£% MPEG-4 IPMPX ¢ %4 & & MPEG-21 ipl%=
5 b % 7 MRPEGU91IPMP # REL

An Implementation of MPEG-21 IPMP and
REL with MPEG-4 IPMPX Framework
On MPEG-21 Testbed
Fopod L ERE
hERE e B

1 #* MPEG-4 IPMPX % 5t /i w & MPEG-21 Bl:#T 5+ F R
MPEG-21 IPMP ¥ REL
An Implementation of MPEG-21 IPMP and REL with

MPEG-4 IPMPX Framework on MPEG-21 Testbed

Prdr BRE Student: Chia-Hsien Lu

hErE: 88 Advisor: Hsueh-Ming Hang

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of
Master of Science
In
Electronics Engineering

June 2006
Hsinchu, Taiwan, Republic of China

1% MPEG-4 IPMPX % 3v /i & & MPEG-21 Bl3#L 5+ 9 IR
MPEG-21 IPMP ¥ REL

NS R g L

i &

"EEF PR LS SRR TES o A AT U E e RIECE S TarE i
G AER F e AL %”W’U”?mﬁ%%%cmk%é—%ﬁﬁﬁv
R o AT 4 5 MPEG 528 ¢ m%r%ﬁif%éﬁfi’ ¥ 72 MPEG-21 IPMP
"% fE A4 3% 5 MPEG-21 REL » ¢t #b » . MPEG-4 {23 N #7437 e % 4%
AR B 22§ 92 % 5L IPMPXdkis A e — A & o S 4 o

T BT BN b R MPEG-21 % HiAg @ RGeS
£ k@2 * - MPEG-2LIPMP & i3 DIDL 4+ i e j% - MPEG-21
REL &t safs it & fiEf] o P E—BF A4 n@ R E OB R Y 2
Flo 5 P F RpEARF RS PR iy MPEG-21 IPMP & REL #
W2 MPEG-4 IPMP 1 & » # B L% 3 &5 MPEG-4 IPMPX ki 3ufi & 2
MPEG-21 3% L 5 o — & MPEG-4 IPMP 1 £ i; 43156 IPMP 2 & % #% %
#o B RS S AR ALTE LF S R T AL

BN FoANPR Y PIRBH e R B KA BRI
Fo T APER N - BT A4E RN hp F R X kiR
%ﬁ EMENE 2o RIERBAY > AP T AT - BRI EE LG

G REfRET EHI Y T RORIRE o R K AP BRY 6]

VLGP AN b S Sy S P IR T R o v g I

An Implementation of MPEG-21 IPMP and REL with MPEG-4
IPMPX Framework on MPEG-21 Testbed

Student: Chia-Hsien Lu Advisor: Dr. Hsueh-Ming Hang

Department of Electronic Engineering &
Institute of Electronics
National Chiao Tung University

Abstract

As the network and digital media technologies advance, it is easy nowadays for everyone
to create and distribute digital multimedia contents. How to effectively manage and protect
the digital content becomes an important issue.dn this thesis, the technologies of MPEG-21
IPMP (Intellectual Property Management and Protection) and REL (Rights Expression
Language) are adopted to construct a 'DRM=system. The MPEG-4 IPMPX (Intellectual
Property Management and Protection Extension) system is also used as a basic framework for
our implementation.

To simulate a real-time streaming system, we use the MPEG-21 Testbed as our
multimedia delivery platform, which is part 13 of the MPEG-21 standard for testing the
multimedia resource delivery. The MPEG-21 IPMP provides ways to protect a DIDL element.
The MPEG-21 REL is able to describe various kinds of rights and it provides an authorization
model to generate an authorization proof to manage the rights. To implement these standard
specifications, we design a set of IPMP Tools, which owns the functionalities of the

MPEG-21 IPMP and REL, and we integrate this set of tools into the MPEG-4 IPMPX

framework on the MPEG-21 Test Bed. Through the IPMP Message exchange mechanism, an
IPMP Tool can request an authorization proof to check if the data processing is permitted.

In order to deliver digital contents securely, we encrypt digital contents by using a
server-side encryption Tool. To ensure the security of delivering decryption keys, we propose
a content protection mechanism with a key management mechanism. In this mechanism, we
design a key server that manages decryption keys and sends encrypted decryption keys to the
client. At the end, we develop three application examples to demonstrate that our system can

successfully safeguard digital resources and effectively manage the rights.

FARE WA S B R L Pl X] R
RS RN S ER S NES S RN ESUEANE HERELS L R
Lippreng s JIetfrdn @ oo WAR IR 3 o p 0 ek b enflei s AR E R
G BT A R eAPR iR 0 4 BB X 1A KT R U A W AR T

BOLE TR T S P EATEAT R G R RO - IR B

TS BERFUNT AN IR HREIRET - BREFLRE > BAAFY
PR REPFRT UAER o4 R RE MR 0 F
b2 22 Al Eﬁﬂ'};‘?&%kﬁ”ﬁ,— STRE L - EAAE L AR T AR R B ¥ R
RN AR R AN R P 2R R B A A S R
SR eATE o » RERIF T Efe RIS s B R S TR R
G R PR B S SRR PRI L R A B S e g 4 A B

SRR L AEE R R IES Siie

F_k

Y - BouEk S A Efr\;?%‘ 5 h

‘\1\4‘

Bf o RRHFNEAANDTA > B PEAR AT OREIFAL TR RA A

FRoend FO MG > & 3R 4 X eh o A ,;Fﬁ%__p 5% i, o

BT R AAEE - B R R RERA O A E Ak s ANk B

Contents

... i
... i
(OFaF=T o (= i A [11 oo [0 od o] o PRSPPI 1
Chapter 2 MPEG-21 Rights EXPression LanQUAGEcccueeverueeieeieerieeieseesiesiesiee e e e 3
A O o 1= 0! (Y=L 3

2.2 DAta MO ... 4
2.2. 1 LECENSE ...ttt bbbttt b bt 5

2.2.2 GIANT ...)

2.2.3 PIINCIPAL....ceiiiiiiieie ettt 6

2,28 RIGN ..o e e e e s e s s s s s e e ee e s erens 7

2.2.5 RESOUICE ..ot 7

2.2.6 CONAITION ...ttt 8

2.2.7 ISSUBT ...ttt B BB s etttk ettt b e bbb 8

2.3 AUthOrization MOEl........0i s i coidh e 10
2.3.1 AULNOTIZALION FEQUEST. . cuvteiiirar sttt feafhee ettt 10

2.3.2 AULOTIZatioN COREEXT .. 1ottt it b B 11

2.3.3 AULNOMIZATION STOMY aiiive i eeiieeieee s itin e se et e e sae e sreenae e 12

2.3.4 AUthOrization Proof ... e 12

2.4 The mechanism of extensibility and profiling ... 13

2.5 The relationship between REL and other parts in MPEG-21..........ccccoovviniiiiennnne 14
Chapter 3 MPEG-21 Part 2 DID and Part 4 IPMP ... 16
3.1 OVerview Of MPEG-21 DIDccccoooiiiiiiiiieiiisieeese e 16
3.1.1 DIS and DECIAration.ccoveviiriiieiniesieeseseseise e 16

L2 DIDL e s 17

3.1.3 DIDL EXAMPIE....eiiiiiie et e 20

3.1.4 DIDL ValIdAtiONc..ooviiiiiiiiiiiiieieeeee e 22

3.1.5 Integration role of DID: REL and DIAccccoveioieioeiieiieiiie e, 22

B2 MPEG-2L IPMP .. 23
.2 L IPMP DIDL ... 23

3.2.1.1 IPMP DIDL Elements for the DIDL model............cccceoviiniiiiininennn, 24

3.2.1.2 IPMP DIDL elements particular to the IPMP DIDL Representation ...26

\Y

3.2.2 IPMP INfOrmation SCREMIBS.......eeeeeeeee et e e e e e 26

3.2.2.1 IPMP Information DEeSCIPLOrc.cceeiirieiieriesie e 26

3.2.2.2 IPMP General Information DeSCriptorcocvveieenieniin e 28

3.2.3 Processing IPMP DIDL EIEMENTSc.ccoeeiiiieiiiiiiie e 29
3.2.4 Relationship between IPMP and other parts of MPEG-21..........c.ccccccvvvrennnn. 31
Chapter 4 MPEG-4 IPMPX Framework on MPEG-21 TeSthed..........cccoovevviieeiverieiieie e 33
4.1 MPEG-4 IPMPX EXEENSION ..ottt 33
4.1.1 IPMPTOOIMENAGET ...c.veetieiiiiiie ittt sttt st nne s 34
4.1.2 IPMP MESSAQE ROULETeiiiieiiiieiie ettt 34
A.1.3TOIMINAL ...t 35
A.L1A IPMP TOOL ..ottt bbbt 35
4.1.5 IPMP Control Point (IPMP FIlter)cccooveiiiieieeie e 36
4.1.6 IPMP Control INfOrmation............ccoereiiinincinisesese e 36
A.1.7 USING IPIMP oot 65 ettt sttt st e ettt ete e sneebeeneenneas 38

4.2 Overview 0f MPEG-21 TESBET . s suws cae sl rveviiiieiiciieieee e 40
4.2.1 Server COMPONEILS .uueeiuetaiiurasafataeton e eeueeeteesieeeeeesieeabeesseeeeeesseesreesseeanseees 42
4.2.2 Client COMPONENTS ... Lot B e ee e ste e ste e sreesaeeae e e nreeneeas 43
4.2.3 CommMON COMPONBILS.. . .coiuieieritiiir et siee et e e e e s br e aeeenaneas 44
B.2.4 NEIWOTK ..o e e 45

4.3 Integrate MPEG-4 IPMP Extension into MPEG-21 Testbedccccceviiieneninnnne, 46
4.3.1 CONEXLE .. 46
A.3.2 IPMP TOON.....eiiiie ettt ettt sttt be e nreas 47
A.3.3 IPMP FIIET oo 48
4,34 TEIMINAL ... s 48
Chapter 5 Implementation of MPEG-21 IPMP and REL with MPEG-4 IPMPX 50
O.1 IPIMP IMIBSSAQESeeeeiiiieeiitie ettt ettt et e e e e anb e s nr e nneean ol
9.1.1 REMOLE PIrOCESS.....ceeiiiieiiiieeitiee ettt ettt e 53

5.2 IPMP Tool design and software implementation..............ccoccovveiinieninninie e 55
5.2.1 IPMP Tool with MPEG-21 IPMP and REL functionalities..............c.ccccocooune. 55
5.2.1.1 Behavior of MPEG-21 IPMP and RELccccooviviiniiiiicicce 55

5.2.1.2 MPEG-21 REL Reference SOftWare...........c.ccovvreriniineneincnescnnenes 56

5.2.2 Architecture of IPMP_Info_ENngine ToOl...........cccooiiiiiiniiiieeee e 58

Vi

5.2.3 IPMP Filter (IPMP Control POINt).......cccccvviiiiieiiiiesee e 60

5.2.4 Relationship between other IPMP TOOISccccooviiiiiineieee e, 60

5.3 Content protection MEChANISMooiiiiiiie e 66
5.3.1 Add one condition, “EXerciSeMechanisSm”............ccoourirreieienenenene e 68

Chapter 6 Application EXAMPIEScccveiiiiiiec e 71
6.1 Application Example 1 --- OnliNe Playccoovviieiieii e 74
B.1.1 PrOCEAUIE ..ottt 75

6.2 Application EXample 2 --- PrEVIEWccooiiiiiiiie e 77
B.2.1 PIOCEAUIE ...ttt 77

6.3 Application Example 3 --- Super-Distribution ... 81
B8.3.1 PrOCEAUIE ...ttt 85

Chapter 7 CONCIUSIONS......cuiiieitr ettt et e e e e s e s reeteeneesteeneeaneenneeneennens 88
RETEIEINCES ...ttt 89
B B ettt BB AL st st et e e san e e s ea e e e ana R e e R senan e e neaan e e nanas 92

vii

List of Figures

Figure 2-1 Example of a right expression language (REL) expression...................... 4
Figure 2-2 Data model 0f @ lHCENSE.........coiiiiiiiiice e 5
Figure 2-3 Principle Modal [10].....ccoviiiiiiieiieiee e 6
Figure 2-4 Alice is identified as an RSAKEYcccceiviiiiiieie e 7
Figure 2-5 APIAY FIGNTooveeeece e 7
Figure 2-6 An audio file is represented as a digitalResource with an URI 8
Figure 2-7 A conjunction Of two CONAITIONScccueiiiiiiiiiieec e, 8
FIGUIE 2-8 AN ISSUEBT ...ttt ettt ettt te et 9
Figure 2-9 Authorization model [2]........cooviriiiiiie e 10
Figure 2-10 Extensibility model [10]cccoovevviiiiieiece e 14
Figure 3-1 Partial Graphical representation of the DID Schema [14]........c...ccc....... 17
Figure 3-2 Example DID for an (abbreviated) one track music album (black
IMOUNTAIN ..ot 5 bbbt b bttt e e nn bbb e e 21
Figure 3-3 Integration of.a license,in a Descriptor/Statement combination............. 23
Figure 3-4 Element interchangeabifity [20]..s........cccooiiiviiiieiiee e 24
Figure 3-5 Schema relationship-between DID model, DIDL and IPMP DIDL........ 24
Figure 3-6 Structure of IPMP DIDL elements for the DID model [6]ccceeneeee. 25
Figure 3-7 Structure of an IPMPInfoDescriptor element [6]cccccvvvevveververnenne. 27
Figure 3-8 Structure of an IPMPGeneralIinfoDescriptor element [6]...........cccc...... 29
Figure 3-9 IPMP DIDL Processing [6]ccceeeeruerieeneerinienieeiiesee e 29
Figure 3-10 IPMP DIDL processing example [6]cccovvvrveriinieniinnienieseeneeee e 30
Figure 3-11 Example of an unprotected DIDL structure [6]cccccvevvevvereveernene. 30
Figure 3-12 Example of an IPMP DIDL element which encapsulates the unprotected
DIDL €lemMent [B] ...oooveeieiieeieeie et 30
Figure 3-13 Example of an IPMP DIDL element which encapsulates the protected
DIDL lemMENt [B] ...eoveeieiiieieeie et 31
Figure 4-1 Architecture Diagram of MPEG-4 IPMPX system [24]........ccccovvenene. 34
Figure 4-2 Sample of IPMP Tool context ID mapping [24]ccccccevvvevviiververinseenn 38
Figure 4-3 MPEG-4 IPMPX basic cONCEPL [24] ...cvevvveieireiecieseee e 39
Figure 4-4 Architecture of MPEG-21 Testbed [8].........cccoovevivieiiiiiieecece e 41
Figure 4-5 Network protocol [9]cccveiiiiiiieeee s 45

Figure 4-6 Relationship between IPMP Context and other modules [22]................ 47

Figure 4-7 Relationship between IPMP TOOIS [22]cccvoveiieiininieece e 47
Figure 4-8 Relationship between IPMP Filter and other modules [22].................... 48
Figure 4-9 Relationship between Terminal and other modules [22]ccccoeene.e. 49
Figure 5-1 Basis structure of a modified content protection system............c.cc....... 50

Figure 5-2 Decision of the Message Router for transmitting the IPMP Messages ..53

Figure 5-3 Flow chart of transfer an IPMP Message to remote terminal 54
Figure 5-4 Structure of a RTSP control message, CIPMPMSG MSG..................... 54
Figure 5-5 Dataflow of the MPEG-21 REL Reference Software [30]c...cccuen.e. 57
Figure 5-6 Architecture of the REL fUNCLION..........cooiiiiiiiie e 59
Figure 5-7 Modified block diagram at the client sideccccoevvviveiiivivicc e 61
Figure 5-8 Flowchart of generating an IPMP MeSSageccocvvevvvieereereesvereeseenns 62
Figure 5-9 Representation of ByteArray format............cccoccevvvienieie s 63
Figure 5-10 Transmission of IPMP.messages between DES Tool and
IPMP_INfO_ENQGINE.TOOL. .. covsrums st e cilineeeeeiinnieiiieiie e 64
Figure 5-11 Flowchart.of processing data.inan IPMP Tool.............cccceovvniinincnns 65
Figure 5-12 Three types of cryptography [31]cccoevviiiiiierececeee e 66
Figure 5-13 Content proteCtioN SChEME. ciiui e i vreiecieceee e 67
Figure 5-14 Flow chart of the KeY SEIVEr..........cccevveiieiieie e 68
Figure 5-15 Example of a condition, “ExerciseMechanism”c.ccccoovvninnnnnns 68
Figure 5-16 Dataflow of validating the condition, “exerciseMechanism”............... 69

Figure 6-1 Relationship among IPMP Tool Descriptor Pointer and IPMP Tool

DT o] o (o] PSSR 74
Figure 6-2 System fIOWCHhartccooiiii i 75
Figure 6-3 Flowchart of authorization (request for verification)cccccceevvenne. 76
Figure 6-4 Flowchart of authorization (return the result of verification)................. 76
Figure 6-5 Screenshot when the validation result is falseccccoocviiniiiiiienen 77
Figure 6-6 Flowchart of stage 1 (PreVIEW)cc.eeverieiiirie e e 78
Figure 6-7 Flowchart of stage 2 (authorized play)cccccevvveveiieiieeie e 79
Figure 6-8 Screenshot_1 in application example 2 (“Preview”)cccooevvvveruenne. 80
Figure 6-9 Screenshot_2 in application example 2 (“Preview”)cccocevvvveruenne. 80
Figure 6-10 Concept of OMA DRM V2.0 [3]...ccoeiiiiieiiiie e e 81

iX

Figure 6-11 Structure of the license of “Super Distribution”...........ccccccoovevvvvernene. 82

Figure 6-12 Verification flow of conditions in the License of “Super Distribution”83

Figure 6-13 Modified program StrUCTUIEcocueiieriiiie e 85
Figure 6-14 Screenshot_1 in application example 3 (“Super-Distribution”) 86
Figure 6-15 Screenshot_2 in application example 3 (“Super-Distribution”) 86
Figure 6-16 Screenshot_3 in application example 3 (“Super-Distribution”) 86
Figure 6-17 Screenshot_4 in application example 3 (“Super-Distribution”) 87

Chapterl
Introduction

As network technology advances, it gets increasingly popular to transport and search
digital information. In addition, various efficient compression and encoding algorithms allows
efficient digitalization of multimedia sources. People can easily create their own video/audio
clips and distribute these clips among their relatives and friends. Issues concerning about the
protection of the information delivery against eavesdropping and the unauthorized distribution
draw the attention of the public. Therefore, it becomes an important topic to provide a secure
platform which can safeguard both the intellectual properties of authors and the rights of
consumers.

Digital Rights Management (DRM) is‘a systematic concept that protects and manages
digital assets. An essential element to-achieve. Right Management is “rights expression”,
which represents the rights that authorizes to the users-to consume the resource under specific
conditions or constraints. The right entitycan-be described by a digital rights expression,
which offers exact definitions of various rights declarations. There exist two rights expression
languages, Open Digital Rights Language (ODRL) [1] and Rights Expression Language (REL)
[2].

Since Rights Management becomes increasingly important, there are several groups that
to define DRM systems with the Rights Management capability such as OMA (Open Mobile
Alliance) [3] and TIRAMISU (The Innovative Rights and Access Management Inter-platform
Solution) [4]. In OMA DRM v1.0, it adopts the ODRL as it rights expression langrage and
supports simple rights control, such as Forward Lock and Combined Delivery. In TIRAMISU,
it adopts the MPEG-21 REL as its rights expression langrage. In this thesis, we will focus on
the MPEG-21 REL.

MPEG-21 is a standard produced by the Moving Picture Expert Group (MPEG) and it
defines “a multimedia framework to enable transparent and augmented use of multimedia
resources across a wide range of networks and devices used by different communities.”[5]
There are two parts in MPEG-21 that are highly related to DRM. MPEG-21 Part 4 IPMP [6]
defines the high level schema which protects and manages digital items. Because all

1

definitions of MPEG-21 IPMP are mostly concepts, we use the MPEG-4 IPMP Extension [7]
system, a Digital Rights Management interface and architecture, as the vehicle for
implementation.

MPEG-21 Part 5 REL [2] is an XML-based language that can declare an authorized
distribution for the use of any content, resource, or service owned by specific users. It
provides flexible, exact, and rich representation of rights. It can be used by various
applications because of the interoperability of this language. Besides, people who use REL to
express rights management can define their own extension and create a specific profile
according to their applications.

The goal of this thesis is to study the MPEG-21 IPMP and REL standards and to design
an implementation of a DRM system which protects digital assets and performs rights
management. To fulfill this objective, we integrate the MPEG-21 IPMP and REL into the
MPEG-4 IPMPX framework, and choose the MPEG-21 Testbed [8] [9], a multimedia test bed
for resource delivery developed by MPEG, group, as the streaming platform with client-server
architecture. Because the MPEG:4 IPMPX_has a.concrete definition of APIs and DRM
messaging operations, we use ~it .as the |platform for developing IPMP Tools with the
MPEG-21 IPMP and REL specifications.

Our thesis is organized into five parts. First, weintroduce the concepts and specifications
of MPEG-21 REL in Chapter 2. Second, ‘in'Chapter 3, we give an overview of the MPEG-21
DID and IPMP. Chapter 4 gives the structure of the MPEG-4 IPMPX and the MPEG-21
Testbed. Then, we describe the details of our design and implementation of the MEPG-21
IPMP and REL within the MPEG-4 IPMPX framework on the MPEG-21 Testbed. Finally, we
design several application examples to demonstrate the functionalities of our designed DRM

system.

Chapter 2
MPEG-21 Rights Expression Language

The ISO/IEC MPEG, Moving Picture Experts Group, issued a Call for Proposals during
its 57th meeting in Sydney for a Rights Data Dictionary and a Rights Expression Language in
July 2001. After processing responses to this call during the 58th meeting in Pattaya in
December 2001, MPEG-21 Part 5 ‘Rights Expression Language (REL)’ advanced to FDIS
[Final Draft IS] status as ISO/IEC FDIS 21000-5. On 2004-04-01, MPEG-21 Part 5 was
published as an I1SO Standard: ISO/IEC 21000-5:2004, Information technology — Multimedia
framework (MPEG 21) — Part 5: Rights Expression Language [REL].

In the following sections, we will give an overview of MPEG-21 Part 5 ‘Right
Expression Language’ (abbreviated as the MPEG REL), which contains objectives, data

model, authorization model, and the.mechanism of extensibility and profiling.

2.1 Objectives

The MPEG REL is an XML-based rights expression language that can declare an
authorized distribution for the use of any content, resource, or service owned by specific users.
Three goals have to be satisfied. First, it must be a machine-interpretable language with
unambiguous syntax and semantics. Second, an authorization model is needed to determine if
a principle has the right to act on a resource according to REL expressions. Third, it has to be
rich enough to express a wide variety of business models in the end-to-end distribution value
chain and to enable multimedia distribution and usage of all types of digital resource.

The MPEG REL provides flexibility and interoperability to support transparent,
augmented use of digital resources in publishing, distributing, and consuming digital content
while protecting such content and exercising the rights, conditions, and fees specified for the
content. The MPEG REL also describes access and usage controls for digital content when
financial exchange is not part of the terms of use, and it supports the exchange of sensitive or
private digital content. For enterprises and individuals, this language can be used to enable the
authorized distribution and persistent protection of valuable data, content, and resources in

accordance with privacy and confidentiality requirements.

3

2.2 Data Model

The primary function of the MPEG REL is to specify rights relating to digital resources
(such as content, services, or some other applications). Using this language, people can easily
distribute their digital resources to identified principals (such as users, groups, devices, and
systems). An identified principal has specific rights for exercising on those resources under
the terms and conditions.

For example, consider a song “wifi_audio”, distributed by Music Station to John, an
AAC player’s owner. A typical REL instance would be like this: “under the authority of Music
Station, John is granted with the right to play ‘wifi_audio’ during June 2006.” Figure 2-1

shows the structure of this REL expression.

license
grant
John

play

wifi_audio.aac

during June 2006
issuer

Music Station

Figure 2-1 Example of a right expression language (REL) expression

According to the semantics of MPEG REL, “John” is a principal; “play” is a right;
“wifi_audio.aac” is a resource; “during June 2006 is a condition; and “Music Station” is an
issuer of the right.

This example has demonstrated the essence of an MPEG REL expression, a statement
that an issuer states that a principal has some rights to a resource under some condition. The
right-granting portion of this statement (e.g., “John is granted with the right to play
‘wifi_audio’ during June 2006) is called a grant. The left-granting portion of this statement
(e.g., “Music Station”) is called an issuer. The whole statement is called a license.

The basic data model of an MPEG REL license is shown in Figure 2-2. In this data
model, a license can contain none or many grants and issuers. A grant is constructed by a
principal, a right, a resource, and a condition. We will describe each component of a license in

the following sections.

license

principal right resource condition

Figure 2-2 Data model of a license

2.2.1 License

The most important concept in the MPEG REL is the License. Basically, a license
contains the following:
B a set of grants describing that certain -principles have certain rights corresponding to
specific resources under certain conditions
B aset of issuers that identify one or'more principles in this set of grants
some other related information; sueh as enerypted licenses.
Conceptually, a license tells us that a set of grants for specific is identified by such a set

of issuers.

2.2.2 Grant

A grant contains four basic components as follows:
the principles to whom the grant is issued
the right which the grant specifies

the resource to which the right in the grant applies

the condition which has to be satisfied for exercising the rights

2.2.3 Principal

A principal is the “subject” in a grant. In order to identify this entity, the MPEG REL
uses information to denote it uniquely. This information includes some associated
authentication mechanism by which the principle can prove itself. For example, an X.509
certificate is one of authentication proves. The MPEG REL defines three elements to

represent principals, as illustrated below:

allPrincipals

Figure 2-3 Principle Modal [10]

Each element is described in the following items;

B Principle: An abstract element from which al other principal element are derived. This
element is the substitution head for all principal elements.

B AllPrincipals: A container of other principal elements that represent a set of principals
acting as a single element. Each.principal' element of allprincipals is necessary to
authorize for executing a right.

B keyHolder: A principal is identified as the possessor of a secret key, such as the private
key of a public/private key pair.

Besides, extension to the MPEG REL can define additional principal elements that use
other technologies to authenticate principals. In other words, there are three way to declare a
principle: (1)AllPrincipals, (2)KeyHolder, (3)Use extention to MPEG REL.

Figure 2-4 shows an example for declaring a principal with a keyHolder element. In
Figure 2-4, if a principal is identified as this key holder, it must present a cryptographic key

that match the content of the keyHolder element.

<r:keyHolder licensePartld="Alice'">
<r:info>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>Al iM4ccyzA==</dsig:Modulus>
<dsig:Exponent>AQABAA==</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>
</r:info>
</r:keyHolder>

Figure 2-4 Alice is identified as an RSAKey

2.2.4 Right

A right is the “verb” that a principal can exercise against some resource under some
conditions. Typically, a right specifies an act or a set of acts that a principal can perform on or
using the associated resource. A set of commonly used rights has been provided by MPEG
REL, such as play, print, revoke, issue, and obtain. The flowing figure demonstrates how to
declare a right. Besides, the prefix “mx” means:this right is belong to Multimedia Extension.

The extensibility of MPEG REL-will be introduced in section 2.4.

<mx:play/>

Figure 2-5 A play right

2.2.5 Resource

A resource is the “object” to which a principal can be granted a right. A resource can be a
digital work (such as a video or audio file, or an image), a service (such as an email service or
B2B transaction service), or even a piece of information that can be owned by a principal
(such as a name, an email address, a role, or any property or attribute). In addition, a resource
can be a grant or a grantGroup in conjunction with issue and obtain Rights. The MPEG REL
provides mechanisms to encapsulate the information necessary to identify a particular
resource or a collection of resources with some common characteristics. As illustrated in

Figure 2-6, an audio file is represented as an URI.

<digitalResource>
<nonSecure
IndirectURI="http://www.onlinemusic.com/mySong.mp3"/>
</digitalResource>

Figure 2-6 An audio file is represented as a digitalResource with an URI

2.2.6 Condition

A condition specifies the terms, conditions, and obligations under which rights can be
exercised. A simple condition is a time interval within which a right can be exercised, and a
more complicated condition may require the existence of a valid, prerequisite right that has
been issued to some principals by some trusted entities. Moreover, a condition can specify a
logical “AND” operation of several conditions by the “allConditions” element. A logical
“OR” operation of several other conditions also needs to be specified for a grant. For example,
to represent an “OR” operation of three conditions in a grant, a grant has to be duplicated
three times except the condition element. Then, each duplicate grant is inserted with different
condition.

Figure 2-7 shows a conjunction of two-conditions, validityInterval and sx:exerciseLimit.
Therefore, a right can be exercised.only-when‘two conditions are both satisfied.

<allConditions>

<validitylnterval>
<notBefore>2000-12-24T23:59:59</notBefore>
<notAfter>2002-12-24T23:59:59</notAfter>

</validitylnterval>

<sx:exerciseLimit>
<sx:count>5</sx:count>

</sx:exerciseLimit>
</allConditions>

Figure 2-7 A conjunction of two conditions

2.2.7 Issuer

An issuer is an element within a license that identifies a principal and issues the license.
The issuer can also contain a digital signature of the license signed by the issuer to signify

that the principal does indeed bestow the grants contained in the license.

In Figure 2-8, an example illustrates how to describe an issuer which contains a digital

signature and the issued time.

2.3 Authorization Model

|

Authorization story

Primitive grant

Authorized r:Grant or r:GrantGroup

Authorizer

is authorization

r:License proof for

r:Principal

Time instant

Authorization context

Authorization story

Authorization request

r:Principal

r:Right

r:Resource

Interval of time

Authorization context

r:License elements

r:Grant elements that
do not require an
authorizer

Figure 2-9 Authorization model [2]

MPEG REL defines an authorization model as shown in Figure 2-9 for clearly defining
the semantics of Licenses. An authorization model includes an authorization request, an
authorization context, an authorization story, and an authorizer. The most important concept

of an authorization model is to generate an authorization proof according to an authorization

story when an authorization request is processed.

2.3.1 Authorization request

An authorization request contains several items as illustrated in Figure 2-9, and uses
these items to ask the following question ”is it permitted for the given Principle to perform the

given Right upon the given Resource during the given time interval based on the given

authorization context, the given set of Licenses, and the given trusted root?”

10

2.3.2 Authorization context

An authorization context is constructed by a set of properties, each of which is described
by one name, one value, and one statement. Therefore, each property has an unique name in

the same authorization context. A statement in one property can be used to either verify an

issuer or validate a condition.

In Table 1, we can see that a property name is composed by one Qualified name and zero

Or more parameters.

Table 1— Example of Authorization Context properties [2]

Property name

Property

value

Statement represented

riissueTime(/,

p)

i

lisanr:License,pisanr:Principal,iisa

time instant,’and p issued / at .

NOTE1:The. ' r:timeOflssue field in an
r:IssuerDetails can be useful in determining when p
issued I.” "However, it is wise to give consideration
as to whether the issuer is trustworthy and, when in
doubt, to seek additional proof, such as in the form of
signatures and countersignatures.

NOTE 2: The r:lssuer can be useful in determining
whether p issued /. However, it is wise to give
consideration as to whether the information given in
the r:Issuer is trustworthy and, when in doubt, to seek
additional proof, such as in the form of signatures and

cou ntersignatures.

r:issueContext(/,

p.h.Y)

true

[is an r:License, p is an r:Principal, % is either an
r:Grant or an r:GrantGroup, > is an authorization
context, and the statements represented by the

properties in > are all true for the purposes of

11

establishing the permission for the Principal
identified by p to include an r:Grant or r:GrantGroup

that is Equal to h as //r:grant or //r:grantGroup when

issuing .

2.3.3 Authorization story

An authorization story contains a primitive grant, an r:Grant or an r:GrantGroup, and an

authorizer in order. Their meanings are stated as following:

A primitive grant means that no item in it was represented as a variable and is also a
necessary element that an authorization request has to match.

An r:Grant or an r:GrantGroup is authorized by an authorizer and is part of a
License by some Principle at some time instant based on some authorization
context.

An authorizer contains five ordered litems, an r:License, an r:Principle, a time

instant, an authorized context, and an authorization story.

In other words, an authorization story possesses all necessary information to describe the

following fact:

“A given primitive grant may<be derived .from a given grant authorized by a given

authorizer, which identifies a principle from a license at a time instance based on an

authorization context and supported by an (additional) authorization story.”

2.3.4 Authorization proof

An authorization proof is the result of an authorization request for an authorization story.

If the result is true, several rules have to be satisfied:

the principle, right, and resource in the authorization request must match those in
the primitive grant in the authorization story;

the authorization context in the request must satisfy the conditions in the
authorization story or the conditions in the authorization story is absent;

the primitive grant indeed is derived from the grant;

the issuance of the grant in the first authorization story is recursively authorized via

the additional authorization story in the authorizer in the first authorization story;

12

and

* the recursive authorization eventually terminates in one of the trust roots given in
the authorization request.

When the authorization proof is true, it means that there is at least one authorization

story in a License that provides an authorization proof for the authorization request. [11]

2.4 The mechanism of extensibility and profiling

Various applications require different levels of complexity and flexibility in the REL, and
specific industries and user communities may need to modify the MPEG REL language to
better meet their specific needs. Hence, the MPEG REL is designed to be extensible and is
itself specified in extensions.

The syntax and grammar of the MPEG REL are described using the XML Schema. It
means that the MPEG REL can offer a high degree of flexibility in its extensibility. The
MPEG REL is organized into several architectural parts as shown in Figure 2-10, and each
part is defined as its own XML namespace:
€ A core schema defines general conceptsithat form the basic architecture of the language,

particularly those who have to do with evaluation of a trust evaluation. The namespace of

this schema is identified with the prefix, r:. In some cases, this prefix may be omitted.

€ Astandard extension schema defines concepts that are generally and broadly useful and
applicable to DRM usage scenarios. The namespace of this schema is identified with the
prefix, sx:.

€ A multimedia extension schema defines DRM concepts (e.g., rights, resources, and
conditions) specifically related to multimedia content such as books, video, and audio.

The namespace of this schema is identified with the prefix, mx:.

13

Standard Multimedia : Future :
Extension Extension | Extension
I
\-I l;
\ /

Core

Figure 2-10 Extensibility model [10]

There may be some parties who want to make domain-specific extensions to the MPEG
REL and its future extensions. This can be achieved by using the existing standard XML
Schema and XML Namespace mechanisms [12] [13]. In general, an extension to the MPEG
REL can define its own principals, rights, resources, and associated conditions according to
specific usage models and technicalsapplications: For example, the MPEG REL multimedia
extension defines specific rightssmx:play-and mx:move, for using digital resources, and the
MPEG REL standard extension -defines conditions, sx:FeePerUse and sx:FeePerlInterval, for
specifying sufficient payment of using.digital'resources.

In addition to add extensions to the baseline REL, users can remove unnecessary items in
this baseline language. This is called profiling. It is a process to choose REL items for a
specific purpose, and thus to form a subset of the language. The idea of profiling is very
important as content moves to many various devices in different ways. When it comes to a
resource-limited device, such as a smart phone, power consumption must be as small as
possible for maintaining longer battery-life. Therefore, a full REL support is not sifficient,

and a compact version is enough to satisfy the requirement of its usage.

2.5 The relationship between REL and other parts in

MPEG-21

There are three parts in MPEG -21 related to the MPEG REL.:
e The MPEG-21 Part2 Digital Item Declaration (DID) defines a language which describes

a digital item. Rights expressions can also be included in digital item declarations. (see

14

3.1.5)

The MPEG-21 Part3 Digital Item Identification (DII) provides a normative way to
express how this identifications can be associated with Dls, containers, components,
and/or fragments thereof by including them in a specific place in the DID. The MPEG
REL can use the identification mechanism defined in DIl to identify digital items
described by DID.

The MPEG-21 Part6 Rights Data Dictionary (RDD) specifies a dictionary of terms that
can be used by the MPEG REL to describe rights. It also provides mechanisms for

extending the dictionary to add new terms.

15

Chapter 3

MPEG-21 Part 2 DID and Part 4 IPMP

Digital Item (DI) is the core concept of MPEG-21 Multimedia Framework. In addition,

DlIs are also the basic transaction unit in MPEG-21. A DI, as defined specifically by

MPEG-21 [5], consists of resources, metadata, and structure.

There are two important features of a DI: [14]

e A DI will either operate in application spaces where there are agreed “rules” for
presentation or may contain presentation descriptions as resources.

* The configuration of a DI includes factors such as the usage environment, terminal
capabilities, and network conditions. This assists in enabling transparent and augmented
use of DIs across a wide range of networks and devices used by different communities.
The representation and protection of DIs are both important issues for our consideration.

Hence, the declaration of a DI, MPEG-21 Part 2 DID; and the DI protection, MPEG-21 Part 4

IPMP, will be introduced in the following sections.

3.1 Overview of MPEG-21 DID

In this section, we discuss DIs and the structure of them. We will describe the model for
declaration a DI and it’s representation in XML. Then, we will analyze an example DI and the

mechanism of validation.
3.1.1 DIs and Declaration

The DID formally represents and identifies the constituent resources (e.g., video and
audio files) and the metadata (e.g., Dublin Core [15] descriptions) Further, the DID binds
together individual and groups of resources and metadata. This is further extended by the
capability to allow metadata to be anchored to certain fragments in a media resource. [14]

The DID technology can be divided into three normative parts: [14]

* Model: The Digital Item Declaration Model describes a set of abstract terms and

concepts to form a useful model for defining Digital Items. Within this model, a DI is

16

the digital representation of “a work”, and as such, it is the ting that is acted upon
(managed, described, exchanged, collected. etc.) within the model.
* Representation. The description of the syntax and semantics of each of the Digital Item
Declaration elements, as represented in XML.
* Schema:. An XML schema [12], [13] comprising the entire grammar of the Digital Item
Declaration represented in XML.
It should be noted that the DID Model is an abstract model of fundamental materials
useful for declaring Dls. This abstract model can be expressed in many ways. MPEG-21 Part2
defines a normative XML expression of the DID Model. This XML-based expression is the

Digital Item Declaration Language (DIDL).

3.1.2 DIDL

--+_Declarations
. 'f...............

Contaner &
il Al
r= 1rCondlt|on i
HE XAy L
=iyl i)
2= —:PCondl'rlon "
R et
0.>
e ———— b= Descriptor
:- -4, Descriptor e o o

-4, Choice (]
Cataaaa ."‘.'\.(,'. A

Figure 3-1 Partial Graphical representation of the DID Schema [14]

DIDL is an XML based language. The syntax of DIDL is based on an abstract structure
defined in the DID Model. Figure 3-1 shows the partial graphical representation of the DIDL
schema. In this section, we discuss the fifteen elements that are related to express a DI. It
should be noted that in the descriptions below, the names of DIDL elements and attributes

appear in bold, and italics are used when we use the reference to the fundamental materials of

17

the DID Model.
The basic constituents of the declaration of a DI are listed below:

e The DIDL element is the root element of any other DIDL elements. The DIDL
element contains either a Container or an Item as a child and it may contain an
optional child, a Declarations element, before the Container or Item. Note that it is
not part of the DID abstract Model, it exists only in the representation and schema.

* A Container element represents a grouping of Item elements and/or possibly other
Container elements. It is also bound with a set of Descriptor elements. For instance,
“books” represented by Item elements can be placed on spaces provided by “a shelf”
represented by a Container element.

e An Item element represents a grouping of possible sub Item elements and/or
Component elements. It may also contain Descriptor elements containing descriptive
information about the item represented.

* A Declarations element is used,to define other DIDL elements without instantiating
them. The declared elements can be used later in a DID via an internal reference (see
the Reference element- below). The: Declarations elements exist only in the
representation and schema.

* A Component element groups a Resource element with a set of Descriptor elements.
Hence, a Component element is‘the basic building block of digital content within a
DID.

* A Resource element defines an individually identifiable resource such as a video or
audio clip, an image, or a textual asset. In the DID Model, there is only one resource
in a component. However, in DIDL, there may be one or several Resource elements in
a Component element. It makes multiple references (for example at different resource
locations) for the represented resource possible. Each Resource element in a
Component element must refer to a bit equivalent resource.

* A Descriptor element describes information to be associated with its parent element.
The information can be contained either in a Component or a Statement. The latter
contains textual information that can be bound to other elements.

After introducing the basic constituents of the declaration of a DI, the next four elements
affect the configuration of a DI:

* A Choice element groups a set of related Selection elements that can affect the

18

configuration of an Item. There may be no, one, or several selected Selection elements
in a Choice element dependent on the values of two attributes, minSelections and
maxSelections.

A Selection element defines a specific decision about a particular Choice element
which represents an associated predicate that will affect one or more Condition
elements in an Item element. At configuration time, if a Selection element is chosen,
its predicate becomes true; if it is refused, its predicate becomes false; if it is left
undecided, its predicate is left undecided.

A Condition element indicates that the inclusion of the parent elements is dependent
on a defined set of predicates associated with the Selection elements. In order to
satisfy the Condition element, the except attribute of the Condition element lists the
predicates must be false, and the require attribute lists the predicates must be true. A
set of Condition elements can express a Boolean combination of predicate tests. For
example, a conjunction (an AND .relationship) can be represented by a single
Condition element, and a’disjunction..(an“OR relationship) can be represented by
Multiple Condition elements within a given parent element.

An Assertion element allows' the partial or- full configuration state of a Choice
element to be defined by asserting true, false, or undecided values for a number of

predicates associated with the Selection element in a parent Choice element.

The following two elements are correlated with the description of resources and other

elements, and the other one represents a linkage between two DIDL elements:

An Anchor element binds a set of Descriptor elements to a fragment, a specific
location or range, within the resource identified by the Resource element within the
parent Component element.

An Annotation element allows additional information, such as Descriptor and/or
Anchor elements, to be associated with an identified element without changing the
original content of the element.

A Reference element represents a reference to one of the following DIDL elements:
Container, Item, Component, Descriptor, or Annotation. Using a Reference
element, the parent element of the Reference element can include a reference DIDL
element located either internally or externally. The Reference element exists only in

the representation and schema.

19

3.1.3 DIDL Example

We take a music album as one simple example of a DI, as shown in Figure 3-2. This DI
is constructed by one root DIDL element. This DIDL element has a single Item element
which has an id attribute, used for internal or external referencing of an Item. This Item
element is composed of two Descriptor/Statement combinations, one Choice element, and
one “sub” Item element in order.

1) The first Descriptor/Statement combination represents a MPEG-21 Part 3 DIl Identifier
[16]. This identifier identifies the root Item element, the “subject” of the DID. Other content
in the DID can be identified with different identifier.

2) The second Descriptor/Statement combination expresses a human readable text
including the title and artist. This information can be represented as the XML metadata form,
e.g. the MPEG-7 standard [17].

3) The Choice element is identified for reference purpose as “BR” and represents a choice
in the DID between content as a bit rate of, 128.kb/s. or 192 kb/s. One, and only one, of these
bit rates must be selected (the configuration state of the Choice) and thus both minSelections
and maxSelections are set to 1.-Each of the Selection elements has an appropriate select_id
that can be used to resolve the state.of Condition elements elsewhere in the DID. [18]

4) The subsequent Item element contains the album tracks. The first inside element is a
Descriptor element which includes a Conponent/Resourece combination representing a
JPEG image of the cover art of this CD: “debutcd.jpg”. Each track is represented as a sub
Item element of the album tracks Item, and contains one Descriptor/Statement combination
with the track name and then two Component elements. Only one Component will be
available depending on the state of the Condition elements which correspond to the Selection
elements in the bit rate Choice. However, only one track is shown in Figure 3-2. The last of
further sub Item elements of the root Item expresses supplementary information. There is a
Component element bound in this sub Item. The Component element includes a
Descriptor/Statement combination and a Resource element which links to a web site. The
Descriptor/Statement combination contains descriptive information about the Resource. In
this case, it describes the purpose of the Resource, i.e. where the CD of the album can be
purchased. [14]

20

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmins="urn:mpeg:mpeg21:2002:01-DIDL-NS"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:mpeg:mpeg21:2002:01-DIDL-NS didl.xsd"
xmins:dii="urn:mpeg:mpeg21:2002:01-DII-NS">
<Item id="TONY_EYERS_YI1G001">
<Descriptor id="Item_Identifier">
<Statement mimeType="text/xml">
<dii:Identifier>urn:mpeg21:dii:trc: AU-000-Y1G001</dii:Identifier>
</Statement>
</Descriptor>
<Descriptor>
<Statement mimeType="text/plain">Black Mountain Harmonica - Tony Eyers</Statement>
</Descriptor>
<Choice choice_id="BR" default="BITRATE_192k" maxSelection="1" minSelection="1">
<Selection select_id="BITRATE_128k"/>
<Selection select_id="BITRATE_192k"/>
</Choice>
<ltem id="ALBUM_TRACKS">
<Descriptor>
<Component>
<Resource mimeType="image/jpeg" ref="images/debutcd.jpg"/>
</Component>
</Descriptor>
<ltem id="TRACK1">
<Descriptor>
<Statement mimeType="text/plain">Billy in the Lowground</Statement>
</Descriptor>
<Component>
<Condition require="BITRATE_128Kk"/>
<Descriptor>
<Statement mimeType="text/plain">Billy(128kbit)</Statement>
</Descriptor>
<Resource mimeType="audio/mpeg" ref="128k/Billy_128k.mp3"/>
</Component>
<Component>
<Condition require="BITRATE_192k"/>
<Descriptor>
<Statement mimeType="text/plain">Billy(192kbit)</Statement>
</Descriptor>
<Resource mimeType="audio/mpeg" ref="192k/Billy_192k.mp3"/>
</Component>
</ltem>

</ltem>
<ltem id="TONY_INFO">
<Component>
<Descriptor>
<Statement mimeType="text/plain">Purchase CD</Statement>
</Descriptor>
<Resource mimeType="text/html" ref="http://www.cdbaby.com/cd/tony"/>
</Component>
</ltem>
</ltem>
</DIDL>

Figure 3-2 Example DID for an (abbreviated) one track music album (black mountain

harmonica by Tony Eyers). [14]

21

3.1.4 DIDL Validation

DID creates a DI hierarchy which gives powerful structure semantics that take DIDL
beyond a simple descriptive schema. Validating a DID is more complex than validating an
XML document is. So, to validate a DID document with respect to DIDL, the following two
conditions have to be satisfied simultaneously:

1. ADID document is validated against the DIDL schema.

2. ADID document is subjected to each of additional validation rules.

Only two validating rules are considered in this section:

* Item Jalidation Rules: The Item element has a single validation rule which is intended
to prevent that Item from the effective deletion due to the state of a Condition as a
result of a Selection included somewhere in the hierarchy of that Item. The exact
wording of the validation rule in 21000-2 is:

“An Item element cannot be conditional on any of its descendant Selection elements.

In other words, an Item canngt contain.a.Condition element specifying a select_id value

that identifies any descendant Selection element within the element.”

» Condition Validation Rules: Condition elements are intrinsically linked to Selection
elements. When a Conditionyis.found during the process of parsing a DID document, it
is needed to look for any associated 'Selection elements according to this Condition’s
attributes. [14] To facilitate the search, there are two simple validation rules listed in
21000-2 for the Condition element:

“Each ID value specified in the require and except attributes must match a select_id
attribute value defined in a Selection element in a Choice that is a child of an Item that is

an ancestor of the Condition” [14]

“Empty Conditions are not permitted. Therefore, it is not valid for a Condition element

to have neither a require attributes nor an except attribute” [14]

3.1.5 Integration role of DID: REL and DIA

The information in a DI is not only a collection of metadata and resource but also other
configuration data, such as rights data. The DID defines a building structure that makes a DI a

function virtual object. Therefore, we can consider how other parts of MPEG-21 fit into the

22

DID structure. In this section, our discussion focuses on the integration of Rights Expressions
[2] and Digital Item Adaptation (DIA) [19] into the DID. The key elements for integration are
the Descriptor/Statement combinations. Because these combinations represent a container of
metadata relevant to a resource, they can also be used to contain the Right Expressions or DIA
metadata. In Figure 3-3, a simple example of an integration of an REL license is shown.

Using this method, a DID can even include the Right Expressions by reference.

<Descriptor>
<Statement>
<REL:license>elements of a license</REL.:license>
</Statement>
</Descriptor>

Figure 3-3 Integration of a license in a Descriptor/Statement combination

3.2 MPEG-21 IPMP

The goal of the MPEG-21 IPMP:is to provide the management of rights and intellectual
property through the use of protected Digital Items. However, DIDL is defined as cleartext
XML. The valuable contents oftheDigital-item are exposed to view, and unauthorized
perusal of a Digital Item may happen. Therefore, a protected Representation of DID Model

Structure is proposed as IPMP DIDL.

3.2.1 IPMP DIDL

To protect a specific part of the Digital Item structure by encapsulating it in IPMP DIDL,
IPMP DIDL elements must be interchangeable with DIDL equivalents within a DID
document. Figure 3-4 demonstrates how an Item within a Container may be represented as
either DIDL (left) or IPMP DIDL (right). [20]

<Container> <Container>
<Item> <ipmpdidl:ltem>
</ltem>] [</ipmpdidl:ltem>

</Container> </Container>

23

Figure 3-4 Element interchangeability [20]

In order to fulfill the scenario, the IPMP DIDL elements must be in the substitution
group as their DIDL equivalents. Hence, we can recognize that DIDL and IPMP DIDL are
both Representations of the DID Model. As shown in Figure 3-5, both the IPMP DIDL
elements and the DIDL elements extend abstract types defined for the DID model. They are
interchangeable within a Digital Item. As the IPMP DIDL schema imports the DIDL schema
as defined in ISO/IEC 21000-2, all documents conforming to the DIDL schema are also
conformable to the IPMP DIDL schema. [6]

didmodel.xsd
Declares entities in the
DID Model as abstract
elements

Y

derives from derives from

ipmpriidl.xsd
Provides concrete
implementations for
imports IPMP DIDL elements,
derived from abstract

didl.xsd
Provides concrete
implementations for
DIDL elements, derived

from abstract entities in entities in the DID

the DID Model . Model
use use
Non-IPMP Peer » IPMP Peer

Figure 3-5 Schema relationship between DID model, DIDL and IPMP DIDL

3.2.1.1 IPMP DIDL Elements for the DIDL model

Each of the IPMP DIDL elements below represents the corresponding entity in the DID
model, and corresponds to an element defined in the DIDL Representation as defined in
ISO/IEC 210002 DID. Each of the following IPMP DIDL elements has the same semantics as
its DIDL counterpart. [6]

e <ipmpdidl:Container>

e <ipmpdidl:ltem>

24

with corresponding information about _the .protection, the structure for carrying protected

DIDL elements is shown in Figure,3-6. This structure is identical to each IPMP DIDL element.

<ipmpdidl:Descriptor>
<ipmpdidl:Statement>
<ipmpdidl:Component>
<ipmpdidl:Anchor>
<ipmpdidl:Fragment>
<ipmpdidl:Condition>
<ipmpdidl:Choice>
<ipmpdidl:Selection>
<ipmpdidl:Resource>
<ipmpdidl:Annotation>

<ipmpdidl:Assertion>

The components in this structure-are discussed below.

(i)

(i)
(iii)

(iv)

At most one ipmpdidl:Identifier element, into-which an appropriate identifier for the

protected Representation may.be placed.

One ipmpdidl:Info element, into'which information about the governance is placed.

At most one ipmpdidl:Contentinfo element, into which information about the

governed contents is placed.

Since the IPMP DIDL elements listed above encapsulate the protected DIDL structure

One ipmpdidl:Contents element, into which the governed contents is placed.

IpmpdidtiPMPDIDLChildGroup

A’///// \\4\

ipmpdidk Identifier

ipmpdidl:Info

ipmpdidl: Contentlnfg

ipmpdidl: Contents

ey |\ and ator y hild
= = = Optional child

Figure 3-6 Structure of IPMP DIDL elements for the DID model [6]

25

3.2.1.2 IPMP DIDL elements particular to the IPMP DIDL Representation

There are five elements particular to the IPMP DIDL representation.

» <ipmpdidl:ProtectedAsset>: This element is defined to provide for the communication of
IPMP governance on a specific asset - i.e. content referenced from or included inline to
didl:Resource.

* <ipmpdidl:ldentifier>: This element acts as a placeholder for an Identifier from an
appropriate namespace, to be associated with the protected Representation of the
Contents.

» <ipmpdidl:Info>: This element acts as a placeholder for IPMP Information from an
appropriate namespace, to be associated with the protected Representation of the
Contents. It will be used by processes seeking to make the Contents available for
consumption.

* <ipmpdidl:Contentinfo>: This element acts as a placeholder for metadata, to be
associated with the protected.contents.

* <ipmpdidl:Contents>: This-element contains: Contents which is protected by the parent
IPMP DIDL element. This may be-a protected element of the DIDL structure, for
example a protected didl:Item or didl:Resource; or (if the parent IPMP DIDL element is
ipmpdidl:ProtectedAsset) an asset'such ‘as an image or an audio file. In any case, the
contents may be inline or referred, but not both. This contents will generally be

obfuscated or protected in some form (e.g. encryption).

3.2.2 IPMP Information Schemas

IPMP Information schemas define structures for expressing information relating to the
protection of content including tools, mechanisms and licenses. The IPMP Information
Descriptor and the IPMP General Information Descriptor are covered in IPMP Information

schemas.

3.2.2.1 IPMP Information Descriptor

The description of IPMP governance and tools is required to satisfy intellectual property

26

management and protection for accessing a Digital Item or its parts. The root element for
IPMP Information Descriptor is “IPMPInfoDescriptor”, which contains a range of
information related to IPMP governance and tools.

In a IPMPInfoDescriptor element shown in Figure 3-7, there are
e IPMP Tool information (section 3.2.2.1.1) includes ToolDescription and initialization

settings, either directly described within the descriptor or through a reference,

* different level Rights description subjective to the usage for IPMP Tool or content (section

3.2.2.1.2), and

* the associated digital signature.

i—ipmpinfu:lPMPlnanescripturType |
| [~ pipmpinfoTool F) |
= |

IPMPInfoDescriptor @-:r-{,ipmpinfu:lligh‘tsllescriptur |
b s

| : 0w |

Figure 3-7 Structure of an IPMPInfoDescriptor element [6]

When used for the DIDL protection, the IPMPInfoDescriptor should be inserted into any
IPMP DIDL elements and be the child element of ipmpdidl:Info. The
ipmpinfo:IPMPInfoDescriptor also allows to be used to signal for other non-DIDL

multimedia declaration unit protection.

3.2.2.1.1 Tool

The ipmpinfo:Tool element describes an IPMP tool. IPMP tools are modules that
perform (one or more) IPMP functions such as authentication, decryption, watermarking, etc.
A given IPMP tool may coordinate other IPMP tools. An IPMP Tool has the granularity that it
can be single protection module, such as a single decryption tool, and can also be a collection
of tools, i.e. a complete IPMP system. Tools can be executed in any order if the order attribute
is not present. Similarly, the tools with the same order number can be executed in any order. If

an IPMP tool is being used to protect a resource fragment, the fragment should be identified

27

using the ipmpdidl:fragment element. [6]

3.2.2.1.2 Rights Descriptor

The ipmpinfo:RightsDescriptor element contains information about the license that
governs the IPMP tool. The existence of the ipmpinfo:RightsDescriptor element under the
ipmpinfo:ToolBaseDescription element indicates that there is governance for the usage of the
IPMP tool. The ipmpinfo:RightsDescriptor may contain an ipmpinfo:IPMPInfoDescriptor
element and a License, ipmpinfo:LicenseReference or ipmpinfo:LicenseService elements. The
ipmpinfo:IPMPInfoDescriptor element contains the IPMP information related to the protected
license(s). [6]

3.2.2.2 IPMP General Information Descriptor

The IPMPGenerallnfoDescriptor element represents the general control and the global
governance information about IPMP tools.and rights expressions relating to a complete DID.
It should be carried at the outmost. place of .the protected DIDL. It can also be used for
signaling for other non-DIDL general multimedia declaration unit protection.

The ipmpinfo:IPMPGeneralinfoDescriptor element is the root element of an
IPMPGeneralDescriptor instance document. It may contain:

* an ipmpinfo:ToolList element, which describes a list of the necessary tools to access the

protected content,

 an ipmpinfo:LicenseCollection element, a collection of licenses each of which identifies its

own target, and/or

* dsig:Signature element.

Figure 3-8 Structure of an IPMPGenerallnfoDescriptor element [6]

Each element in the IPMPGeneralDescriptor element is used to communicate general

information relating to a complete Digital Item.

3.2.3 Processing IPMP DIDL Elements

In this section, we illustrate the ways to process the IPMP DIDL elements. We introduce
the encapsulation of the DIDL element and the retrieval of the DIDL element from an IPMP
DIDL element in the following paragraphs.

Figure 3-9 shows a block diagram with two inputs (DIDL element and IPMP Information)
and single output (IPMP DIDL element). The IPMP DIDL element are processed according to
the IPMP Information defined in the ipmp:Info child element. This system can encapsulate the
DIDL element with/without encryption in an IPMP DIDL element. In Figure 3-10, a music
album is processed by encapsulation in an ipmp:Contents child element of the IPMP DIDL

element.

DIDL AL g Conversion | . |PMP DIDL
element ‘ Process element
IPMP Information

Figure 3-9 IPMP DIDL processing [6]

ipmpdidl:ltem

didl:Iltem

album audio

album lyrics

Contents

audio info

e

‘mysong.aac”

Figure 3-10 IPMP DIDL processing example [6]

A DIDL element, as shown in Figure 3-11, is encapsulated in IPMP DIDL by applying the
following procedure.

1) Replace the DIDL element with the corresponding IPMP DIDL element. In this example,
the DIDL Item element is replaced by an IPMP DIDL ipmpdidl:ltem element.

2) Encapsulate the identifier in an IPMP DIDL Identifier element if the DIDL element has an
identifier. In this example, the DIl Identifier of the DIDL Item is encapsulated in an IPMP
DIDL ipmpdidl:Identifier element.

3) If any information is required to retrieve the DIDL element content from the IPMP DIDL
Contents element, encapsulate it in an IPMP DIDL Info element. In this example, the
content of the DIDL element is simply encapsulated in an IPMP DIDL Contents element
at this stage.

4) Finally, encapsulate the content of the DIDL element in an IPMP DIDL Contents element.
After encapsulation, an IPMP DIDLelement which encapsulates the unprotected DIDL

element is shown in Figure 3-12.

<ltem>
<Descriptor>
<Statement mimeType=""text/plain'>
<dii:ldentifier>IPMPid0001</dii: ldentifier>
</Statement>
</Descriptor>
<Component>
<Resource ref="myPicture.png" mimeType="image/png"/>
</Component>
</ltem>

Figure 3-11 Example of an unprotected DIDL structure [6]

<ipmpdidl: I tem>
<ipmpdidl:ldentifier>
<dii:ldentifier>I1PMP1d0001</dii:ldentifier>
</ipmpdidl: ldentifier>
<ipmpdidl:Info>...</ipmpdidl: Info>
<ipmpdidl:Contents>
<ltem>
<Descriptor>
<Statement mimeType=""text/plain'>
<dii:ldentifier>I1PMPi1d0001</dii:ldentifier>
</Statement>
</Descriptor>
<Component>
<Resource ref="myPicture.png" mimeType="image/png"/>
</Component>
</ltem>
</ipmpdidl:Contents>
</ipmpdidl: I tem>

Figure 3-12 Example of an IPMP DIDL element which encapsulates the unprotected DIDL

30

element [6]

However, if the DIDL element is valuable, the ipmpdidl:Contents can be encrypted with
a tool described in ipmpdidl:Info to prevent from unauthorized access. The tool information
would be encapsulated in the IPMP DIDL Info element at step 3) above, and the encryption
would occur during step 4) above. In this case the structure and contents of ipmpdidl:Contents
will not be visible. Figure 3-13 shows an IPMP DIDL element which encapsulates the

protected DIDL element.

<ipmpdidl:ltem>
<ipmpdidl:ldentifier>
<dii:ldentifier>IPMP1d0001</dii:ldentifier>
</ipmpdidl:ldentifier>
<ipmpdidl:Info>..._</ipmpdidl: Info>
<ipmpdidl:Contents>3E674F632A56BD56. . .</ipmpdidl:Contents>
</ipmpdidl:ltem>

Figure 3-13 Example of an IPMP DIDL element which encapsulates the protected DIDL

element [6]

After receiving the IPMP DIDL element, the following is used to retrieve the original
content.
1) Parse the tool information encapsulated in the IPMP DIDL Info element.
2) Obtain an instance of the tool and configure the tool as required.
3) Apply the tool to the content of the IPMP DIDL Contents element. The result should be
the original content of the encapsulated DIDL element.
Replace the IPMP DIDL element with the corresponding DIDL element with the content

obtained fromstep 3) above.

3.2.4 Relationship between IPMP and other parts of MPEG-21

The fundamental unit of MPEG-21 Multimedia Framework is the Digital 1tem. While the
existing parts of ISO/IEC 21000 deal with different aspects of the Digital Item, they together
facilitate to construct the complete MPEG-21 Multimedia Framework. It is important to
understand the relationship between the parts to be able to achieve an interoperability
framework. The relationship is described below: [20]

A. Relationship between IPMP Components and MPEG-21 Part 2 Digital Item

31

Declaration (DID)

- Because a DI expressed in DIDL is a cleartext, the document of a DI represented
entirely in DIDL (the representation for Digital Items) is unprotected. IPMP
Components provide an alternative representation for parts of Digital Items that
require protection. This representation is termed the IPMP Digital Item
Declaration Language (IPMP DIDL). Each of these IPMP DIDL elements is
identical to link a corresponding DIDL element (which may be encrypted) with
information about the governance, to that the Digital Item (or part of if) is used
in accordance with the Digital Item author’s wishes.

B. Relationship between IPMP Components and MPEG-21 Part 3 Digital Item

Identification (DII)

- The Digital Item identifiers associated with Digital Items, and parts thereof can
be placed in a specific place within the Digital Item structure. When the IPMP
DIDL is used for protecting,a DI, it may hide or prevent access to identifiers
located within that hierarchy..However, some information in DIDL can not be
hidden (for example, without @ REL License that references the governed content,
the verification can'not be executed).

C. Relationship between IPMP Components.and MPEG-21 Part 5 Rights Expression

Language (REL)

- REL specifies the syntax and semantics of a Rights Expression Language
expressing the rights which a user may have to act on assets, such as Digital
Items or parts thereof. One important concept in REL is a License. A License is
defined as an expression that is created by Principals to conditionally or
unconditionally permit the same or other Principals to perform Rights upon
resources.

- IPMP defines four different ways about how REL can be correctly associated
with their target:

1) Beincluded in a DI
2) Be referenced from within a DI
3) Be referenced from within a DI via a license service

4) Reference the DI from the rights expression

32

Chapter4

MPEG-4 IPMPX Framework on MPEG-21 Testbed

In this chapter, we introduce that a content protection framework, MPEG-4 IPMP
Extension (IPMPX) [24], can be integrated into a multimedia streaming platform, MPEG-21
Test Bed [8]. Thus, this multimedia streaming platform has the ability to prevent digital

content from unauthorized access.

4.1 MPEG-4 IPMPX Extension

The first version of the MPEG-4 IPMP system [24] is called IPMP Hook. To enhance the
inter-operability, the second version of the MPEG-4 IPMP system is defined as IPMPX [24].
The MPEG-4 IPMPX system was fihalized in 2004. In the 62" MPEG meeting in October
2002, the MPEG-4 IPMPX system was declared to'become a new part, part 13, of MPEG-4
standard [21]. The IPMP Hook is out-dated by the IPMPX and thus we consider the IPMPX
in rest of this thesis.

Although, the MPEG-4 IPMPX system is designed to safeguard the intellectual property
in the form of MPEG-4, it can provide not only the MPEG-4 terminal but also other platforms
the management and protection of intellectual property.

An MPEG-4 IPMPX system is a message-based system. The standard specifies the
interface and protocol for these messages. The communication among Tools and Terminal
becomes easier. By the proper use of messages, different Terminals can authenticate each
other. The whole structure of MPEG-4 IPMPX is shown in Figure 4-1. The basic concept of
MPEG-4 IPMP system is a Virtual Terminal, which contains a Tool Manager (TM) [24] and a
Message Router (MR) [24]. The Message Router is to pass the message to the corresponding
receiver. All IPMP Tool Messages are routed through this entity. The Tool Manager is used to
manage and connect all the IPMP Tools to perform the specific IPMPX function. We will

describe the details later.

33

CONTEMT
STREAM DMIF
CONTENT
e COMTENT ADIO AT AI0I0
LR =* pg 7™ pecopE 7 & [~*
3 14
=] 12
VIDED VIDED VIDED £ | B
IPMP CONTENT | ’ DE > DECODE * CB —> § v é
CONTENT DELVERY = &
STREAM(S) - ” FR ER (= =
i J I P
2 0B DECODE
A
1
BIFS BIFS H BIFS BIFS TREE [SCEME
10D =" g *ioecooe e P s [P GRAPH
TOOL LIET
“’l
ne e
I TERMINAL
= g » (PP MESSAGE ROUTER/TOOL MANAGER
PORAMETRIC o B
DESCRIFTIONCE] "|
PP TOOLE LIETITOOL ES ’7
TOOL ESD \

I TOOL MANAGER INTERF ACE H MESSAGE ROUTER INTERF ACE }—
Obtain Missing i [[[
Mizsing E] 7] 7 J ¥

Toaols
Tools o o e
TooLa | | TooLe | | TooLc

IPMP TOOL

Figure 4-1 Architecture Diagram of MPEG-4 IPMPX system [24]

4.1.1 IPMPToolManager

The Tool Manager [24] mainly has three jobs. First of all, it processes an IPMP Tool List
Descriptor. The IPMP Tool List Descriptor-is contained in the 10D (Initial Object Descriptor)
and is passed to the Tool Manager when this IOD is parsed by the Terminal. After the IPMP
Tool List Descriptor is processed by the Tool Manager, the listed IPMP Tools are resolved.

In addition to resolve the listed IPMP Tools, the IPMP Tool Manager also attaches these
listed IPMP Tools to corresponding IPMP Filters when the Message Router requests the Tool
Manager to connect a tool. This action requires the associated IPMP Tool Descriptor for initial
configuration including the specific location for the Tool to connect to. However, the removal

of a tool is initiated by the Message Router and requires only the pointer of the tool. [22]

4.1.2 IPMP Message Router

The IPMP Message Router [24] performs the message routing. The locally delivered
messages are called IPMP Tool Message, and the messages delivered among devices are
called the IPMP devices Message (Annex. H). In addition to routing the IPMP messages, the
IPMP Message Router should also process the information dispatched from the Terminal. The
information may come from the I0OD or the bitstream. When the terminal receives an 10D, it

34

parses the 10D and then passes the IPMP Tool Descriptor, the ES Descriptor, and the IPMP
Tool Descriptor Pointer to the Message Router for processing.

The IPMP Message Router processes the IPMP Tool Descriptor that contains some
information for IPMP Tool initialization. The IPMP Message Router also processes the ES
(Elementary Stream) Descriptor for parsing the IPMP Tool Descriptor Pointer. An IPMP Tool
Descriptor Pointer indicates the existence of an IPMP Tool in its residing ES by the descriptor
ID field in its associated IPMP Tool Descriptor. The location of an IPMP Tool is specified by
the control point and the sequence code of the IPMP Tool Descriptor. After processing the
IPMP Tool Descriptor Pointer, the IPMP Message Router informs the IPMP Tool Manager to
connect the IPMP Tools to specific location specified by the IPMP Tool Descriptor. Also, the
IPMP Message Router handles the IPMP elementary stream, which contains the dynamic

IPMP information for updating the IPMP system.

4.1.3 Terminal

The Terminal [24] is an envifonment where the IPMP system performs its functionalities.
For example, it may be an IM1 [25] terminal or any compatible terminals that could perform
content consumption with the IPMP_system. The Terminal should receive the IPMP Tool
Descriptor, IPMP elementary stream, and. the ‘IPMP Tool Descriptor Pointer from the
bitstream and dispatch them to the IPMP Message Router. It also receives the IPMP Tool List
from bitstream and dispatches this to the IPMP Tool Manager. In addition to the above
IPMP-related work, there are still some works done by the Terminal such as decoding the

bitstream data, displaying, etc.

4.1.4 IPMP Tool

The IPMP Tool [24] is the component that really performs the functionalities of IPMP,
such as encryption, decryption, watermark insertion, watermark extraction, authentication, etc.
The IPMP Tool may be instantiated inside the IPMP Control Point to perform the data
processing or may be instantiated outside all the IPMP Control Points to perform other
functionalities that are not related to the data stream, for instance, mutual authentication. The
IPMP Tools within the IPMP Extension system should be able to receive the IPMP messages

that routed by IPMP Message Router. These messages may come from other IPMP Tools or

35

from the received bitstream. When an IPMP Tool receives the IPMP message, the process of

the message is implementation dependant and is not defined in the specification.

4.1.5 IPMP Control Point (IPMP Filter)

IPMP Control Points [24] are the place where an IPMP Tool can connect for data
processing. IPMP Control Points are just like the Filters with one or more IPMP Tools
plugged inside. For example, there are one IPMP Control Point between the decoder and
decoding buffer, and one between the decoder and the composition buffer. The IPMP Tool that
decrypts the stream data will be inserted into the IPMP Control Point between the decoder and
decoding buffer; and, the IPMP Tool that extracts the watermark will be plugged into the
IPMP Control Point between the decoder and composition buffer. In the MPEG-4 IPMP
Extension specification, there are four IPMP Control Points defined: the two described above,
the one between the composition buffer and the compositor, and the one on the the BIFS tree.
The specifications also reserve several user-defined position codes for future extension of

control points.

4.1.6 IPMP Control Information

The IPMP control information may'be ‘contained in the Initial Object Descriptor (I0D)
[24], Object Descriptor update command [24], or IPMP elementary stream [24]. It specifies
how the IPMP system works. The IPMP control information is composed of IPMP Tool List
Descriptor [24], IPMP Tool Descriptor [24], and IPMP Tool Descriptor Pointer [24].

* Initial Object Descriptor:
IOD contains the three important components, Tool List Descriptor, Tool Descriptor, and
Tool Descriptor Pointer. There can be multiple Tool Descriptors and multiple Tool

Descriptor Pointers, but only one Tool List Descriptor within an 10D. In the beginning of

the terminal, an 10D must be accessed for initial configuration of the IPMP system. Those

configurations we considered are only about Tool List Descriptor, Tool Descriptor, and

Tool Descriptor Pointer.

* IPMP Tool List Descriptor:
The IPMP Tool List Descriptor is to transport the list of required IPMP Tools for content

consumption. An IPMP Tool List can contain 256 IPMP Tools at most. A Tool is specified

36

in the IPMP Tool List Descriptor using one of the three modes:

- The Unique mode: each IPMP Tool is described by a unique 1D (IPMP_ToolID).

- The Alternates mode: Terminal can choose one of the alternate IPMP Tools specified

in the set of ToolIDs.

- The Parametric mode: it is used when an IPMP Tool has the following features.

1. Itis based on popular algorithm.

2. It has many equivalent implementations of the same variable.

3. It will be computationally intensive, leading to platform-specific optimized

implementations, from a wide variety of vendors.

* |PMP Tool Descriptor:

The IPMP Tool List Descriptor specifies what IPMP Tools are required for the content

consumption, and the IPMP Tool Descriptor provides IPMP Tools with the information

for configuration. If the IPMP_ToolID in this descriptor is zero, the remote IPMP Tool

Descriptor is pointed by the URLString. Otherwise, the IPMP_Initailize structure carries

the IPMP information for initializing.the .Tool. The location where the IPMP Tool is

connected is specified by the-controlPointCode.and sequenceCode in the IPMP_Initailize.

Here the controlPointCode specified-in"the.specification is shown in the following table

[24].
controlPointCode Description
0x00 No control point.
0x01 Control Point between the decode buffer and the decoder.
0x02 Control Point between the decoder and the composition buffer.
0x03 Control Point between the composition buffer and the
compositor.
0x04 BIFS Tree
0x05-0xDF ISO Reserved
0xEQ-OxFE User defined
OxFF Forbidden

When there are multiple IPMP Tools within the same IPMP Control Point, the order of

invocation is decided by the sequenceCode. An IPMP Tool with larger sequenceCode has

higher priority to process the datat.

* |IPMP Tool Descriptor Pointer:

37

The IPMP Tool Descriptor Pointer is a pointer that points to an IPMP Tool Descriptor by
specifying an IPMP Tool Descriptor 1D within it. The IPMP Tool Descriptor Pointer in an
object descriptor indicates that all streams referred to by the embedded elementary
descriptor are subject to be protected and managed by the IPMP Tool specified in the
pointed IPMP Tool Descriptor. Similarly, the IPMP Tool Descriptor Pointer that is
contained in an elementary stream descriptor indicates that the stream associated with the
ES descriptor is subject to be protected and managed by the IPMP Tool specified in the
referenced IPMP Tool Descriptor. Every IPMP Tool Descriptor pointer instantiates an
unique instance of the corresponding IPMP Tool.

Figure 4-2 shows how an IPMP Tool is resolved according to the Tool Descriptor
Pointer. The IPMP Tool Descriptor Pointer within the OD A containing an ESD C
indicates that there is one IPMP Tool with descriptor F at the AUDIO ES. A similar
resolving process can applied to OD B. There are many cases of use and scope of the
IPMP Descriptors and declaration.. The,details are illustrated in the Annex F of the
MPEG-4 IPMP Extension specification,[24].

OD UPDATE IPMP UPDATE
CONTEXT ID=A_F
OD=A OD=B = -
IPMP DSCR=E avoo |, [oo
ESD=C ESD=D TQolL 1D DB [N
= ~
| AUDIO | | VIDEO | N
IPMP DSCR=F V'SEO —» DEC
IPMP PTR IPMP PTR —— R
N] | 1 b CONTEXT ID=B_E

Figure 4-2 Sample of IPMP Tool context ID mapping [24]

4.1.7 Using IPMP

Here, we give a simple example that illustrates how an IPMP system works. Figure 4-3
shows the basic concept of MPEG-4 IPMPX system. We describe the scenario of content

consumption step by step as follows. [23]

38

Missing IPMP

Tools
Obtain Missing IPMP
Content Tool(s)
IPMP Tool Manager l—
IPMP Tool List
‘,'_:'_'_'_'_:'_:'_'.'_'_'_'_'_'_'_'_:'_:; Content Request
Terminal

Description(s) ! Content Delivery

S
3
E
o) —
@i 8
24 9
AT

IPMP Tool Elementary
Stream

Terminal-Tool Message Interchange Interface l—

IPMP Information
Terminal-IPMP Tool
Communications

IPMP Tool 1 IPMP ToOl 2 | ssssssns IPMP Tool n

Figure 4-3 MPEG-4 IPMPX basic concept [24]

1. User request specific content
The standard does not-specify that how the content is requested. However, the
following recommendations. are made for the processing priority of each part of the
Content. First, the IPMP ‘requirement .should be placed with or before media
requirement. Second, before delivery of the media content, IPMP information and/or
restrictions should have been accessed. To ensure the content is protected as specified,
it is reasonable that the terminal should access and own the information that protects

the media content before accessing the media data. [23]

2. IPMP Tool Descriptor access
Before the content consumption, the terminal should parse the Initial Object
Descriptor and retrieve the IPMP Tool List Descriptor within the 10D to get the list of
the required IPMP Tools. The IPMP Tool Descriptor is also conveyed within the 10D,
and should be obtained by the terminal here. [23]

3. IPMP Tool Retrieval

The method to retrieve IPMP Tools is not specified in the standard. However, missing

39

IPMP Tools could be retrieved from a website or other remote device. The missing

IPMP Tools may be retrieved from an IPMP Tool Stream if available. [23]

4. Instantiation of IPMP Tools
The IPMP Tools required to consume the Content are instantiated locally according to
the IPMP Tool List Descriptor received before. The IPMP Tool Descriptor contains
the IPMPInitialize information that provides the IPMP Control Point code and the
sequence code to inform the Terminal to connect the IPMP Tool at the specified

position. [23]

5. Initialize and update the IPMP system
After setting up the whole IPMP system according to the Initial Object Descriptor, the
content consumption begins. During consuming the content, the IPMP information for
updating the IPMP system is conveyed within the IPMP ES or the OD update
command. The updating information.is.received and turned into the IPMP messages
that are routed by the IPMP.Message Router. There are also IPMP messages for local
negotiation. All the steps can be requested more than once during the content
consumption, and the requests may originate from the process implicitly or from the

user explicitly. [23]

4.2 Overview of MPEG-21 Testbed

The purpose of the MPEG-21 Testbed is to provide a flexible and fair test environment
for evaluating delivery technologies for MPEG contents over IP network. It also supports
scalable media streaming, which is a crucial topic in MPEG-21 Digital Item Adaptation (DIA).
Because each component in this test bed is highly modulized, users can integrate their
customized components into this test bed easily. For example, they can replace the media
codec to evaluate the decoding algorithm, or replace the streamer to simulate the performance
of different streaming methods. With this test bed, users can simulate different channel
characteristics of various networks [9].

The overall architecture of the test bed is shown in Figure 4-4. The entire test bed is

divided into three parts: Server, Client, and the Network Emulator.

40

Offline
Media

Encoder

f IPMPFilter IPMPFilter \
/ (PreDecoder) | | (PostDecoder)

Medi Network -
edia ream
Emulator
Database Network Interface Network Interface Buffer | | DEERLES
CDI, XD,
o — = | . Media |, T media l
DIA ‘ ’—» PB?ff:f:: -—l i : (Chann9'5) : i Packet | [output
i 1 RTP, UDP) |! ! 1 Buffer
i RTP/ ! ' ! : u Buffer
med'al xoi] media ™ Rrep [UDP | b uop | RTP LI
! ! i i | RTCP
J 1 1<% | NISTnet [P :
Streamer [L
QS |\ |
network | Decision RTSP P i i e
XDI h — mux with —r> i i : th
SDP i == | NISTnet [=>: <+—{ MuX Wi Packet
@ i i H | [terminal& QoS -
Rrsp | L TP I e 1] O [user XDl Decision || Monitor
IPMPFilter | terminal control demux | ! V| chamel | i control \/
(PostDIA) & user XDI | with t—i— il ®TsPTCR) | _:_, RTSP
| terminal& | ‘--------] [" demux Client
Server user XDI with SDP Controller
Controller je—— | ~ o o -_-l____ [

@ ___________________________ | Network | . S ——
1 Profile | i User Characteristics 1
1 e N —mm s

Figure 4-4 Architecture of MPEG-21 Testbed [8]

The Server system accepts-the request for a specific media content form the Client. A
Client is connected to the streaming. Server. It sends a request using the RTSP message,
DESCRIBE, to the Server. In this message, the terminal capability and user characteristics are
included. Then, the Server prepares the requested file and sets up the streaming system in
order to stream out the media content over the Network. The server sends an acknowledging
message called DESCRIBE_ACK to Client indicating that the media data at the Server side is
ready. An RTSP message, SETUP, is then received form the Client to request for setting up
the transport session. After setting up the RTP channel for content delivery, the Server
acknowledged the Client with a message called SETUP_ACK. After receiving this
acknowledging message, the Client sends the message, “PLAY” to inform the Server that the
Client is ready for content consumption. Then, the content consumption begins after the
PLAY_ACK message is sent to the Client. During the content consumption, whenever the
user stops the procedure of the content consumption, an RTSP message, TEARDOWN, is sent
from Client to Server to stop the content delivery [9].

Because there are several common modules in Server and Client, the descriptions below

are divided into four parts, Server components, Client components, Common components,

41

and Network Emulator.

4.2.1 Server Components

The functionality of the server is to provide digital media content with streaming
technology to the Clients. One Server can provide services to several Clients. There are seven
components within the Server: Media Database, DIA (Digital Item Adaptation), Streamer,
Packet Buffer, QoS Decision, Server Controller, and IPMP Subsystem.

The functionalities of each component are described below. The IPMP Subsystem and

the QoS Decision will be discussed later.

Media Database

All the Media Contents are offline encoded and stored in the Media Database using
a directory tree structure. The Media Database is responsible for opening the file of the
Media Content that the Client requests. [9]

DIA

DIA (Digital Item Adaptation) performs media resource adaptation by the DIA
processing engine. The CDI (Content Digital 1tem) and static XDI (Context Digital Item)
information are required for initialization, and the dynamic XDI will be set during
adaptation. The DIA component receives the information from the Server Controller and

generates the adapted resource. [9]

Streamer

When a specific Media Content is requested by the Client, the Streamer gets this
content from the DIA module. The Streamer accepts commands from the Server
Controller, and segments this content into video packets according to the MPEG-4

specification. [9]

Server Controller
Server Controller handles the control messages sent by the Client side through the
RTSP channel, such as REQUEST, SETUP, PLAY, and TEARDOWN. After receiving

42

these messages, the Server Controller processes these messages and sets up the system
for processing different protocols. The Server Controller also sends the corresponding

ACK messages to the Client side. [9]

4.2.2 Client Components

The Client consumes the digital media content coming from the Server. It receives the
media data through the Network Interface and playbacks the content including video and
audio. There are eight components at Client side: Packet Buffer, Stream Buffer, Decoder,
Output Buffer, Packet Loss Monitor, QoS Decision, Client Controller, and IPMP Subsystem.
The functionalities of each component are described below. The IPMP Subsystem and QoS

Decision will be discussed later.

Stream Buffer

The Stream Buffer is designed as a circular buffer which temporally stores the
bitstream data. The data saved in the -Stream Buffer will be accessed by the decoder for
decoding. There is a flag that records.the current access location in the Stream Buffer.
When there is no data in the Stream Buffer; the -Decoder waits for the Stream Buffer to

get the data from the Packet Buffer.and resumes decoding. [9]

Decoder
The Decoder component is the root class for all decoders, including real-time and
offline decoders. A Decoder fetches coded units from the Stream Buffer and decodes the

data. After decoding, Decoder stores the decoded units into the Output Buffer for display.
[9]

Output Buffer
The Output Buffer component holds the decoded data produced by the Decoder.
The data will be fetched by the player and returned on the output device. [9]

Packet Loss Monitor

The Packet Loss Monitor handles the lost packet monitoring and retransmission.

43

The component checks the Packet Buffer for any lost packets. The action is triggered by
the Client-side timer. If there are packet losses, Packet Loss Monitor informs the Client

Controller to issue the retransmission request to the Server side. [9]

Client Controller

The Client Controller integrates and controls all the components at the Client side.
It processes the GUI user’s inputs. When there are lost packets detected by the Packet
Loss Monitor, the Client Controller is informed to send the retransmission request to the

Server side. [9]

4.2.3 Common Components

In this section, we introduce the modules that are common in both client and server.

Packet Buffer

Real-time Transport Pretocol/ Real-time Control Protocol (RTP/ RTCP, RFC-1889)
is used as the media transport mechanism. The Packet Buffer implements an RTP packet
buffer data structure.

At Server side, the Packet'Buffer holds the video packets produced by the Streamer.
The stored packets are then sent to the Client side via RTP protocol according to the
pre-scheduled time set by the Streamer. At the Client side, the Packet Buffer receives and
stores all the packets that coming from the RTP protocol. This component is used at both

Server and Client side with different initializations. [9]

QoS Decision

This component estimates the channel condition and provides some QoS
information for rate adaptation. In the current implementation, the channel condition is
the network profile designed in the system. Therefore, users could modify the network

profile as they wish to test different channel conditions. [9]

IPMP Subsystem

The IPMP Subsystem performs the functionalities of intellectual property protection,

44

such as encryption, decryption, and watermarking. The IPMP Subsystem is mainly
composed of five parts, namely Message Router (MR), Tool Manager (TM), IPMP
Filters (or IPMP Control Points), IPMP Tools, and Terminal. Because the MPEG-4 IPMP
system is a message-based infrastructure, we need a module called Message Router
routing the messages to the corresponding destination. The messages may come from
IPMP Tools, Terminal, or other IPMP devices. The Tool Manager manages the IPMP
Tools, such as maintaining the Tool mapping table or retrieving the missing IPMP Tools
from a remote site. It is also responsible to initialize and destroy the IPMP Tools. There
can be several IPMP Tools working within one IPMP system. For instance, at Client side,
there would be a DES decryption algorithm, a video watermarking extractor, and an
authentication tool. The IPMP Filter is the control point where the IPMP Tools can
exercise their functions. The Terminal is provided as the interface between the test bed
system and the IPMP system. The details about the IPMP system in the test bed will be

discussed in section 4.3.

4.2.4 Network

In order to connect the Server and the Client via a simulated transmission channel, a
standard RTSP/RTP-based network"interface is'used. Three categories of network protocols
including the network-layer protocol, transport protocol, and session control protocol are

shown in Figure 4-5.

Application Control Layered Video Data
Commands Base Layer Enhancement Layer
RTSP RTP/RTCP
TCP UDP
P
Data Link
Physical Layer

Figure 4-5 Network protocol [9]

The Real-time Transport Protocol (RTP) is to transmit multimedia streams from end to

45

end. And the Real-time Streaming Transport Protocol (RTSP) is used to transmit the control
messages reliably. RTSP specifies the messages and procedures to control the media
streaming passing through an established channel. There are four basic message types used in
the test bed: DESCRUBE, SETUP, PLAY, and TEARDOWN. The DESCRIBE message is
sent from Client to Server for requesting a specific media content. It also contains the
information such as terminal capability or user characteristics. The SETUP message is to
setup a media delivery session between Server and Client with the information contained in
the DESCRIBE message. After setting up the channel, Client sends a PLAY message to
inform the Server of starting to transport the media content. Finally, the TEARDOWN
message ends the transport and closes the session.

In the test bed, an IP network emulator named NISTnet [29] is used to provide repeatable
network environments. NISTnet can simulate practical wide-area heterogeneous network
environments. It is a LINUX based IP network emulator developed by the National Institute
of Standard Technology, USA. The testbed.provides a GUI to parse a network profile and

controls the time-varying network conditions.via the.NIST Net kernel module.

4.3 Integrate MPEG-4 IPMP Extension into MPEG-21
Testbed

To integrate the MPEG-4 IPMPX subsystem into MPEG-21 Test Bed, some additional
design and implementation is required. The major components are Context, IPMP Tool, IPMP
Filter and Terminal. All details of these modifications are introduced in the following

subsections.

4.3.1 Context

Because there is the information shared among the IPMP modules, we put the shared
information in the Context structure rather than in individual modules. All the IPMP modules,
including Tool Manager, Message Router, Terminal, IPMP Filters, and IPMP Tools, are
associated to the Context in order to retrieve the shared information. The relationships among

these modules and the Context are shown in Figure 4-6. [22]

46

Testbed Decoder

Testbed Client Controller

Testbed Streamer

A
N
P
NN
(-'J.{ I =
- R 'r_-‘ J’. _.':
NG ;=
! . |
- SRV .
-
[PMP Tool Navieate context [PMP Context -
Navigate contex g
=
P
- 7T
7 |
L =
- oo o
s ;:-"\ | =
IPMP Filier | -7 <8 3= “
i\ ! P - =
- (=1
R4
-

Tool Manager

Testbed Server Controller

Terminal

%, 0w | Message Route
* N

T

Figure 4-6 Relationship between IPMP Context and other modules [22]

4.3.2 IPMP Tool

In order to make the design and implementation of the IPMP Tools flexible, the IPMP
Tools are designed to have uniform interfaces. They are enforced to support a few (minimal)
operations required by the architecture. For example, an IPMP Tool should be able to receive
and to process IPMP messages. Though-this-operation is implementation dependent, all tools

should be able to perform this operation. Figure 4-7 shows the relationships between the

IPMP Tool and the other IPMP modules. [22]

IPMP Too
IPMP Too
IPMP Too
IPMP Too

&
<
3

MR: Messaging

TM: Control

[PMP Filter: Data processing
Context: Navigating

[PMP Filter

Tool Manager

[0 SEIRII]

|L'|'J]) A LS]'H'..:

[PMP Tool

Receive message

Receive message

TXAU0D RFLAEN]

I

TEMP Tool Context

Figure 4-7 Relationship between IPMP Tools [22]

47

Message Router

4.3.3 IPMP Filter

Due to the design of the MPEG-21 Testbed, there are only three IPMPX Control Points
available on the Test Bed: two on the client side and one on the server side. On the client side,
the Control Point located before the Decoder (PreDecoderFilter) corresponds to the Control
Point between the Data Buffer and the Decoder; and the CP between the Decoder and the
Output Buffer (PostDecoderFilter) corresponds to the one between the Decoder and the
composition buffer.

Since the specification of the MPEG-4 IPMPX mainly focuses on the client side only,
our design on the server side is inferred from the client side design. The PostDIAFilter is
introduced as the counterpart of the PreDecoderFilter (at the client side). Because the
MPEG-21 Test Bed requires compressed media files as its sources, we do not have a server
counterpart of the PostDecoderFilter. In this system, we can insert an IPMP Tool for
decryption in PreDecoderFilter at client side, and insert an IPMP Tool for real-time encryption
in the PostDIAFilter at the server:side. Figure 48 summarizes how the IPMP Filters are

related to the other Test Bed components. [22]

- p - Three types:
Testbed Decoder Testhed Streamer S
PostDIAFilter
PreDecoderFilter
PostDecoderFilter
'\.\ '
\ I.f
Askto %, 7 Askto
process data /" process data
| K
IPMP Tool IPMP Filier e Addwol ool Manager
b |
Ask o e __]
process data : Remaove tool
I
I

AN

[PMP Filter € TM: Control

[PMP Filter € Streamer: Data processing
[PMP Filter € Decoder: Data processing
IPMP Filter = IPMP Tool: Data processing
IPMP ES Context | [PMP Filter = Context: Navigating

XaIU0) AT

K

Figure 4-8 Relationship between IPMP Filter and other modules [22]

4.3.4 Terminal

The Terminal is the Interface between the Testbed system and the IPMP system. The

48

relationship between them is shown in Figure 4-9. The Terminal class here can be viewed as
the abstraction of the Test Bed system without the IPMP subsystem. The interaction between

them includes local messaging and remote messaging.

Tool Manager

Termuinal = TM: Control

Terminal < MR: Control and messaging
Terminal = Testbed Controller: Control
Terminal = Context: Navigating

Testhed Contraller MC.‘GSN‘.C Router

remote message

Terminal is the interface
between Testbed system
and IPMP subsystem

[PMP Top Context

Figure 4-9 Relationship. between Terminal and other modules [22]

49

Chapter5

Implementation of MPEG-21 IPMP and REL with MPEG-4 IPMPX

This chapter describes our implementation of the MPEG-21 IPMP and REL incorporated
with the MPEG-4 IPMPX Framework on the MPEG-21 Testbed. First, we modify the computer
program of the MPEG-4 IPMPX Framework embedded on the MPEG-21 Testbed [8] to process
the IPMP Messages sent from the local (or remote) terminal. Further, we redesign the procedure
of the entire system in accordance with the specifications of the MPEG-21 IPMP and REL.
Figure 5-1 shows the basic structure of the modified system, containing the server side and the
client side. The server side encapsulates the digital resource into the protected format. The client
side performs four IPMP related functions, which includes verifying the client, resolving the
IPMP DIDL files to get the rights data, authorizing the client’s request, and parsing the protected
digital resource into the playback .format 1f “users are authorized to consume it. Our

implementation will focus on how ta:verify that the user owns the valid licenses.

Data License Decryption
Base Server __ Tool |

A

2. Retrieve video
l 5. Verify client 8. Decrypt video

A A

«——— 1. Send Request

Server Client
— 4. Video, DID, License —

T 4 A

Specifications
of MPEG-21
IPMP and REL

3. Encrypt Video / 3

l

|

|

I

7 N R |
Encryption | IPMPDIDL REL
__Tool) ! Parser Tool

|

>~ _ _______ _ o

6. Resolve IPMPDIDL File 7. Authorize Request

Figure 5-1 Basis structure of a modified content protection system

To construct a system which conforms to the basic structure shown in Figure 5-1, we

choose the MPEG-21 Testbed as our streaming base system. Since the Testbed incorporates

50

the IPMPX functionality, we design and implement the MPEG-21 IPMP using the APIs
provided by the IPMP modules in the MPEG-21 Testbed.
In the following sections, we will describe first the design of IPMP Messages. Then, the

details of redesigned overall system and the software implementation are discussed.

5.1 IPMP Messages

The IPMP Message is an important concept of the MPEG-4 IPMP Extension specification,
because the MPEG-4 IPMP Extension is a message-based framework. All real-time
information can be delivered to the IPMP Tools or Terminal via the IPMP Messages. All the
IPMP Messages can be divided into two types, IPMP Tool Message and IPMP Device
Message. In our system, communication between devices is represented as IPMP Tool
Message. Hence, IPMP Device Message is not considered here.

The IPMP Tool Message facilitates the delivery of the IPMP Information among the IPMP
Tools and the Terminal, and from thetbitstream to_the IPMP Tools. There are three forms of
IPMP Tool Messages. IPMP_MessageFromBitstream is used to deliver IPMP stream data;
IPMP_ DescriptorFromBitstream 1S used — to - deliver IPMP_Descriptors; and
IPMP MessageFromTool is used to_deliver-messages to either other IPMP tools or the
Terminal itself. All the three IPMP Tool Messages-are derived from IPMP_ToolMessageBase.
This message base contains three fields. The Version (8 bits) field indicates the version of the
syntax. The Sender (32 bits) field indicates the context ID of the originator of the message.
The Recipient (32 bits) field indicates the context ID of the intended recipient of the message.
The context ID “0x00” is reserved for the terminal according to the MPEG-4 specifications.

In the MPEG-21 Testbed, the MPEG-4 IPMP terminal is split into the client and the server
parts. Because each server links only to one client, we can treat the whole testbed system as
an integrated terminal. Hence, to distinguish different side of terminals in the MPEG-21
Testbed, the server’s context ID is defined as “0x00” and the client’s context ID is defined as
“0x80000000”. All the elements at the server side have the context ID less than
“0x80000000”, and all the elements at the client side have the context ID greater than
“0x80000000”.

The life cycle of an IPMP Message is divided into three stages as follows:

1) Generation: To create an IPMP Message, users have to fill in each element with

51

corresponding information, such as the context ID of the recipient and other IPMP

Information.

2) Transmission: After the creation of an IPMP Message, the Message Router is

called by the sender for transferring this message to the intended recipient.

3) Accessing: The intended recipient receives and parses this message. If necessary, a

response message will be sent back to the originator of this received message.

According to the above description, only the details of the transmission stage are
independent of applications. When the Message Router gets an IPMP message, it routes this
message to the destination according to the recipient’s context ID. Because the whole testbed
system has two sides, an IPMP Tool Message may be routed to a local element or to a remote
one. That is, if the recipient and the sender are at the same side, the message is routed locally;
otherwise, the message is routed remotely.

Figure 5-2 illustrates the processiof routing:a message. The Message Router first checks
the context ID of sender and receiver. If-bath ‘of them are the same, the Message Router
returns error. On the contrary, the“Message Router decides the destination for passing the
IPMP Message according to the eontext IDTof the sender and the recipient of this message. If
the context ID of the sender and the recipient are not identical in the most significant bit
(MSB), the message will be sent through the network. If the context ID of the receiver is
equal to the context ID of the local terminal, the terminal is called for receiving messages. If
none of the conditions is satisfied, the destination is a local tool instance. The Message Router
checks if the receiver exists. If the result is true, the message is received by the receiver; if the

result is false, the Message Router returns error.

52

Remote routing?

Send Msg
to Bitstream

Get
sender & receiver

Yes : ;
Receiver = Terminal?

Sender = Receiver?

Terminal:: ReceiveMsgD

Receiver exist?

Receiver::ReceiveMs@

Return error

Figure 5-2 Decision of the:Message'Router for transmitting the IPMP Messages

5.1.1 Remote process

After the Message Router decides to transfer an IPMP Message to a remote terminal, this
message will be sent to the remote terminal via the RTSP control channel in the Testbed. The
flowchart of transferring an IPMP Message from a server tool to a client tool is given in

Figure 5-3.

53

1.Generate Message

Client
Tool
e &
Server Tool c 7z
‘;: :;
2. Mess:
Send Message Message
Router
Message =
Router 4
=
2]
2
@
g
: 0
Client
Local Remote Terminal
6. Parse Control
3. Receiy Message
Message 4.Packet IPMP into
Message IPMP Message

into 5. Transfer via
Control Messag| RTSP Server RTSP channel RTSP Client

Server Server
Tool Terminal

Figure 5-3 Flow chart of transfer an IPMP Message to remote terminal

In Figure 5-3, a tool at the server side.wants to.send an IPMP Message to a client tool. It
generates an IPMP Message, IPMP_MessageFromIooll, and passes it to the Message Router.
The Message Router receives the‘message and decides-that this message should be transmitted

to the client side.

class CIPMPMSG_MSG : public CCTRL_MSG{
string m_message;//IPMP message
}

Figure 5-4 Structure of a RTSP control message, CIPMPMSG MSG

Then, the Message Router calls the ServerTerminal’s API, SendMessageToBitstream(), to
encapsulate the IPMP Message into the RTSP control message, CIPMPMSG MSG (Figure
5-4). Because the control channel is designed to deliver ASCII data, the binary IPMP Tool
Message is encoded using BASE64. The ServerTerminal calls the RTPServer to send the
control message to the RTSP channel.

At the client side, the control channel is monitored by the client controller for receiving
the control message which carries IPMP Messages. When the control message is received, the
client controller calls the RTSP client to handle and parses the control message into the IPMP

Messages. Then, the IPMP Message is passed to the client-side Message Router, and is sent to

54

the intended recipient. Finally, the recipient receives and processes the IPMP Messages.

5.2 IPMP Tool design and software implementation

In this section, we discuss the design of our system. At the beginning, we describe the
design and implementation of the IPMP Tools with the functionalities of the MPEG-21 IPMP

and REL. Then, the designed implementation and the behavior are described.

5.2.1 IPMP Tool with MPEG-21 IPMP and REL functionalities

5.2.1.1 Behavior of MPEG-21 IPMP and REL

The main functionality of the MPEG-21 REL is to provide an authorization proof
according to an authorization story and an authorization request file. Every application can
use REL to allow or disallow users to consume_a specific content under predefined conditions.
The most important element in REL:is the License.

The goal of the MPEG-21 IPMP is 'to provide the protection of Digital Items. The
MPEG-21 Testbed supports two-types/of-Digital Items, video and audio files. An effective
way to protect them is encryption. This kind of protection can be effectively achieved by
encryption tools. Because the IPMP information in an IPMP DIDL file can also be stored in
an 10D file, only the IPMP information listed in an 10D file is processed in our

implementation. In Figure 5-5, a parser is designed for analyzing the IPMPDIDL element.

. IPMP
| | information
IPMPDIDL
element arse_|IPMPDIDL
| | Rights
1 Object

Figure 5-5 An API, Parse_IPMPDIDL()

Therefore, in our implementation, the MPEG-21 IPMP is treated as a central control

element which stores all the related information and takes charge of accessing and processing

55

it. For example, the license is reserved by the central control element which has the ability to
perform the functionality of the MPEG-21 REL. Hence, we design an IPMP Tool called

IPMP_Info_Engine to implement the above specifications.

5.2.1.2 MPEG-21 REL Reference Software

Our implementation of the MPEG-21 REL is based on the REL Reference software
developed by Content Guard [30]. The MPEG-21 REL [2] was originally proposed by
Content Guard. It now supports one right, “mx:play”, and two conditions, “exerciseLimit”
and “validityInterval”.

The reference software contains three components: RELLicAuthzDriverGUI.exe,
RELLicAuthzDriver.dll, and RELLicAuthz.dll. “RELLicAuthzDriverGUI” is the user
interface for the application. Depending on the run-time environment, this component refers
to Win PC or Pocket PC executable files. “RELLicAuthzDriver” is the driver for the
MPEG-21 REL, which is responsible for tparsing the input License and Query.
“RELLicAuthz” contains modules for an MPEG-21 authorization application, to manage the
process of authorizing Query according to the input License.

The dataflow of the reference softwarerisshown in Figure 5-6.

56

RELLicAuthzDriver RELLicAuthzDriver RELLicAuthz

GUI DLL DLL
REL Input Pass RELLicenseGroup
License File Construct call to & query items Validate

Request

Return issuers & conditions

» Pass conditions, test time,
exercise count and update flag
For each Validate
XML Query File condition, call Condition
validateCondition. S_OK if condition met
STOP when first

one is met.

validateRequest
> S_OKif at least one matching
grant found.

Log File

Figure 5-6 Dataflow of the MPEG‘421 REL Reference Software [30]

The two modules of the RELI-_i‘cAuthz.dI‘I are described below.

* The “validateRequest” module — It takes in an REL license file, checks to see if there
are any matching grants against the supplied query items (keyHolder, right and resource).
It then returns vectors of conditions for any conditions found in the matching grants, and
vectors of issuers for the issuers of the matching grants. If there are no matching grants, it

returns error messages.

e The “validateCondition” module — It checks to see if any of the conditions is met.
Since this piece of software only supports the “validityInterval” and the “exerciseLimit”
conditions, the input could be either the conditions or an allConditions element.
According to the specified condition, other input fields could be a string containing an
ISO format date (time) to check, an integer indicating the intended usage count, and a

Boolean variable indicating whether to update the state of the usage count.

57

The execution flow in the REL reference software is described as follows.
1. The user selects an REL license file name and a query file name.
2. RELLicAuthzCEGUI calls the relAuthorizeRight function with the license file name and
the query file name as the parameters.
a) relAuthorizeRight loads the selected REL license file and the query file.
b) relAuthorizeRight calls validateRequest by passing a licenseGroup, user, right, resource
to it.
I. validateRequest checks for unsupported items.
I1. If no unsupported items are found, validateRequest loops through all the grants in all
licenses. If at least one matching grant is found, it will return a positive result. Any
conditions found are also returned.
I11. If the call to validateRequest failed, the function RELAuthorizeRight exits.
3. If the call to validateRequest is successful, validateCondition will be called.
a) validateCondition loops through.all.the conditions to check whether a condition is
satisfied.
b) If we meet at least one condition, it-means that the specified user is allowed to
exercise the right on the given resource.
4. The user is informed of the success/failure of the authorization.
5. The user can find further information“in the log file, “AuthorizationSession.log”, at the
directory which contains the application (if the “Log Authorization Session” option is

selected).

5.2.2 Architecture of IPMP_Info_Engine Tool

To incorporate the REL into the Testbed, we integrate the REL’s reference software
through a function of the IPMP_Info_Engine Tool, call_REL_authorize(). Because there is no
proper IPMP Tool API to implement user interface of a tool, only the RELLicAuthzDriver and
RELLicAuthz are included in this REL function. Two input arguments, REL input License
and XML Query file, are assigned during initialization. The structure of the REL function is

presented in Figure 5-7.

58

Call_REL_auhtorize()

/ Internal storage RELLicAuthzDriver RELLicAuthz \
(Initialization Data)

————————— hY

/ Z \ q
// REL Input \\ Construct Call to Validate
/ \Lw \ validateRequest Request
(/ \\
\ /
\\ XML //
X ; / For each
N W / condition, call .
\ / Validate

validateCondition.
If one is true,
stop.

- J

Figure 5-7 Architecture of the REL function

Condition

After integrating the REL’s referehrce sdﬁw’arg, the IPMP_Info_Tool has to retrieve the
input License and XML Query File. In OL‘JI" i;mbleméhtation, the XML Query file is stored in
the local device. In addition, the -r‘rights‘ data (L'icense)jfis encapsulated in an IPMP DIDL file.
Because the initialization data of the I'EMWO_Eng'ine tool contains the IPMP DIDL file,
we can get the License when -the‘IPMP_‘Info;Engine tool is initialized with the tool
descriptor.

The APIs associated with the functionalities of MPEG-21 IPMP and REL in
IPMP_Info_Engine Tool are listed below:

Method:

int call REL_authorize(void)
This method is called by the ReceiveMessage() for getting an authorization proof. The

method returns zero when succeed.

void LoadQueryFileFromLocalFile(char *query path)
This method loads the XML Query File. The parameter query_path indicates the file

path.

59

void IPMPInfoEngine::Initialize(IPMPToolDescriptorD* init)

This method parses the IPMPToolDescriptor, and stores the rights data (License).

5.2.3 IPMP Filter (IPMP Control Point)

After describing the architecture of the IPMP_Info_Engine tool, we now discuss in
which IPMP Filter the IPMP_Info_Engine tool should be placed for our implementation. In
the MPEG-21 Testbed, three IPMP Filters are available. There are PostDIAFilter at server,
PreDecoderfilter and PostDecoderFilter at client. These IPMP Filters stand for the IPMP
Control Points.

The IPMP_Info_Engine tool is designed to give the user the consuming right of a
specific content and to manage the IPMP DIDL files. It does not handle input video/audio
data directly, but it provides the information about which right the user owns. Therefore, all
IPMP Filters in the testbed are not suitable for the IPMP_Info_Engine tool. We do not place
the IPMP_Info_Engine Tool in any IPMP Filters. In other words, the control point of the
IPMP_Inof_Engine is CONTROL_POINT _NO (the ControlPointCode is 0x00).

5.2.4 Relationship between other IPMP Tools

Because the Control Point of the IPMP_Info_Engine is discussed in the preceding
section, we consider the relationship between the IPMP_Info_Tool and other IPMP Tools. For
instance, Figure 5-8 shows that the communication between the IPMP_Info_Engine tool and
other IPMP tools in PreDecoderFilter and PostDecoderFilter. Since the architecture is

message-based, we discuss the IPMP Messages in this scenario.

60

A 4

Decoder

Y

PreDecoder PostDecoder
IPMPTool | | IPMPTool Filter IPMPTool | | IPMPTool Filter
A B p b .
Message
i Communicate with
server through
B q K Messag RTSP
Tool ’ Control Message fontrol & Message Controller P
Manager Router [/
E y
€
S L - - 7Message j
e 1
| .
| IPMP_Info_Engine :/@w added component
| | | TPMP DIDL! |
‘ REL API |
I Parser |
l ‘ |

Figure 5-8 Modified'block diagram at the client side

IPMP Message can include various Kinds of information, such as control information,

rights data, and key data. Basic_flowchart of generate an IPMP Message is illustrated in

Figure 5-9.

61

Create
IPMP Message

Set sender
and receiver

A 4

Create
Data Base object
To Carry Information

A 4

Add object to
IPMP Message

Create MessageRouter
To ReceiveMsg

Figure 5-9 Flewchart of'generating an IPMP Message

Although there are many types of IPMP-Data representing different kinds of information,
we choose IPMP_OpaqueData as the data.container that can be carried by the IPMP Message

for simplicity and flexibility. Its data structure is shown below [1].

class IPMP OpaqueData extends IPMP Data BaseClass
:bit(8) tag = IPMP OpaqueData_tag

{
ByteArray opaqueData;
/
class ByteArray
{
unsigned long(32) SizeOfArray;
bit(8) Data[SizeOfArray + 1],
/

The opaqueData is the opaque IPMP information conveyed to IPMP Tools. Any format
of information that is able be converted to the data structure (“ByteArray”) can be included in

the opaqueData. Therefore, the procedure for generating an IPMP Message which carries

62

IPMP_OpaqueData is shown as follows.
1. Create an IPMP_OpaqueData object.
Insert information into the IPMP_OpaqueData object.
. Create an IPMP message.

2

3

4. Set the sender and recipient of the IPMP message.

5. Add the IPMP_OpaqueData object into the IPMP message.
6

. Call the Message Router to receive the IPMP message.

The implementation of IPMP_Opaque is based on the MPEG-2 IPMP Extension system
developed by Panasonic Singapore Laboratories Pte Ltd (PSL) [26]. According to its design,
the maximum size of OpaqueData in IPMP_Opaque object is 2?® bytes because the size of the
length variable varies from one to four bytes and the most significant bit (MSB) of each byte
is “1” if there is higher byte to be concatenated with it. The representation of the length

variable can be shown in Figure 5-10.

Original data

b13b12b11b10b b b b Db ;b b Tag = 0

............... P LY ot concatenated
EET—— SRR lnly oot VRSO | Tag=1

‘O| b13b12b11b10b bgb, i‘l’ b obeb b Jb,b b - concatenated

Figure 5-10 Representation of ByteArray format

When the coded data is passed to the PreDecoderFilter, it will be processed by each
IPMP tool in this IPMP Filter. The processing priority of the IPMP Tools depends on the
values of the sequence code. The IPMP tool with a larger sequence code has a higher priority
to process data. When an IPMP tool starts to process the given data, it must own the
corresponding right to perform such functionalities. Therefore, in our implementation, an
IPMP Tool has to send a message to the IPMP_Info_Engine tool for requesting the

authorization. The Message Router receives this message and delivers it to the

63

IPMP_Info_Engine tool. Then, the IPMP_Info_Engine tool performs the verification. The
REL license and the user query file stored in the IPMP_Info_Engine tool are used as the input
arguments to validate the user’s request. After the result of verification is determined, the
IPMP_Info_Engine tool sends an IPMP message that carries the result back to this IPMP tool.
The transmission of IPMP messages depicted in Figure 5-11 demonstrates the interactions

between the DES Tool [23] and the IPMP_Info_Engine Tool in our designed system.

DES Tool 1. Send an message
vy for request the right
to decrypt.
3. Send an "
message with the IPMP_Info_Engine
result of verification Tool

A

2. Perform REL verification

Figure 5-11 Transmission of IPMP'messages between DES Tool and IPMP_Info_Engine Tool

In this example, the communication sheuld be taken place only once (when the first-time
innovation). The details of how -an IPMP Tool processes the given data is shown in Figure

5-12.

64

m_Verified = True?

Send a Message to
IPMP_Info_Engine o
For Request of Verification Waiting for

el | m T === = server’s reply

_CanProcess = True?

A 4 A 4

Resume process Halt

Figure 5-12 Flowchart of processing data in an IPMP Tool

When an IPMP Tool starts to process data, the value of a flag, m_Verified, is checked. If
it is false, this IPMP Tool sends an IPMP Message to the IPMP_Info_Engine tool for the
request of verification. After the message is received by the Message Router, this Tool will
wait for the value of m_Verified becoming true. When the value of m_Verified is true, it
means the result of verification sent from the IPMP_Info_Engine tool is received by this
IPMP Tool. Then, this IPMP Tool continues to check the value of a flag, m_CanProcess. If its
value is true, the process is resumed; otherwise, this IPMP Tool halts this process.

The APIs associated with the communication between other IPMP Tools in
IPMP_Info_Engine Tool are listed below.

Method:
int IPMPInfoEngine::ReceiveMessage(IPMPToolMessageBase* msg)

This API is called by the Message Router to pass a message to the IPMPInfoEngine object.

The parameter msg is the IPMP message to be handled by this tool. The function returns zero

65

when it succeeds.

5.3 Content protection mechanism

In the MPEG-21 Testbed, the encoded bitstream is transported through an RTP channel

which can not prevent the bistream from eavesdropping. To increase the safety of

transportation, we use an encryption tool at the server side to encrypt the bitstream before

transmission. The encryption algorithms can be divided into three types (Figure 5-13):

1)
2)

3)

Symmetric cryptography: Uses a single key for both encryption and decryption.
Asymmetric cryptography: Uses one key for encryption and the other (different key)
for decryption.

Hash function: Uses a mathematical transformation to irreversibly "encrypt” the

information.

plaintext ‘. > Ciphertext »plaintext

A) Secret key (symmetric) cryptography. SKC uses a single key for both

encryption and decryption.

~ ~

plaintext »Ciphertext »plaintext

B) Public key (asymmetric) cryptography. PKC uses two keys, one for

encryption and the other for decryption.

hash function
plaintext > ciphertext

C) Hash function (one-way cryptography). Hash functions have no key

since the plaintext is not recoverable from the ciphertext.

Figure 5-13 Three types of cryptography [31]

The original implementation of the MPEG-4 IPMPX on the MPEG-21 Testbed [8]

designs a pair of DES tools, one for encryption and the other for decryption. The DES

algorithm is a kind of symmetric cryptography, and it is a block cipher algorithm. Because the

66

encryption key at the server side has to be transferred to the client side for decryption, we
choose RSA, one of the well-known asymmetric algorithms, to protect the DES encryption
key during the transmission. The content protection scheme combined with the key

management is shown in Figure 5-14.

Encrypted

content (Client)

DES
Tool

.......................

‘%x\
2 (©)
i (D<
=
-
D !
< |
*
]
o -
=
4

. . " Encrypt with | Decrypt with
L any . SClE | (Elicii- .
\La] er 2 i encryption : . Public Key ;i Private Key ‘} /

Figure 5-14.Contentprotection scheme

There are two protection layers. Layer -1 protects the content, and Layer 2 protects the
encryption keys. After the content is encrypted by the server-side DES Tool, the protected
content is sent to the client. Meanwhile, the'encryption key is stored in the Key server’s
database. When the client receives the encrypted content, it links to the Key server and asks
for the decryption key. The Key server uses the RSA algorithm to encrypt the DES key with
the client’s public key. This additional key protection guarantees that only the authorized
client can recover the correct decryption key. As soon as the client gets this protected
encryption key, it decrypts this key by using its private key. Consequently, the client can
consume the content correctly.

In this scheme, the Key sever is designed to store the encryption key of the specific
content and to transfer this key in a protected form to the client. We implement this Key
server as a web server. To integrate this Key server with the MPEG-21 REL, we add the
validation functionality to the Key server. The flow chart of the Key server is shown in Figure
5-15. The Key Server first receives a request message from the client, and validates that if the
client has the right to receive the content decryption key, “key C.” If the client is authorized
to get “key_C,” the Key server generates the encrypted version (key R) using the client’s

public key. Otherwise, the Key server returns an error message.

67

Receive Request
Message

No
?
Check name Generate Key _R:
Encrypt Key C
With
Yes user’s public key
No _
Check right?
Yes

Figure 5-15 Flow chart of the Key server

5.3.1 Add one condition; “ExerciseMechanism”

In the REL reference software, only two conditions and one right are supported. To
demonstrate our designed system, we'define“a new condition, “ExerciseMechanism”. This
condition provides a description of serverwhich contains server’s URI and parameters. An

example of this condition is described as follows:

<r:exerciseMechanism>
<r.exerciseService>
<r:serviceReference>
<sx:wsdlAddress>
<sx:kind/>
<sx:address>
<digitalResource>
<nonSecurelndirect
URI="http://localhost/sxh/EMServer_v1.asp"/>
</digitalResource>
</sx:address>
</sx:wsdlAddress>
<r:serviceParameters/>
</r:serviceReference>
</r.exerciseService>
</r:exerciseMechanism>

Figure 5-16 Example of a condition, “ExerciseMechanism”

68

In Figure 5-16, a server is described by <sx:wsdlAddress>, which contains an URI to
link to this server, and <r:serviceParameters>, the required information necessary to pass to
this server. Here, “http://localhost/sxh/EMServer _vl.asp” is an URI to the server. This
condition is fulfilled when the verification result parsed from the response of server is true. To
adding this condition to our implementation, we write a condition validator,
“validateEMcondition()”, which is integrated into the “validateCondition” module. The
dataflow is represented in Figure 5-17. First, the program retrieves the server’s URI and
parameters. We use the server’s URI to link to server with server’s parameters. Then, server
generates the response to the program according to these parameters. If the connection is
successful, the program receives the response and analyzes the state of the response;
otherwise, an error message is returned. If the state is true, the program returns the message
which represents successful verification; otherwise, the message that represents false

verification or connection error is returned.

Start '

Parse response

Get Address
and Parameters

Store
protected keys

\ 4

Access Server

Response = Error ?

Return
S OK

Figure 5-17 Dataflow of validating the condition, “exerciseMechanism”

Return
S ERROR

The APIs associated with the condition “exerciseMechanism” are listed below.
Method:
HRESULT validateEMCondition(CComPtr<IXMLDOMEIlement> spEMConditionElt)

This function checks to see if the user can exercise the right. This function contacts a
web service to verify this. The spEMConditionElt object is content of an

“exerciseMechanism” condition. The method returns S_ OK when succeed.

69

HRESULT accessEMServer(TCHAR *tszPath)
This function accesses the exercise mechanism and, depending on the input parameter of

tszPath. The tszPath object is the path to the server. The method returns S_OK when the

response of server is true.

70

Chapter 6

Application Examples

In order to demonstrate the functionalities of our implementation, we design three
application examples as follows.

* Online Play: This application demonstrates how to manage the user’s “play” right in
a real-time streaming system.

* Preview: This application demonstrates how to manage the user’s “preview” right in
a real-time streaming system.

* Super distribution: This application demonstrates how to manage the user’s right in a
distributed mobile environment.

Figure 5-8 shows our system. The,client side has a DES Decryption Tool and an
IPMP_Info_Engine Tool. There s a DES.Encryption Tool at the server side. All the
application examples have a similar system .structure. We first describe the initialization
settings in an Initial Object Descriptor forthe client terminal of our implementation.

There are three main components in an I0D: IPMP Tool List, IPMP Tool Descriptor, and
the IPMP Tool Descriptor in the Elementary ‘Stream Descriptor (ESD). The attributes and

settings of these components are shown as follows.

IPMP_ToolListDescriptor
{
numTools = 2;
IPMPToolDI[0]

{
IPMP_ToolID = [140,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];

isAltGroup = 0;
isParametric = 0;
numURLs = 0;
ToolURL = NULL;

}
IPMPToolD[1]

IPMP_ToolID = [140,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4];

isAltGroup = 0;
isParametric = 0;
numURLs = 0;

71

¥

ToolURL = NULL,;

There is an IPMP Tool List residing in an 10D. Because the client terminal has two

IPMP Tools in our system, there must be two IPMPToolIDs on the IPMP Tool Descriptor List

and thus numTools is set to 2. Each IPMPToolD has a unique IPMP ToolID, because a unique

mode is needed to describe the required IPMP Tools for content consumption.

IPMP_ToolDescriptor[0]

{

¥

IPMP_ToolDescriptorID = 1;
IPMP_ToolID = [140,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
URLString = NULL;
isInitialize = 1;
IPMP_Initialize
{
controlPointCode = 0x01;
sequenceCode = 220;
numOfData = 1;
IPMPX_data[0]:IPMP_OpaqueData

{
opaquedata = {"duration to-change the Key","initial key"};
o

}
numOfData = 0;

IPMPX_data = NULL;

IPMP_ToolDescriptor[1]

{

IPMP_ToolDescriptorID = 2;
IPMP_ToolID = [140,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4];
URLString = NULL;

isinitialize = 1;
IPMP_Initialize
{

controlPointCode = 0x00;
sequenceCode = 220;

numOfData = 1;

IPMPX _data[0]:IPMP_OpagueData

{
opaquedata = {"IPMP DIDL element"};
o

}
numOfData = 0;

IPMPX_data = NULL;

72

Because there are two IPMP Tools instantiated in this demonstration system, we need
two IPMP Tool Descriptors for them. Although different IPMP Tools can share the same
IPMP Tool Descriptor, the IPMP Tools which appear in the demonstration system can be quite
different. There are several parameters which can be set at the users’ will, such as
IPMP ToolDescriptorID. In both IPMP Tool Descriptors, the is/nitialize is set to 1 to indicate
that the IPMP Tools are newly instantiated. The controlPointCode, whose value is 0x01,
means that this IPMP Tool are connected to the PreDecoderFilter, and the controlPointCode,
whose value is 0x00, means that the other IPMP Tool is not connected to anyplace. And the
sequenceCode indicates the order for processing the data. Finally, the IPMPX_data carried by
IPMP_Initialize is set as IPMP_OpaqueData to carry the initialization information for IPMP

Tools such as the duration for changing keys and initial keys.

ES_Descriptor[0]

{
ES_ID =0;
IPMP_ToolDescriptorPointer[0]
{
IPMP_ToolDescriptorID = 1;
}
}

The IPMP Tool Descriptor Pointers ‘within the ES Descriptor indicate that the stream
described by this ESD is protected by the IPMP Tools listed by the IPMP_ToolDescriptorID.
The relationship between the Tool Descriptor and the Tool Descriptor Pointer is shown in

Figure 6-1.

IPMP IPMP Filter
ESD Tool Descriptors (Contral Point)
= [mTTTTTTTTTTT i
E?_erc_l___ql | IPMP Tool | :
i____\/_i(_j_ef)___i i Descriptor[0] i Stream _:Y> Decoder
| (| vl
| IPMP Tool |
! Descriptor |
i Pointer[0] |
|
S

73

Figure 6-1 Relationship among IPMP Tool Descriptor Pointer and IPMP Tool Descriptor

6.1 Application Example 1 --- Online Play

We design an example, “Online Play,” which demonstrates how to manage the “play”
right in a real-time streaming system. In this example, we want to send a request to a remote
server if the principal has the right to play the video file. In addition to provide the result of
authorization, the remote server is also a key server. Only the result of verification is true, the
correct keys are sent back to the client. Therefore, we design a simple license that
describes “the principal can play the resource when online verification is true.” To perform
online verfication, the license contains the “exerciseMechanism” condition to store the server
address and the server parameters. The *“serviceParameters” element in the
“exerciseMechanism” condition contains the parameters that the remote server needs to verify
the client’s right. In this example, the “keyholder” (principal) and the “mx:play” (right) are

included. This license is shown below:

<license licenseld="Demol1">
<grant>
<keyHolder> ... </keyHolder>
<mx:play/>
<digitalResource>
<nonSecurelndirect URI="foreman_qcif"/>
</digitalResource>
<exerciseMechanism>
<exerciseService>
<serviceReference>
<sx:wsdlAddress>
<sx:kind>...</sx:kind>
<sx:address>
<digitalResource>
<nonSecurelndirect
URI="http://localhost/sxh/EMServer_v1.asp"/>
</digitalResource>
</sx:address>
</sx:wsdlAddress>
<serviceParameters>
<datum
<keyHolder licensePartld="Alice"/>
</datum>
<datum>
<mx:play/>
</datum>
</serviceParameters>
</serviceReference>
</exerciseService>
</exerciseMechanism>
</grant>

74

<issuer>...</issuer>
</license>

6.1.1 Procedure

/" Server Side ! Network % .~ Client Side

i { [IPMP_Info_Engine| ronauimenzag
5 4.Get an 1 :
5 authorizatiop :
5 proof il i
i 1.Request . i
: Server * Client ;
i Controller », Controller i
; 3. Encrypted i
i Video, i
: 2. Encrypt License il 5
i Video Decrypted i
E * Decoder VicE ,
. Tool ; Play — !

Figure 6-2 System flowchart

The flow of execution is shown in Figure 6-2. First, the client sends a request of playing
the video file to the server. Then the server accesses its 10D file, and resolves it to initialize
the server’s IPMPX system. After sending the client’s 10D file to the client, the server
performs encryption on the video file and sends these protected packets to the client. Before
receiving the server’s packets, the client also has to access its 10D file for the initialization of
the client’s IPMPX system, and the IPMP_Info_Engine tool gets a license file from an IPMP
Tool Descriptor. When the client’s DES tool starts to decrypt data, the IPMP_Info_Engine
tool sends a request to call the REL’s API for generating an authorization proof.

The flow of authorization is shown in Figure 6-3 and Figure 6-4. If the user is authorized
to play this video, the remote server sends the decryption keys in a protected form to the client.
Then, the received keys are stored in a local file. After reading and decrypting the received
keys with the client’s private key, the DES Tool can decrypt the received video packets. The
user can now play this video file. Otherwise, if the user is not authorized, our program will

halt and request the user for closing the window.

75

Control Poiqgt (,‘\ontrol Point
\ 1 Decoder [| >
PreDecoder PostDecoder
Filter Filter
NN | o i
! DES Tool : ! IPMP Tool |
__________ ;| i |
| Ask for an
authorization l
proof
Tool P .| Message |, R Client | g 5
Manager Router Controller
Search
database for a
match user
and retury
L AT corresporiding
5 \
IPMP Info | Send Licefse . keys\
Engine |-And | Validate ! EM
Get the —=ng Request flle Request | Server
Lisanee Toal for validation L
3 | Validate | A
and a : condition Ask for
Request i = | decryption
£ ! EL EM ! keys
| | validator] |alidator |
)
REL's AP S v
Figure 6-3 Flowchart of authorization: (request for verification)
Control Pcl)j,nt lg\ontrol Point
\ r* Decoder | >
PreDecoder PostDecoder
Filter Filter
AN D i A | o i
! DES Tool < ! IPMP Tool |
__________ - —_———— e e e —]
Tool _ | Message |, . Client | g 3
Manager Roliter Controller
Search
database for a
match user
and retur
e corresporiding
keys\
IPMP_Info | Return { . ys)
Engine ot Validate | EM |
- result | Request | Server
Tool I | :
| \ | If find a match,
: : send keys;
| ~ | otherwise, send
| EL EM : error msg.
| | [validator| |Validator]
/
REL's AN SRR ET0T T, g

Figure 6-4 Flowchart of authorization (return the result of verification)

The result of unauthorized access is shown in Figure 6-5. The popup window shows an

76

error message, “Received IPMP Info Engine’s verification result: False.” The video display

window is located at the lower left corner, and it does not show any video.

B CLIENT GO == =]
Ewmit Diecoder Diusplay Option Help 5
I _

(0].4 | Cancel |

L] E Recigved [FMP Info Engine s verifiaction result : FALSE Des Tool's Msg:
-
Call REL Tool For Validation!

-
™ _

Figure 6-5 Screenshot when the validation result is false

6.2 Application Examﬁ-lg:_2I_wi-_7,-.f-_P'r'fe__view

~ . =:C"p" %
In e-commerce, it is popul:_é'f "‘tol 'fll:!,gw"'fhé: 'c'on‘sgijmers to preview video/audio clips in
which they are interested. We &egigﬁ‘LQMI,egﬁhich demonstrates how to manage the
“preview” behavior in a real-time séﬁééﬁhi.ng,systérﬁ'.

We assume that the consumers can preview a video clip without having any licenses
among the first n macroblocks in our system. Instead of using a license to describe the
“preview” right, we use a counter in the DES Tool to check if all the first n macroblocks of a
video file are processed. We add the counter’s information into the opaquedata of the DES

Tool’s Tool Descriptor.

IPMPX_data[0]:IPMP_OpaqueData //DES Tool
{

opaquedata
= {*number of preview macroblocks”, “duration to change the key”,”initial key”}

6.2.1 Procedure

The entire execution procedure is divided into two stages, preview and authorized play.

77

Their flowcharts are depicted in Figure 6-6 and Figure 6-7, respectively. At the first stage, the
user is permitted to play the first n macroblocks freely, and the server sends the unprotected
raw data to the client. The client directly plays back the video file without any IPMP process.
Entering the second stage, the server sends the protected packets encrypted by the
server’s DES Tool. When the client receives these encrypted packets, the client pops up a
window to ask the user to enter the correct license and the query file or to terminate the
program. Here, our designed license file is identical to the one in the application example 1.
When both the license and the query file are accessed, the client’s IPMP_Info_Engine Tool is
requested to perform authorization. The details of the correct license and the query file have
been described in section 6.1.1. If the result of authorization is true, the client program

continues to play back the video; otherwise, the program will halt itself, and ask the user to

Decoder
|:> Play

exit.
; Server Side v Network Client Side
: e P i
. i ;
i | i
: s :
i i i
! Request ! . !
; | Server : Client ;
i Controller ; _ : »| Controller ;
; Video, License = ; :
] i i
| | , i
; E FirstN
i i Macroblocks !
; ' 5

Figure 6-6 Flowchart of stage 1 (preview)

78

Get an

I_/ Se rver Side v Network '1;"," Cllent Slde el foeree zggggrlzatlon \",
!] and -!
] Query file !
: End :
! Request . i
] Server Client | !
] »| Controller i
i SOl Encrypted Video, !
i License | :
| Yes irgt N - D.ecrypted Unauthorized :
i Macroplock Video Use]
| No Decoder !
: DE ;. , ;
‘ Tool \ A Play o

Figure 6-7 Flowehart of stage 2 (authorized play)

The screenshots are shown «in Figure |6-8 and Figure 6-9. In Figure 6-8, the left small
window is the video display window, which-is playing:back the first n macroblocks. The right
side window is the “REL_Preview,” which’sends requests for entering the correct license and
query file. In Figure 6-9, because users ¢hoose not to continue watching this video, a caution

message is shown in the “Decription tool’s receiving message window,” and the user is asked

;I_Iﬂ\
x|

If wou want to keep watching this video file, plaease
choose corresponding License and Query file: J

to close the window.

Mum:
Mum :
Hum :
Mum:
Mum :
Hum :
Mum:
Mum :
Num :
Num:
Hum:
Num :
Num:
Hum:
Num :
Num:
Hum:
Mum :
Hum :
Mum:
Mum :
Hum :
Mum:
Mum :

C

Select License File:

| Brows...

Select Query File:

| Brows...
0K Cancel

79

Figure 6-8 Screenshot_1 in application example 2 (*Preview”)

| (2006021 7REL

o

#3900 - ASP - forema

Des Tool's Msg:

Call REL Tool For Validation!
No License and no Query exist!
Please close the window!

Figure 6-9 Screenshot_2 in application example 2 (“Preview”)

80

6.3 Application Example 3 --- Super-Distribution

We design an example, “super-distribution” scenario, which demonstrates how to
manage the user’s right in a distributed mobile environment. The idea of this scenario is
originated from the OMA DRM v2.0. Figure 6-10 shows that the system is divided into the
content provider and the user. The protected content and the rights object can be delivered to
the user separably. Each rights object is restricted to one user, and the protected content can be
distributed without any constraint. When a user receives the protected content, he or she has

to purchase his/her own rights object (license) for consuming the content.

DRM System

Content Rights Content
Issuer Issuer Provider
Pr otecled
Content
Rlohts
ODbject
Network Store jec
& {C_ ¥>)
ng?z \ K\ &3 j) @ %
s 1
Removable @ \‘F b\ \\ \ﬁj‘
Media DRM Agent @j &
Protected Other DRM User
Content Protected Agents

Content

Figure 6-10 Concept of OMA DRM v2.0 [3]

A mobile device may not be always connected to the network. To simulate this situation,
we design a license that supports both online and offline verification. The online verification
is achieved by a remote server, and the offline verification is achieved by local validation. In
Figure 6-11, this license includes two grants, one is for online situation and the other is for
offline situation. In this license, Grant 1 describes that “the principal can play back the
resource when the online verification is true and within a specific time interval.” Grant 2
describes that “the principal can play back the resource when the offline verification is true
and the playing counts doe not exceed five times.”

The condition elements in Grants 1 and 2 are encapsulated in the *“allConditions”

81

element, an “and” logic operation, that every condition element inside has to be satisfied.
Each “allConditions” element represents two condition elements. In Grant 1, one requests the
key server for verification and the other validates execution tine. In grant 2, one performs the
offline verification and the other validates the counts of offline consumption. The verification
flow of this license is drawn in Figure 6-12. Grant 1 is validated first. If one condition in this
grant is not satisfied, Grant 1 is unauthorized. Then, Grant 2 is checked. If both Grants are

unauthorized, the result of authorization is false.

ﬁense \

Santds Sramizy
| ' <John/>

<John/> <play/>

<play/> <foreman.m4v/>

|

| : I

| | |

| I |

| | |

| | |

| i I 0

I <foreman.m4v/> : ! <allConditions>

| <allConditions> | i <exerciseMechanism/>

| <exerciseMechanism/> | : <exerciseLimit>

| Sofnh |

! <validicitylnterval/> | ! <sx:count>5</sx:count>|

i </allConditions> ! i </exerciseLimit>
| G

: . ! </allConditions>

Figure 6-11 Structure of the license of “Super Distribution”

82

&

Grant 1

A 4

Validate EM1

Validate VI

Grant 2

Validate EM2

Validate EL

Notification:
EM1 : online verification
EM2 : offline verification
VI :valid interval

EL : limited counts

Figure 6-12 Verification flow of conditions in the License of “Super Distribution”

Because the online verificationsis more secure than the offline verification, we assume

that the status of the online verification is a necessary-condition of the offline verification. So,

our program has to link to the remote server for the verification first, and the remote server

returns the decryption keys if the-client is authorized. This decryption keys exist only after the

remote server has authorized client. \We use.the decryption keys as a certificate of the online

verification. Therefore, the designed offline verification can check the existence of decryption

keys to know the status of the online verification. However, this certificate has a finite time

span. If Grant 2 is not granted, the online certificate will be deleted.

The designed license is shown as follows:

<license licenseld="Demo 3">

<grant>

<keyHolder> ... </keyHolder>
<mx:play/>
<digitalResource>

<nonSecurelndirect URI="foreman_qcif"/>

</digitalResource>
<allConditions>
<exerciseMechanism>

<exerciseService>
<serviceReference>
<sx:wsdlAddress>
<sx:kind> ... </sx:kind>
<sx:address>
<digitalResource>

<nonSecurelndirect URI="http://localhost/sxh/EMServer_v1.asp"/>

83

</digitalResource>
</sx:address>
</sx:wsdlAddress>
<serviceParameters>
<datum>
<keyHolder licensePartld="Alice"/>
</datum>
<datum>
<mx:play/>
</datum>
</serviceParameters>
</serviceReference>
</exerciseService>
</exerciseMechanism>
<validityInterval>
<notBefore>2006-04-30T23:59:59</notBefore>
<notAfter>2002-06-31T23:59:59</notAfter>
</validityInterval>
</allConditions>
</grant>
<grant>
<keyHolder> ... </keyHolder>
<mx:play/>
<digitalResource>
<nonSecurelndirect URI="foreman_qcif"/>
</digitalResource>
<allConditions>
<exerciseMechanism>
<exerciseService>
<serviceReference>
<sx:wsdlAddress>
<sxzkind>, ...<fsx:kind>
<sx‘address>
<digitalResource>
<nonSecurelndirect URI="file://c:/DecryptedKeys.key"/>
</digitalResource>
</sx:address>
</sx:wsdlAddress>

</serviceReference>
</exerciseService>
</exerciseMechanism>
<sx:exerciseLimit>
<serviceReference>
<sx:wsdlAddress>
<sx:kind> ... </sx:kind>
<sx:address>
<digitalResource>
<nonSecurelndirect URI="file:///./RELExLimitService.dll"/>
</digitalResource>
</sx:address>
</sx:wsdlAddress>
<serviceParameters>
<datum>
<sx:stateDistinguisher>User_Alice</sx:stateDistinguisher>
</datum>
</serviceParameters>
</serviceReference>
<sx:count>5</sx:count>
</sx:exerciseLimit>

84

</allConditions>

</grant>

<issuer>
<dsig:Signature> ... </dsig:Signature>
<details>

<timeOflssue>2006-01-27T15:30:00</timeOflssue>

</details>

</issuer>

</license>

6.3.1 Procedure

To realize the “Super-Distribution” scenario, we modify the client’s computer program to
read local files. The modified program structure is shown in Figure 6-13. When the user
inputs the protected content (video file), the 10D file having an identical file name will be
opened, and the program’s IPMPX system is initialized. The IPMP_Info_Engine Tool is
requested for authorizing that the user can play this protected content or not. The details of the
authorization process have been described at the beginning of section 6.3. In the following,

we explain the run-time processing of .our program with several screenshots.

Video
! Screen
File Control Control

Point Point
l’\ l’\

Streamer —— »{ Decoder - —Output buffer|

PreDecoder PostDecoder

K Filter Filter /

Figure 6-13 Modified program structure

A

First, the user has to choose a piece of local protected content to play. Figure 6-14 shows
that “foreman_qcif_asp.enc” is selected. The “connect” button is pressed for starting playing
this video. When the DES Tool starts to decrypt data, it has to check the result of
authorization. In Figure 6-15, the result of authorization is true when the online verification is
successful. Then, the DES Tool also gets decryption keys to decrypt data. Figure 6-16 shows

that the user can successfully play back this piece of protected content.

85

Il CLIENT_GTUI Pleaze Input a Video Filel
Bt Decoder Display Option Help SHED: [5 Client 0UI

URL/URI Irtsp:ﬂl2?.0.0.1;foreman_q cif

User I Pasaward

Video I

EIAED: [foreman_geif_asp enc ESl=H))
T FAERITY: IED.C files (¥ enc) =] i
[LAmEEa =R E)

M CLIENT GIOI
Exit Decoder Display Option Help

URL/URI I rtsp:/¢127.0.0.1 foreman_gcif Conn

User | Pasch_rd' | =

Video |D:\CHL Data CatagoryyResearch (200602 ;'dpg'

Des Tool's Msg:

ASP [T

W CLIENT GO i

Eaxit Decoder Display Opton Help

URLURS |rtsp:,-’,-’l2?.0.0. 1/foreman_gcif Conr

Des Tool's Msg:
Exi
User | Password | — |Successful validation!

Please refer to REL_Result.log for more information!

0K

Wideo ID:\CHL Data CatagorysResearch (200802 ops

AP

.
Figure 6-16 Screenshot_3 in application example 3 (“Super-Distribution”)

86

When the network is temporally unavailable, the user wants to play this video again. But,
he has been played five times already without connecting to the network. Although the result
of the offline verification is true, the “exerciseLimit” condition is not satisfied. The execution

result is shown in Figure 6-17.

[Flase validation!
Please refer to REL_Result.log for more information!
Please close the window!

-

b

87

Chapter7

Conclusions

DRM is a critical element in many multimedia systems, such as mobile communications.
As various content delivery applications are getting popular, many DRM systems have been
proposed. For example, Microsoft has a DRM system for the “wma” and “wmv” compression
formats, and Apple creates a DRM system for its IPOD music player and Itunes software. But,
these DRM systems are private and can not communicate with each other. Hence, in our
project, we study the MPEG-4 IPMPX system, which is a Digital Rights Management
interface defined by MPEG. Our goal is to design a DRM system that can provide
functionalities of Content Protection and Rights Management.

Hence, we first study the MPEG-21 IPMP and REL. MPEG-21 IPMP provides a high
level protection of Digital Items. MPEG-21 REL!is able to describe various rights expressions,
and to provide right authorization and control. Because both IPMP and REL are conceptual
entities, we choose MPEG-4 IPMPX system as a set-of concrete interface specifications for
our system. We design MPEG-4 IPMPX compatible tools incorporated with characteristics of
MPEG-21 IPMP and REL. We also design an-eneryption/decryption tool to perform content
protection. In addition, we propose a content protection mechanism that combines with the
key management for higher security.

Finally, we design three application examples to demonstrate the use of our DRM system.
The example shows the management of play right in a real-time streaming system. The
second one shows a system that allows users to preview a multimedia program securely. The
last one shows the rights management incurred in the distributed mobile device. In this case,
we also design a license to perform online authorization as well as offline verification.

Although we have developed a DRM system which safeguards content and manages the

rights transactions, there are quite a few related DRM topics can be further studied, such as

to scalable media protection and the interoperable DRM solution.

88

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

References

The open Digital Rights Language Initiative, last updated 2006-06-05. http://odrl.net/
Text of ISO/IEC 21000-5 FCD - Part 5: Rights Expression Language, ISO/IEC JTC
1/SC 29/WG 11/N5349, December 2002, Japan.

The Open Mobile Alliance. http://www.openmobilealliance.org/

The Innovative Rights and Access Management Inter-platform Solution.
http://www.tiramisu-project.org/

J. Bormans, and K. Hill, “MPEG-21 Overview v.5,” ISO/IEC JTC 1/SC 29/WG
11/N5231, Shanghai, October 2002.

Study of ISO/IEC 21000-4 FCD - IPMP Components, ISO/IEC JTC 1/SC 29/WG
11/N7426 July 2005, Poznan, Poland.

C.A. Schultz, “Study of FRDAM ISO/IEC 114496-1:2001 / AMD3,” ISO/IEC JTC
1/SC 29/WG11 N4849, Klagenfurt, July 2002.

C.J. Tsai, M. van der Shaarand, Y.K.:Lim, “Working Draft 3.0 of ISO/IEC TR2100-12
Multimedia Test Bed for . Resource Delivery,” ISO/IEC JTC1/SC29/WG11
MPEG2003/M10299, Hawaii, December2003.

C.N. Wang, et al., “FGS-Based Video Streaming Test Bed for MPEG-21 Universal
Multimedia Access with Digital Item Adaptation,” ISO/IEC JTC1/SC29/WG11
MPEG2003/M8887, October 2002.

[10] ContentGuard, “MPEG REL SDK for JavaTM Software Development Kit User” s Guide

Release 1.0.”

[11] X. Wang, T. DeMartini, B. Wragg, M. Paramasive, and C. Barlas, “The MPEG-21 Rights

Expression Language and Rights Data Dictionary,” IEEE Multimedia, vol. 7, no. 3, pp.

408-417, June 2005.

[12] W3C. (1999) Namespaces in XML,

http://www.w3.0rg/TR/1999/REC-xml-names-19990114/

[13] W3C. (2001) XML Schema,

http://www.w3.0rg/TR/2001//REC-xmlschema-1-20010502/

[14] I. S. Burnett, S. J. Davis, and G. M. Drury, “MPEG-21 Digital Item Declaration and

89

Identification — Principles and Compression”, IEEE TRANSACTION ON
MULTIMEDIA, VOL. 7, NO.3, JUNE 2005.

[15] Information and Documentation — The Dublin Core Metadata Element Set, 1SO
15836:2003, Nov. 2003.

[16] Information Technology — Multimedia Framework (MPEG-21)-Part 3: Digital Item
Identification, 1ISO/IEC 21000-3:2003, Mar. 2003.

[17] B. S. Manjunath, P. Salembier, and T. Sikora, Introduction to MPEG-7. Chichester, U.K.:
Wiely, 2002.

[18] Information Technology — Multimedia Framework (MPEG-21)-Part 2: Digital Item
Declaration, ISO/IEC 21000-2:2003, Mar. 2003.

[19] Information Technology — Multimedia Framework (MPEG-21)-Part 7: Digital Item
Adaptation, 1ISO/IEC 21000-7:200X.

[20] S. Lauf, and I. Burnett, “A Protected Digital Item Declaration Language for MPEG-21,”
IEEE Computer Society, AXMEDIS, 2005.

[21] ISO/IEC 14496-1:2004, Information technology -- Coding of audio-visual objects -- Part
1: Systems Nov. 2004.

[22] CW. Fan, F.C. Chang, -and , H:.M. Hang, <‘An MPEG-4 IPMPX Design and
Implementation on MPEG-21-Test'Bed”, ISCAS, Vol. 5, May. 2005

[23] C.W. Fan, “MPEG-4 IPMPX Design‘and Implementation on MPEG-21 Test Bed,” M.S.
thesis, Dept. Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan,
R.O.C., June 2004.

[24] J. Ming and S.M. Shen, “Study Text of ISO/IEC 13818-11/FCD,” ISO/IEC JTC 1/SC
29/WG11 N5469, Awaji, Dec 2002.

[25] J. Ming and C.A. Schultz, “MPEG-2 and MPEG-4 IPMP Extension Reference
Software Architecture based on IM1,” ISO/IEC JTC1/SC29/WG11 N4850, Fairfax,
May 2002.

[26] J. Liu, et al., “WD1.0 of ISO/IEC 13818-5:1997/AMD2:2003 MPEG-2 IPMP Reference
Software,” ISO/IEC JTC1/SC29/WG11 M9840, Trondheim, July 2003.

[27] J. Bormans and K. Hill, “MPEG-21 Overview v.4,” ISO/IEC JTC1/SC29/WG11
N4801, Faifax, May 2002.

[28] J. King, et al. “MOSES Progress report on MPEG-4 IPMPX,” ISO/IEC JTC 1/SC
29/WG11 M9161, Awaji, Dec 2002.

90

[29] M. Carson and D. Santay, “NIST Net — A Linux-based Network Emulation Tool,” ACM
SIGCOMM Computer Communications Review, Volume33, Number3, July 2003.

[30] X. Wang, et al., “An Exmple Implementation of MPEG-21 REL Reference Software,”
ISO/IEC JTC1/SC29/WG11 MPEG2003/M9581, March 2003

[31] An Overview of Cryptography. http://www.garykessler.net/library/crypto.html

91

ERE e @ A 1082 213 5t R 2004 & B E A 5 AEATH ch 2 L A

Fapomilimd o 288 r B RLF 1AM LE = o

7

92

	封面.pdf
	Thsis_C.-H. Lu_v6.pdf

