23 5 BB 2 T 08 #0032 1 BB

Mean-Shift. Object Tracking
Based on a Multi-Blob Model

FoyoA ikt

R I EF L



A5 BBRCT] 2 T R 2 5 R i B

Mean-Shift Object Tracking Based on a Multi-Blob Model

o4 e Student : Wen-Han Yao
R AFFEL Advisor : Dr. Sheng-Jyh Wang

B o> 2+ &
TIAIRE LTI AL

oL o# o~

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of Master
in
Electronics Engineering

June 2006
Hsinchu, Taiwan, Republic of China

PEARA LT ER



BT BBACR 2 T8 B 2 B R Bk

(SN SR PR e IR & T

iF &

F}.

Ao d o APRN - FRAAFERE S C B HT LR

FE TR REA LS MY B TR BB - SRR 2 KR
BULEERFE AP FIE- BB URhESEBFHE T A
5 @] H

BHAA TG LR E Ea B N TR E L L RH I
Bl de A Ps SHBEFMEZ G P D] A 2 e RS- 2R E
Foo BB R R e AR AT PART A X X 2T SRE B R { 4
FoEEEFAPRD RDFE

FE2AZEN ~FETRFR
IR e S0 FE R S B P R B B (7 L

ﬁ o
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Based on a Multi-Blob Model

Student : Wen-Han Yao  Advisor : Dr. Sheng-Jyh Wang

Department of Electronics Engineering, Institute of Electronics

National Chiao Tung University

Abstract

In this thesis, we proposed an object tracking system, which can
automatically detect a single moving object in an image sequence and keep
tracking of this object. In the proposed system, we deal with the problems of
occlusion, scene change and luminance change. A multi-blob model is defined
in our approach to represent the moving object. With this multi-blob model, we
proposed a new similarity measure and developed a new object tracking
algorithm based on the mean-shift method. We also proposed a strategy to
update the size and orientation of the bounding ellipse of the moving object.
For the sake of robustness, the proposed system contains decision criteria to
handle model updating and loss of target. Simulation results demonstrate that
the proposed object tracking algorithm can faithfully track the moving object

in different scenes.
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Chapter 1.
Introduction

The goal of object tracking is to find a specific target in successive frames of an image
sequence. Various algorithms for object tracking have be proposed in recent years. Among
these tracking algorithms, the mean-shift method has been popularly used due to its
robustness and simplicity. This iterative ‘mean-shift’ process is a simple robust technique for
the finding of the local maximum position without knowing the overall distribution. Recently,
Comaniciu and Meer [1] successfully applied this mean-shift method to object tracking
problems.

So far, in object tracking problems, mean-shift is used to find the position which has the
maximal similarity with the target. However, this kind of approach has several serious defects.
First, the spatial information of the target is lost and this fact causes the poor localization of
the tracking result. Second, the commonly: -used similarity measures, such as the
Bhattacharyya coefficient or the Kullback-Leibler distance, are not very discriminative. Third,
the size and orientation of the tracked object cannot be updated in an efficient way.

In this thesis, we propose a new target model to represent the moving object and define a
new similarity measurement based on the target model. We call this concept a multi-blob
model. We derive a mean-shift process for the multi-blob model and demonstrate the
improved tracking results. To make the system more complete, we develop a simple motion
detection process to roughly detect the location and size of the moving region. Moreover, we
also present a method to update both size and orientation of the bounding ellipse of the
tracked object.

The thesis is organized as follows. In Chapter 2, we introduce the background of motion
detection and motion tracking. In Chapter 3, we present the mean-shift process and discuss its
drawbacks. Furthermore, we present our new target model, the multi-blob model, and our
object tracking procedure. Some experimental results are given in Chapter 4. In Chapter 5 we
draw our conclusions.



Chapter 2.
Backgrounds of Object Tracking

In general, many previously proposed approaches for motion detection and motion
tracking are conceptually similar. It is fairly difficult to have a clear cut between these two
issues. However, there exist some intrinsic differences between motion detection and motion
tracking. In this chapter, motion detection and motion tracking are treated as two individual
parts and will be discussed separately in the next two sections.

2.1 Motion Detection

Nearly every visual surveillance system starts with motion detection. Motion detection
aims at segmenting regions corresponding to moving objects in an image. A good motion
detection result usually makes the following motion tracking process much easier. We can
roughly divide existing motion detection techniques:into three major categories: background
subtractions, temporal differencing, and optical flow.

2.1.1 Background Subtraction

Background subtraction is a popular method for motion detection. It detects moving
regions in an image by taking the difference between the current image and the reference
background model in a pixel-by-pixel fashion. This method is extremely sensitive to dynamic
changes caused by lighting change or shadows in the monitored scenes. Therefore, a reliable
background model is in great demand to reduce the influence of these changes. That is, an
active construction and updating of the background model are indispensable to visual
surveillance.

For fixed cameras, the key problem is to automatically recover and update the background
model based on a sequence of dynamic images. Unfavorable factors, such as illumination
variance, shadows and shaking branches, bring difficulties to the acquirement and updating of
background images. Some simple implementations use the time averages of image data, the
adaptive Gaussian estimation, or the Kalman filtering to derive the background model. While
these methods can run in real time, they are generally not robust enough. In [1], the authors
consider each pixel as an independent statistical process, and record the observed intensity at
each pixel over the previous n frames. The statistical distribution of the observed samples is
then optimally fit to the model of a mixture of Gaussian functions. This approach assumes
that the temporal behaviors of the intensity/color value at an image pixel are likely to follow



the normal distributions. Moreover, this approach assumes there could be more than one
possible states at an image pixel when we do the observation over time.

A PTZ camera is a camera that can pan, tilt, and zoom. The scene captured by an active
PTZ camera has non-stationary background. As a PTZ camera moves with respect to a rigid
scene, the image content changes over time. In this case, motion compensation is needed to
construct temporary background models. In [3], image mosaicing techniques are used to build
a panoramic representation of the scene background. Alternatively, in [4], a representation of
the scene background in terms of a finite set of images on a virtual polyhedron is used to
construct images of the scene background at any pan-tilt-zoom setting.

On the other hand, the kernel density function is proposed in [5] to estimate the ensemble
characteristics of sample data to produce the background model. This model keeps a sample
of intensity values for each pixel in the image and uses this sample to estimate the density
function of the pixel intensity distribution. Therefore, the model can estimate the probability
of newly observed intensity. This model is able to handle the scene that is not completely
stationary but contain small motions, like wavering tree branches.

(b)

(d)

Figure 2.1 Effect of the second stage of detection on suppressing false detections.
(a) Original image. (b) First stage detection result. (c) Suppressing pixels with high
displacement probabilities. (d) Result using component displacement probability
constraint. [5]

2.1.2 Temporal Differencing

The pixel-wise differences between contiguous frames in an image sequence are used in
the temporal differencing technique. There are many variants on the temporal differencing
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method, and the simplest one is to calculate the absolute difference and to use a threshold
function to detect the changes [6]. One problem with the temporal differencing technique is
that the detection result tends to include undesirable background regions. These regions
represent the positions where the target appears in the previous frame. One way to solve this
problem is to introduce the knowledge of the target’s motion to remove these background
regions from the template. This kind of method is usually called “motion cropping”. An IIR
filter is usually used to update the template to ensure the current template may represent the
target accurately.

2.1.3 Optical Flow

Optical flow is one of the most common approaches for motion estimation. In this
approach, an image sequence is treated as a function f (x,y,t), where x and y represent
the spatial coordinates and t represents the temporal coordinate. It is assumed that the
intensity value projected from a three dimensional point onto the image plane is unchanged all
the time, even if the three dimensional point is under movement. This assumption can thus be
expressed as

df (x,y,1t)
—
Because (x,y) is also a function of t, we can apply the chain rule over the above

0. Eq. 2-1

equation. We may then rewrite Eq. 2-1 as

of (x, y,t of (x,y,t of (X, y,t
FLLD 5,y TS Dy LD g Eq. 2-2

This equation is usually called the optical flow equation or optical flow constraint. If we
define V =(u,v), which represents the flow vector at each point, we can further reformulate

the equation into the vector form:

(V.0 Vixy )+ TEID o, £q. 2-3
o o
Where<'> is the inner product operator and V = {6_ a—} means the gradient operation.
X oy

Due to the fact that the inner product of Vf(x,y,t)and the part of V(X y,t)that is
perpendicular to Vf(x,y,t) will be zero, the optical flow approach cannot estimate the
motion when the moving direction is perpendicular to the intensity gradient of the object.
Since the gradient operator is sensitive to noise, some researches also apply the Gaussian
filtering along the spatial axis and the temporal axis.

Optical flow detects motions only based on the intensity change. Hence, the detection
may be unreliable. Two typical examples are the unobservable motion and the fake motion.
When there is no obvious intensity change within the moving object, unobservable motion
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happens. On the other hand, as the external illuminating condition changes, the intensity of a
stationary object may change over time and fake motion may occur.



2.2 Motion Tracking

After motion detection, surveillance systems generally track moving objects from one
frame to another in an image sequence. Although there are many researches trying to deal
with the motion tracking problem, existing techniques are still not robust enough for stable
tracking. In general, real-time execution is needed for a practical surveillance system;
however, so far it is still hard to achieve high-resolution image quality under the time
constraint. There still exist many problems in the motion tracking field.

In order to successfully track objects in an image sequence, various types of information
are usually used to match an object in an image with the same object in another image. We
can roughly classify the motion tracking techniques into a few categories in accordance with
the used information. In the following sections, we’ll introduce a few major types of motion
tracking techniques. However, it is worth mentioning that a motion tracking process may use
more than one kind of information and various kinds of information can be integrated
together.

2.2.1 Region-Based Tracking

Region-based tracking algorithms track moving objects based on variations of the image
regions corresponding to moving objects. Forthese algorithms, the background model is
updated dynamically and motion regions are usually detected by subtracting the background
from the current image. Hence, these algorithms use static cameras, instead of active cameras,
because of the computational complexity in updating the background model.

In [7], the authors proposed an algorithm, which uses small blob features to track a
single human body in an indoor environment. A human body is considered as a combination
of several blobs. Each blob represents one body part, such as head, torso, or limb. Moreover,
both human body and background are modeled as Gaussian distributions to represent the
intensity value of every pixel. Finally, the pixels belonging to the human body are assigned to
various blobs using the log-likelihood measure. Therefore, by tracking each small blob, a
moving human object can be successfully tracked.



(a) (b)
Figure 2.2 A human body is considered as a combination of blobs. (a) Original
image. (b) A two dimensional representation of the blob statistics. [7]

Although region-based algorithms usually use background subtraction to obtain moving
regions, the shadow may cause false detection. To avoid false detection, [8] proposed an
adaptive background subtraction method, in which color and gradient information are
combined to cope with shadows and unreliable color cues in motion detection. Tracking is
then performed at three levels of abstraction: regions, people, and groups. Regions can merge
and split. A human is composed of one.or more regions, which are grouped together under the
condition of geometric constraints. On the other hand, a human group consists of one or more
people. Therefore, using the region tracker and the individual color appearance model, we can
deal with person-to-person and person-to-aobject interactions.

Figure 2.3 A sequence of images, in which a person drops an object. [8]

2.2.2 Active Contour-Based Tracking

Active contour-based tracking algorithms track objects by representing their outlines as
bounding contours and by updating these contours dynamically for every frame. To find the
bounding contour of the moving object, background subtraction is often applied. Nevertheless,
no motion detection algorithm is perfect. There will be spurious pixels and holes in the
detected moving features. In [9], a morphological dilation followed by an erosion operation is
used to solve this problem. With the morphological operation, the bounding contour of the



moving object changes. This approach then skeletonizes the boundary to build a star
representation for the moving object. By analyzing the torso angle and the star’s periodic
motion, simple behavior recognition can be achieved [9] .

video image motion detection  skeleton

Figure 2.4 Skeletonization of moving targets. The structure and rigidity of the
skeleton is significant in analyzing target motion. [9]

To find the complete contour of moving objects, the active contour approach, which is
commonly called “snake”, is widely used. Snakes are deformable contours that move under
the influence of image-intensity forces, subject to certain internal deformation constraints. In
[10], the authors proposed a kalman snake model in the spatio-velocity space to track
non-rigid moving targets.

In contrast to region-based tracking algorithms, these active contour-based algorithms
describe objects in a simpler and more effective way and can thus reduce computational
complexity.

2.2.3 Model-Based Tracking

Model-based tracking methods build a model in advance and match the moving object to
the model. A motion model is also established to incorporate with a search strategy. To track
different objects, many types of models have been proposed. In [11], a hierarchical model is
proposed to describe human dynamics. They regard the transition from one pose to the next as
the dynamics of the action, and encode this transition using a hidden Markov model (HMM).
In this approach, the models, both poses and dynamics, are trained from real data. Then, they
describe the model of valid poses, and then move on to describe the HMMs for dynamics.
This hierarchical model tracks skeletal poses, this tracking method is largely independent of
image modality.
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Figure 2.5 (a) The tree hierarchy. (b) Tracking skeletons in 3-D: front and recovered
side-views. [11]

2.2.4 Feature-Based Tracking

In contrast to model-based tracking methods, feature-based tracking builds a model
according to the moving object’s features. There are lots of features that can help us in
tracking objects, like edges, corners, color distribution, skin tone and human eyes. An active
template which characterizes regional and structural features, such as texture, shape and color,
is proposed to track moving objects in [12]. In this approach, the authors design an energy

function and adapt the model dynamically by minimizing the energy in order to track
non-rigid targets.
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Figure 2.6 Example of a model graph which contains boundary cells and internal cells.
[12]

In recent years, an efficient algorithm called “mean-shift” is widely used for motion
tracking. In [1], a target model is constructed by calculating moving object’s color histogram.
In other words, the target model uses the color distribution status as features. The target model
is defined as

a, =C§k(||>‘(i||2)5[b(>‘<i)—u:|, Eq. 2-4

m
where C is the normalization constant to.ensure > G, =1, and k(||x||2) is the kernel profile.

u=l

Similarly, a target candidate is defined as

pu(V)=Ch;Zhlk(Hy;X‘ Z}D’(K)—U]- Eq. 2-5

The Bhattacharyya coefficient is used to derive the similarity between the target model
and the target candidate. The coefficient is defined as

P(WEP[D(VM}%}JDU(V)qu. Eq. 2-6

After the maximization of the similarity function, we have

R
Ny _ _Xl
Zilxiwig( yoh J

1=

. Eq. 2-7
n, Yo = X
Zilwig[ OT J
where W, =) . ?“y )5[b(>?i)—u], and g(x)=—k'(x) represents the shadow kernel. In
u=1 u 0

this procedure, the kernel is iteratively moved from the current location y, to the new
location y, according to Eq. 2-7.
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(b)
Figure 2.7 (a) The similarity surface, the initial and final locations of mean-shift
iterations. (b) Tracking results. [1]

Although the mean-shift approach is relatively an efficient and robust method for motion
tracking, there are still some drawbacks. In recent years, many researches try to reform the
mean-shift algorithm based on the following issues.

(a) Accuracy improvement.

In [13], the authors design some experiments to figure out whether the adopted similarity
measure is appropriate or not. The simulations indicate that the Bhattacharyya and K-L
distances are inaccurate in higher dimensions and the computations in higher dimensions are
instable in the sense that repeated computations using different samples may yield varying
results. Hence, they redefine the target model as

A s 1 N
qx(X’U)ZWZMW

where X represents the spatial location and U is the corresponding feature vector.

o o PR 2
X=X

o

Eqg. 2-8
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Similarly, the target candidate is redefined as
1 -y, 2
~ o o\ M - i
P, (7.9) _WZHW[H Jk J Eq. 2-9

o
The similarity between the target model and the candidate in the joint feature-spatial space is
defined to be

(Pl ) =2 Dw

Even though the experimental results show that the tracking accuracy is greatly improved, the
computational complexity for the direct evaluation of this similarity measure could be very
high.

V-v
h

]

Eg. 2-10

(b) Usage of spatial information

All the aforementioned target models lack spatial color distribution information. In order
to keep more useful features, [14] proposed a new representation, called spatiogram, for the
target model and the candidate. Spatiograms offer-a richer representation and may capture not
only the values of the pixels but also their spatial relationships. In their approach, a
spatiogram is defined as

he (D) =Ny, 14,,%,), = b=1,...iM, Eq. 2-11

where n, is the number of pixels in the bthbin, and 4z, and X%, represent the mean
vector and covariance matrices, respectively. A" mean-shift process is also developed to do
motion tracking. Simulations in [13] show that this spatiogram approach offers more robust
tracking than the traditional histogram-based approaches.

(a) (b) (c)
Figure 2.8 The spatiogram captures spatial relationships among various colors,
whereas the histogram discards all spatial information. (a) Original image. (b)
Statistical distribution generated from the histogram of (a). (c) Statistical
distribution generated from the spatiogram of (a). [14]
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(c) Scale and orientation selection

Scale selection is also a problem. If the kernel size is too large, the tracking window will
contain many background pixels as well as foreground object pixels. Since in this case the
data histogram will get polluted with background data, this large kernel window may cause
incorrect tracking. On the contrary, choosing a kernel size that is too small may suffer from
poor object localization.

In [1], the “plus or minus 10 percent” scale adaptation method is used to estimate the
optimized scale, but the computational complexity is three times than before. In [13] and [15],
the authors treat the scale as a variable in the tracking algorithm and update the scale by
applying the mean-shift procedure through the scale axis.

Figure 2.9 Scale-space mode-tracking method. The person is tracked well, both spatially
and in scale. [15]

On the other hand, the orientation of target.is also important. Bad orientation estimation
will cause the target information to be polluted by noisy background pixels. Rectangular
bounding box can’t help in estimating object’s orientation. In [16], the authors use a bi-variant
Gaussian profile as the kernel in the mean-shift procedure. By calculating the covariance
matrix of all pixels belonging to the moving object, we can obtain the orientation and scale at
the same time.

Figure 2.10 Updating both size and orientation in motion tracking. [16]

(d) Feature selection

Obiject tracking is cast as a local discrimination problem to distinguish foreground objects
from the background. During the tracking process, distractions due to background could
easily distract the mean-shift window and cause failure in tracking. In [17], the authors
develop a strategy to select features that can best discriminate foreground pixels from
background pixels. To quantify the discrimination of a feature, a two-class variance ratio is
used as the feature score. Base on the feature score, the most discriminative features can be
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chosen for a more robust tracking.

Class Histograms Log Likelihood Ratio

Class Samples from AT SeoN Festam (Tuned Feature)

Previous Image

“Background ppject
Variance Ratio . \
(feature score) ;

B - S

Class Histograms CL B * Wi
of Tuned Feature Weight Image

- T
L

Figure 2.11 A flow chart in [17], which describes how to obtain the feature
score.

Figure 2.12 Example of feature adaptation to avoid distractions. Left column: video
frame with the object/background windows overlaid. Right column: weight image
from the top-ranked tracking features. [17]
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Chapter 3.
Mean-Shift Tracking and
Multi-Blob Model

Mean-shift is a powerful mathematical tool for object tracking problem, however, there
still exist many drawbacks as mentioned in Section 2.2.4. In this chapter, we propose a new
mean-shift-based approach trying to avoid these shortcomings.

3.1 Traditional Mean-Shift Tracking

Mean-shift is a technique which can find the location of local maximum without
knowing the overall distribution. In object tracking problems, mean-shift is usually used to
find the local maximum of the similarity surface.

3.1.1 Building Models and Measuring Similarity

To define the similarity between two objects, we have to define the features of an object
first. Recall Eq. 2-4 and Eq. 2-5; which are used to build models. In [1], the object is
represented using a 16x16x16 histogram‘in the RGB space and the model becomes

0, =CY k(&[] )o[b(%)-u] u=1..16x16x16, Eq. 3-1

icl
where | represents the set of pixels belonging to the object, and k(.) is the kernel function
for the spatial information.

Based on the model designed to represent features of the object, we may choose an
appropriate measurement to evaluate the similarity. In [13], the histogram is considered as a
distribution in the feature space. Exiting mean-shift trackers use the Kullback-Leibler distance
and Bhattacharyya distance to measure the similarity between distributions. The
Kullback-Leibler distance between two distributions is define as

~ 16x16x16 ~ P, ( A)
D(y)= >, p,(y)log——= Eq. 3-2
u=1 u

On the other hand, the Bhattacharyya distance is
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16x16x16

B(y)=,1- Z;, Jh(¥)a, . Eq. 3-3

The figure shown below represents the flow of calculating similarity.
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Figure 3.1 Flow chart of building models and measuring similarity.
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3.1.2 Object Tracking Procedure

[1] uses the Bhattacharyya distance to measure similarity. In Eq. 3-3, minimizing the
distance is equivalent to maximizing the Bhattacharyya coefficient, where the coefficient is
expressed in Eqg. 2-6. The search for the new target location in the current frame starts at the
location y, of the target in the previous frame. As shown in Figure 3.2(b), the location y

has the maximum similarity.

(b)

Figure 3.2 (a) The moving object to build the target model (Frame 15, sequence
Hans). (b) The red point is the starting point ¥, of the mean-shift process, and the
red bounding box represents the range of consideration corresponding toy,. The
blue point y is the ideal tracking result (Frame 250, sequence Hans).

Since the motion between two frames is small, y is usually close toy, but the precise
location is unknown. Thus, we may use the first order Taylor expansion to represent the

Bhattacharyya coefficient p(y) intermsof p(y,).
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2
! J Eq. 3-4

m
where W, = (2“_ )5[b(7(i )—UJ . The first term in Eq. 3-4 is independent of y ; hence,

we have to maximize the second term with respect to the vector y . Note that the second term

represents the density estimate computed with the kernel profile k(<)at y in the current
frame, with the data being weighted by w, . Denote the second term as J (y) The gradient of

J (y) with respect to y is expressed as

2 n,
h <

] , Eq. 3-5

By letting Eq. 3-5 be 0, we have

el

. | Eq. 3-6
W.
Sl 25
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where g (-)=—k (-), named the shadow kernel, is also the profile of the radial basic function,

. - 12
and Wig[ %H ] can be considered as the convolution of w, and the shadow kernel.

Based on Eq. 3-6, an iterative procedure is obtained. To achieve better performance, the
kernel function should be selected carefully. Kernels with the Gaussian profile or the
Epanechnikov profile are recommended. For Gaussian kernel, the derivative of the

profile, g () is still a Gaussian function. For the Epanechnikov kernel, we have
1 ,
—cy (d+2)(1-x) ,ifx<1

k(x)= -
(X) 2 0 , otherwise ' EqQ. 3-7

where C; is the volume of a unit d-dimensionsphere and d equals to 2 in this case. The

derivative of the profile is constant and Eq. 3-6 reduces to

y, = Eq. 3-8

By using the Gaussian kernel in Eqg. 3-6, a mean-shift tracking process can be build.
Figure 3.3 shows the mean-shift tracking flow, where the detection step is done by hand.
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Figure 3.3 Mean-shift tracking flow

Employing the mean-shift tracking algorithm and letting y, in Figure 3.2 (b) be the start
point of the mean-shift process, the tracking result is. shown below.

(a) (b)
Figure 3.4 (a) The moving object to build target model (Frame 15, sequence Hans).
(b) The mean-shift process starts from the red point y, . The blue pointy is the ideal
tracking result. However, the mean-shift tracking result converges to the green
point ¥, instead (Frame 250, sequence Hans).
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It is observed that the green bounding box in Figure 3.4 (b) which represents the tracking
result is not accurate. Theoretically, ¥, should have the maximal Bhattacharyya coefficient.

The color histogram of the three bounding boxes in Figure 3.4 (b) is shown below. By
checking the target model and the computed Bhattacharyya coefficient, y, indeed has the

maximal similarity value and is at the peak of the similarity surface.

Target Model Sirnilarity =0.92369
0.2 ] 02
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L l ‘ gl ) .
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Index 2 of color hins Index 2 of color hins
(a) (b)
Similarity =0.82058 Similarity =0.90448
0.2 . 0.2
o [ul]
(] (]
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[ (]
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o o
201 201
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= =
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(c) (d)
Figure 3.5 (a) The target model. (b) The color histogram and the similarity value with
respect to the tracking result y, . (c) The color histogram and the similarity value with
respect to the starting pointy,. (d) The color histogram and the similarity value with
respect to the expected tracking result y .
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Figure 3.6 The similarity surface, the initial and final locations of the mean-shift

process. Y is with respect to the expected tracking result.

3.1.3 Discussion

To sum up, building an appropriate model is to reduce redundant information but keep
useful features for tracking. Based on the chosen model, we then choose an appropriate
similarity measure. We can find the maximal similarity value by taking differentiation over
the Bhattacharyya coefficient with respect to y . With to the use of the radial basic function,
this differentiation operation will deduce the iterative mean-shift formula.

According to the simulation results in Section 3.1.2, color histogram doesn’t seem to
be an ideal representation of object appearance since the spatial information is discarded.
Lack of spatial information, together with the distraction caused by background pixels,
causes poor accuracy in tracking. By building a target model to contain more information,
both in the spatial domain and the feature domain, and developing an appropriate similarity
measure, we can improve the tracking performance.
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3.2 Multi-Blob Model Based Mean-Shift
Tracking

Building a model to represent the features of the target can reduce the redundant data
and computational complexity. In this thesis, we purpose a new target model, called a
multi-blob model, to represent the features of object. Base on the multi-blob model, we
design a similarity measure and a corresponding mean-shift tracking algorithm.

3.2.1 Moving Object Detection

To build a target model, we have to know the position of the moving object first. In our
tracking system, a pan-tilt-zoom camera is used. Thus, the background may change. Here,
we employ a motion compensation technique to detect moving objects in the frame. Our
goal is to detect the region of a moving object in a rough but efficient manner.

We choose a small number of blocks, say three or four, and estimate their motion
vectors. We then compensate the motion of all blocks based on these motion vectors. The
residual between the compensated frame and the reference frame will indicate the area of
the moving object. Figure 3.7 shows two frames in the Watson sequence, with image size
being 480x640. There is only one maving object in these frames and the camera pans
during the capture of these two images.

(a) (b)

Figure 3.7 (a) Frame 75 in the Watson sequence. (b) Frame 85 in the Watson sequence.

To define the location of the moving object by using a covariance ellipse, we have to
gather the statistics of the foreground region. Figure 3.8 shows the flow of calculating mean
and covariance matrix of the foreground region.
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Figure 3.8 Flow of calculating the statistics. The statistics is used to represent the covariance
ellipse.

From the flow shown in Figure 3.8, we have z=[408.97 273.04] and

{ 12171 -1019.7

. The bounding ellipse can be represented by both
-1019.7 6246.5

[0, o, pland [a b 0], where a represents the major axis length, b represents

the minor axis length, & is the offset angle measured clockwise from the y-axis, and the




focal points are f (csind,ccosd) and f,(—csind,—ccos@). Figure 3.9 shows the

relation between these two tuples.

Figure 3.9 Relation between o, oy pfand [a b 0],

From the mathematical definition of ellipse, we have

\/(x—csin 0)" +(y—ccosd)’ +\/(x+csin 0) +(y+ccosh)’ =2a

= —2csin @x —2ccos Py = 4a’ +4a\/(x+csin 6?)2 +(y+ccos¢9)2 +2csin@x+ 2ccos by

= a’ [(x+csin 6)2 +(y+ccos:9)2}=[a2 +csin 0x+ccosl9y}2

2
. c’r . .
= X’ +¢’sin@+y* +c’cos’ §=a’ +—2[S|n2 Ox* + 25sin @ cos Oxy + cos 9y2]
a

= (a* - ¢sin® ) x* —2c* sin @ cos Oxy +(a’ —c* cos’ 0) y* = constant A Eq. 3-9

Regarding the exponent of bi-variance Gaussian function, we have

= o,X’ —2po,o,xy+0o,y’ = constant B Eq.
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3-10

Comparing Eqg. 3-9 and Eq. 3-10, the major axis length, minor axis length, offset angle
and eccentricity can be obtained.

o (a2 —c?sin? 49)

o! =(a*-c’cos’ 0)

= (o} -o7)=ccos20 Eq. 3-11

20,, =2po,0, =c’sin 20 Eq. 3-12

1 20, 1 (05—05)

:>9=Esin’1c—;y=5cos’1 - Eq. 3-13
From Eq. 3-11 and Eq. 3-12,

¢? = \/(aj o2} +40?, Eq. 3-14

. a’ =0, +c’sin’ @ = o} +c’cos’ @ Eq. 3-15

b’ =a’-c’=0o; -c’cos’ =0} —c*sin’ 6 Eq. 3-16

Furthermore, the area of the ellipse iszab. From Eq. 3-15 and Eq. 3-16, we have

a’h? = (aj +¢?sin? 19)(05 —c?cos? 0)

4
ct .

=0, —czaj c0s 20 ——sin® 20
4

2

_ 4 _2f 2 2\
=0, Gy(Jy O'X) Oy

=det(V)
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-.wab=r,/det(V) Eq. 3-17

Based on the above equations, we can mark the 2-sigma contour as a bounding ellipse
to indicate the foreground region. Figure 3.10 shows the detection result of the Watson
1217.1 —1019.7}

sequence where 1 =[408.97 273.04] and V =
-1019.7 6246.5

Figure 3.10 Using a bounding ellipse to define the moving object.

27



3.2.2 Multi-Blob Model

Color histogram is a robust representation of the object’s color occurrence. In [14],
spatiogram is considered as a generalized histogram containing spatial information. To
allocate pixels into certain color bins can be regarded as doing quantization in the feature
space. However, there may be variations between pixels belonging to the same color bin.
Figure 3.11 shows two different patterns which have the same values of spatiogram.

Figure 3.11 Two different patterns which cannot differentiated by the spatiogram.

To preserve feature domain information, we gather statistics in the feature space for
each color bin. That is, we define the multi-blob model as

Model (d ) =(ny, Zy Vg, g Veg 1 Tg ) d=1..B, Eq. 3-18

wheren, is the number of pixels in thedth bin, z, and V, are the mean vector and
covariance matrices in the spatial domain, fz, and V_ are the mean vector and covariance
matrices in the RGB color space. The number B is the number of color bins. According to

this model, object pixels can be separated into B blobs. Nevertheless, the blobs should
have different reliabilities. Thus, we add another parameter T, to represent the reliability

of each blob. Here, T, is initialized to 1. We can update reliabilities according to the status
or the situation during tracking.
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To make the calculation more efficient, we introduce the recursive formula to gather
the statistical measures i, ,Vy, f,4and V. By definition,

n n+l n
B :Ejﬂ :;X‘:;X‘ Xog _ N K Eqg. 3-19
" n ™ ntl n+l n+l n+17" n+l
_ n _ X _ n _ C
lusd,n+1 = m:usd,n + n:fll ; :ucd,n+1 = m:ucd,n + nr::111 Eq 3-20
where X =X, Vo], G =[f, gy b,]-
L 2
Z(Xi — Hy n)
ot -
n+l 2 n 2 2
Z(Xi _:ux,n+l) Z(Xi _/ux,n+1) +(Xn+1 _/ux,n+1)
=g’ , =4t — il
o n+1 n+1 ’
. 2 & 2
where Z(Xi _/Ux,n+l) - (Xi _/ax,n)
i=1 i=1
s 2 2
= |:(Xi _:ux,n+1) _(X| :uxn) :|
i=1
n
= [(/ux,n _/Jx,n+1)(2Xi _:ux,n+1 _:ux,n ):|
i=1
n
= (/Jx,n _:ux,n+1)|:z Xi - n/’lx,n+1:|- Eq 3-21
i=1

n

Based on Eq. 3-20, Eq. 3-21 becomes Zn:(xi - #x,n+1)2 - (Xi ~ Hyn )2 = 1(uxm - xm)

i=1 i=1 n

2

n

1
Z(Xi ~ Hyn )2 + H(Xnﬂ _:ux,n+l)2 + (Xn+l _/ux,n+l)

2

Hence, ..o}, =2 7
n , 1 2 )
= m% +H(XM —yXM) , Whereo, =0.
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n

1
m Oy .n+1 + H(Xnﬂ ~ Hyn+t )( Yo — :uy,n+1) .Thus, we have

Similarly, 0, ., =

n

V -
n+1

sd,n+1 =

1, _ T, _ 1 0
Vsd,n +H(Xn+l _:usd,n+1) (Xn+1 - :usd,n+1) ) where Vsd,l = {O 1:|, Eq. 3-22

1
n 1, . _ T _

Vcd,n+1 = n +1Vcd,n +H(Cn+1 _lucd,n+1) (Cn+1 o lucd,n+1)l where Vcd,l =0

0

o O

0
0. Eq.3-23
1

We let the diagonal terms of initial value be 1 to ensure the covariance matrices
invertible. Figure 3.12 shows the multi-blob model build from the detection result shown in
Figure 3.10. In the RGB color space, we have 4 bins per channel to build the model.
Separating each channel into too many bins may loss correlation between feature domain
and spatial domain. We rank the blobs according to n,, and mark the top 5 blobs with their

mean values in the RGB color space.

Figure 3.12 Five blobs that appear most frequently are marked with their mean
values in the RGB color space.

Based on the multi-blob model, we can roughly know how the colors distribute in the
bounding ellipse in both spatial domain and feature domain. The knowledge of the relative
positions among these blobs can increase tracking accuracy.
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3.2.3 Similarity Measure

We are not willing to define the similarity between two multi-blob models but to define
the similarity between a region of the image frame and a multi-blob model. The mean-shift
process deduced from the similarity between two multi-blob models has to build a model
for every iteration. This will cause information loss and increase computational complexity.
In Eqg. 2-10, we accumulate the similarity value caused by each pixel. Comparing to the
model, a closer pixel with a similar color causes a larger similarity. We follow this idea and
define our similarity measure based on a multi-blob model.

Let y be the center of the target ellipse and & be the center of the model ellipse.
Then, we define the similarity J as

ZZW( Vi = 9) (g = 1) Vg )W(G = feg Vog ) TsS (b( ) —d). Eq. 3-24

iel d=1

XV X'

where w(>‘<,V)=exp[— J is a multi-variant Gaussian kernel, I ={y,,c;} is the
samples enclosed by the target ellipse, and -N ' is the number of samples. Each pixel is
weighted by the Gaussian kernels in both spatial domain and feature space and then
multiplied by the reliability coefficient. The definition can be regarded as the mean of the
weighting. Again, as an example, we detect the moving object and build a multi-blob model
using Frame 15 of the Hans sequence. We apply the same bounding ellipse to Frame 250

and calculate the similarity surface around the object. Then, we find the location y with
the maximal similarity value. Figure 3.13 shows that the similarity measure now is more
discriminative than the Bhattacharyya coefficient, which has been shown in Figure 3.6.

The similarity measure can be generalized to be

ZZW( Hsq _ﬁ)’vsd )a W(Ci — Heg Ve )ﬂTd5(b(yi)_d) » EQ.3-25

iel d=1

"<l

where « and £ represent the dominance of the Gaussian kernel. The spatial Gaussian
kernel will dominate if «>>f.If both « and g are much smaller than 1, the similarity

will become

IIZ

/—\

~d), Eq. 3-26

which corresponds to the average reliability of the samples enclosed by the bounding ellipse.
For simplicity, we choosea = 5 =1.
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Figure 3.13 (a) The moving object detected in Frame 15 of the Hans sequence.
Build a multi-blob model according to the red bounding ellipse. (b) The region with
the maximal similarity with the model in Frame 250 of the Hans sequence. (c) The

similarity surface where y is the center of the bounding ellipse in (b).
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3.2.4 Mean-Shift Tracking Procedure

The distance function is defined as

L(y)=—logJ(y). Eq. 3-27
The gradient of the distance function with respect to the vector y is
_ vi(y)
VL(Y)=———7"="> Eq. 3-28
where

VI(9) == 3 S V(3 - 9)~ (g — 1) oy JWE, ~ g Ve ) o8 (b(3,) )

iel d=1

%;g[(ﬁsd _ﬁ)_(yi - y):lg(Ay_Aﬁ’Vsd )W(AC’Vcd )Tdé‘(b(yi)_d);

and g() :—W(.) is the shadow Kkernel, which is also a multi-variant Gaussian profile in

our case, with Ay =(y,-V), A= (@y—p), AC=(C - i, ). Thus, Eq. 3-28 becomes

VL(V)— iel d=1 _
Z; g (A - ALV, )W(AC,V,, )T, 8 (b(y,)-d)
_ ZB:[Vi—ﬁsd]g(Ay A1,V )W(AC, V) T,5(b(Y;)—d)
R— ~y+@.  Eq.3-29
. dZ:;g(Ay—Aﬁ,Vsd)W(AC,Vcd)Td(S(b(yi)—d)

By letting Eq. 3-29 equal to 0, we have

ZZB:[Vi — f1g |9 (A, — Af1Vyg )W(AC, V) T,5 (b(Y,)—d)
LA +a, Eq. 3-30
> > 9(AY, - AV, )w(Ac,V,, )T, (b(y,)-d)

iel d=1

where Ay, =Yy, —Y, and an iterative mean-shift formula is obtained.

33



Or by lettingVJ (y) =0, we have

S S (1 — )~ (5~ )] 6 (A A V. )W(AC.V.g )T, (b(5,) —d ) =0

iel d=1

which is the same as Eqg. 3-30.

For the generalized similarity measure as expressed in Eq. 3-25, we have

V(9) =35 2 Sl ~ )3, 9)Jo( (313~ (1~ ) Ve )

iel d=1
xg (Ay_Aﬁ'Vsd )W(CI _ﬁcd ’Vcd )ﬁ Tdé‘(b(yl)_d)'

where g()=-w() isalsoa multi-variant Gaussian profile in our case. Therefore,

+u, Eg. 3-31

which is the generalized mean-shift equation.
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3.2.5 Updating Size and Orientation

To update the size and orientation of the bounding ellipse, we refer to the region
around the bounding ellipse. The bounding ellipse is defined as the 2-sigma contour. Here,
we consider the band between the 3-sigma contour and the 2-sigma contour as the
background field. Figure 3.14 indicates the foreground region and the background region
based on a bounding ellipse.

Background I

Foreground I

Figure 3.14 The foreground region and the background region based on a bounding
ellipse.

To reach the modification of bounding ellipse, we modify each color blob first. We
re-compute g, and V,, of each blob by weighting the samples belonging to I andl..

Again, for computational efficiency, the formula must be recursive.

Let o =W((V~Y)—(fy —2) Ve ) W(C —/1g.Vyy)” be the weighting of the

ith sample y, =(x;, y;), whered =b(y,).

n n+l n
0% 20 20%
:ux,n = % = /ux,n+l = T11+1 = I711+l n+2+l n+1
2.4 2.0 26 DG
i=1 i=1 i=1 i=1
= Qn x,n + qn+1 n+11?
Qn + qn+l ’ Qn + qn+1
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whereQ, = > ¢, , 4, =0.
i=1

Similarly,
Qn qn+1
My g = gty Ay
o Qn + qn+1 . Qn + qn+l "
- Qn - qn+1 V.
TR M+ Vou Eg. 3-32
" Qn + qn+1 " Qn + qn+1 "

n 2 n+l 2 n 2 2
‘ qi (Xi _lux,n) qu (Xi _/ux,n+1) ; qi (Xi _/ux,n+l) + qn+l (Xn+1 _:ux,n+l)

O-x,n = = n = O-f,ml = = n+1 = =

Qn +qn+
Zqi iZ:l“Qi '
where ZH:Q. (Xi _;ux,n+1)2 _Zn:qi (Xi ~Hyn )2
i=1 i=1
= ZQ. |:(;ux,n _:ux,n+1)(2Xi ~ My T Hxn ):|
i=1

= (:ux,n _:ux,n+l){zn: Qi X — ,ux,lenjl

i=1

= Q (:un+1 _Xn+1)2

2

i g (Xi ~ Hyn )2 + Cgﬂ (Xn+1 - :ux,nJrl)2 + 0 (Xn+l - /ux,n+1)
2 i=1 n

2

Qn + qn+l

Qn 0_2 + qn+1

= x,n (Xn+1 - :ux,n+1)2 )
Qn + qn+1 Qn

where o}, =0;,=0.
Similarly,

2 Qn 2 qn+1

= o, .+
y,n+1 y,n
Qn + qn+1 Qn

o

( yn+1 - :uy,n+1 )2 )
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_ Qn qn+l
Xy,n+l O-xy,n +
Qn + qn+1 Qn

o)

(Xn+1 - lux,n+1)( Yo — luy,n+1) ,

Q bis(o _ = (v _ =
Vn+ = - Vn + yn+ — Hn, yn+ —Hnia) .
1 Qn n qn+l Qn ( 1 1) ( 1 1)

Eq. 3-33

Based on Eq. 3-32 and Eq. 3-33, each blob can be updated. To obtain the new

bounding ellipse, we have to merge together all the blobs. By definition,

ng n B Ny B
D9 20 D22 DNy
:[lsd — |=r1] — /7 — Jln — d=1B|=1 — d:1B
’ 2N 2N
d=1 d=1
Ny
X? 5
Oy == 1y = lez =Ny (O'fd +/de)
d i=1
n B
ZXJZ ZZXZ an (Gfd +:U>fd)
oy = =l -4
2N 2.
d-1 -1
Similarly,

G; == _/ui,
DNy
a1
B
Z Ny (O-xyd + Ly Hyg )
ny =2 B _/ux/uy '
DN
d=1
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sV =42 — [ [ Eq. 3-35

From Eq. 3-34 and Eq. 3-35, the overall mean vector and covariance matrix can be
regarded as the weighted combination of blobs with weighting n,. To consider the

reliability, we modify Eq. 3-34 and Eq. 3-35 to be

B B

7 = /4 T —

d s

Zn Ty gy anTd (Vsd +/usd/usd)
I[l: d lB V= d=1

T R— B
Z ng T, Z ng T,
d=1 d=1

—u U Eq. 3-36

where ¥ represents the dominance of reliability. A large » will cause the mean vector and
covariance matrix to be dominated by certain blobs with high reliability.

When using Gaussian profile to estimate a distribution f (x, y), the variance should be

obtained from o? _J' L (x— ,u) f (x,y)dxdy, where y:f f xf (x,y)dxdy . In our

B

case, the samples are weighted by qi=w((yi—y)—(,usd—y),vd)aw(q—ﬁcd,vcd)

S

Hence, the variance should be

O'x o |V|}/ JZOO_LO /ux ([X y] I: Hy ]V)a ( /ucd’ cd) dXdy Eq. 3-37

where w(C, — 14,V ) is @ Gaussian random variable independent of xandy. Due to the

independence, w(c, —f,,V,,) does not affect the variance. However, the above procedure

only considers the region enclosed by the t-sigma contour. Hence, the covariance matrix
obtained by Eq. 3-36 is smaller than the true one.

~2 ~
Let the true covariance matrix be V:{Cj—* O:xzy}:f(a,t)xv. Since f(a,t)is
O—Xy O-y

independent of orientation, we assumeo,, =0 and z=[0 0] for simplicity.
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X2 —ayz

ol = <ﬂ> xze 2ot e % dxdy Eq. 3-38
27ra o,
where | is the region enclosed by the t-sigma contour. By letting X = \/?X Y = \/?y, Eq.
o, o,

3-38 becomes

-X* -y?
2

Oy =

dXdy

27ra

Let X =Rcos@ and Y =Rsinéd, we have

~2 + oa ;I'\’Z
af:zaxz 02 ) 'R°cos® fe 2 dRd@.
o ”
5‘2 o7 -R?
=5 5], cos ¢9d¢9.f R% ? dR.
nax o ”

_R? -R?

By partial integral, we let U=R? ,dv=Re 2 dR = dv=2RdR ,v= —e 2

~2 20 +1 -R? Jat —R?
o 2z COS + —
| d| —R% 2 +2j Re ? dR
2o 0 '
~2 —at? R2 Jat
6 - -
= | —qt’e 2 —2e 2
2a .
~2 —at? 2 -at?
(o) — ot —
:_);|:1_e 2 _ e 2 :| Eq 3-39
a 2
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B B
anTdy/[lsd anTdy (Vsd +ﬁ;—dﬁsd)
d= LV o= | —a | f(at). Eq. 3-40

a0
B ’

B
2Ty 2T
d=1 d=1

/j:

For t=2, a=1, f(a,t)=1.6835.

In Figure 3.14, the bounding ellipse is moved to the position with the maximal
similarity. The motion of bounding ellipse is pure translation. Applying this updating
process after the tracking process will make the bounding ellipse better fit the moving
object. We set the » in Eqg. 3-40 to be 0.3. Figure 3.15 shows the result of the size and

orientation updating.

Figure 3.15 Result of size and orientation updating. The blue ellipses represent the
2-sigma contour and the 3-sigma contour with respect to the original covariance
matrix. The red ellipse represents the 2-sigma contour with respect to the modified
covariance matrix.
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3.2.6 Updating Reliability

To avoid distraction of tracking, colors appearing in both foreground field and
background field should have lower reliability. Furthermore, if a color blob represents
background pixels, the position relative to the center of the bounding ellipse will be varying
during the tracking process. Based on these ideas, we proposed two strategies to update the
reliability coefficient. Similar to Figure 3.14, we define the background field and

foreground field as Figure 3.16(a). We let H, (d) be a color histogram for the pixels in the

foreground field and let H, (d) be a color histogram for the pixels in the background field.

Color histogram of background field and foreground field

05 :
_Ha (i
—H.id)
R
o 04} 1
L]
i
T
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_
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na ]
=
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< g1l
] . . " S
10 20 a0 40 50 B0
Index of color bins
(a) (b)

Figure 3.16 (a) The outer ellipse represents the 3-sigma contour, and the inner ellipse represents
the 2-sigma contour with respect to the modified covariance matrix. (b) Color histogram of the

background field and foreground field.

H.(d
DefineT, (d ) = ! ( ) , Where ¢ is a small value, say 0.001, to prevent the dividing

max {H, (d),5}

by zero. Blobs with a small T (d) value may get distracted by the background. At the

same time, we use the samples of foreground field to build a multi-blob model as the target

candidate. The target candidate is denoted as
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Candidate(d ) = (n,, iy Vay flog Vg Ta ) d=1..B, Eq. 3-41
To measure the movement of a blob relative to the center, we define

vy = (A~ Ay Vgt (Mg — AT, ) Eq. 3-42

D1

e g 1 -
as the translation, where Ay, = iy — YV, , Afly = jiy, — i and V' =§(Vsd +V, 1) :
Notice that , is the average of two Mahalanobis distance, one between A, and Ag,,
and the other between Aji, and Az, . The reliability of the d-th blob is thought as

increasable if 4 lies in the 1-sigma contour.

Reliability should be bounded to prevent the tracking behavior being dominated by
certain blobs. On the other hand, reliability, should spread widely to have discrimination
between blobs. Thus, we define the reliability function-as

_1l+ax?

A Eq. 3-43
a+ X?2 a

T(X)

where a represents the discrimination between blobs.-Low reliability blobs can be ignored
if a is large enough.

Feliability function

Ty

Reliability
EDI

B

10 10 10" 10 10

Figure 3.17 Reliability function, both x-axis and y-axis are in the log scale.
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From T,(d),¥, and reliability function, we develop our reliability updating strategy.

There are five steps in updating reliability.

1+ax? aT, -1
Stepl Ty=——"5=>X,=,[—=—.
a+ X a-T,

(vi)
Step2. X, =X,€ ?2

Step3. Casel: T,(d)>3 . X, =X,x15
Case2: 22T (d)>1 |, x,=2%
15
. Xl
Case3: 1>T,(d)  Xe=3h
Step 4. szax(min(loa,xz),i .
10a
1+aX?
Step 5. Td_new=m.

In Step 4, X is bounded to prevent T, =a, which will cause “dividing by zero” in
Step 1. Another reason is to let the reliability be more sensitive. We choose a =20 in
practice. In Figure 3.18, pixels with high reliability are marked in white; oppositely, pixels
with low reliability are marked in black. Pixels remaining the original color represent
medium reliability. Based on the reliability map, moving object can be roughly identified.

Figure 3.18 The reliability map, which can roughly identify the moving object.

43



3.2.7 Updating Target Model

Since a target candidate is already obtained when we update reliability, all we have to
do is to decide when to update the model. The reliability map of two frames in the Watson
sequence is shown in Figure 3.19. Considering the situation in Figure 3.19(a), obviously,
this moment is not appropriate to update the target model. The unexpected background
information may cause tracking failure. In Figure 3.19(b), the bounding ellipse tracks the
moving object well, and the background is with low reliability. This is a suitable moment to
update the target model.

(b)
Figure 3.19 Frames with pixels marked depend on reliability. (a) Frame 50, Sequence
Watson. (b) Frame 65, Sequence Watson.
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To evaluate the adequacy of updating target model, we introduce the two-class

variance ratio. Let T,  be the set of reliability for pixels in the foreground field and T, ,
be the set of reliability for pixels in the background field.

var(T,  +T, ,)

Variance Ratio = ar (Td_f )+ ar (Td_b) ,

Eq. 3-44

The variance ratio of reliability map shown in Figure 3.19(a) is 0.5866 and the
variance ratio of reliability map shown in Figure 3.19(b) is 0.9280. We set a threshold at
0.65. Thus, the target model will be updated whenever the variance ratio is larger than 0.65.
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3.2.8 Overall Object Tracking Process

To sum up, the flow chart of the proposed object tracking procedure is shown in Figure
3.20. Compared to the flow chart of the traditional mean-shift tracking process in Figure 3.3,
we need not to build the candidate during the mean-shift iterations. The location converge

det (Vo) —4 <005

condition is ||y, — ¥, <1 and the orientation converge condition is det(V)

which means the amount of samples varying is less than 5%.

Start
Detection ‘l(
Mo difyring
Orientation
Build Model
Orientation
Tritial Setting Converge ¥
Yes
ﬁ/ Mext Frame / _ _
Build Candidate
Mean Shaft
Tpdate Td
Mo Location Conditional
Converge 7 Update Model
Mo Target Loss 7
Figure 3.20 Flow chart of the proposed object tracking process.

Furthermore, we can do some simple predictions between frames or between
mean-shift iterations to shorten the processing time. On the other hand, the judgment of
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target loss is an additional stage to increase robustness. We have two simple rules to judge
whether the tracking failure or not. The first rule is to check the covariance

matrix V obtained by Eq. 3-40. If det(V)<0, we are not able to define the bounding

ellipse. Recall Eq. 3-17, a negative area is not reasonable. In practice, instead of the
bounding ellipse, a hyperbola is obtained. The second rule is to check the reliability. If all
blobs are with low reliability, the tracking result is likely to be a failed one.
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Chapter 4.
Experimental Results

We present some object tracking results using the proposed algorithm in this chapter.
The Resolution of all sequences is 640x480. The algorithm is implemented with the
MATLAB 6.5 platform and runs on a 3GHz Pentium4 PC with 512MB DRAM. The red
ellipse and blue bounding box represent the result of proposed algorithm and the traditional
mean-shift process, respectively.

In the first experiment, our mean-shift algorithm was run on the sequence “Hans”.
There is neither scene change nor occlusion in this sequence. The tracking result is shown
below. The reliability map is also shown to show how the reliabilities change during
tracking. The multi-blob model is built at Frame 35. All the reliabilities are initialized to 1.
In addition, we ran the traditional mean-shift procedure at the same time, which employs the
“plus or minus 10 percent” scale adaptation method and uses a 16x16x16 histogram in
the RGB space as the model.

Frame 50 Frame 75
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Frame 295

Frame 360
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Frame 420

Frame 485

Frame 515

Frame 630

Frame 695

50



Frame 765

Frame 850

Figure 4.1 Experimental results of the sequence “Hans”. The orientation of the bounding ellipse
and the reliability of blobs can be updated during tracking.

We use the RGB color space and separate each channel into 8 bins; therefore, our
target model contains 512 blobs. The color of pants belongs to Blobs 147 and 148 and the
color of the iron shelves belongs to Blob 148. Therefore, the reliability of Blob 148 should
be high when the moving object is far away from the iron shelves but low when they are
close. Figure 4.2 shows the reliability of these two blobs are properly updated according to

the background information.

10
ol L v
=
& 10’ .
T
o
o'} i
—— Bloh 147
— Blab 143
-“:l'z 1 1 1 1 1 1 ] ]
0 100 200 300 400 4600 GO0 700 800
Frame index
Figure 4.2 The reliability of Blobs 147 and 148. They are updated according to the
background information.
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In the second experiment a more complex clip is tested. Occlusion and scene change
appears. Moreover, the color of cloth is very close to some parts of the background. To test
the robustness of our method, we only separate each channel into 4 bins; therefore, our
target model contains 64 blobs. Figure 4.3 shows the tracking result. We mark the moving
object by the green ellipse instead of the red one when updating the target model.

Frame 140 Frame 185
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Frame 570

Frame 595

53




Frame 830 Frame 885

Figure 4.3 The tracking result of sequence Watson. The target model updates at frame 65.

Due to the distraction caused by the background, the target model has to update at
appropriate moments to track successfully. We use the variance ratio to evaluate the degree
of appropriateness. Figure 4.4 shows the variance ratio of the tracking result.

54




07
0Bs | .
=
I5
o
S 06}
=
E
@
=3
085} .
|:|5 1 1 1 1 1 1 1 1
100 200 300 400 &S00 6BO0 700 8O0 900
Frame index
Figure 4.4 The variance ratio of tracking result.

Since all reliabilities are initialized to be 1, variance ratio at Frame 35 is 0.5. Variance
ratio changes as the update of reliabilities. At Frafné 65, the variance ratio reached the peak
value 0.6743 and the algorithm update the[targgt'model. The variance ratio drops rapidly
when the moving object is close to the door olr 'the"shel\/es'-or when the occlusion happens.

In the third experiment we ran the same'-cmﬂn the second experiment on the sequence
Wesar. This sequence contains zoor’hing- and the moving object moved away from the
camera. Hence, the size of moving object decreased through the sequence. Figure 4.5 shows
the result, where the model was build on Frame 35.
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Figure 4.5 The localization of the traditional mean-shift process is poor when the object’s size
decreases.
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Due to the severe scene change and the complex background, size and orientation
update is not stable. The reliability update is not sensitive enough under this situation.

The definition of target model affects not only the localization, but also the number of
iterations. The better localization will cause a steeper similarity surface and more protruding
peaks. Hence, less iterations are needed.

25 T T T T T T T
— Proposed Mean-Shift Procedure
—— Traditional Mean-Shift Procedure
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5t \ [ b ..p' - "‘t"
|:| 1 1 1 1 1 1 1
0 a0 100 180 200 280 300 350
Frame index
Figure 4.6 Number of iterations when executing the proposed mean-shift process
(red) and the traditional mean-shift procedure (blue).

In the final experiment, we use the sequence Stan, which contains a great difference in
luminance. A complicated background and scene change also appears in the sequence. In
Figure 4.7, the object moved from a shadow region to a bright region at Frame 65. The
severe change in luminance may cause tracking failure.

In prior researches, other features are used to increase robustness. For example, [13]
use 2D image gradients as features, [16] use HSV color space and [17] use so-called excess
color features, such as 2G-R-B, etc. However, to select different features to use in different
cases is cumbersome. In Section 3.2.8, we proposed two simple rules to judge whether the
tracking fails or not.

Whenever the tracker loses the target, our algorithm will restart the tracking process
automatically by detecting the moving object again. Figure 4.7 shows the experimental
result, where the red ellipse indicates the target. The color is switched from red to green to
indicate the restart moment of motion detection..
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Frame 5

Frame 35

Frame 75

Frame 100

Frame 165
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Frame 220 Frame 250
Figure 4.7 The experimental result, where the red ellipse indicates the target. Due to the target
loss, the algorithm detected the object at Frame 75, Frame 185 and Frame 220. We switch the
color from red to green at these frames.
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Chapter 5.
Conclusions

We proposed a complete object tracking algorithm including motion detection, motion
tracking and target updating. We have presented a new model to describe the target, which
contains information in both spatial domain and feature domain. Based on the multi-blob
model, we define a similarity measurement and a mean-shift tracking procedure. After the
location of moving object has been tracked by mean-shift, we design a process to modify
the size and orientation of bounding ellipse. To improve the robustness of the system, we set
a target model updating criterion and some rules to check whether the tracking fails or not.

The proposed object tracking system can deal with the case of scene change and
occlusion. An outdoor sequence with severe change in luminance is also tested. Due to the
localization of multi-blob model and the discriminative similarity measurement, the
proposed algorithm converges faster than 'the ‘traditional one. The size and orientation
update is also achieved.
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