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MPEG-4 高效率音訊編解碼器 

之增速及其在 TI DSP 平台上的實現 

研究生: 黃育彰 指導教授: 杭學鳴 博士

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 

摘要 

由於數位音訊編碼技術的成熟發展，與音訊相關的產品，如 MP3 播放器、手機，在

我們生活中扮演了一個很重要的角色。而所有的音訊壓縮標準中，MPEG-4 高效能音訊

編碼(HE-AAC)提供了非常高的壓縮效率與不錯的音訊品質。在本篇論文中，針對 HE-AAC

編碼器的模組，我們提供了較快速的演算法，並且符合 DSP 系統的加速。我們也把 HE-AAC

編碼器實現在德州儀器公司(TI)的數位訊號處理器(DSP)上。 

 我們首先在 DSP 系統上針對 HE-AAC 編碼器分析其複雜度。我們發現 QMF bank(正交

鏡像濾波器)、降頻濾波器、暫態訊號偵測器、心理學模式、量化模組在 DSP 系統上耗

費了大部分的運算量。因此我們針對這些模組去研究，並且提供了快速演算法來降低其

複雜度。 

 針對頻帶複製(SBR)編碼器部分，我們提供了快速的暫態訊號偵測器與有效率的降

頻濾波器結構。針對 AAC 編碼器部分，我們提供了查表的方式來減少心理學模式的複雜

度，並且也提出了簡化的視窗轉換、簡化的 TNS、快速的量化模組與簡化的短視窗分組

方法。此外針對 DSP 架構，我們使用了很多加速的方法像是定點數運算、TI DSP 的特殊

指令群、單個指令存取多筆資料、迴圈的分解與巨集指令。最後修改過的 HE-AAC 編碼

器版本在 DSP 系統上執行的週期，在相同的最佳化設定之下，比最原始的改善了大約 55%

並且還能維持相同的音訊品質。 

 

關鍵字：MPEG-4 HE-AAC、aacPlus、AAC、頻帶複製技術、DSP 系統加速 
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Abstract 

Due to the recent advances of digital audio coding technology, audio coding related 

devices play an important role in our daily life such as MP3 players and mobile phone hand 

set. MPEG-4 High Efficient AAC (HE-AAC) provides a very high compression ratio and a 

good audio quality among all known audio coding standards. In this thesis, we propose 

several fast algorithms to speed up the MPEG-4 HE-AAC encoder for the DSP platform. 

Their implementations on the Texas Instrument (TI) TMS320C6416T fixed-point DSP are 

also presented. 

We first analyze the complexity of HE-AAC encoder on a DSP system. We find that the 

QMF bank, transient detector, downsampling filter, psychoacoustic model (PAM), and 

quantization modules require the most operational cycles on DSP. Hence, we study and 

suggest several fast algorithms to reduce their complexities. 

For the SBR encoder part, we propose a fast transient detector and an efficient 

decimation structure. For the AAC encoder part, we use a look-up table method to reduce the 

complexity of PAM and propose simplified block switching, simplified TNS, fast quantization 

and simplified short window grouping methods. We also adopt several DSP techniques to 

speed up the DSP, such as using fixed-point operation, intrinsic function, single instruction 

multiple data (SIMD), loop unrolling and macro function. Comparing to the original 3GPP 

HE-AAC encoder, the modified HE-AAC encoder save about 55% operational cycles under 

the same compiler optimization level and still maintains about the same audio quality. 
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Chapter 1  

Introduction 

 

 

1.1 Introduction and Motivation 

Due to the recent advances of digital audio coding technology, the audio related devices 

play an important role in our daily life such as hand set and MP3 player. In the last decade, 

CD-quality digital audio has essentially replaced analog audio. However, the emerging digital 

audio applications for digital broadcasting, storage, real-time communication, wireless system, 

and network faces a series of problems such as limited storage, narrow channel bandwidth and 

the real-time encode/decode implementation. Therefore, high quality audio coding at lower 

bitrate becomes necessary. In response to these requirements, many audio standards are 

proposed such as MPEG-1 Layer III (MP3), Microsoft WMA, MPEG-2/4 AAC, and MPEG-4 

HE-AAC for high quality audio coding. 

MPEG, which stands for Moving Pictures Experts Groups, is the name of family of 

standards used for coding audio-video information in a digital compressed format. It is a 

group work under the directives of the International Standard Organization (ISO) and the 

International Electro-technical Commission (IEC). The works of this group concentrate on 

defining the standards for coding moving pictures, audio and related data. MPEG-1 Layer III 

(MP3) which is proposed by MPEG is the most popular international audio coding standard in 

the market so far. Many MP3 portable devices having audio playing and recording 

functionality come into our daily life. For better audio quality at lower bitrates, the next 

generation audio coding standard, MPEG-2/4 Advanced Audio Coding (AAC) and its 

extension, High Efficient Advanced Audio Coding (HE-AAC), have been introduced.  

AAC provides higher coding efficiency, multi-channel support, and high-quality at 

bitrates around 128k bps or lower. HE-AAC is a combination of AAC with the Spectral Band 

Replication (SBR) technology. SBR is known as the bandwidth extension technique, and the 
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high frequency part of the signal bandwidth is reconstructed from the received low frequency 

part at the receiver. HE-AAC is able to deliver high-quality audio at bitrate down to 48k bps 

for stereo audio. However, the complexity of HE-AAC is higher due to the new technologies 

employed. The higher complexity has restricted the applications in a few ways. For portable 

device, the processing power of the devices is supplied by battery. If we can reduce the 

complexity of an audio algorithm, we can save the battery power. Also, it reduces the 

hardware cost. Therefore, we believe reducing the complexity of the HE-AAC and providing 

higher coding efficiency for the embedded system is very important for many applications and 

is an interesting challenge. 

Many applications have already appeared in the market based on MPEG-4 HE-AAC. 

Digital radio broadcasting systems such as Digital Radio Mondiale (DRM) [8] are among the 

newest consumer audio products. They offer a more efficient use of the limited bandwidth 

available for broadcasting. The DRM system chooses the HE-AAC as the basic coding for 

their codec since it offers high audio quality at lower bitrates. HE-AAC is also recommended 

by 3GPP [9] forum for sound transmission as well as DVB [10] forum for DVB-H. For 

commercial examples, such as 3G mobile phone or iPod, they use the HE-AAC coding due to 

the limitation of storage and bandwidth constraints. 

1.2 Overview of the thesis 

This thesis concentrates on developing fast methods for improving encoding speed. The 

thesis is organized as follows. In Chapter 2, we discuss the algorithms of the low complexity 

profile (LC) of the MPEG-2 AAC encoder. Chapter 3 explains the MPEG-4 HE-AAC system 

and the algorithms of the SBR encoder module. In Chapter 4, we describe the DSP 

development environment and the acceleration methods for the TI C6416T DSP system. 

Chapter 5 describes our proposed algorithms to accelerate the HE-AAC and the 

implementation of the HE-AAC encoder on the DSP system. Several experiments are 

conducted to verify the proposed acceleration methods. In Chapter 6, we give conclusion 

remarks and possible future work. 
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Chapter 2  

MPEG-2 Advanced Audio Coding 

 

 

In this chapter, we will describe the basic concepts and the modules of MPEG-2 

Advanced Audio Coding (AAC). MPEG-4 High Efficient AAC (HE-AAC) is a combination 

of Spectral Band Replication (SBR) tool and MPEG-2 AAC LC profile. In this chapter, we 

will explore MPEG-2 ACC in depth, whereas SBR tool will be introduced in the latter Section. 

The details of MPEG-2 ACC and SBR can be found in [1] and [2] respectively. 

 

2.1 MPEG-2 Advanced Audio Coding 

Starting from 1994, the Moving Pictures Expert Group (MPEG) audio standardization 

committee launched a higher quality multi-channel standard that is designed specifically to 

maintain MPEG-1 backward compatibility. This standard is known as MPEG-2 Backward 

Compatible (MPEG-2 BC). This is the predecessor of MPEG-2 AAC. In 1997, the formal 

specification of MPEG-2 AAC was formulated by the MPEG committee. Since MPEG-2 

AAC is not backward compatible to the MPEG-1, MPEG-2 AAC is also known as the 

MPEG-2 Non-Backward Compatible (NBC). The aim of MPEG-2 AAC is to achieve 

indistinguishable audio quality at data rate of 384 kbps (or lower) for five full-bandwidth 

channel audio signals. AAC is the first codec system to fulfill the requirements of the 

International Telecommunication Union, Radio-communication Bureau (ITU-R) for the 

indistinguishable quality at 128 kbps for stereo. 

Like all other perceptual coding schemes, MPEG-2 AAC compresses audio signals by 

removing the redundancy between the samples and the irrelevant audio signals. It uses 

time-frequency analysis for removing the redundancy between samples, and makes use of the 

signal masking properties of human hearing system to remove irrelevant audio signals. AAC 
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combines the several coding efficiency tools like filter bank, temporal noise shaping (TNS), 

prediction techniques, gain control, quantization and huffman coding. In order to select 

between the quality and the memory/processing power for the different audio requirements, 

MPEG-2 AAC system offers three profiles: 

 

 Main Profile (Main) 

The Main Profile provides the highest quality for applications where the amount of 

random access memory (RAM) requirement is not limited. It removes the prediction 

and gain control tools from AAC system. It also reduces the order of the Temporal 

Noise-Shaping (TNS) tool, thereby effectively alleviates the system complexity. 

 Low-Complexity Profile (LC) 

The LC profile is intended to use when the computing cycles and memory 

requirements are constrained. 

 Scalable Sampling Rate Profile (SSR) 

The SSR profile is in use when a scalable decoder is required. It adds the gain 

control tool to the LC profile. 

 

MPEG-4 HE-AAC combines MPEG-2 AAC LC profile with SBR tool. We implement 

MPEG-4 HE-AAC on TI C64 DSP platform. Figure 2.1 shows the block diagram of MPEG-2 

AAC encoder. Figure 2.2 shows the MPEG-2 AAC LC profile encoder block diagram. We 

will describe the MPEG-2 AAC LC profile coding tools in the following Section. 
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Figure 2.1 Block diagram for MPEG-2 AAC encoder [1]. 
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Figure 2.2 Block diagram for MPEG-2 AAC Low Complexity encoder [1]. 
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2.2 Psychoacoustic Model 

Characteristics of human hearing system are very important for audio compression. 

Psychoacoustic model has made significant progress toward characterizing human hearing 

system. The job of the psychoacoustic model is to analyze the input audio signal and 

determine to what extent the level of the spectrum quantization noise is allowable. By 

exploiting this principle of the psychoacoustic model, audio coder can use the signal energy to 

mask the noises which are generated in the quantization. There are some factors needed to 

calculate the masking threshold, they are: absolute threshold of human hearing in quiet, 

masking effect, critical band. 

2.2.1 Absolute threshold of hearing in quiet 

Absolute threshold of hearing in quiet is the threshold that one will perceive the signal in 

a noiseless environment. Figure 2.3 shows the absolute threshold of hearing in quiet. It is 

representative of a young listener with acute hearing. Sound waves with frequencies between 

20 Hz and 20 kHz are called the audible sound frequencies. Human ear is most sensitive in 

middle frequency signals, especially from 2k to 4k Hz, but not sensitive to higher or lower 

frequency signals. Approximation function of the absolute threshold of hearing in quiet is as 

the following formula. 

20.6( 3.3)0.8 3 41000( ) 3.64( ) 6.5 10 ( )1000 1000
f

q
f fT f e− −− −= − +   (dB SPL). (2.1)
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Figure 2.3 Absolute threshold of hearing in quiet. 

 

2.2.2 Masking effect 

Masking effect is an important factor to calculate the threshold. It is an important 

characteristic of human ear for compression. This phenomenon is that one sound (maskee) 

will be masked by another adjacent sound (masker). ‘Adjacent sound’ can be meant to the one 

closed to maskee in time domain or frequency domain. 

 

(A) Frequency Masking 

Figure 2.4 illustrates the frequency masking. The loud signals mask two other signals at 

nearby frequencies. The curve marks the “masking threshold” representing the audibility 

threshold for signals in the masking signal (masker). Other signals that are below the curve 

will not be heard when the masker is present. It does not need to transmit the signals which 

below the masking threshold, and allow much inaudible quantization noise. 
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Figure 2.4 Frequency Masking. 

 

(B) Temporal Masking 

Figure 2.5 illustrates the temporal masking. Masking can occur prior to and after the presence 

of the masker. It is pre-masking and post-masking. Pre-masking takes place before the masker. 

Post-masking takes place after the masker is removed. The loud signals mask two other 

signals at nearby time. Figure 2.5 shows that post-masking can last for a long time, and 

pre-masking last for a short time. 

 

Time

dB
Masker

~20ms      ~200ms             ~150ms

Pre-Masking Post-Masking
Maskee

 
Figure 2.5 Temporal Masking. 

 

2.2.3 Critical band 

Human hearing performs a “frequency to place” mapping to analyze the spectrum of 

audio signals. Human ears have different sensitivities to audio signals in different frequency 

bands. These frequency bands are called the critical bands. The concept of critical band is that 
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a masker exhibits a constant level of masking threshold regardless of the type of masker. The 

width of constant level masking is critical band. The unit of the critical band is “Bark”. 

 

The MPEG-2 AAC psychoacoustic model based on the previous factor and calculates the 

maximum distortion energy (masking threshold). The threshold calculation has three inputs. 

Describing them in following : 

1. The shift length for the threshold calculation process is called iblen. This iblen must 

remain constant over any particular application of the threshold calculation process. For 

long FFT iblen = 1024, for short FFT iblen = 128. 

2. For each FFT type, the newest iblen samples of the signal, with the samples delayed 

(either in the filterbank or psychoacoustic calculation) such that the window of the 

psychoacoustic calculation is centered in the time-window of the codec time/frequency 

transform. 

3. The sampling rate. There are sets of tables that will be used in the calculation threshold 

process, and the tables are provided for the standard sampling rates. Sampling rate must 

necessarily remain constant over the threshold calculation process. 

 

The outputs of the psychoacoustic model are: 

1. A set of Signal-to-Mask Ratios (SMR) and thresholds, which are to be used by the 

encoder. 

2. The delayed time domain data (PCM samples), which are to be used by MDCT. 

3. The block type (short or long) for the MDCT. 

4. An estimation of the coding bits should be used for encoding. It compares to the average 

available bits (bit-rate). 

Unlike the psychoacoustic model 1, this model does not make a dichotomous distinction 

between tonal and non-tonal components. Instead the spectral data is transformed to a 

“partition” domain and the fractions of the tonal and non-tonal components are estimated in 

each partition. This fraction ultimately determines the amount of masking threshold.   

Figure 2.6 shows the block diagram for the psychoacoustic model in the MPEG-2 AAC 

encoder. For more detailed procedures for calculation, please see [1]. 
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Figure 2.6 Block diagram of psychoacoustic model [1]. 
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2.3 Filter Bank and Block Switching 

Filterbank tool transforms the time domain input samples into coefficients in frequency 

domain by the modified discrete cosine transformation (MDCT) technique. MDCT use the 

concept of subband coding. It adopts a special analytical filterbank to decompose the input 

data. As its name implied, analytical filterbank is a cosine multiplied with window sequence. 

In the MPEG-2 AAC encoder, the filterbank takes in the appropriate block of time samples, 

and modulates the time samples by an appropriate window function, and performs the MDCT. 

Each block of input samples is overlapped by 50% with the immediately preceding block and 

following block in order to reduce the boundary artifact. The expression is as following: 

 

1

, , 0
0

2 12 ( ) cos ( )( )
2

N

i k i n
n

X x w n n n k
N
π−

=

⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑  , 0,1..., 1

2
Nk = − , (2.2)

    where 

n =  sample index, 

 N =  window length of the one transform window based on the window sequence, 

           2048 for long window and 256 for short window, 

 i =  block index, 

 k =  spectral coefficient index, 

 n0 =  0

12
2

N
n

+
= , 

   ( )w n  =  window function (KDB or Sine function). 

 

Since the window function has a significant effect on the filterbank frequency response, 

the filterbank has been designed to allow a change in window length and shape to match to 

the input signal characteristics. There are two resolutions in AAC, one with 1024 spectral 

coefficients (one long window) and one with eight sets of 128 coefficients (eight short 

windows) and the switching between them is supported through the use of transition windows. 

The encoder selects the optimal shape for each of these windows between the 

Kaiser-Bessel-derived window (KBD) with improved far-off rejection and the sine window 
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with a wider main lobe. Both of them provide perfect reconstruction. Figure 2.7 shows the 

example of window shape switching. The labeled A-B-C is the process using the KDB 

windows, and the labeled D-E-F is the process that the filter bank switches to sine window 

and then switches back to KDB window. 

Overlap-Add Sequence with a Transition to a Sine Function Window

Kaiser-Bessel Derived Windows for Overlap-Add Sequence
Gain

Time (samples)
0 512 1024 1536 2048 2560 3072 3584 40960 512 1024 1536 2048 2560 3072 3584 4096

1

1

0

0

A B C

D E F

0 512 1024 1536 2048 2560 3072 3584 4096

 
Figure 2.7 Window shape adaptation process [1]. 

 

In transform audio coding, using long window type usually provides higher coding 

efficiency. But this may have problem for transient signals. The quantization noise extends to 

the area before the occurrence of the transient signals and can not be masked by itself. This 

phenomenon is called pre-echo. Figure 2.8 shows the pre-echo phenomenon. AAC solves the 

pre-echo by switching the block length between 2048 and 256. If the psychoacoustic model 

detects the transient signals, the filter bank switches to short block sequence. If it detects the 

steady-state signals, the filter bank switches to long block sequence. 
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                   (a)                                   (b) 
Figure 2.8 Pre-echo example: (a) original wave spectrum, (b) transform spectrum, 2048-point. 

 

Because of two different type of window length (2048 or 256), the problem of block 

synchrony between the different windows is occurred. In order to maintain the block 

alignment and the time domain aliasing cancellation properties of MDCT, the “long start” and 

“long stop” windows is used during the long-short window transitions. Figure 2.9 show the 

window overlap-add process for both steady-state and transient conditions. 

 

0 512 1024 1536 2048 2560 3072 3584 4096

1

1

0

0

1 2  3  4  5 6 7 8 

CBA

Windows during transient conditions

Windows during steady state conditionsGain

Time (samples)

512 1024 1536 2048 2560 3072 3584 4096

Long start Long stop

 
Figure 2.9 Block switching during steady-state and transient signal conditions [1]. 
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2.4 Temporal Noise Shaping (TNS) 

Pre-echo happens when a large signal rises abruptly from quiet or nearly quiet. Most 

codec will choose an appropriate length of the window to perform time-frequency analysis. 

The temporal noise shape (TNS) is used to solve pre-echo phenomenon. It is used to control 

the temporal shape of the quantization noise within each window of the transform. It 

maintains the masking effect in the reproduced audio signals.  

The concept of TNS uses the duality between the time domain and frequency domain to 

extend linear predictive coding (LPC) techniques. The signals with an “un-flat” spectrum can 

be coded efficiently either by directly coding the spectral coefficients or by applying 

predictive coding method to the time domain signals. According to the duality property, the 

signals with an “un-flat” time structure, like transient signals, can be coded efficiently either 

by directly coding time-domain samples or applying predictive coding to the spectral 

coefficients. In addition, if predictive coding is applied to spectral coefficients, the temporal 

noise will adapt to the temporal signal when decoded. Hence the quantization noise is put into 

the original signal, and in this way, the problem of temporal noise in transient or pitched 

signals can be avoided. The tool can provide considerable enhancement to the audio quality 

for the speech and transient signals. 

Figure 2.10 shows the block diagram of the TNS encoder filtering. Immediately after the 

filter bank module TNS filtering is inserted. It performs an in-place filtering operation on the 

spectral values, and replaces the target spectral coefficients with the prediction residual. 

 

…… +
-Filter

Bank

LPC

Quantizer

……

TNS Encoder Filtering

Input 
samples

Output 
data

 

Figure 2.10 Block diagram of TNS encoder filtering. 



 16

2.5 Joint Stereo Coding 

AAC joint stereo coding reduces the needed bitrate for stereo or multichannel signals 

more efficiently than separate coding of several channels. There are two different joint stereo 

methods that can be selected for coding of different frequency bands to optimize the resulting 

bitrate: M/S stereo coding and intensity stereo coding. 

2.5.1  Middle/Side Stereo Codin 

There are two different choices to code each pair of the multi-channel signals, the 

original left/right (L/R) signals or the transformed middle/side (M/S) signals. M/S stereo 

coding is very efficient for near monophonic signals, because it use a sum (M) and a 

difference (S) channel instead of left and right channels. The relation between L/R and M/S 

shows as the following expression. 

    ⎥
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If the left and right channel signals have high correlation, the require bits to code this signals 

will be less. Because the difference signals is very small. Hence in the encoder, the M/S stereo 

coding will operate when the left and right signals’ correlation is higher than a threshold. The 

M/S tool transforms the L/R signals to M/S signals. 

2.5.2 Intensity Coupling 

The human hearing system is sensitive to low frequency signals which include amplitude 

and phase. It also sensitive to amplitude of high frequency signals, but insensitive to phase. 

The intensity coupling tool is used to exploit irrelevance between the high frequency signals 

of each pair of channels. For stereo channels, it does not encode all the coefficients in high 

frequency, and instead, it only sends coefficients of left channel. The structure of coefficients 

in high frequency in right channel is obtained from left channel, and an intensity value is 

transmitted to calculate the actual magnitude of each coefficient. 
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2.6 Quantization and Bit Allocation 

The primary goal of the quantization is to quantize the spectral data in such a way that 

the quantization noise satisfies the demands of the psychoacoustic model. The bit allocation 

consists of two loops, the inner loop and the outer loop, which is also called rate-distortion 

control (R-D control). The inner loop quantizes the spectral coefficients and increases the 

value of global gain until fitting the bitrate requirement. The outer loop controls the distortion 

in each scalefactor band after the completion of inner loop. The scalefactor bands with more 

than allowed distortion are amplified by scalefactor. After the amplification, the outer loop 

calls the inner loop again. 

 

2.6.1 Non-uniform Quantization 

 AAC coding scheme adopts the non-uniform quantization to quantize the MDCT 

coefficients. The formula of the non-uniform quantizer 

 

3
4

1 ( )
4

( )
( ) int 0.4054

2 qstepsize

xr i
ix i

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟= +⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠
⎝ ⎠
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, where xr(i) is the MDCT coefficients, ix(i) is the quantized value, int(.) is the nearest integer 

operation and stepsizeq is the quantizer stepsize of the qth scalefactor band. 

 

    _q qstepsize global gain scalefactor= − . (2.5)

The stepsize of quantizer is set by scalefactor and global_gain. Scalefactor is used in the 

outer loop to scale the spectral coefficients in order to control the power of the quantization 

noise. Global_gain is used in the inner loop and is the bitrate controlling variable. 

 

2.6.2 Bit Allocation 

For reducing the required bits, bit-allocation will applied in the procedure of quantization. 
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The allowed distortion (masking threshold) is calculated by psychoacoustic model. The 

allowed distortion is distinct in each scalefactor band, so the required bits within each 

scalefactor band won’t be the same. If the distortion does not fit the requirement of masking 

threshold, the spectral coefficients of the scalefactor band are amplified to obtain higher SNR. 

Bit-allocation is the method that dynamically allocates the bits required in each scalefactor 

band according to perceptual model. 

 

2.6.3 Inner Loop 

Figure 2.11 shows the flow chart of inner loop. It is the bitrate control loop. The inner 

loop increases the value of global gain and quantizes the spectral data. After the quantization, 

noiseless coding function is called to count the number of used bits to code the quantized 

value. If the available bits are less than the used bits, the inner loop process change the global 

gain and repeat the inner loop process. 

 

Begin

Nonuniform
Quantization

Noiseless coding
(count number 

of used bits)

used bits less than
available bits

Return

add quantizer change 
to global_gain

No

Yes

 

Figure 2.11 AAC inner iteration loop [1]. 
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2.6.4 Outer Loop 

Figure 2.12 shows the flow chart of outer loop. It is distortion control loop. After inner 

iteration loop, the distortion in each scalefactor band is calculated by the following formula. 

    

4 1
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, where Nq is the distortion of the qth scalefactor band, xr(i) is the MDCT coefficients, ix(i) is 

the quantized value, and stepsizeq is the quantizer stepsize of the qth scalefactor band. 

 

The task of the outer iteration loop is to amplify the scale factor bands in such a way that the 

demands of the psychoacoustic model are fulfilled. If the distortion is the best so far, the best 

scalefactor is stored. Otherwise, the scalefactor is increased to repeat the outer loop process. 

Normally the loops processing terminates, if there is no scalefactor band with an actual 

distortion above the allowed distortion. However this is not always possible to terminate the 

outer iteration loop by this condition. Therefore, there are two other conditions to terminate 

the outer iteration loop:  

1. All scalefactor bands are amplified. 

2. The difference between two consecutive scalefactors is greater than 60. 
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Figure 2.12 AAC outer iteration loop [1]. 
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2.7 Noiseless Coding 

The input to the noiseless coding module is the set of 1024 quantized spectral 

coefficients. Since the noiseless coding is done inside the quantizer inner loop, it is part of an 

iterative process that converges when the total bit count achieves the available bit count. The 

noiseless coding uses sectioning and variable-length Huffman coding (entropy coding). It 

exploits statistical redundancy to efficiently encode the 1024 coefficients. Section technique is 

powerful technique by group 2 or 4 coefficients to reduce the bit-rate. 

When there are eight short windows in a frame, grouping and interleaving mechanism 

are designed for better coding efficiency. The coefficients associated with contiguous short 

windows can be grouped to share scalefactors among all scalefactor bands within the group. 

In addition, the coefficients within a group are interleaved by interchanging the order of the 

scalefactor bands and windows. 

In order to increase compression, scalefactors associated with the scalefactor bands that 

have zero-valued coefficients are ignored in the noiseless coding and do not have to be 

transmitted. Both the global gain and scalefactors are quantized in 1.5 dB steps. The 

scalefactors are normalized by the global gain. The global gain is coded as an 8-bit unsigned 

integer, and the scalefactors are differentially encoded relative to the previous scalefactor 

value. 

The noiseless coding segments the set of 1024 quantized spectral coefficients, such that a 

single Huffman codebook is used to code each section. The Huffman coding is used to 

represent n-tuples of quantized coefficients, with 12 codebooks can be used. The spectral 

coefficients within n-tuples are ordered and the n-tuples size is two or four coefficients. Each 

codebook specifies the maximum absolute value that it can represent and the n-tuple size. 

Most codebooks represent unsigned values in order to save codebook storage. 
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Chapter 3  

MPEG-4 High Efficient 

Advanced Audio Coding 

 

 

In this chapter, we will introduce several basic concepts and major modules of the 

MPEG-4 High Efficient-AAC system and the Spectral Band Replication (SBR) tool. SBR is a 

unique bandwidth extension technique developed by Coding Technologies. It enables audio 

codec to operate at lower bit-rate without sacrificing sound quality. Details can be found in [2] 

and [4] respectively. 

 

3.1 MPEG-4 High Efficient Advance Audio Coding 

MPEG-4 High Efficient Advanced Audio Coding (HE-AAC) is a combination of MPEG 

AAC and the spectral band replication (SBR) tool. In December 2001, SBR has been 

submitted to MPEG and became the reference model of the MPEG-4 version 3 audio 

standardization process. SBR was finalized during the March 2003 MPEG meeting 

(14496-3:2001/Amd.1:2003). SBR is the bandwidth extension technology developed by 

Coding Technologies in Germany. It uses the concept that human ear is sensitive to low 

frequency signals but is insensitive to high frequency. At the encoder side, we encode the low 

frequency audio signals using regular method and the high frequency audio signals are 

represented by a small amount of side-information. At the decoder side, it uses the 

side-information to reconstruct the high frequency component of the audio signals. HE-AAC 

is also called aacPlus. It is able to deliver high quality audio signal at a 30% lower bit-rate 

with an increased complexity. It delivers good audio quality at 24 kbps for mono and 48 kbps 

for stereo signals. SBR is not a self-contained audio coder. It has been integrated to the 

different traditional audio or speech coders, such as MPEG-2/4-AAC, MPEG-Layer II and 
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MPEG-Layer III (mp3). Mp3Pro is the result of combining mp3 with SBR. Our audio codec, 

HE-AAC, is MPEG-2 AAC LC profile with SBR because of the memory consideration. 

Figure 3.1 shows the block diagram of SBR module and audio coder [4]. SBR acts as a 

pre-process to the audio encoder, and as a post-process to the core decoder. We will describe 

the SBR tool in the Section 3.3 , and demonstrate how this tool can achieve good coding 

efficiency. 
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Figure 3.1 The block diagram of SBR module and audio coder [4]. 

3.2 Spectral Band Replication 

3.2.1 Why SBR Improves Audio Coding 

Research on perceptual audio coding started about twenty years ago. As a consequence 

the MP3 and AAC were developed with high compression efficiency. In Figure 3.2, the 

encoder estimates the masking threshold and tries to shape the quantization noise in the 

frequency domain to be lower than the masking threshold. This can achieve fine audio quality 

at low bitrates. 
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Figure 3.2 Ideal perceptual audio coding [4]. 
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Although today’s perceptual waveform codecs already achieve good compression, the 

efficiency is not high enough to fulfill the bandwidth limitation for broadcasting systems and 

wireless systems. If the bitrate of afore mentioned audio codecs is significantly lower, the 

maximum distortion would exceed the masking threshold. One way to solve this problem is to 

limit the audio bandwidth to achieve lower bitrate. In this case, the high frequency signals are 

generated using a little side information. Since there is no high frequency signals to be 

encoded, more bits are available for encoding the remainder of the spectrum (lowband 

signals). HE-AAC encodes the lowband signals on encoder side, and decodes the full 

frequency audio signals on the decoder side with the help of the SBR technique. We thus have 

good audio quality on lower bitrate. 

 

The SBR technology can be combined with any perceptual audio codec in a backward 

compatible way, which is shown in the Figure 3.1. It is based on the fact that there are usually 

high correlations between the lower and higher frequency part of audio signals. Hence, we 

can use lowband signals to reconstruct the highband signals. Only small amount of the side 

information is required to carry in the bitstream in order reconstruct of the highband signals. 

On the decoder side, the highband signals are reconstructed by a high quality transposition 

algorithm. Figure 3.3(a) shows the transposition from lowband signal to highband signal. But 

transposition itself is insufficient for reconstructing highband signals. It also uses the side 

information sent from the encoder to adjust the highband signals, such as energy envelope, 

inverse filtering to cancel tones, and the noise and sine addition to maintain the tonal-to-noise 

ratio shown in Figure 3.3(b). Figure 3.3(c) shows that high frequency reconstruction through 

SBR. 
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Figure 3.3 (a) Creation of highband by transposition. (b) Envelope adjustment of highband.  

(c) High frequency reconstruction through SBR. 

 

In summary, SBR enhanced codecs perform better because: 

(1) SBR allows the reconstruction of the high frequency part of signals using a small amount 

of side information. The high frequency signals are not encoded anymore. It results in a 

significant coding gain. 

(2) The traditional audio codecs, such as AAC, encode the low frequency signals in which it 

can operate at the optimum sampling rate. However, the optimum sampling rate is usually 

different from the desired output sampling rate. On the other hand, the SBR decoder can 

convert the codec sampling rate to the desired output sampling rate. 
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3.2.2 How SBR Works 

The SBR system is used as a dual-rate system. The SBR encoder operates at the original 

sampling rate, and the AAC encoder operates at half the original sampling rate. The AAC 

encoder just processes only the low frequency part of audio signals. It uses a downsampling 

filter to obtain the low frequency part of audio signals. The AAC encoder computation is 

lower because it processes half of input data. But the SBR encoder is complex because it uses 

many modules to extract the high frequency signals information. The following Section will 

briefly explain the SBR encoder system. 
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Figure 3.4 HE-AAC Encoder Overview [6]. 

 

Figure 3.4 shows the block diagram of the 3GPP HE-AAC encoder system. We can 

notice that the SBR encoder works in parallel with the AAC encoder. The important 

parameters are extracted by the SBR encoder in order to ensure an accurate high frequency 

reconstruction at the decoder. The input signal is fed to a 64-channel Analysis Quadrature 

Mirror Filter (AQMF) which will be described in Section 3.3.2 . The output from the filter 

banks are complex-valued subband signals. Then the complex-valued subband signals are 

used to choose the appropriate time/frequency resolution (T/F grid) of the current SBR frame. 
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The spectral envelopes of the current frame are estimated over the time segment and with the 

frequency resolution given by the time/frequency grid. In order to achieve optimal quality, 

given the high frequency generator which used in the decoder, several additional parameters 

apart from the spectral envelope are extracted. When the lowband signals are be transposed to 

the highband signals, it may have the situation that lowband constitutes a strong harmonic 

series but the highband constitutes random signal. Or the strong tonal components are present 

in the original highband but not in the lowband. To handle the inconsistence of the 

tonal-to-noise ratio of the original spectral bands and the replicated spectral bands, the adding 

of noise or sinusoids with suitable energy is considered. Then the SBR data and other 

parameters are coded by entropy coding (Huffman coding). SBR data and AAC data 

information is exchange between the system in order to determine the optimal cutoff 

frequency between the AAC encoder and the SBR band. Finally the HE-AAC encoder 

multiplexes the SBR bitstream into the AAC bitstream. Figure 3.5 shows the block diagram of 

the SBR Encoder. Details can be found in [14]. 
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Figure 3.5 SBR encoder block diagram [14]. 
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3.3.2 Analysis Quadrature Mirror Filter (AQMF) Bank 

On the SBR encoder side, subband filtering of the input signal is done by a 64-subband 

QMF bank. The outputs from the filterbank are complex-valued. The filtering comprises the 

following steps, in which an array x consisting of 640 time domain input samples are assumed. 

Higher indices into the array correspond to older samples. Figure 3.6 shows the QMF analysis 

window. 
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Figure 3.6 HE-AAC QMF analysis windowing [2]. Index 0 to 31 represent different window. 

 

 

The QMF process is described: 

1. Shift the samples in the array x by 64 positions. The oldest 64 samples are discarded and 

64 new samples are stored in positions 0 to 63. 

2. Multiplying the samples of array x by window c is array Z ( Z[n] = x[n] c[n]×  , for n =0 

to 639). The 640 window coefficients ( c ) are showed in Figure 3.7. 

3. Sum the samples according to the formula, 
4

j=0
u[n] = Z[n+128j]∑ , n=0 to 127, to create 

the 128-element array u. 

4. Calculate 64 new subband samples by the matrix operation X = Mu, where 

    
( )( )0.5 2 1 0 64,

( , ) exp ,
0 128.128

i k n k
M k n

n
π⎛ ⎞+ + ≤ <⎧

= ⎜ ⎟ ⎨⎜ ⎟ ≤ <⎩⎝ ⎠
 (3.1)

X[k][j] corresponds to the jth subband sample QMF subband k. 

In the equation, exp() denotes the complex exponential function and i is the imaginary unit. 
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Every loop produces 64 complex-valued subband samples, representing the output from one 

filterbank subband. For every SBR frame the filterbank produce 32 subband samples from 

every filterbank subband, corresponding to a time domain signal of length 2048 samples.  
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Figure 3.7 Coefficients of the QMF bank window. 

 

3.3.3 Frequency Band Tables 

On the SBR encoder side, the SBR encoder uses the following frequency band tables: a 

high frequency resolution table ( TableHighf ), a low frequency resolution table ( TableLowf ), the 

noise floor frequency tables ( TableNoisef ) and the master frequency band table ( Masterf ), which 

are defined according to subclause 4.6.18.3.2 in [2]. The parameters needed to define all 

frequency band tables are transmitted in the SBR bitstream header. The frequency band tables 

contain the frequency borders for each frequency band, represented as QMF subbands. Each 

frequency band is defined by a start frequency border and a stop frequency border. For SBR 

header bitstream elements either bs_header_extra_1 or bs_header_extra_1, there are default 

values and a transmission of these elements are only needed if they differ from the default 

value. Default values are defined in subclause 4.5.2.8.1 in [1]. The SBR header parameters are 

regarded as tuning parameters since they are strongly bitrate and sampling frequency 

dependant. Throughout the tuning work for 3GPP submission several bitrate and sampling 

frequency dependant tunings have been created. 
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3.3.4 Time-Frequency Grid Generation 

Information obtained from the analysis QMF bank is used to choose the appropriate 

time/frequency resolution of the current SBR frame. On the encoder side, the T/F grid 

generation algorithm calculates the start and stop time broder of the SBR envelopes and the 

noise floors in the current SBR frame. The T/F grid generation algorithm divides the current 

SBR frame into four classes, FIXFIX, FIXVAR, VARFIX and VARVAR. They use to 

determine the time broder of each SBR frame. 

On the SBR decoder part, the T/F grid part of the bitstream payload describes the 

number of SBR envelopes and noise floors as well as the time segment associated with each 

SBR envelope and noise floor. Furthermore, it describes what frequency band tables to use for 

each SBR envelope. Four different SBR frame classes, FIXFIX, FIXVAR, VARFIX and 

VARVAR, are used, and each of which has different capabilities with respect to 

time-frequency grid selection. Figure 3.8 shows the example of the time-frequency grid. 

Detail can be found in [2], subclause 4.B.18.3.  

On the SBR encoder part, the SBR encoder of 3GPP HE-AAC employs three tools for 

the T/F grid generation: the transient detector, the frame splitter, and the frame generator, that 

will be described in the following. 

 

Time

Frequency

Time-frequency grid

 

Figure 3.8 Example of the time-frequency grid 
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(A) Transient Detector 

The transient detection is performed on subband samples of one frame length. The 

outputs from the transient detector are the variables tranFlag and tranPos. The first is a 

boolean indicating whether there is a transient in the processed frame, and the second 

specifies the position (in time slots) for the on-set of the transient. The time / frequency grid 

generation module uses the output from the transient detector and the stored transient 

detection output from the previous frame to perform its operations. Figure 3.9 shows the flow 

chart of transient detector. 

 

Begin

Calculate different T/F grid
energy in a frame

(64 frequency resolution
and 32 time segment)

If (previous time segment energy 
> 203.125)

and if (0.9 × previous time segment energy 
>current time segment energy) 

Transient Flag = 0
Transient Position = 0

Transient Flag = 1
Transient Position =

Current time slot position 

No Yes

Return
 

Figure 3.9 The flow chart of transient detector. 

 

(B) Frame Splitter 

The frame splitting is only active when the transient detector has detected the absence of 

a transient in the current frame (i.e. when transient Flag = 0). It operates on subband samples 

of one and a half frame length starting from subband sample 0. The output from the frame 

splitter is the variable splitFlag, which indicates whether the current frame (free from 



 32

transients) should be divided into two envelopes of equal size. Figure 3.10 shows the flow 

chart of frame splitter. 

Calculate split threshold

Begin

Calculate the total 
lowband’s energy

Calculate the total 
highband’s energy

Calculate the “d_ratio”
value which is dependent 

on lowband and 
highband energy

d_ratio > split threshold

split Flag = 0

No Yes

split Flag = 1
 

 

Figure 3.10 The flow chart of transient detector. The split threshold depends on the sampling 

rate and bitrate. 

 

(C) Frame Generator 

The frame generator creates the time/frequency grid for one SBR frame. Input signals are 

provided by the transient detector and the frame splitter. The frame generator produces two 

outputs: The sbr_grid() portion of the bitstream, and an internal representation of the 

time/frequency grid to be used by the envelope and noise floor estimators. 

When no transients are present (tranFlag = 0), FIXFIX class frames are used. The frame 

splitter decides whether to use one or two envelopes in the FIXFIX frames (splitFlag = 0 or 

splitFlag = 1 respectively). "Sparse" transients (separated by one or more frames with 

tranFlag = 0) are coded by means of FIXVAR-VARFIX sequences. "Tight" transients 

(tranFlag = 1 for two or more consecutive frames) are handled by inserting VARVAR class 
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frames. We do not show the block diagram of frame generator ,and details can be found in 

[14], subclause 5.4.3. 

3.3.5 Envelope Estimator 

On the SBR encoder side, the spectral envelopes of the current SBR frame are estimated 

over the time segment and with the frequency resolution given by the time/frequency grid 

represented by tE and r. The SBR envelope is estimated by averaging the squared complex 

subband samples over the given time/frequency regions. 
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, where RATE = 2, F = [ TableLowf , TableLowf ], EL =Number of SBR envelopes 

[ , ]Low HighN N=n = Number of frequency bands for low and high frequency resolution 

 

In the case of stereo and coupling the energy is calculated according to: 
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3.3.6 Additional Control Parameters 

In order to achieve optimal results in the decoder, several additional parameters apart 

from the spectral envelope are needed. The noise floor is estimated for the current SBR frame. 

It is defined as the ratio between the energy of the noise and the energy of the High Frequency 

(HF) generator signal. The energy of the noise that should be added to a particular frequency 

band in order to obtain a similar tonal to noise ratio. 

The noise floor is estimated once or twice per SBR frame dependent on the number of 

spectral envelopes estimated for the SBR frame (indicated by Qt ). The frequency resolution 

for the noise floor scalefactor is calculated according to the same algorithm subsequently used 

in the SBR decoder and described in [2] subclause 4.6.18.3. The start and stop time borders of 

the different noise floors are given from the time grid on the SBR encoder. 

The level of the inverse filtering applied in the decoder is estimated for different 

frequency ranges. The inverse filtering estimation algorithm compares the original tonality 

and the tonality which will be produced by the High Frequency (HF) generator in the decoder. 

The ratio between the two is mapped to four different inverse filtering levels, off, low, mid 

and high. These levels correspond to different chirp factors in the HF generator as outlined in 

[2] subclause 4.6.18.5.  

On SBR encoder side, additional control parameters include three factors: noise, inverse 

filtering and sine signal. The estimation noise is added in the decoder to obtain the same tonal 

to noise ratio. The inverse filtering is used to flat the reconstructed tonal signal on decoder 

side when original signal does not have tonal. The estimation sine signal is added in the 

decoder. If the high frequency reconstructed signals in the decoder miss the sinusoidal signal, 

the frequency bands will add a strong sinusoidal component. These three factors are all 

calculated by the output of tonal estimation. Therefore, we only describe the tonality 

estimation in the follows. 
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3.3.7 Tonality Estimation 

The following detection modules produce their output based on a tonality estimate 

calculated in the tonality estimation module: Noise-floor estimation, Inverse filtering 

estimation, Additional sines estimation. These three modules are calculated by the output of 

the tonality estimation. Therefore, we will only describe tonality estimation module in this 

Section, because the complexity of the tonality estimation module is higher than the other 

three modules. The Noise-floor estimation, Inverse filtering estimation, Additional sines 

estimation modules can be found in [14], subclause 5.6.3. 

The tonality is derived from the prediction gain of a second order linear prediction 

performed in every QMF subband. The linear predictive coding (LPC) is calculated using the 

covariance method, and for every frame two tonality estimates are calculated for every 

subband. In the equation 2.10, X is the matrix holding the most recently available complex 

QMF subband samples. The tonality values are calculated and stored in the T and Tsbr 

matrices. The Tsbr values are obtained from the T values by patching the tonality values 

similarly to the patching of the subband channels in the high frequency reconstruction 

modules in the decoder. 

Since the subband signals are complex valued, this results in complex filter coefficients. 

The prediction filter coefficients are obtained from the covariance method. 
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Based on the covariance elements the coefficients ( )0
l kα and ( )1

l kα used to calculate the 

tonality estimates for the subbands are calculated as: 
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The tonality values are calculated based on the above coefficients according to: 
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where l = 0(lower half frame) or 1(upper half frame). 

(3.7)

 

The tonality values are patched similarly to the patching of the QMF subbands in the decoder 

during high frequency reconstruction. Hence, it is possible to compare tonality of a simulated 

SBR signal and the original signal on the encoder side. The patch used is built in accordance 

to the flowchart in Figure 4.46, subclause 4.6.18.6.3 in [2], where the output variable 

numPatches is an integer value specifying the number of patches. patchStartSubband and 

patchNumSubbands are vectors holding the data output from the patch decision algorithm. 

Hence, the tonality values for the SBR part is obtained according to: 
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Chapter 4  

DSP Implementation 

Environment 

 

 

We select the DSP platform to implement the MPEG-4 HE-AAC encoder. Our DSP 

baseboard (SMT395) is made by Sundance which houses Texas Instruments' TMS320C6416T 

DSP chip and Xilinx Virtex-II Pro FPGA. In this chapter, our discussion will concentrate on 

the DSP system development environment, DSP chip and its features because our 

implementation is software-based on the DSP. Then, the software development tool, Code 

Composer Studio (CCS), is introduced. At the end, some important acceleration techniques 

and features which can reduce stalls or hazards on DSP system are also included. 

 

4.1 DSP Baseboard (SMT395) 

The block diagram of the Sundance DSP baseboard system (SMT395) is shown in Figure 

4.1 [24]. SMT395 utilizes the signal processing technology to provide extreme processing 

flexibility and high performance. SMT395 has some features which are shown below. 

 

 1GHz TMS320C6416T fixed point DSP processor with L1, L2 cache and SDRAM. 

 8000MIPS peak performance. 

 Xilinx Virtex-II Pro FPGA. XC2V920-6 in FF896 package. 

 Two Sundance High Speed Bus (100MHz, 200MHz) ports which is 32 bits wide. 

 Eight 2Gbit/sec Rocket Serial Links(RSL) for interModule. 

 8 MB flash ROM for configuration and booting. 

 Six common ports up to 20 MB per second for inter DSP communication. 

 JTAG diagnostics port. 
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Figure 4.1 The block diagram of the Sundance DSP Baseboard system 

 

4.2 DSP Chip 

TMS320C6416T DSP is using the VelociTI.2 architecture[25]. VelociTI.2 is a high 

performance, advanced very long instruction word (VLIW) architecture, which is an excellent 

choice for multi-channel, multi-functional, and performance-driven applications. VLIW 

architecture can achieve high performance through increased instruction-level parallelism, 

perform multiple instructions during a single cycle. 

The DSP chip we adopt is one in the TMS320C64x series. According to [11], 

TMS320C64x series is also a member of the TMS320C6000 (C6x) family. The block diagram 

of the C6000 family is shown in Figure 4.2. The C6000 device is capable of executing up to 

eight 32-bit instructions per cycle. The detailed features of the C6000 family devices include: 

 

 Advanced VLIW DSP core  

 Eight independent functional units, including two multipliers and six arithmetic 

units (ALU). 

 64 32-bit general-purpose registers 
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 Instruction packing to reduce code size, program fetches, and power consumption. 

 Conditional execution of all instructions. 

 Non-aligned Load and Store architecture 

 Byte-addressable (8/16/32/64-bit data), providing efficient memory support for a 

variety applications. 

 8 bit overflow protection 

 

Program cache/program memory
32-bit address
256-bit data

Program fetch
Instruction dispatch
Instruction decode

Register A

.L1 .S1 .M1 .D1

Register B

.D2 .M2 .S2 .L2

Data path A Data path B

Interrupts
Emulation

Test

Control
logic

Control
registers

Additional
peripherals:

Timers,
serial ports,

etc.

Data cache/data memory
32-bit address

8-, 16-, 32-bit data (64-bit data, C64x only)

Power
down

DMA, EMIF

C62x/C64x/C67x CPU

C62x/C64x/C67x device

 

Figure 4.2 Block diagram of TMS320C6x DSP 

 

Peripherals such as enhanced direct memory access (EDMA) controller, power-down 

logic, and two external memory interfaces (EMIFs) usually come with the CPU, while 

peripherals such as serial ports and host ports are on only certain devices. In the following 

Sections, C64x DSP chip is introduced further in the manner of three major parts: central 

processing unit (CPU), memory, and peripherals. 

 

4.2.1 Central Processing Unit (CPU) 

Besides the eight independent functional units and sixty-four general purpose registers 
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that has been mentioned before, the C64x CPU consists of the program fetch unit, instruction 

dispatch unit, instruction decode unit, two data path (A and B, each with four functional units), 

interrupt logic, several control registers and two register files (A and B with respect to the two 

data paths). The DSP chip architecture is illustrated in Figure 4.3.  

The instruction dispatch and decode units could also decode and arrange the eight 

instructions to eight functional units. The eight functional units in the C64x architecture could 

be further divided into two data paths, A and B as shown in Figure 4.3. Each path has one unit 

for multiplication operations (.M), one for logical and arithmetic operations (.L), one for 

branch, bit manipulation, and arithmetic operations (.S), and one for loading/storing, address 

calculation and arithmetic operations (.D). The .S and .L units are for arithmetic, logical, and 

branch instructions. All data transfers make use of the .D units. Two cross-paths (1x and 2x) 

allow functional units from one data path to access a 32-bit operand to the register file on 

another side. There are 32 general purpose registers, but some of them are reserved for 

specific addressing or are used for conditional instructions. All functional units which end in 1 

(for example, .L1) write to register file A while all functional units which end in 2 ( for 

example, .L2) write to register file B.  

 

C64x CPU

Dual 64 bits load/store paths  
 

Figure 4.3 C64x DSP chip architecture 
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4.2.2 Memory and Peripherals 

(A) Cache / Memory 

The C6416T memory architecture consists of a two-level (L1/L2) internal cache-based 

memory architecture plus an external memory. Level 1 cache is split into L1 program cache 

and L1 data cache. Each of L1 cache is 16 kB. All caches and data paths are automatically 

managed by cache controller. Level 1 cache is accessed by the CPU without stalls. The size of 

L2 cache is 1 MB. L2 cache is configurable and can be split into L2 SRAM(addressable 

on-chip memory) and it is for caching external memory location. It also has one external 

memory which is a 256 MB SDRAM and operated at 133MHz.  

 

(B) Peripherals 

C64x DSP chips also contain some peripherals for supporting with off-chip memory 

options, co-processors, host processors, and serial devices. The peripherals are enhanced 

direct memory access (EDMA) controller, Host-Port interface (HPI), three 32-bit general 

purpose timers, IEEE-1149.1 JATG interface and some other units. 

The DMA controller transfers data between regions in the memory map without the 

intervention by CPU. It could move the data from internal memory to external memory or 

from internal peripherals to external devices. It is used for communication to other devices. 

The Host-Port Interface (HPI) is a 16/32-bit wide parallel port through which a host 

processor could directly access the CPUs memory space. It is used for communication 

between the host PC and the target DSP. 

The C64x has three 32-bit general-purpose timers that are used to time events, count 

events, generate pulses, interrupt the CPU and send synchronization events to the DMA 

controller. The timer has two signaling modes and could be clocked by an internal or an 

external source. 
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4.3 TI DSP Code Development Environment 

In this Section, the CCS tool is introduced, and we show that how a programmer can use 

it. Then, the code development flow is presented to show how to program a DSP code 

efficiently. 

4.3.1 Code Composer Studio (CCS) 

The Code Composer Studio (CCS) is a software integrated development environment 

(IDE) for building and debugging programs. The CCS extends DSP code development tools 

by integrating editor, debugger, simulator, and emulation analysis into one entity. We use CCS 

to develop and debug the projects. We briefly describe some of its features below. The details 

can be found in [21]. 

 

 Real time analysis 

 Chip support libraries (CSL) to simplify device configuration. 

 Provide debug options such as step over, step in, step out, run free. 

 Compile codes and generate Common Object File Format (COFF) output file. 

 Support optimized DSP functions such as FFT, filtering, convolution. 

 Count the instruction cycles between successive profile-points. 

 Arrange code/data to different memory space by linker command file 

 

We mainly use the CCS tool for debugging, refining, optimizing, and implementing our C 

codes on DSP. The profile function helps us to determine whether the modifications of the 

codes are better or not. Figure 4.4 shows the software development flow. 

 



 44

C / C++
Source Files

C / C++
Source Files

TMS320C6x

Assembly
Optimized

file

Assembler
Source

DSP / BIOS
Library

Debug

Profile

Graph

C / C++
Compiler

Assembler

COFF
Object Files

COFF
Object Files

Assembly
Optimizer

Linear 
Assembly

Linear 
Assembly

Linker

Executable
COFF File

 
 

Figure 4.4 Software Development Tool Flow 

 

4.3.2 Code Development Flow 

Figure 4.5 illustrates the three phases in the code development flow [21]. Generally, we 

do not go to phase3 because the linear assembly will be too detailed. The recommended code 

development flow involves utilizing the C6000 code generation tools to aid optimization 

rather than forcing the programmer to write the code in assembly. 
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Figure 4.5 Code develop flow 

 

4.4 DSP Code Acceleration Methods 

Improving the execution cycles of the HE-AAC encoder is the main task of our system 

implementation. In this Section, we will describe several methods that can accelerate our code 

and reduce the execution time on the C64x DSP. Some of these methods are supported by the 

features of C64x DSP system. 

 

4.4.1 Compiler Optimization Options 

The CCS compiler offers high language support by transforming C code into more 

efficient assembly code. The compiler options can be used to reduce code size and improve 

executing time. Four optimization levels are provided: register (-o0), local (-o1), function 

(-o2), file level (-o3). File level (-o3) is the highest one of optimization available. With file 

level optimization, all our source files are compiled into one intermediate file giving the 

compiler complete program view during compilation. Various loop optimizations are 

performed, such as software pipelining, unrolling, and SIMD. It also reduces code size like: 

eliminating unused assignments, eliminating local and global common sub-expressions, and 

removing functions that are never called. 
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4.4.2 Fixed-point Coding 

The C6000 compiler defines a size for each data type: 

 

Table 4.1 The Size of Different Data Type. 

Data Type Char Short Int Long Float Double
Size (bits) 8 16 32 40 32 64  

 

The C64x DSP is a fixed-point processor, so it can only perform fixed-point operations. 

Although the C64x DSP can simulate floating-point processing, it takes a lot of extra clock 

cycles to do the same job. The “char”, “short”, “int” and “long” are the fixed-point data types, 

and the “float” and “double” are the floating-point data types. 

4.4.3 Loop Unrolling and Packet Data Processing 

Loop unrolling unrolls the loops so that all iterations of the loop appear in the code. It 

often increases the number of instructions available to execute in parallel. It is also suitable 

for use software pipeline. When our codes have conditional instructions, sometimes the 

compiler may not be sure that the branch will occur or not. It needs more waiting time for the 

decision of branch operation. If we do loop unrolling, some of the overhead for branching 

instruction will be reduced. Example 4.1 is the loop unrolling and Table 4.2 shows the cycles 

and code size. 

 
(a) 
/*Before unrolling*/ 
 
int i,a=0,b=0; 
for (i=0;i<8;i++) 
{ 
a+=i; 
b+=i; 
} 
 
 

(b) 
/*After unrolling*/ 
 
int i=0,a=0,b=0; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 
a+=i; b+=i; i++; 

Example 4.1 Loop unrolling. 
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Table 4.2 Comparison between Rolling and Unrolling 

(a)Before Unrolling (b)After Unrolling

Execution Cycles 436 206

Code Size 116 479  
 

We can see clearly that the clock cycle decreases after loop unrolling, but the code size is 

larger than the original. 

Use a single load or store instruction to access multiple data that consecutively located in 

memory in order to maximize data throughput. It is so called the single instruction multiple 

data (SIMD) method. For example, if we can place four 8-bit data (char) or two 16-bit data 

(short) in a 32-bit space, we may do four or two operations in one clock cycle. If we use the 

SIMD method, then we can improve the code efficiency substantially. Some intrinsic 

functions enhance the efficiency in a similar way. 

 

A1 (short) A2 (short)

B1 (short) B2 (short)

+

=
A1+B1(short) A2+B2(short)

Single Instruction Multiple Data

 
 

Figure 4.6 The block diagram of SIMD example. Use the word access for adding short data. 

 

4.4.4 Register and Memory Arrangement 

When the accessed data are located in the external memory, it may need more clock 

cycles to transfer data to CPU. We can use registers to store data in order to reduce transfer 

time in operation. In DSP code, the variables, pointer, malloc functions, C codes and so on 

will locate data in memory. We can arrange the link.cmd file which is the memory allocation 

file. We arrange different type of data in different memory space because of acceleration 

consideration. It also provide the “CODE_SECTION”, ”DATA_SECTION” key words which 

can allocate parts of C code or data in the internal memory in order to speed. 
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4.4.5 Macros Function and Intrinsic Function 

Because the software-pipelined can not contain function calls, it takes more clock cycles 

to complete the function call. Changing the functions to the macro functions under some 

conditions is a good way for optimization. In addition, replacing the functions with the macro 

functions can cut down the code for initial function definition and reduce the number of 

branches. But macro functions are expanded each time when they are called, they increase the 

code size. 

TI C6000 compiler provides many special functions that map C codes directly to inlined 

C64x instructions, to increase C code efficiently. These special functions are called intrinsic 

functions. If the instructions have equivalent intrinsic functions, we can replace them by 

intrinsic functions directly and the execution time will be decreased. The details of the 

intrinsic functions can be found in [21]. 

 

4.4.6 Linear Assembly 

Assembly code is generated from CCS compiler or assembler optimizer. Sometimes the 

generated assembly codes are not efficiency because of a lot of stalls or hazards. Converting 

parts of the C codes into linear assembly codes is a good way to solve this problem. We 

rearrange the assembly codes to avoid the stalls and hazards by hand. Linear assembly codes 

can be more efficiency. But this process generally is too detail and very time consumption in 

practice. Hence, we will do this process at last if we have strict constrains in processor 

performance. 

 

4.4.7 Other Acceleration Rules 

Other rules like: reduce times for accessing memory, use bit shift for multiplication or 

division, declare variable or memory as constant, access the memory sequentially, and do not 

use conditional break or complex condition code in the loop. 
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Chapter 5  

MPEG-4 HE-AAC Encoder 

Acceleration on DSP 

 

 

In this chapter, we present several acceleration methods for the HE-AAC encoder. We 

adopt the HE-AAC source code provided by 3GPP [9]. It is the fixed-point version and thus is 

suitable for porting to an embedded system. Firstly, we analyze the complexity of the 

HE-AAC encoder, and then we determine which parts are required to accelerate. Then, we 

propose several fast and simplified methods to reduce the computational time. Finally, the 

speed improvement, RAM requirement and the audio quality due to the proposed 

modifications will be discussed. 

 

5.1 HE-AAC Complexity Analysis 

We use the following methods to measure the speed of the HE-AAC code: 

 Use the profile mode of the stand-alone C6416T DSP simulator. 

 If we are interested in only one or two functions or a region of code inside a 

function, the clock( ) function can be used to time the region specified. 

 

For the purpose to find which parts take the most computational time, we choose the first 

method to compare all the function speeds in the HE-AAC program. We identify the parts of 

the HE-AAC encoder that consume the most execution time based on the profile data. We 

concentrate on the most critical area to accelerate. The complexity profiling of the HE-AAC 

encoder is shown in Figure 5.1. The test audio sequence is “glockenspiel”, which is a two 

channel sequence with a sample rate at 48k Hz. The bitrate is at 48k bps. It is extracted from 

European Broadcasting Union (EBU) [28]. 
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Figure 5.1 The complexity profiling of the HE-AAC encoder on the C6416T DSP. 

 

From the profiling results, QMF bank, transient detector, tonality estimation, 

down-sampling filter, psychoacoustics model and quantization are the major complex parts of 

the HE-AAC encoder. The QMF bank, transient detector and tonality estimation are the 

modules related to the SBR. The psychoacoustics model and quantization are the modules 

only related to the original AAC. We propose several complexity reduction techniques in the 

following Sections. Our goal is to reduce the codec complexity while not to degrade its output 

audio quality. 

We shortly describe the five audio sequences [28] to be used in the following Sections. 

These audio sequences are CD-quality sampled at 48k Hz with 16 bits for stereo, and codec at 

bitrate 48k bps. Table 5.1 shows the audio sequence and their characteristics. All of the 

compiler optimization level configure the “File” level (-o3).  

Table 5.1 Test Audio Files and Their Characteristics. 

Audio File Time 
(sec) Mode Description 

Gspi35_2 9 stereo Glockenspiel. Melodious phrase. 

vibr37 4 stereo Vibraphone. Melodious phrase. 

sopr44_1 12 stereo Soprano. Vocal. 

guit58 13 stereo Guitar. Solo instrument. 

edra70 14 stereo Eddie rabbitt. Pop music. 
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5.2 Transient Detector Acceleration 

As we mentioned in Sections 3.3.3 and 3.3.4 , the frequency band tables determine the 

AAC range and SBR range, and the time-frequency grid generation module uses the output 

from the transient detector to determine the time segment. The transient detector detects the 

transients and identifies the positions of the transients in each frame. However, from the 

profiling data, the transient detector is complex and time consuming. It calculates the energy 

of every gird in one frame in order to find out where the transient is, and the energy 

calculation in each frame is very time consuming. Therefore, after studying the transient 

detector algorithm, we propose an acceleration method to speed up the transient detector. 

Figure 5.2 and 5.3 show the spectrums of one audio frame. Figure 5.2 is the spectrum of the 

original audio, and Figure 5.3 is the spectrum of the HE-AAC compressed frame. 
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Figure 5.2 The spectrum of the original audio frame 
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Figure 5.3 The spectrum of the HE-AAC decoded frame 

 

From Section 3.3.3 , if the test sequence is a two-channel sequence with sampling 

frequency at 48 kHz, AAC is applied to the frequency range from 0 Hz to 8,250 Hz, and SBR 

is applied to the frequency range from 8,250 Hz to 16,875 Hz. The range from 16,875 Hz to 

24,000 Hz is the high frequency range. Although the SBR module can extend further the 

bandwidth of a lowband signal in the decoder side, the reconstructed frequency range is 

usually lower than 17k Hz. The signal frequency above 17k Hz will be truncated in the 

decoder side. 

However, the transient detector is time consuming and complex. The propose of the 

transient detector is to decides the proper time-frequency partition as discussed in Section 

3.3.4 . The transient detection of the 3GPP HE-AAC encoder goes through the full frequency 

range to identify the transient signals. However, the power of the high frequency signal is 

generally small and the high frequency signal will be truncated in the decoder. Hence, in order 

to accelerate the encoder, we do not detect the transient signals of frequency above 17k Hz. 

Figure 5.4 shows the flow chart of the proposed simplified transient detector. We simply 

calculate the signal energy below 17k Hz. If the sampling frequency is not at 48k Hz, the 

AAC range and SBR range may be different. Details can be found in the Section 3.3.3 . 
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Begin

Calculate the T/F grid
energy that the frequency 

is below 17 kHz

If (previous time segment energy 
> 203.125)

and if (0.9 × previous time segment energy 
>current time segment energy) 

Transient Flag = 0
Transient Position = 0

Transient Flag = 1
Transient Position =

Current time slot position 

No Yes

Return
 

Figure 5.4 The flow chart of the proposed simplified transient detector 

 

Table 5.2 shows the computing reduction ratio of the proposed simplified transient detector 

performed on the test sequences. We can notice that the operational cycles are about 24 % 

reduced in the transient detector function. 

 

Table 5.2 Reduction Ratio of the Proposed Transient Detector 

Test Sequences Original Transient
Detector (cycles) 

Proposed Simplified 
Transient Detector 

(cycles) 
Reduction Ratio % 

Gspi35_2 3,441,739 2,616,269 24 % 

vibr37 3,498,627 2,665,930 23.8 % 

sopr44_1 3,395,772 2,575,065 24.2 % 

guit58 3,381,267 2,543,060 24.8 % 

edra70 3,327,745 2,454,540 26.3 % 
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5.3 Down-sampling Filter Complexity Analysis 

The core AAC module encodes only the lowband signals, and highband signals are 

encoded by the SBR module. Therefore, the system for down-sampling by a factor of two is 

needed before the audio signals fed into the AAC module. The operation of reducing the 

sampling rate is called down-sampling. The input signal is initially fed to the down-sampling 

filter, and the output time domain signal enters the AAC encoder which has half the sampling 

rate. Then the AAC encoder operates on the half sampling rate of input signal, and the SBR 

encoder operates on the original sampling rate of input signal. However, from the profiling 

data, we notice that the down-sampling filter is time consuming and complex. This is due to a 

low-pass filter prior to the down-sampling filter in order to avoid the aliasing phenomenon. 

After down-sampling, the frequency spectrum would expand. Thus, the expanded spectrum 

may overlap and the aliasing occurs. The block diagram of the down-sampling filter module is 

shown in Figure 5.5. Before doing the down-sampling, the input signals convolve with the 

coefficients of the low-pass filter, and the low-pass filter is a FIR filter with 49 coefficients. 

 

LPF
H(z) 

Down-sampling
2:1

audio
input
(2 fS )

audio
signal
( fS )

 

Figure 5.5 General system for down-sampling filter 

 

However, the computations are not needed for those samples that are thrown away after 

the down-sampling process. Therefore, in order to reduce the complexity, we use an efficient 

decimation structure: the polyphase decomposition of the decimation filter. Figure 5.6 shows 

the efficient decimation structure based on the polyphase decomposition. 
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Figure 5.6 (a) The original decimation structure (b) The efficient decimation structure 

 

The FIR low-pass filter: 1 48 2 1 2
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24 24
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0 1
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k k
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= =
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h[k] is the kth LPF coefficients, k is form 0 to 48. 

 

If we use Figure 5.6(a), “an original structure”, the total number of real multiplication is 

2048×49 and the total number of real addition is 2048×48. If we use Figure 5.6(b), “an 

efficient structure”, the total number of real multiplication is 1024×49 and the total number of 

real addition is 1024×48. Then because the coefficients of FIR filter are symmetrical, we only 

load half of the coefficients. Hence, we can reduce the load action to reduce the access of the 

memory, because the access of the memory is slow and power consuming. 

 

5.4 Simplified Block switching 

According to the 3GPP HE-AAC [13], the decision of whether to use long windows with 

a window length of 2048 samples or to use a sequence of eight short blocks with a window 

length of 256 samples is made in the time domain. This decision uses the transient detection 

algorithm to determine whether to use long or short window. The transient detection 

algorithm is based on the energy distribution. Because the transient is short sharp variations of 

sound, it induces a significant increase in the high frequency signal energy. To detect the 

transients, the input signal is first filtered by a high-pass filter. The transfer function of the 
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high-pass IIR-Filter is shown below: 
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After filtering, eight subblock energies are calculated by summing up the 128 

consecutive squared samples (8×128=1024). These eight subblock energies represent the eight 

short windows of the next frame of subblocks. An attack is detected if one of these subblocks 

energy exceeds a sliding average of the previous energies by a constant factor of 10. This 

subblock energy is also greater than a constant energy level 106. If an attack is detected, a 

short window is used to encode this frame. Otherwise this frame will use the long window 

instead. 

 Figure 5.7 shows the magnitude response of the high-pass filter. The low frequency parts 

(below 4k Hz) of input signals are filtered.  
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Figure 5.7 Magnitude response of high pass filter with sampling frequency at 24k Hz 

 

However, in this filter process, the input samples convolve with the high-pass filter 

coefficients, and this convolution requires many computations. If the convolution can be 

avoided, the computational time can be reduced. Therefore, we propose a method to do the 

transient detection which does not include the high-pass filter. The proposed transient 
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detection algorithm is also based on the energy distribution described previously but without 

the high pass filter. We know that long or short window detection is used to avoid pre-echoes. 

Removing the high-pass filter will affect the type of detection that is applied. If the wrong 

window is used, the pre-echo control may fail. However, if the wrong window is detected, the 

TNS module can be used to control the pre-echoes. TNS module can compensate the lack of 

using different window type. Hence, by removing the high-pass filter, the sound quality does 

not degrade and the operational cycles can be significantly reduced. Table 5.3 shows the 

reduction ratio of the block switching detection. We notice that the reduction ratio of the 

operational cycles is about 96 % in the block switching function. 

 

Table 5.3 Reduction Ratio of the Block Switching Detection 

Test Sequences 
Original Block 

Switching Detection
(cycles) 

Accelerated Block 
Switching Detection 

(cycles) 
Reduction Ratio % 

Gspi35_2 437,742 13,752 96.8 % 

vibr37 436,496 13,820 96.7 % 

sopr44_1 436,100 13,247 97 % 

guit58 436,213 13,567 96.8 % 

edra70 435,939 13,279 97 % 

 

5.5 Low Complexity Psychoacoustic Model 

Based of the proposal of [16], we use some methods to provide a low complexity of the 

psychoacoustic model (PAM). The dominant calculation of spreading function, absolute 

threshold in quiet and other parameters that are sampling rate dependent are replaced by 

look-up tables. 

From [13], the spreading function is used to calculate the neighboring masking threshold. 

The absolute threshold in quiet represents the smallest intensity that can be detected by human 

hearing. However, the calculation of the spreading functions, spreaded energy and absolute 

threshold in quiet are complicated. We find that the values of spreading functions, spreaded 

energy and absolute threshold in quiet are simply affected by the sampling rate and the block 
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type used. Hence, we reduce the calculation of spreading functions, spreaded energies and 

absolute threshold in quiet by replacing them with a look-up table method. This method can 

significantly reduce the computing time at the cost of increasing the memory usage. The 

3GPP HE-AAC already uses the MDCT-based PAM, which is similar to the one propose by 

[16]. 

To see the effect of the low complexity PAM, we simulated by profiling the 

computational cycles before and after accelerations. Table 5.4 shows the reduction ratio of the 

initial PAM function. The initial PAM function is used to calculate the spreading functions, 

spreaded energies and absolute threshold in quiet.  

Table 5.5 shows the reduction ratio of the main PAM function. We rewrite the program 

of the main PAM function in order to accelerate the PAM part. We notice that the operational 

cycles of these two functions are significantly reduced. 

 

Table 5.4 Simulated Reduction Ratio by Low Complexity PAM (Initial_PAM Function) 

Test Sequences Original Initial_PAM () 
(cycles) 

Speed-up Initial_PAM () 
(cycles) Reduction Ratio %

Gspi35_2 8,062,300 159,757 98 % 

vibr37 8,062,300 159,757 98 % 

sopr44_1 8,062,300 159,757 98 % 

guit58 8,062,300 159,757 98 % 

edra70 8,062,300 159,757 98 % 

 

Table 5.5 Simulated Reduction Ratio by Low Complexity PAM (Main_PAM Function) 

Test Sequences Original Main_PAM () 
(cycles) 

Speed-up Main_PAM () 
(cycles) Reduction Ratio % 

Gspi35_2 13,941,976 4,776,662 65.7 % 

vibr37 11,966,594 4,864,070 59.4 % 

sopr44_1 16,416,163 4,997,581 69.6 % 

guit58 14,101,033 4,888,818 65.3 % 

edra70 15,780,724 4,963,293 68.5 % 
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5.6 Simplified TNS Filter 

TNS is used to control the temporal shape of the quantization noise. This is done by 

applying a TNS filter process to the part of the spectral data. The order of the TNS filter with 

the LC profile is 12 for long window and 5 for short window. TNS algorithm uses the linear 

predictive coding (LPC) method which is based on the Levinson-Durbin Recursion algorithm 

to calculate the prediction gain. TNS will be active only if the prediction gain is greater than a 

given threshold and the threshold is bitrate dependent and varies between 1.2 and 1.41. Figure 

5.8 shows the flow chart of the TNS for the long window. 
 

Prediction gain > TNS threshold

Init_TNS
configuration

12th-order LPC calculation 
using Levinson Durbin algorithm

TNS Stereo Synchronization

Quantize the reflection coefficients

TNS Filter “ON” TNS Filter “OFF”

Prediction residual Original spectral 
coefficients

spectral 
coefficients

NoYes

Spectral coefficient × Weights (wfac)

 
 
Figure 5.8 The flow chart of the TNS for long window. Weights (wfac) is defined below. 
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However, the prediction gain is often smaller than TNS threshold, it wastes a lot of time 

to compute the 12th order prediction gain. We collect statistics and find that the percentage of 

TNS filter active for long window is pretty low. Table 5.6 shows the statistics. We find that 

the TNS active percentage for long window is pretty low except for some specific sequences. 

 

Table 5.6 The Percentage of the TNS Filter Active for Long Window. 

Test Sequences TNS Filter Active Percentage 
for Long Window 

Gspi35_2 9 % 

vibr37 6.4 % 

sopr44_1 4.6 % 

guit58 15.5 % 

ABBA69 9.6 % 

 

In order to reduce the computational time, we use a simplified 6th order LPC to calculate 

the prediction gain. If this simplified 6th order prediction gain is greater than the threshold, the 

original TNS detection (12th order LPC procedure) will be turned on. This is an early 

termination mechanism. Figure 5.9 shows the flow chart of this simplified TNS for long 

window. This simplified TNS detection can reduce the operational time because the 6th order 

TNS detection is much faster than the 12th order one. We like to check whether this simplified 

method is appropriate or not.  
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Figure 5.9 The flow chart of the simplified TNS for long window 

 

We have to check whether this simplified TNS is proper or not. According to the Figure 5.8 

and Figure 5.9, the 6th order and the 12th order LPC processes produce four different 

conditions as follows: 

(1) The 12th order TNS filter is “ON”. The simplified 6th order TNS filter is “ON”. 

(2) The 12th order TNS filter is “ON”. The simplified 6th order TNS filter is “OFF”. 

(3) The 12th order TNS filter is “OFF”. The simplified 6th order TNS filter is “ON”. 

(4) The 12th order TNS filter is “OFF”. The simplified 6th order TNS filter is “OFF”. 

 

Cases (1), (3), and (4) lead to the correct TNS detection. Only case (2) causes a different 
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result as comparing to the original TNS detection. We collect statistics to show that case (2) is 

rarely happened. Table 5.7 shows the results.  

Table 5.7 Cases (1), (2), (3) and (4) Percentage. 

Test Sequences Case (1)  
Percentage 

Case (2)  
Percentage 

Case (3)  
Percentage 

Case (4)  
Percentage 

Gspi35_2 9 % 0.3 % 0 % 90.7 % 

vibr37 6.4 % 0 % 0 % 93.6 % 

sopr44_1 4.6 % 0.4 % 0 % 95 % 

guit58 15.5 % 0.2 % 0.9 % 83.4 % 

ABBA69 9.6 % 0.1 % 0.7 % 89.6 % 

 

We can say that the simplified 6th order TNS detection has about the same result as the 

original 12th order TNS detection, but it reduces the computing time significantly. The 

complexity of LPC calculation using Levinson-Durbin Recursion algorithm is known as O(N2) 

arithmetic operations [30], where N is the order of the LPC. Therefore, the 6th order TNS 

detection is one-fourth the computing time comparing to the 12th order TNS detection. From 

Table 5.6, about 90% of total frame can reduce the complexity by this simplified TNS. 

However, this simplified TNS may attract extra computing time when the case (1) and case (3) 

happen. But comparing to case (4), case (1) and case (3) seldom happens. It means that this 

simplified TNS can reduce the complexity of TNS. Table 5.8 shows the reduction ratio of the 

window detection. We notice that the reduction ratio of the operational cycles is about 19 % in 

the TNS detection function. 

 

Table 5.8 Simulated Reduction Ratio of the Simplified TNS 

Test Sequences Original TNS 
 (cycles) 

Simplified TNS 
(cycles) Reduction Ratio % 

Gspi35_2 145,168 121,939 16 % 

vibr37 153,247 134,141 12.5 % 

sopr44_1 162,460 134,003 17.5 % 

guit58 114,419 80,972 29.2 % 

edra70 126,968 103,239 18.7 % 
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5.7 Quantization Acceleration 

As we described in Section 2.6 , the two iteration loops (R-D control) can provide the 

higher compression rate, but it is time consuming and complex. Many papers have suggested 

ways to accelerate the two iteration loops. The noise shaping method and fast bitrate rate 

control algorithm are proposed in [17] to reduce the complexity of the quantization module. 

The noise estimation method proposed in [19] is applied to derive single loop distortion 

control algorithm. It derives the distortion-free stepsize of each scalefactor band. According to 

equation 2.4 and 2.5, the formula of the non-uniform quantizer is as follows: 
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According to [19], the quantization noise can be rewritten as following. 
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The quantization noise in each scalefactor band:  

(5.5)

where qN  is the distortion of the qth scalefactor band. 

 

This noise estimation builds up the relationship between quantization noise, MDCT 

coefficient, and stepsizeq. In order to achieve non-distortion scalefactor bands, the 

quantization noise have to be less than the masking threshold. We derive the non-distortion 

stepsizeq of each scalefactor band below. 
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where floor(x) is the nearest integer that is less than or equal to the number x and qM  is the 

masking threshold of the qth scalefactor band. 

 

The non-distortion stepsizeq is obtained in a single loop but it is an approximate value. 

Hence, the 3GPP HE-AAC uses the single loop distortion control algorithm [17] [18] to 

accelerate. We describe its quantization process flow in the following steps.  

 

Step 1: 

Use the single loop distortion control algorithm [19] to obtain the stepsizeq of each 

scalefactor band. 

Step 2: 

The 3GPP HE-AAC attempts to increase or decrease the values of the stepsizeq to find a 

lower distortion, thereby improves the Noise-to-Mask-Ratio (NMR) and quantization 

noise. 

Step 3: 

In order to decrease the side information bits, the 3GPP HE-AAC reduces the difference 

of the scalefactor between two adjacent scalefactor bands. Because the difference of the 

scalefactor will be encoded, a smaller difference between two adjacent scalefactor bands 

costs less bits. But decreasing the scalefactor will cost more bits in quantizing the 

spectrum. Hence, we should search for a single scalefactor band. While using a smaller 

scalefactor, the side information bits reduced are greater than the quantized spectrum bits 
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increased. If such a scalefactor band is found and the quantization noise is smaller, then 

the new scalefactor is accepted. 

Step 4: 

Instead of improving only single scalefactor bands, the same procedure is applied to a 

complete region of the scalefactor bands.  

Step 5: 

We can obtain the global_gain by finding the maximum stepsizeq of all possible 

scalefactor bands, and the scalefactor for each individual band is then equal to the 

global_gain minus the respective stepsizeq. 

Step 6: 

The 3GPP HE-AAC uses the non-uniform quantizer and Huffman coding to encode the 

spectrum coefficient and side information. It counts the required bits to verify the 

required bits have to be less than the available bits. If the required bits are greater than 

the available bits, the global_gain is increased, and returns to the step 6. 

 

The flow chart of the 3GPP HE-AAC quantization is shown in the Figure 5.10. 
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Figure 5.10 The flow chart of the fast quantization module 

 

There is possibility that the masking threshold calculated by PAM may not be accurate, 

so the quantization module calculated based on the masking threshold is not noise-free. Figure 

5.11 shows the masking threshold and signal energy in one frame. We notice that some 

masking thresholds are not appropriate for the quantization process, and it leads to the 

degradation in the audio quality. 
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Figure 5.11 Comparison of the masking threshold and signal energy. 

 

Therefore, step 3 and step 4 of the quantization process try to improve the audio quality 

and quantization noise by decreasing the stepsize. The quantized coefficients are more 

accurate with the decreased stepsize. Figure 5.12 shows that the stepsize calculated in step 1 

(Original stepsize) and the stepsize calculated after step 3 and step 4 (Adjusted stepsize). 
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Figure 5.12 The 10th frame in a audio sequence. The original stepsize means that the stepsize 

calculated in step 1. Adjusted stepsize means that the stepsize after step 3 and step 4. 
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We notice that in the steps 3 and 4 of the quantization process, the stepsize is decreased 

in order to produce the better quantized coefficients. When decreasing the stepsize between 

two adjacent scalefactor bands, the bits used for quantized coefficients can be increased and 

the bits used for the side information (scalefactor) can be decreased. This implies that 

decreasing the bits used in side information (scalefactor) may spare extra bits used for 

quantized coefficients. The increased bits of the quantized coefficients would allow more 

accurate quantization. However, step 4 repeats the same procedure as step 3, but it spends a 

lot of time to decrease the difference of stepsize for the entire scalefactor bands. Therefore, in 

order to reduce the complexity of quantization module, we propose an accelerated method to 

simplify step 4.  

We find that, in step 4, the stepsizes in the high frequency part of scalefactor bands are 

rarely changed, and the stepsizes in the low frequency part of scalefactor bands are sometimes 

changed. Figure 5.13 and Figure 5.14 show the results.  
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Figure 5.13 The stepsize of each scalefactor band after step 3 and step 4 in a certain frame. 
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Figure 5.14 The stepsize of each scalefactor band after step 3 and step 4 in another frame. 

 

We notice that some stepsizes are changed by step 4 of the quantization process. In 

Figure 5.13, there is almost no changing in stepsize in every scalefactor band. In Figure 5.14, 

there are a few stepsizes changed in the low frequency part of the scalefactor bands. Therefore, 

we do not change the stepsize in every scalefactor band. We change only the stepsizes for 

scalefactor band 1 to scalefactor band 33 in step 4 to accelerate the quantization module. 

Another reason to choose scalefactor band 33 is that the scalefactor band 33 is about 4k Hz 

signals. We only adjust the signals below 4k Hz which human hearing is sensitive to this 

range. Table 5.11 shows the reduction ratio of applying the accelerated method. We notice that 

the operational cycles are about 57 % reduced in the quantization process. 

Table 5.9 Simulated Reduction Ratio of the Accelerated Quantization Module 

Test Sequences Original Quantization
(cycles) 

Accelerated Quantization 
(cycles) Reduction Ratio % 

Gspi35_2 6,892,276 2,751,259 60.1 % 

vibr37 8,663,742 4,410,110 49.1 % 

sopr44_1 10,863,258 4,709,163 56.7 % 

guit58 9,912,155 4,363,515 56 % 

edra70 9,590,086 4,128,428 57 % 
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5.8 Window Grouping 

The block switching determines whether to use the long window or short window to 

encode the frame. If the decision is to use the short window sequence, the frame divides into 

eight short window sequences each with 256 samples. Then the eight short windows may be 

grouped and interleaved in order to reduce the side information. The coefficients associated 

with the contiguous short windows can be grouped to share one set of scalefactors among all 

scalefactor bands within the group. However, the specification 14496-3 [2] does not explicitly 

describe how to group the eight short window sequences. The 3GPP HE-AAC has a set of 

grouping rules [13]. From the block switching detection in Section 5.4 , if an attack is 

detected in the frame, short window sequences will be used to encode this frame. Then the 

eight short windows will divide into 4 groups. The number of short windows in each group 

depends on the position of the attack. The position of the attack is shown in Figure 5.15. The 

3GPP HE-AAC grouping rules is shown in Table 5.10. 
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Figure 5.15 Block switching detection 
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Table 5.10 Grouping of Windows in an Eight Short Window Sequences 

Position 
of Attack 

Number of 
Windows in 

Group 1 

Number of 
Windows in 

Group 2 

Number of 
Windows in 

Group 3 

Number of 
Windows in 

Group 4 
0 1 3 3 1 

1 1 1 3 3 

2 2 1 3 2 

3 3 1 3 1 

4 3 1 1 3 

5 3 2 1 2 

6 3 3 1 1 

7 3 3 1 1 

 

However, 3GPP HE-AAC does not provide the sufficient reasons for dividing the eight 

short window sequences into four groups. Thus, we should verify that whether the grouping 

rules are appropriate or not. The idea come from another AAC codec, which known as FAAC 

[28]. FAAC codec has only one group in an eight short window sequence. We find that if we 

apply two groups or four groups, the audio quality and the Noise-to-Mask-Ratio (NMR) 

would be almost the same compared to the one group which shown in Figure 5.16 and Figure 

5.17. We discover that the 3GPP HE-ACC has a similar performance degradation in this 

situation, and we find the reason for this situation. 
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Figure 5.16 The ODG value of applying four groups and one group. 
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Figure 5.17 The NMR value of applying four groups and one group. 

 

 If we apply two or four groups to encode this frame, the way of allocating the bits to 

each group does not clearly specified in the 3GPP documents [13]. The quantization module 

does two loop R-D control from group 1 to group 4, and bit allocation module allocates the 



 74

bits from group 1 to group 4. If the transient signals appear in the group 4, then group 4 

should get more bits. However, the specification does not clearly define how to allocate bits to 

each groups, and the stopping conditions of the R-D control for short window does not 

configure properly. The other reason is that the side information is larger in the four groups 

than in one group. If the side information is large, the available bits for the spectrum 

coefficients will be less. 

Therefore, we apply one group for the short window frame. The R-D control of the 

quantization module is accelerated because there is only one group. Table 5.11 shows the 

reduction ratio of using one group in the quantization module. We notice that the operational 

cycles are about 7 % reduced in the quantization function. 

 

Table 5.11 Simulated Reduction Ratio of Applied the One Group in Quantization Module 

Test Sequences Original Quantization 
Module (cycles) 

Apply One Group to 
Quantization Module 

(cycles) 
Reduction Ratio % 

Gspi35_2 6,892,276 6,444,278 6.5 % 

vibr37 8,663,742 8,252,028 4.8 % 

sopr44_1 10,863,258 10,045,721 7.5 % 

guit58 9,912,155 9,042,005 8.7 % 

edra70 9,635,256 9,039,708 6.2 % 
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5.9 Experiments and Acceleration Results 

Several experiments verifying the above acceleration methods are presented in the 

following. The proposed HE-AAC encoder is implemented on the 32-bit fixed-point C6416T 

DSP processor. HE-AAC encoder runs under the AAC LC profile with SBR. The range of the 

bitrate is from 24k to 48k bps for stereo channel. The performance evaluation of HE-AAC 

includes the encoding speed, code size, and coding quality. 

 

5.9.1 Test Sequence 

We take the nine test audio sequences from EBU [28]. These audio sequences are 

CD-quality sampled at 48k Hz with 16 bits for stereo channel. These audio sequences and 

their characteristics are listed in Table 5.12. Tracks 1 to 3 are single instruments. Tracks 4 and 

5 are vocal. Track 6 is human speech. Track 7 is the solo instrument. Tracks 8 and 9 are pop 

music. 

 

Table 5.12 Test Audio Files and Their Characteristic 

Track Audio File Time 
(sec) Mode Description 

1 horn23_2 25 stereo Horn. Melodious phrase  

2 Gspi35_2 9 stereo Glockenspiel. Melodious phrase 

3 harp40_1 8 stereo Harpsichord, Melodious phrase 

4 sopr44_1 12 stereo Soprano. Vocal 

5 Bass47_1 24 stereo Bass. Vocal 

6 spfe49_1 19 stereo Female speech in English 

7 guit58 13 stereo Guitar. Solo instrument 

8 ABBA69 21 stereo ABBA. Pop music 

9 edra70 14 stereo Eddie rabbitt. Pop music 
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5.9.2 Profile on the proposed HE-AAC 

In order to verify the performance of the proposed HE-AAC encoder, we simulate with 

the C6416T DSP simulator to profile the cycles before and after acceleration of the HE-AAC 

encoder. We use the “File level” (-o3) optimization for the proposed HE-AAC encoder on 

DSP. The original 3GPP HE-AAC encoder uses no optimization and “File level” (-o3) 

optimization. Table 5.13 and Table 5.14 and show the reduction ratios of the speed-up 

performance. 

 

Table 5.13 Simulated Reduction Ratios of the Proposed HE-AAC Compared to the Original 

HE-AAC with Bitrate at 48k bps. 

Track 
Reduction Ratio % of Comparing 

3GPP HE-AAC (no opt.) 
with Proposed HE-AAC (-o3) 

Reduction Ratio % of Comparing 
 3GPP HE-AAC (-o3)  

With Proposed HE-AAC (-o3) 
1 82.7 % 55.6 % 

2 82.6 % 56.5 % 

3 80.8 % 54.9 % 

4 82 % 54.1 % 

5 81.8 % 56.7 % 

6 82.3 % 57.3 % 

7 81.7 % 56.5 % 

8 81.3 % 55.2 % 

9 81.1 % 53.8 % 
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Table 5.14 Simulated Reduction Ratios of the Proposed HE-AAC Compared to the Original 

HE-AAC with Bitrate at 32k bps. 

Track 
Reduction ratio % of comparing

 3GPP HE-AAC (no opt.) 
with proposed HE-AAC (-o3) 

Reduction ratio % of comparing
 3GPP HE-AAC (no opt.) 

with proposed HE-AAC (-o3) 
1 82.5 % 55.3 % 

2 82.3 % 56.1 % 

3 80.1 % 54.5 % 

4 81.7 % 53.7 % 

5 81.2 % 56.3 % 

6 81.9 % 57 % 

7 81.5 % 56.2 % 

8 81.2 % 54.9 % 

9 81 % 53.4 % 

 

5.9.3 Million Instructions per Second (MIPS) 

The computational complexity of the original HE-AAC encoder is 61 MIPS. After our 

acceleration, the computational complexity of the proposed HE-AAC encoder can be reduced 

to 50 MIPS. 

 

5.9.4 Memory / Code-size Improvement 

We present the code size and data size (ROM) and RAM requirement comparison 

between the original and the proposed HE-AAC encoder. The smaller ROM and RAM 

requirement are more desirable for the embedded system. The data size (ROM) of the 

proposed HE-AAC is about 41.7 kB. The code size (ROM) the proposed HE-AAC is about 

230 kB. The RAM (static and dynamic memory) the proposed HE-AAC is about 90 kB. Table 

5.15 shows the reduction ratio of the code size and RAM requirement. Therefore, we can 

reduce the memory usage on DSP system. 
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Table 5.15 Code Size and RAM Requirement with Bitrate at 48k bps. 

 Original HE-AAC
(byte) 

Proposed HE-AAC
(byte) reduction ratio% 

Code size (ROM) 377k 230k 39 % 

RAM 100k 90k 10 % 

 

5.9.5 Encoding Quality 

In order to evaluate the coding quality, ITU-R Recommendation BS. 1378 [26] is 

adopted as the objective audio quality measurement method, which defines the Objective 

Difference Grade (ODG). The ODG values ideally ranges from 0 to -4, where 0 corresponds 

to an imperceptible difference between reference and test signal and -4 corresponds to the 

very annoying difference. Therefore, the ODG value that is close to zero represents the better 

sound quality. Table 5.16 shows the scales of the ODG.  

 

Table 5.16 The Scales of ODG 

ODG scale Quality 

0 Imperceptible 

-0.1 to -1 Perceptible but not annoying 

-1.1 to -2 Slightly annoying 

-2.1 to -3 Annoying 

-3.1 to -4 Very annoying 

 

Apart from ODG, Noise-to-Mask-Ratio (NMR) can be used as an alternative method to 

measure the sound quality. NMR is the ratio of the noise generated by the encoding process to 

the masking threshold calculated by the PAM. Negative NMR value represents the noise is 

masked by masking threshold. Therefore, the smaller NMR corresponds to the better sound 

quality. The values of ODG and NMR are calculated by EAQUAL [27] software. We compare 

the sound quality of the compressed audio with the sound of the uncompressed audio by 

EAQUAL. The EAQUAL has been widely used to measure the compression technique due to 

its capability of detect perceptual difference sensible to human hearing system.  



 79

Table 5.17 and 5.18 show the results of the original 3GPP HE-AAC encoder and 

proposed HE-AAC encoder with bitrate at 48k and 32k bps. The decoder that we use is 

FAAD2 [32]. 

 

Table 5.17 The ODG and NMR of the Original and the Proposed HE-AAC Encoder of 48k 

bps Bitrate. 

Track Original 
(ODG) 

Original 
(NMR) 

Proposed 
(ODG) 

Proposed 
(NMR) 

1 -1.94 -6.7689 -1.95 -6.7692 

2 -3.56 -3.0803 -3.52 -3.1671 

3 -3.62 -3.5643 -3.63 -3.5948 

4 -3.10 -4.5748 -3.15 -4.4212 

5 -3.08 -5.3934 -3.10 -5.2647 

6 -3.23 -5.1082 -3.32 -4.7368 

7 -3.03 -4.2553 -3.13 -3.9331 

8 -2.94 -4.3282 -2.98 -4.2870 

9 -2.09 -5.6609 -2.15 -5.4219 
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Figure 5.18 The ODG of the original and the proposed HE-AAC of 48k bps bitrate. 
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Figure 5.19 The NMR of the original and the proposed HE-AAC of 48k bps bitrate. 

 

 

Table 5.18 The ODG and NMR of the Original and the Proposed HE-AAC Encoder of 32k 

bps Bitrate. 

Track Original 
(ODG) 

Original 
(NMR) 

Proposed 
(ODG) 

Proposed 
(NMR) 

1 -2.23 -6.3075 -2.21 -6.3371 

2 -3.64 -1.6547 -3.65 -1.6242 

3 -3.73 -1.0310 -3.73 -1.0287 

4 -3.27 -3.4430 -3.28 -3.4202 

5 -2.34 -3.4714 -2.35 -3.3868 

6 -3.54 -3.1952 -3.58 -3.0127 

7 -3.53 -2.4583 -3.54 -2.4315 

8 -3.56 -2.8753 -3.59 -2.8321 

9 -2.94 -4.1159 -2.97 -3.9063 
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Figure 5.20 The ODG of the original and the proposed HE-AAC of 32k bps bitrate. 
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Figure 5.21 The NMR of the original and the proposed HE-AAC of 32k bps bitrate. 
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Chapter 6  

Conclusion and Future Work 

 

 

6.1 Conclusion 

The main goal of this thesis is to accelerate the MPEG-4 HE-AAC encoder and to 

implement it on the TI C6416T DSP processor. Our proposed acceleration methods efficiently 

reduced the complexities of the HE-AAC encoder. These methods included transient detector 

acceleration, fast down-sampling filter, simplified block switching mechanism, low 

complexity psychoacoustic model, simplified TNS, fast quantization, and simplified window 

grouping module. The transient detector acceleration and fast down-sampling filter are the 

acceleration methods for the SBR portion. For the transient detector, we analyzed the 

compressed audio spectrum and the SBR frequency band tables in Section 3.3.3 . We 

observed that the frequency above 17k Hz is generally low power and is truncated at the end 

of process. Hence, in finding the transients, we simply calculated the signal energy of the 

frequency below 17k Hz to accelerate the transient detector. For down-sampling filter, we 

used the poly-phase decomposition to reduce its computations. 

The simplified block switching, low-complexity psychoacoustic model, simplified TNS, 

fast quantization, and simplified window grouping module are the acceleration methods for 

the AAC portion. In the simplified block switching, we removed the high-pass filter to speed 

up the AAC encoder and the experimented data shows that removing the high-pass filter still 

maintained good audio quality. In the low complexity PAM approach, we reduced the 

calculation of spreading functions and spreaded energies by replacing them with a look-up 

table. For the simplified TNS, we used an early termination method to accelerate the TNS 

module. This method significantly reduced the computations of TNS. For fast quantization, 

we used a single loop distortion control algorithm at the outer loop to speed up the 

quantization. We applied the noise estimation method to derive the non-distortion stepsize of 
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each scalefactor band. We also proposed a simplified step of checking the complete region of 

the scalefactor bands. For window grouping acceleration, we used only one group for the 

eight short windows to replace four groups. 

Several experiments at different bitrates have been conducted to verify the acceleration 

methods. The speed-up performance, memory requirement, and audio quality were taken into 

consideration together. The speed improvement of the proposed HE-AAC was about 55 % 

over the original 3GPP HE-AAC under the same compiler optimization level. The 

computational complexity of the proposed HE-AAC encoder could be reduced to 50 MIPS. 

For the memory requirement, the code size requirement was reduced by 39% and the RAM 

requirement was reduced by 10% when comparing to the 3GPP HE-AAC codec. As for the 

objective sound quality tests, we maintained the same level of the sound quality.  

 

6.2 Future Works 

Our MPEG-4 HE-AAC (aacPlus) codec is mainly concentrated on the aacPlus version 1. 

The aacPlus v1 is a combination of AAC and SBR. SBR exploits the possibilities of a 

parameterized representation of the highband signals. However, aacPlus v2 adds a new 

technology to the aacPlus v1 in order to support lower bitrate coding. This new technology is 

called Parametric Stereo (PS). Figure 6.1 shows the aacPlus audio codec family. 

 

AAC SBR Parametric
Stereo++

aacPlus v1 aacPlus v2

aacPlus v2 = AAC + SBR + PS

 

Figure 6.1 aacPlus audio codec family 
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PS module increases the coding efficiency by exploiting a parametric representation of 

the stereo image of a given input signal. Then, in order to provide lower bitrate coding and to 

maintain a high audio quality, aacPlus v2 can be chosen as the audio codec. But the 

parametric stereo is also a time consuming module, and should be speeded up. Therefore, 

accelerating the aacPlus v2 and implementing it on the DSP system can be a useful and 

challenging task. Our acceleration methods for AAC and SBR can be a part of techniques 

used for accelerating the aacPlus v2. 
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