THEUHF L TRFEFEF Y

g2 0% m R OHR 2

Fh S FES R AP EARE A eab s v T ARG BB
PA AR S TR R R - T 0 Ak Y AT R AT L R 2

148 B

(D =451

4\-

TEREAAFTEZ N AP REF AR - I FR S FEF R
Wirz A BEe g oAb d o AT o JIF R 4 R HcE 2 k30
FRLCEFRE > MNIAROEBRRRE ~F TR FICERFEFESOFS
# 5 P Al g(pGaAs)d o FRIEN A RAGRGE K SH - FHRES
Gl F PR TZERANTH IR IRBICRE KA RERF A
o F oA EESFEEF RS R AR A B R A

ii‘-%%)ﬁ(%mexp(—?))itﬁ%iﬁﬁig RAp M GRIESFF ML

i NCTU-EP



S EPE s T B B R 2-3x10 V/eme BT T A B A O I A A
BOFRIERTCEF RTAL D AR 5 RKR B E 80N F M
§FIH S HATR G A 3 B DS S E N B REOBERET (e
BAR PR RDRMEE KPR TR R M E A DLR NP R
FAMMHRLAH DA RARN MEY RFEF P REDE AR

o ¥ -5 T E'J@i 8 Fowler Nordheim (FN)z & 7% % "k #3] -

(ID) z F BR=
LEME 2 PR PR R RS IR R A ER et s A R
fI* % K & 7A& B (Nanoindenter) & ~» + # < & ## (Molecular Dynamics
Simulations) s ## (Si) ~ & (Ge) ~ # 1+ 45 (GaAs) ~ § 1 45 (GaN) ~ 4% 1* 45 (GaSb)
B i 4R InP) KA F M FUR R AT IR g A 48] o
FONRARMA T RS A G R AR RE - BAREE S
B* oo Tt > B & 2 K BA(nanoindentation) ~ &+ 4 s (AFM) ~ #Fm i T
+ B e (SEM) ~ ded2 & k3 (micro-Raman) ~ ¢ 3+ « (FIB) #7500+ &
B (TEM) % 2ima 3 2 SR 1 FUR R 751 de ey 304 88 11 48 4] © $w 25 ohop
BaEn T BRAY Shir IR ¢ 37 pop-out” 7 elbow” IRk A 2 P
R R GFR A B TR Dp R B o @ 2 T RO I g § T4

BB AF] R E g TS 57 pop-in” AR K@ IR AR A4

ii NCTU-EP



Sl o gttt o d ROKRASTERDIPR WY AP BRI
BAPRBHS ApF o BT ROEFA T 0 bR K BRASERY R RAPRT
22V Rel

&3 %4 B (Molecular Dynamics)®@# E_ A>3 p ehF iy » ke Wi i
LER R e T o B2 KRR RREAR Y 0 Berkovich #F 4547 A E 1
A4 Tersof f Fvav #rfpm = e B ¢ FFE L RIFRIMILT - 50 50 R Yzt
PR IR Gear I FFFERIB I 2 R3b B B3 o g B3 R o A ATE I D
P R T B S R (R A ) o g RN R R SR

BUBTII g1 5 84 B OIS S kU R A e o

s

SAF R AHRASATH B RS B MR R B #T &
THND M AT N R AR P g
V45 ~ 4 1Y 45 B 4F)o

iii NCTU-EP



Mesophysical Characteristics of Semiconductors

Student: Sheng-Rui Jian Advisor: Prof. Der-San Chuu
Institute of Electrophysics, National Chiao-Tung University

Abstract

Scanning Probe Microscopes (SPMs) have great impact on the development of

nanoscience. It has attracted attention as potential new tools for nanomechanics
because of their demonstrated ability to manipulate nanoparticles and explore the
properties of matters on atomic level. The purpose of this dissertation is to investigate

the physical mechanisms of semiconductors by means of SPM systems, as following:

(1) NVanofabrication

W;nopattering using Atomic Force Microscope (AFM) has become an important

arca of research, both for fundamental research and for future nanodevice
applications. In this study, AFM tip-induced local anodic oxidation on p-GaAs(100)
surface is presented in an ambient way and, is viewed as a promising lithography

approach for patterning surfaces at nanometer-scale due to its very precise control of
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the feature size. Nanostructures are fabricated at various relative humidities, applied
voltages, anodization times and scan rate of the tip. Results indicate that the higher
aspect ratio of oxide increases because of enhanced electric field or ionic diffusion.

An exponential decay relation of the growth rate with the grown oxide thickness

(ﬁ oc exp(— Iﬂ)) can be found from the kinetic data. It can be seen that the high initial

dt

c

oxidation rates (~300nm/s at 10V) decrease rapidly with decreasing electric field
strength E, and that the oxide practically ceases to grow any further for an electric
field strength of the order of 2—3x 10’V/cm.

Auger electron spectroscopy (AES) experiments confirm the modified structures
takes the formation of anodized p-GaAs(100) surface. Also, the contribution of
ionic diffusion increases about 80% at a higher relative humidity. In addition, it
has become necessary to measure the hardness of materials such as with
micro/nanoscale structures for micro/nano-electromechanical applications. New
techniques are needed to measure at very shallow depth. Mechanical and structural
aspects are of critical importance in integrating nanoscale building blocks into
functional micro/nanodevices, thereby, AFM-based nanoindentation technique was
carried out on anodized structures for determining their nanohardness values. The
electrical characterizations of AFM tip-induced nanooxidation process show that the

Fowler-Nordheim (FN) tunneling current model.
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(IT) Nanoindentation-induced Physical Characterizations of Semiconductors

Mechanical characterizations and deformation mechanisms of semiconductors are

therefore of the significant technological importance, with contact-induced damage,
cracking and epilayer delamination being of particular interest. The part of this thesis
is to investigate the nanomechanical properties and elastic-plastic behavior of single
crystals Silicon (S1), Germanium (Ge), Gallium Arsenide (GaAs), Gallium Nitride (GaN),
Gallium Antimonide (GaSb) and Indium Phosphide (InP) by using the Nanoindenter and
Molecular Dynamics (MD) simulations.

The nanoindentation technique has proved to be of great importance in this field
of research as it allows investigation of the plastic response of surfaces and thin films.
A combination of nanoindentation testing, AFM, Scanning Electron Microscopy (SEM),
micro-Raman Spectroscopy, Focused-ion Beam (FIB) and Transmission Electron Microscopy
(TEM) was used to study phase transformations in semiconductors under contact
loading. The peculiarities in the indentation load-displacement behaviors of Si and Ge
(“elbow” and “pop-out”’) were assigned to a phase transformation upon pressure release.
In GaAs, GaN, GaSb and InP, “pop-in” events were observed during loading, which
can be attributed to the dislocation nucleation. Also, the metastable high-pressure
phases were observed in Si and Ge, suggesting that the nanoindentation-induced

transformation to a metallic phase. On the contrary, phase transition of GaAs, GaN,

vi NCTU-EP



GaSb and InP were not displayed in nanoindentation.

MD simulations are based on interatomic potentials that accurately reproduce

many properties of semiconductors. Nanoindentation simulations were performed by

means of Tersoff’s potential with an ideal Berkovich indenter that was held rigid

during the simulation. To reduce the computing time, the predictor-corrector method

will be adopted to calculate the positions as well as speeds of atoms. We will analyze

the interactions among molecules using the arithmetic method of local interactions.

Theoretically characteristics of the nanoindentation and nanoprocessing system will

be obtained by a great number of numerical calculations performed by computers. The

hardness and Young’s modulus were calculated from the load-displacement curves.

Results of MD simulations will then be compared with the experimental records and,

the qualitative behavior of the theoretical analysis is consistent with the experimental

observations as well.

ords

Nanooxidation~ Nanoindentation~ Molecular Dynamics Simulations~ Atomic Force Microscopy
micro-Raman ~ TFocused-ion Beam ~ Transmission TElectron Microscopy ~ Scanning Electron

Microscopy ~ Auger Electron Spectroscopy ~ Si~ Ge ~ GaAs ~ GaN ~ GaSb and InP.
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Figure 2-14. (a) Waveform voltage applied to the GaAs surface with respect to the
CNT tip when performing an oxidation under AC conditions: Tox is
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sample is Vox), and Tres is the rest time (the voltage applied is Vres);
(b) 2D and 3D AFM images representation of two fabricated dots, left
(DC voltage of 10V) and right (AC voltage, Tox=Tres=50ms, Vox=10V,
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occurred at a lower indentation rate of 20uN/s and (b) multiple pop-ins

has occurred at a higher indentation rate of 100uN/s. 138

Figure 3-12. Typical continuous load-displacement curve of GaSb(100). The
maximum load is 2000uN at a higher indentation rate of 100uN/s.

Arrows denote pop-in events. 139

Figure 3-13. Typical continuous load-displacement curve of InP(100). The maximum
load is 2000uN at a higher indentation rate of 100uN/s. Arrows denote

pop-in events. 139

Figure 3-14. Load-displacement curves measured during nanoindentation of (a) GaN,
GaN:Si and Aly.12Gag gsN; (b) Ing25Gag7sN, Ing3Gag 7N and Ing 34Gag ¢6N.

140

Figure 3-15. Experimental values of (a) Hardness and (b) Young’s modulus for
single-crystals Si, Ge, GaAs, GaN, GaSb and InP. 141

Figure 3-16. SEM micrographs of indentations at an indentation load of 200mN. 142
Figure 3-17. Schematic diagrams of a micro-Raman instrument. The monochromatic
ncident beam is redirected through a set of optical components into the

microscope objective. Objective is used for illuminating the sample and

for collecting light scattered on the sample. Inelastically scattered light

is then dispersed into a spectrum inside the Raman spectrometer unit.

The computer collects Raman signal from the charged coupled device

(CCD) detector attached to the spectrometer and optical images from the

video camera attached to the microscope. 143
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