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Chapter 1

Introduction

1.1 Research Motivation

The fundamental block diagram of a typical digital communication system is shown in

Figure 1.1. Singnal transformation from the information source to the transmitter in-

cludes source encoding, channel encoding and modulation. The receiver will reverse the

signal transformation by demodulation, channel decoding and source decoding. When a

signal passes through the channel, it may be influenced by various type of noise distur-

bances such as channel noise, interference and fading. In order to eliminate the effects of

noise disturbances, the channel encoder transforms the source codeword into the channel

codeword by adding certain structural redundancy. These redundant bits can be used for

detecting and correcting the errors. Theoretically, the encoding procedure provides the

encoded signal with better distance properties than the un-coded one, and thus channel

coding can improve the performance of the overall system.

There are two structurally different types of channel codes, the block codes and the

convolutional codes. For the block code, the encoder transforms a message with k sym-

bols into a codeword sequence with n symbols. The n − k redundant symbols called

parity-check depend only on the corresponding k message symbols and not on any other

message symbols. Therefore the block code is memoryless. For the convolutional code,
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Figure 1.1: Block diagram of a typical digital communication system

the encoder contains memory units. This causes the output symbols depend not only on

the current input message but also on the previous input messages. The (n, k, ν) con-

volutional encoder can be implemented with n-output, k-input, and ν-memory words as

shown in Figure1.2.

Figure 1.2: The (n, k, ν) convolutional encoder

In 1976, Viterbi [1] introduced a decoding algorithm for convolutional code. And

Omura [2] showed that the Viterbi Algorithm was equivalent to a dynamic programming

solution to the problem of finding the shortest path through a weighted graph. For-
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ney [3] later recognized that it was in fact a maximum likelihood decoding algorithm.

Until now, Viterbi algorithm is still the optimum solution for convolutional code and has

been widely applied to decoding convolutional codes and signal detection in many digital

communication and magnetic storage applications.

Recently, high-speed Viterbi decoder becomes more important and critical because of

the ever increasing high-speed data transmission and the demanding error performance

in modern digital communication systems. The huge bandwidth (3.6GHz∼10.1GHz) of

these ultra-wideband(UWB) communication systems enables short-range and very high-

speed data transmission. In the physical (PHY) layer proposal [4] based on multi-band

orthogonal frequency-division multiplexing (MB-OFDM) technology, a convolutional code

with the constraint length K = 7(= ν + 1) has been specified to support a maximum

480Mb/s data rate after puncturing to the rate (R) of 3/4. Furthermore, PHY-layer

proposal employing the direct sequence UWB (DS-UWB) modulation [5] defines both

K = 6 and K = 4 convolutional codes for the 500Mb/s and the over 1Gb/s data rates

respectively. Accordingly, the Viterbi decoders for convolutional codes targeting to these

systems have arisen great research interest [6–8].

Though the minimum distance of a convolutional code increases linearly with the con-

straint length K(= ν + 1), the computing complexity grows exponentially while applying

the Viterbi decoding. Consequently, the very large scale integration (VLSI) implementa-

tion of Viterbi decoder for high-speed wireless applications that adopt large convolutional

codes (K ≥ 7) is still challenging as the power and cost constraints are considered. There-

fore, this thesis will propose a high-speed and area-efficient solution for Viterbi decoder

design.

1.2 Paper Survey

In early research of the Viterbi decoder, because of the bottleneck of the VLSI technol-

ogy the key point always focused on the complexity. As the rapid development of the

VLSI technology, the research interests changed to achieve the higher throughput rate.
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The architectures using high-radix trellis in [7–10] achieve high speed through M steps

of lookahead where the throughput of a Viterbi decoder will be enhanced by a factor of

M . However, the ideal speedup is difficult to achieve due to the exponentially increas-

ing number of branches on the high-radix trellis, limiting M to be at most two in most

designs. The Viterbi decoders in [11–13] break down the critical path delay by means of

bit-level pipeline and accomplish high throughput with very high clock frequencies. Fur-

thermore, the dynamic circuit techniques are also exploited to accelerate the critical path.

The four states Viterbi decoder based on sliding block approach that performs decoding

concurrently in forward and backward directions is also reported in [14]. However, as the

constraint length increases, the complexity grows rapidly because of the highly parallel

architecture and large skew buffers. Fig. 1.3 summarizes the performance among various

high-speed Viterbi decoder designs.
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Figure 1.3: Performance of several published Viterbi decoders
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1.3 Thesis Organization

The Viterbi decoder contains three main units: branch metric unit (BMU), add-compare-

select unit (ACSU), and survivor memory unit (SMU). The BMU calculates the branch

metrics from the input data. The ACSU recursively accumulates branch metrics (BM) as

path metrics (PM), and makes decisions to select the most likely state transition sequence.

Finally, the SMU traces the decisions to extract this sequence. It is the nonlinear and

recursive nature of ACSU that limits the maximum achievable throughput rate.

Considering the speed of a Viterbi decoder, this thesis will focus on the improvement

of most timing-critical processing unit ACSU. The speedup is accomplished by retiming

techniques to parallelize the serial add, compare, and select operations based on the two-

dimensional (2-D) structured ACSU. In chapter 2, the principle of convolutional code

and Viterbi algorithm is reviewed. Several typical architectures for Viterbi decoder will

also be discussed. chapter 3 presents a more aggressive trellis expansion that attains

to the M ≥ 4 steps lookahead and the retiming techniques for 2-D ACSU. In addition,

chapter 4 reports the implementation results which target at the ultra-wideband system,

including system parameters selection, post-layout simulations of the 0.13-μm and the

0.18-μm designs. Finally, the conclusion and future research plans is given in chapter 5.
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Chapter 2

Convolutional Code

2.1 Convolutional Code

To describe a convolutional code, at first it is necessary to characterize the encoding

process. Several methods can be used for representing the encoding process of the con-

volutional code. The time-domain description and trellis diagram description would be

described in the following subsection.

2.1.1 Time-Domain Description

A simple convolutional encoder is shown in Figure 2.1. The figure illustrates a (2, 1, 2)

convolutional encoder with 2 shift-registers, and 2 modulo-2 adders.

Figure 2.1: The (2, 1, 2) convolutional encoder
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The input of this encoder is some binary sequence, m = (..., m−1, m0, m1, m2, ...). The

output is an interleaved sequence c = (..., c
(1)
−1, c

(2)
−1, c

(1)
0 , c

(2)
0 , c

(1)
1 , c

(2)
1 , ...) of the two binary

sequence c(1) and c(2). At each input bit time, the code symbol c
(1)
i and c

(2)
i are generated

by the encoding function

c
(1)
i = mi ⊕ mi−1 ⊕ mi−2 (2.1)

c
(2)
i = mi ⊕ mi−2 (2.2)

where ⊕ denotes modulo-2 adder (or the XOR operation). Next, the input bit is shifted

into the leftmost stage and the bits in the register are shifted one position to the right.

Consequently, the output sequence c depends not only the present input bit mi, but also

on the two previous input bits mi−1 and mi−2. Evidently, the different interconnection of

the encoder influences the codeword sequence. For mathematical computing convenience,

these interconnections can be formulized as the generator sequence

g(1) = (g
(1)
0 , g

(1)
1 , g

(1)
2 ) (2.3)

g(2) = (g
(2)
0 , g

(2)
1 , g

(2)
2 ) (2.4)

where g
(1)
i represents the upper and g

(2)
i represents the lower interconnections from left to

right. Then, the encoding process can now be written as

c(1) = (..., m−1, m0, m1, m2, ...) ∗ (g
(1)
0 , g

(1)
1 , g

(1)
2 ) (2.5)

c(2) = (..., m−1, m0, m1, m2, ...) ∗ (g
(2)
0 , g

(2)
1 , g

(2)
2 ) (2.6)

where ∗ denotes the convolution operator.

For example, Figure 2.1 can be described by

g(1) = (111) (2.7)

g(2) = (101) (2.8)

In general, the (n, k, ν) convolutional encoder is specified by a set of n generator

12



sequences with length (ν + 1)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(1) = (g
(1)
0 , g

(1)
1 , ..., g

(1)
ν )

g(2) = (g
(2)
0 , g

(2)
1 , ..., g

(2)
ν )

...

g(n) = (g
(n)
0 , g

(n)
1 , ..., g

(n)
ν )

(2.9)

Then the output sequences is determined by convolving the input sequence and the gen-

erator sequences ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(1) = m ∗ g(1)

c(2) = m ∗ g(2)

...

c(n) = m ∗ g(n)

(2.10)

The encoding process can be determined in a matrix form as

c = mG (2.11)

2.1.2 Trellis Diagram Description

The convolutional encoder belongs to a class of devices known as finite state machines.

Thus, a convolutional encoder can be specified completely by the state diagram. In Figure

2.1, the states of the encoder is defined as the pair (mi−1, mi−2) of the shift-register, hence

there are four possible states, 00, 01, 10, 11. At each tick of the clock, the encoder accepts

an input mi, and emits the two code symbols c
(1)
i and c

(2)
i . Then the state transforms

from a pair (mi−1, mi−2) to a new pair (mi, mi−1). The state diagram representation is

shown in Figure 2.2. The four circles mean the four states, 00, 01, 10, 11. A transition

from one state to another corresponding to an input bit of “0” is represented by a dotted

line. Similarly, a transition corresponding to “1” is represented by a solid line. And the

label on the line represents the code symbols (c
(1)
i , c

(2)
i ) from one state to another.

With the help of the state diagram, it is easy to determined the output sequence of

the encoder. For example, if the input sequence is (1011100...). The transition starts at

state 00 and walks through the state diagram corresponding to a solid line if the input bit

13



Figure 2.2: State diagram for the encoder of Figure 2.1

is ”1”, and a dotted line if that is ”0”. The track of the transition is shown in Figure 2.3.

Following the track, the output sequence is (11, 10, 00, 01, 10, 01, 11, ...). Consequently,

that is the same output sequence in the time-domain description.

Figure 2.3: The track of the transition

When the input sequence becomes large, the track will travel the same edge many

times. It is difficult to keep track of where we have been. Therefore, a representation

called a trellis diagram is obtained directly from the state diagram by including the

dimension of time. Once again the output sequence for the input sequence (1011100...) is

represented in Figure 2.4.

In general, there are 2ν states and 2kl kinds of codeword corresponding to the (n, k, ν)

14



Figure 2.4: The trellis diagram

convolutional code in the trellis diagram, where the l denotes the length of input sequence.

2.2 Viterbi Algorithm

The Viterbi algorithm developed in 1967 [1] has been considered the optimal solution for

decoding convolutional codes. The convolutional encoding process can be represented by

trellis diagram where each node corresponds to a distinct state at a given time, and each

branch is a transition between two states of different time instances. Among all possible

paths in trellis diagram, a optimum solution to decode a convolutional code is equivalent to

find the maximum likelihood path. Conclusively, the Viterbi decoding algorithm searches

for the maximum likelihood state transition sequence according to the observed data in

the noisy channel. Before launching the Viterbi algorithm, there are some basic should

be introduced.

Figure 2.5: The system block of the encoder and decoder
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The system block of the encoder and decoder is shown in Figure 2.5. The idea of

the encoder is to transform the message sequence “m” into the codeword sequence “c”

by adding certain structural redundancy. This redundancy is designed to overcome the

channel impairments. Inversely, a concept of a decoder is to find the maximum likelihood

sequence “m̂” according to the structural redundancy. Mathematically, to find the max-

imum likelihood sequence “m̂” is to maximize the probability P (m|r), where m denotes

the message sequence and r denotes the received sequence.

Using Bayes’ rule

P (m|r) =
P (m) · P (r|m)

P (r)
(2.12)

where P (r) is independent of m. Therefore, the decoder now is equivalent to maximize

the probability P (r|m). The probability P (r|m) for the received sequence of length τ can

be expressed as

P (r|m) = P (r1→τ |m1→τ )

= P (r1→τ |x1→τ )

=
τ∏

t=1

P (rt|xt)

=
τ∏

t=1

n−1∏
i=0

1√
2πσ

e−
(rt,i−xt,i)

2

2σ2

(2.13)

where x denotes the modulated sequence. For the computing convenience, the log-

likelihood function is used and given by

log P (r|m) =

τ∑
t=1

log P (rt|xt) (2.14)

For the AWGN channel, the log-likelihood function becomes

log P (r|m) =

τ∑
t=1

log

n−1∏
i=0

1√
2πσ

e−
(rt,i−xt,i)

2

2σ2

= −nτ

2
log(2π) − nτ log σ −

τ∑
t=1

n−1∑
i=0

(rt,i − xt,i)
2

2σ2

(2.15)

This equation shows that to maximize logP (r|m) is equivalent to minimize Euclidean

distance
τ∑

t=1

n−1∑
i=0

(rt,i − xt,i)
2

2σ2
(2.16)
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According to these computing processes, Viterbi proposed a algorithm to compute the

minimum Euclidean distance as time goes on. There are two basic measure defined by the

Viterbi, which are branch metric BM and path metric PM . At each time t, the branch

metric and path metric is computing

BM(βt−1
y ) =

n−1∑
i=0

(rt,i − xt,i)
2

2σ2
|y=1,2

PM(St
d) = miny=1,2[PM(St−1

y ) + BM(βt−1
y )]

(2.17)

where St
d denotes the state d at time instance t, and βt represents the branch between t

and t+1. An equivalent radix-2 trellis diagram is shown in Figure 2.6. It is clear that the

path metric PM(St
d) is the minimum Euclidean distance for state Sd at time t. So the

Viterbi algorithm can find the minimum path metric dynamically at each time instant.

Then the maximum likelihood sequence can be estimated in trellis diagram along the

minimum path metric.

1
tS

2
tS

1t
dS

+

1
tβ

2
tβ

Figure 2.6: The radix-2 PM updating

The steps of the Viterbi algorithm are summarized as following.

• Initial or normalize the memory devices.

• According to the received sequence r, calculate the branch metric BM(βt−1
y ) from

the previous state Sy to the current state Sd.

• Compute the transition PM(St−1
y ) + BM(βt−1

y ), which is merged into the state Sd.
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• Update the path metric PM(St
d)

PM(St
d) = min

y=1,2
[PM(St−1

y ) + BM(βt−1
y )]

and store the survivor at the same time. The survivor here is the decision bit at

time t.

• Use the survivor to decode the message sequence m̂.

• Repeat this process.

2.3 Viterbi Decoder Architecture

The block diagram of the Viterbi algorithm is shown in Figure 2.7. There are four

fundamental blocks in the Viterbi decoder. They are summarized as following

Figure 2.7: fundamental blocks of Viterbi decoder

• Branch Metric Unit (BM):

According to received sequence r, compute the value BM(βt−1
y ) for different branches

in trellis diagram.

• Add-Compare-Select Unit (ACS):

Calculate the value PM(St
d) = miny=1,2[PM(St−1

y ) + BM(βt−1
y )] for each state.

Output the value of PM(St
d) and generate the survivor sequence.

18



• Path Metric Unit (PM):

Store the accumulative path metric PM(St
d) at each iteration. Detect the overflow

of the accumulative path metric and normalize it.

• Survivor Path Unit (SM):

Update the survivor from Add-Compare-Select unit. Then, using the register-

exchange (RE) [15] algorithm or trace-back (TB) algorithm [16] to decode the max-

imum likelihood sequence.

2.3.1 Branch Metric Unit

Each time a new data is received by the decoder, the branch metric unit computes the

value BM(βt−1
y ). Because the value of the branch metric is proportional to the logarithm

of probability log P (m|r). It is clear that the numbers of quantization levels dominate the

performance of Viterbi decoder. In the simplest design, the 2 levels quantization is used.

However, the higher levels quantization the more coding gain can be obtained. If the

quantization levels less than 2 levels, it is called the hard-decision decoding. Otherwise,

it is called the soft-decision decoding.

In the hard-decision decoding, when a signal is received, a binary decision is made

to determine whether the signal represents a transmitted zero or one. Therefore, the

Hamming distance is used to simplify the calculation of branch metric. Using Hamming

distance, the value of branch metric is described as

BM(βt−1
y ) =

n∑
i=1

(ri ⊕ ci) (2.18)

where ⊕ denotes the XOR operation.

The soft-decision decoding process can provide an increase in coding gain about 2

to 3 dB over hard-decision decoding on the AWGN channel. Here, the uniform metric

assignment method is introduced. If 8 levels quantization is used for a rate 1/2 code, then

the entire set of branch metric are represented in Table 2.1. In this table, each pair (d1, d2)
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denotes the Euclidean distance between codeword symbols and received sequences, and

the coordinate represents the value of the branch metric.

Table 2.1: Uniform branch metric assignments

d1d2 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8 9

3 3 4 5 6 7 8 9 10

4 4 5 6 7 8 9 10 11

5 5 6 7 8 9 10 11 12

6 6 7 8 9 10 11 12 13

7 7 8 9 10 11 12 13 14

In many applications, the table can be assigned as the non-uniform one. It may have

the better assignments through a trial and error evaluation according to the situations of

the channel.

2.3.2 Add-Compare-Select Unit

Typically, PM calculation with the recursive add-compare-select (ACS) operation is the

most timing critical part that dominates the overall throughput. The path metric of state

St+1
d at time instance t + 1 can be recursively obtained by

PM(St+1
d ) = min

x=1,2
[PM(St

x) + BM(βt
x)]

PM(St
x) = min

y=1,2
[PM(St−1

x,y ) + BM(βt−1
x,y )] (2.19)

PM(St−1
x,y ) = min

z=1,2
[PM(St−2

x,y,z) + BM(βt−2
x,y,z)]

...

Note that St
x connects to St+1

d through βt
x, St−1

x,y connects to St
x through βt−1

x,y , and St−2
x,y,z

attaches to St−1
x,y via βt−2

x,y,z. The recursion in (2.19) is an ACS operation shown in Fig. 2.8
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that iteratively updates the path metrics in each time instance. It is the serial operations

within ACSU that causes the critical path bottleneck.

cmp

1( )t
dPM S +

1( )tBM β

1( )tPM S

2( )tPM S

2( )tBM β

Figure 2.8: The radix-2 ACS structure

Therefore, assume R = 1/n binary codes, the radix-2M approach is proposed to en-

hance the decoding speed by a factor of M [9]. With M-step lookahead architecture, the

trellis structure becomes radix-2M in Fig. 2.9(a), and the PM(St+M
d ) at time instance

t + M can be expressed by

PM(St+M
d ) = min

x∈C
[PM(St

x) + BM(βt
x)], (2.20)

and C = {1, 2, ..., 2M} is the set of indexes indicating St
x connects to St+M

d through βt
x. The

equivalent radix-2M ACS unit in Figure 2.9(b) achieves M times speedup as compared to

the radix-2 ACSU in Figure 2.8. Nevertheless, the number of branches in Figure 2.9(a) will

be 2M−1 times of that in radix-2 trellis, leading to the exponentially increasing complexity

and limited M value (≤ 2). Hence, high-radix approach that accelerates Viterbi decoding

may also cause large critical path delay. As shown in Figure 2.9, the adders can be

proceeded simultaneously, but the speed of the comparator will be degraded as the number

of branches increases. Therefore, the comparator should be optimized to acquire the

corresponding enhancement contributed by high-radix trellis.

2.3.3 Survivor Path Unit

There are two well-known methods for the storage of the survivor sequences. One is the

register-exchange method, and another is the trace-back method. The two methods would
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Figure 2.9: The radix-2M PM updating and the corresponding ACS structure

be introduced in the following.

• Register-exchange Method

The register-exchange method stores the decoded sequences in shift register array.

At each iteration, the decoded sequences are shifted according to the decision result

of the survivor. In order to explain the operation of the register-exchange method,

the convolutional code with generator polynomial g1(D) = 1+D+D2 and g2(D) =

1 + D2 is used. And the hard-decision decoding shown in Figure 2.10 is adopted to

simplify the interpretation.

If the message sequence is represented as

(1, 0, 1, 1, 1, 0, 0)

From the introduction of the chapter 2, the codeword sequence would be

(11, 10, 00, 01, 10, 01, 11)

Figure 2.11 illustrates the procedure to find the minimum distance path. When the

codeword R = 11 is received, the branch metrics can be obtained from the Figure
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Figure 2.10: Branch metric in hard-decision decoding

2.10. Thus the transition on the dotted line from state S00 to state S00 is

PM00(S
1
00) = PM(S0

00) + BM(β0
00)

= 0 + 2

= 2

and on the solid line from state S01 to state S00 is

PM01(S
1
00) = PM(S0

01) + BM(β0
01)

= 0 + 2

= 0

Then the path metric at state S00 is

PM(S1
00) = min[PM00(S

0
00) + PM01(S

0
00)]

= min(2, 0)

= 0

Because the path metric on the dotted line is larger than that on the solid line,

the dotted line should be deleted. On this rule, the survivor at each state would

be obtained. The result is shown in Figure 2.12. At the first stage, each symbol

to state S00 or state S01 would be decoded as “0”, and to state S10 or S11 is “1”.

Therefore, the fixed value is shifted in the first stage.
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Figure 2.11: Minimum distance path

At the second iteration, the codeword R = 10 is received. The operations as shown

in Figure 2.13 are similar to that at the first iteration, but the decoded symbols are

shifted according to the decision result of the survivor.
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Figure 2.12: Register-exchange decoding at the first iteration

After the seventh iteration, the result is shown in Figure 2.14. It is clear that the

minimum path metric is appeared at state S00. Therefore, the decoded sequence is

(1, 0, 1, 1, 1, 0, 0).

The overall architecture of the register-exchange method can be implemented as in

Figure 2.15. When the generator polynomials become complicated, the computing

complexity grows up quickly. It means that high power consumption is needed.

Thus the register exchange is not suitable for the decoders with the complicated

generator polynomials.

• Trace-back Method

The trace-back method stores the survivor sequence in the memory devices. In the

(2, 1, ν) convolutional code, there are always two transitions merged into one state.

If the upper transition arriving to this state is selected, the decision bit is set to

zero. Otherwise, the decision bit is set to one. As shown in Figure 2.16, the decision

bits 1, 0, 0, 0 are set according to the lower transition to state S00, and the upper

transitions to other states.

After the seventh iteration, all memory devices as shown in Figure 2.17 are filled.
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Figure 2.13: Register-exchange decoding at the second iteration

But, these decision bits define only the transitions rather than the decoded se-

quences. One more procedure as called trace-back must be performed. This opera-

tion starts at the state with the minimum path metric. In this example as shown

in Figure 2.18, it starts from the state S00, and traces backward from the seventh

iteration to the first iteration. Therefore, a reverse order decoded sequence is gen-

erated.

A shift register base architecture is shown in Figure 2.19. The drawback in this

architecture is that the longer critical path is performed. So it is hard to achieve

the high data rate application.
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Figure 2.14: Register-exchange decoding at the seventh iteration

Figure 2.15: Block diagram of the register-exchange method
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Figure 2.16: Trace-back decoding at the first iteration

Figure 2.17: Trace-back decoding at the seventh iteration
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Figure 2.18: Trace-back procedure

Figure 2.19: Block diagram of the trace-back method
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Chapter 3

High-Speed ACS Unit Design

3.1 Introduction to Retiming Technique

The retiming approach tends to parallelize the ACSU computations. We first define

another pre-path metric (pre-PM), denoted by Γ, as

Γ(βt
x) � PM(St

x) + BM(βt
x). (3.1)

According to the recursion in (2.19), PM(St
x) is a function of the information coming from

the two branches, βt−1
x,1 and βt−1

x,2 . Therefore, the computation in (3.1) can be extended to

Γ(βt
x) � min

y=1,2
[Γ(βt−1

x,y )] + BM(βt
x), ∀βt−1

x,y connect to St
x, (3.2)

resulting in a recursion for Γ that contains the compare-select (CS) function for Γ(βt−1
x,y )

and the addition with BM(βt
x). Figure 3.1 illustrates the operation in trellis when x = 1.

Note that the final addition has no impact on the compare function; therefore, the addition

and the comparison can be performed concurrently, leading to the parallel architecture in

Figure 3.2(b). Since the recursion has been changed from PM(St+1
d ) to Γ(βt

1) and Γ(βt
2),

the number of adders and multiplexers is doubled in contrast to the original ACSU in

Figure 2.8.

The process is a retiming of PM registers and adders among different time instances,

and Fig. 3.2(a) demonstrates the retiming procedure with pre-PMs instead of PMs being
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Figure 3.1: The trellis diagram after retiming

stored in registers. The PM registers at time instance t are moved to the branches

between t and t−1 to keep the pre-PM metric Γ, making the number of registers twofold.

Furthermore, the adders are also relocated to be parallel with the compare operations.

The result after retiming is presented in Fig. 3.2(b) in which the number of registers,

adders, and multiplexers is double as many as the structure before retiming. Actually,

the architecture in Fig. 3.2(b) is identical to the double state approach presented in [17].

cmp cmp

cmp cmp

1
1,1( )tPM S −

1( )tPM S

1
1,2( )tPM S −

1( )t
dPM S +

1
1,1( )tβ −Γ

1
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1( )tβΓ

(a) Retiming of radix-2 ACSU

cmp
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1
1,1( )tβ −Γ

1
1,2( )tβ −Γ

1( )tβΓ

(b) After retiming

Figure 3.2: The retiming procedure among different time instances

The performance of high-radix approaches is dominated by the large critical path due

to exponentially increasing branches. Therefore, the present method improves the speed
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through parallel processing in radix-2M ACS units. The other area-efficient solution based

on two-dimensional (2-D) radix-2m × 2n trellis structure is also proposed in following

sections.

3.2 Retiming of radix-2M

The critical part of a radix-2M ACS unit is to search the minimum PM + BM value

among 2M candidates. One of the solutions to simplify the searching algorithm is the

decomposition of the candidates that need to be compared. The ACS operation in (2.20)

can be re-written as

PM(St+M
d ) = min

x∈Xn

[ min
y∈Ym

[PM(St
x,y) + BM(βt

x,y)]], (3.3)

where Xn = {1, 2, . . . , 2n}, Ym = {1, 2, . . . , 2m}, and M = m + n. The minimum function

is decomposed into two levels, and the 2M candidates are partitioned into 2n subsets. The

first level is 2m-way CS (CS-2m) operations that finds the minimum within each subset

containing 2m candidates. Similarly, with a 2n-way CS (CS-2n) function, the outputs from

the first level are compared consecutively to produce the final result. Fig. 3.3 demonstrates

the architecture of a radix-2M ACS unit. The critical path in Fig. 3.3 will be the adder

plus two levels of comparator and multiplexer.

In order to further improve the speed, the retiming method as mentioned above is

applied to the radix-2M ACS unit. The variable Γ(βt
x) is defined as the result of the first

level comparison (see Fig.3.3), and

Γ(βt
x) = min

y∈Ym

[PM(St
x,y) + BM(βt

x,y)] (3.4)

Therefore, the original ACS recursion in (3.3) can then be converted to

PM(St+M
d ) = min

x∈Xn

[Γ(βt
x)]. (3.5)

If we substitute Γ(βt−M
x,y,z ) for PM(St

x,y) in (3.4), the recursion of Γ(βt
x) can be deduced,

Γ(βt
x) = min

y∈Ym

[min
z∈Xn

[Γ(βt−M
x,y,z )] + BM(βt

x,y)], (3.6)
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Figure 3.3: Radix-2M ACS unit with two levels of CS functions

where βt−M
x,y,z is the z-th incoming branch of St

x,y.

Fig. 3.4 illustrates the related radix-2M trellis diagram for (3.6). With two levels of

computations, the first CS-2n operation performs min
z

[Γ(βt−M
x,y,z )] and the second ACS-2m

operation completes the remaining calculations in (3.6). Since BM(βt
x,y) is constant for

all z, the first CS-2n operation and the additions in ACS-2m can proceed simultaneously,

achieving less datapath delay.

Fig. 3.5(a) shows the retiming process (RT-1) of radix-2M ACS unit according to (3.6)

and Fig. 3.4. The registers keeping PM(St
x,y) for y ∈ Ym are moved to the branch βx,y,z to

store Γ(βt−M
x,y,z ) for z ∈ Xn; therefore, the number of registers becomes 2n times. Further-

more, the adders are changed to the inputs of 2n-to-1 multiplexer, and their amount also

increases 2n − 1 times. The number of multiplexers in the second level operation should

be 2M times because each state has 2M leaving branches. Fig. 3.5(b) shows the structure

of the retimed radix-2M ACS unit where the comparisons in the first level coincide with

the additions.

33



t t+Mt-M

1
tβ

retimed ACS-2M
original ACS-2M

t M
dS

+
1,1
tS

1,2
tS

1,2m
tS

2,1
tS

2
tβ

2n
tβ

1,1
tβ

1,2
tβ

1,2m
tβ

1,1,1
t Mβ −

1,1,2
t Mβ −

1,1,min( ( ))
n

t M
zz

β −

∈Χ
Γ 1, 1,Y

min ( ) ( )
m

t t
y yy

PM S BM β
∈

⎡ ⎤+⎣ ⎦

CS-2n ACS-2m

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

1,1,2n
t Mβ −

1,2,1
t Mβ −

1,2,2n
t Mβ −

2,2m
tS . .

 .

Figure 3.4: Radix-2M trellis diagram

3.3 Introduction to Two-Dimensional ACS Unit

The exponentially increasing complexity of high-radix Viterbi decoder is the major con-

cern during VLSI implementation. Moreover, the number of BMs generated by BMU also

increases exponentially. For a code with K ≥ 7, large number of ACS units required to

achieve high-speed parallel processing will need more area for signal routing. Therefore,

a radix-2m × 2n structure is introduced to achieve the throughput equivalent to radix-2M

approach where M = m + n. As shown in Fig. 3.6, the radix-2m × 2n ACS unit consists

of two levels of consecutive radix-2m and radix-2n ACS units. In the second level, the

new PMs at time instance t + m is obtained in advance and directly passed to compute

PM(St+M
d ), leading to an equivalent radix-2M ACS operation. Thus,

PM(St+M
d ) = min

x∈Xn

[PM(St+m
x ) + BM2(β

t+m
x )]

= min
x∈Xn

[ min
y∈Ym

[PM(St
x,y) + BM1(β

t
x,y)] + BM2(β

t+m
x )] (3.7)

where BM1 and BM2 correspond to the BM value in the 1-st and the 2-nd level.

The radix-2m×2n ACS unit in Fig. 3.7, referred to the two-dimensional (2-D) structure,

is similar to the radix-2M ACS unit, except that only smaller radix-2m ACS (ACS-2m)
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units and radix-2n ACS (ACS-2n) units are required. Since the exponentially increasing

hardware cost of a high-radix ACS, the complexity of a Viterbi decoder based on radix-

2m × 2n architecture is much smaller than that based on radix-2M architecture. However,

the critical path of the 2-D structure is through two levels of ACS unit, inducing one more

adder delay as compared with the radix-2M ACS unit in Fig. 3.3.

3.4 Retiming of 2-D ACS Unit

The 2-D ACS unit can be further improved to achieve higher speed with acceptable cost

through retiming approach. Moreover, the experimental results show that radix-2m × 2n

structure with retiming method is more area efficient than the radix-2M architecture.

Two possible retiming schemes based on (3.7) will be presented in the following. The

first scheme comes from the observation that BM2(β
t+m
x ) is independent of the function

min
y∈Ym

[PM(St
x,y) + BM1(β

t
x,y)], and can be moved to the inputs of multiplexers in the first

level of Fig. 3.7. This retiming procedure (RT-2) as shown in Fig. 3.9(a) results in a ACS

unit in Fig. 3.9(b). Note that the critical path is almost the same as the radix-2M ACS

unit in Fig. 3.3. The overhead to attain this acceleration is 2m −1 times more adders and

multiplexers in the first level.

The other retiming scheme can be proceeded by setting Γ(βt+m
x ) to be

Γ(βt+m
x ) = min

y∈Ym

[PM(St
x,y) + BM1(β

t
x,y)] + BM2(β

t+m
x ), (3.8)

and (3.7) will become

PM(St+M
d ) = min

x∈Xn

[Γ(βt+m
x )]. (3.9)

Similarly, PM(St
x,y) can be extended to be a function of Γ(βt−n

x,y,z) where βt−n
x,y,z is the

incoming branch of state St
x,y. The extension of (3.8) should be

Γ(βt+m
x ) = min

y∈Ym

[min
z∈Xn

[Γ(βt−n
x,y,z)] + BM1(β

t
x,y)] + BM2(β

t+m
x ) (3.10)

Fig. 3.8 illustrates the corresponding operation on the radix-2m × 2n trellis for (3.10)
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with x = 1. The computation contains CS-2n operations, ACS-2m calculations, and a

final addition (Add). Note that the additions can also be retimed for less datapath delay.

The retiming procedure (RT-3) is demonstrated in Fig. 3.9(a) where both registers

and adders are moved. Fig. 3.9(c) shows the final result after retiming. Keeping the

results Γ(βt+m
x ) on branches, the registers increase to 2n times as many as the original

one. Furthermore, the numbers of adders and multiplexers also become 2n times due to

the movement of additions.

3.5 Comparison

The optimization methods as mentioned above tend to break the critical path through

parallelizing the serial add, compare, and select operations. Fig. 3.10 compares datapath

delays of different ACS configurations. The delay times of CS-2m, CS-2n, ACS-2m, and

ACS-2n functions are defined to be TCS−2m , TCS−2n , TACS−2m , and TACS−2n. We also

assume that TCS−2m and TCS−2n are larger than the delay time of additions. The major

enhancement is the elimination of datapath delay contributed by additions. Note that

both ACS-2M with RT-1 and ACS-2m × 2n with RT-3 can achieve the lowest delay time

TCS−2m+TCS−2n because of the parallel additions and comparisons. Furthermore, Fig. 3.10

also shows that ACS-2m × 2n with RT-2 can acquire a comparable performance to the

ACS-2M structure.

Table 3.1 summarizes the complexity of the ACS architectures presented in this paper.

The cost of ACS-2m × 2n is smaller than that of ACS-2M because 2M ≥ 2m + 2n, and

the minimum adder requirement of ACS-2m × 2n can be achieved when m = 
M
2
� and

n = M − 
M
2
�. Considering ACS-2M with RT1 and ACS-2m × 2n with RT-3, the number

of adders in the former is larger than that in the latter while n > 1. Moreover, ACS-2M

with RT-1 has 2n times as many 2m-way comparators as ACS-2m × 2n with RT-3. The

original ACS-2M structure has the delay time similar to ACS-2m × 2n with RT-2, but

has (2n − 1) times more 2m-way comparators, which are considerably more complex than

adders. According the the summary in Table 3.1, the 2-D ACS-2m × 2n structure can
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Table 3.1: Comparison of complexity among different ACS configurations

registers adders
2m-way 2n-way 2m to 1 2n to 1

comparator comparator multiplexer multiplexer

ACS-2M
N 2M · N 2n · N N 2n · N N

ACS-2M (RT-1) 2n · N 2n · 2M · N 2n · N N 2n · N 2M · N
ACS-2m · 2n

N (2m + 2n) · N N N N N

ACS-2m × 2n (RT-2) N (2m + 2M ) · N N N 2n · N N

ACS-2m × 2n (RT-3) 2n · N (2M + 2M ) · N N N 2n · N 2m · N

1 The number of states is N = 2K−1.

2 M = m + n.

accomplish more cost efficient solutions with retiming for the high-speed requirement.
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Figure 3.9: Retiming of the radix-2m × 2n ACS unit
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Figure 3.10: Comparison of critical path delay for original and retimed ACS units
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Chapter 4

Simulation and Implementation

4.1 Introduction to Ultra-Wide Band System

Ultra-wideband (UWB) is an emerging wireless physical(PHY)-layer technologythat uses

a very large bandwidth [18, 19]. By its rule-making proposal in 2002, the Federal Com-

munications Commission (FCC) unleashed 3.1GHz to 10.6GHz RF band for increasing

high-speed data transmission. The mulit-band OFDM PHY-layer proposal indicates the

coded OFDM (COFDM)-based baseband solution can provide up to 480Mb/s with 2m

desired range for 528MHz UWB systems [4]. To enhance overall system performance,

the 64-state convolutional codes and interleaving techniques are used in the forward error

correction (FEC) mechanism, whose block diagram is shown in Fig. 4.1.

OFDM
MODEM

Viterbi 
Decoder

Convolutional
Encoder

OFDM
MODEMScrembler

De-scrembler

TX 
Data

RX 
Data

DAC RF

DAC RF

Interleaver

De-interleaver

Baseband

Figure 4.1: Block diagram of multi-band COFDM UWB systems.

In the MB-OFDM UWB systems, the maximum 480Mb/s data rate with a bandwidth

of 528MHz is specified. The punctured convolutional code with either frequency or time

43



domain spreading is used to change the data rate for different channel state information.

The encoding function uses the punctured convolutional encoder with the base rate (R)

1/3 and the generator polynomials g0 = 1338, g1 = 1658, and g2 = 1718 as shown in

Figure4.2. Higher coding rates are derived by puncturing. Puncturing is a procedure for

omitting some of the encoded bits in the transmitter and inserting a dummy zero metric

into the decoder on the receive side in place of the omitted bits. The puncturing patterns

are illustrated in Figure4.3.

D D D D D D

Output Data A

Output Data B

Output Data C

D D D D D D

Output Data A

Output Data B

Output Data C

Figure 4.2: Convolutional encoder of multi-band COFDM UWB systems.
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Figure 4.3: Punctured coding with rate R = 3/4

4.2 Simulation Results

The Viterbi decoder was designed to target the MB-OFDM physical layer proposal for the

IEEE 802.15.3a standard. In order to determine appropriate design parameters such as

the bit widths of the path metric, branch metric, and the input symbol, the performance
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evaluation through simulations are necessary. The bit error rate (BER) curves of the

floating point and the fixed point decoders are presented in Figure4.4. Note that the

R = 11/32 case is excluded because its performance is very close to the R = 1/3 one.

Figure 4.4: The BER curves

Note that the truncation length of the survivor memory varies with the rate R in order

to reduce the power dissipation under limited performance loss. The input symbols are

quantized to eight levels with the step size � = 0.25. For both I and Q inputs, the range

of −1 ∼ +1 is divided into 8 parts corresponding to 0 ∼ 7.

4.3 Implementation Results

The circuit implementation of Viterbi decoders are completed based on the proposed

high-radix and 2-D ACS structures. The punctured convolutional code specified in [4]

is selected for implementation. Furthermore, the resolutions of path metric and branch
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Table 4.1: Parameters of the Viterbi decoder

State number 64

Coding rate 1
3
, 11

32
, 1

2
, 5

8
, 3

4

PM width 9 bits

BM width 5 bits

Truncation length 96 (max.)

ACS radix-16

structure m = n = 2

metric as well as the traceback length of SMU are determined according to the system

of [4]. The parameters of the Viterbi decoder in our experiment are listed in Table 4.1.

Considering the high throughput requirement, the RE approach is applied to SMU

with quite different structures in radix-2M and radix-2m × 2n designs. The number of

branches between time instances t and t + M in radix-2M trellis is 2M · N ; however, this

number reduces to (2m + 2n) · N in radix-2m × 2n trellis, resulting in less multiplexers

in SMU. In this implementation with M = 4 and m = n = 2, if we select the 4-to-1

multiplexer as the basic unit and assume the 16-to-1 multiplexer consists of five units, the

multiplexers in the radix-24 SMU is 5·N
(1+1)·N

= 2.5 times as many as that in the radix-22×22

SMU.

Based on the proposed architectures, the Viterbi decoders have been implemented by

using 1.8V 0.18-μm 1P6M CMOS technology and 1.2V 0.13-μm 1P8M CMOS technology.

We estimate the data throughput with static timing analysis (STA) while considering

1.62V supply for the 0.18-μm design, 1.08V supply for the 0.13-μm design, the worst

speed corner, and the coupling noise due to crosstalk effect on signal wires. The results

with tight timing constraints are reported in Table 4.2 and Table 4.3. The gate count(NG)

is calculated based on the extracted gate level netlist from the layout, and ΔNG indicates

the gate count increase during the physical implementation. Note that ΔNG can reflect

the signal routing complexity in the layout implementation. Larger ΔNG indicates more

capacitance caused by signal connections should be buffered. The density is an area
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Table 4.2: Implementation results with timing critical constraints

0.18-μm 1P6M Data rate (Mb/s) Area (mm2) NG ΔNG Density

ACS-16 513 9.30 740.0k 151.1k 0.79

ACS-16(RT-1) 623 15.21 1129.9k 190.4k 0.74

ACS-4 × 41 427 4.41 310.4k 76.4k 0.77

ACS-4 × 4(RT-2) 553 5.29 398.6k 36.6k 0.75

ACS-4 × 4(RT-3) 731 6.76 533.1k 114.6k 0.79

1 This chip was fabricated, and the results showed the 500Mb/s data rate is

achieved under 1.8V supply.

utilization measure for standard cells within the core region and also dominated by the

routing complexity.

4.4 Discussion

In Table 4.2, both ACS-16 and ACS-4×4 with RT-2 can sufficiently satisfy the data rates

of the UWB system in [4]. Nevertheless, the ACS-4× 4 based decoder has only 57% area

of the ACS-16 based one. With RT-1, the speed of the ACS-16 decoder can be risen from

513Mb/s to 623Mb/s. Furthermore, the data throughput can be improved by 71% and

30% when RT-3 and RT-2 are applied to the ACS-4 × 4 architectures.

The results in Table 4.3 indicate much higher speed and density can be accomplished

due to the improvement of technology and two additional metal layers. Similar to the

results of 0.18-μm designs, ACS-16 with RT-1 and ACS-4 × 4 with RT-3 are shown to

achieve the highest data rates which are over 1Gb/s; however, the ACS-4×4 based design

is much smaller than the ACS-16 based one. The less computational units and the simple

signal routing result in not only the smaller NG and ΔNG, but also the higher chip density.

Consequently, the implementation shows that ACS-4 × 4 based decoders are with much

small area.
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Table 4.3: Implementation results with timing critical constraints

0.13-μm 1P8M Data rate (Mb/s) Area (mm2) NG ΔNG Density

ACS-16 933 3.61 647.3k 84.7k 0.92

ACS-16(RT-1) 1,038 5.36 945.7k 212.3k 0.90

ACS-4 × 4 923 1.28 239.2k 29.1k 0.96

ACS-4 × 4(RT-2) 986 1.85 349.9k 45.6k 0.97

ACS-4 × 4(RT-3) 1,105 1.96 358.0k 43.9k 0.94

Table 4.4: Implementation results of 500Mb/s data rate

Area (mm2) NG ΔNG Density Power(mW)a

ACS-16 2.66 491.7k 66.1k 0.94 344

ACS-16(RT-1) 3.84 685.5k 82.0k 0.92 533

ACS-4 × 4 0.90 165.5k 5.2k 0.94 119

ACS-4 × 4(RT-2) 1.38 247.7k 8.4k 0.94 169

ACS-4 × 4(RT-3) 1.44 263.2k 9.9k 0.94 195

a 1.2V supply and 500Mb/s data rate

Table 4.4 also lists the results when the timing constraint of 500Mb/s throughput is

applied to all designs. The reports of ACS-4 × 4 based Viterbi decoders also present

much smaller area and ΔNG than the ACS-16 based decoders. In this table, the power

consumption evaluated with 1.2V power supply reveals the same trends as NG.

In conclusion, these reports confirm the analysis in section 3.5 that ACS-4 × 4 based

architectures are more cost efficient for high-speed Viterbi decoders. Furthermore, the

retiming techniques can improve the throughput especially for the timing critical cases.

In the 0.13-μm technology, the ACS-4 × 4 based design can completely meet the UWB

system in [4], and over 1Gb/s data rates are available with the retiming process.
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Chapter 5

Conclusion

The 2-D ACS structure and the retiming mechanism are presented in this paper. The

2-D architecture provides more area efficient solutions for the high-radix trellis decoding,

and the retiming techniques reduce the critical path delay of ACS units to facilitate high-

speed applications. The Viterbi decoder for the UWB system [4] is also realized with

the proposed approaches. The experimental results report a significant area reduction

for the designs with 2-D ACS unit and a considerable improvement in throughput when

the retiming process is employed. The 0.18-μm chip design shows RT-3 can improve the

speed of ACS-4 × 4 by about 71%. In addition, built in the 0.13-μm technology, both

the ACS-16 decoder and the ACS-4× 4 decoder with retiming can accomplish the 1Gb/s

data rate, but the later occupies only 37% area in contrast to the former.
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