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Appendix A 
 
Scanning Probe Microscopes 

 

Scanning probe methods have developed into ubiquitous tools in surface science 

and, the range of phenomena investigated by these techniques is continuing to grow. 

These include surface topography, electronic and vibrational properties, films growth, 

and measurements of adhesion and strength of individual chemical bonds, friction, 

studies of lubrication, dielectric and magnetic properties, contact charging, molecular 

manipulations and, many other phenomena from the micrometer down to the 

sub-nanometer scale. For the characterizations of the nanostructures Scanning Probe 

Microscope (SPM) [1] has been applied. SPM is well-known example of a technique 

which can contribute to the most important aspects of nanotechnology: imaging, 

modifying and manipulating matter on the nanometer-scale [2]. The family of SPM 

techniques is very diverse, with different methods specializing in different surface 

properties. Until now, the various SPMs are invented such as Magnetic Force Microscope 

(MFM) for magnetic field [3], Scanning Capacitance Microscope (SCM) for capacitance 

[4], Scanning Near-field Optical Microscope (SNOM) for optical properties [5], Atomic 

Force Microscope (AFM) for surface topography and the fabrication of structures [6], 

Friction Force Microscope (FFM) for the characteristics of the friction forces between 
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two bodies (tip and sample) [7] and etc. 

AFM and Nanoindenter, members of SPM group, are significantly tools to scientific 

researches and applications for the topography diagnostics, the mechanical properties 

and fabrication mechanisms of materials. In this section, the historical background 

and operational principles of AFM and Nanoindenter are introduced. 

 

 

A-1 Atomic Force Microscope 
Soon after Scanning Tunneling Microscope (STM) was invented, it was evident that a 

similar kind of scanning microscope was needed that could be used for non-conductor 

surfaces. Historically, there were some inventions that operated on principles which 

could be useful as a basis for such instrumentation. The general principle of operation 

is almost similar in STM and AFM. The first AFM was developed five years after the 

introduction of the STM [8-9]. Based on the same principles as for STM, the AFM 

was later developed for non-conducting solid surfaces [8]. 

Therefore, AFM can operate on conducting and non-conducting surfaces [7]. Most 

often, a micro-machined cantilever with a sharp tip on the edge is used as the probe, 

and either the sample or the probe is mounted on a piezoelectric tube that acts as a 3D 

actuator. Cantilever deflection due to tip-sample interaction is measured by casting a 

laser beam on the cantilever and detecting the reflected beam with a position sensitive 

detector (PSD) [10], please see Fig.A1(a). 

A variety of tip-sample surface interactions may be measured by an AFM, 

depending on the separation between tip and sample. At short distances the tip mainly 

experiences interatomic forces: the very short range (~0.1nm) Born repulsive forces 

and the longer range (up to 10nm) van-der-Waal (vdW) forces. At distances of a few 
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nanometers, vdW forces are sufficiently strong to move macroscopic objects, such as 

AFM cantilevers. vdW interactions consist of three components: polarization, 

induction and dispersion forces. For two identical interacting gas molecules, for 

example, the vdW potential can be expressed as the sum of three components as: 
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where 0ε , T, µ and α are denoted as the permittivity of vacuum, the temperature, the 

permanent dipolar moment and the polarizability of the molecules, respectively. wh  

is the ground state energy of electrons, z is the distance between the interacting 

molecules and C1 is the London coefficient. 

Describing the AFM tip and sample interactions, the attractive and repulsive 

potential pairs have to be summed for all interacting atoms with consideration of the 

local geometry, material properties and experimental force vs. distance curve is 

applied, that can be registered by AFM while approaching the tip towards the sample. 

Typical variation of the tip-sample interaction force with the separation in between 

them is illustrated in Fig.A1(b). The vdW potential between two macroscopic bodies, 

for example a sphere (like the AFM tip end) and a plane (the sample surface), can be 

approximated as [11]: 
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and the vdW force as: 
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where R is the radius of the sphere and A is the Hamaker constant, 211
2 ρρπ CA ≈ , 

that characterizes the properties of the interacting materials. ρ1 and ρ2 are the densities 

of the interacting bodies. 

Two distance regimes are labeled on Fig.A1(b): 1.) the contact regime and 2.) the 
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non-contact regime. In the contact regime, the cantilever is held less than a few Å 

from the sample surface and the interatomic force between the cantilever and the 

sample is repulsive. In the non-contact regime, the cantilever is held on the order of 

tens to hundreds of Ås from the sample surface, and the interatomic force between the 

cantilever and sample is attractive. 

AFM operates in the following way: the AFM tip is in direct contact with the 

sample and measures the force between sample and tip. Compared to the STM, this 

alternative approach to the feedback is a major advantage for the AFM and enables 

the investigation of all kinds of materials ranging from insulators to living cells. 

Typically, pyramidal silicon nitride tips are used, which have a radius of curvature on 

the order of 100Å. The Si3N4 cantilever of an approximate 200μm length and a spring 

constant of 0.06N/m or 0.12N/m are generally used. Recently, much research has 

been carried out on improving the shape and other characteristics of the cantilever. 

AFM has thus become a versatile modern technique of immense applications in such 

areas as surface science.  

 

§ Contact mode 

In contact AFM (cAFM) mode, also known as repulsive mode, an AFM tip makes soft 

“physical contact” with the sample. The tip is attracted to the end of a cantilever with 

a low spring constant, lower than the effective spring constant holding the atoms of 

the sample together. As the scanner gently the tip across the sample, the contact force 

causes the cantilever to bend to accommodate changes in topography. To examine this 

in more detail, refer to the Fig.A1(b). 

At the right side of the curve the atoms are separated by a large distance. As the 

atoms are gradually brought together, they first weakly attract each other. This 

attraction increases until the atoms are so close together that their electron clouds 
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begin to repel each other electrostatically. This electrostatic repulsion progressively 

weakens the attractive force as the interatomic separation continues to decrease. The 

force goes to zero as the distance between the atoms reaches a couple of angstroms, 

about the length of a chemical bond. When the total vdW force becomes positive 

(repulsive), the atoms are in contact. The slope of the vdW curve is very sharp in the 

contact regime. Consequently, the repulsive vdW force balances almost any force that 

attempts to push the atoms closer together. In AFM this means that when the 

cantilever pushes the tip against the sample, the cantilever bends rather than forcing 

the tip atoms closer to the sample atoms. Even if you design a very stiff cantilever to 

exert large forces on the sample, the interatomic separation between the tip and the 

sample atoms is unlikely to decrease much.  

The AFM tip itself consists of a cantilever that supports the tip. The cantilever is 

connected to a bulk region needed for the handling of the AFM tips with tweezers. 

Normally the whole system consisting of tip, cantilever and bulk, is fabricated of the 

same material, commonly silicon. In a simple picture, the cantilever is described as a 

leaf spring with a characteristic spring constant k. In the contact mode, a contact force 

FC is applied between the tip and the sample surface during the scanning of the 

surface with xyz-piezo-resistive crystal. A simple idealizes picture of this process is 

shown in Fig.A1(a). With the spring constant k of the cantilever the force FC is easily 

calculated with Hooke’s law: FC=k△z, where △z is the deflection of the cantilever 

out of equilibrium. The AFM feedback loop measures the contact force between the 

tip and the surface with the help of a laser that is focused onto the cantilever. The 

laser beam is reflected at the cantilever top and shines onto a photo detector. The 

deflection and thus the change of the contact force is monitored by measuring the 

voltage variation dV at the detector, Fig.A1(a). The height information is obtained by 

recording the voltages applied to the z-piezo, which are needed to keep the signal of 
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the photo detector constant. Finally, the sample topography is visualized by 

converting the voltage applied to the z-piezo into height information dz and plotting 

the data array in a color-coded image. 

The cAFM mode successfully performed many pioneering AFM applications; 

however, it suffers from several drawbacks. The constant downward force of the tip 

onto the sample surface is not always low enough to avoid damaging certain sample 

surfaces. 

 

§ Non-contact mode 

The non-contact mode AFM (ncAFM), invented in 1987 [12], offers unique 

advantages over other contemporary scanning probe techniques such as cAFM and 

STM. ncAFM is one of several vibrating cantilever techniques in which an AFM 

cantilever is vibrated near the sample surface. The spacing between the tip and the 

sample for non-contact mode is on the order of tens to hundreds of Ås. This spacing 

is indicated on the vdW curve of Fig.A1(b) as the non-contact regime. 

The ncAFM is desirable because it provides a means for measuring sample 

topography with little or no contact between the tip and the sample. Like cAFM, 

ncAFM can be used to measure the topography of insulators and semiconductors as 

well as conductors. The total force between the tip and the sample in the non-contact 

regime is very low, which is advantageous for studying soft or elastic samples. In 

ncAFM mode, the system monitors the resonant frequency (typically from 100 to 

400kHz) or vibrational amplitude of the cantilever and keeps it constant with the aid 

of a feedback system that moves the scanner up and down. By keeping the resonant 

frequency or amplitude constant, the system also keeps the average tip-to-sample 

distance constant. As with cAFM, the motion of the scanner is used to generate the 

data set. 
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§ Tapping mode 

Tapping mode AFM (tAFM) is similar to ncAFM, except that for tAFM the vibrating 

cantilever tip is brought closer to the sample so that at the bottom of its travel it just 

barely hits, or “taps” the sample. The tAFM operating region is indicated on the vdW 

curve in Fig.A1(b). As for ncAFM, for tAFM the cantilever’s oscillation amplitude 

changes in response to tip-to-sample spacing. An image representing surface 

topography is obtained by monitoring these changes. Some samples are best handled 

using tAFM instead of contact or ncAFM. tAFM is less likely to damage the sample 

than cAFM because it eliminates lateral forces between the tip and the sample. In 

general, it has been found that tAFM is more effective than ncAFM for imaging 

larger scan sizes that may include greater variation in sample topography. tAFM has 

become an important AFM technique since it overcomes some of the limitations of 

both cAFM and ncAFM. 

In closing, the contact mode is generally used in most AFM procedures. Contact 

mode can also be operated under fluids with similar high resolution to that in air. The 

tapping mode is achieved by oscillating the tip close to its resonance frequency. This 

has provided much improvement in images in some systems. In non-contact mode, the 

tip is never in contact with the substrate, which differs from the contact mode. This 

mode is found to be most suitable for soft materials. The probe encounters the 

attractive and the repulsive force field of the sample during a period of vibration of 

the cantilever is called the tapping mode. The interactions forces, attractive or 

repulsive, as small as few nano-Newtons between the cantilever and the sample can 

be measured. In the non-contact mode, the net force detected is the attractive force 

between the tip and the sample. On the other hand, in the contact mode, the net force 

measured is the sum of the attractive and repulsive forces. Thus, these two modes are 

different as follows: 
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 Contact mode: attractive forces + repulsive forces 

 Non-contact mode: attractive forces 

As above mentioned, due to these capabilities the AFM became one of the most 

important tools for the analysis of surfaces in research and industrial applications. 

In this dissertation, a SPM (CP-R SPM, USA) apparatus is used to measure the 

topographic properties of the samples. AFM scanning uses only the two vertical 

quadrants to measure vertical deflection of the cantilever thus showing the surface 

profile of the sample. For each AFM operation, a constant scan speed of 1μm/s was 

used with a constant load of 30nN applied to the cantilever. The measurement tip is 

made of Si3N4 with a cantilever of lower stiffness and thus yielding measurements of 

greater sensitivity. AFM instrument and an AFM tip are illustrated in Figs.A2(a)-(b). 

 

 

A-2 Nanoindenter 
Depth-sensing Indentation (DSI), instrumented indentation, continuously recording 

indentation technique, mechanical properties microscope, ultralow-load indentation: 

all these names are used interchangeably in literature for the same testing technique. If 

indentations are performed in the nanometer-scale depth range it is usually referred to 

as nanoindentation. A diamond tip is pressed into the sample surface and, subsequently, 

after having reached a given maximum depth or maximum load, the tip is moved. 

During the procedure, the load on, as well as the displacement of, the indenter are 

recorded. Results of such an experiment is therefore not only the value of hardness 

but the complete history of the deformations occurring during this indentation test, as 

saved in the so-called load-displacement curve of Fig.A3. This load-displacement 

curve consists of a loading and an unloading curve. The loading curve characterizes 
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the resistance of the sample against the penetration of the tip into the material and 

reflects both the elastic and the plastic properties of the tested material. The unloading 

curve is mainly determined by elastic recovery of the indent. From such the curve 

hardness and the Young’s modulus of the material can be determined by using an 

appropriate analysis model. Thus, two prerequisites are necessary for a successful 

application of the DSI technique: an apparatus capable of performing indentation 

experiments while simultaneously recording the applied load and the corresponding 

displacement of the indenter and a method for the analysis of the measured 

load-displacement curves. 

 

§§ How nanoindentation works?! 

(a) The SPM tip is moved along the sample to create an image of the surface, 

please see Fig.A4(a). 

(b) While imaging, the tip is free to move up and down since no load is being 

applied, please see Fig.A4(b). 

(c) An indentation is made by charging the distance between capacitance 

(which the Hysitron system reads as a load) which forces the diamond tip 

down into the sample; please see Fig.A4(c). 

 

§ Hysitron NanoIndenter 

The Hysitron TriboScope is an add-on-DSI system to a commercial SPM (Triboscope, 

Hysitron Inc., USA); consisting of a force-displacement transducer, a transducer 

controller and a computer, please see Fig.A3. In addition, the specifications and 

features of the Hysitron TriboIndenter are given in Table A1. The SPM software is 

used to interpret the voltage signal from the transducer, and the microscope piezos 

enable displacement control as imaging. The combination of the DSI system with a 
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SPM has a symbiotic effect: it extends the SPM in the capability of making DSI 

experiments with a high load (100nN) and depth resolution (0.2nm) and, it enables the 

DSI system to take images of the sample surface by using the same diamond tip for 

imaging and for indentation. 

The heart of the Hysitron TriboScope NanoIndenter is a three plate capacitive 

force-displacement transducer which is displayed in Fig.A4. It consists of two fixed 

drive plates and a pick-up electrode that is spring mounted to the housing. The 

diamond tip is mounted to the pick-up electrode which can move up and down. To 

perform an indentation, an electrostatic force is generated between the pick-up 

electrode and a drive plate. The amount of this force, Fel, is proportional to the square 

of the voltage applied to the drive plate, V [13]:  

2VkF eel ⋅=                         (A4) 

where the ke is an electrostatic force constant. It is determined by the manufacturer 

and is supplied with the transducer. Using ke, the force-time scheme set by the 

operator is translated by the control software into a voltage-time scheme which is than 

applied to the transducer. During the indentation process, the load on and, the 

displacement of, the indenter are measured as a function of time. From the load-time 

and the displacement-time plots, the corresponding load-displacement curve is 

obtained. The nanoindenter instruments are illustrated in Figs.A5(a)-(c). 

 

§ MTS NanoIndenter 

Nanoindenter is operated by MTS TestWork® instrument control environment, please 

see Fig.A6, which is common to all MTS test equipment and allows the user infinite 

flexibility in the specification of test procedure and data analysis. The sample is 

mounted on an accuracy controlled x-y stage for precise positioning of indents. Force 
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and displacement versus time are recorded during the cycle of indentation from which 

standard output, e.g. hardness and elastic modulus (Oliver-Pharr method), calculation 

of hardness and modulus as a function of penetration depth. 

Accessories 

 CSM (Continuous Stiffness Measurement) performs modulus calculation 

at hundreds of points during a single indent. 

 DCM (Dynamic Control Modulus) allows highest resolution testing. 

 High Load allows loading up to 500mN without loss of resolution. 

 

Specifications 

 CSM: Maximum depth—500µm; Depth resolution—< 0.01nm;    

Maximum load—500mN; Load resolution—50nN. 

 DCM: Maximum depth—15µm; Depth resolution—0.0002nm;  

Maximum load—10mN; Load resolution—1nN. 

Hysitron Nanoindenter monitors and records the load and displacement of the 

indenter, a diamond Berkovich three-sided pyramid, with a force resolution of about 

50nN and displacement resolution of about 0.1nm. A triangular pyramid (Berkovich) 

diamond indenter was employed for all experiments, which is preferred over the 

four-sided Vickers or Knoop indenter because a three-sided pyramid is more easily 

ground to a sharp point [14]. This post-test in-situ imaging capability provides the 

ability to verify that the tests were performed in the anticipated location, which 

maximizes the reliability of record and aids in explanation of unexpected test results. 

Hardness and elastic modulus were calculated from the recorded load-displacement 

curves. The indentation impressions were then imaged in-situ using the same indenter 

tip. A typical indentation experiment consists of four subsequent steps: approaching 

the surface; loading to peak load at a loading rate of 10μN/s; holding the indenter at 
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peak load for 10s; finally unloading completely. The hold step was included to avoid 

the influence of creep on the unloading characteristics since the unloading curve was 

used to obtain the elastic modulus of a material. For more details on nanoindentation 

experimental techniques, please see Ref.15. All nanoindentation tests were performed 

when the thermal drift dropped down to 0.01nm/s. The thermal drift effects were 

corrected for each test using a holding segment in the air before indentation. 

On the other hand, though many mechanisms have been proposed, a large amount 

of influencing factors in microstructures and experiments make it impossible to find a 

dominant mechanism suitable for every system investigated. For instance, the 

nanohardness could be overestimated since the substrate effects may be 

overwhelming for larger penetration depth, and discontinuous measurement makes it 

difficult to define the initial slope of unloading curve. Thus, CSM technique [16-17] 

is required in nanoindentation measurements. This technique is accomplished by 

imposing a small, sinusoidally varying single in top of DC single, for driving the 

motion of the indenter. The records are obtained by analyzing the response of the 

system using a frequency-specific amplifier. This technique allows the measurement 

of contact stiffness at any point along the loading curve and not just at the point of 

unloading as in the conventional measurement. In CSM technique of MTS 

NanoIndenter® XP, a harmonic force is superimposed to the normal applied force. 

This oscillated force with known phase and amplitude interacts with the sample, 

which responds with a displacement phase and amplitude characteristic of the 

stiffness and damping of contact with the indenter. Thus, the stiffness data along with 

load and displacement curve are recorded. The hardness and elastic modulus can be 

calculated using the CSM stiffness data acquired during the indentation experiment. 

Hence, CSM allows hardness and elastic modulus to be determined as a function of 

penetration depth with a single indentation load/unload cycle. 
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For MTS NanoIndenter® XP, the cyclic tests were performed in following manner: 

loading to the maximum load and unloading by 90%; reloading to the maximum load 

and unloading by 95%; hold for 30sec at 10% of the maximum load for thermal drift 

correction and complete unloading. The maximum indentation loads used were 

80-200mN for all materials, please see Fig.A7(a). 

Currently, two variants of the method are in use: (i) with monotonic loading and 

unloading, in which the elastic modulus and hardness are determined from the 

unloading curve, and (ii) CSM mode that a small harmonic signal is added to the 

monotonically increasing basic load. The latter method makes possible the continuous 

determination of properties during loading from “zero” to the maximum indentation 

load. This can be especially useful for samples whose properties change with depth 

since the variation of properties with depth can be obtained through a single test. The 

difference of operation model of Hysitron (Fig.A7(b)) and MTS-CSM technique 

(Fig.A7(c)) NanoIndenters can be clearly displayed, which the load-displacement 

curve of GaN are presented. 

 

§ Tips 

The tip is a very important part of nanoindentation testing. Indenters with various tip 

shapes are used in indentation testing: sphere, 4-sided pyramids and cones. In 

nanoindentation testing 3-sided pyramids are usually used, because they are easier to 

fabricate with sharp tips than 4-sided pyramids. Several types and parameters of the 

indentation tips are presented in Fig.A8 and Table A2 [18].  

Probe tips are even more important in nanoindentation, for the material properties 

are calculated based upon their dimensions. Tips of the same geometry as 

macroscopic testing are used at this scale: spheres, flat punches, cones and pyramids. 

Spherical tips are not self-similar; therefore the induced strain increases with 
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indentation penetration depth. This leads to scaling of the hardness with indentation 

penetration depth in materials that strain harden. Pyramidal and conical indenters are 

self-similar and, the ration of radius to depth is constant. Theoretically materials that 

have homogeneous hardness should have the same result independent of indentation 

penetration depth. It is common for hardness to change with indentation load or depth, 

even in the case of self similar tips. There is one significant difference in the 

pyramidal indenters used in nanoindentation. Three sided objects always meet at a 

point. The radius of the apex is critical because it dictates the contact area. Tips are 

usually categorized as shape and blunt. A sharp tip hat may reach critical stresses at 

very low loads, acting as a knife cutting through the material creating new surface 

with little elastic deformation. Also, with blunt tips elasticity plays a more important 

role. The larger contact area means that higher loads must be used to initiate plasticity. 

Depending on the properties being studied there may be an optimal tip radius. 

The majority of our dissertation has been done with a Berkovich indenter tip. 

Fig.A9 is a sketch of the 3-sided pyramidal indenter. The Berkovich indenter tip has a 

face angle of 65.3o, which results in an equivalent cone angle of 70.32o. The face 

angle was chosen to give the same projected area to depth ratio of a Vickers indenter. 

A typical Berkovich indenter has a radius on the order of 50nm [19], which is 

supplied from Advanced Semiconductor Engineering (ASE) Group-Stress LAB. 
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Table and Figure Captions 
 

Table A1. Specifications and features of the Hysitron TriboIndenter. 

Table A2. Projected area, intercept corrections, and geometry correction factors for various types of 

indents. The semi-angles givens for pyramidal indenters are the face angles with the 

central axis of the indenter.  

Figure A1. (a) AFM apparatus principle. Cantilever movement on a substrate under controlled 

constant force or other parameters; (b) Empirical force vs. distance (i.e. tip-sample 

separation) curve that reflects the main interactions between the scanning tip and 

specimen surface during AFM measurements. 

Figure A2. (a) AFM instrument and (b) an AFM tip. 

Figure A3. Schematic of the TriboScope in use with a SPM. The SPM contributes the imaging 

software and displacement control. The indentation system consists of the transducer, 

controller and a separate data acquisition system. 

Figure A4. Schematic of the three plate capacitive force-displacement transducer of the Hysitron 

TriboScope. And (a)-(c): The nanoindentation works processes. 

Figure A5. The Hysitron TriboScope Nanoindenter apparatus. 

Figure A6. The MTS NanoIndenter® XP Nanoindenter apparatus. 

Figure A7. GaN nanoindentation with (a) MTS NanoIndenters-basic model, (b) Hysitron and (c) 

MTS NanoIndenters-CSM model. 

Figure A8. The geometry of indentation tips. Here, hc is depth of penetration easured from the edge 

of the circle or area of contact. The related parameters can be seen in Table A1. 

Figure A9. (a) The image of a Berkovich indenter tip and (b) Schematic its equations for 

dimensions of tip indicate in schematics. 
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Table A1. Specifications and features of the Hysitron TriboIndenter. 

 

 

Table A2. Projected area, intercept corrections, and geometry correction factors for various types of 

indents. The semi-angles givens for pyramidal indenters are the face angles with the 

central axis of the indenter. 
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Figure A1. (a) AFM apparatus principle. Cantilever movement on a substrate under controlled 

constant force or other parameters; (b) Empirical force vs. distance (i.e. tip-sample 

separation) curve that reflects the main interactions between the scanning tip 

and specimen surface during AFM measurements. 
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Figure A2. (a) AFM instrument and (b) an AFM tip. 
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Figure A3. Schematic of the TriboScope in use with a SPM. The SPM contributes the imaging 

software and displacement control. The indentation system consists of the 

transducer, controller and a separate data acquisition system. 
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Figure A4. Schematic of the three plate capacitive force-displacement transducer of the Hysitron 

TriboScope. And (a)-(c): The nanoindentation works processes. 
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Figure A5. The Hysitron TriboScope Nanoindenter apparatus. 

 

 

Figure A6. The MTS NanoIndenter® XP Nanoindenter apparatus. 
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Figure A7. GaN nanoindentation with (c) MTS NanoIndenters-basic model, (b) Hysitron and (c) 

MTS NanoIndenters-CSM model. 
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Figure A8. The geometry of indentation tips. Here, hc is depth of penetration easured from the edge 

of the circle or area of contact. The related parameters can be seen in Table A1. 
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(a) 

(b) 

Figure A9. (a) The image of a Berkovich indenter tip and (b) Schematic its equations for 

dimensions of tip indicate in schematics. 
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Appendix B 
 
Molecular Dynamics Simulation 
Methodology 

 

Basic understanding of the material properties often requires knowledge of the 

understanding energetic and interaction mechanism on a microscopic-level. In most 

situations this knowledge is not accessible to experimental tools. In these cases, which 

include the majority of material systems and phenomena, the use of computer-based 

techniques seems to promise particular success. They make it possible to obtain 

accurate numerical results about a complex system. Another merit of the computer 

simulation methods is that they can produce “macroscopic” behavior under precisely 

controlled conditions which can be varied by the observatory and, by so doing one 

can gain a great deal of physical insight into complex phenomena. Nowadays, the 

computer simulations are successfully applied to a wide range of problems in solid 

state physics, chemistry, material sciences and quantum field theory, opening so a new 

branch of investigations besides the experimental and theoretical methods. 

   While, in the early days, the computer simulations were limited to small systems 

with several hundred particles, large scale simulations are today possible and new 
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records in system sizes are reported frequently [1]. In this thesis, we make use of the 

Molecular Dynamics (MD) methodology, which is one of the computer-simulation 

techniques to recognize the nanoindentation-induced deformation mechanisms on 

semiconductors. A brief description of this method is given in the following sections. 

   MD was first used in thermodynamics and physical chemistry to calculate the 

collective or average thermochemical properties of various physical systems including 

gases, liquids and solids. It has been recently applied to simulate the instantaneous 

atomic behavior of a material system. There are two basic assumptions made in 

standard MD simulations: 

1.) Molecules or atoms are described as a system of interacting material points, 

whose motion is described dynamically with a vector of instantaneous 

positions and velocities. The atomic interaction has a strong dependence on 

the spatial orientation and distances between separate atoms. This model is 

often referred to as the soft sphere model, in which the softness is analogous to 

the electron clouds of atoms. 

2.) No mass changes in the system. Equivalently, the number of atoms in the 

system remains the same. 

The simulated system is usually treated as an isolated domain with conserved energy. 

 

 

B-1 MD simulation algorithms 
In MD simulations for a system of N particulars, phase space exploration is achieved 

by numerical integration of the 3N coupled Newton’s motion equations: 

( )Ni
i

i rrr
dt

rdm v
K

vv
v

,,, 212

2
Φ−∇= ,                                         (B1) 

in discrete time steps tΔ  and a given set of thermodynamic variables (such as 
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volume, pressure and temperature). mi denotes the mass of the ith particle, { }ir
v  the 

position vector of the particle and { }( )ir
vΦ  the potential energy of the system, 

oftenest written as the sum of interatomic pair potentials. 

   The time evolution of the system is determined, through a deterministic 

calculation of the trajectory of each particle in the phase space. This is in contrast to 

the Monte Carlo method [2], in which the system evolves according to stochastic 

dynamics by setting up a random walk to sample configuration via a given 

distribution function. To solve the Eq.(B1), we use a Gear’s algorithm [3]. Gear’s 5th 

predictor-corrector methods which require only one force evaluation per integration 

step tΔ , as following: 

 

§ Predict 

Particle positions ir
v  at time tt Δ+  using a fifth-order Taylor series based on 

positions and their derivatives at time t. Hence, the derivatives ir&
v , ir&&

v , )(iii
ir
v , )(iv

ir
v  

and )(v
ir
v  are needed at each time step; these are also predicted at time tt Δ+  by 

applying Taylor expansions at t : 
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§ Evaluate 

From the above equations, the ( )ttri Δ+v  can be obtained. By using the Newton’s 

motion equations to evaluate the force which acts on ith particle, i.e. ( )ttFi Δ+ . 

 

§ Correct 

The predicted positions and their derivatives using the discrepancy ir&&
vΔ  between 

predict and evaluate sections. And the equations of predict can be further corrected as 

follows: 

( ) ( )[ ]ttrttrr P
iii Δ+−Δ+=Δ &&v&&v&&v , 

20 Rrr P
ii Δ+= αvv , 

21 Rtrtr P
ii Δ+Δ=Δ αvv , 

( ) ( ) 2
!2!2 2

22

Rtrtr P
ii Δ+

Δ
=

Δ
α

&&v&&v
, 

( ) ( ) 2
!3!3 3

3)(3)(

Rtrtr Piii
i

iii
i Δ+

Δ
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Δ
α

vv
, 

( ) ( ) 2
!4!4 4

4)(4)(

Rtrtr Piv
i

iv
i Δ+

Δ
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Δ
α

vv
, 

( ) ( ) 2
!5!5 5

5)(5)(

Rtrtr Pv
i

v
i Δ+

Δ
=

Δ
α

&&vv
,         where              ( )

!2
2

2trR i ΔΔ
≡Δ

&&v
, 

The steps can be found to repeat that the procedures of predict section. In addition to 

that the values of iα  parameters in Gear’s 5th Predictor-Corrector Algorithm are 

listed in Table B1. 
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B-2 Ensembles 
In the traditional microcanonical MD simulations, one considers the movement of a 

constant number of particular in a box whose size and shape are fixed. The system is 

assumed to be free from any external force so that the total energy is conserved. 

   In this work, all the simulations are performed under constant volume N and 

temperature T. This corresponds to the canonical ensemble (N, V, T ) in statistical 

mechanics. In this ensemble, the total energy is allowed to fluctuate by the interaction 

with a piston and through the thermal constant with a heat bath. The temperature T is 

related classically to the kinetic energy. We use this relation to realize the isothermal 

condition by scaling the velocities ivv  of the particles 

∑
=

=
N

i
iiBii vmTNkvv

1

2/3 vvv , 

in every time step tΔ  of the simulation. This simple velocity-scaling method, due to 

Woodcock [4], represents an approximation to the Gaussian constraint method [5], 

which realizes the correct canonical distribution in the coordinate space. The error of 

this approximation is of tΔ , if the scaling is carried out at every time step. 

 

 

B-3 Boundary conditions 
Two limitations are imposed to MD simulations in the realization of the 

thermodynamic limit. On one side, there are finite-size effects in the simulations in 

the numerical system with a typical particles number N in the range of 310  is 

necessarily limited in size. A system of this size would be considerably affected by 

surface effects. On the other side, there is finite-observation-time effects in the 

simulation time is much shorter than the time used in experimental measurements. In 
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this work, we use the conventional Periodic Boundary Conditions (PBC) to minimize the 

finite-size effects. This approach consists in a periodic repetition of the simulation box 

in the three directions to fill the whole space. By construction, each particle possesses 

an infinity of periodic images. To avoid that a particle interacts with its own image or 

with two images of the same particle, the minimal-image convention is adopted [3]. 

Only interaction with the closest images is taken into account in this scheme. The 

range of the interaction is assumed to be smaller than 2/L , where L is the length of 

the cubic box. 

   In order to minimize the finite-observation-time effects, the desired physical 

properties are evaluated by averaging the results over different configurations and 

over several MD runs using different starting configurations. The details can be found 

in Figs.B1-B2. 

 

 

B-4 Cut-off radius methods 
In modeling of materials, short-ranged potentials are usually used. The advantage of 

such potentials in MD simulations is evident: In a relatively large system, the number 

of particles pairs to be considered in the laborious forces calculations could be 

considerably reduced. In this present work, we describe the interatomic potentials 

mainly with Tersoff [6] many-body potentials which decay smoothly to zero at a 

distance rc, the cut-off radius. For a given atom, the interactions are thus limited to the 

neighbors at distances smaller than rc. The calculation of the different ( ) 2/1−NN  

distances in every integration step consumes a significant computing time. This can 

be considerably reduced by making use of the Verlet-list [3]. To every atom one 

attributes a neighbor list which contains all particles within a Verlet-radius rV, chosen 
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somewhat larger than rc. In calculating the forces acting on a given atom, only the 

particles belonging to its list are considered. The neighbor list is updated once every 

about 5 to 20 integration steps, depending on the mobility of the particles, such that 

the estimated maximal displacement of the particles between two updating remains 

smaller than the difference cV rr − . Please see the Fig.B3. Take note of the chosen σ 

value by using Verlet-list method. In general, the σ value is taken as 0.3 times the 

equipment distance of atoms. 

    

 

 

 

 

Interatomic Potentials 
The degree of correspondence between the MD simulation models and the physical 

system of interest depends to a large extent on the nature of the potential energy used 

in the simulations. The use of reliable potentials is therefore of a central importance 

for atomistic simulations. 

   In the simple models, the interaction between the atoms is described with pairwise 

interactions, the so-called pair potentials. These potentials have known deficiencies 

(e.g., a rigid but unrealistic correlation between cohesion and vacancy formation 

energy) which can be removed partly by going beyond the pair-potential picture and 

introducing some many-atom interactions. The pairwise potential and many-body 

potential can be simple described as illustrated in Fig.B4. We give in the following a 

brief description of some of these potentials. 
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B-5 Pair-potential interactions 
There are two different approaches to describe the interatomic interactions in terms of 

pair potentials. The first approach is to write the total energy of an atomic 

arrangement as a sum over simple pair potentials 

( )∑
≠

−Φ−=
ji

jiijtotal RRE
vv

2
1 ,                                           (B1) 

where Φ and R
v

 denote as the pair potential and the atom coordinates, respectively. 

Rare gases and ionic systems, such as, can be adequately described in terms of these 

pair potentials. They include the Lennard-Jones potentials 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=Φ

612

4
rr

r σσε ,                                           (B2) 

The first term is a short range positive contribution, modeling the electrostatic 

repulsion between the atoms. The second term is a negative contribution to the energy, 

representing the long range anisotropic van-der-Waals dispersion. The exponent 12 

has been chosen for computational reason, the first term being the square of the 

second one. There are only two parameters, ε and σ, which correspond to the energy 

and time scale of the potential. The Lennard-Jones potential is well suited for rare gas, 

but yields only a crude description of other materials, due to its two-body function. A 

variety of other pair potentials have been suggested to describe materials other than 

rare gases. A widely used example is the Morse potential 

( ) ( ) ( )( )00 22 rrrr eer −−−− −=Φ ααε ,                                        (B3) 

which has three parameters to be fixed to the experimental properties of the materials. 

   The deficiency of simple pair potentials lies in their inability to reproduce many 

important properties of metals, e.g. the vacancy formation energy and the relation 

between the elastic constants. 

   The second approach to pair-potential description of the total energy is based on 
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their linear response theory and its mainly used in simple metals. In 

nearly-free-electron-like simple metals (non-transition metals) the valence electrons 

from a homogeneous electron gas and the ions can be described by weak 

pseudo-potentials. In the second order perturbation theory the total energy of the 

metal has the form [7] 

( ) vol
ji

jiijtotal ERRE +−Φ−= ∑
≠

vv

2
1 ,                                      (B4) 

where Evol is an energy term independent of the structure of the metal but dependent 

on the total volume of the system. In this approach, the pair pseudo-potential Φ has a 

very different meaning than the expression of Eq.(B1) since only part of the total 

energy comes from the sum over the pair potentials (in Al, for example, the 

pair-potential sum gives only a few percent of the cohesion energy). Generally, the 

interatomic potentials based on the pseudo-potential approach work fairly well for 

those properties of the metals where the density fluctuations are small. In the case of 

surfaces and open volume defects, such as vacancies, these potentials are, however, 

inappropriate since the density changes are so large that they cannot be described by 

the linear response theory. 

 

 

B-6 Many-atom interactions 
For metallic system, an alternative to the pair potential picture is provided by the 

Effective Medium Theory (EMT) [8] or the related Embedded Atom Method (EAM) [9]. 

This approach is based on the ideas of the Density-Functional Theory (DFT) [10] (and 

amenable to MD-simulation modeling). Here the total energy of the metal can be 

written as 
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( )∑∑
≠

−Φ+=
ji

jiij
i

itotal RRnFE
vv

2
1)( ,                                    (B5) 

where ni is an effective electron density at the site of the atom i and its approximated 

by the superposition of atomic density tails from the order atoms 

( )∑ −=
i

jiiati RRnn
vv

, ,                                               (B6) 

( )inF  is a nonlinear function (the “embedding energy”) describing the interaction of 

the atom i with its electronic surrounding and Φ is a pair potential. The 

embedding-energy term ( )inF  is supposed to describe the complex many-atom 

interactions. Moreover, it is an explicit function of atomic positions so that variations 

in local atom density can be easily accounted for. F, ni and Φ can be derived 

theoretically or determined empirically by choosing proper parameterization functions 

and fitting the parameters to some experimental data. 

   Compared to pair potentials, EAM derived potentials include higher-body 

interactions. The empirical method, in term of Eq.B5, was the EAM model introduced 

by Daw and Baskes [9]. In Ref.9, the pair potential Φ  is a purely repulsive term 

accounting for ion-ion and orthogonalization repulsion at short range. Since this work, 

several other methods, equivalent to the EAM, have been proposed. These methods 

all take the form of Eq.(B5) with differences due to specific parameterizations of F 

and ni. Finnis and Sinclair [11] proposed that the d-d hybridization in the 

second-moment approximation of the tight-binding model could also be described by 

Eq.(B5). The energy function F is found then to be negative and can be thought to be 

proportional to the negative square root of the coordination number. The advantage of 

the total energy expression of Eq.(B5) is that it is essentially as efficient in computer 

simulations as the pair-potential expressions of Eq.(B1) or Eq.(B4). Furthermore, 

EAM potentials have been found to describe fairly well bulk and surface properties of 

transition metals. Similar good results have been obtained using the tight-binding 
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model of Finnis and Sinclair [11]. Moriarty [12] has extended the pseudo-potential 

theory to higher order of perturbation to derive three-body forces and higher 

many-body interactions to the elemental transition metals. However, as this approach 

is based on a uniform electron gas as starting point, it is not expected to be adequate, 

even in higher orders, for studying inhomogeneous defect environments; e.g. the 

structure of surfaces where the electron density goes to zero. 

   EAM class of potential is well adapted for metals, because of the bond order term 

that mimics the hardness of metallic bonds as a function of the function of the 

coordinate. This approach has proved to be inadequate for semiconductors, in which 

covalent bonds have a complicated dependence on coordination and bond angles. This 

is actually the case for semiconductors of Group IV, such as diamond, Si, Ge or SiC, 

stable in a diamond cubic or zincblende structure. Due to their technological 

importance, several kinds of potentials have been designed for these materials. For 

example, an extended version of the EAM model has been developed [13], with 

angle-dependent electron densities. Another one, the Stillinger-Weber potential, for 

which sets of parameters for Si and Ge are available, has been widely used [14]. Its 

function is written below: 
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vvv

,              (B8) 

F2 and h are two analytical functions, vanishing beyond a given cutoff. F3 is a 

three-body contribution introducing an angular dependence in the energy. The energy 

gain is maximal for the bond angle of the diamond cubic structure. Compared to pair 

potentials, an additional term of the Born-Oppenheomer development is included in 

the potential function, what improves the accuracy of interatomic forces description. 
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In addition, this term bears an angular dependence, particular well suited for covalent 

materials where bonds are directional. 

   The dependence of the interactions on the local environment is strengthened by 

taking into account three-body terms. However, this approach requires a larger 

computational effort, since during the calculation interactions have to be computed for 

all atomic triplets. It is possible to use a two-body function while introducing 

environment dependence by modifying the interactions as a function of the atomic 

environment of the atoms. An example is given by the potential of Tersoff [15], which 

is available for diamond, Si, Ge and compounds such as SiC and SiGe alloys [6]. 

( ) ( ) ( )[ ]∑
≠

−+−−=
ji

jiAijjiRjiC RRfbRRfRRfE
vvvvvv

2
1 ,                        (B9) 

Here, fR and fA are repulsive and attractive functions, respectively, while fC is a 

function going smoothly to zero beyond a given cut-off. The bond order contributions 

are included through bij, which is modified according to local environment as a 

function of interatomic distances and angles. The Tersoff potential is different from 

the EAM approach in the sense that the two-body Tersoff interactions are directly 

modified by local environment, while bond order is obtained in EAM via electron 

distributions. 

 

 

B-7 Model used in this work 
We describe in this appendix the interatomic potentials employed in this work 

to study the indentation model. Tersoff’s potential has been the most successful 

that it reproduces many of the properties of the semiconductors. Here, MD 

simulation is carried out for the indentation model (C/GaAs) by means of 

Tersoff’s potential [6]. The form of the energy E, between two neighboring 
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atoms i and j, as follows: 
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with 

( ) ( ) ( )[ ]ijAijijRijCij rfbrfrfu +=  ,                          (B11) 

where 

( ) ( ) ( ) ( )ijijijijAijijijijR rBrfrArf μλ −−=−= exp,exp ,          (B12) 
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bij is the many-body order parameter describing how the bond-formation energy is 

affected by the local atomic arrangement owing to the presence of other neighboring 

atoms (the k atom). It is a many-body function of the positions of atoms i, j and k. It 

has the form 

( ) iii nn
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Here, ζ is called the effective coordination number and )(θg  is a function of 

the angle between rij and rik that has been fitted to stabilize the structure. The 

parameters between two different materials are calculated by using the mixing 

rules. The other parameters can be found in [6, 16-17] and listed in Table B2. 
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B-8 MD calculation Flowchart 
The simulated flowchart is displayed in Fig.B5, as following: 

 

(1). The total atoms of system, the radius of an atom, the distance of cut-off radius, 

the interval of integrating time, the end computing conditions and the boundary 

conditions were set up, and then the system was computed by the simulated 

potential model. 

(2). The interaction forces between two atoms were computed from the potential 

model of system. 

(3). By using the combined Verlet-list and Cell-link methods to find the interacted 

atoms with ith atom, further to establish the list table. 

(4). To obtain the initial position and velocity by integrating the Newton’s motion 

equations. 

(5). Taking the input data and the simulated conditions into the continuous equations 

to obtain the position and velocity of atoms on next steps. 

(6). And then the position and velocity of atoms at different times were computed. 

(7). According to the boundary conditions, the position of atoms was computed and 

modified further. 

(8). The procedures (5)–(7) were repeated until the computed processes were 

performed for all atoms. 

(9). Then the total interaction forces and positions of atoms in every step were output. 

(10). Finished. 
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Table and Figure Captions 
 

Table B1. Values of iα  parameters in Gear’s 5th Predictor-Corrector Algorithm for second-order 

differential equations using predictors of order q. 

Table B2. Parameters used for the MD simulation of C, Ga and As. 

 

Figure B1. Schematic of periodic boundary condition. 

Figure B2. Using the behavior of atoms move along the x-direction to explain the PBC conditions 

within the primary cell: (a) if Xold > L, set Xnew = Xold – L, where Xold is an initial 

position of the atom, L is the length of the primary cell and Xnew is the new modified 

position; (b) if Xold < 0, set Xnew = Xold + L. Then considering the minimum image 

criterion: (c) the distance between the atom i and atom i+1 is Xold, the modified 

distance between the atom i and atom i+1 is Xnew. When Xold > L/2, the distance 

between the atom i’ and atom i+1 is Xnew which has taken the place of Xold; (d) when 

Xold < -L/2, the distance between the atom i’ and atom i+1 is Xnew which has taken 

the place of Xold. 

Figure B3. (a) Schematic of cut-off radius; (b) and (c) show the Verlet-list method. Use of two 

one-dimensional arrays to store a neighbor list for each atom during a simulation of 

a system containing N atoms. NPOINT(NP) and LIST are the memory positions 

in the computer. 

Figure B4. (a) Pairwise potential: the interaction of atom 1 and atom 2 within the cut-off radius 

is considered only; (b) Many-body potential: besides the interaction of atom 1 and 

atom 2, the interactions of others atoms within the cut-off radius are also 

considered. 

Figure B5. The flowchart of Molecular Dynamics Simulations. 
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Table B1. Values of iα  parameters in Gear’s 5th Predictor-Corrector Algorithm for second-order 

differential equations using predictors of order q. 

 

 
 

Table B2. Parameters used for the MD simulation of C, Ga and As. 
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Figure B1. Schematic of periodic boundary condition. 
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Figure B2. Using the behavior of atoms move 

along the x-direction to explain the PBC 

conditions within the primary cell: (a) if Xold > 

L, set Xnew = Xold – L, where Xold is an initial 

position of the atom, L is the length of the 

primary cell and Xnew is the new modified 

position; (b) if Xold < 0, set Xnew = Xold + L. 

Then considering the minimum image criterion: 

(c) the distance between the atom i and atom 

i+1 is Xold, the modified distance between the 

atom i and atom i+1 is Xnew. When Xold > L/2, 

the distance between the atom i’ and atom i+1 

is Xnew which has taken the place of Xold; (d) 

when Xold < -L/2, the distance between the 

atom i’ and atom i+1 is Xnew which has taken 

the place of Xold. 
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Figure B3. (a) Schematic of cut-off radius; (b) and (c) show the Verlet-list method. Use of two 

one-dimensional arrays to store a neighbor list for each atom during a simulation of 

a system containing N atoms. NPOINT(NP) and LIST are the memory positions 

in the computer. 
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Figure B4. (a) Pairwise potential: the interaction of atom 1 and atom 2 within the cut-off radius 

is considered only; (b) Many-body potential: besides the interaction of atom 1 and 

atom 2, the interactions of others atoms within the cut-off radius are also 

considered. 
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Figure B5. The flowchart of Molecular Dynamics Simulations. 
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Appendix C 
 
Dislocations 

 

A dislocation is a one-dimensional line defect which causes lattice distortion 

around that line. Dislocations are permanent or plastic deformations. They exert a 

profound effect on structure sensitive properties such as hardness, strength, toughness 

and ductility. They may move under influence of external forces which produce stress 

in the crystal. The area swept by the movement is called the glide plane. Dislocations 

by definition are always on the glide plane. There are two dislocations types: 

1). Screw dislocation: A screw dislocation occurs as atoms go around in a rotation and 

form a spiral ramp. The Burgers vector of an edge dislocation is 

normal to the line of the dislocation. 

2). Edge dislocation: An edge dislocation is created as an extra half plane of atoms is 

inserted. The Burgers vector of a screw dislocation is parallel to 

the line of the dislocation. 
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C-1 Dislocations in Crystals 
§ Burgers vector 

The Burgers vector determines the direction of a dislocation and its magnitude. To 

produce the vector, a circuit is created by jumping from atom to atom. On a perfect 

lattice, with the same number of jumps to each direction, the starting point of the 

circuit and the ending point are the same. This is not necessarily the case when there 

is a dislocation, in which there may be a closing failure. The failure is defined to be 

the Burgers vector. In an edge dislocation, the Burgers vector is on the same plane of 

the circuit and perpendicular to the dislocation line. In contrary, in a screw dislocation, 

it is parallel to the dislocation line. The Burgers vector of a perfect dislocation is 

composed from the original lattice vectors. Imperfect dislocations occur as the 

Burgers vector is not a composition of original lattice vectors. 

   The general equations for a screw dislocation, depending on the Burgers vector, as 

following [1]: 
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when the dislocation line is on the z-axis. u is the displacement vector of an atom, 

with xu , yu  and zu  its components to each axis. Note of the atoms are dislocated 

normal to the dislocation line, on the x- and y-direction. The dislocations are only in 

parallel to the dislocation line. On the other hand, the general equations foe an edge 

dislocation that is slightly more complicated, as following [1]: 
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The atoms are dislocated on the x-y plane which is normal to the dislocation line. Note 

that there is no dislocation on the z-direction, parallel to the dislocation line. 

 

§ Miller indices 

A plane with Miller indices ( 321 mmm ) is parallel to a plane cutting the axes at 1/1 m , 

2/1 m , 3/1 m  where im  are integers. The direction notation [ 321 nnn ] represents the 

vector 332211 ananan vvv ++ , where in  are integers and, 1a , 2a , 3a  are primitive 

vectors which define the crystal axes. The notation { 321 mmm } represents the set of 

equivalent planes of the type ( 321 mmm ) which are equivalent by symmetry and 

similarly 〈 321 nnn 〉 represents the set of all directions of the type [ 321 nnn ]. 

 

§ Core structure 

Close-packed structures have layers of atoms in the position A, B and C as illustrated 

in Fig.C1. The sequence of stacking the layers defines the structure type of the crystal. 

A FCC-type structure has a stacking sequence of ABCABCABC…, while a 

Hexagonal Close Packed (HCP) has a stacking sequence of ABABAB….   

Close-packed structures, such as the FCC, can have dislocations which are called 

stacking faults (SFs). They are faults by mismatching close-packed planes as the 

crystal deforms or grows. SFs are significantly in the deformation of metals in 

closed-packed structures because they affect the ease of a dislocation slipping from 

one to another. An example of a SF occurring in a FCC is ABCABCBCABC, missing 
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the layer A (intrinsic SF, ISF). Another is ABCABCBABCABC, with extra layer B 

inserted (extrinsic SF, ESF). These dislocations have Burger vectors which are not a 

translation vector of the FCC lattice. They are known as Frank partial dislocations. 

A partial dislocation loop can be viewed as the boundary separating an area of ISF 

from the rest of the plane. This partial shift can occur in any of the three equivalent 

directions 321 ,, ppp bbb
vvv

, as illustrated by the arrows in Fig.C1(b). To make a complete 

(perfect) dislocation, two atomic layers bounding the ISF inside the first partial loop 

have to be shifted again along another partial shift direction. Clearly, for every perfect 

dislocation with Burgers vector b
v

, only one combination of partial shift 1pb
v

 and 

2pb
v

 exists that avoids atomic run-ons and then only if introduced in a certain order. 

This simple observation lies behind the well-known leading-trailing partial rule 

usually formulated using the Thompson tetrahedron notation, please see Fig.C2. 

Much of the dislocation behavior observed in FCC materials results from the 

Shockley dissociation, by which perfect ><110
2
1  dislocations split into two partial 

dislocations, bounding an area of SF. Expressed in Miller index notation such a 

reaction reads 

]121[
6
1]121[

6
1]110[

2
1

++= SF  

While the reduction of elastic energy achieved by this dissociation is considerable, 

this reaction can occur only if a stable low-energy SF exists. In FCC materials stable 

SFs are found only in the {111} planes. The dissociated dislocations glide in the 

planes containing the SFs which simply move along with the partial dislocations. We 

emphasize that it is the availability of stable SFs in the {111} planes that defines the 

well-known predisposition for dislocation to glide on these planes. 
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C-2 Deformation twinning 
A twin refers to a region within a lattice that can be described as either a reflection 

across the boundary between the parent lattice and the twin or a rotation of 180° about 

a specific axis. Often both the reflection and rotation descriptions are simultaneously 

accurate and, in either case the bulk structure of the twinned region is equivalent to 

that of the original lattice. The twin boundary is therefore critical in describing the 

energetics if this defect. The shaded region in Fig.C3 is a schematic of a twinned 

structure, which exhibits a reversal of stacking order that can be described by a mirror 

plane at the twin boundary. 

   Both dislocation slip and deformation twinning are shown in Fig.C4. These are the 

two primary deformation mechanisms exhibited by a crystal lattice to accommodate 

large strains. In Fig.C4, each sheet represents a crystallographic plane of atoms. The 

picture of an undeformed lattice is shown in Fig.C4(a). The elastic regime for shear 

deformation can be described by homogeneous shear strain in which each plane is 

displayed relative to the plane below it by some common distance, as illustrated in 

Fig.C4(b). Dislocation slip is displayed in Fig.C4(c) where a single pair of planes is 

displaced relative to one another by a full lattice spacing in the shear direction and 

thereby accommodates strain for the entire crystal lattice. Deformation twinning 

where many adjacent pairs of planes are displaced relative to one another, please see 

Fig.C4(d). This creates the reorientation of the original lattice that can be described by 

the reflection across a twin boundary as illustrated in Fig.C3. 

   According the above mentioned, a schematic of a {111} plane in the FCC 

structure in which a full Burger’s vector, b, is found along the 〈110〉 directions. The 

full Burger’s vector can be dissociated in to partial Burger’s vectors, bp, in the 〈112〉 

directions. In addition the three positions labeled A, B and C indicate the stacking 
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sequence for the {111} close-packed planes in the FCC structure. The favorable 

twinning system for the FCC materials that are the >< 211}111{  with each atom 

being displaced in a full formed twin by the partial Burger’s vector ]211[
6
1  on the 

{111} plane. This displacement corresponds to an ISF in the FCC lattice. Nevertheless, 

when a succession of adjacent planes are displaced relative to each other by a partial 

Burger’s vector they form a FCC lattice with a reversed stacking sequence from the 

parent lattice, which is a twinned structure. 
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Figure Captions 
 

Figure C1. (a) Plane-on view of {111} plane of FCC lattice; (b) Perfect Burgers vectors 3,2,1b
v

 and 

partial Burgers vectors 3,2,1 pppb
v

 on {111} plane. 

Figure C2. Thompson tetrahedron notation for FCC slip systems. 

Figure C3. Schematic of a twinned lattice described by reflection across a mirror plane, which can 

be seen by the reversal of the stacking sequence across the twin boundary. 

Figure C4. Illustration of lattice deformation mechanisms. The undeformed lattice is given for 

reference in (a) compared to elastic deformation via homogeneous shear stress (b) and, 

two plastic deformation mechanisms, dislocation slip (c) and, deformation twinning 

(d). 
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Figure C1. (a) Plane-on view of {111} plane of FCC lattice; (b) Perfect Burgers vectors 3,2,1b
v

 and 

partial Burgers vectors 3,2,1 pppb
v

 on {111} plane. 
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Figure C2. Thompson tetrahedron notation for FCC slip systems. 
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Figure C3. Schematic of a twinned lattice described by reflection across a mirror plane, which can 

be seen by the reversal of the stacking sequence across the twin boundary. 

 

 

 

 

Figure C4. Illustration of lattice deformation mechanisms. The undeformed lattice is given for 

reference in (a) compared to elastic deformation via homogeneous shear stress (b) and, 

two plastic deformation mechanisms, dislocation slip (c) and, deformation twinning 

(d). 


