A Low Power Mation-Estimation Design for

Bi-directional Search

7

- BRE* R IFRIL M TR

AN

Al A e

)

A Low Power Motion Estimation Design for Bi-directional

Search
B4 fiwr Student: Shih-Hsin Tai
iR By Advisor: Tihao Chiang
B = 2 o + F
T3 1 & F
L% e
A Thesis

Submitted to Department of Electronics-Engineering & Institute of Electronics
National Chiao Tung University
in partial Fulfiliment of the Requirements
for the Degree of
Master
in

Electronics Engineering

June 2006
HsinChu, Taiwan, Republic of China

PEIRY LT EAD

il

- BT IR S F R RN ER

N A R B g gL

g
ks
Jrek
31
hac)
N\

A - BT e IR MG motion estimation) i
X - BRESHE GREES 3 g%’.f%cf%\% ééi =Rl ~ BE5Y A2 (mode
decision) 4 % /& #cijk & fé_ Rloite iz # 8 /E'J%‘ff PRI AN
CAEF EH P L S e o RS R
£ Bl @ T P-frame $0F g T {5 - AV AEF EHKT A B SR
BN 8 A S AR o ol 0T IR AR o T T A ROR A
PRl P F TR S 2 AR T RRaR ARy iR e ARG
A2 % - BATh- AFE 2 o frh Az BIFE A o AT E 2R
COBR R RELAMETE o A FE R BRI AR -
Bt F R AR TRDEB AT FRIEER > ¢ P FERGEHE
BRI T N E LB ERERR o AR E & 130 cycles == - B
g 3R 0 E 2 Bu(macroblock)3E% o & TSMC 0. 18um @A™ » A% Z
% 131 kilo gate count # 51 kilo bits sizeffg i@ * & o @ d2& §) 30
5 CIF ~ /] enfiforrif 42 ene 5 5 11.8mW e eIl 3 ek 3h4p vt > pt 3k b9y
4 ﬁj;fﬁ?f%*tﬁi?"ﬁkli som s F AR RS T T 34 B g o

il

A Low Power Motion Estimation Design for Bi-directional
Search

Student: Shih-Hsin Tai Advisor: Dr. Tihao Chiang

Department of Electronic Engineering &
Institute of Electronics

National Chiao Tung University

Abstract

This thesis proposes a low power motion estimation (ME) design for bi-directional search. A
complete ME module contains integer pel ME (IME), sub-pel ME (SME) and sometimes
mode decision (MD). For low power applications, eur new parallel binary search architecture
allows parallel processing of bi-directional ‘search in-IME. For P frame search, this parallel
search architecture divides the original seatch into two.sub-groups of partial P-frame search to
double the processing throughput.«Compared to conventional search architecture, this parallel
binary search architecture shows advantages' of lower memory access bandwidth, working
frequency, and hardware design cost requirement. In MD, this work adopts a new one
dimensional algorithm to reduce long latency in the original two-dimensional algorithm to
avoid hardware idling. In SME, a low power sequential design solution is adopted to balance
the system pipelining for IME, MD, and SME. This work completes one bi-directional
macroblock search in 147 cycles with 131 kilo gate count and 51 kilo bits on-chip memory
using TSMC 0.18um technology. The power consumption for CIF 30fps is 11.8 mW.
Compared to the state-of-the-art designs, this work needs the lowest working frequency and

shows 34X power improvement at most.

v

gl

N

RENRIIREEREEIS
CEC AN

o &E

-2

Z

- M - [PUEEREE AL e Bl R A

AL ﬂ%““”ﬁﬁ% Y T R SRS

IR+ (AL o5 85 [ROR RABAYPIs s f i 4

FIS R OB R
Free

XA
k“q%ﬁljiﬂi PJ

%Wﬁi’&ﬂw
e UESEE Y o T IR
RGBSR SGIR] H) T BRI S I 26
miE s
iR RLAY R

iﬁ

%

=r 4, ~

, ﬂiygﬁ
GRS F I F 0 B

‘,ém

TBRE I AL AR U AL
PSR R > S RARRL) | o A
F IR P
Forp b g EEGAOBA - S RS
R AP R R

T I FF

=
SN

AL BESROPTA E (pe

AT R R
SRR 11 IR - T - R

s BRI SRS
JE

3"‘_%
\—
[—

_:I

LIRS I
”—ﬁJﬁFFUFJ:E[%’J 7‘} Eg*TCOI’Ill’nlabﬂ JFH’LJ :'% N [ﬁj%k’,%tu s [Fﬁﬁhﬁsﬁf = ﬁﬁ%@\lﬂrﬂf‘%@
U5 3 HETE AT SR St g
S ’E&\H = 1)

FERIRBITO VYA S R B
BB AR - 25

LY Y

Contents

YN 011 2Tt SO OSSOSO PRRSOPRRRIN v
LSt OF FIGUIES. ...ttt ettt et e st e et e sab e e bt e sateenbeesaneenneans viil
LSt OF TADIES ...ttt ettt ettt et st X
Chapter 1 INtrOQUCTION.eiitiieiieie ettt ettt ettt e bt eesaeesseeesbeesaeesseessaeenseenseennns 1
1.1 Need of a Low Complexity, High Coding Efficiency Video Encoder............c.ccc.c...... 1

1.2 TRESIS SCOPE ..uveeueieniieeiieeiie et etteeteetteeteesteesabeesteeeabeenseeenbeesaeenseenseesnseesseenseenseennseas 4
Chapter 2 Analysis of Bi-directional Motion EStimationccceeervierienenninicnennenieneeees 6
2.1 Bi-directional Motion Estimation Algorithms............cccoeceiiiiniiiiiiiniieie e, 6
2.1.1 Area Overlap and Related Algorithms..........coccooiieiiiiiiiiiieeee 6

2.1.2 Hybrid Block Matching ALZOrithim fi.........cooovveriiieiiieniieiieiecieecee e 8

2.2 Bi-directional Motion Estimation ATChiteCturescoceeverierienienienieneeieeeeene 9
2.2.1 Full Search Block-Matching (ESBM) .it........cccoviiiiiiiiiiiiieieceeeeeee e 9

2.2.2 Three Step Search (TSS)ooeiiiaii e 10

2.3 Design Challenges and Proposed Solutionscccccccerieniiiiniiniinninicccicee 13
Chapter 3 Algorithm of Bi-directional Binary with Sub-pel Motion Estimation..................... 14
3.1 Review of All Binary Motion Estimation (ABME)cccceviiiiniiniiiiieecee 14
3.1.1 Design Flow of All Binary Motion EStimationcc..ceccevceererniencenieeneenenne 14

3.1.2 Frame-based Pre-processing unit (FPPU)ccccooviveiiiiiiniiiniieieeeeeee, 15

3.1.3 Three Layer Binary Pyramid Searchccccoociiiniiiiniininccice 18

3.2 Bi-directional Motion Estimation Algorithmccoccoiiiiiiiniiiiinie e 19

3.3 Hardware Efficient Design Features..........coccuvivciiiiiciiiiciieeciie e 21
Chapter 4 Architecture of Bi-directional Binary with Sub-pel Motion Estimation.................. 26
4.1 System ATCRILECIUIE.ccuieiiiieiiieiiieieecie ettt ettt e ete et e e teeebeesaaeeseessneenseens 26

4.2 Integer Pel ME (IME) MOdUIEccooiiiiiiiiieiieie e 30
4.2.1 Parallel Binary ATChItECTUIEceouieriiieiieiiieeiieie et 30

4.2.2 Pre-processing Unit ENGINEcocoeviiiiiiiiniiiiiiiiciceececcseceee e 32

4.2.3 Motion Estimation ENgIne..........cccccccviieiiiieiiiieiie e 35

vi

4.3 Mode Decision and Sub-pel ME (MD-SME) Moduleccceiiiiiiiiniiiieiiieene 43

4.4 Timing Analysis and System Pipelining..........cccccocuvieriiiiniiiieiiie e 48
Chapter 5 Experimental Results and AnalysiS.........ccccvveriieiiieiiieniienieeie et evee e 51
5.1 Algorithm Level COMPATISONcccuviiiieriiieiieriieeieeeee et eeiee et seeeereesaeeseeseaeessee e 51

5. 1.1 TeSt CONAIION.eeutiriiiiieieeieeteeteete ettt ettt be et s 51

5.1.2 RD Performance Evaluation...........c.cccccuvieeiiiiiiieeciee e 52

5.2 Hardware Design Evaluation...........ccoocuieiiiiiiiiiiiiieie e 65
5.2.1 Circuit Design Evaluationccccccveeeiiiiiiieeiiie e 65

5.2.2 FPGA Based Evaluation Platformccccoooeiiiiinienieiinieeececee 66

Chapter 6 Conclusion and Future Works...........cccoecuiiiiiiiiinieiiiecieeieecee et 68
L2 10) FT0Tea 1) 1 | 20O OO URTRPRRP 69

vii

List of Figures

Figure 1. Block diagram of a generic video encoder SyStem...........cccceveereenieeieneenierieeneeneeenne. 2

Figure 2. Workload distribution in video encoder [source: MPEG-4 reference software N4025

[O]] ettt bbb h ettt bbbt h e bt eh e a et et et et e naeeae et 2
Figure 3. Projected block on frame B; when one MB in frame P, moves back along MV _P to
A DLOCK 1 TTAIMNIE L ceeeeieieeee e e e e e e e e et eeeeeeeeeeeeeaaaaeees 7
Figure 4. P-frame MB‘s projection in frame Bi.c.cccciiiiiiiiiiiiiniieieeececeeee e 8
Figure 5. 1D systolic array for FSBM architecture.cccoevieeiienieiiiieieeieecee e 10
Figure 6. PE structure in 1D SYStOliC @ITaY.ccceeriieiiieniieiieriie ettt 10
Figure 7. A memory efficient array architecture with data-rings for TSS in [15].....cccccenee. 12
Figure 8. Structure of one basic cell for distortion calculation in TSS architecture................. 12
Figure 9. Flow chart Of ABME. ot eeeeeireeiieeiieesieeesieeesneeesreesssseessseessseeesnnes 15
Figure 10. Threshold obtaining for,biNarization.u.....cooveeevierieeriienieeieeie e 16
Figure 11. (a) An image in 8-bit representation (b) An image in binary representation........... 16
Figure 12. Combination of binarization/and'sub=samphing.c.ccccceeveriiieniieniiienieneenen. 17
Figure 13. A binary pyramid structire used for motion estimation............cocceeevvvereenieenennene 17
Figure 14. ME flow in MPEG-4 coding. . .o et 21
Figure 15. Illustration of self-padding of downsampled block.ccccvervvieeiiienciienieene, 23
Figure 16. Pre-processing flow for binary pattern generation (a) FPPU with MB realization (b)
Proposed MBPPU.ccoiiiiiiieeeeetee ettt ettt et e e e e saeebeessaeesbeensaeenneas 23
Figure 17. System level architecture consisting of IME module and MD-SME module......... 29
Figure 18. Illustration of parallel bi-direction search.c.ccoeceeniiiiiiiiiniiieneeeeee, 32
Figure 19. Proposed PPU archit@Cture.cocuevuiivieriiniieiinicnieeie et 34
Figure 20. Proposed row rotator to rearrange the order for input rOwSs.ccceeeveeerveeenieennns 34
Figure 21. PPU_PE architecture used to generate binary and sub-sampled data. 35
Figure 22. Shared SOD PE deSi@N.ccoiiiiieiiieiieiieeie ettt et 36
Figure 23. Hardware architecture of Level 1 search.c.cccceeiiiiiiiiiiiiiiiiieieeceee, 37

Figure 24. Level 1 search order with * 3 search range. In this design, each SOD PE checks
14 search locations in parallel.ooooiiiiiiiiii e 37

Figure 25. Hardware architecture of Level 2 search.cccoveviiieniiiiciieeeeeceeeee 39

viii

Figure 26. Working flow of Level 2 design. (a) Methodology in work [10] which uses one
24x24 to 8x8 MUX (b) Proposed Level 2 design which reduces MUX size requirement to be

LOXTO 10 8X...niniieieeieiieteeiiete ettt ettt ettt ettt e s ae et e es e e st e st e st et et e beebeebeeseeneen e et entenaenaeeaas 39
Figure 27. Fixed fetching position by adopting shifter register as SW buffer.......................... 41
Figure 28. Hardware architecture of Level 3 search.coccoooiiiiiiiniiiiniiccee 42

Figure 29. (a) Whole SW1 _LV3 is shifted in left direction at cycle 1~4, 11~14, and 21~24 (b)
Whole SW1 LV3 is shifted in left direction at cycle 5, 10, 15 and 20 (c) Whole SW1 LV3 is

shifted in left direction at cycle 6~9, and 16~19.ccceeeiiiiiiiiieeee e 42
Figure 30. (a) LV3 ME search order for SW1_LV3 begins from the top-left point and in a

snake order (b) LV3 ME search order for SW2 LV3 is the reverse order.c.ccccveeveennennn. 42
Figure 31. Architecture of MD-SME..........cccooiiiiiiieeeeeee e 44
Figure 32. Architecture of SAD PE in MD-SME.cccoiiiiiniiiieeeceeee 45
Figure 33. Overlapped pixels between search blocks...........coceviiiiriiiniiiinininiiiicecce 45
Figure 34. Scheduling approach for MB leyel pipeline...........ccccooiiiiiiiiiiiniiiiiiniceeenieeee 50

Figure 35. RD curve of BBME, FS,;:DS, and ABME for Foreman sequence. (N=300, M=1). 62
Figure 36. RD curve of BBME, ES, DS, and ABME for Foreman sequence. (N=300, M=2). 62
Figure 37. RD curve of BBME, ES, DS, and ABME for Foreman sequence. (N=300, M=3). 63
Figure 38. RD curve of BBME, FS; DS, and ABME.for Mobile sequence. (N=300, M=1). ..63
Figure 39. RD curve of BBME, FS, DS,"and ABME for Mobile sequence. (N=300, M=2). ..64
Figure 40. RD curve of BBME, FS, DS, and ABME for Mobile sequence. (N=300, M=3). ..64
Figure 41. FPGA based test eNVIFONMENLcccuirierieriieieniieie ettt 67

X

List of Tables

Table 1. R-D performance for 3 different types of GOP structure with M=1, M=2 and M=3...3
Table 2. Average encoding time in seconds for 3 types of GOP structure.cccceeveervenennnens 4
Table 3. Frame and macroblock size at each level.c.coooiiiiiiiiiiiiniii e, 16

Table 4. Comparison of different block size in pre-processing, test sequence is foreman at 512

0] oSSR 22
Table 5. Summary of 3 design methodologies by adopting parallel or sequential architecture
with different pixel bit-depth for B-frame search..............cccooovieviiiiiiiiiiiiieceeeceee e, 31
Table 6. Comparison table of PPU designs between ABME [10] and proposed design. 35
Table 7. Comparison of SW buffer area in work [10] and proposed Level 2 search. 40
Table 8. Data flow for SAD calculation.ccooueiiiiiiiiiiiiii e 46
Table 9. Data flow for intra cost CalCUlAtIONs suuee-veeruveeriieriiiiieiiieie et 47
Table 10. Data flow for SME....... a0 . st sibshe et steeie et st e e ete e enee e 48
Table 11. Cycle count of proposed BBME it 49
Table 12. Cycle count of MD-SME. ... L i it 49
Table 13. PSNR comparison for BBME, FS, DS, and’ ABME at target bitrate of 256kbps.
(NZ300, ME1) ittt ettt bbbttt et e st et e et e st e e seesae st e enseensenseenseensenseenseeneas 53
Table 14. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.
(NF300, M)ttt ettt ettt et ettt ettt e bt et e eatesa e e bt enteeaeenteentenaeeseenees 54
Table 15. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.
(NF300, M)ttt ettt et et b et sat e st e et e st e bt et e eateneeebeenees 55
Table 16. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 256kbps.
(NZ300, M2ttt ettt ettt ettt et et e st et e esaesseesseessessaensaessesseenseensenseenseensenseenseensas 56
Table 17. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.
(NF300, M2ttt ettt e h et et e et e bt e st e e bt et e st e sa e et e enteeaeentesntesaeeseenees 57
Table 18. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.
(NF300, M2ttt ettt ettt et sb et e a e bttt eate s bt et e st e bt et e eatenaeebeentes 58
Table 19. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 256kbps.
(N300, M3ttt ettt ettt e et ste e teesae s st esseesaeesaenseessesseensaensenseenseensenseenseansas 59

Table 20. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.

(NZ300, M3ttt ettt ettt e ettt e s e esaesse e seesseeseenseessesseensaessesssenseensenseenseansas 60
Table 21. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.

(NF300, M3ttt ettt ettt et e bt et e st e e bt et e eatess e et e enteeaeenteentenaeeseenees 61
Table 22. Hardware design specification of proposed motion estimation for bi-directional

SCATCHL L.ttt ettt bttt bttt h bttt b e bbbt et et e b enees 65
Table 23. Performance comparisons with state-of-the-art designs...........ccecceeveieiieniiieneeninnne 66

X1

Chapter 1

Introduction

1.1 Need of a Low Complexity, High Coding Efficiency Video

Encoder

Today, the wide interests with real-time video applications on portable devices such as
teleconferencing, networked video, etc. grow with time. For the portable video application, a
low complexity video encoder is needed to reduce the power consumption and a high coding
efficiency video is needed to reduce the requirement of transmission channel bandwidth. Both

elements are equally important for the portable video application.

To observe a generic video encoder_system,-it contains 5 key components, including
transformation, quantization, motion estimation (ME), motion compensation and entropy
coding. As shown in Figure 1, the generic video systém contains 2 coding paths, intra mode
and inter mode. For the intra mode, the smallest coding unit, macroblock (MB) is transformed
and quantized before entering entropy ‘coding module for video coded bitstream. For inter
mode, ME is performed first to reduce the inter-frame correlation and generate the prediction
error image. The prediction error image is transformed and quantized, and the entropy coding
module encodes the quantized coefficients as coded video stream. The reference frame during
ME comes from the reconstruction of previous coded frame in the motion compensation
module. The motion compensation module reconstructs the previous coded frame by referring
to the motion vectors (MVs) from ME module. Figure 2 shows the computation complexity
analysis in a video encoder system. Here, we illustrate MPEG-4 reference software (N4025)
[3] as an example to analyze its workload distribution. From Figure 2, we can find ME
consumes more than a half of the encoding power. This means reducing the ME complexity
can gain the most in the encoder system optimization. Toward a low power and high

throughput design, optimization in ME plays the key rule.

Video

source

motion estimation
B3%

> + Transform
\)

A 4

Quantization

Entropy

A

Motion

compensation |

A

Motion

A 4

Inverse
Quantization

N

coding

Video
bitstream

A

vector

Motion

estimation

A 4

Frame
buffer

Inverse
| + transform

Figure 1. Block diagram of a generic video encoder system.

others

. [n!
inverse transform 9%

2%

transform
2%

video IfO
T%

17%

memory allocation

Figure 2. Workload distribution in video encoder [source: MPEG-4 reference software N4025

[6]].

In the advanced profile of video standards such as MPEG-1/2/4 or H.26x [1]-[5],

bi-directional inter prediction (also called B-frame) is adopted to improve inter prediction

precision and provides better coding efficiency. The B-frame coding scheme allows us to

2

reduce the prediction errors in ME by using both the forward and backward reference frame.
As shown in Table 1, 0.4~2.0 dB PSNR improvement can be observed by replacing one or
two P-frames with B-frames. But with the improved coding efficiency, the encoder
complexity also increases with the number of frames used for motion search. Around
50%~130% increase of total encoding time are observed when one or two B-frames are used.
Thus it poses a challenge to balance the coding complexity and coding efficiency. Meanwhile,
the memory access bandwidth is increased proportional to the number of prediction frames.
This also means that it raises a challenge for ME to balance the search complexity and search
performance under bi-directional prediction scheme.

A few dedicated design solutions are proposed for B-frame search [7] [8]. But most of
the existed algorithms are software level solutions. For hardware design, the conventional
methods treat B-frame motion search as 2 iterations of P-frame motion search. Such designs

sequentially process the forward frame first and then the backward frame (or vise versa).

Table 1. R-D performance for 3 different types of GOP structure with M=1, M=2 and M=3.

GOP |Bitrate Foreman |Akiyo Flower: |Mobile |Football |Tempete

256 30.84 41.61 23.86 23.38 26.81 26.04
512 34.18 43.33 26.11 26.18 27.86 28.78

M=1 1024 36.89 44.43 293 29.25 31.75 31.55
256 30.49 41.85 23.88 24.26 26.91 27
512 34.62 43.47 26.56 27.69 27.38 29.89
M=2 1024 37.37 44.95 29.71 30.65 31.65 32.55

256 29.86 41.89 23.71 24.55 26.94 27.23
512 34.44 43.42 26.48 28.15 27.13 30.14
M=3 1024 37.27 45.09 29.58 30.99 31.45 32.76

Table 2. Average encoding time in seconds for 3 types of GOP structures'.

Sequence M=1 M=2 M=3
Akiyo 129 163 202
Flower 133 232 388
Football 137 252 424
Foreman 144 228 343
Mobile 166 282 456
Tempete 134 213 328

Considering the B-frame search structure, both forward and backward frames use the
same current search blocks. To reduce chip memory access bandwidth and the power
consumption, we need to fully utilize each memory access of current blocks for forward and
backward frames. But if we break the sequential iterations to be parallel processing of forward
and backward frames, it raises some difficulties such as larger size of local memory
requirement and more silicon area for parallel processing. To solve the difficulties, an efficient
algorithm needs to be applied: to balance the tradeoff between higher memory access

bandwidth in sequential design and the extra-cost of'design in parallel architecture.

1.2 Thesis Scope

In this thesis, we focus the bi-directional ME design on low power application. This low
power design contains three sub-modules including integer pel ME (IME), mode decision
(MD) and sub-pel ME (SME). In IME, we implement a new parallel binary search
architecture which can allow parallel processing of forward and backward searches in binary
format. Since the memory access is considered as one of the major sources for power
consumption, the proposed parallel binary search can greatly reduce on-chip memory access
compared to the conventional 8-bit design solutions. In MD, we integrate the MD module into
SME to avoid two loops processing of MD and SME to save power. The proposed MD
architecture adopts a new one-dimension algorithm to reduce longer latency in the original

two-dimension and avoid hardware idling. In SME, a low power sequential design solution is

' The simulation is based on MPEG-4 reference software [6] with Pentium 2.8G CPU and 512 MB ram. The
average encoding time under three different target bitrate (256, 512, and 1024 kbps) is presented.

4

adopted to balance the system pipelining for IME, MD, and SME.

The remainder of this thesis is organized as follows. In Chapter 2, we review the
algorithms and architectures of bi-directional ME. We also propose a low power solution for
bi-directional ME. The proposed algorithm is described in Chapter 3. Chapter 4 describes the
architectures of IME, MD and SME modules. Experimental results and analysis are given in
Chapter 5 to demonstrate the improved performance in power consumption. Chapter 6

concludes this work.

Chapter 2 Analysis of Bi-directional Motion Estimation

This chapter reviews the previous design solutions for B-frame search. We analyze the

design challenge and then propose a low power solution.

2.1 Bi-directional Motion Estimation Algorithms

In this section, we review bi-directional ME algorithms. Two main categories of
bi-directional ME algorithms are reviewed. One is area overlap and some relating algorithms,
which takes advantage of the relationship between MV of current B-frame and that of future
reference frame. The other is hybrid block-matching algorithm, which uses mean absolute
error (MAE) between the MB in the current B-frame and the corresponding MB in the

reference frame with MV (0, 0) to find the MBs those are not compensable.

2.1.1 Area Overlap and Related Algorithms

If the motion of each block 18 constant;-M-V-of current B-frame should be proportioned to
that of future reference frame. Thus:MVs obtained from future P-frame can be reused to omit
unnecessary ME for bi-directionally predicted B-frame. Based on this idea, some algorithms
are proposed such as area overlap and vector propagation [7], [11].

Firstly, area overlap algorithm is reviewed. Assuming the GOP structure is IPBPB, the
first three frames are coded in the following order: I,P,B;, where the suffix represents the
frame number. After P, is coded, MV of each block in frame P, (MV_P,) is available. As the
MB moves back along MV _P, to a block in frame I, it makes a projection on frame B;. The
projected block intersects with one to four MBs in frame B, as shown in Figure 3 and Figure 4.
For each MB in frame B, the area overlap (AO) with projected block can be calculated as

followed:

y-v|<L,

Aoz{(Ll—|x—u|)(L2—|y—v), if [x-u|<L,)

0 , otherwise

AO is the area overlap between a certain MB in frame B and the projected MB from future

reference frame P,. L is the horizontal dimension of a MB and L, is the vertical dimension of

a MB. (x,y) represents the co-ordinates of the top left corner of the MB in frame B, and (u,v)
represents the co-ordinates of the top left corner of the projected MB. According to the
equation, we can find out which projected block from frame P, possesses largest area overlap
with one certain MB in frame B1. Then its MV is appropriately scaled to give forward and

backward MV.

When the motion is not linear, area overlap algorithm yields poor result. To solve this
problem, the authors in [12] propose MV interpolation and search method. After applying
area overlap method, it further fine tunes the MV by performing search in small search range.

The similar technique can be also found in [7].

Projected block
//

___,.f"' F_____,.-"‘ / d,_.-"‘; / ’_-__H_.-'
‘____,_.-"/ - .,-"‘f MV_B;__ F__,.-—-"' //_/ ‘,r-"/
-~ y e |
<« _;—"":—{— —__:..?"":f— ————— == “"':—‘—;_;_;r"i' ———— /_.f ,.--“ff
1 |- . B |
L~ [t _____.-’-" _-—"g --;J__,.-"' 1 |~ ,.-"‘--J A
~1 |- » |
P] |~ - - -
= . L .-“ff ,-"'/.‘f __.-f-"'"f ,a,-""j
- ~ = = L] 1 L~] y
,-f,,-"‘” | p |1 ;f_.a,-" P 1 -.,-lff,.-'”
-~ L~ |- L P |
lo B. .

Figure 3. Projected block on frame B; when one MB in frame P, moves back along MV_P to

a block in frame I,

(xl,y12 (X2,¥2) Four MBs in frame B;

v

Projected

// block

(u,v)

(Xs,Y3).—

Figure 4. P-frame MB‘s projection in frame B;.
2.1.2 Hybrid Block Matching Algorithm

There is about half of the MBs are not'compensable in a genetic video sequence. The
MBs those are not compensable could be: (a) those corresponding to a stationary background;
(b) those corresponding to an uncovered background and new objects where no information
can be found from the previous reference frame. Therefore, the main idea of hybrid
block-matching method [13] is to find the MBs those are not compensable by using MAE
between the MB in the current B-frame and the corresponding MB in the reference frame with
MV (0, 0).

The flow of hybrid block-matching algorithm is described as followed. The GOP is set
as [-B-B-P-B-B-P-B-B in display order. The I-frame is encoded first and then the next
P-frames. After the encoding of P-frame, each MB in B-frame is classified as compensable or
not. It assumes that the average MAE for the B-frames will not be much larger than the
average MAE for the P-frames. Two thresholds are defined to classify the type of MBs:

T, =R xMAES, i =12 (2)

avg °

MAE;g is the average MB MAE of two reference frames. R, and R, are two predefined
ratios. If the MAE of current MB is smaller than T}, the MB is defined as a type-A MB which
is not compensable. If the MAE,,; is large than T,, then we compare it with the MAE of the

corresponding MB in reference frames (past and future frames). If there is no significant

improvement, this MB is identified as a type-B MB. For other MBs, if all four blocks are
compensable, the MB is identified as compensable; otherwise it is classified as a type-C MB
which is not compensable. Thus ME for those MBs which are not compensable can be
skipped. The percentage for the found MBs which are not compensable represents the
reduction in computation. And MAE is used not only for the matching criteria, but also for
classifying the MBs. Therefore, almost no overhead computation is needed for classifying the
MBs which are not compensable. The experiments show the speedup factor for B-frames is

about 57 on average compared with full search method.

2.2 Bi-directional Motion Estimation Architectures

In this section, we review conventional architectures for P-frame search. There are many
ME architectures such as full search block-matching (FSBM), three step search (TSS),
diamond search and so on. FSBM is preferred for hardware implement due to its regular
search pattern and simple control overhead. However, it has the highest computation
complexity. So besides FSBM, we'also review. TSS architecture due to its simplicity. These
architectures for P-frame search-can be extended to B-frame search by processing forward
search first and then the backward search-(or vise versa) sequentially. Thus B-frame search

can be treated as 2 iteration of P-frame Search.

2.2.1 Full Search Block-Matching (FSBM)

To overcome the computational costs of FSBM, several different architectures have been
proposed over the last few years such as systolic array, adder tree and etc. Among them,
systolic array can achieve high hardware utility and be easy for data reuse. So we review the
most common FSBM architectures implemented with 1D and 2D systolic array in [14].

Figure 5 and Figure 6 illustrate the FSBM architecture implemented with 1D systolic
array, which consists of N processing elements (PEs) for N pixels of a single row in the
reference block of size NxN. To achieve parallel processing, the candidate blocks enter
serially and are shifted for each clock cycle from one PE to the other. The systolic array
calculates the absolute differences in parallel and then sends the partial sums of the absolute
differences (SAD) to the parallel adder to compute the SAD of each block matching. Then the

differences are fed to controller to determinate the MV with minimum distortion. For a

reference block of size (KxK) and *P search range, the total number of clock cycles is (2P+1)
x(K+2P)xK. With K=16 and P=16, it takes 25344 cycles. The 1D systolic array has less area
than other types but the drawback is the increase in the number of clock cycles required to

finish the calculations.

Search Motiton
vector
block . : PE, : PE, Ce : PEN.1 : PEnx [—» Controller —»

Current block

Figure 5. 1D systolic array for FSBM architecture.

v

One pixel of
search block

A-x|

Hj_i

Input partial sum — >

>
Output partial sum

18ppy

Current block

Figure 6, PE structure'in 1D systolic array.

For FSBM architecture implemented with 2D systolic array, there are K> PE for KxK
pixels in the reference block. In general, the PE of 2D systolic array is the same with that of
1D systolic array but there are K* PEs. The PE in the systolic array computes the absolute
difference between pixels of reference block and current block and then forwards the partial
sum of absolute differences from the row below to the row above. For a KxK reference block
and a window size of K+2P the total number of clock cycles is (K+2P)>. With K=16 and P=16,
it takes 2304 cycles. But it increases the hardware cost and power consumption because of
more number of PEs and more interconnect area. The analysis of 1D and 2D systolic array

shows the trade-off between the number of PE, processing rate and power dissipation.

2.2.2 Three Step Search (TSS)

The main architectural problems of TSS are the variable distances between candidate

locations and the sequential execution between steps. They result in unpredictable data access.

10

Besides, these problems complicate the control scheme, lower the efficiency of computation
kernel, and make the data-reuse difficult. To solve these problems, memory-efficient array
architecture with data-rings to implement TSS is proposed in [15]. This architecture not only
simplifies the control scheme with a regular raster-scanned data flow, but also shortens the
latency by using a comparator-tree structure.

As shown in Figure 7, 9-cells array architecture with data-rings is employed. It can
evaluate the 9 candidate locations in parallel and accumulate the absolute difference of each
candidate block sequentially. Each basic cell is composed of a memory module and a PE. The
PE consists of an absolute difference unit, an accumulator, a final-result latch, and a
comparator. The comparators are connected in a tree structure. Figure 8 shows the
architecture of one basic cell. The memory modules store the search area pixels for prediction.
Memory interleaving technique is used to provide a solution to parallel data access. The
search block pixels are interleaved to these 9 memory modules. At each cycle, the current
block pixels are sequentially broadcast to, all. PEs in raster-scanned order. The search block
pixels required by each PE aré read.into.the. PEs in parallel. Each PE shifts the
partial-accumulation to the adjacent PE in hotizontal ringed direction to accumulate the next
partial-accumulation of the same, | search .position. After every 16 cycles, each
partial-accumulation shifts and accumulates in a‘vertical ringed direction. After 256 clock
cycles, the final accumulation-result of ‘each’candidate is produced in the final-result latch of
each PE. Finally, the 9 latched MADs can then be sent to the comparator-tree to get a
minimum MAD. Thus it takes 256 clock cycles for matching at each step and at least 768
cycles to complete TSS.

Because the number of checked positions is much reduced, the required running cycle of
TSS architecture is much less than FSBM. But it results in PSNR degradation. So it shows the

trade-off between PSNR performance and running cycle.

11

Search block

A

piexels » » L,
Memory, Memory; Memory,
Current block > g :
piexels [L > i > i
PEo < PE; <« PE,
| Tes 1
Y__¥ YN
1> | Memorys; > Memory, > Memorys
ISR Sl]
PE; < PE, < PEs
A A A
A, l N v N
> | Memorys 1| Memory;
> > >
I S o AN
PEe PE; <« PEg
AT AT AT

Best
candidate

Min

>

Figure 7. A memory efficient array architecture'with data-rings for TSS in [15].

Search

Partial sum
from the above PE

MAD

\ 4

block pixels

Current block

\4

piexels

PE

A

Comparator

«—

Partial sum
from the
bottom PE

Y Partial sum

to the below PE

from the above PE

Partial sum
to the right PE

Partial sum
from the most
right PE

Figure 8. Structure of one basic cell for distortion calculation in TSS architecture.

12

2.3 Design Challenges and Proposed Solutions

The B-frame search suffers greater design challenges in real-time processing and low
power consumption than P-frame search. It needs more computational power in order to meet
the same encoding throughput as P-frame only search. A complete ME structure contains 3
sub-modules including IME, MD and SME, and shows different design challenges toward
low power design.

A. Integer pel motion estimation (IME)

The IME sub-module dominates the whole power consumption in ME design. More than
60% ME power is consumed in IME. In conventional low power design methodology, it
designs a low power IME and applies sequential operation for each prediction frame. But to
consider the B-frame search structure, there is still redundancy for forward and backward
searches. The sequential search uses the same current search blocks for both searches while
one of them can be skipped to reduce on-chip memory access and power consumption. But
the conventional parallel processing architectutre, for multiple frames which trades larger
silicon area for higher processing-throughput is not suitable for low power design. This thesis
proposes a new parallel binary architecture to-allow parallel search in binary format. This can
efficiently reduce the silicon area and power consumption while still maintaining the

advantages of parallel architecture.

B. Mode decision (MD) and sub-pel motion estimation (SME)

The convention ME design treats MD and SME as two separated operation loops. Since
MD and SME use the same current and reference search block data, the two loop design
methodology is not suitable for low power design. So, the first solution is to merge the MD
and SME in single loop processing. The MD compares inter and intra cost to determine the
coding mode. The original method for cost calculation is based on 16x16 calculation results
which has a longer processing latency. The second solution is to apply an efficient one
dimension cost calculation method to reduce the longer latency and processing cycle counts

for low power design.

13

Chapter 3
Algorithm of Bi-directional Binary with Sub-pel Motion
Estimation

The proposed bi-directional ME algorithm contains IME loop and merged MD and SME
loop. The IME is based on ABME [10] and designs a bi-directional architecture for parallel
binary search. The merged MD and SME (referred to as MD-SME) apply a new one

dimension cost calculation into the sequential processing SME algorithm.

3.1 Review of All Binary Motion Estimation (ABME)

The ABME is composed of two major modules, including pre-processing engine and
motion search engine. The pre-processing engine is to-preprocess the full pel image pixel data
to generate binary patterns for search. The Search engine applies a pyramid search structure to

allow three-layer of binary search:
3.1.1 Design Flow of All Binary Motion Estimation

Figure 9 shows the ABME design flow. Firstly, it adopts the frame-based pre-processing
method to construct a three-layer binary pyramid in three different resolutions indicated as
Level 1 (LV1), Level 2 (LV2), and Level 3 (LV3), which represents the binary representation
from the coarsest to the finest resolution respectively. Then the pyramid search performs
coarse-to-fine search from LV1 to LV3 sequentially. The LV1 search is a full search with a
search range of =+ (R/4-1), where R indicates the search range in integer resolution. In LV2
search, six MV predictors from neighboring MBs, including co-located MB in previous frame,
top, top right, and left, MV from LV1 and (0, 0) are checked first. If all these motion
predictors are equal to zero, a fine tuning operation with a +2 cross pattern is performed. If
the answer is no, an operation is applied to find the motion predictor with minimum SOD
among the six candidates. This is known as the voting process. Then, we select this predictor
to perform a =+ 1 cross pattern search. LV3 search inherits the LV2 MVs and performs a +2

14

fine tuning search. After the final MV of a 16x16 MB is determined, it is used as the initial

center for the 8x8 search with +2 search range.

FPPU

v

LV1 +(R/4-1)
Search

Y

6 predictors
are zero?

Lv2

No Yes

Tuning
Voting (cross

pattern)
v

Tuning

v

LV3 £2
Search

v MVieas

Block 8x8
+2 Search

I
V. A MV

Figure 9. Flow chart of ABME.

3.1.2 Frame-based Pre-processing unit (FPPU)

Similar to the hierarchical ME algorithms, the ABME is also based on the pyramidal
structure. The binary pyramid used in ABME is composed of three layers, which is indicated
as LV1 to LV3, from the coarsest to the finest resolution. In Table 3, we summarize the
resolution at each level. To construct the binary pyramid of three layers, the full pel image
pixel data is processed through binarization and sub-sample procedures. Since the binary
representation of one pixel is zero or one, a threshold is required for determination. For a
pixel ‘A’ and surrounding pixels ‘B, C, D, and E’ as shown in Figure 10, the threshold (TH) is

defined as following equation:

TH = (B+C+D+E)/4 3)

15

And the binary value is determined as followed:

I, if(A>TH)
= : “4)
0, otherwise

Where A' denotes the binary value of pixel A. Figure 11 shows an image before and after
binarization. It can be seen that binary image preserves the edge of the object. Thus ME can
obtain a fair MV with binary image even though the bit depth of one pixel is reduced to one
bit.

Table 3. Frame and MB size at each level.

LV1 LV2 LV3
fame W H W H W xH
4 4 2 2
MB 4x4 8x8 16x16

D
O
BYZR E C
©: O
E
O

Figure 10. Threshold obtaining for binarization.

SIEMENS

(a) (b)

Figure 11. (a) An image in 8-bit representation (b) An image in binary representation.

16

To construct an image pyramid, the image at coarser resolution (upper level) is obtained
through sub-sample procedure. ABME combines sub-sample procedure with binarization to
save the computational complexity as illustrated in Figure 12. For binarization, the mean of
neighboring pixels is taken as the threshold value, which can be considered as low-pass
filtered data. By down-sampling the filtered data, the image at coarser resolution is obtained.

By repeating such procedure, we can construct a binary pyramid as shown in Figure 13.

OO OO0 filter binarization
08O ® 60 0000[i>0000
0000

down-sampling
& Pixels to be processed
(O Neighboring pixels
@ Filtered data ® ®
@ Bit representation of pixelsi
@ Pixels of upper level: 2

Figure 12. Coﬁgﬁinaﬁfot;i‘efbi:r_}ariz:atit)n and sub-sampling.

A

sub-sample

Figure 13. A binary pyramid structure used for ME.

17

3.1.3 Three Layer Binary Pyramid Search

After constructing a binary pyramid of three layers, ABME performs ME from LV1 to
LV3 sequentially. Since the resolution of LV1 image is downsampled by 4, a full search with
a search range of *(R/4-1) is performed at LV1 search, where R is the search range in the
original resolution. Then the MV_LV1 is passed to LV2.

In LV2 search of ABME, it defines six MV predictors as followed:

MV _LVI: predictive MV transferred from LV1 full search

MV_UR: MV of upper right MB

MV_U: MV of upper MB

MV_L: MV of left MB

MV _P: MV of the same position but in the previous frame

MV _Z: zero MV (0, 0)
Depending on these predictors, LV2 search in ABME contains two parts: one is search with
cross pattern and the other is voting and tuning. If the six candidates are (0, 0), it performs a
search with cross pattern. Otherwise, it checks.these six positions to see that which candidate
results in the smallest SOD. And then it further refines the best candidate by tuning within a
small range. The final MV is considered to be the.best predictive MV indicating the initial
position for LV3 Search. LV3 search inherits'the LV2 MVs and performs a +2 fine tuning
search. After the final MV of a 16x16 MB is determined, it is used as the initial center for the
8x8 search with +2 search range.

Since the images at three layers are in binary form, the commonly used matching
criterion SAD is not suitable for binary representation algorithms. The matching criterion for
binary representation is called sum of difference (SOD), which is simply Boolean operation
XOR as shown in Equation (5).

SOD(U,V) = D[S, (X, Y)® S, (x+u,y+V)] (5)
(x.y)<Block

SOD : Sum of Difference

X, y: current horizontal/vertical pixel location

@ : 1-bit XOR operation

S, (X,y) : binary representation at (X, y) on current frame

18

S,,(X+U,y+V): binary representation at (x+u, y+v) on reference frame
SOD is similar to SAD but it doesn’t have to care about the sign information and be easy for

hardware implementation.

3.2 Bi-directional Motion Estimation Algorithm

The proposed bi-directional ME algorithm as shown in Figure 14 contains three
processing stages, IME, MD, and SME.

A. Integer pel motion estimation (IME)

In IME, a bi-directional binary ME (BBME) is developed based on our prior work [10],
and constructed on MPEG-4 standard. Firstly, a three-layer binary pyramid in three different
resolutions is constructed for the three-layer binary pyramid search. For the purpose of MB
level pipelining, the pre-processing unit for the three-layer binary pyramid bitplane is
designed using MB-based pre-processing (MBPPU). The three binary bitplanes are referred to
as LV1 for 1/16 original size, LV2sfor 1/4 originalssize and LV3 in original resolution. After
the binary pyramid bitplanes are constructed,- three layers of binary search are applied as
shown in Figure 14. The design flow is'summarized as-below.

(1) Apply MBPPU to construct a three layer binary pyramid.

(2) Apply LV1 full search with +(R/4-1) search range.

(3) Apply a fine-tuning operation using 5 predicted MV candidates with +1 cross pattern
search in LV2. The MV candidate with minimal matching cost is chosen as the search
center in LV3.

(4) Apply LV3 full search with £2 search range for block size 16x16.

(5) Apply LV3 full search with £2 search range for each 8x8 blocks from the same search
center as block size 16x16 so that we can merge these two searches in hardware

implement.

B. Mode decision (MD) and sub-pel motion estimation (SME)
The MD calculates the intra and inter R-D cost for MD after IME and before SME, and
SME is applied if inter mode is selected. As shown in Figure 14, the MD calculates the intra

cost according to Equation (6), which is a form in sum of difference with the mean value in

19

that MB.

15 15 _ _ 1 15 15
ZZ Ci.;—Cls C:—chi,j (6)
j=0 i=0 256 j=0i=0

The inter cost is from the sum of prediction difference for block 16x16 or 4 block 8x8. If the

intra cost is higher than either one of the inter costs for block 16x16 or 4 block 8x8, the inter

mode is chosen. Otherwise, intra mode is adopted for encoding. If inter mode is chosen, SME

is applied. In P-frame search loop, block 8x8 and block 16x16 are applied. In B-frame search

loop, only block 16x16 is applied. The design flow for MD and SME is summarized as

follows.

(1) Apply MD using intra cost in Equation (6) and inter costs for block 16x16 and 4 block
8x8. If either one of inter costs is smaller than intra cost, inter mode is chosen. Otherwise,
go to step (6).

(2) Apply bi-linear interpolation for SME.

(3) Apply £1 half-pel search for block'size 16%16:

(4) Apply £1 half-pel search for 4 8x8 blocksif this'is a P-frame search loop.

(5) Compare the R-D costs for block 16x16 and 4 block 8x8. The one with smaller cost is
chosen as the final MV for inter mode.

(6) Calculate the residue for the decided coding mode in step (1) or step (5).

20

MBPPU

LV1 £(R/4-1)
search

A 4

+1 search for
5 predictors

y

8x8 & 16x16
+2 search

MV16X161 4 MV8X8

Intra/Inter
mode desicion

Intra

Sub-pel
search

Figure 14. ME flow in MPEG-4 coding.

3.3 Hardware Efficient Design Features

The proposed bi-directional ME algorithm adopts 4 hardware oriented design methods
for low power design applications.

A. MB-based pre-processing unit (MBPPU)

The proposed MBPPU is designed for low cost and low data requirement under MB
level pipeline hardware architecture. It can reduce the required bus bandwidth and hardware
design cost by mirroring the pixels around MB boundary. The FPPU in ABME [10] can cover
the global image context information during binarization process but it brings lots of design
difficulties in hardware design. For easy pipelining in MB level, the ABME realizes the FPPU
in MB basis. Such a design method can maintain the same performance as FPPU. But it

suffers bigger problem in memory access bandwidth since extra image data is needed as

21

shown in Figure 16(a). To construct 4x4 binary block at LV1, one 6x6 block is required. Thus
one 14x14 and 30x%30 block is needed at LV2 and LV3, respectively. Compared with the
original MB size of 16x16, the data is increased about 3.5X.

To solve this problem, we propose a new MBPPU method by using self-padding to
reduce the heavy memory bandwidth requirement as shown in Figure 15. At LV3, the block
size of KxK is used for binarization. So the downsampled block size at LV2 should be
(K/2)x(K/2). If there are p pixels absent for LV2 binary pattern generation, the downsampled
block is self-padded by mirroring the pixels around the boundary. And the padded block is
used for LV2 binary image and LV1 downsampled image generation. The similar technique is
applied to LV1. In this way, the required data is decreased significantly, which accompanies
reduction of memory bandwidth and computation complexity. To find out the suitable size of
block at LV3, block sizes of 16x16, 18x18, and 20x20 are tested in our simulation as shown
in Table 4. Compared with the block size of 30%30 used in ABME, the PSNR drop of 16x16
block is about 0.5dB while those of 18x18.and 20x20 blocks are within 0.2dB. Considering
the trade-off between required datarand PSNR performance, the 18%18 block size is adopted
in our MBPPU.

Figure 16(b) illustrates ourproposed"MBPPU by: self-padding to automatically generate
the required MB boundary data<for binary image generation. At LV3, we have 18x18
un-padded image data for the current layer binary image generation and LV2 downsampled
image generation. For LV2, the downsampled block size is 9x9, which is one pixel absent for
LV2 binary pattern generation. So the LV2 block is self-padded by one pixel. Then the padded
10x10 block is used for LV2 binary image and LV1 downsampled image generation. The
same rule is applied for LV1 binary pattern generation. As a result, MBPPU can provide
177% data saving compared with FPPU.

Table 4. Comparison of different block size in pre-processing, test sequence is foreman at 512

kbps.
Block size 16x16 18x18 20%20 30%30
Required data (bits) 256 324 400 900
PSNR (dB) 33.51 33.87 33.91 34.01

22

Size : KxK Size : (K/2+p)x(K/2+p)

Sub-sample then
padding -
[1 | 4ppixels
@
@ D
3 =
Q N
N)
Q o
%". 3 \4
3
v

Figure 15. Illustration of self-padding of downsampled block.

(@) 30x30 @ 14x14 @ 66

Binary.pattern generation

4x4 LV1
Binary pattern

8x8 LV2
Binary pattern

16x16 LV3
Binary pattern

Binary pattern generation

(b) 18x18 @ 9x9 @

Figure 16. Pre-processing flow for binary pattern generation (a) FPPU with MB realization (b)
Proposed MBPPU.

B. Hardware efficient Level 2 design

The proposed LV2 search removes the branch operation to reduce the extra computation
and memory access. The LV2 search of ABME contains two conditional paths. The first path

is to perform a 2 cross pattern search if we found six MV candidates are all zero motion.

23

The second path is to perform a =1 cross pattern search after the final MV is found from the
six MV candidates. For hardware implementation, the original method poses 2 potential
problems. Firstly, branch operation needs the first time memory access to check whether six
candidates are all (0, 0). Second, if second path is chosen, we need the second time memory
access before we perform the final decision with a small range of search. To consider the
hardware implementation, the first 2 data access for the conditional check can be saved to
avoid the multiple accesses to the same MV candidate. So, in the proposed LV2 search, we
remove the branch check and the decision of best MV candidate with minimum distortion.
The new flow allows those candidates to be checked sequentially and best candidates are
selected among them. One thing needed to be noted is the collocated MV candidate is
removed from the LV2 candidate list due to the difficult memory access to that MV

information.

C. Integration of 8<8 and 16x16 searches

The two search loops for block 8%8 and.16x16"are merged for power saving in hardware.
The MPEG-4 standard supports block sizes of 8X8 and 16x16 search in integer pel resolution.
In ABME +£2 full search is performed for16x16 MBs Then 16x16 MV is used as the initial
center of four 8x§ searches with #2 search range, which implies that total 5 iterations of ME
are needed for one 16x16 and four 8x8 blocks. To reduce the computational complexity, the
proposed algorithm integrates 8x8 and 16x16 searches into the LV3 search. When performing
+2 full search, the SODs of one 16x16 MB and four 8x8 sub-blocks are calculated
simultaneously. Such a modification can simplify the original 5 iterations of search into one

combined search.

D. One dimension mode decision with shorter latency

A line-based intra cost calculation method is proposed to reduce the longer latency raised
by Equation (6) in hardware design by using a one-dimension calculation solution as shown in
Equation (7). For hardware implementation, the original two-dimension calculation in
Equation (6) poses two potential problems. One is the mean value of current MB can not be
obtained until the whole MB is read, which results in longer latency. The other is that we need
two memory accesses. The calculation of mean value needs the first time memory access and

the computation of the absolute difference the second one. To reduce the latency and save

24

memory access, we adopt a line based intra cost calculation as followed:

15 15 1 15

DI EZ% (7)

j=0\ i=0 i=0

In the proposed line based intra cost calculation, after one row of current MB is read, we can
compute the row average, and then the summation of absolute difference between the row

average and each pixel of this row. This results in shorter latency and merges two memory

accesses into one.

25

Chapter 4
Architecture of Bi-directional Binary with Sub-pel Motion

Estimation

In this chapter, we realize the proposed bi-directional motion search algorithm in
hardware. The system architecture and the partitioned modules IME and MD-SME are

described in detail.

4.1 System Architecture

The proposed system architecture for the low power bi-directional motion estimator can
be partitioned into two main modules, IME and MD-SME which are described respectively as
below.

A. Integer pel motion estimation (IME)

The parallel binary search architecture is-the key architecture which we used to design a
low power bi-directional IME module! This architecture is not just to double the hardware,
but to fully use every control or data information which can be shared to achieve the low
power performance compared to the sequential search strategy. The parallel search
architecture allows parallel processing of forward and backward searches under the control
and data information sharing, and fully uses each memory access of the current search blocks
to minimize total on-chip memory access. But the parallel architecture suffers double
hardware design costs. So, the proposed BBME algorithm is used with the parallel
architecture to reduce the design cost and also achieve the ME computation power saving
using binary operations.

The IME architecture is shown in Figure 17. It contains a pre-processing unit (PPU)
engine and a ME engine. The PPU engine consists of one local memory and three sub-PPU
engines, LV1 _PPU, LV2 PPU and LV3 PPU, for the generation of three binary bitplane. To
reduce the external memory access latency, we adopt the ping-pong buffer as local memory.

When reading the data of ng, MB from local memory, the data of (n+1)y, MB is written in the

26

same time. The original 8-bit MB data is firstly stored in the local memory (LM_PPU), and
then passed to LV3 PPU for LV3 binary MB and 1/4 size downsampled data for LV2 PPU.
The 1/4 size downsampled data is passed to LV2 PPU to generate LV2 binary MB and 1/16
size downsampled data is passed to LV1 PPU to output LV1 binary MB. The three binary
MBs are passed to ME engine for pattern matching. The ME engine designs three individual
search units LV1, LV2 and LV3, and two SOD PEs. The ME engine performs LV1 ME to LV3
ME sequentially. The LV1 binary MB from LV1 PPU is stored in the on-chip memory of LV1
search unit, LM_CUR LV, and the forward/backward binary search window (SW) data is
stored in separated on-chip memories, LM_SW1 LVI1 and LM_SW2 LV1, respectively. For
each MB search, the LV1 controller (CTRL LV1) controls on-chip memories data access and
passed to the shared SOD PEs for pattern matching. The matching results are sent back to
CTRL LV1 for the decision of LV1 MV. The LV2 search unit performs *1 cross pattern
fine-tuning from 6 MV candidates and the MV candidate with minimal SOD cost is used as
the search center in LV3 search. The LV.3 performs block 8x8 and 16x16 parallel search by
sharing the same search information, but, calculates the SOD separately to decide their

individual final SOD costs. The final IME MVs, for block 8x8 and 16x16 are generated

simultaneously.

B. Mode decision and sub-pel motion estimation (MD-SME)

The core architecture to achieve the low power MD-SME is to merge the two loops of
processing of MD and SME in single loop. To achieve the MD and SME concatenation, we
design shared PEs for intra cost and inter SAD calculations. The MD-SME architecture is
shown in Figure 17. It contains an intra cost engine, a inter cost engine, three shared SAD PEs,
a mode determiner, and a MV determiner. For calculation of the intra cost, the 8-bit current
MB is stored in the current MB buffer of intra cost engine and sent to average PE (Avg PE) to
calculate the mean value. Then the mean value and current MB are sent to the shared SAD PE
for the computation of intra cost. For the calculation of inter SAD cost, 8-bits
forward/backward SW data is stored in separate on-chip memories of inter cost engine,
LM SWI1 SAD and LM _SW2 SAD, respectively. According to the MVs from IME module,
the address generators (AGs) generate correct memory access addresses for the on-chip
memories. The on-chip memory outputs data to interpolation PE (Interp PE) to interpolated

sub-pel data on the fly. Then the generated sub-pel data and current MB are sent to the shared

27

SAD PEs for SAD calculation. The intra and inter costs outputted by SAD PEs are sent to
mode determiner for comparison. If the coding mode is determined as inter, MD-SME module
continues to perform SME, The data flow of SAD calculation for SME is similar with that of
inter cost. But the resulting SADs are sent to the MV determiner for final MV decision.
Furthermore, due to the overlapped pixels between adjacent reference blocks in SME, three
SAD PEs are designed to process multiple adjacent search locations in parallel for on-chip

memory access reduction and power saving.

28

32-bit Memory Bus

T e .~ i A 7 T =y et Y |
! IE madule _ W Intra cost engine SHIENEGTIONSS |
I . . [I
| PPU engine MEengine || | ; _
'Origfingl | | 8-bit !
i , _ | » cur. MB L !
“ LM_PPU [] LM_Swq| LV1searchunt L buffer Mode | !
m L _ m | determiner [~ Mode
| |
1 | I |
1 | I |
I |
i LM_SW2 MV_LV1 Lv2 L3 [» Avg_PE ;
| CTRL_LVA S0 e L | | MY iy > . L 7 !
= search search | |I
! bl tvappy - || Lva _LV1 []|p|determiner 35 il [_
" binary Mp| ! | |
“ LM L » 3 shared _
" CUR_LV1 L of SAP-PES | !
— L LvV2 I !
m | LV2 PPU e m m Inter cost engine _
|
m Ly Shared _ m N |
“ _. || SoD PEf Forwra MVI| o [Lmswe |
! LV1 PPU LV 1 T _SAD L bl MV L
I . > | , Interp_PE determiner |
| binary MB —1 Shared Back _Q_<_<W i (sub-pel
! — SOD PE2 i i {precision)
1 | I _
: Binary forward/backward N I
m Ref SW N Ly ace [T SW2 _
| i L _SAD !
1| 8-bitforward/backward - !
| Ref. SW b !
) N _

Figure 17. System level architecture consisting of IME module and MD-SME module.
29

4.2 Integer Pel ME (IME) Module

The IME realizes BBME in the design, and it consists of PPU and ME engines which are
detailed below. The architecture design of BBME is based on that of ABME, and we make

some modifications to fit our algorithm.
4.2.1 Parallel Binary Architecture

The proposed IME design is based on the parallel binary architecture which allows
parallel processing of forward and backward searches to reduce power consumption and
enhance the processing throughput. The memory access is considered a major source of
power consumption. Reduction of on-chip memory access leads to less power. The parallel
architecture for bi-directional search fully uses each memory access of the current search
blocks to minimize total on-chip memory access. To efficiently use each access of the current
search blocks, two on-chip memories are adopted to allow parallel forward and backward
search. Figure 18 shows the functional blocks of the proposed parallel bi-directional
architecture. The image data for current search blocks is stored in the local memory of
LM _CUR via memory interface: (MEM TF)-from the external off-chip memory while the
forward/backward SW data is storedin separated on-chip memories, LM_SWO0 and LM_SWI1,
respectively. For each block search, the controller (CTRL) generates correct memory access
address for the on-chip memory. The on-chip memories output data to PE for pattern
matching. The pattern matching module computes the difference between current and
reference search blocks for each search candidate. The matching metrics could be in any form
such as SAD, Sum of Square Difference (SSD), SOD, etc. In this thesis, the proposed
bi-directional binary motion estimator adopts SOD as the binary pattern matching criterion.
The matching results are sent to the comparator for final MV decision. Such a design flow can
allow smooth parallel processing of forward and backward search for B-frame.

For the forward only P-frame search, this parallel architecture leaves half the hardware
resources idle if no special design is considered. To solve this problem, a parallel P-frame
search scheme is proposed. In the parallel P-frame search, the forward search data from
LM SWO is mirrored to LM _SWI1. The original forward search module searches the odd

positions of the P-frame search and the original backward search module searches the even

30

positions (or vice versa). Such a design methodology can make the whole design 100%

busy.

Compared with conventional designs, the parallel architecture contains five major

advantages including:

One-time access of the current search blocks: This reduces the redundant on-chip
memory access and power.

Single broadcast of control information: For the B-frame search, same memory access
address and vector information are needed for the processing. The parallel architecture
shares these control parameters.

Full utilization of PEs: The design is fully utilized for both P-frame and B-frame
searches. The parallel P-search uses both modules to allow another form of parallel
processing.

Lower working frequency: The parallel architecture halves the running cycle leading to
lower power consumption or doubled;throughput.

Joint optimization of bi-directional.searches: The parallel processing of bi-directional

search allows joint optimization with very-minor extra efforts.

Table 5. Summary of 3 design methodologies by adopting parallel or sequential architecture

with different pixel bit-depth for B-frame search.

8-bit sequential | 1-bit sequential | 1-bit parallel
On-chip memory C*8 C C*2
capacity
Peak memory bandwidth 8*(B1+B>) (B1+By) (B11t2*B>)
Execution cycles >2K 2K K
Processing 8-bits 1-bit 2 parallel 1-bit
bit-depth

31

—B—p
P
w
L 5
g CTRL “|LM_SWo > PEO
Z | Forward MV
ol, o . —>
g [€» MEM IF MV determiner | Backward MV
g _I—' —
<
w LM_sw1 T PE1
c o >
72}
LM_CUR| |

Figure 18. Illustration of parallel bi-direction search.

4.2.2 Pre-processing Unit Engine

Figure 19 shows the architecture of PPU which consists of a local memory and three
level PPUs, named LV1, LV2, and LV3 PRU.respectively. The structure for the three levels of
PPUs is quite similar, except the intermediate register arrays and the processing bit width. The
original 8-bit current MB is transmitted from external memory and stored in local memory. To
avoid bus transmission issues, “we adopt ping-pong buffers. This can allow the parallel
processing of current MB preprocéssing and next-MB data transmission in parallel. After the
whole current MB is stored in the local memoty, the pixels are written to the register files row
by row. In our design, three rows of pixels are needed for binarization, so the PPU_PE waits
until the third row of data is ready. The output sub-sampled pixels are sent to next level of
PPU. By repeating the same procedure, a three level binary pyramid is constructed.

Each level of PPU contains three main components

1. Register file arrays

Register arrays are designed as the intermediate buffers for PPU operations. Since the
pixels in top row and bottom row are needed for preprocessing, three rows of buffer
are designed. Smaller buffer size is achieved by using row rotator, which will be
described latter.

2. Row Rotator

The row rotator as shown in Figure 20 is designed to rearrange the input data order to
fit the PPU_PE processing order. In this design, three rows of register files are used

which force the fourth row data to be put in the location of the first row of register

32

files. Putting the data of next row to the location of the first register file changes the
data order not synchronous with processing order. To avoid complex conversion of
input data order to hardware processing order, this row rotator is adopted

3. PPU_PE
The PPU_PE calculates the average of the four neighboring pixels, and uses this mean
value to compare with the current pixels for binary patterns. The averaged pixels are

used as the downsampled data for next level of PPU.

To analyze the design timing for PPU, 2 cycles are used to fill one row of register file at
LV3 PPU, and total 36 cycles are used to fetch 18 rows of current blocks. The processing
from LV3 to LV1 PPU takes 12 cycles. Total 48 cycles are used in this PPU design. Table 7
shows a comparison with previous work [10]. From this table, we can find the proposed
design only needs 50% buffer size, 36% bus bandwidth, and 54% gate counts but achieves
4.75X throughput improvement. The improvement comes from proposed MBPPU design.
Due to a smaller number of pixels are-needed, we can significantly reduce bandwidth

requirement, local buffer size, and design cost:

33

PPU Module
Original Local memory
Frame
Level 3 PPU
Ml
ister fi » | PPU Level 3
| register file array (18x8) > = eve
2 PE ||o binary M
/k register file array (18x8) g > : m
> | 2 > >
- : o R . S +— Level 3
" register file array (18x8) g > PPU_ 2 U] sampled Data
PE
_J
Level 2 PPU
) Level 2
PPU w .
n . - ~ —_— M
|_register file array (10x8) +—» 2 > PE || binary ME
register file array (10x8) —> ;EU > 5 Level 2
o
i i > o > . 5 sUbrsampled Data
| register file array (10x8) } % > BRU_| |3
- PE
_J
— Level 1 PPU
register file array (6x8) ——» & > Level 1
| g. - _— % binary MB
> register file array (6x8) > o > >
o
| register file array (6x8) > & >
[e]
_J

Figure 19. Proposed PPU architecture.

S R
Row n+2 Row n

Py
(@]
=
. Py

Row n 8’ Row n+1
]

Row n+1 Row n+2

Figure 20. Proposed row rotator to rearrange the order for input rows.

34

PPU_PU

current Binary Data

pixel

A4

Comparator

e

2

4 neighboring
pixels

SuFb—sampIed Data

JBIYS
®

Figure 21. PPU_PE architecture used to generate binary and sub-sampled data.

Table 6. Comparison table of PPU designs between ABME [10] and proposed design.

PPU in ABME Our design
MB Latency (cycles) 228 48
Local Buffer Size (bits) 1696 816
Bandwidth Requirement
(bits/MB) 7200 2592
Gate Count
(0.18um process) 26.2 k 14.2 k

4.2.3 Motion Estimation Engine

The ME engine comprises four main components including shared SOD PE, LV1 search

unit, LV2 search unit, and LV3 search unit.
A. Shared Sum of Difference Processing element (SOD PE)

In the BBME, there are three search block sizes for each of the three pyramid layers. It
uses 4x4, 8x8 and 16x16 block sizes from level one to three respectively. To maximize
hardware utilization and minimize hardware cost, a shared PE is designed to compute SOD
for different layers with one module. As shown in Figure 22, the SOD is performed in the PE
that contains 256 bits XOR operations followed by a 256-bit adder tree. The 256 bits XOR
operations are partitioned into 16 blocks of 16-bit XOR operations to provide 16 4x4 SOD

35

results $;**{i=0~15}. Then, the sixteen 4x4 SODs can be accumulated as four 8x8 SODs S;**
#{i=0~3} or one 16x16 SOD S,'*'°.

SOD PE
ax4
. SIS -
et . > 16-bits | g
eference’| XOR |aaxs .
block — 5 s
- s
S;;xS;
r\AXA;
S,
Adder| | %
Tree > SODs
S4X4'
2
16-bits 1
XOR Sl4x4 S]SXS‘
n Q4X4;
Current] ;16“6
block 16-bits | . T
» XOR [g¥4 5
0 a
S

Figure 22. Shared SOD-PE design.

B. Level 1 (LV1) Search Unit

The LV1 search unit as shown in'Figure 23 is designed based on the proposed parallel
architecture to complete the LV1 search with low power consumption. It contains a LV1
controller, a LV1 MV determiner I, and three banks of local memories. To complete the LV1
search, the controller controls the data access from current search data buffer (LM_CUR_LV1)
and two reference search data buffers (LM _SW1 LVI and LM SW2 LVI1) to the shared
SOD PEs for SAD calculation. The shared SOD PE is able to compute 16 parallel LV1 search
SOD, and returns the results to MV_LV1 determiner for final LV1 MV decision. For B-frame
search, the two shared SOD PEs are used to process forward and backward search block in
parallel. For P-frame search, the forward search block data is mirrored from LM_SW1 LV1
to LM_SW2 LVI1. The controller controls the data flow to be able to let the one SOD PEs to
process the one half search locations and the other one to process the other half. Such a design
methodology can make the whole design 100% busy.

Figure 24 shows the data processing flow. For search range + 3, there are 7x7 search

locations. To meet the design specification of the shared SOD PE, we calculate fourteen 4x4

36

SODs in one cycle. In the first cycle, r0 and r1 in SW1 and r5 and r6 in SW2 are checked in
parallel. Using this method, we can finish the £3 search in 4 cycles for B-frame search and 2
cycles for P-frame search. Two more extra cycles are needed due to the control overhead. For

search range = 7, we have to take 10 and 18 cycles for P-search and B-search respectively.

R Level 1search unit
CTRL_LV1 > ILM_SW1_LV1
Level 1 >
ref. SW
»LM_SW2_LV1}— MV LV1
MV_LV1 R
b'lr—g:ell\le determiner e
naw » LM_CUR_LV1H
—» Shared SOD
> PE1
> Shared SOD
> PE2
Figure 23. Hardware architecture of LV1 search.

] Cycle 1 § O O O O O O O § ro 3”9"9”79”79”79”79”97}CyCle4A
L:Q::Q:::9:::@:::@:::@::9::, r1 (767776"7@777@777@"@7"677}
CyC|82§Q OCO0OO0OCOUMZ 0000 OO O cyde3
0000000 B OOOCOOOO]
k3 0000000 M 0000000 Y
T O 000000 B Q000000 i
SW1_LV1 SW2_ LV1

Figure 24. LV1 search order with * 3 search range. In this design, each SOD PE checks 14

search locations in parallel.

C. Level 2 (LV2) Search Unit

To fully use the shared SOD PEs and remove the latencies in this fine tuning stages for

low power, a hardware efficient architecture is used in LV2 design. The original algorithm

37

shows two hardware design difficulties. The first design difficulty is that two data accesses
are needed to allow voting first and then a cross pattern search. Our solution is to check all the
candidates sequentially to avoid the branch operations. The second design difficulty is the use
of multiplexer (MUX). A 2-D MUX shown in Figure 26(a) is used to access the reference
block from SW buffer. In search range of +16, the SW size is 24x24 in LV2, so a 24x24 to
8x8 MUX is needed for LV2 search. When the search range becomes wider, the hardware cost
for 2-D MUX increases significantly. Our solution is to partition the search binary bitplane
into several regions to be stored in different register files. So, access of one reference block
only needs partial regions. This can fix the MUX size independent of the search range. Figure
26 (b) shows an example to partition a LV2 search range into 9 regions, and only a 16x16 to
10x10 MUX is needed. However, dividing the search binary bitplane into several register files
suffers some overhead for the need of extra address decoder. Table 7 shows the comparison of
MUX area in work [10] and the proposed LV2 search. It shows the proposed design can
achieve at most 34% saving in hardware, area. Figure 25 shows the hardware architecture of
LV2 search. In B-frame search, the'’'V2 binary.MB from PPU engine is stored in the on-chip
memory of LV2 search unit, LM. CUR LV2, and the-forward and backward SWs are stored
in the on-chip memories, LM_SWI1 LVi2-and LM SW2 LV2, separately. For each MB search,
the LV2 controller (CTRL_LV2) «controls on-chip .memories data access and passed to the
shared SOD PEs for pattern matching.“At"each cycle, one of the five candidates and its
neighboring search locations are checked. The resulting SADs are sent back to MV_LV2
determiner and compared with the minimum SOD stored in MV_LV2 determiner. If a smaller
SOD is found, the minimal SOD in determiner is updated. After all the candidate search
locations are checked, the MV with the minimum SOD for two directions is outputted at the
same time. As for P-frame search, the five candidates are separated into two groups. And
candidates in these two groups are checked in parallel to reduce the running cycle. In each
cycle, we have to check the £1 cross pattern for one of the five candidates. However, the
shared SOD PE can only output four calculate 8x8 SODs each cycle. According to the
experiment result, discarding the left position makes least impact on PSNR performance.
Thus the left search location in the +1 cross pattern is discarded in our hardware implement.
To analyze the design timing for LV2 search, the proposed architecture takes one cycle to
check each candidate. With the use of two shared SOD PEs, the design takes 5 cycles for the 5

candidates for forward and backward search blocks, and 3 cycles for forward only P-frame

38

search. Including control overhead, the total cycles are 6 and 8 for P and B-frame,

respectively.
MV_UR Level 2search unit
MV_U
MV_L CTRL_LV2 LM SW1 LV2}—
Level 2 | MV_LV1 >
ref. sw | MV-Z
—’
»{LM_SW2_LV2}— MV LV2
> MV_LV2 R
lLeveI 2 | determiner ”
binary MB
> LM_CUR_LV2f

—> Shared SOD
PE1

A 4

— Shared SOD
PE2 [

y

Figure 25. Hardware architecture of LV2 search.

- - — —— — = — = | i 17——/‘/
I | I
| | | 1 I 2 A 3 |
| | (e
A 2 | | |
o
5: : - MESRTII 6 :
C\II | N:___1|‘__—___I
: : : 7 1l s 9 :
|__________| |___J|_ ______ |
LM_CUR Mux LM_CUR
PU PU
(a) (b)

Figure 26. Working flow of LV2 design. (a) Methodology in work [10] which uses one 24x24
to 8x8 MUX (b) Proposed LV2 design which reduces MUX size requirement to be 16x16 to
8x8.

39

Table 7. Comparison of SW buffer area in work [10] and proposed LV2 search.

Search range +16 +32 +64
MUX 576 to 100 1600 to 100 5184 to 100
Gate count of 4.8k 14.2k 43.2k
MUX in ABME

Gate count of 4.8k 4.8k 4.8k
MUX in BBME

Ratio of MUX 100% 33.8% 11%
Gate count of SW |17.5k 53.1k 166.3k
buffer in ABME

Gate count of SW |16.7k 37.7k 109.7k
buffer BBME

Ratio SW buffer [95.4% 71.0% 66.0%

D. Level 3 (LV3) Search Unit

The LV3 design replaces the’MUX with shifter for design cost saving and power
reduction. Level 3 performs +2 full search so the needed SW size is 20%20. If the architecture
with 2D MUX is used, this means we need a 20%20 to 16x16 MUX which is a great hardware
cost. Our solution is to adopt the shifter register as SW buffer. Figure 27 illustrates the
working flow of the shifter register. If the pixels in column 2 and 3 are needed, the entire
registers are one column shifted circularly, so that the required data can be moved to the
correct position, column 1 and column 2 for next data processing. Figure 28 shows the
architecture of LV3 search. In B-frame search, the LV3 binary MB from PPU engine is stored
in the on-chip memory of LV3 search unit, LM_CUR _LV3, and the forward and backward
SWs are stored in the on-chip memories, LM_SW1 LV3 and LM_SW2 LV3, separately. For
each MB search, the LV3 controller (CTRL LV3) controls on-chip memories data access and
passes to the shared SOD PEs for pattern matching. At cycle 0, SOD in search position (-2, -2)
is calculated. At cycle 1~4, 20x20 search area pixels are circularly shifted in the left direction

column by column as shown in Figure 29 (a). So, the SODs in search positions (-1, -2), (0, -2),

40

(1, -2), (2, -2) are obtained sequentially. At cycle 5, 20x20 search area pixels are circularly
shifted upward with one pixel as shown in Figure 29 (b), and SOD of search position (2, -1) is
calculated. In the similar way, all search locations are covered after cycle 25. The search order
in SW2 LV3 is reversed as shown in Figure 30. The SODs are sent back to MV_LV3
determiner for comparison with the minimum SOD stored in MV_LV2 determiner. If a
smaller SOD is found, the minimal SOD in determiner is updated. After all the candidate
search locations are checked, the MVs with the minimum SOD for two directions are
outputted at the same time. For P-frame search, the search locations are separated into two
sub-groups and are checked in parallel.

To analyze the design timing for LV3 search, the proposed architecture takes one cycle to
check each search location. With the use of two shared SOD PEs, the design takes 25 cycles
for the 25 search locations for forward and backward search blocks, and 3 cycles to for
forward only P-frame search. Including control overhead, the total cycles are 6 and 8 for P
and B-frame, respectively. Including the, memory access latency for fetching SW_LV3 data

and control overhead, the total cycles are 18.and 34 for P and B-frame, respectively.

Figure 27. Fixed fetching position by adopting shifter register as SW buffer.

41

R Level 3 search unit
CTRL_LV3 “[LM_SW1_LV3
Level 3 >
ref. SW
|
» LM_SW2_LV3{— MV LV3
MV_LV3 .
Level 3 determiner -
binary MB
» LM_CUR_LV3f

—» Shared SOD
PE1

\4

* Shared SOD
PE2

v

Figure 28. Hardware architecture of LV3 search.

s E I] Inl En] Faaa——
e DL e
e e Lo

(@) (b) (©)

Figure 29. (a) Whole SW1 LV3 is shifted in left direction at cycle 1~4, 11~14, and 21~24 (b)
Whole SW1_LV3 is shifted in left direction at cycle 5, 10, 15 and 20 (c) Whole SW1_LV3 is

shifted in left direction at cycle 6~9, and 16~19.

AR AN

(2) (b)

Figure 30. (a) LV3 ME search order for SW1_LV3 begins from the top-left point and in a
snake order (b) LV3 ME search order for SW2 LV3 is the reverse order.

42

4.3 Mode Decision and Sub-pel ME (MD-SME) Module

In the MD-SME design, we integrate the MD module into SME to avoid two loops
processing of MD and SME to save power. Our design shares the PEs for intra cost
calculation and SAD operations in SME search so that MD and SME are combined into single
loop. Furthermore, considering the overlapped pixels between adjacent reference blocks in
SME, we adopt architecture with parallel processing of multiple adjacent search locations to
avoid redundant on-chip memory accesses.

Figure 31 shows the architecture of MD-SME. It contains an intra cost engine, an inter cost
engine, three shared SAD PEs, a mode determiner, and a MV determiner. To determine the
coding mode, MD-SME module begins to calculate the intra cost according to Equation (7)
and the inter cost for block 16x16 or 4 block 8x8. For the computation of the intra cost, the
8-bit current MB is stored in the current MB buffer of intra cost engine and sent to average PE
(Avg_PE) to calculate the mean value. Then the mean value and current MB are sent to the
shared SAD PE for the computation of intra cost:: As shown in Figure 32, each SAD PE
consists of 16 absolute differences PEs (AD_PEs) and one accumulator. It can process one
row of 16x16 MB or two rows of 8x8 block each cycle. For the computation of the inter cost,
8-bits forward/backward SW data 1s stored in sepatate on-chip memories of inter cost engine,
LM SWI1 SAD and LM _SW2 SAD, respectively. According to the MVs from IME, the
address generator (AG) generates correct memory access addresses for the on-chip memories.
The on-chip memory outputs data to interpolation PE (Interp PE) to interpolate sub-pel data
on the fly. Then the generated sub-pel data and current MB are sent to the shared SAD PEs for
SAD calculation. The intra and inter costs outputted by SAD PEs are sent to mode determiner
for comparison. If the coding mode is determined as inter, MD-SME module continues to
perform SME, The data flow of SAD calculation for SME is similar with that of inter cost.
Due to the overlapped pixels between adjacent reference blocks in SME as illustrated in
Figure 33, 3 SAD PEs are designed to process 3 adjacent search locations in parallel for
on-chip memory access reduction and power saving. The resulting SADs are sent to the MV
determiner for final MV decision.

To analyze the design timing for MD-SME module, Table 8 and Table 9 illustrate the
data flow of SAD PE for inter and intra cost calculation, respectively. In these two tables,

C.; and R;; represent the pixels of current and reference MB in location (i, j) and C is

43

the mean value of current MB. Since there are three SAD PEs, the intra and inter cost can be
calculated in parallel. So 16 cycles are needed for inter and intra cost calculation. The total
running cycle of MD is 18 including memory access and control latency. In SME, we process
3 search locations in parallel and the data flow of SAD PE array is shown in Table 10, where
Crijand Rrjjrepresent jy, row in ig search block. It takes 16 cycles for every three search
locations and 48 cycles for one 16x16 block search. If the current frame is P-frame, we need
to perform ME for four 8x8 sub-blocks, which also takes 48 cycles. If the current frame is
B-frame, we only have to perform ME for block 16x16 in forward and backward direction
sequentially because MPEG-4 does not support sub-pel MV of 8x8 sub-blocks in B-frame. So
it takes 96 cycles to compute SADs for both P and B-frame search. However, there is some
control latency for an iteration of ME. The P-frame search contains 5 iterations of ME
including one 16x16 and four 8x8 searches, so 113 cycles are needed. For B-frame search it
only contains 2 iterations of ME, which are 16x16 forward and backward searches. Thus only

101 cycles are needed for B-frame search,

- SMEMD module
Intra cost engine
8-bit current MB 8-bit

4 » cur. MB |-
ci buffer Mode
g P| determiner — Mode
(4]
=
5 > Avg_PE [
N
™ 8-bit|forward/backward

Ref. SW

» 3 shared
SAD_PEs []
Inter cost erjgine
Forward MV g act A LM_SwW1 N
- SAD Yy
> - Interp_PE | >| determiner Zsub—pel
precision)
Backward M | sl v sw2
> AG2 —
[,| _SAD

Figure 31. Architecture of MD-SME.

44

Co

Ro AD_PE15]

A 4

\ 4

ClS >

AD PE, —
R15 —>

SAD
Accumulator —»

Figure 32. Architecture of SAD PE in MD-SME.

QU I&
eUO@UIUIBOS
oL@ lIe
@1 1 LRL I

@ Pixel in search block 0
D Pixel in search block 1
@ Pixel in search block 2

@ Overlapped pixels

Figure 33. Qverlapped pixels between search blocks.

45

Table 8. Data flow for SAD calculation.

Cycle | AD PEO | AD PEI | AD PE2 | AD PE3
0 Co,0,R00 | CioR10 | Co0R20 | C30,R30
Co,15R01 | Cri,Rin | CoRar | Ca,R3

2 Co2Ro2 | CizRiz | CazRaz | Gi2Rsz
3 CosRo3 | CisRis | CasRas | GosRas
4 CoaRoa | CiaRia | CaaRoa | CiaRsa
5 Cos.Ros | Cis.Ris | CasRas | CssRas
6 Co6Ro6 | CreRie | CasRas | CioRae
7 Co7Ro7 | CiznRiz | CazRa7 | C37Rsz
8 Cos,Ros | Cis,Ris | Cos,Ras | CisRss
9 Coo,Ro9 | CioRio | Coo,R29 | C3o.R39
10 Co.10,R0.10 | C1.10,R1.10 | C2.10,R2.10 | C3.10,R3.10
11 Co.a,Redi 1 CranRaa1 | Co,Ra01 | Caa1,Ran
12 Cod2,Ro121 Cr12,R112 [C2.12,R2.12 | C3.12,R3.12
13 Co,13;,R0,13 | CiazRi13 | C213,R2,13 | C3,13,R3,13
14 Coa4:R0ia PCIaRT 144 C2.14,R2,14 | C3.14,R3.14
15 Co.15,.Ro15:L CrassRuits | C215,R2.15 | Ca.15,R3.15

46

Table 9. Data flow for intra cost calculation.

Cycle | AD PEO | AD PE1 | AD PE2? | AD PE3
0 Coo C | Cig, C | Cop, C | Csp, C
1 Cot, C | Cigy C | Coy, C | Gy, €
2 Coz, C | Cia, C | Cap, C | Cip, C
3 Cos, C | Cis, C | Cas, C | G5, C
4 Co,s, C Cia, C Cra, C Csa, C
5 Cos, C | Cis, C | Cos, C | Cs5, C
6 Cog C | Cig, C | Cog, C | Cyg, C
7 Coz, C | Ciz, C | Coy, C | Gy, C
8 Cog, C | Cig, C | Cog, C | Cyg, C
9 Cog, C | Cig, C | Cop, C | Csp, C
10 Co, 10, C Ci.10, C Ca,10, C Cs, 10, C
11 Co,i1,a € CLfiC | Cont, C | Cayy, C
12 Coiz, c 010 C Ca,12, C Cs.12, C
13 Co.13, C Ci, c Co.13, C Cs13, C
14 Coga, € JCiHTC | Cois, C [Capy, C
15 Co,i5s' € Crisy 1€ | Cois, C | Cays, C

47

Table 10. Data flow for SME.

Cycle | SAD PEO | SAD PEI | SAD PE2
0 Cro0,Rrop | Crio,Rrio | Crao,Rrpp
1 Cro,1,Rro1 | Cri,Rry; | Cry1,Rrp)
2 Cr(),z,Rr(),z Crl,z,er,z Crz,z,Rl‘z’z
3 CI‘(),3,RI'(),3 Cr1,3,Rr1,3 Cr2,3,RI‘2’3
4 CI‘(),4,RI'(),4 Cr1,4,Rr1,4 Cr2,4,Rr2’4
5 Cros,Rros5 | Cris,Rris | Crys5,Rros
6 Cro,Rro6 | CrigRris | Cry6Rrog
7 Cro;7,Rro7 | Criz,Rr; | Cry7,Rrp
8 Crozs,Rros | Crig,Rrig | Crag,Rrag
9 Croo,Rro9 | Crig,Rrig | Cryo,Rro9
10 Cro,10,Rr0,10 | Cr1,10,R11,10 | Cr2,10,R12,10
11 Croun,Rro11 | Cry 11,Rr1 11 | Cro1,Rro 1
12 Cro12,Rr0,12 | Cri12:R1112 | Cro12,R10,12
13 Cro,13.Rro.13 | Cry 13,Rr1 13 | Cra,13,R1213
14 Cro,4;R101%°Cry j14,Rry 14 | Cr2,14,R12,14
15 Cro,155Rr0,15{Cr1,15,R11,15 | Cra,15,Rrz,15

4.4 Timing Analysis and System Pipelining

In data flow of ME flow, IME, transmission of SW data, and MD-SME are performed
sequentially. IME is performed firstly to output 16x16 and 8x8 MVs. After IME, 22x22x8
SW data is needed for inter cost and SAD calculation in ME-SME. After transmission is
complete, MD-SME module begins to calculate the intra cost according to Equation (7) and
the inter cost from the SAD for block 16x16 or 4 block 8x8. The inter cost is from the SAD
for block 16x16 or 4 block 8x8. If the mode is decides as inter, 16x16 MV in integer
precision is used as the initial center of SME with +1 search range. In the preceding sections,

we detail the hardware design of IME and MD-SME modules. Besides we analyze the

running cycle for each sub-module.

48

To analyze the design timing, Table 11 summarizes the required cycle count for proposed
IME under different frame types and different search ranges. The longest latency is 107 cycles
for B-frame search with £32 search range. The transmission of SW data takes 121 cycles for
SW of 22x22x8 bits under 32-bit bus bandwidth. The MD SME operations take at most 131

cycles as shown in Table 12.

The system pipeline architecture is used to enable the parallel processing of IME, sub-pel
data transmission, and MD-SME to avoid hardware idling and optimize the overall
throughput. The complete ME can be partitioned into three stages including IME,
transmission of reference data for MD-SME, and MD-SME. We design a MB level pipelining
schedule of ME with three stages as shown in Figure 34. Each stage of ME is processed as

follows.
1. IME stage process the ny, MB and send the resulting data MV to transmission stage.
2. Transmission stage fetches SW of 22x22x8 bits for ngp, MB.

3. MD-SME stage process the ng, MB and generate the final MV.
When performing IME for the g MB;|the transmission of SW data for (n-1), MB and
MD-SME for (n-2)s, MB are processed at the same time. Hence, all functional modules can be

processed in parallel.

Table 1T1."Cycle count of IME.

Cycle count |Cycle count |Cycle count |Cycle count
for P-frame |for B-frame |for P-frame |for B-frame
with SR=+16 |with SR=+16 |\with SR=+32 |\with SR=+32
Total 76 96 82 107
Table 12. Cycle count of MD-SME.

Cycle count |Cycle count

for P-frame |for B-frame
MD 18 18
SME 113 101
Total 131 119

49

IME IME(n) IME(n+1) — IME(n+2) >
107 cycles 107 cycles 107 cycles
Trans.(n-1) Trans.(n) Trans.(n+1)
Trans. 121 cycles 121cycles [121 cycles >
MD-SME MD-SME(n-2) MD-SME(n-1) \ MD-SME(n) N
131 cycles 131 cycles 131 cycles
o >
(®) Time

IME(n) : IME for ny, MB

Trans.(n) : Transmission of SW for ny, MB
MD-SME(n) : MD and SME for ny, MB

50

Figure 34. Scheduling approach for MB level pipeline.

Chapter5
Experimental Results and Analysis

In this chapter, we provide the experimental results and comparisons with prior

algorithms and hardware architectures. Detailed experiment environment, test conditions and

results are described.

5.1 Algorithm Level Comparison

5.1.1 Test Condition

The proposed bi-directional ME algorithm is integrated in Momusys MPEG-4 reference

software. To show the good perfefmance of'the proposed algorithm, we do the R-D

comparison with full search (FS),-diamond-search.(DS), and ABME [10]. Six common MPEG

test sequences are tested. The test bitrate are 256, 512 and 1024kbps. The detailed experiment

environment is listed as followed:

Test Platform: Intel Pentium 2.8Ghz, 512MB Memory

Test Operation System: Microsoft Windows XP Professional.
Test Environment: Microsoft Visual C++ 6.0

Test Software: Momusys MPEG-4 reference video encoder N4025.
Test Configurations:

H.263 quantization mode is selected.

Number of coded frame is 300.

Initial QP for intra block is 8.

Initial QP for inter block in P-VOPs is 8.

Initial QP for inter block in B-VOPs is 10.

Rounding control is enabled.

Initial value for rounding control is 0.

Error resilience mode is disabled.

Complexity estimation data transmission is disabled.

51

B Search range per coded frame is 16.
B Quarter pel motion compensation is on.

B No sprite coding.

5.1.2 RD Performance Evaluation

Since the MD-SME design follows the original algorithm in Momusys MPEG-4
reference software, only IME implemented with proposed BBME makes effect on RD
performance. To evaluate the PSNR performance of BBME, we employ five common test
video sequences, including Foreman, Akiyo, Flower, Mobile and Tempete. For intensive
simulation, three target bitrates such as 256, 512, and 1024kbps are tried out. And the distance
between two adjacent P-frames is set to 1, 2, and 3, respectively. Table 13 ~ Table 21 show
the simulation results. Take Table 13 for example, the PSNR losses of Foreman sequence are
0.95, 0.53 and 0.61 dB for DS, ABME, and BBME, respectively. As for other sequences, the
PSNR losses of BBME are 0.02, 0.17, 0.0 and- 0.06 dB for Akiyo, Flower, Mobile, and
Tempete, respectively. Compared with ES, the PSNR drop of BBME is about 0.6 dB in the
worst case. And it has the almost the same PSNR performance in the best case. In Figure 35 to
Figure 37, we show the RD curves of Foréman:sequence under different ME schemes.
Compared with FS, the PSNR drop 'is about 0.6 dB for BBME while more than 1 dB for DS.
In Figure 38 to Figure 40, the RD curves of Mobile sequence are shown. The PSNR drop of

BBME is less than 0.2 dB. It can be seen the curve of different ME scheme is quite close.

52

Table 13. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 256kbps.

(N=300, M=1).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 30.84 25591
Foreman DS 29.89 -0.95 253.87
ABME 30.31 -0.53 255.97
BBME 30.23 -0.61 255.98
FS 41.61 255.87
Akiyo DS 41.6 -0.01 255.99
ABME 41.50 -0.11 256.04
BBME 41.59 -0.02 256.01
FS 23.86 266.77
Flower DS 23.84 -0.02 275.49
ABME 23.70 -0.16 290.80
BBME 23.69 -0.17 309.96
FS 23.38 255.35
Mobile DS 23.44 0.06 263.02
ABME o5 -0.01 257.09
BBME 23.38 0.00 273.15
FS 26.04 256.83
Tempete DS 26.07 0.03 256.92
ABME 25.95 -0.09 256.93
BBME 25.98 -0.06 259.24

53

Table 14. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.

(N=300, M=1).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 34.18 511.98
Foreman DS 33.26 -0.92 511.93
ABME 33.82 -0.36 511.95
BBME 33.79 -0.39 511.97
FS 43.33 512.02
Akiyo DS 43.35 0.02 511.99
ABME 43.31 -0.02 512.03
BBME 43.33 0.00 512.01
FS 26.11 512.07
Flower DS 25.99 -0.12 512.02
ABME 25.75 -0.36 512.05
BBME 25.66 -0.45 511.95
FS 26:18 511.84
Mobile DS 26.26 0.08 512.01
ABME 26.10 -0.08 511.92
BBME 26.07 -0.11 512.02
FS 28.78 512.01
Tempete DS 28.79 0.01 512.14
ABME 28.78 0.00 512.02
BBME 28.79 0.01 512.08

54

Table 15. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.

(N=300, M=1).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 36.89 1023.98
Foreman DS 36.13 -0.76 1023.97
ABME 36.66 -0.23 1023.96
BBME 36.67 -0.22 1024.00
FS 44 .43 1024.00
Akiyo DS 44.43 0.00 1023.99
ABME 44.41 -0.02 1024.01
BBME 44.44 0.01 1024.02
FS 29.30 1024.09
Flower DS 29.17 -0.13 1024.13
ABME 29.05 -0.25 1023.95
BBME 29.01 -0.29 1023.83
FS 20005 1023.92
Mobile DS 29.30 0.05 1024.06
ABME 29.16 -0.09 1023.84
BBME 29.14 -0.11 1023.89
FS 31.55 1023.92
Tempete DS 31.56 0.01 1024.06
ABME 31.60 0.05 1023.84
BBME 31.60 0.05 1023.89

55

Table 16. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 256kbps.

(N=300, M=2).

Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 30.49 254.77
Foreman DS 30.02 -0.47 264.10
ABME 30.17 -0.32 254.51
BBME 29.99 -0.50 251.15
FS 41.85 254.80
Akiyo DS 41.96 0.11 255.11
ABME 41.90 0.05 255.06
BBME 41.83 -0.02 255.44
FS 23.88 276.79
Flower DS 23.66 -0.22 300.23
ABME 23.72 -0.16 291.17
BBME 235 -0.16 301.19
FS 24.26 255.14
Mobile DS 24.43 0.17 255.23
ABME 24.19 -0.07 255.19
BBME 23.74 -0.52 256.78
FS 27.00 256.65
Tempete DS 27.20 0.20 256.54
ABME 26.60 -0.40 258.16
BBME 26.47 -0.53 263.38

56

Table 17. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.

(N=300, M=2).

Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 34.62 509.81
Foreman DS 33.50 -1.12 513.33
ABME 34.01 -0.61 510.80
BBME 33.87 -0.75 509.94
FS 43.47 513.27
Akiyo DS 43.55 0.08 510.17
ABME 43.39 -0.08 510.22
BBME 43.52 0.05 509.61
FS 26.56 511.15
Flower DS 26.12 -0.44 511.46
ABME 26.29 -0.27 511.24
BBME 26.30 -0.26 511.10
FS 2769 510.27
Mobile DS 27.79 0.10 510.15
ABME 27.59 -0.10 510.28
BBME 27.33 -0.36 510.31
FS 29.89 511.75
Tempete DS 29.92 0.03 511.70
ABME 29.67 -0.22 511.60
BBME 29.55 -0.34 511.74

57

Table 18. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.

(N=300, M=2).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 37.37 1020.91
Foreman DS 36.43 -0.94 1026.43
ABME 36.84 -0.53 1019.25
BBME 36.75 -0.62 1018.86
FS 44.95 1018.24
Akiyo DS 44.97 0.02 1018.58
ABME 4491 -0.04 1020.60
BBME 44.94 -0.01 1021.34
FS 29.71 1021.85
Flower DS 29.30 -0.41 1022.60
ABME 29.57 -0.14 1022.49
BBME 29.60 -0.11 1021.95
FS 30:65 1020.55
Mobile DS 30.74 0.09 1020.54
ABME 30.60 -0.05 1020.99
BBME 30.38 -0.27 1020.79
FS 32.55 1020.55
Tempete DS 32.55 0.00 1020.54
ABME 32.38 -0.17 1020.99
BBME 32.34 -0.21 1020.79

58

Table 19. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 256kbps.

(N=300, M=3).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 29.86 261.27
Foreman DS 29.70 -0.16 273.77
ABME 29.84 -0.02 257.59
BBME 29.73 -0.13 262.52
FS 41.89 255.55
Akiyo DS 41.91 0.02 254.10
ABME 41.74 -0.15 253.41
BBME 41.70 -0.19 254.43
FS 23.71 302.27
Flower DS 23.51 -0.20 385.80
ABME 23.67 -0.04 315.07
BBME 23.66 -0.05 325.69
FS 24.55 254.25
Mobile DS 24.50 -0.05 254.34
ABME 24.48 -0.07 254.24
BBME 23.65 -0.90 265.39
FS 27.23 256.99
Tempete DS 27.55 0.32 256.45
ABME 27.22 -0.01 256.88
BBME 26.88 -0.35 265.72

59

Table 20. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 512kbps.

(N=300, M=3).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 34.44 508.93
Foreman DS 33.17 -1.27 508.88
ABME 33.67 -0.77 508.99
BBME 33.57 -0.87 508.80
FS 43.42 508.20
Akiyo DS 43.43 0.01 508.52
ABME 43.45 0.03 508.45
BBME 43.24 -0.18 508.19
FS 26.48 511.50
Flower DS 25.23 -1.25 512.53
ABME 26.26 -0.22 511.35
BBME 26.24 -0.24 511.28
FS 2815 508.75
Mobile DS 28.03 -0.12 508.89
ABME 28.02 -0.13 508.71
BBME 27.70 -0.45 508.48
FS 30.14 511.18
Tempete DS 30.24 0.10 511.23
ABME 30.13 -0.01 511.39
BBME 29.90 -0.24 511.33

60

Table 21. PSNR comparison for BBME, FS, DS, and ABME at target bitrate of 1024kbps.

(N=300, M=3).
Sequence | Method | Y PSNR(dB) | APSNR(dB) Bitrate(kbps)
FS 37.27 1017.80
Foreman DS 36.17 -1.10 1018.36
ABME 36.51 -0.76 1017.14
BBME 36.53 -0.74 1017.61
FS 45.09 1017.37
Akiyo DS 45.01 -0.08 1017.07
ABME 45.03 -0.06 1016.95
BBME 44.84 -0.25 1016.56
FS 29.58 1023.62
Flower DS 28.47 -1.11 1023.82
ABME 29.43 -0.15 1023.47
BBME 29.45 -0.13 1023.76
FS 3099 1017.16
Mobile DS 30.89 -0.10 1017.52
ABME 30.91 -0.08 1017.57
BBME 30.67 -0.32 1017.44
FS 32.76 1017.16
Tempete DS 32.77 0.01 1017.52
ABME 32.70 -0.06 1017.57
BBME 32.55 -0.21 1017.44

61

Foreman (N=300,M=1)

0 200 400 600 800 1000 1200
Bitrate (kbps)

Figure 35. RD curve of BBMEJES, DS, and ABME for Foreman sequence.
(N=300, M=1).

Foreman (N=300,M=2)

0 200 400 600 800 1000 1200
Bitrate (kbps)

Figure 36. RD curve of BBME, FS, DS, and ABME for Foreman sequence.
(N=300, M=2).

62

(dB)
w w w w w
N ol (0] ~ [e0]

PSNR_Y
w
w

(dB)

PSNR_Y

Foreman (N=300,M=3)

0 200 400 600 800 1000 1200

Bitrate (kbps)

(¢)

Figure 37. RD curve of BBME,.FS; DS, and ABME for Foreman sequence.
(N=300, M=3).

Mobile (N=300,M=1)

0 200 400 600 800 1000 1200

Bitrate (kbps)

(d)
Figure 38. RD curve of BBME, FS, DS, and ABME for Mobile sequence.

63

PSNR_Y (dB)
N N N N N w w w
(6)] (o] ~ e} [(e] o = N

N
N

PSNR_Y (dB)
N N N N N w w w
(6)] (o] ~ (o0} O o |l N

N
IS

(N=300, M=1).

Mobile (N=300,M=2)

0 200 400 600 800 1000 1200

Bitrate (kbps)

Figure 39. RD curve of BBME, ES; DS, and ABME for Mobile sequence.
(N=300, M=2).

Mobile (N=300,M=3)

0 200 400 600 800 1000 1200

Bitrate (kbps)

Figure 40. RD curve of BBME, FS, DS, and ABME for Mobile sequence.
(N=300, M=3).

64

5.2 Hardware Design Evaluation

In this section, hardware design specification is presented and compared with the
state-of-the-art designs. To evaluate the design functions, the proposed design is emulated on

FPGA.
5.2.1 Circuit Design Evaluation

Table 22 summarizes the hardware design specification of proposed bi-directional ME design.
The hardware design gate count is about 130 kilo gate count (TSMC 0.18um) with 51 kilo bit
SRAM. The proposed design can operate CIF 30fps in only 1.73MHz working frequency and
the power consumption is 11.8 mW measured by PrimePower. To compare with the
state-of-the-art designs, the proposed algorithm shows the significant throughput
improvement over them. Table 23 summaries the design information for [10], [16]-[19]. It
shows the proposed design has lewest working frequency for CIF 30fps. The power
consumption of our design is 11.8 mW, which.mainly comes from MD-SME because we
employ 8-bit bit depth in this part. For IME “module with BBME, it only takes 0.93 mW for
processing CIF 30fps.

Table 22. Hardware design specification of proposed ME for bi-directional search.

Process TSMC 1P6M 0.18um
Gate count 1309 k
Memory usage 51 Kbits
Cycles/MB 146
Required freq. for CIF 30fps 1.73 MHz
Power consumption 11.8 mW@1.73MHz
Search range +16.5 and £32.5

65

Table 23. Performance comparisons with state-of-the-art designs.

Required freq. | Power for| On-chip | Gate
for CIF 30fps |CIF 30fps| memory | count
Design Architecture Search range (MHz) (mW) | (kilo bits) | (kilo)
FS [16] 2-D systolic t16.5 48.66 353 N/A 67
Global *16 61.62 149 24.08 33.32
GME [17] elimination
GDS [18] | Gradient search *16.5 6.75 2.5 40 250
MRMCS | Multi-resolution *16.5 40 N/A 2.3 25
[19] search
ABME [10]| Binary ME t16 3.36 2.21 9.80 68.5
Proposed | Parallel binary 116.5 1.73 11.8 51 130.9
algorithm IME

5.2.2 FPGA Based Evaluation Platform

We design a verification platform based on*ARM=based platform. Basically, our platform
is constructed with the configuration.in Figure 41. FPGA based test environment. Our ARM
emulation board mainly includes two parts, ‘core module and logic module. In the core module,
there are ARM966 CPU, embedded SRAM (1 Mbytes), and external memory interface. On
the other hand, the dedicated accelerators are implemented on the logic module which is a
FPGA (Filed-programmable Gate Array). Moreover, ARM board employs the AHB bus
interfaces to communicate the core module and logic module. Besides, our ARM integrator
baseboard employs JTAG (Joint Task Action Group) interface to connect with an ARM
MultiICE. The MultiICE connects to a host commuter to conduct the communication between
computer and ARM board. In the FPGA environment, we run the codec of MPEG-4 encoder
to verify our BBME design. The BBME is implemented on FPGA, and ARM CPU takes
charge of the remaining parts of MPEG-4 encoder. The architecture of BBME has passed the

verification.

66

Emulation Board

External SDRAM

Embedded
SRAM
(1MB)

Slave

Xtérna
ARM 966 Memory
Core Interface
(EMI)
Master Slave

Slave

BBME

AHB
Arbiter
+

Decoder

A

AHB

Slave

Host

Bridge

Architecture of ARM platform based MPEG-4 Encoder with BBME

Host Interface (MultilCE)

PC

Figure 41. FPGA based test environment

67

Chapter 6
Conclusion and Future Works

In this thesis, we presented a low power ME design for bi-directional search. The
proposed ME design contains two main parts, IME and MD-SME. For low power application,
a BBME architecture that can process the forward and backward search in parallel is
presented. Such a design can save twice memory access of current frame and then share the
operation engine to keep hardware as busy as possible. For P-frame search, this parallel
search architecture divides the original search into two sub-groups of partial P-frame search to
double the processing throughput. For the hardware design, we proposed three new features to
improve the hardware efficiency including MBPPU, hardware efficient LV2 design and
integration of 16x16 and 8x8 searches. Besides the optimization of IME, we integrate the MD
module into SME to avoid two loaps processing of MD and SME to save power. In MD, this
work adopts a new line-based- algorithm to reduce the longer latency in the original
two-dimension and avoid hardware idling..In SME, we adopt an architecture that processes 3
search locations in parallel to reduce memory acecess and power consumption. To enable the
parallel processing of IME and MD SME; the system pipelining is designed to enhance the
throughput and avoid hardware idling. This work completes one bi-directional MB search in
147 cycles with 131 kilo gate count and 51 kilo bits on-chip memory using TSMC 0.18um
technology. The power consumption for CIF 30fps is 11.8 mW.

In the further works, we focus on integrating BBSME with H.264/MPEG-4 AVC
standard [20], which supports multiple reference frames. With some minor modifications, this
work can be extended to ME with any combination of multiple forward or backward reference

frames for throughput improvement

68

Bibliography

[1]

[8]

Information technology - coding of moving pictures and associated audio for digital
storage media at up to about 1.5 Mbits/s - part 2: video, ISO/IEC 11172-2, 1993.
Information technology - generic coding of moving pictures and associated audio
information: video, ISO/IEC 13818-2 and ITU-T Rec. H.262, 1996.

MPEG-4 overviews, ISO/IEC JTC1/SC29/WG11 N4668, 2002.

Video coding for low bit rate communication, ITU-T Rec. H.263, 1998.

Video codec for audio visual services at 64 kbit/s, ITU-T Rec. H.261, 1993.

“ISO/IEC 14496-5:2001 Final Committee Draft”, MPEG01/N4025.

S. Kalra and M. N. Chong; “Bi-directional motton estimation via vector propagation,”
IEEE Trans. on Circuits and-Syst. for Videa Technol., vol.8, pp. 976-987, Dec. 1998.

Y. Keller and A. Averbuch, “Fast ‘motion estimation using bi-directional gradient
method,” IEEE Trans. on Image Processing, vol.13, pp. 1042-1054, Aug. 2004.

J.-H. Luo, et al., “A novel all-binary motion estimation (ABME) with optimized
hardware architectures,” IEEE Trans. on Circuits and Syst. for Video Technol., vol. 12,

pp. 700-712, Aug. 2002.

[10] S.-H. Wang, et al., “Platform based design of all binary motion estimation with bus

interleaved architecture,” IEEE International Symposium on VLSI Design, Automation

and Test, pp. 241-244, April 2005.

[11] W. E. Lynch, “Bidirectional motion estimation based on P-frame motion vectors and area

69

overlap,” IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp.
445-448, March 1992.

[12] S. Kozu and S. Kulkarni, “A new technique for block-based motion compensation,”
IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. 5, pp. 217-220, April
1994.

[13] J. Ge and G. Mirchandani, “A new hybrid block-matching motion estimation algorithm,”
IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 241-244, May
2002.

[14] M. A. Elgamel, et al., “Systolic array architectures for full-search block matching motion
estimation,” third Int’l workshop on Digital'and Computational Video, pp. 108-115, Nov.
2002.

[15] Y.-K. Lai, “A memory efficient motion-estimator for three step search block-matching,”
IEEE Trans. on Consumer Electronics, vol. 47, pp. 644-651, Aug. 2001.

[16] J.-F. Shen, et al., “A novel low power full search block matching motion estimation
design for H.263+,” IEEE Trans. on Circuits and Syst. for Video Technol., vol. 11, pp.
890-897, July 2001.

[17] Y.-W. Huang, et al., “Global elimination algorithm and architecture design for fast block
matching motion estimation,” IEEE Trans. on Circuits and Syst. for Video Technol., vol.
14, pp. 898-907, June 2004.

[18] M. Miyama, et al., “A sub-mW MPEG-4 motion estimation processor core for mobile

video application,” IEEE Journal of Solid State Circuit, vol. 39, pp. 1562-1570, Sept.

70

2004.

[19] Jae Hun Lee, et al., “A fast multi-resolution block matching algorithm and its LSI
architecture for low bit-rate video coding,” IEEE Trans. on Circuits and Syst. for Video
Technol., vol. 11, pp. 1289 — 1301, Dec. 2001.

[20] T. Wiegand, et al., “Overview of the H.264/AVC video coding standard,” IEEE Trans. on

Circuits Syst. Video Technol., vol. 13, pp. 560-576, July. 2003.

71

Mo

@j\‘ymb{— BJ[@“J —{ F :l:)fj" ﬁéﬁ%@?ﬁj BJ[—yI u—{ = #Eii)ﬁ/‘[—ylﬂ %’4\‘3{53‘—‘7&&*_ ?:E_’
o VEE T i *ﬂ*ﬁ‘*& TOHRTSRIEA S0 o gy Bk R VIS | R et
BRI -

Shih-Hsin Tai was born in HsinChu in 1981. He received the BS degree in Electronic

Engineering, National Tsing Hua University (NTHU), HsinChu, Taiwan in 2004. His current

research interests are video compression and digital circuit design.

72

	Chapter 1 Introduction
	1.1 Need of a Low Complexity, High Coding Efficiency Video Encoder
	1.2 Thesis Scope
	Chapter 2 Analysis of Bi-directional Motion Estimation
	2.1 Bi-directional Motion Estimation Algorithms
	2.1.1 Area Overlap and Related Algorithms
	2.1.2 Hybrid Block Matching Algorithm

	2.2 Bi-directional Motion Estimation Architectures
	2.2.1 Full Search Block-Matching (FSBM)
	2.2.2 Three Step Search (TSS)

	2.3 Design Challenges and Proposed Solutions

	Chapter 3 Algorithm of Bi-directional Binary with Sub-pel Motion Estimation
	3.1 Review of All Binary Motion Estimation (ABME)
	3.1.1 Design Flow of All Binary Motion Estimation
	3.1.2 Frame-based Pre-processing unit (FPPU)
	3.1.3 Three Layer Binary Pyramid Search

	3.2 Bi-directional Motion Estimation Algorithm
	3.3 Hardware Efficient Design Features

	Chapter 4 Architecture of Bi-directional Binary with Sub-pel Motion Estimation
	4.1 System Architecture
	4.2 Integer Pel ME (IME) Module
	4.2.1 Parallel Binary Architecture
	4.2.2 Pre-processing Unit Engine
	4.2.3 Motion Estimation Engine
	A. Shared Sum of Difference Processing element (SOD PE)
	B. Level 1 (LV1) Search Unit
	C. Level 2 (LV2) Search Unit
	D. Level 3 (LV3) Search Unit

	4.3 Mode Decision and Sub-pel ME (MD-SME) Module
	4.4 Timing Analysis and System Pipelining

	Chapter 5 Experimental Results and Analysis
	5.1 Algorithm Level Comparison
	5.1.1 Test Condition
	5.1.2 RD Performance Evaluation

	5.2 Hardware Design Evaluation
	5.2.1 Circuit Design Evaluation
	5.2.2 FPGA Based Evaluation Platform

	Chapter 6 Conclusion and Future Works

