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摘    要 

 

隨著超大型積體電路製程快速的進步，愈來愈多的元件可以輕易整合進單晶片系

統。對於這些需要高度運算能力的系統來說，記憶體子系統，特別是外部動態隨機存取

記憶體的頻寬跟功率消耗，是一個需要優先評估及最佳化的重點。這對一個晶片是否成

功來說很重要。 

 

在這篇論文中，我們考慮動態隨機存取記憶體的頻寬和功率消耗，以及傳輸等待時

間，然後提出一個智慧型記憶體控制器設計。這個設計是利用我們自製的可設定多媒體

平台模擬器來評估及開發。 

 

對於最複雜的視訊電話模擬設定來說，我們提出幾種技巧來達到高度平均記憶體頻

寬使用率。首先，我們使用記憶體同步定址來提高頻寬使用率同時降低傳輸等待時間。

接著，根據視訊電話傳輸資料的特性，我們提出一種「改良式先到先處理」的排程方法。

這個方法可以增加頻寬使用率同時降低記憶體功率消耗。最後，我們使用「等待時間重

於指令種類」的記憶體指令排程方式來隱藏記憶體運作等待時間。如此，開發出的記憶

體控制器改善平均頻寬使用率從 40%到 72%，並需要約 485 毫瓦的功率消耗。如果我們

以降低記憶體功率消耗為主要考量，在滿足時間的限制條件下，我們提出另外一種設計

可以節省 26%的功率消耗。 

 

我們將提出的技巧實際設計成硬體。在 0.18 微米的互補式金氧半導體製程下，我

們的設計需要 47.6K 個邏輯閘並可達到 166 百萬赫茲的運作頻率。
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Abstract 
 

With the rapid progress of VLSI process, more and more components are easily to be 
integrated into one System-on-Chip. For such system with high computational power, the 
memory subsystem, especially the bandwidth and power consumption of external DRAM, is 
one of major issues that have to be evaluated and optimized first for the chip success. 
 

In this thesis, we propose a smart memory controller design which takes DRAM 
bandwidth, transaction latency, and DRAM power consumption into consideration. This 
design is developed and evaluated by a configurable multimedia platform simulator. 
 

For the most complex video phone scenario, we propose several techniques to achieve 
high average DRAM bandwidth utilization. First, we adopt the bank-interleaving support to 
increase the bandwidth utilization while reduce the  transaction latency. Second, according 
to the scenario characteristics, we propose MFIFS (Modified First In First Serve) as the 
transaction scheduling policy. It can increase bandwidth utilization while reduce DRAM 
power consumption. Third, we use LTOT (Lasted Time Over Type) as the DRAM command 
scheduling policy to hide DRAM operation latencies. Thus, the resulted memory controller 
improves average bandwidth utilization from 40% to 72% with estimated 485 mW DRAM 
power consumption for the video phone scenario. If the design has to minimize DRAM power 
consumption while still meet timing constraints, another proposed memory controller can 
save up to 26% of power. 
 

The proposed techniques are implemented into hardware. The implementation uses 0.18 
μm CMOS process with 47.6K gates and achieves 166 MHz operating frequency.
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Chapter 1                      

Introduction 

1.1  Background 

In recent years, due to explosive improvement in semiconductor technology, the 
embedded system gets sufficient computing power to implement various consumer 
electric products and is small enough to fit in a chip. Also, due to great progress in 
VLSI design methods and the related CAD tools, it takes less and less time to finish a 
design. Thus, designers feel much more time-to-market pressure. To meet these trends, 
the concept of SoC and IP is proposed [1]. 
 

With a standard on-chip bus, the compliant IPs can be easily integrated to 
perform SoC. However, IPs are not jigsaw. Before integration, careful evaluation and 
modification in system level to meet all constraints is necessary [1][2]. The 
performance and power consumption of external memory is especially critical that 
have to be evaluated and optimized first. 
 

As DRAM advances, data rate is no longer the most critical issue. Instead, its 
large power consumption in the embedded system becomes a major problem, 
especially in a portable device [3]. Thus, how to develop a memory controller with 
balanced DRAM performance and power consumption is important nowadays. 

1.2  Related Work 

According to DRAM operating characteristics, various scheduling policies are 
proposed for DRAM performance or power consumption optimization. 
 

Scott Rixner’s memory controller reorders DRAM accesses among different 
streams and within a single stream to optimize the bandwidth utilization [4]. However, 
since the reordered transactions cannot be sent out of order, they have to be reordered 
again. Thus, extra hardware cost is required. 
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Victor Delaluz proposes several threshold-based policies to turn DRAM into low 
power state during the interval with no access [5]. Since it is impossible to know 
when the next access will occur, the return latency from low power state to normal 
state is the prediction miss penalty. 
 

Yongsoo Joo introduces a precise energy characterization of DRAM memory 
system and explores the amount of energy associated with design parameters. After 
that, a practical mode control scheme is proposed for the DRAM device [6]. 
 

Ning-Yaun Ker not only controls DRAM power states by the threshold-based 
policy but also by monitoring the DRAM bus utilization to efficiently reduce the 
prediction miss penalty [7]. However, it doesn’t work when there are sustained 
accesses. 
 

Artur Burchard presents a real-time streaming memory controller with PCI 
Express interface [8]. Also, he shows both power and latency trade-offs with buffer 
size. 
 

Kun-Bin Lee proposes an efficient quality-aware memory controller for 
multimedia platform SoC [9]. It utilizes a quality-aware scheduler to provide 
quality-of-service (QoS) guarantees including minimum access latencies and 
fine-grained bandwidth allocation. 
 

Sonics Limited develops MemMax 2.0 memory controller which improves 
efficiency of DRAM by up to 40% and also provides QoS guarantees. However, it 
must be used on Sonics’s own MicroNetwork on-chip bus standard [10]. 
 

ARM Limited provides a configurable AXI compliant soft IP, PL340, for the 
customers [11]. It supports both SDRAM and DDR SDRAM. By utilizing AXI 
features, it provides exclusive access semaphore support for multiprocessing systems. 
Moreover, it also supports programmable arbitration with advanced memory access 
scheduling and QoS for low latency access to memory. However, the design 
architecture and performance information is limited. 

 
The researches about memory scheduling policies listed above have three 

common defects. First, they address only on DRAM performance improvement or 
DRAM power consumption reduction. However, the two factors are trade-off and 
should be evaluated together. Second, they rarely use popular on-chip bus standard. 
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Hence, the results are hard to compare and may not be so efficient in real applications. 
Third, only DRAM bandwidth utilization and transaction latency are used to evaluate 
the performance. Nevertheless, how to make sure all system tasks are done within 
preset timing constraints is also important from the system viewpoint. 

1.3  Motivation and Contribution 

The aforementioned issues motivate us to develop an evaluation platform for 
both DRAM performance and power consumption and a suitable memory controller 
for the platform. 
 

The contribution of this thesis includes the following. 1) The multimedia 
platform simulator can be easily configured to perform various scenarios for both 
DRAM performance and power consumption evaluation. 2) The memory controller in 
the simulator can be easily modified to perform different policies for evaluation 
before hardware implementation. 3) Propose a method to balance the DRAM 
performance with different system bus arbitration schemes. 

1.4  Thesis Organization 

In Chapter 2, the characteristics of modern on-chip bus and DRAM are 
introduced. Chapter 3 presents our multimedia platform simulator and the memory 
controller scheduling policies implemented. Then, in Chapter 4, we show the 
simulation result and analysis. Chapter 5 implements a memory controller according 
to the simulation result of Chapter 4. Chapter 6 is the conclusion and future work. 
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Chapter 2                         

Overview of Modern On-chip Bus and 

DRAM 

This chapter is divided into two parts to introduce modern on-chip bus and 
DRAM. In Section 2.1, a modern on-chip bus specification is presented. After that, in 
Section 2.2, we introduce the DRAM basics and how to measure DRAM power 
consumption in system level. 

2.1  Advance Microcontroller Bus Architecture (AMBA) 

The AMBA protocol [12] is an open standard, on-chip bus specification which is 
drawn up by ARM Limited. It is the most popular on-chip bus standard in the world 
now. 
 

The latest version of AMBA is 3.0. It is also called Advanced eXtensible 
Interface (AXI) [13]. AXI is first brought up in Embedded Professor Forum (EPF), 
2003 and its version 1.0 specification is then announced in March, 2004. The most 
distinct feature of AXI is the out-of-order transaction that makes it ideal for the high 
performance system and relaxes the constraints to the memory controller. 

2.1.1  AXI Architecture 

Fig. 2-1 shows a generic AXI architecture. There are five independent channels 
in charge of communication between the master and slave. The five channels are write 
address channel, read address channel, write data channel, write response channel, 
and read data channel respectively. Each channel contains a set of forward signals and 
one feedback signal. The feedback READY signal is used to cooperate with the 
forward VALID signal to perform channel handshaking for data and control 
information transfer. Channel handshaking will be stated later. 
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AXI
Master

AXI
Slave

AWREADY

ARREADY

WREADY

BREADY

RREADY

Write Address/Control

Read Address/Control

Write Data

Write Response

Read Data

 

Fig. 2-1 Generic AXI architecture 

 
When the master initiates a read transaction, it sends address and control 

information to the slave by read address channel. When the slave receives address and 
control information, it starts to work. After the slave finishes its task, data are sent 
back to the master via read data channel. The read transaction is not done until the last 
burst data is accepted by the master. 
 

As to a write transaction, the master sends address and control information to the 
slave by write address channel first. Then, the master provides data required for the 
slave via write data channel. Finally, after the slave finishes its task, a response is sent 
back through write response channel. The master checks the response to see if the 
write transaction succeeds. Fig. 2-2 presents the process of read transactions and write 
transactions respectively. 
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AXI
Master

AXI
Slave

Address 
and 

Control

Read 
Data

Read Address Channel

Read 
Data

Read 
Data

Read Data Channel

 
                                  (a) 

 
                                  (b) 

Fig. 2-2 (a) Channel architecture of reads (b) Channel architecture of writes 

2.1.2  Channel Handshaking 

All five channels use VALID/READY handshaking to transfer data and control 
information. This mechanism enables both the master and slave to control transfer 
rate of data and control information. The source raises the VALID signal to indicate 
that data or control information is available. The destination raises the READY signal 
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to indicate that data or control information can be accepted. Transfer occurs only 
when VALID and READY signals are both HIGH. 
 

 

                                     (a) 

 

                                     (b) 

 

                                     (c) 

Fig. 2-3 (a) VALID before READY (b) READY before VALID (c) VALID with READY 

 
Fig. 2-3 shows all possible cases in VALID/READY handshaking. Note that the 

source provides valid data and control information and drives VALID signal HIGH 
simultaneously. The arrow in Fig. 2-3 indicates when the transfer occurs. 
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2.1.3 Transaction Ordering 

Unlike AMBA 2.0 in which only one granted transaction can use the common 
system bus interconnect until it is finished, AXI separates channel relations and uses 
“ID tag” to enable out-of-order transaction completion. 
 

Out-of-order transactions improve system performance in two ways: 
● Bus interconnect can enable transactions with fast-responding slaves to 

complete in advance of earlier transactions with slower slaves. 
● Complex slaves can return read data out of order. For example, data for a later 

transaction might be available in internal buffer before data for an earlier 
transaction is available. 

 
Although AXI supports out-of-order transactions, it doesn’t mean that 

transactions can be reordered at pleasure. The basic rule is “Transactions with same 
ID tag must be completed in order”. That is, if a master requires transactions to be 
completed in the same order as they are issued, the master must assert these 
transactions with the same ID tag. If, however, a master does not require in-order 
transaction completion, it can supply transactions with different ID tags. 
 

The rule stated before is just for the single master system. In a multi-master 
system, the bus interconnect has to append additional information to the ID tag to 
ensure that ID tags are unique from all masters. 

2.1.4  Additional Features 

● Burst types 
AXI supports three different burst types which are suitable for: 
 Normal memory accesses 
 Wrapping cache line bursts 
 Streaming data to peripheral FIFO locations 

 
● System cache support 

The cache-support signal of AXI enables a master to provide to a system-level 
cache the bufferable, cacheable, and allocate attributes of a transaction. 
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● Protection unit support 
To enable both privileged and secure accesses, AXI provides three levels of 
protection unit support. 

 
● Atomic operations 

AXI defines mechanisms for both exclusive and locked accesses. 
 
● Error support 

AXI provides error support for both address decode errors and slave-generated 
errors. 

 
● Unaligned address 

AXI supports unaligned burst start addresses to enhance the performance of 
the initial accesses within a burst. 

2.2  Modern DRAM 

Modern DRAM takes high initialization cost for each new burst access due to its 
operating characteristics. Thus, how to minimize such cost is an important issue for 
the memory controller. 

2.2.1  DRAM Basics 

 

Fig. 2-4 Simplified DRAM architecture 
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Fig. 2-4 is a simplified DRAM architecture. In general, there are four bank of 

memory arrays with corresponding row and column decoders in one memory chip. 
Each bank of memory array consists of rows and each row consists of columns. The 
data width of one column equals to that of DRAM data bus. DRAM density size is the 
multiplication of the bank number in one chip, the row number in one bank, the 
column number in one row, and the data width of one column. 
 

When there is a read or write access, the accessed row must be loaded to sense 
amplifiers of the corresponding bank first. Then, columns are read from or written to 
the sense amplifiers. If the next access is to the same bank and row, columns can be 
accessed directly without reloading the row. However, if the next access is to different 
row in the same bank, DRAM has to write current row back to memory array from 
sense amplifiers and load needed one. 
 

Mode register stores DRAM settings including burst length, burst type, CAS 
latency, and etc. It should be configured during power-up initialization. 
 

The memory array stores data in small capacitors which lose charge over time. In 
order to retain data integrity, DRAM needs to recharge these capacitors. This process 
is done by loading data to sense amplifiers and writing back row by row. The refresh 
counter is used to generate row addresses necessary. 

2.2.2  DRAM Operations 

Now, we start to introduce DRAM operations in terms used in JEDEC standard 
[14][15]. Since there are slight differences between each DRAM type, we take DDR 
SDRAM as a representative. 
 
A. Activation 

When the state of a bank is idle, a row must be “opened” before any READ or 
WRITE command can be issued to that bank. Opening one row is to load the row 
from memory array to sense amplifiers. This operation is accomplished by ACTIVE 
command. 
 

After the ACTIVE command, tRCD is required before a READ or WRITE 
command to that row to be issued. A subsequent ACTIVE command to a different 
row in the same bank can not be issued until the active row has been “closed” which 
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takes  at least tRC. However, a subsequent ACTIVE command to another bank just 
needs a tRRD latency. 
 
B. Read 

The read burst is initiated by a READ command with the bank and starting 
column address. During a read burst, the first valid data-out element from the starting 
column address will be available following CAS latency after the READ command is 
issued. 
 
C. Write 

The write burst is initiated with a WRITE command and the bank and starting 
column address. During a write burst, the first valid data-in element will be registered 
following tDQSS after the WRITE command. 
 

After the last valid data-in element is registered, tWTR is required before a 
READ command to any bank and tWR before a PRECHARGE command to the same 
bank. 
 
D. Precharge 

This operation writes the active row in sense amplifiers back to memory array. 
The bank will be available for a subsequent row activation tRP after the 
PRECHARGE command is issued. 
 
E. Refresh 

Refresh operation retains data integrity in memory array. AUTO REFRESH 
command is used to initiate this operation every tREFC interval and tRFC should be 
met between two successive AUTO REFRESH commands. Note that, AUTO 
REFRESH command can only be issued when all banks are idle. 
 
F. Power-down 

In DDR SDRAM standard, there are three power-down modes. These modes are 
precharge power-down, active power-down, and self refresh. 
 

Precharge power-down is entered when CKE is registered LOW and all banks 
are idle. Active power-down is entered when CKE is registered LOW and there is a 
row active in any bank. Self refresh is entered when CKE is registered LOW with all 
banks idle and AUTO REFRESH command. 
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Precharge power-down and active power-down do not refresh memory array 
automatically, so the power-down duration is limited by tREFC. However, self refresh 
does not have such limitation. 
 

Since precharge power-down and active power-down disable less functional 
units, they save less power while cost only several cycles to return original state. Self 
refresh disables almost all functional units, so it saves more power at the expense of 
several hundred return cycles. 
 

Idle Active

Active

Precharge

Read / Write

Idle Active

Active

Precharge

Read / Write

Bank0

Bank3

●
●
●

Refresh / 
Power-down

 

Fig. 2-5 Simplified DRAM state diagram 
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Scope Parameter Symbol 
ACTIVE to READ or WRITE delay tRCD 
ACTIVE to PRECHARGE command tRAS 
ACTIVE to ACTIVE command tRC 
WRITE to first DQS latching transition tDQSS 
Write recovery time tWR 

Affect single bank

PRECHARGE command period tRP 
ACTIVE bank a to ACTIVE bank b command tRRD 
Last write data to READ command delay tWTR 
Longest tolerable refresh interval tREFC 

Affect all banks 

AUTO REFRESH command period tRFC 

Table 2-1 Key DDR SDRAM timings 

 
Fig. 2-5 shows a simplified DRAM state diagram to provide a clear relationship 

between each operation. Table 2-1 lists key DDR SDRAM timings. 

2.2.3  DRAM Power Calculation 

Jeff Janzen proposed Calculating Memory System Power for DDR SDRAM in 
Micron designline, quarter 2, 2001 [16]. This article analyzes how DDR SDRAM 
consumes power and develops a method to calculate memory system power. This 
method can help memory sub-system power consumption estimation in high-level 
system evaluation before low-level hardware implementation. 
 

According to DDR SDRAM operations, memory system power consists of 
precharge power-down power, precharge standby power, active power-down power, 
active standby power, activate power, write power, read power, I/O power, and 
refresh power. Table 2-2 is the IDD specifications which can be looked up in data sheet. 
Table 2-3 is the parameters defined for equations in this article. All these parameters 
are used in power consumption calculation. 
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Parameter / Condition Symbol 
OPERATING CURRENT: One bank; Active Precharge; tRC = tRC 
MIN; tCK = tCK MIN 

IDD0 

PRECHARGE POWER-DOWN STANDBY CURRENT: All banks 
idle; Power-down mode; tCK = tCK MIN; CKE = LOW 

IDD2P 

IDLE STANDBY CURRENT: CS = HIGH; All banks idle; tCK = tCK 
MIN; CKE = HIGH 

IDD2F 

ACTIVE POWER-DOWN STANDBY CURRENT: One bank; 
Power-down mode; tCK = tCK MIN; CKE = LOW 

IDD3N 

ACTIVE STANDBY CURRENT: CS = HIGH; One bank; tCK = tCK 
MIN; CKE = HIGH 

IDD3N 

OPERATING CURRENT: Burst = 2; READs; Continuous burst; One 
bank active; tCK = tCK MIN; IOUT = 0 mA 

IDD4R 

OPERATING CURRENT: Burst = 2; WRITEs; Continuous burst; One 
bank active; tCK = tCK MIN 

IDD4W 

AUTO REFRESH CURRENT; tRC = 15.625 ms IDD5 

Table 2-2 IDD specifications used in power consumption calculation 

 
Parameter Description 
VDDsys VDD at which the system drives DDR SDRAM. 
FREQsys Frequency at which the system applies to DDR SDRAM. 
p(perDQ) Output power of a single DQ. 
BNK_PRE% Percentage of time all banks are precharged. 
CKE_LO_PRE% Percentage of precharge time that CKE is LOW. 
CKE_LO_ACT% Percentage of active time that CKE is LOW. 
tACT Average time between ACTIVE commands. 
RD% Percentage of time that output reads data. 
WR% Percentage of time that input writes data. 
num_of_DQ Number of DDR SDRAM DQ pins 
num_of_DQS Number of DDR SDRAM DQS pins 

Table 2-3 Parameters defined for equations 

 
Fig. 2-6 shows the current usage on a DDR SDRAM device as CKE transitions. 

The current profile illustrates how to calculate precharge power-down and precharge 
standby power. Similarly, active power-down and active standby power can be 
calculated. 
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Fig. 2-6 Precharge power-down and standby current [16]

 
Precharge power-down power 

p(PRE_PDN) = IDD2P * VDD * BNK_PRE% * CKE_LO_PRE% 
 
Precharge standby power 

p(PRE_STBY) = IDD2F * VDD * BNK_PRE% * (1 – CKE_LO_PRE%) 
 
Active power-down power 

p(ACT_PDN) = IDD3P * VDD * (1 – BNK_PRE%) * CKE_LO_ACT% 
 
Active standby power 

p(ACT_STBY) = IDD3N * VDD * (1 – BNK_PRE%) * (1 – CKE_LO_ACT%) 
 

 

Fig. 2-7 Activate current [16]
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In Fig. 2-7, it is obvious that each pair of ACTIVE and PRECHARGE command 
consumes the same energy. Thus, activate power can be calculated by dividing total 
energy of all ACTIVE-PRECHARGE pairs by time. 
 
Activate power 

p(ACT) = (IDD0 – IDD3N) * tRC(spec) * VDD / tACT 
 

 

Fig. 2-8 Write current [16]

 
Fig. 2-8 shows that IDD4W is required for write data input. 

 
Write power 

p(WR) = (IDD4W – IDD3N) * VDD * WR% 
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Fig. 2-9 Read current with I/O power [16]

 
In Fig. 2-9, since the DRAM device drives external logics for read data output 

during a read access, extra I/O power is needed. 
 
Read power 

p(RD) = (IDD4R – IDD3N) * VDD * RD% 
 
I/O power 

p(DQ) = p(perDQ) * (num_of_DQ + num_of_DQS) * RD% 
 

The last power component is refresh power and its equation is shown below. 
 
Refresh power 

p(REF) = (IDD5 – IDD2P) * VDD

 
So far, all equations use IDD measured in the operating condition listed in data 

sheet. However, the actual system may apply VDD and operating frequency other than 
those used in data sheet. Thus, the former equations have to be scaled by voltage 
supply and operating frequency. 
 

P(PRE_PDN) = p(PRE_PDN) * (use VDD)2 / (spec VDD)2

P(ACT_PDN) = p(ACT_PDN) * (use VDD)2 / (spec VDD)2
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P(PRE_STBY) = p(PRE_STBY) * (use freq)2 / (spec freq)2 * (use VDD)2 / 
(spec VDD)2

P(ACT_STBY) = p(ACT_STBY) * (use freq)2 / (spec freq)2 * (use VDD)2 / 
(spec VDD)2

P(ACT) = p(ACT) * (use VDD)2 / (spec VDD)2

P(WR) = p(WR) * (use freq)2 / (spec freq)2 * (use VDD)2 / (spec VDD)2

P(RD) = p(RD) * (use freq)2 / (spec freq)2 * (use VDD)2 / (spec VDD)2

P(DQ) = p(DQ) * (use freq)2 / (spec freq)2

P(REF) = p(REF) * (use VDD)2 / (spec VDD)2

 
Then, sum up each scaled power component to get total power consumption. 

 
P(TOTAL) = P(PRE_PDN) + P(PRE_STBY) + P(ACT_PDN) + 

P(ACT_STBY) + P(ACT) + P(WR) + P(RD) + P(DQ) + 
P(REF) 
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Chapter 3                       

Multimedia Platform Modeling 

In this chapter, the development of multimedia platform simulator is introduced. 
Section 3.1 is a brief introduction of why we need a simulator. Section 3.2 presents a 
generic multimedia platform for modeling. In Section 3.3, 3.4, and 3.5, each portion 
of the simulator is described. 

3.1  Introduction 

When starting to build our simulation environment, a key problem is how to 
balance coding time, flexibility, simulation speed, and accuracy of the simulator. 
HDL does not seem to be a good choice. First, it is developed in hardware view and 
that is, more regularity and less flexibility. Coding in hardware level has to follow a 
lot of constraints, so more coding time is required and the parameterization is 
bounded. Second, hardware implementation considers all signals. However, we only 
take care about some of them. Thus, eliminating useless parts to further speed up the 
simulator is more favorable. 
 

Is there a simple solution to provide short coding time, good flexibility, fast 
simulation speed, and most important, fine accuracy? As a result, SystemC [17] is 
chosen to construct our simulation environment. 
 

SystemC provides hardware-oriented constructs within the context of C++ as a 
class library implemented in standard C++. Also, SystemC provides an interoperable 
modeling platform which enables the development and exchange of very fast 
system-level C++ models. Thus, we can use C++ to implement signal-simplified 
simulator while keeping cycle accuracy. 

3.2  Multimedia Platform 

A generic multimedia SoC platform is shown in Fig. 3-1. There are 8 masters 
and 1 slave connected by the AXI bus interconnect. The 8 masters are CPU, DSP, 
accelerator, network, video in, video out, audio in, audio out and the only one slave is 
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the memory controller. CPU, DSP, and accelerator are the main data processing units. 
Network, video in, video out, audio in, and audio out are bridges to peripherals which 
communicate internal and external data exchange. The memory controller serves 8 
masters to access data in the off-chip DRAM. 
 

 

Fig. 3-1 Generic multimedia SoC platform 

 
Fig. 3-2 shows the multimedia platform simulator block diagram. The scenario 

driver initiates one session of accesses of a master by enabling the corresponding 
master enable signal. One session of accesses means that the master generates 
transactions for data accesses according to its access pattern by one iteration. 8 
different access patterns are used to model behaviors of each master in the generic 
multimedia SoC platform shown in Fig. 3-1. 
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Fig. 3-2 Multimedia platform simulator block diagram 

 
All data accesses conform to AXI protocol. However, to ease the development of 

simulator, we simplify the two AXI address channels, read and write, into one. This 
simplification does not affect AXI protocol compliance. The AXI network is 
responsible for channel arbitration with two common arbitration schemes, fixed 
priority and round-robin. 
 

The memory controller connects a simplified memory model. The memory 
model removes unnecessary operations such as refresh and power-down, and 
simplifies the input/output interface to facilitate using. 

3.3  Master Modeling 

Modeling a master can be thought as generating transactions after its behavior. 
According to AXI protocol, one transaction must possess at least four features which 
are ID, access type, destination address, and data to write. Here, the methods we use 
to generate transactions in our multimedia platform simulator are introduced. 
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3.3.1  ID Generation 

 

Fig. 3-3 ID tag format 

 
Since the multimedia platform is a multi-master platform, master information 

should be appended to ID tags to ensure their uniqueness. 
 

We use 8-bit ID tags in the simulator and the format is shown in Fig. 3-3. The 
most significant 3 bits are master ID and the rest 5 bits are transaction ID. 
 

Although transactions of the same master are done in order in our simulator and 
thus the transaction ID is useless, we still provide each transaction a transaction ID for 
simulator functionality correctness check. 

3.3.2  Type and Address Generation 

According to DRAM operating characteristics, it is obvious that transaction type 
and address affect DRAM access performance most. Thus, the transaction type and 
address generation is most important in master modeling. 
 

To generate transactions, an intuitive way is building behavioral model for each 
master. Although this method is most precise, implementation of each master is 
time-consuming. For efficiency and flexibility, we use a configurable transaction 
generator instead. 
 

The configurable transaction generator supports three access types and three 
address types. The three access types are read, write, and no operation. The three 
address types are 1-D, 2-D, and constraint random. 
 

Fig. 3-4 shows how addresses are generated by the three address types. Fig. 3-4(a) 
is the 1-D address type which increases the address from base address by a fixed 
offset. The offset is determined by the size of data transferred in one access. Most 
masters in the multimedia platform shown in Fig. 3-1 use 1-D address type. 
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Fig. 3-4(b) is the 2-D address type. Unlike the 1-D address type, there are one 
start address and one end address in a row. Thus, the address cannot be increased 
directly until the end of row. When the end address of a row is met, the address jumps 
to the start address of the next row and goes on increasing. The boundary between the 
start and end address is usually fixed and preset. The 2-D address type is used in 
modern block-based video encoding and decoding, such as MPEG-2, MPEG-4, and 
H.264. 
 

Fig. 3-4(c) is the constraint random address type which generates address 
randomly in the master mapping space. CPU accesses are always in such kind of 
address type. 
 

 
                                     (a) 

 
                                     (b) 
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                                     (c) 

Fig. 3-4 (a) 1-D address type (b) 2-D address type (c) Constraint random address type 

 

 

Fig. 3-5 A simple transaction generation example 

 
Fig. 3-5 gives a simple example to illustrate how the configurable transaction 

generator works. The transaction generator is configured by a file in the format shown 
in bottom of Fig. 3-5. The first column is the transaction type which includes read, 
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write, and no operation. The second is the number of data to be accessed. The third 
and forth are address type and base address respectively. 
 

In this example, the transaction generator has three states (The number of states 
equals the number of rows in the configuration file). 
 

The first state generates 32 data writes in 1-D address type from base address 
0x2000 and the number of write transactions depends on the preset burst length. Once 
a write transaction is generated, until it is sent out via the AXI network, the next one 
cannot be generated. Thus, it may take over 32 cycles in this state. Since this state is a 
write state, all transactions are followed by their write data. The write data generation 
will be stated later. 
 

The second state is a NOP state and it doesn’t generate any transaction. Thus, the 
configurable transaction generator idles for 8 cycles. 
 

The last state is a read state and it works like the write state described before 
except that it doesn’t have to generate write data. 

3.3.3  Write Data Generation 

Every time a write transaction is generated, the corresponding write data is also 
brought out. Although the content of write data has nothing with DRAM access 
performance, we still define a write data format which is shown in Fig. 3-6 to ease the 
simulator functionality correctness check. 
 

As presented in Fig. 3-6, the first column is the ID tag of the write transaction. 
The second is a hexadecimal string “data”. The last one is the order of the write data 
in a burst. For example, the write data of a write transaction with ID tag 0x10 and 
burst length 2 are “0x10data0” and “0x10data1”. 
 

 

Fig. 3-6 Write data format 
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3.4  AXI Network 

Since the AXI channels are uncorrelated, the AXI network arbitration can be 
implemented to each channel independently. As to the arbitration schemes, fixed 
priority and round-robin are used in our simulator. 
 

It is shown in Fig. 3-7 that master 0 always takes highest priority and master 7 
always takes lowest when the fixed priority scheme is applied. 
 

Fig. 3-8 shows the round-robin scheme. It is composed of eight states and the 
state changes each time when the arbitration is done. In the first state, master 0 takes 
the highest priority and master 7 takes the lowest. In the second state, master 1 takes 
the highest priority and master 0 takes the lowest and so on. Thus, in the last state, 
master 7 takes the highest priority and master 6 takes the lowest. 
 

 

Fig. 3-7 Fixed priority arbitration scheme 
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Fig. 3-8 Round-robin arbitration scheme 
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3.5  Memory Controller 

There are two type of memory controllers implemented. The difference is 
whether it supports bank-interleaving or not. 

3.5.1  Memory Controller without Bank-interleaving Support 

 

Fig. 3-9 Block diagram of the memory controller without bank-interleaving support 

 
Fig. 3-9 is the block diagram of the memory controller without bank-interleaving 

support. It uses six processes and each process will be described below. 
 

Every time the bus_get_req receives a transaction ID, type, and address, it stores 
them in the bus_get_req buffer. Also, when the bus_get_wdata receives one set of 
transaction ID and write data, it stores them in the bus_get_wdata buffer. 
 

The trans_schedule determines the order of transactions in the bus_get_req 
buffer executed by the bank_ctrl. We implement three different transaction scheduling 
policies which will be stated in Section 3.5.3. 
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After the trans_schedule reorders the input transactions, the bank_ctrl translates 
these transactions into DRAM commands. The translation depends not only on the 
transaction type and address, but also on the current bank state. Fig. 3-10 shows all 
three possible cases in the transaction to command translation. 
 

 

                             (a) 

 

                             (b) 

 

                             (c) 

Fig. 3-10 Bank state transition and related commands when (a) current bank state is idle (b) current 

bank state is active with row hit (c) current bank state is active with row miss 
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In Fig. 3-10(a), the current bank state is idle and an ACTIVE command is issued 
to open a row for the transaction access. 
 

In Fig. 3-10(b), the current bank state is active and the transaction accesses the 
opened row, that is, row hit. Thus, a READ or WRITE command can be issued 
directly without opening a row. 
 

In Fig. 3-10(c), the current bank state is active and the transaction accesses a row 
other than the opened row, that is, row miss. Before a READ or WRITE command 
can be issued, the PRECHARGE and ACTIVE command must be applied to close the 
current row and open the wanted row. 
 

It is obvious that the row hit case needs fewest commands to finish a transaction 
while the row miss case requires most commands. To finish a transaction using fewer 
commands represents better DRAM access performance and less DRAM power 
consumption. The transaction scheduling by the trans_schedule is to increase row hit 
cases and reduce row miss cases. 
 

When a command is generated, the bank_ctrl puts necessary information on the 
command and address bus. Then it triggers the memory model by the bank_ena 
signal. 
 

If the transaction is a write transaction, bank_ctrl gets the corresponding write 
data via ID matching from the bus_get_wdata buffer and puts it on the data bus after 
the memory model is triggered with a WRITE command. When the write transaction 
is finished, bank_ctrl triggers the bus_send_resp process by the send_resp_ena signal 
to send the master a response. 
 

If the transaction is a read transaction, bank_ctrl gets read data from data bus 
after the memory model is triggered with a READ command. Then, it utilizes the 
bus_send_rdata process to send read data to the AXI network. 
 

For simplicity, we assume that masters are always ready to receive the response 
after issuing a write transaction and read data after issuing a read transaction. Thus, no 
output buffer is needed. 
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3.5.2  Memory Controller with Bank-interleaving Support 

Within the constraint of common input and output buses, the four DRAM banks 
can operate in parallel which is called bank-interleaving. When bank-interleaving is 
utilized, we can overlap the waiting latencies of DRAM operations in different banks 
to achieve lower effective latencies. 
 

bus_send_resp

bus_send_rdata

bank_ctrl3
bus_get_req

bus_get_wdata

A Channel

WD Channel

RD Channel

WR Channel

address
command

data

bank_ena

send_data_ena
rdata

send_resp_ena

bank_ctrl2bank_ctrl1bank_ctrl0

cmd_schedule

bank0

bank1

bank2

bank3

Memory 
Model

trans_schedule0

 

Fig. 3-11 Block diagram of the memory controller with bank-interleaving support 

 
Fig. 3-11 is the block diagram of the memory controller with bank-interleaving 

support. There are four isolated trans_schedule and bank_ctrl pairs to generate 
commands for each bank. The bank_ctrl can only handle commands for one bank. To 
process the overall command issue, cmd_schedule is used. 
 

To determine which bank can issue the command, we first calculate the “score” 
of each bank. The score is computed by a function of command lasted time and 
command type. Then, the bank with highest score is selected for command issue. If 
there are two or more banks with equal score, bank 0 has the highest priority and bank 
3 has the lowest. The commands which are not issued will be carried on by each 
bank_ctrl. 
 

We implement three different scoring functions for the cmd_schedule. Each of 
them is shown in Section 3.5.4. 
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3.5.3  Transaction Scheduling Policy 

 
                                  (a) 

 
                                  (b) 
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                                  (c) 

Fig. 3-12 Examples of (a) first in first serve (FIFS) policy (b) two level round-robin (TLRR) policy (c) 

modified first in first serve (MFIFS) policy 

 
A. First in first serve (FIFS) 

Fig. 3-12(a) is an example. When the FIFS policy is applied, the output order of 
transactions is the same as the input order in spite of which master the transaction 
comes from. 
 
B. Two level round-robin (TLRR) 

When this policy is applied, we separate the masters into two levels, a high 
priority and a low priority level. Transactions from masters in high priority level are 
output first. As to the output order of transactions in the same level, round-robin 
scheme is utilized. Of course, transactions from the same master are output in input 
order. 
 

In our simulator, only master 0 (CPU in the multimedia platform) is set to high 
priority level. Therefore, in Fig. 3-12(b) the two transactions from master 0 are output 
first and then transactions from master 1 and master 2 rotate. 
 

We implement the TLRR policy which works pretty well in [9] for comparison.. 
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C. Modified first in first serve (MFIFS) 
Based on the assumption that transaction types from the same master are likely 

the same and transaction addresses from the same master are likely sequential, we 
propose this policy. 
 

According to the assumption, bundling transactions from the same master 
together provides the memory controller more chances to perform successive DRAM 
read or write operations. However, although successive processing of transactions 
from one master can increase overall DRAM performance, it also increases latencies 
of transactions from other masters. To balance the performance improvement and the 
latency increment, we set a threshold to limit the maximum number of transactions in 
each successive processing. 
 

We set the threshold to be 2 in the example shown in Fig. 3-12(c). First, as FIFS 
policy, the transaction from master 0 is output. Then, follow the input order to search 
another transaction from master 0 in the transaction buffer. If there is one, it is the 
next output. If there is none, the successive processing terminates. In Fig. 3-12(c), 
there is one and it is the last one in this successive processing since the threshold is 2. 
After that, continue to apply FIFS policy to find the starting transaction of next 
successive processing. 

3.5.4  Scoring Function 

A. Lasted time only (LTO) 
Before calculating the score, the validity of commands from each bank controller 

is examined. If the command is a NOP command or it cannot be issued at this time 
due to timing constraints of DRAM, the score is set to zero. Since zero score is used 
for such case, the score must larger than one in other cases. Thus, the scoring function 
is as below. 
 
              score = command_lasted_time + 1 
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B. Lasted time over type (LTOT) 
 
              if(command_type == PRECHARGE) 
                 score = command_lasted_time*4 + 3 
              else if(command_type == ACTIVE) 
                 score = command_lasted_time*4 + 2 
              else if(command_type == READ) 
                 score = command_lasted_time*4 + 1 
              else if(command_type == WRITE) 
                 score = command_lasted_time*4 + 1 
 

The scoring function above makes the weight of command lasted time over that 
of command type. Thus, commands with longer lasted time always get higher scores. 
As to commands with equal lasted time, the command type determines. 
 

Because each bank operates independently, if proper utilized, latencies between 
two successive access commands (READ to READ, READ to WRITE, WRITE to 
READ, and WRITE to WRITE) can be hidden. Since the row miss case has longest 
latency, the PRECHARGE command pluses 3 points. With median latency, the 
ACTIVE command pluses 2 points. The 1 point for READ and WRITE commands is 
used to prevent zero score. 
 
C. Lasted time with type (LTWT) 
 
              if(command_type == PRECHARGE) 
                 score = command_lasted_time*2 + 3 
              else if(command_type == ACTIVE) 
                 score = command_lasted_time*2 + 2 
              else if(command_type == READ) 
                 score = command_lasted_time*2 + 1 
              else if(command_type == WRITE) 
                 score = command_lasted_time*2 + 1 
 

The scoring function is like that of LTOT. The only difference is that the factor 
of command lasted time is reduced to 2. Thus, the PRECHARGE and ACTIVE 
commands have more chances to be issued earlier. 
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Chapter 4                       

Simulation Result and Analysis 

This chapter consists of three parts. Section 4.1 introduces several scenarios 
which can be applied to the simulator. Section 4.2 describes the settings of video 
phone scenario utilized in our simulation. In Section 4.3, simulation result and 
analysis are presented. 

4.1  Introduction 

Scenario Description Master / Task 
Movie Playback Play a movie from 

the storage 
CPU / OS 
DSP & Accelerator / Audio & video 
decoding 
Audio Out / Output sound 
Video Out / Display video 

DTV Service Play DTV programs 
from digital broadcast

CPU / OS 
DSP & Accelerator / Audio & video 
decoding 
Network / Radio broadcast bitstream 
Audio Out / Output sound 
Video Out / Display video 

Video Phone Video phone CPU / Audio codec & OS 
DSP / Video decoding 
Accelerator / Video encoding 
Network / Communication bitstream 
Audio In / Voice capture 
Audio Out / Output voice 
Video In / Video capture 
Video Out / Display video 

Table 4-1 Examples of scenarios which can be applied to the multimedia platform simulator 

 
Since the multimedia platform simulator is configurable by access pattern files, it 

can be easily modified to perform many different scenarios. According to the 
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simulation result, the DRAM performance and power consumption introduced by the 
memory controller are evaluated. After that, the evaluation result can be taken into 
consideration for hardware implementation. 
 

Table 4-1 lists examples of the scenario which can be applied to the multimedia 
platform simulator. We use the video phone scenario in our simulation because it 
utilizes all masters and is the most complicated case. 

4.2  Simulation Environment Setting 

The detailed settings of the video phone scenario are listed below. Table 4-2 
shows the task allocation to each master and the access patterns generated according 
to the task allocation. Table 4-3 lists the bandwidth requirement and timing constraint 
of each master based on Table 4-2. The memory mapping is shown in Fig. 4-1. 
 

As to other important settings of the simulator, we use 32-bit AXI data bus is and 
16-bit memory data bus. The timing and power parameters of the memory model is 
the same as Micron’s MT46V8M16 DDR SDRAM [18]. Both the memory controller 
and DRAM operate at 200 MHz clock rate. 
 
Master Task Access Pattern 
CPU Audio Codec 

OS 
Read bitstream and PCM data 
Write bitstream and PCM data 
Random reads and writes for OS 

DSP Video decoding 
Miscellaneous routine 

Read reference macroblock 
Write reconstructed macroblock (YUV) 
Write reconstructed macroblock (RGB) 
Random reads and writes 

Accelerator Video encoding Read reference macroblock 
Write reconstructed macroblock (YUV) 
Write reconstructed macroblock (RGB) 
Random reads and writes 

Network Tx/Rx bitstream Read bitstream 
Write bitstream 

Audio In Audio input Write PCM data 
Audio Out Audio output Read PCM data 
Video In Video input Write capture video (RGB) 
Video Out Video output Read display video (RGB) 
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Table 4-2 Tasks and the corresponding access patterns of the video phone scenario 

Master Bandwidth Requirement Timing Constraint 
CPU 16.14 MB/sec 24 ms 
DSP 72.48 MB/sec 33 ms 

Accelerator 70.94 MB/sec 33 ms 
Network 2.30 MB/sec 33 ms 
Audio In 8.46 MB/sec 24 ms 

Audio Out 8.46 MB/sec 24 ms 
Video In 36.86 MB/sec 33 ms 

Video Out 36.86 MB/sec 33 ms 
Total 252.5 MB/sec N/A 

Table 4-3 Bandwidth requirement and timing constraint of the video phone scenario 

 

Decoding Frame 0
YUV 148.5 KB

Decoding Frame 1
YUV 148.5 KB

Encoding Frame 0
YUV 148.5 KB

Encoding Frame 1
YUV 148.5 KB

Bitstream Out
297 KB

Video In
RGB 297 KB

Video Out
RGB 297 KB

Bitstream In
297 KB

Audio In
PCM 4KB

Audio Out
PCM 4KB

Reserved
Reserved

Reserved
Reserved

DSP
3MB

CPU
3MB

0x00_0000 0x40_0000 0x80_0000 0xC0_0000

0x02_5200 0x42_5200 0x82_5200 0xC2_5200

0x06_F600
0x46_F600 0x86_F600

0xC6_F600

0x47_0600 0x87_0600

0x90_0000 0xD0_0000

0x3F_FFFF 0x7F_FFFF 0xBF_FFFF 0xFF_FFFF

4 MB

Bank 0 Bank 1 Bank 2 Bank 3  

Fig. 4-1 Memory mapping of the video phone scenario 

 39



4.3  Simulation Result and Analysis 

4.3.1  DRAM Bandwidth Utilization First 

Instead of trying all possible combinations of each parameter, we use a simpler 
method to develop the memory controller. 
 

First, we determine the data burst length since it affects the simulation result 
most. Based on chosen burst length, scoring functions for the command scheduler are 
evaluated. After that, we use the selected burst length and scoring function to find out 
a proper transaction scheduling policy. 
 

During the memory controller development process, both two AXI network 
arbitration schemes are applied to see the bus arbitration scheme effect. 
 
A. Simulation 1 – Choose a proper data burst length 
 

Buffer size 8 entries 
Data burst length 2, 4, 8 
Bank-interleaving support Yes / No
Scoring function LTO 
Transaction scheduling policy FIFS 

Table 4-4 Configuration of the simulator in simulation 1 

 
In simulation 1, different data burst lengths are applied to the memory controller 

with/without bank-interleaving support. Table 4-4 lists the configuration of the 
simulator. 
 

Data burst length 2 4 8 
Without bank-interleaving Violated Violated Violated 
With bank-interleaving Violated Met Met 

Table 4-5 Timing constraint status when fixed priority bus arbitration scheme is applied 
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Fig. 4-2 Average DRAM bandwidth utilization with fixed priority bus arbitration scheme 

 
Table 4-5 tells whether the timing constraints are met with each configuration 

when the fixed priority bus arbitration scheme is applied. Except for burst length 2, 
the timing constraints are met with bank-interleaving support. 
 

Fig. 4-2 shows the average DRAM bandwidth utilization with fixed priority bus 
arbitration scheme. Without bank-interleaving support, burst length 2 gets lowest 
bandwidth utilization 26.5% while burst length 8 gets highest 41.6%. With 
bank-interleaving support, burst length 2 still gets lowest bandwidth utilization 27.1% 
while burst length 8 remains highest 59.3%. With bank-interleaving support, the 
average bandwidth utilization improvement from burst length 2 to 8 is 2.1%, 55.9%, 
and 42.8% respectively. 
 

Data burst length 2 4 8 
Without bank-interleaving Violated Violated Met 
With bank-interleaving Violated Met Met 

Table 4-6 Timing constraint status when round-robin bus arbitration scheme is applied 
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Average DRAM Bandwidth Utilization - Round-robin
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Fig. 4-3 Average DRAM bandwidth utilization with round-robin bus arbitration scheme 

 
Table 4-6 tells whether the timing constraints are met with each configuration 

when the round-robin bus arbitration scheme is applied. Except for burst length 2, the 
timing constraints are met with bank-interleaving support. 
 

Fig. 4-3 shows the average DRAM bandwidth utilization with round-robin bus 
arbitration scheme. Without bank-interleaving support, burst length 2 gets lowest 
bandwidth utilization 16.5% while burst length 8 gets highest 46.8%. With 
bank-interleaving support, burst length 2 still gets lowest bandwidth utilization 20.0% 
while burst length 8 remains highest 67.0%. With bank-interleaving support, the 
average bandwidth utilization improvement from burst length 2 to 8 is 21.5% , 60.3%, 
and 43.1% respectively. 
 

Note that when the burst length is 2, the average bandwidth utilization with 
round-robin is 25% to 35% lower than that with fixed priority. When the burst length 
is 4, the average bandwidth utilizations with both bus arbitration schemes are almost 
the same. And when the burst length is 8, the average bandwidth utilization with 
round-robin is 10% to 15% higher than that with fixed priority. Since transactions 
from the same master are not closely bundled together in time, there exists small 
intervals between two successive transactions. Therefore, the fixed priority bus 
arbitration scheme often causes transactions from two masters rotates. If the two 
masters are mapped to the same bank, row miss occurs repeatedly. If the two masters 
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generate transactions with different transaction types in a period, read-write 
turnaround happens over and over in that period. The two reasons make bandwidth 
utilization improvement diminished. 
 

It is obvious that whether which bus arbitration scheme is applied or whether 
there is bank-interleaving support, burst length 8 always gets highest bandwidth 
utilization. Hence, we set the data burst length to 8 in the following simulations. 
 
B. Simulation 2 – Choose a proper scoring function 
 

Buffer size 8 entries 
Data burst length 8 
Bank-interleaving support Yes 
Scoring function LTO, LTOT, 

LTWT 
Transaction scheduling policy FIFS 

Table 4-7 Configuration of the simulator in simulation 2 

 
Different scoring functions are applied in simulation 2 and Table 4-7 lists the 

configuration of the simulator. 
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Fig. 4-4 Average DRAM bandwidth utilization with different scoring functions 
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Fig. 4-4 shows the average DRAM bandwidth utilization with different scoring 

functions. Both LTOT and LTWT work well when fixed priority is applied, the 
improvement is 17.7% and 17.4% individually. However, LTOT and LTWT works 
bad when round-robin is applied, the deterioration is 0.4% and 0.8% respectively. 
 

Since the fixed priority bus arbitration scheme provides less parallelism for 
bank-interleaving, row miss latency hiding by LTOT or LTWT improves the 
bandwidth utilization a lot. On the contrary, round-robin provides sufficient 
parallelism for bank-interleaving. Thus, LTOT and LTWT may not benefit. 
 

Because LTOT performs slightly better, we set the scoring function to LTOT. 
 
C. Simulation 3 – Choose a proper transaction scheduling policy 
 

Buffer size 8 entries 
Data burst length 8 
Bank-interleaving support Yes 
Scoring function LTOT 
Transaction scheduling policy FIFS, TLRR, MFIFS 

Table 4-8 Configuration of the simulator in simulation 3 

 
Different transaction scheduling policies are evaluated in simulation 3 and Table 

4-8 lists the configuration of the simulator. 
 

Fig. 4-5 shows the average DRAM bandwidth utilization with different 
transaction scheduling policies. When the bus arbitration scheme is fixed priority, 
TLRR is 8.7% worse and MFIFS is 2.8% better than FIFS. When the bus arbitration 
scheme is round-robin, TLRR is 7.8% worse and MFIFS is 6.1% better than FIFS. 
 

Since TLRR is designed for the multimedia platform with dedicated channels to 
masters, it cannot work well with limited information caused by single on-chip bus 
and finite buffer size. 
 

Of course, we choose MFIFS as the final transaction scheduling policy. However, 
the performance of MFIFS may differ with different buffer sizes and thresholds. Thus, 
an extra simulation is performed. 
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Fig. 4-5 Average DRAM bandwidth utilization with different transaction scheduling policies 

 
D. Simulation 4 – Choose a proper buffer size and threshold for MFIFS 
 

Buffer size 4, 8, 12, 16 entries 
Data burst length 8 
Bank-interleaving support Yes 
Scoring function LTOT 
Transaction scheduling policy MFIFS 
MFIFS threshold 2, 3, 4 

Table 4-9 Configuration of the simulator in simulation 4 

 
In simulation 4, different buffer sizes and thresholds are tested. Table 4-9 lists 

the configuration of the simulator. 
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Fig. 4-6 Average DRAM bandwidth utilization with different buffer sizes and thresholds 

 
Fig. 4-6 shows the average DRAM bandwidth utilization with different buffer 

sizes and thresholds. When the buffer size is 4, it bounds the bandwidth utilization 
since the memory controller cannot get sufficient information. When the buffer size is 
12, the two bus arbitration schemes can merely affect the bandwidth utilization. 
 

Fig. 4-7 and Fig. 4-8 presents the average transaction latency and DRAM power 
consumption individually. In Fig. 4-7, larger buffer size with equal transaction 
processing ability leads to longer latency. However, larger threshold does not 
inevitably increase the average transaction latency since it may slightly increase the 
latency of other masters while significantly decrease the latency of one master. 
 

Based on Fig. 4-6, take Fig. 4-7 and Fig. 4-8 as reference, buffer size 12 and 
threshold 4 are chosen. 
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Fig. 4-7 Average transaction latency with different buffer sizes and thresholds 

 

Average DRAM Power Consumption
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Fig. 4-8 Average DRAM power consumption with different buffer sizes and thresholds 
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E. Summary 
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Fig. 4-9 Average DRAM bandwidth utilization transition through the simulations 
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Fig. 4-10 Average transaction latency transition through the simulations 
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Fig. 4-11 Average DRAM power consumption transition through the simulations 

 
Fig. 4-9 , Fig. 4-10, and Fig. 4-11 shows the average DRAM bandwidth 

utilization, transaction latency, and power consumption transitions through 
simulations. 
 

In Fig. 4-10, when bank-interleaving is supported, the average transaction 
latency is reduced by 53.6% with fixed priority bus arbitration scheme and 33.9% 
with round-robin. The significant reduction is because bank-interleaving can 
efficiently hide DRAM operation latencies. 
 

According to Fig. 4-9 and Fig. 4-11, when the bus arbitration scheme is fixed 
priority, the bandwidth utilization is improved by 72.8% with 36.1% more power 
consumption. When the bus arbitration scheme is round-robin, the bandwidth 
utilization is improved by 53.3% with 11.9% more power consumption. 
 

Note that MFIFS with buffer size and threshold modification can slightly 
increase the bandwidth utilization while decrease the power consumption up to 13%. 

4.3.2  DRAM Power Consumption First 

Since the video phone scenario does not require up to 71.8% bandwidth 
utilization to finish all tasks, reduce bandwidth utilization to achieve lower power 
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consumption is more favorable in the embedded system. In order to reduce power, we 
analyze the DRAM power consumption. 
 

The DRAM power components listed in Section 2.2.3 can be divided into the 
background power, activate power, and read/write power. 
 

The background power consists of the precharge power-down power, precharge 
standby power, active power-down power, active standby power, and refresh power. 
In our simulation environment, DRAM is always in the active standby state. Thus, the 
effective background power is the summation of active standby power and refresh 
power. Therefore, the background power is fixed at all time. 
 

The activate power is determined by the number of total ACTIVE commands 
and the task execution time. Thus, fewer ACTIVE commands or longer task execution 
time can lower activate power. 
 

The read/write power is composed of the read power, write power, and I/O 
power. The read power and I/O power are decided by the number of total data reads 
and the task execution time. Also, the write power is decided by the number of total 
data writes and the task execution time. To lower read/write power, just reduce the 
read or write data count and stretch the task execution time. However, with the same 
access pattern, the number of data reads or writes is determined by the data burst 
length. Since the memory controller with shorter data burst length reads or writes 
fewer extra data, it consumes less power. 
 

According to above analysis, to reduce DRAM power consumption, we should 
reduce the number of ACTIVE commands and the data burst length, and stretch the 
task execution time within timing constraints. 
 

Take Table 4-5, Table 4-6, Fig. 4-9, and Fig. 4-11 into consideration, we choose 
the memory controller with data burst length 4, MFIFS transaction scheduling policy, 
and without bank-interleaving support. Though it may consume less power with data 
burst length 2, the probability of timing violation is also larger. Take Fig. 4-7 as the 
reference, we set all buffer size to 4 and the MFIFS threshold to 2 to suppress the 
increase of bandwidth utilization which stretches the task execution time. 
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 Fixed priority Round-robin 
Average DRAM bandwidth utilization 42.9% 36.8% 
Average DRAM power consumption 356.9 mW 423.4 mW 

Table 4-10 Average DRAM bandwidth utilization and power consumption with different bus arbitration 

schemes 

 
Table 4-10 lists the simulation result and there is no timing violation. Compared 

with the result in Section 4.3.1, the average DRAM power consumption is reduced by 
26.3% with fixed priority bus arbitration scheme and 13.2% with round-robin. 
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Fig. 4-12 Average DRAM power consumption with different optimization policies 

 
Fig. 4-12 shows each power component of the average DRAM power 

consumption with bandwidth utilization first and power consumption first. The 
background power is always fixed and takes about 30% of total power consumption. 
When the fixed priority bus arbitration scheme is applied with power first, the activate 
and read/write power is reduced by 24.4% and 40.0% respectively. When the 
round-robin bus arbitration scheme is applied with power first, although the activate 
power increases by 116.2%, the reduction of read/write power by 48.5% still lowers 
total power consumption. 
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The result is not optimized. However, it is hard to find out an optimized result 
without thorough simulations since the related factors are not independent and affect 
each other. 
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Chapter 5                        

Hardware Implementation 

There are two sections in the chapter. Section 5.1 describes the hardware design 
of memory controller. In Section 5.2, the implementation result is shown. 

5.1  Hardware Design 

 

Fig. 5-1 Hardware block diagram of the memory controller 

 
In Section 4.3.1, we have developed a high performance memory controller 

architecture. Also, in Section 4.3.2, a low power with less performance architecture 
by reducing the applied techniques is presented. In real applications, the later one 
should be implemented since it completes all tasks with less cost. However, because 
we are eager to know the hardware cost when all techniques are applied, the former 
one is implemented. 
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Fig. 5-1 shows the hardware block diagram of the memory controller. The 
memory controller consists of five parts which are AXI interface, input and output 
buffer, transaction scheduler, command translator, and command controller. 
 

The AXI interface handles VALID/READY channel handshaking. In addition, 
the AXI interface combines write and read address channels together for the single 
input address buffer with round-robin scheme. 
 

The input and output buffer is composed of two input buffers and two output 
queues. All of them possess 12 entries. 
 

The transaction scheduler reorders input transactions by the MFIFS transaction 
scheduling policy. We use two components to implement. The transaction reorder unit 
records IDs of input transactions and reorders them. The transaction issue unit gets 
corresponding transaction address and data for command translator by the output ID 
of transaction reorder unit. 
 

 

Fig. 5-2 Block diagram of transaction reorder unit 
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Fig. 5-2 shows the block diagram of transaction reorder unit. The ID issue unit 

receives transaction IDs and addresses from the AXI interface and sends them to the 
corresponding ID buffer by bank addresses. All the ID buffers contain 12 entries. The 
threshold counter provides the successive access count to ID selector for output 
decision. 
 

The command translator consists of four bank controllers which behave as stated 
in Section 3.5.1 for bank-interleaving support. 
 

There are three states in the command controller. One for DRAM power-up 
initialization, one for SELF REFRESH power-down mode, and the last one is used for 
normal DRAM operations. In normal DRAM operations, the scoring function in the 
command scheduler determines which command and address provided by the 
command translator to be issued. The read and write unit translates data between 
single data rate and double data rate. 

5.2  Implementation Result 

 
Design Proposed Kun-Bin Lee’s ARM PL340

Clock Rate 166 MHz 100 MHz 166 MHz 
Technology 0.18 μm 0.35 μm 0.13 μm 

Data Bus Width 
(Controller / DRAM) 

32 / 16 16 / 16 64 / 32 

AXI Network 58 N/A N/A 
Input & Output Buffer 25256 N/A N/A 
Transaction Scheduler 6688 12003 N/A 
Command Translator 4257 N/A 
Command Controller 11331 

5362 
N/A 

Gate 
Count 

Total 47590 17365 About 60K 

Table 5-1 Implementation result and comparison 

 
Table 5-1 lists the implementation result and the comparison to other designs. It 

is obvious that in the proposed design, over 50% gate count is used for data buffering. 
Therefore, the total gate count is 47.6K. 
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In Kun-Bin Lee’s design [9], dedicated channels are used for masters. Thus, no 
input or output buffer is required and the gate count can be largely reduced. The 
overall gate count is 17.4K. Despite of the input and output buffer, the gate count of 
our design is 22.3K which is 28.2% more than that of Kun-Bin Lee’s. However, the 
speed of our design is 166 MHz. 
 

 As to ARM PL340 [11], it is a configurable AXI compliant soft IP and the 
detailed gate count is unknown.
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Chapter 6                       

Conclusion and Future Work 

As the design scale becomes larger and larger, how to evaluate system 
performance in early stage accurately is the key to successful design. 
 

With the DRAM advancement, data rate is no longer the most critical issue. 
Instead, the large power consumption is taken into consideration for the embedded 
system. How to develop a memory controller with balanced DRAM performance and 
power consumption is the problem today. 
 

In this thesis, we propose a configurable multimedia platform simulator to 
evaluate DRAM performance and power consumption introduced by the memory 
controller. Also, hardware is implemented to see the cost of each technique utilized. 
 

With proper access patterns, the multimedia platform simulator can perform 
different scenarios. As to the memory controller part, it is well designed and can be 
easily modified to implement wanted algorithms for evaluation. The overall simulator 
is based on AXI protocol. With this, the transactions can be transferred out of order 
which is required by the transaction reorder scheduling. 
 

In the simulation of video phone scenario, several techniques are combined to 
achieve high DRAM bandwidth utilization. With bank-interleaving support, the 
bandwidth utilization rises with transaction latency reduction. According to the 
scenario characteristics, a MFIFS transaction scheduling policy is proposed. It can 
increase DRAM bandwidth utilization and reduce power consumption simultaneously. 
After the buffer size and MFIFS threshold modification, effect of different bus 
arbitration schemes is almost eliminated. Based on the DRAM power component 
analysis and the former simulation result, a memory controller consumes lower power 
and meets timing constraints is shown. 
 

Although the proposed solution is good, there are still some places could be 
improved. First, a power optimized method should be developed instead of 
observation and test. Second, since the system bus arbitration scheme plays an 
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important role in system performance, a more suitable system bus arbitration scheme 
may be developed. 
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