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基於多團塊模型及平均移動法之物體追蹤技術 
 

        研究生：姚文翰      指導教授：王聖智 博士 

 

國立交通大學 

電子工程學系  電子研究所碩士班 

 

摘要 

 

在本文中，我們提出一套能夠自動偵測畫面中移動物體並持續追蹤的

演算法，並嘗試解決在物體追蹤問題中常遭遇的遮蔽、場景變化以及光源

變化等等問題。我們自行定義一個多團塊模型用以描述移動物體，並基於

多團塊模型定義適合的相似性度量，進而發展出以平均移動法為基礎的追

蹤系統。我們也針對移動物體在畫面中的大小以及方向性提出一套調整方

式。整個系統還包括模型更新、目標丟失等等判斷機制，讓追蹤結果更加

合理、強韌。實驗結果顯示我們提出來的演算法在室內、室外等不同場景

都能夠正確地追蹤移動物體的運動行為。 
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Mean-Shift Object Tracking 

Based on a Multi-Blob Model 
 

Student : Wen-Han Yao   Advisor : Dr. Sheng-Jyh Wang 
 

Department of Electronics Engineering, Institute of Electronics 

National Chiao Tung University 

 

Abstract 

 
In this thesis, we proposed an object tracking system, which can 

automatically detect a single moving object in an image sequence and keep 

tracking of this object. In the proposed system, we deal with the problems of 

occlusion, scene change and luminance change. A multi-blob model is defined 

in our approach to represent the moving object. With this multi-blob model, we 

proposed a new similarity measure and developed a new object tracking 

algorithm based on the mean-shift method. We also proposed a strategy to 

update the size and orientation of the bounding ellipse of the moving object. 

For the sake of robustness, the proposed system contains decision criteria to 

handle model updating and loss of target. Simulation results demonstrate that 

the proposed object tracking algorithm can faithfully track the moving object 

in different scenes. 
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Chapter 1.  
Introduction 

 

The goal of object tracking is to find a specific target in successive frames of an image 
sequence. Various algorithms for object tracking have be proposed in recent years. Among 
these tracking algorithms, the mean-shift method has been popularly used due to its 
robustness and simplicity. This iterative ‘mean-shift’ process is a simple robust technique for 
the finding of the local maximum position without knowing the overall distribution. Recently, 
Comaniciu and Meer [1] successfully applied this mean-shift method to object tracking 
problems.  

So far, in object tracking problems, mean-shift is used to find the position which has the 
maximal similarity with the target. However, this kind of approach has several serious defects. 
First, the spatial information of the target is lost and this fact causes the poor localization of 
the tracking result. Second, the commonly used similarity measures, such as the 
Bhattacharyya coefficient or the Kullback-Leibler distance, are not very discriminative. Third, 
the size and orientation of the tracked object cannot be updated in an efficient way.  

In this thesis, we propose a new target model to represent the moving object and define a 
new similarity measurement based on the target model. We call this concept a multi-blob 
model. We derive a mean-shift process for the multi-blob model and demonstrate the 
improved tracking results. To make the system more complete, we develop a simple motion 
detection process to roughly detect the location and size of the moving region. Moreover, we 
also present a method to update both size and orientation of the bounding ellipse of the 
tracked object. 

The thesis is organized as follows. In Chapter 2, we introduce the background of motion 
detection and motion tracking. In Chapter 3, we present the mean-shift process and discuss its 
drawbacks. Furthermore, we present our new target model, the multi-blob model, and our 
object tracking procedure. Some experimental results are given in Chapter 4. In Chapter 5 we 
draw our conclusions.
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Chapter 2.  
Backgrounds of Object Tracking 

In general, many previously proposed approaches for motion detection and motion 
tracking are conceptually similar. It is fairly difficult to have a clear cut between these two 
issues. However, there exist some intrinsic differences between motion detection and motion 
tracking. In this chapter, motion detection and motion tracking are treated as two individual 
parts and will be discussed separately in the next two sections. 
 

2.1 Motion Detection 
Nearly every visual surveillance system starts with motion detection. Motion detection 

aims at segmenting regions corresponding to moving objects in an image. A good motion 
detection result usually makes the following motion tracking process much easier. We can 
roughly divide existing motion detection techniques into three major categories: background 
subtractions, temporal differencing, and optical flow. 

2.1.1 Background Subtraction 

Background subtraction is a popular method for motion detection. It detects moving 
regions in an image by taking the difference between the current image and the reference 
background model in a pixel-by-pixel fashion. This method is extremely sensitive to dynamic 
changes caused by lighting change or shadows in the monitored scenes. Therefore, a reliable 
background model is in great demand to reduce the influence of these changes. That is, an 
active construction and updating of the background model are indispensable to visual 
surveillance. 

For fixed cameras, the key problem is to automatically recover and update the background 
model based on a sequence of dynamic images. Unfavorable factors, such as illumination 
variance, shadows and shaking branches, bring difficulties to the acquirement and updating of 
background images. Some simple implementations use the time averages of image data, the 
adaptive Gaussian estimation, or the Kalman filtering to derive the background model. While 
these methods can run in real time, they are generally not robust enough. In [1], the authors 
consider each pixel as an independent statistical process, and record the observed intensity at 
each pixel over the previous n frames. The statistical distribution of the observed samples is 
then optimally fit to the model of a mixture of Gaussian functions. This approach assumes 
that the temporal behaviors of the intensity/color value at an image pixel are likely to follow 
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the normal distributions. Moreover, this approach assumes there could be more than one 
possible states at an image pixel when we do the observation over time. 

A PTZ camera is a camera that can pan, tilt, and zoom. The scene captured by an active 
PTZ camera has non-stationary background. As a PTZ camera moves with respect to a rigid 
scene, the image content changes over time. In this case, motion compensation is needed to 
construct temporary background models. In [3], image mosaicing techniques are used to build 
a panoramic representation of the scene background. Alternatively, in [4], a representation of 
the scene background in terms of a finite set of images on a virtual polyhedron is used to 
construct images of the scene background at any pan-tilt-zoom setting. 

On the other hand, the kernel density function is proposed in [5] to estimate the ensemble 
characteristics of sample data to produce the background model. This model keeps a sample 
of intensity values for each pixel in the image and uses this sample to estimate the density 
function of the pixel intensity distribution. Therefore, the model can estimate the probability 
of newly observed intensity. This model is able to handle the scene that is not completely 
stationary but contain small motions, like wavering tree branches. 

 
(a)                            (b) 

 
(c)                            (d) 

Figure 2.1 Effect of the second stage of detection on suppressing false detections. 
(a) Original image. (b) First stage detection result. (c) Suppressing pixels with high 
displacement probabilities. (d) Result using component displacement probability 
constraint. [5] 

2.1.2 Temporal Differencing 

The pixel-wise differences between contiguous frames in an image sequence are used in 
the temporal differencing technique. There are many variants on the temporal differencing 
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method, and the simplest one is to calculate the absolute difference and to use a threshold 
function to detect the changes [6]. One problem with the temporal differencing technique is 
that the detection result tends to include undesirable background regions. These regions 
represent the positions where the target appears in the previous frame. One way to solve this 
problem is to introduce the knowledge of the target’s motion to remove these background 
regions from the template. This kind of method is usually called “motion cropping”. An IIR 
filter is usually used to update the template to ensure the current template may represent the 
target accurately.  

2.1.3 Optical Flow 

Optical flow is one of the most common approaches for motion estimation. In this 
approach, an image sequence is treated as a function ( , , )f x y t , where x  and y  represent 
the spatial coordinates and t represents the temporal coordinate. It is assumed that the 
intensity value projected from a three dimensional point onto the image plane is unchanged all 
the time, even if the three dimensional point is under movement. This assumption can thus be 
expressed as 

 0),,(
=

dt
tyxdf . Eq. 2-1

Because ( , )x y  is also a function of t, we can apply the chain rule over the above 
equation. We may then rewrite Eq. 2-1 as 

 
( , , ) ( , , ) ( , , )( , , ) ( , , ) 0f x y t f x y t f x y tu x y t v x y t

x y t
∂ ∂ ∂

+ + =
∂ ∂ ∂

. Eq. 2-2

This equation is usually called the optical flow equation or optical flow constraint. If we 
define ( , )V u v= , which represents the flow vector at each point, we can further reformulate 
the equation into the vector form: 

 
( , , )( , , ) , ( , , ) 0f x y tf x y t V x y t

t
∂

∇ + =
∂

, Eq. 2-3

where ⋅  is the inner product operator and 
T

yx ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=∇  means the gradient operation. 

Due to the fact that the inner product of ( , , )f x y t∇ and the part of ( , , )V x y t that is 
perpendicular to ( , , )f x y t∇  will be zero, the optical flow approach cannot estimate the 
motion when the moving direction is perpendicular to the intensity gradient of the object. 
Since the gradient operator is sensitive to noise, some researches also apply the Gaussian 
filtering along the spatial axis and the temporal axis.  

Optical flow detects motions only based on the intensity change. Hence, the detection 
may be unreliable. Two typical examples are the unobservable motion and the fake motion. 
When there is no obvious intensity change within the moving object, unobservable motion 
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happens. On the other hand, as the external illuminating condition changes, the intensity of a 
stationary object may change over time and fake motion may occur. 
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2.2 Motion Tracking 
After motion detection, surveillance systems generally track moving objects from one 

frame to another in an image sequence. Although there are many researches trying to deal 
with the motion tracking problem, existing techniques are still not robust enough for stable 
tracking. In general, real-time execution is needed for a practical surveillance system; 
however, so far it is still hard to achieve high-resolution image quality under the time 
constraint. There still exist many problems in the motion tracking field.  

In order to successfully track objects in an image sequence, various types of information 
are usually used to match an object in an image with the same object in another image. We 
can roughly classify the motion tracking techniques into a few categories in accordance with 
the used information. In the following sections, we’ll introduce a few major types of motion 
tracking techniques. However, it is worth mentioning that a motion tracking process may use 
more than one kind of information and various kinds of information can be integrated 
together.  

2.2.1 Region-Based Tracking 

Region-based tracking algorithms track moving objects based on variations of the image 
regions corresponding to moving objects. For these algorithms, the background model is 
updated dynamically and motion regions are usually detected by subtracting the background 
from the current image. Hence, these algorithms use static cameras, instead of active cameras, 
because of the computational complexity in updating the background model. 

In [7], the authors proposed an algorithm, which uses small blob features to track a 
single human body in an indoor environment. A human body is considered as a combination 
of several blobs. Each blob represents one body part, such as head, torso, or limb. Moreover, 
both human body and background are modeled as Gaussian distributions to represent the 
intensity value of every pixel. Finally, the pixels belonging to the human body are assigned to 
various blobs using the log-likelihood measure. Therefore, by tracking each small blob, a 
moving human object can be successfully tracked.  



 7

  
(a) (b) 

Figure 2.2 A human body is considered as a combination of blobs. (a) Original 
image. (b) A two dimensional representation of the blob statistics. [7] 

Although region-based algorithms usually use background subtraction to obtain moving 
regions, the shadow may cause false detection. To avoid false detection, [8] proposed an 
adaptive background subtraction method, in which color and gradient information are 
combined to cope with shadows and unreliable color cues in motion detection. Tracking is 
then performed at three levels of abstraction: regions, people, and groups. Regions can merge 
and split. A human is composed of one or more regions, which are grouped together under the 
condition of geometric constraints. On the other hand, a human group consists of one or more 
people. Therefore, using the region tracker and the individual color appearance model, we can 
deal with person-to-person and person-to-object interactions. 

Figure 2.3 A sequence of images, in which a person drops an object. [8] 

2.2.2 Active Contour-Based Tracking 

Active contour-based tracking algorithms track objects by representing their outlines as 
bounding contours and by updating these contours dynamically for every frame. To find the 
bounding contour of the moving object, background subtraction is often applied. Nevertheless, 
no motion detection algorithm is perfect. There will be spurious pixels and holes in the 
detected moving features. In [9], a morphological dilation followed by an erosion operation is 
used to solve this problem. With the morphological operation, the bounding contour of the 
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moving object changes. This approach then skeletonizes the boundary to build a star 
representation for the moving object. By analyzing the torso angle and the star’s periodic 
motion, simple behavior recognition can be achieved [9] .  

 

Figure 2.4 Skeletonization of moving targets. The structure and rigidity of the 
skeleton is significant in analyzing target motion. [9] 

To find the complete contour of moving objects, the active contour approach, which is 
commonly called “snake”, is widely used. Snakes are deformable contours that move under 
the influence of image-intensity forces, subject to certain internal deformation constraints. In 
[10], the authors proposed a kalman snake model in the spatio-velocity space to track 
non-rigid moving targets. 

In contrast to region-based tracking algorithms, these active contour-based algorithms 
describe objects in a simpler and more effective way and can thus reduce computational 
complexity. 

2.2.3 Model-Based Tracking 

Model-based tracking methods build a model in advance and match the moving object to 
the model. A motion model is also established to incorporate with a search strategy. To track 
different objects, many types of models have been proposed. In [11], a hierarchical model is 
proposed to describe human dynamics. They regard the transition from one pose to the next as 
the dynamics of the action, and encode this transition using a hidden Markov model (HMM). 
In this approach, the models, both poses and dynamics, are trained from real data. Then, they 
describe the model of valid poses, and then move on to describe the HMMs for dynamics. 
This hierarchical model tracks skeletal poses, this tracking method is largely independent of 
image modality. 
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(a) 

 

(b) 
Figure 2.5 (a) The tree hierarchy. (b) Tracking skeletons in 3-D: front and recovered 
side-views. [11] 

2.2.4 Feature-Based Tracking 

In contrast to model-based tracking methods, feature-based tracking builds a model 
according to the moving object’s features. There are lots of features that can help us in 
tracking objects, like edges, corners, color distribution, skin tone and human eyes. An active 
template which characterizes regional and structural features, such as texture, shape and color, 
is proposed to track moving objects in [12]. In this approach, the authors design an energy 
function and adapt the model dynamically by minimizing the energy in order to track 
non-rigid targets. 
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Figure 2.6 Example of a model graph which contains boundary cells and internal cells. 
[12] 

In recent years, an efficient algorithm called “mean-shift” is widely used for motion 
tracking. In [1], a target model is constructed by calculating moving object’s color histogram. 
In other words, the target model uses the color distribution status as features. The target model 
is defined as 

 ( ) ( )2

1

n

u i i
i

q C k x b x uδ
=

= −⎡ ⎤⎣ ⎦∑ , Eq. 2-4

where C is the normalization constant to ensure 
1

ˆ 1
m

u
u

q
=

=∑ , and ( )2k x  is the kernel profile. 

Similarly, a target candidate is defined as 

 ( ) ( )
2

1

hn
i

u h i
i

y xp y C k b x u
h

δ
=

⎛ ⎞−
= −⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ . Eq. 2-5

The Bhattacharyya coefficient is used to derive the similarity between the target model 
and the target candidate. The coefficient is defined as  

 ( ) ( ) ( )
1

,
m

u u
u

y p y q p y qρ ρ
=

≡ =⎡ ⎤⎣ ⎦ ∑ . Eq. 2-6

After the maximization of the similarity function, we have 

 

2
0

1

1 2
0

1

h

h

n i
i ii

n i
ii

y xx w g
h

y
y xw g

h

=

=

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
, Eq. 2-7

where ( ) ( )
1 0

m
u

i i
u u

qw b x u
p y

δ
=

⎡ ⎤= −⎣ ⎦∑ , and ( ) ( )'g x k x= −  represents the shadow kernel. In 

this procedure, the kernel is iteratively moved from the current location 0y  to the new 
location 1y  according to Eq. 2-7.  
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(a) 

(b) 
Figure 2.7 (a) The similarity surface, the initial and final locations of mean-shift 
iterations. (b) Tracking results. [1] 

Although the mean-shift approach is relatively an efficient and robust method for motion 
tracking, there are still some drawbacks. In recent years, many researches try to reform the 
mean-shift algorithm based on the following issues. 

(a) Accuracy improvement. 

In [13], the authors design some experiments to figure out whether the adopted similarity 
measure is appropriate or not. The simulations indicate that the Bhattacharyya and K-L 
distances are inaccurate in higher dimensions and the computations in higher dimensions are 
instable in the sense that repeated computations using different samples may yield varying 
results. Hence, they redefine the target model as 

 ( )
2 2

1

1ˆ , N i i
x i

x x u uq x u w k
N hσ=

⎛ ⎞ ⎛ ⎞− −
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ , Eq. 2-8

where x  represents the spatial location and u  is the corresponding feature vector. 
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Similarly, the target candidate is redefined as  

 ( )
2 2

1

1ˆ , M j j
y j

y y v v
p y v w k

M hσ=

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ . Eq. 2-9 

The similarity between the target model and the candidate in the joint feature-spatial space is 
defined to be 

 ( )
2 2

1 1

1,
N M

i j i j
x y

i j

x y u v
J p q w k

MN hσ= =

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ . Eq. 2-10

Even though the experimental results show that the tracking accuracy is greatly improved, the 
computational complexity for the direct evaluation of this similarity measure could be very 
high. 

(b) Usage of spatial information 

All the aforementioned target models lack spatial color distribution information. In order 
to keep more useful features, [14] proposed a new representation, called spatiogram, for the 
target model and the candidate. Spatiograms offer a richer representation and may capture not 
only the values of the pixels but also their spatial relationships. In their approach, a 
spatiogram is defined as 

 ( ) , , ,         b=1,......,Mp b b bh b n μ= Σ , Eq. 2-11

where bn  is the number of pixels in the thb bin, and bμ  and bΣ  represent the mean 
vector and covariance matrices, respectively. A mean-shift process is also developed to do 
motion tracking. Simulations in [13] show that this spatiogram approach offers more robust 
tracking than the traditional histogram-based approaches. 

 

(a)           (b)           (c) 
Figure 2.8 The spatiogram captures spatial relationships among various colors, 
whereas the histogram discards all spatial information. (a) Original image. (b) 
Statistical distribution generated from the histogram of (a). (c) Statistical 
distribution generated from the spatiogram of (a). [14] 
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(c) Scale and orientation selection 
Scale selection is also a problem. If the kernel size is too large, the tracking window will 

contain many background pixels as well as foreground object pixels. Since in this case the 
data histogram will get polluted with background data, this large kernel window may cause 
incorrect tracking. On the contrary, choosing a kernel size that is too small may suffer from 
poor object localization. 

In [1], the “plus or minus 10 percent” scale adaptation method is used to estimate the 
optimized scale, but the computational complexity is three times than before. In [13] and [15], 
the authors treat the scale as a variable in the tracking algorithm and update the scale by 
applying the mean-shift procedure through the scale axis.  

Figure 2.9 Scale-space mode-tracking method. The person is tracked well, both spatially 
and in scale. [15] 

On the other hand, the orientation of target is also important. Bad orientation estimation 
will cause the target information to be polluted by noisy background pixels. Rectangular 
bounding box can’t help in estimating object’s orientation. In [16], the authors use a bi-variant 
Gaussian profile as the kernel in the mean-shift procedure. By calculating the covariance 
matrix of all pixels belonging to the moving object, we can obtain the orientation and scale at 
the same time. 

 
Figure 2.10 Updating both size and orientation in motion tracking. [16] 

(d) Feature selection 
Object tracking is cast as a local discrimination problem to distinguish foreground objects 

from the background. During the tracking process, distractions due to background could 
easily distract the mean-shift window and cause failure in tracking. In [17], the authors 
develop a strategy to select features that can best discriminate foreground pixels from 
background pixels. To quantify the discrimination of a feature, a two-class variance ratio is 
used as the feature score. Base on the feature score, the most discriminative features can be 
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chosen for a more robust tracking. 

 

Figure 2.11 A flow chart in [17], which describes how to obtain the feature 
score.  

 

Figure 2.12 Example of feature adaptation to avoid distractions. Left column: video 
frame with the object/background windows overlaid. Right column: weight image 
from the top-ranked tracking features. [17] 
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Chapter 3.  
Mean-Shift Tracking and 
Multi-Blob Model 

Mean-shift is a powerful mathematical tool for object tracking problem, however, there 
still exist many drawbacks as mentioned in Section 2.2.4. In this chapter, we propose a new 
mean-shift-based approach trying to avoid these shortcomings. 

3.1 Traditional Mean-Shift Tracking 
Mean-shift is a technique which can find the location of local maximum without 

knowing the overall distribution. In object tracking problems, mean-shift is usually used to 
find the local maximum of the similarity surface.  

3.1.1 Building Models and Measuring Similarity 

To define the similarity between two objects, we have to define the features of an object 
first. Recall Eq. 2-4 and Eq. 2-5, which are used to build models. In [1], the object is 
represented using a 16 16 16× ×  histogram in the RGB space and the model becomes 

 ( ) ( )2 , 1,...,16 16 16u i i
i I

q C k x b x u uδ
∈

⎡ ⎤⎣ ⎦= − = × ×∑ , Eq. 3-1 

where I  represents the set of pixels belonging to the object, and ( )k i  is the kernel function 

for the spatial information. 
Based on the model designed to represent features of the object, we may choose an 

appropriate measurement to evaluate the similarity. In [13], the histogram is considered as a 
distribution in the feature space. Exiting mean-shift trackers use the Kullback-Leibler distance 
and Bhattacharyya distance to measure the similarity between distributions. The 
Kullback-Leibler distance between two distributions is define as 

 ( ) ( ) ( )16 16 16

1

log u
u

u u

p y
D y p y

q

× ×

=

= ∑ . Eq. 3-2 

On the other hand, the Bhattacharyya distance is 
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 ( ) ( )
16 16 16

1

1 u u
u

B y p y q
× ×

=

= − ∑ . Eq. 3-3 

The figure shown below represents the flow of calculating similarity. 

 
Figure 3.1 Flow chart of building models and measuring similarity. 
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3.1.2 Object Tracking Procedure 

[1] uses the Bhattacharyya distance to measure similarity. In Eq. 3-3, minimizing the 
distance is equivalent to maximizing the Bhattacharyya coefficient, where the coefficient is 
expressed in Eq. 2-6. The search for the new target location in the current frame starts at the 
location 0y  of the target in the previous frame. As shown in Figure 3.2(b), the location y  
has the maximum similarity.  

   
(a)                           (b) 

Figure 3.2 (a) The moving object to build the target model (Frame 15, sequence 
Hans). (b) The red point is the starting point 0y of the mean-shift process, and the 
red bounding box represents the range of consideration corresponding to 0y . The 
blue point y is the ideal tracking result (Frame 250, sequence Hans). 

 

Since the motion between two frames is small, y  is usually close to 0y  but the precise 
location is unknown. Thus, we may use the first order Taylor expansion to represent the 

Bhattacharyya coefficient ( )yρ  in terms of ( )0yρ . 
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 ( ) ( )
1

m

u u
u

y p y qρ
=

=∑   

 ( ) ( ) ( ) ( )( )0 0
1 1 0

1        
2

m m
u

u u u u
u u u

qp y q p y p y
p y= =

≈ + −∑ ∑   

 ( ) ( ) ( )0
1 1 0

1 1        
2 2

m m
u

u u u
u u u

qp y q p y
p y= =

= +∑ ∑   

 ( ) ( ) ( )
2

0
1 1 1 0

1        
2 2

hnm m
h i u

u u i
u i u u

C y x qp y q k b x u
h p y

δ
= = =

⎛ ⎞−
= + −⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑∑   

 ( )
2

0
1 1

1        
2 2

hnm
h i

u u i
u i

C y xp y q w k
h= =

⎛ ⎞−
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ , Eq. 3-4

where ( ) ( )
1 0

m
u

i i
u u

qw b x u
p y

δ
=

⎡ ⎤⎣ ⎦= −∑ . The first term in Eq. 3-4 is independent of y ; hence, 

we have to maximize the second term with respect to the vector y . Note that the second term 

represents the density estimate computed with the kernel profile ( )k i at y  in the current 

frame, with the data being weighted by iw . Denote the second term as ( )J y . The gradient of 

( )J y  with respect to y  is expressed as 

 ( ) ( )
2

'

1

2
2

hn
h i

i i
i

C y xJ y w k y x
h h=

⎛ ⎞−
∇ = ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑   

 
2 2

' '

1 1

          
h hn n

h i h i
i i i

i i

C y x C y xy w k w x k
h h h h= =

⎛ ⎞ ⎛ ⎞− −
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . Eq. 3-5

By letting Eq. 3-5 be 0, we have  

 

2
0

1
1 2

0

1

h

h

n
i

i i
i

n
i

i
i

y xw x g
h

y
y xw g

h

=

=

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠=
⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
, Eq. 3-6
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where ( ) ( )'g k= −i i , named the shadow kernel, is also the profile of the radial basic function, 

and 
2

0 i
i

y xw g
h

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

 can be considered as the convolution of iw  and the shadow kernel. 

Based on Eq. 3-6, an iterative procedure is obtained. To achieve better performance, the 
kernel function should be selected carefully. Kernels with the Gaussian profile or the 
Epanechnikov profile are recommended. For Gaussian kernel, the derivative of the 

profile, ( )g i , is still a Gaussian function. For the Epanechnikov kernel, we have 

 ( ) ( )( )1 if 1 

otherwise

1 ,    2 1  
2

, 0

d xc d x
k x

− ≤⎧ + −⎪= ⎨
⎪⎩

, Eq. 3-7

where dc  is the volume of a unit -dimensiond sphere and d  equals to 2 in this case. The 

derivative of the profile is constant and Eq. 3-6 reduces to  

 1
1

1

h

h

n

i i
i

n

i
i

w x
y

w

=

=

=
∑

∑
. Eq. 3-8

 By using the Gaussian kernel in Eq. 3-6, a mean-shift tracking process can be build. 
Figure 3.3 shows the mean-shift tracking flow, where the detection step is done by hand. 
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Figure 3.3 Mean-shift tracking flow 

Employing the mean-shift tracking algorithm and letting 0y  in Figure 3.2 (b) be the start 
point of the mean-shift process, the tracking result is shown below. 

           

(a)                           (b) 

Figure 3.4 (a) The moving object to build target model (Frame 15, sequence Hans). 
(b) The mean-shift process starts from the red point 0y . The blue point y is the ideal 
tracking result. However, the mean-shift tracking result converges to the green 
point 1y  instead (Frame 250, sequence Hans). 
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It is observed that the green bounding box in Figure 3.4 (b) which represents the tracking 
result is not accurate. Theoretically, 1y should have the maximal Bhattacharyya coefficient. 
The color histogram of the three bounding boxes in Figure 3.4 (b) is shown below. By 
checking the target model and the computed Bhattacharyya coefficient, 1y  indeed has the 
maximal similarity value and is at the peak of the similarity surface. 

      (a)                                 (b) 

      (c)                                 (d) 

Figure 3.5 (a) The target model. (b) The color histogram and the similarity value with 
respect to the tracking result 1 y . (c) The color histogram and the similarity value with 
respect to the starting point 0y . (d) The color histogram and the similarity value with 
respect to the expected tracking result y . 
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Figure 3.6 The similarity surface, the initial and final locations of the mean-shift 
process. y  is with respect to the expected tracking result. 

3.1.3 Discussion 

To sum up, building an appropriate model is to reduce redundant information but keep 
useful features for tracking. Based on the chosen model, we then choose an appropriate 
similarity measure. We can find the maximal similarity value by taking differentiation over 
the Bhattacharyya coefficient with respect to y . With to the use of the radial basic function, 
this differentiation operation will deduce the iterative mean-shift formula.  

According to the simulation results in Section 3.1.2, color histogram doesn’t seem to 
be an ideal representation of object appearance since the spatial information is discarded. 
Lack of spatial information, together with the distraction caused by background pixels, 
causes poor accuracy in tracking. By building a target model to contain more information, 
both in the spatial domain and the feature domain, and developing an appropriate similarity 
measure, we can improve the tracking performance. 
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3.2 Multi-Blob Model Based Mean-Shift 
Tracking 

Building a model to represent the features of the target can reduce the redundant data 
and computational complexity. In this thesis, we purpose a new target model, called a 
multi-blob model, to represent the features of object. Base on the multi-blob model, we 
design a similarity measure and a corresponding mean-shift tracking algorithm. 

3.2.1 Moving Object Detection 

To build a target model, we have to know the position of the moving object first. In our 
tracking system, a pan-tilt-zoom camera is used. Thus, the background may change. Here, 
we employ a motion compensation technique to detect moving objects in the frame. Our 
goal is to detect the region of a moving object in a rough but efficient manner.  

We choose a small number of blocks, say three or four, and estimate their motion 
vectors. We then compensate the motion of all blocks based on these motion vectors. The 
residual between the compensated frame and the reference frame will indicate the area of 
the moving object. Figure 3.7 shows two frames in the Watson sequence, with image size 
being 480 640× . There is only one moving object in these frames and the camera pans 
during the capture of these two images.  

 

       (a)                                     (b) 

Figure 3.7 (a) Frame 75 in the Watson sequence. (b) Frame 85 in the Watson sequence. 

To define the location of the moving object by using a covariance ellipse, we have to 
gather the statistics of the foreground region. Figure 3.8 shows the flow of calculating mean 
and covariance matrix of the foreground region. 
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Figure 3.8 Flow of calculating the statistics. The statistics is used to represent the covariance 
ellipse. 

From the flow shown in Figure 3.8, we have [ ]408.97 273.04μ =  and 

1217.1 1019.7
1019.7 6246.5

V
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. The bounding ellipse can be represented by both 

x yσ σ ρ⎡ ⎤⎣ ⎦ and [ ]a b θ , where a  represents the major axis length, b  represents 

the minor axis length, θ  is the offset angle measured clockwise from the y-axis, and the 



 25

focal points are ( )1 sin , cosf c cθ θ  and ( )2 sin , cosf c cθ θ− − . Figure 3.9 shows the 

relation between these two tuples. 

 

Figure 3.9 Relation between x yσ σ ρ⎡ ⎤⎣ ⎦ and [ ]a b θ . 

From the mathematical definition of ellipse, we have 

 ( ) ( ) ( ) ( )2 2 2 2sin cos sin cos 2x c y c x c y c aθ θ θ θ− + − + + + + =   

 ( ) ( )2 222 sin 2 cos 4 4 sin cos 2 sin 2 cosc x c y a a x c y c c x c yθ θ θ θ θ θ⇒ − − = + + + + + +   

 ( ) ( ) 22 22 2sin cos sin cosa x c y c a c x c yθ θ θ θ⎡ ⎤ ⎡ ⎤⇒ + + + = + +⎣ ⎦⎣ ⎦   

 
2

2 2 2 2 2 2 2 2 2 2 2
2sin cos sin 2sin cos coscx c y c a x xy y

a
θ θ θ θ θ θ⎡ ⎤⇒ + + + = + + +⎣ ⎦   

 ( ) ( )2 2 2 2 2 2 2 2 2sin 2 sin cos cos  constant a c x c xy a c y Aθ θ θ θ⇒ − − + − =  Eq. 3-9

Regarding the exponent of bi-variance Gaussian function, we have 

 
2 2

2
2 2

2

x x y y

x xy y dρ
σ σ σ σ

− + =   

 2 2 2 22  constant By x y xx xy yσ ρσ σ σ⇒ − + =  Eq. 
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3-10 

 Comparing Eq. 3-9 and Eq. 3-10, the major axis length, minor axis length, offset angle 
and eccentricity can be obtained. 

 ( )2 2 2 2siny a cσ θ= −   

 ( )2 2 2 2cosx a cσ θ= −   

 ( )2 2 2 cos 2y x cσ σ θ⇒ − =  Eq. 3-11

 22 2 sin 2xy x y cσ ρσ σ θ= =  Eq. 3-12

 ( )2 2
1 1

2 2

21 1sin cos
2 2

y xxy

c c
σ σσ

θ − −
−

⇒ = =  Eq. 3-13

From Eq. 3-11 and Eq. 3-12,  

 ( )22 2 2 24y x xyc σ σ σ= − +  Eq. 3-14

 2 2 2 2 2 2 2 a sin cosy xc cσ θ σ θ∴ = + = +  Eq. 3-15

 2 2 2 2 2 2 2 2 2b cos siny xa c c cσ θ σ θ= − = − = −  Eq. 3-16

Furthermore, the area of the ellipse is abπ . From Eq. 3-15 and Eq. 3-16, we have 

 ( )( )2 2 2 2 2 2 2 2sin cosy ya b c cσ θ σ θ= + −   

 
4

4 2 2 2cos 2 sin 2
4y y
ccσ σ θ θ= − −   

 ( )4 2 2 2 2
y y y x xyσ σ σ σ σ= − − −   

 ( )det V=   
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 ( )detab Vπ π∴ =  Eq. 3-17

Based on the above equations, we can mark the 2-sigma contour as a bounding ellipse 
to indicate the foreground region. Figure 3.10 shows the detection result of the Watson 

sequence where [ ]408.97 273.04μ =  and 
1217.1 1019.7
1019.7 6246.5

V
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. 

 
Figure 3.10 Using a bounding ellipse to define the moving object. 
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3.2.2 Multi-Blob Model 

Color histogram is a robust representation of the object’s color occurrence. In [14], 
spatiogram is considered as a generalized histogram containing spatial information. To 
allocate pixels into certain color bins can be regarded as doing quantization in the feature 
space. However, there may be variations between pixels belonging to the same color bin. 
Figure 3.11 shows two different patterns which have the same values of spatiogram.  

           
Figure 3.11 Two different patterns which cannot differentiated by the spatiogram. 

To preserve feature domain information, we gather statistics in the feature space for 
each color bin. That is, we define the multi-blob model as  

 ( )Model , , , , ,d sd sd cd cd dd n V V Tμ μ= ,     1,...,d B= , Eq. 3-18

where dn is the number of pixels in the thd bin, sdμ  and sdV  are the mean vector and 
covariance matrices in the spatial domain, cdμ  and cdV are the mean vector and covariance 
matrices in the RGB color space. The number B  is the number of color bins. According to 
this model, object pixels can be separated into B  blobs. Nevertheless, the blobs should 
have different reliabilities. Thus, we add another parameter dT  to represent the reliability 
of each blob. Here, dT  is initialized to 1. We can update reliabilities according to the status 
or the situation during tracking. 
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To make the calculation more efficient, we introduce the recursive formula to gather 
the statistical measures sdμ  , sdV , cdμ and cdV . By definition,  

 

1

1 1 1 1 1
, , 1 ,1 1 1 1 1

n n n

i i i
i i i n n

x n x n x n

x x x
x xn

n n n n n n
μ μ μ

+

= = = + +
+= ⇒ = = + = +

+ + + + +

∑ ∑ ∑
 Eq. 3-19

 1
, 1 ,1 1

n
sd n sd n

xn
n n

μ μ +
+∴ = +

+ +
; 1

, 1 ,1 1
n

cd n cd n
cn

n n
μ μ +

+ = +
+ +

, Eq. 3-20

where n n nx x y⎡ ⎤⎣ ⎦= , n n n nc r g b⎡ ⎤
⎣ ⎦= . 

 ( )2
,

2 1
,

n

i x n
i

x n

x

n

μ
σ =

−
=
∑

 
 

 ( ) ( ) ( )
1 2 2 2

, 1 , 1 1 , 1
2 1 1
, 1 1 1

n n

i x n i x n n x n
i i

x n

x x x

n n

μ μ μ
σ

+

+ + + +
= =

+

− − + −
⇒ = =

+ +

∑ ∑
,  

 where ( ) ( )2 2
, 1 ,

1 1
 

n n

i x n i x n
i i

x xμ μ+
= =

− − −∑ ∑   

 ( ) ( )2 2
, 1 ,

1

n

i x n i x n
i

x xμ μ+
=

⎡ ⎤= − − −
⎣ ⎦∑   

 ( )( ), , 1 , 1 ,
1

2
n

x n x n i x n x n
i

xμ μ μ μ+ +
=

⎡ ⎤= − − −⎣ ⎦∑   

 ( ), , 1 , 1
1

n

x n x n i x n
i

x nμ μ μ+ +
=

⎡ ⎤
= − −⎢ ⎥⎣ ⎦

∑ . Eq. 3-21

Based on Eq. 3-20, Eq. 3-21 becomes ( ) ( )2 2
, 1 ,

1 1

 
n n

i x n i x n
i i

x xμ μ+
= =

− − −∑ ∑ ( )2
, 1 1

1
x n nx

n
μ + += −  

 
Hence, 

( ) ( ) ( )2 2 2
, 1 , 1 1 , 1

2 1
, 1

1

1

n

i x n n x n n x n
i

x n

x x x
n

n

μ μ μ
σ

+ + + +
=

+

− + − + −
∴ =

+

∑
 

 

 ( )22
, 1 , 1

1
1 x n n x n

n x
n n

σ μ+ += + −
+

, where 2
1 0σ = .  
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Similarly, ( )( ), 1 xy,n+1 n+1 x,n+1 n+1 y,n+1
1

1xy n x yn
n n

μ μσ σ+ + − −=
+

.Thus, we have 

 ( ) ( ), 1 , 1 , 1 1 , 1
1

1
T

sd n sd n n sd n n sd n
nV V x x

n n
μ μ+ + + + += + − −

+
, where ,1

1 0
0 1sdV ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, Eq. 3-22

 ( ) ( ), 1 , 1 , 1 1 , 1
1

1
T

cd n cd n n cd n n cd n
nV V c c

n n
μ μ+ + + + += + − −

+
, where ,1

1 0 0
0 1 0
0 0 1

cdV
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. Eq. 3-23

We let the diagonal terms of initial value be 1 to ensure the covariance matrices 
invertible. Figure 3.12 shows the multi-blob model build from the detection result shown in 
Figure 3.10. In the RGB color space, we have 4 bins per channel to build the model. 
Separating each channel into too many bins may loss correlation between feature domain 
and spatial domain. We rank the blobs according to dn , and mark the top 5 blobs with their 
mean values in the RGB color space. 

 

Figure 3.12 Five blobs that appear most frequently are marked with their mean 
values in the RGB color space. 

Based on the multi-blob model, we can roughly know how the colors distribute in the 
bounding ellipse in both spatial domain and feature domain. The knowledge of the relative 
positions among these blobs can increase tracking accuracy. 
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3.2.3 Similarity Measure 

We are not willing to define the similarity between two multi-blob models but to define 
the similarity between a region of the image frame and a multi-blob model. The mean-shift 
process deduced from the similarity between two multi-blob models has to build a model 
for every iteration. This will cause information loss and increase computational complexity. 
In Eq. 2-10, we accumulate the similarity value caused by each pixel. Comparing to the 
model, a closer pixel with a similar color causes a larger similarity. We follow this idea and 
define our similarity measure based on a multi-blob model. 

Let y  be the center of the target ellipse and μ  be the center of the model ellipse. 
Then, we define the similarity J  as 

 ( ) ( ) ( )( ) ( ) ( )( )
1

1 , ,
B

i sd sd i cd cd d i
i I d

J y w y y V w c V T b y d
N

μ μ μ δ
∈ =

= − − − − −∑∑ , Eq. 3-24

where ( )
1

, exp
2

TxV xw x V
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 is a multi-variant Gaussian kernel, { },i iI y c=  is the 

samples enclosed by the target ellipse, and N  is the number of samples. Each pixel is 
weighted by the Gaussian kernels in both spatial domain and feature space and then 
multiplied by the reliability coefficient. The definition can be regarded as the mean of the 
weighting. Again, as an example, we detect the moving object and build a multi-blob model 
using Frame 15 of the Hans sequence. We apply the same bounding ellipse to Frame 250 
and calculate the similarity surface around the object. Then, we find the location y  with 
the maximal similarity value. Figure 3.13 shows that the similarity measure now is more 
discriminative than the Bhattacharyya coefficient, which has been shown in Figure 3.6.  

The similarity measure can be generalized to be 

 ( ) ( ) ( )( ) ( ) ( )( )
1

1 , ,
B

i sd sd i cd cd d i
i I d

J y w y y V w c V T b y d
N

α βμ μ μ δ
∈ =

= − − − − −∑∑ , Eq. 3-25

where α  and β  represent the dominance of the Gaussian kernel. The spatial Gaussian 
kernel will dominate if α >>β . If both α  and β  are much smaller than 1, the similarity 
will become  

 ( ) ( )( )
1

1 B

d i
i I d

J y T b y d
N

δ
∈ =

≅ −∑∑ , Eq. 3-26

which corresponds to the average reliability of the samples enclosed by the bounding ellipse. 
For simplicity, we choose 1α β= = . 
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�              

(a)                         (b) 

(c) 
Figure 3.13 (a) The moving object detected in Frame 15 of the Hans sequence. 
Build a multi-blob model according to the red bounding ellipse. (b) The region with 
the maximal similarity with the model in Frame 250 of the Hans sequence. (c) The 
similarity surface where y  is the center of the bounding ellipse in (b). 
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3.2.4 Mean-Shift Tracking Procedure 

The distance function is defined as  

 ( ) ( )logL y J y= − . Eq. 3-27

The gradient of the distance function with respect to the vector y  is 

 ( ) ( )
( )

J y
L y

J y
∇

∇ = − , Eq. 3-28

where  

 ( ) ( ) ( )( ) ( ) ( )( )
1

1 , ,
B

i sd sd i cd cd d i
i I d

J y w y y V w c V T b y d
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μ μ μ δ
∈ =

∇ = ∇ − − − − −∑∑   

 ( ) ( ) ( ) ( ) ( )( )
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1           , ,
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sd i sd cd d i
i I d

y y g y V w c V T b y d
N

μ μ μ δ
∈ =

= − − − Δ − Δ Δ −⎡ ⎤⎣ ⎦∑∑ ,  

and ( ) ( )g w= −i i  is the shadow kernel, which is also a multi-variant Gaussian profile in 

our case, with ( )iy y yΔ = − , ( )sdμ μ μΔ = − , ( )i cdc c μΔ = − . Thus, Eq. 3-28 becomes  

 ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
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L y
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∇ =

Δ − Δ Δ −

∑∑

∑∑
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μ μ δ
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= − +

Δ − Δ Δ −
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∑∑
. Eq. 3-29

By letting Eq. 3-29 equal to 0, we have  

 
[ ] ( ) ( ) ( )( )

( ) ( ) ( )( )

0
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0
1
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∑∑

∑∑
, Eq. 3-30

where 0 0iy y yΔ = −  and an iterative mean-shift formula is obtained. 
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Or by letting ( ) 0J y∇ = , we have  

 ( ) ( ) ( ) ( ) ( )( )
1

    , , 0
B

sd i sd cd d i
i I d

y y g y V w c V T b y dμ μ μ δ
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,  

which is the same as Eq. 3-30. 

For the generalized similarity measure as expressed in Eq. 3-25, we have 
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where ( ) ( )g w= −i i  is also a multi-variant Gaussian profile in our case. Therefore, 

 ( ) 0J y∇ =   
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, Eq. 3-31

which is the generalized mean-shift equation.  
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3.2.5 Updating Size and Orientation 

To update the size and orientation of the bounding ellipse, we refer to the region 
around the bounding ellipse. The bounding ellipse is defined as the 2-sigma contour. Here, 
we consider the band between the 3-sigma contour and the 2-sigma contour as the 
background field. Figure 3.14 indicates the foreground region and the background region 
based on a bounding ellipse. 

   
Figure 3.14 The foreground region and the background region based on a bounding 
ellipse. 

To reach the modification of bounding ellipse, we modify each color blob first. We 
re-compute  sdμ and  sdV  of each blob by weighting the samples belonging to BI and FI . 
Again, for computational efficiency, the formula must be recursive.  

Let ( ) ( )( ) ( ), ,i i sd sd i cd cdq w y y V w c V
α βμ μ μ= − − − −  be the weighting of the 

thi sample ( ),i i iy x y= , where ( )id b y= . 
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where 0
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Based on Eq. 3-32 and Eq. 3-33, each blob can be updated. To obtain the new 
bounding ellipse, we have to merge together all the blobs. By definition,  
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From Eq. 3-34 and Eq. 3-35, the overall mean vector and covariance matrix can be 
regarded as the weighted combination of blobs with weighting dn . To consider the 
reliability, we modify Eq. 3-34 and Eq. 3-35 to be 
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whereγ  represents the dominance of reliability. A largeγ  will cause the mean vector and 
covariance matrix to be dominated by certain blobs with high reliability.  

When using Gaussian profile to estimate a distribution ( ),f x y , the variance should be 

obtained from ( ) ( )22 ,x x f x y dxdyσ μ
∞ ∞

−∞ −∞
= −∫ ∫ , where ( ),xf x y dxdyμ

∞ ∞

−∞ −∞
= ∫ ∫ . In our 

case, the samples are weighted by ( ) ( )( ) ( ), ,i i sd sd i cd cdq w y y V w c V
α βμ μ μ= − − − − .  

Hence, the variance should be 
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π
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where ( ),i cd cdw c Vμ−  is a Gaussian random variable independent of x and y . Due to the 

independence, ( ),i cd cdw c Vμ−  does not affect the variance. However, the above procedure 

only considers the region enclosed by the t-sigma contour. Hence, the covariance matrix 
obtained by Eq. 3-36 is smaller than the true one.  

 Let the true covariance matrix be ( )
2

2 ,x xy

xy y

V f t V
σ σ

α
σ σ
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= = ×⎢ ⎥
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. Since ( ),f tα is 

independent of orientation, we assume 0xyσ =  and [ ]0 0μ =  for simplicity.  
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where I  is the region enclosed by the t-sigma contour. By letting
x
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Therefore, the new covariance matrix obtained by Eq. 3-36 should be multiplied by the 

factor ( ),f tα =
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. That is,  
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For 2t = , 1α = , ( ),f tα =1.6835.  

 In Figure 3.14, the bounding ellipse is moved to the position with the maximal 
similarity. The motion of bounding ellipse is pure translation. Applying this updating 
process after the tracking process will make the bounding ellipse better fit the moving 
object. We set the γ  in Eq. 3-40 to be 0.3. Figure 3.15 shows the result of the size and 
orientation updating.  

   
Figure 3.15 Result of size and orientation updating. The blue ellipses represent the 
2-sigma contour and the 3-sigma contour with respect to the original covariance 
matrix. The red ellipse represents the 2-sigma contour with respect to the modified 
covariance matrix. 
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3.2.6 Updating Reliability 

To avoid distraction of tracking, colors appearing in both foreground field and 
background field should have lower reliability. Furthermore, if a color blob represents 
background pixels, the position relative to the center of the bounding ellipse will be varying 
during the tracking process. Based on these ideas, we proposed two strategies to update the 
reliability coefficient. Similar to Figure 3.14, we define the background field and 

foreground field as Figure 3.16(a). We let ( )  fH d be a color histogram for the pixels in the 

foreground field and let ( )  bH d be a color histogram for the pixels in the background field. 

 
(a)                                           (b) 

Figure 3.16 (a) The outer ellipse represents the 3-sigma contour, and the inner ellipse represents 
the 2-sigma contour with respect to the modified covariance matrix. (b) Color histogram of the 
background field and foreground field. 

Define ( ) ( )
( ){ }max ,

f
s

b

H d
T d

H d δ
= , whereδ is a small value, say 0.001, to prevent the dividing 

by zero. Blobs with a small ( )sT d  value may get distracted by the background. At the 

same time, we use the samples of foreground field to build a multi-blob model as the target 
candidate. The target candidate is denoted as  
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 ( ) ' ' ' ' ' 'Candidate , , , , ,d sd sd cd cd dd n V V Tμ μ= ,     1,...,d B= , Eq. 3-41

To measure the movement of a blob relative to the center, we define  

 ( ) ( )' 1 'ˆ T

d d d sd d dVψ μ μ μ μ−= Δ −Δ Δ −Δ  Eq. 3-42

as the translation, where ' '
1d sd yμ μΔ = − , d sdμ μ μΔ = −  and ( )1 11 '1ˆ

2sd sd sdV V V− −− = + . 

Notice that dψ  is the average of two Mahalanobis distance, one between '
dμΔ and dμΔ , 

and the other between '
dμΔ and dμΔ . The reliability of the -thd blob is thought as 

increasable if dψ  lies in the 1-sigma contour.  

 Reliability should be bounded to prevent the tracking behavior being dominated by 
certain blobs. On the other hand, reliability should spread widely to have discrimination 
between blobs. Thus, we define the reliability function as 

 ( )
2

2

1 aXT X
a X
+

=
+

, Eq. 3-43

where a  represents the discrimination between blobs. Low reliability blobs can be ignored 
if a  is large enough. 

 
Figure 3.17 Reliability function, both x-axis and y-axis are in the log scale. 
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From ( ) sT d , dψ  and reliability function, we develop our reliability updating strategy. 

There are five steps in updating reliability. 

 Step 1. 
2

02

11 d
d

d

aTaXT X
a X a T

−+
= ⇒ =

+ −
.  

 
Step 2. 

( )21

2
1 0

d

X X e
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= . 
 

 

Step 3.  Case 1: ( ) 3sT d ≥       , 2 1 1.5X X= ×  

Case 2: ( )2 1sT d≥ >   , 1
2 1.5

XX =  

Case 3: ( )1 sT d≥      , 1
2 3

XX = . 

 

 Step 4. ( )2
1max min 10 , ,

10
X a X

a
⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  

 Step 5. 
2

_ 2

1
d new

aXT
a X
+

=
+

.  

In Step 4, X is bounded to prevent dT a= , which will cause “dividing by zero” in 
Step 1. Another reason is to let the reliability be more sensitive. We choose  20 a = in 
practice. In Figure 3.18, pixels with high reliability are marked in white; oppositely, pixels 
with low reliability are marked in black. Pixels remaining the original color represent 
medium reliability. Based on the reliability map, moving object can be roughly identified. 

 

Figure 3.18 The reliability map, which can roughly identify the moving object. 
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3.2.7 Updating Target Model 

Since a target candidate is already obtained when we update reliability, all we have to 
do is to decide when to update the model. The reliability map of two frames in the Watson 
sequence is shown in Figure 3.19. Considering the situation in Figure 3.19(a), obviously, 
this moment is not appropriate to update the target model. The unexpected background 
information may cause tracking failure. In Figure 3.19(b), the bounding ellipse tracks the 
moving object well, and the background is with low reliability. This is a suitable moment to 
update the target model. 

 

(a) 

 

(b) 
Figure 3.19 Frames with pixels marked depend on reliability. (a) Frame 50, Sequence 
Watson. (b) Frame 65, Sequence Watson. 
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To evaluate the adequacy of updating target model, we introduce the two-class 

variance ratio. Let _d fT  be the set of reliability for pixels in the foreground field and _d bT  

be the set of reliability for pixels in the background field. 

 
( )

( ) ( )
_ _

_ _

var
Variance Ratio

var var
d f d b

d f d b

T T

T T

+
=

+
, Eq. 3-44

 The variance ratio of reliability map shown in Figure 3.19(a) is 0.5866 and the 
variance ratio of reliability map shown in Figure 3.19(b) is 0.9280. We set a threshold at 
0.65. Thus, the target model will be updated whenever the variance ratio is larger than 0.65. 
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3.2.8 Overall Object Tracking Process 

To sum up, the flow chart of the proposed object tracking procedure is shown in Figure 
3.20. Compared to the flow chart of the traditional mean-shift tracking process in Figure 3.3, 
we need not to build the candidate during the mean-shift iterations. The location converge 

condition is 2
1 0 1y y− <  and the orientation converge condition is 

( )
( )

det
1 0.05

det
newV
V

− < , 

which means the amount of samples varying is less than 5%.  

 

Figure 3.20 Flow chart of the proposed object tracking process. 

Furthermore, we can do some simple predictions between frames or between 
mean-shift iterations to shorten the processing time. On the other hand, the judgment of 
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target loss is an additional stage to increase robustness. We have two simple rules to judge 
whether the tracking failure or not. The first rule is to check the covariance 

matrix   V obtained by Eq. 3-40. If ( ) det V ≤ 0, we are not able to define the bounding 

ellipse. Recall Eq. 3-17, a negative area is not reasonable. In practice, instead of the 
bounding ellipse, a hyperbola is obtained. The second rule is to check the reliability. If all 
blobs are with low reliability, the tracking result is likely to be a failed one. 
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Chapter 4.  
Experimental Results 

We present some object tracking results using the proposed algorithm in this chapter. 
The Resolution of all sequences is 640 480× . The algorithm is implemented with the 
MATLAB 6.5 platform and runs on a 3GHz Pentium4 PC with 512MB DRAM. The red 
ellipse and blue bounding box represent the result of proposed algorithm and the traditional 
mean-shift process, respectively.  

In the first experiment, our mean-shift algorithm was run on the sequence “Hans”. 
There is neither scene change nor occlusion in this sequence. The tracking result is shown 
below. The reliability map is also shown to show how the reliabilities change during 
tracking. The multi-blob model is built at Frame 35. All the reliabilities are initialized to 1. 
In addition, we ran the traditional mean-shift procedure at the same time, which employs the 
“plus or minus 10 percent” scale adaptation method and uses a 16 16 16× ×  histogram in 
the RGB space as the model. 

Frame 35 Frame 40 

Frame 50 Frame 75 
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Frame 120 Frame 160 

Frame 195 Frame 235 

Frame 295 Frame 360 
 
 
 



 50

 
 

Frame 420 Frame 485 

Frame 515 Frame 590 

Frame 630 Frame 695 
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Frame 765 Frame 850 
Figure 4.1 Experimental results of the sequence “Hans”. The orientation of the bounding ellipse 
and the reliability of blobs can be updated during tracking. 

We use the RGB color space and separate each channel into 8 bins; therefore, our 
target model contains 512 blobs. The color of pants belongs to Blobs 147 and 148 and the 
color of the iron shelves belongs to Blob 148. Therefore, the reliability of Blob 148 should 
be high when the moving object is far away from the iron shelves but low when they are 
close. Figure 4.2 shows the reliability of these two blobs are properly updated according to 
the background information. 

 

Figure 4.2 The reliability of Blobs 147 and 148. They are updated according to the 
background information. 
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In the second experiment a more complex clip is tested. Occlusion and scene change 
appears. Moreover, the color of cloth is very close to some parts of the background. To test 
the robustness of our method, we only separate each channel into 4 bins; therefore, our 
target model contains 64 blobs. Figure 4.3 shows the tracking result. We mark the moving 
object by the green ellipse instead of the red one when updating the target model. 

Frame 35 Frame 55 

Frame 65 Frame 115 

Frame 140 Frame 185 
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Frame 270 Frame 400 

Frame 470 Frame 505 

Frame 570 Frame 595 
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Frame 630 Frame 660 

Frame 710 Frame 775 

Frame 830 Frame 885 
Figure 4.3 The tracking result of sequence Watson. The target model updates at frame 65. 

Due to the distraction caused by the background, the target model has to update at 
appropriate moments to track successfully. We use the variance ratio to evaluate the degree 
of appropriateness. Figure 4.4 shows the variance ratio of the tracking result. 
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Figure 4.4 The variance ratio of tracking result. 

Since all reliabilities are initialized to be 1, variance ratio at Frame 35 is 0.5. Variance 
ratio changes as the update of reliabilities. At Frame 65, the variance ratio reached the peak 
value 0.6743 and the algorithm update the target model. The variance ratio drops rapidly 
when the moving object is close to the door or the shelves or when the occlusion happens.  

In the third experiment we ran the same code in the second experiment on the sequence 
Wesar. This sequence contains zooming and the moving object moved away from the 
camera. Hence, the size of moving object decreased through the sequence. Figure 4.5 shows 
the result, where the model was build on Frame 35.  

Frame 35 Frame 70 
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Frame 105 Frame 140 

Frame 210 Frame 260 

Frame 300 Frame 355 
Figure 4.5 The localization of the traditional mean-shift process is poor when the object’s size 
decreases. 
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Due to the severe scene change and the complex background, size and orientation 
update is not stable. The reliability update is not sensitive enough under this situation. 

The definition of target model affects not only the localization, but also the number of 
iterations. The better localization will cause a steeper similarity surface and more protruding 
peaks. Hence, less iterations are needed.  

 
Figure 4.6 Number of iterations when executing the proposed mean-shift process 
(red) and the traditional mean-shift procedure (blue). 

 In the final experiment, we use the sequence Stan, which contains a great difference in 
luminance. A complicated background and scene change also appears in the sequence. In 
Figure 4.7, the object moved from a shadow region to a bright region at Frame 65. The 
severe change in luminance may cause tracking failure.  

In prior researches, other features are used to increase robustness. For example, [13] 
use 2D image gradients as features, [16] use HSV color space and [17] use so-called excess 
color features, such as 2G-R-B, etc. However, to select different features to use in different 
cases is cumbersome. In Section 3.2.8, we proposed two simple rules to judge whether the 
tracking fails or not.  

Whenever the tracker loses the target, our algorithm will restart the tracking process 
automatically by detecting the moving object again. Figure 4.7 shows the experimental 
result, where the red ellipse indicates the target. The color is switched from red to green to 
indicate the restart moment of motion detection.. 
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Frame 5 Frame 35 

Frame 65 Frame 75 

Frame 100 Frame 165 
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Frame 185 Frame 210 

Frame 220 Frame 250 
Figure 4.7 The experimental result, where the red ellipse indicates the target. Due to the target 
loss, the algorithm detected the object at Frame 75, Frame 185 and Frame 220. We switch the 
color from red to green at these frames. 
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Chapter 5.  
Conclusions 

We proposed a complete object tracking algorithm including motion detection, motion 
tracking and target updating. We have presented a new model to describe the target, which 
contains information in both spatial domain and feature domain. Based on the multi-blob 
model, we define a similarity measurement and a mean-shift tracking procedure. After the 
location of moving object has been tracked by mean-shift, we design a process to modify 
the size and orientation of bounding ellipse. To improve the robustness of the system, we set 
a target model updating criterion and some rules to check whether the tracking fails or not.  

The proposed object tracking system can deal with the case of scene change and 
occlusion. An outdoor sequence with severe change in luminance is also tested. Due to the 
localization of multi-blob model and the discriminative similarity measurement, the 
proposed algorithm converges faster than the traditional one. The size and orientation 
update is also achieved. 
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