml,

“Some Background to MHP’ ,.2004

Xilinx, Inc., “ML310 User Guide. Virtex-1l Embedded Development Platform”, January
2005

Pierre-Jean Turpeau, http://nobug.ifrance.com/nobug2/articlel/babyloon/tut_xwin.htm,

“Introduction to X Window Programming”, April 1998

Christophe Tronche, http://tronche.com/gui/x/xlib/, “ The Xlib Manual”, October 2005

X-Oz Technologies, http://www.x-0z.com/tinyx.html, “Integrated TinyX”, 2003

Sun Microsystems, Inc., “CDC: Java Platform Technology for Connected Devices. Java

Platform, Micro Edition, White Paper”, June, 2005

Sun Microsystems, Inc., “JSR-000129 Personal Basis Profile 1.0b (Maintenance

Release)”, December 2005

[10] Greg Haerr,

57

http://www.ocera.org/archive/upvlc/public/components/sa-rtl/sa-rtl -2.2-pre2/Documentat

lon/MicroWindows/microwindows architecture.html,“The Nano-X Window System

Architecture”, March 2000

[11] Sun Microsystems, Inc., “Java TV APl Reference Implementation Porting Guide Version
1.0”, November 2000

[12] http://ffmpeg.mplayerha.hu/index.html, “FFmpeg Multimedia System”

[13] Martin Boéhme, http://www.inb.uni -luebeck.de/~boehme/using_libavcodec.html, “Using
libavformat and libavcodec”, February 2004

58

% an s § o RE- L E 48 Lo op a0t Dy g B
Foo AW L2 EA Y BENRIWAEFT WAL RE T
NREEAILAETIFATTRLI KFEETARY AR K
wisiwﬁpﬁ’ﬁ%ﬁﬁmhﬁﬁﬁ4oiwiAJE%a
ERALE T R XA KD S fl\/lHPzﬁL 22 B35 % s Xilin
ML310 & ;iiaa:*wwmg T AL Java T oo “'H;“,:‘
ERER 2 I &w:ﬁjaﬁﬁléo

