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應用整數線性規劃達成架構層級合成上 

最佳化通道與暫存器配置之技術 

研究生：黃 維 聖 指導教授：黃 俊 達 博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘       要 

在深次微米科技裡，連線的延遲已經不再能被忽略。而且隨著製程的日益進步，更

漸漸地主導了系統的時間延遲。規律分散式暫存器架構著眼在這個問題上。其相對的

合成流程分散了暫存器並且利用實體區域化的特性來改善整個系統的時間延遲。然

而，多出來的溝通代價，包含連線和暫存器卻限制了應用程式的規模。我們針對這個

問題並且提出了所謂“在架構合成層次上通道與暫存器配置”的問題。輸入這個問題的

是經過排程而且已經指定運算單元的資料流程圖、運算單元的擺置和代表目標架構的

拓樸圖。目標是得到一個配置，它將每一個週期的所有傳輸資料對應到可使用的通道

和暫存器上同時降低溝通的資源。除此之外，我們提出了這個問題正式的模型。藉由

比重分配過的目標函式，我們能使用處理線性規劃的程式來得到最佳解。除此之外，

由捕捉到每一個基本傳輸行為的好處，我們延伸了這一個模型，以利用後製的方式使

他得到更進一步的改進並且模擬了雙向的通道。在實驗的結果裡，相較於之前僅僅使

用專屬溝通的方法，我們所提出的線性規劃模型分別改善了平均 58% 和 35% 在連線

和暫存器的使用上。就算和使用了管線連線而且執行了傳輸排程的方法比較，我們提

出的方法也擁有分別為 46% 和 54% 的改善在連線和暫存器的使用上。 
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Abstract 

In deep submicron technology, the wiring delay has no longer been trivial and dominated 

the system latency gradually. The regular distributed register architecture is proposed to 

resolve this problem. The corresponding synthesis flow partitions the registers and exploits 

the physical locality to improve the system latency. However, it introduces the extra 

interconnection overhead, which includes wires and registers, and limits the scale of 

applications. We address this problem and formulate it as channel and register allocation in 

architecture level synthesis problem. The inputs are the scheduled and bound DFG, placed 

FUs and topology information of the target architecture. The goal is to get the assignment 

which maps all transferred data to available channels and registers at each cycle while 

minimizing the interconnection resource at the same time. Besides, we propose a formal 

model for this problem. With the weighted objective function, we can get the optimal 

solution through an ILP solver. Furthermore, due to the benefit of capturing the basic 

transfer behavior in our formulation, we also extend the model to get the further 

improvement and model the bi-directional channel through post processing. According to 

the experimental results, our proposed ILP method improves 58% and 35% on average in 

terms of usage on wires and registers compared to the previous method, which uses 

dedicated interconnections only. Even compared to another one, which uses pipelined wires 

and performs transfer scheduling, our method gets 46% and 54% improvement in terms of 

the usage on wires and registers. 
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Chapter 1 Introduction 

In this chapter, we will introduce the conventional architecture level synthesis flow 

briefly and notice the topic of delay overhead made by interconnection. Moreover, some 

methods and new target architecture have been proposed to take consideration about the 

extra wiring delay problem. Therefore, we will focus on these issues and address the wiring 

overhead in distributed register architecture. 
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1.1. Conventional Architecture Level Synthesis Flow 

 Architecture level synthesis is a sequence of tasks to transform a higher level behavior 

description to RTL design. There are lots of ways to implement it according to the desired 

architecture style. Therefore, a large variety of problems, algorithms and tools have been 

proposed. 

 

Fig. 1. Conventional and simplified architecture level synthesis system 
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1.2. 

Fig. 1 shows a conventional and simplified architecture level synthesis system, which 

includes target architecture and corresponding synthesis flow [14]. First, the synthesis 

system will get the internal representation (i.e. data flow graph here) of design by compiling 

input application. Second, the scheduling and binding tasks place operations in feasible 

functional units and timing slots in sequencing order. Finally, it generates the detailed 

interconnections and corresponding control signals which map the behavior of data transfer 

and all configurations to circuit cycle by cycle. 

This target architecture shown in Fig. 1 has some functional units, centralized register and 

a corresponding control unit. The centralized registers store all temporal data and provide 

all operands to functional units. In the view of data transfer, we can say that the scheduling 

and binding are the tasks which assign when and to where the temporal data go. In addition, 

the datapath synthesis task generates the needed multiplexers, de-multiplexers and wires of 

interconnections. 

In centralized register architecture, any data generated from some functional unit will be 

available for other ones at the next cycle. In other words, it always takes no additional cycle 

to transfer data between functional units. However, it should pay the extra cycle time for 

this convenience interconnection scheme. Furthermore, the cycle time equal the 

computation time plus interconnection delay which includes the delay of multiplexers, 

de-multiplexers and wires. 

Distributed Register Architecture 

In Deep Submicron Meter (DSM) technology, the wiring delay is no longer trivial [1]. It 

will dominate the overall system delay gradually with the scale evaluation of process 

technology which is due to RC delay, coupling noises, inductance, etc [2][3]. Obviously, the 

fatal long wiring delay will become a big portion in cycle time and worsen the system 



 

latency at that time. 

In such a situation, it is important to take the interconnection delay into consideration. 

Because the interconnection delay information is only available after physical layout, the 

conventional architecture level synthesis flow cannot obtain the accurate cycle time. To 

overcome this problem, lots of researchers had used the estimated interconnection delay for 

a higher level design of abstraction [4][5][6][7][8][9]. 

In architecture level synthesis, the targeted architecture and corresponding synthesis 

algorithm will affect the effectiveness of exploiting the interconnection delay. Therefore, the 

distributed register architecture which partitions the registers has been proposed [10][11]. 

Fig. 2 represents the simplified model, which has some clusters connected through global 

interconnection. The cluster includes some functional units which can only access the 

dedicated registers in the same cluster. The global interconnection responds to transfer the 

data among all clusters in several cycles. 

 

 

Fig. 2. Model of distributed register architecture 
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Additionally, some partition constraints prevent the overloading of interconnection delay 

constituted by multiplexers (e.g. adding constraints on the number of access ports of 

registers) and long wiring (e.g. adding constraints on the number of functional units). 

Contrary to the conventional centralized register architecture, the distributed register 

architecture partitions the interconnection delay in several cycles. Only the interconnection 

delay within a cluster makes a portion in system cycle time. The other one in global 

interconnection only makes the additional cycles. Therefore, the partition of interconnection 

delay implies multi-cycle communication which enables the parallel execution of 

computations and data transfers. 

Base on the same concept, the Regular Distributed Register (RDR) architecture was 

proposed [12], which offers high regularity and direct support of multi-cycle 

communication. The RDR architecture divides the entire chip into an array of clusters. 

Fig. 3 shows an example of RDR architecture with 2 3×  cluster array. For the highly 

regular advantage of RDR architecture, the information of inter-cluster and intra-cluster 

interconnection delay can be accurately recorded in lookup tables and pre-computed once 

the parameter of RDR structure (e.g. size of cluster, clock period) are specified. 

 
Fig. 3. RDR architecture with 2 3×  cluster array 
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1.3. Extra Wire Loading in RDR-based Architecture 

The corresponding synthesis flow for RDR is MCAS (Architectural Synthesis for 

Multi-cycle Communication). At the front end, after generating the Control Data Flow 

Graph (CDFG) of application, the MCAS performs resource allocation, functional unit 

binding and scheduling-driven placement in order. These tasks place the functional units to 

clusters and assign the operations in CDFG when and where to be executed. At the backend, 

MCAS performs register and port binding followed by datapath and distributed controller 

generation. The experimental results reported in [12] shows 44% and 37% improvement on 

average in terms of the cycle time and final latency for data flow intensive examples. It also 

shows 28% and 23% improvement on average in terms of the cycle time and final latency 

for designs with control flow. 

However, the RDR architecture may introduce extra global wiring overhead in the 

presence of many simultaneous data transfers, when each one requires a dedicated global 

connection. The significant wiring overhead would eventually limit the scaling of the 

application in RDR architecture. To overcome this problem, [13] presents an architecture 

level synthesis solution, which is called RDR-pipe, to support automatic interconnection 

pipelining extended from RDR. The interconnection pipelining potentially improves the 

wiring utilization by sharing the wires between each pair of clusters. Compared to RDR 

architecture, 28% global wire-length reduction is reported [13] in RDR-pipe architecture. 

A good way to reduce resource demand is sharing. The interconnection pipelining 

improves the wiring overhead by sharing the wires between each two clusters. However, 

this methodology still limits the sharing capability to divided localized regions, because the 

transferred data are still scheduled and allocated within dedicated wires. Therefore, a global 

sharing methodology in which the wires and registers are both shared by all transferred data 
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1.4. 

might greatly minimize the interconnection overhead. In this thesis, we propose the formal 

formulation of channel and register allocation problem in architecture level synthesis, which 

captures the behavior of the transfer data at each cycle in distributed register architecture. 

Therefore, base on the formulation, it can be extended to minimize the required 

interconnection resource easily. 

Thesis Organization 

The rest of the thesis is organized as follows: chapter 2 addresses the channel and register 

allocation problem. Then it gives a motivational example which shows the difference 

between pervious methods and the desired optimal solution. Chapter 3 presents the detailed 

description of the proposed ILP formulation including problem formulation, variables 

definition, constraints and the objective function. Chapter 4 gives some useful extensions to 

the ILP model described in Chapter 3. Chapter 5 shows the experimental results compared 

to the previous works. Finally, conclusions and future works are drawn in chapter 6. 
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2.1. 

Chapter 2 Channel and Register Allocation Problem 

In this chapter, we introduce the channel and register allocation problem in architecture 

level synthesis which has distributed registers. After that, a motivational example is given to 

show why we need a new methodology to share the interconnection resource globally. 

Channel and Register Allocation Problem 

The RDR architecture gives lots of dedicated interconnection wires between clusters. 

Because it has no interconnection pipelining, the sender will hold the transferred data for 

several cycles. Therefore, one transferred datum will occupy a long wire for several cycles, 

which wastes the interconnection resource. 

The RDR-pipe is extended from RDR. It puts the registers in appropriate positions to 

pipeline the long wires. By performing the transfer scheduling, it has higher utilization in 

wiring resource. However, the register station in RDR-pipe has no control signal. It makes 

the pipeline register dedicate to its interconnection wire only and cannot be shared for the 

data generated from the other clusters. 

Therefore, we address a further extension on the register station, which is capable of 

incoming data and forward them to any directions. Besides, we take the distributed wiring 

segments in available channels between register stations instead of the dedicated 

interconnection. That is, any interconnection can be combined by several wiring segments. 

Consequently, how to allocate those transfers to channels becomes a new problem because 

the behavior of transfers deeply affects the interconnection resource including wires and 

registers. Thus, this is the proposed channel and register allocation problem. 



 

 

Fig. 4. Scheduled and bound DFG of DCT 

The given input of this problem is the scheduled and bound data flow graph and 

placement of functional units in distributed register architecture. The given input should be 

checked whether the transfer latency is enough in advance. Fig. 4 shows a data flow graph 

of discrete cosine transform [12] with two ALUs and two multipliers. Each circle which is 

bound to a specific functional unit represents an operation. Also, these operations are 

scheduled in a time slot divided by horizontal lines. The scheduled and bound data flow 

graph describes when and which FU should take the temporary data to be computed. 

Fig. 5 shows a  cluster array architecture and the placement of two ALUs and two 

multipliers. One cluster includes a meshed square as FUs which only access the dedicated 

registers in the white square called register station. According to the placement of functional 

units in 

3 3×

Fig. 5(a) and the bound DFG, Fig. 5(b) replaces the relative operations in it. 

Therefore, with the scheduling and binding information, we can specify the transfer where 

and when it is generated or required. 
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Fig. 5. Placement functional units in distributed register architecture 

2.2. Previous Methodology 

Because the channel and register allocation problem is extended from the 

RDR/RDR-pipe architecture, we take those register and port binding tasks as the pervious 

work. Fig. 6 shows a simple example of the scheme performed in RDR/MCAS. The 

operation number 1 and 2 are executed in cluster A and the number 3 and 4 are in cluster C. 

According to this architecture, the register 1 and 2 of sender A hold these transferred values 

at least two cycles. Therefore, two parallel inter-cluster wires are needed between cluster A 

and C for the overlap transfer time of data. 

 

Fig. 6. Register and port binding task with dedicated interconnection 
 9



 

 
Fig. 7. Register and port binding task with dedicated pipelining interconnection 

Fig. 7 performs the scheme of RDR-pipe/MCAS-pipe in the same example. With the 

presence of pipeline register 2 in cluster B, register 1 can forward one data to register 2 at 

the first cycle and forward the other one at the next cycle. These two data were issued at 

different cycles and forwarded by pipeline register (i.e. register 2) without stalling until 

reaching the cluster C. With transfer scheduling, it serializes the transfers by differing the 

issued cycle of each datum. Therefore, only one interconnection wire is needed and it has 

one wire reduction compared to RDR/MCAS. 

2.3. Motivational Example 

Sharing is the way to reduce resource requirement. We take a motivational example to 

illustrate how the sharing capability affects the requirement of interconnection resource. 

The comparison of results among RDR/MCAS, RDR-pipe/MCAS-pipe and the idealized 

global sharing method will be discussed. Fig. 8 gives the scheduled and bound data flow 

graph and the mapping of operations in a 3 3×  cluster array. For comparing the result of 

resource requirement, we will count the number of registers and the wiring segments. A 

simple definition of wiring segment is one wire between two adjacent clusters. The 

definition is intuitional and directly proportion to the wire length. 
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Fig. 8. Given scheduled, bound DFG and placed functional units 

Fig. 9 shows the result of transfer allocation in RDR/MCAS. The cluster generating data 

always holds the transferred value until the slack time equal to the interconnection delay. 

No transfer scheduling and pipeline register makes extra wiring requirement. It needs 12 

wiring segments and 10 registers in total. 

Fig. 10 shows the result of data transfer in RDR-pipe/MCAS-pipe. The pipeline registers 

are inserted in each register stations where interconnections would pass away. Besides, the 

transfer scheduling is performed to minimize the wire requirement. Consequently, it reduces 

the wiring segments to 7 at the cost of additional 2 registers (i.e. totally 12 registers). 

 
Fig. 9. Result of allocation in RDR/MCAS 
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Fig. 10. Result of allocation in RDR-pipe/MCAS-pipe 

The sharing of wires and registers by transferred data reduce the resource requirement. 

Under the principle, we extend the capability of register stations which can store data for 

cycles and forward them to arbitrary directions. The extension enables the transfer data use 

all interconnection wires and registers. Therefore, it implies global sharing and more 

resource reduction. Fig. 11 shows the result, with the hand-scheduling, it use only 4 wire 

segments and 7 registers. 

 
Fig. 11. Result of the global sharing of interconnection resource 
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Chapter 3 Proposed ILP Formulation for the Channel 

and Register Allocation Problem 

In the chapter, we will formulate the behavior of transfers in distributed register 

architecture with extended capability, which permits the register station to store or forward 

data at each cycle. In our proposed formulation, the definition of problem and input will be 

given initially. Then we will make an explanation of variables and decide the feasible region 

of them. Finally, we will write down the objective function to minimize interconnection 

resources which should be subject to uniqueness, continuity and resource counting 

constraints. 
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3.1. Definition of Problem Given 

Before solving the channel and register allocation problem, we assume the tasks of 

scheduling and functional unit binding have been performed. Therefore, the scheduled and 

bound data flow graph, functional unit placement are taken as input. Besides, the topology 

information including the position and connectivity of clusters is also needed. 

First, we use the graph representation  to describe the input data flow graph. 

The vertex set 

( , )S S SG V E

{ | 0,1, 2, ,| | 1}S i SV o i V= = … −

k

 represents the operations in data flow graph. 

The directed edge set  represents the data dependency 

implying data transfer, such that  means the data generated from  

{ | 0,1, 2, ,| | 1}S i SE e i E= = −…

:i je o o→ jo  should 

be sent to . ko



 

 

Fig. 12. Data flow graph as input application 

Fig. 12 is a simple example of data flow graph, which has the vertex set 

 and the edge set { | 0,1, 2,3}S iV o i= = { | 0,1,2}S iE e i= =  such that , 

 and . 

0 0:e o o→ 2

2 31 1:e o o→ 2 2:e o o→

Second, we use the graph representation , called topology information, to 

specify the target distributed register architecture, which indicates the available positions for 

putting interconnection wires or registers. The vertex set 

( , )T R WG V E

{ | 0,1,2, ,| | 1}R i RV r i V= = −…  

represents the register stations. The directed edge set { | 0,1, 2, ,| | 1}W i WE w i E= = −…  

represents the available channels, such that we can describe the behavior of transferred data 

from jr  to  as . It is notable that we can use a self loop to enable the 

transferred data stay at the same register station for one cycle. 

kr :i jw r r→ k

Fig. 13 takes a  cluster array of distributed register architecture as topology 

information, which has the vertex set 

2 2×

{ | 0,1,2,3}R iV r i= =  and the edge set 

 implying the register station has the capability to transfer data to 

adjacent one horizontally, vertically by , or keeping them for cycles by 

. 

{ | 0,1, 2, ,11}W iE w i= = …

2 3 7, , ,e e e…

0 1 8 9, , ,e e e e
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Fig. 13. Topology information 

The input data flow graph is scheduled and bound. What do the “scheduled” and “bound” 

mean for? First, we can treat each data dependency in data flow graph as a transfer. Besides, 

by the “scheduled” and “bound” information, we can know when these operations are done 

and in which cluster the outputs are stored. In fact, we can use this information with 

placement of functional units to specify each transfer like this statement – some transfer  

is the task that taking data from register station 

ie

xr  to  from cycle  to .  yr n m

Precisely, we can use a set of pair { ( , ) | }i i i i Set st ft e E= ∈  to specify the transfer  

generated at cycle  and required at cycle 

ie

ist ift . And another set of pair is used to specify 

the transfer  generated at register station  and required at register station ie isr ifr . 

In Fig. 14, we focus on the edge , which is a data dependency between  and . 

By the information of  and , we could know there is a datum needed to be 

transferred from register station 

0e 0o 2o

0et 0er

0 1sr =  at cycle 0 5st =  to register station 0 2fr =  at 

cycle . 0 8ft =

 15



 

 

Fig. 14. Specification of a transfer 

3.2. The Definition of Variables 

How to define appropriate variables is important, which affects the complexity, flexibility 

of an ILP formulation. To minimize the limitation of extension capability in our proposed 

formulation, we decide to capture the basic behavior of transfer at each cycle. Without lots 

of indirect specifications, a simple type of zero-one integer variable , ,i j kx  is adopted and 

called channel allocation variable.  

w2
w3

w8
w9

r3

w0 w1

w10 w11

o0

o1

o3

e0cycle 6

cycle 7

cycle 8

cycle 9

cycle 5

et0 = (5 , 8) er0 = (1 , 2)

r1

r2

r0

o2

 
Fig. 15. Specifying a transfer path with channel allocation variables 
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The meaning of , ,i j kx  is that whether the transfer datum  at cycle ie j  is allocated to 

channel . “One” value means yes, and “zero” stands for no. The set kw X  collects all 

these zero-one variables and can be written as: 

 
  , ,{ | 0,1, ,| | 1; ; 0,1, | | 1}i j k S i i WX x i E ft j st k E= = − ≥ > =… … −

 How do these variables work for describing a transfer path? Fig. 15 shows an example. 

In this example, transfer  should be taken from register station  to  from cycle 6 to 

8. If we have chosen a transfer path, which is sending the data to  at first cycle, staying 

one cycle in  at next step and achieving  in the end of cycle 8. What we need to do is 

specifying this path by setting variables

0e 1r 2r

0r

0r 2r

0,6,3x , 0,7,0x  and 0,8,4x , which means using the 

channels ,  and  respectively cycle by cycle. Then preserve the other allocation 

variables of transfer  to zero for preventing the ambiguity in assignment of transfer 

behavior. Therefore, one assignment of allocation variables without ambiguity stands for 

one transfer behavior of data. It is the one to one and onto mapping implying that the entire 

solution space is included in the variety of assignment. 

3w 0w 4w

0e

Otherwise, to minimize the interconnection resource, the counting resource variables are 

also defined. The interconnection resource includes wires and registers. In our formulation, 

we care about the resource requirement in available channels and register stations. 

Therefore, the straightforward types of integer variables,  and , are used. They 

mean the number of wires in available channel  and registers in available register 

station , respectively. 

iNw iNr

iw

ir
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3.3. The Feasible Region of Variables 

In fact, there are lots of redundant allocation variables included in the set X . With the 

specification of generating and requiring register stations, the active region of transferred 

data is limited. That is, there are lots of channels of transfers would never be used, and these 

corresponding allocation variables are always zero. To minimize the allocation variables 

while preserving complete behavior of transfer, it is needed to decide the feasible activitive 

region of transfer at each cycle. 

As mention above, the activity region of transfer is limited by generating and requiring 

register station. We take the same example in Fig. 16. Fig. 16(a) shows that the possible 

channels used for transfer  at cycle 6. Those feasible channels are limited to ,  

and , which are all emitted from generating register station . Even at the next cycle, 

the feasible channels are also limited to those ones emitted from register stations ,  

and . Therefore, the feasible channels are spread out from generating register station and 

the effect of limitation can be traced cycle by cycle. Base on this idea, we define the set 

 which includes the number of feasible channels traced from the generating register 

station  at cycle j: 

0e 1w 3w

6w 1r

0r 1r

3r

,i jWS

isr

  , 1
,

( )                       , 1

{ | : ,  }      , 1
i j

i

i ik WS
i j

k sr m k W i

NW k ft j st
WS

k w r r w E j st
−∈

⎧ ≥ > +⎪= ⎨
→ ∈ = +⎪⎩

∪

Such that 

  ( ) { | : ,  : ;  , }i x y j y z i j WNW i j w r r w r r w w E= → → ∈



 

 
Fig. 16. Limitation of activitive region of transfer 

The  is defined recursively and takes the generating cycle as the initial condition. ,i jWS Fig. 

17 shows an example. The set of feasible channels of transfer , which is equal to 0e 0 jWS , 

has carried out. The  includes channel 1, 3 and 6 which are all leaving from the 

generating register stations  and entering into , , or . At the next cycle, the  

should include those channels leaving from , , or . We can get  in the same 

manner. 

0,6WS

1r 0r 1r 3r 0,7WS

0r 1r 3r 0,8WS

On the other side, Fig. 16(b) shows that the possible channels used for transfer  at 

cycle 8. Those feasible channels are limited to ,  and , which are all achieving 

requiring register station . Therefore, the feasible channels at the last cycle, or cycle 7, 

are limited to those entering into register stations ,  or . Base on the same idea, 

these traceable feasible channels spread out from requiring register station 

0e

4w 9w 10w

2r

0r 2r 3r

ifr  of transfer 

 at cycle j can be collected in the other sets : ie ,i jWF

 , 1
( )                       , 1

{ | : ,  }      ,
i j

i

i ik WS
ij

k m fr k W i

LW k ft j st
WF

k w r r w E j ft
+∈

⎧ > ≥ +⎪= ⎨
→ ∈ =⎪⎩

∪
  

Such that 

 ( ) { | : ,  : ;  , }j x y i y z i j WLW i j w r r w r r w w E= → → ∈  
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Fig. 17. Tracing feasible channels from generating register station 

The  is defined recursively and takes the requiring cycle as the initial condition. ,i jWF

Fig. 18 shows the same example in Fig. 17 and contrarily traces from the other side. The 

 includes channels 4, 9 and 11 which are all achieving the requiring register stations 

 and are leaving from ,  or . At the last cycle, or cycle 7, the  should 

include those channels entering into ,  or . Then we can get  in the same 

manner. 

0,8WF

2r 0r 2r 3r 0,7WF

0r 2r 3r 0,6WF

 
Fig. 18. Tracing feasible channels from requiring register station 
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The set  and  collect the feasible channels from contrary side of register 

stations of transfers. Therefore, the new set  generated by intersecting  and 

 can delete all the redundant candidates and preserve the capability of representing all 

possible transfer paths at the same time. It can be written as: 

,i jWS ,i jWF

,i jW ,i jWS

,i jWF
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,  , ,i j i j i jW WS WF= ∩

,i jW  describes the activity region of transfer, which are the all possible number of 

feasible channels of transfer  at cycle j. By this information, the set ie ,i jX  including all 

feasible channel allocation variables of transfer  at cycle j could be easily written as 

follow: 

ie

 , , , ,{ |i j i j k i jX x k W }= ∈  

Table 1 follows the example in Fig. 17 and Fig. 18, and generates 0, jW  set by 

intersecting 0, jWS  and 0, jWF . Therefore, we can find the feasible channel variables of 

transfer  at cycle 6, cycle 7 and cycle 8 are as followed, respectively: 0e

 

  
0,6 0,6,1 0,6,3 0,6,6

0,7 0,6,0 0,6,3 0,6,4 0,6,6 0,6,9 0,6,11

0,8 0,6,4 0,6,9 0,6,10

{ , , };
{ , , , , , }
{ , , };

X x x x
X x x x x x x
X x x x

=

=

=

;

 
Tab. 1. Possible channels of transfer  in 0e Fig. 17 and Fig. 18

J (cycle) WS0,j WF0,j W0,j 

6 {1,3,6} (0~11) {1,3,6} 

7 {0,1,2,3,4,6,7,9,11} {0,3,4,5,6,8,9,10,11} {0,3,4,6,9,11} 

8 {0~11} {4,9,10} {4,9,10} 

 



 

Addition to allocation variables, we also give the upper bound of resource counting 

variables. It is useful for the requirement evaluation of interconnection resource and being 

an effective limitation of the variable range in generic ILP solver. The idea is that the 

numbers of interconnection resource, which are wires in channels or registers in register 

stations, are not more than the possible maximum requirement of all cycles. To do this, we 

define the set ,k jRw  including all the numbers of transfer. It is possible for all the numbers 

of transfer to be allocated in channel  at cycle j: kw

 , , ,{ | }k j i j kRw i x X= ∈  

With the same idea, ,k jRr  is defined to include all the numbers of transfer. It is possible 

for all the numbers of transfer to be allocated and entered into register station  at cycle j: kr

 , ,{ | : ,  }y j k x y R i j k,Rr i w r r E x X= → ∈ ∈  

Finally, find the maximum in these sets, which will be the upper bound of the 

corresponding resource requirements. The upper bound of the number of wire segments in 

channel  could be written as: kw

 ,upper bound of max({| || 0,1, ,| | 1})k k jNw Rw j T= = −…  

 

The upper bound of number of registers in register station  could be written as: kr

 ,upper bound of max({| || 0,1, ,| | 1})y y jNr Rr j T= = −…  

3.4. The Objective Functions and Subjected Constraints 

With the previous definition, we can write down our objective function, which is the 

summation of all weighted required resources: 

  
| | 1 | | 1

0 0

W RE V

i i i i
i i

Nr Nwα β
− −

= =

+∑ ∑
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It is notable that the constant factors iα  and iβ  weight the affection of resource types, 

and usually the weight of self loop which implies to stay one cycle is set to zero. However, 

there are some constraints which the formulation should be subject to will preserve the 

correctness of transfer behaviors.  

The first are the Uniqueness constraints, which describe that the channel allocation of 

each transfer should be unique at each cycle. More than one channel allocated at the same 

cycle will make ambiguity. The uniqueness constraints can be written as: 

 
,

, , =1,    | | 0,  
i j

i j k s i i
k W

x E i ft j s
∈

> ≥ ≥ >∑ t  

It makes a summation of all objects in each set ,i jX  and forces it to one. These 

constraints imply that only one allocation variable could be set at one cycle and prevent the 

ambiguity of transfer behavior. Fig. 19 shows an example that transfer  should be 

assigned a transfer path from register station 1 to 2 from cycle 6 to 8. Then the allocation 

should subject to the uniqueness constraint written as: 

0e

  
0,

0, , =1,    8 5;
j

j k
k W

x j
∈

≥ >∑

The expanded equations are followed for cycle 6, cycle 7 and cycle 8, respectively: 

  
0,6,1 0,6,3 0,6,6

0,7,0 0,7,3 0,7,4 0,7,6 0,7,9 0,7,11

0,8,4 0,8,9 0,8,10

1,
1,

1;

x x x
x x x x x x
x x x

+ + =

+ + + + + =

+ + =

The second one are the continuity constraints, which describe that the transfer at two 

consecutive cycles must be continuous in feasible channels. These constraints hold the 

transfer path available, that is, the register station allocated channel entering into must be 

the same one allocated channel leaving from at next cycle. The continuity constraints can be 

written as: 

 
, 1

, , , 1,
( )

0,     | | 0,  ,  | | 0;
i j

i j k i j k s i i W
k NW k W

x x E i ft j st E
+

′+
′∈

− + ≥ > ≥ ≥ > > ≥k∑
∩
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Fig. 19. Uniqueness constraints of transfer  at cycle 6 0e

It describes that if the allocation variable entering into register xr  at cycle j  is set, then 

one of those variables which is leaving from xr  must be set at cycle  to hold the 

continuity of the transfer path. Any channel allocation variable has its own continuity 

constraints, except for those ones at the last transfer cycle. Because only the chosen 

allocation variable should hold this constraint, the inequality (i.e. relation of larger than) 

exists to prevent the violation from the other unset ones. With the same example shown in 

1j +

Fig. 19, the constraints could be expanded as follows: 

At cycle 6, 

  
0,6,1 0,7,3 0,7,6

0,6,3 0,7,0 0,7,4

0,6,6 0,7,9 0,7,11

0,
0,
0;

x x x
x x x
x x x

− + + ≥

− + + ≥

− + + ≥

At cycle 7, 

 

0,7,0 0,8,4

0,7,3 0,8,4

0,7,4 0,8,10

0,7,6 0,8,9

0,7,9 0,8,10

0,7,11 0,8,9

0,
0,
0,
0,
0,
0;

x x
x x
x x
x x
x x
x x

− + ≥

− + ≥

− + ≥

− + ≥

− + ≥

− + ≥
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Additional to hold the correctness of transfer behavior, the other constraints make the 

number of interconnection resource enough to transfer all the data. The number of wires in 

channel  is represented by the wiring counting variable , and the number of 

registers in register station  is represented by register counting variable . However, 

they must be more than the amount of the requirement at each cycle. For the wire counting 

variable, this can be addressed as:  

iw iNw

ir iNr
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≥

> ≥

  
, , ,

, , 0,     | | 0,  | | 0
i j k i j

k i j k W
x X

Nw x E k T j
∈

− ≥ > ≥ >∑

Each wiring counting variable has a set of constrains which are formulated to check 

whether the number of wires is sufficient. The number of constraints in a set we need to 

written down is equal to the total cycle counts. And with the same idea, the constraints of 

register counting variables are: 

  
, , ,

, ,
{ | : , }{ | }

0,      | | 0
k x y k W i j k i j

y i j k
k w r r w E i x X

Nr x T j
→ ∈ ∈

− ≥∑ ∑

Likewise, each register counting variable has a set of constrains which are formulated to 

check whether the value of counting variable is sufficient. The number of constraints in a 

set we need to write down is equal to the total cycle counts. The example is shown in Fig. 

20, which specifies another transfer . The constraints checking the resource variables are 

written as follows: 

1e

 

Fig. 20. Example for resource counting variables 



 

For wire counting variable 

 

0 0,7,0

1 0,6,1

3 0,6,3

3 0,7,3

4 0,7,4

4 0,8,4

6 0,6,6

6 0,7,6

0,
0,
0,
0,
0,
0,
0,
0,

Nw x
Nw x
Nw x
Nw x
Nw x
Nw x
Nw x
Nw x

− ≥

− ≥

− ≥

− ≥

− ≥

− ≥

− ≥

− ≥

 

 

9 0,7,9 1,7,9

9 0,8,9 1,8,9

10 0,8,10 1,8,10

11 0,7,11 1,7,11

0,
0,

0,
0,

Nw x x
Nw x x
Nw x x
Nw x x

− − ≥

− − ≥

− − ≥

− − ≥

 

For register counting variable 

 

  

0 0,6,3

0 0,7,0 0,7,3

1 0,6,1

2 0,7,4 0,7,9 1,7,9

2 0,8,4 0,8,9 0,8,10 1,8,9 1,8,10

3 0,6,6

3 0,7,6 0,7,11 1,7,11

0,
0,

0,
0,

0,
0,

0,

Nr x
Nr x x
Nr x
Nr x x x
Nr x x x x x
Nr x
Nr x x x

− ≥

− − ≥

− ≥

− − − ≥

− − − − − ≥

− ≥

− − − ≥
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Chapter 4 Useful Extension on the ILP Formulation 

With the high flexibility, the extensions of model, objective function, or specific behavior 

of transfer could be introduced in our proposed ILP formulation. Therefore, in this chapter, 

we will give two useful extensions. One is the further reduction on requirement of 

interconnection resource, which is called resource counting problem. The other one is 

modeling the transfer behavior of the bi-directed channel from existing directed ones. 

 27

4.1. Resource Counting Problem 

In some case, the resource requirement would be overestimated. That is, when more than 

one data outputted from the same operation and allocated in the same channel, they would 

be counted owning individual one channel requirement and result in two wire requirements. 

In other words, the formulation would use more wires to transfer the same datum. Thus, the 

resource requirement has been overestimated. Not only the wire segments in channel, but 

also the registers in register station would face this problem. Fig. 21 shows the example 

which experiments this situation. In this example, transfer  and  outputted from 

operation  are assumed to be the same datum. From the previous resource constraints 

written as: 

3e 4e

3o

 

2 3,11,2 4,11,2

4 4,11,4

6 4,12,6

8 4,12,8

1 3,11,2 4,11,2

2 4,11,4

3 4,12,6 4,12,8

0,
0,
0,
0,

0,
0,

0,

Nw x x
Nw x
Nw x
Nw x
Nr x x
Nr x
Nr x x

− − ≥

− ≥

− ≥

− ≥

− − ≥

− ≥

− − ≥

 



 

 
Fig. 21. Resource counting problem 

There are at least two wires in channel  and two registers in register station  

counted for the final adoption of  path by transfer . However, they are all 

overestimated by one. 

2w 1r

2 6( , )w w 4e

To overcome this problem, new zero-one integer variable  are introduced instead 

of original 

, ,m j kc

, ,i j kx . The meaning of  is that, whether there is any datum from the 

operation  allocated to the channel  at the cycle j. It implies not only capturing the 

behavior of each transfer datum, but also checking which operation they come from. 

, ,m j kc

mo kw

To find out the fixed allocation variables , we use the new set  to collect 

those original allocation variables 

, ,m j kc , ,m j kY

, ,i j kx  generated from operation  and allocated in 

channel  at cycle 

mo

ke j . The definition could be written as: 

  , , , , , , ,{ | ;  (e : )m j k i j k i j k i j x m SY x x X o E= ∈ → }∈

Therefore, we can get the fixed allocation variables  from original ones , ,m j kc , ,i j kx  and 

the set  by the equation: , ,m j kY

 
, , , ,

, , , , , , , ,
{ | }

| | | |
i j k m j k

m j k m j k m j k i j k
i x Y

Y Y c x
∈

> − 0≥∑  

This equation describes that if the summation of , ,i j kx  in set  larger than zero, , ,m j kY
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then the variables will be set to one. On the other hand, the variables will be 

forced to zero if the summation is equal to zero. These variables represent the exactly 

requirement of wires by resource sharing of the same datum. Four new sets , , 

 and  which is the transferred data outputted from  have been generated: 

, ,m j kc , ,m j kc

3,11,2Y 3,11,4Y

3,12,6Y 3,12,8Y 3o

 29

}

,

  

3,11,2 3,11,2 4,11,2

3,11,4 3,11,4

3,12,6 3,12,6

3,12,8 3,12,8

Y ={x , x
Y ={x }
Y ={x }
Y ={x }

we now deduced the corresponding fixed channel allocation variables , , 

 and  by: 

3,11,2c 3,11,4c

3,12,6c 3,12,8c

  

3,11,2 3,11,2 4,11,2

3,11,4 3,11,4

3,12,6 3,12,6

3,12,8 3,12,8

2 2 ( ) 0
1 0,
1 0,
1 0;

c x x
c x
c x
c x

> − + ≥

> − ≥

> − ≥

> − ≥

 

Two things are worth to observe. First one is that, if the  includes only one object , ,m j kY

, ,i j kx , than we can get the result , , , ,m j k i j kc x= , which implies the conversion process affects 

nothing. The allocation variables ,  and  are in this situation. The second 

one is shown in the fixed allocation variable . The corresponding set  has more 

than one object, which are  and . The  is always taken for the correctness 

of transfer . Therefore, No matter the  is adopted by transfer  or not, the  

is always one. That is, the fixed variable  marks only whether the data outputted from 

 at cycle 

3,11,4c 3,12,6c 3,12,8c

3,11,2c 3,11,2Y

3,11,2x 4,11,2x 4,11,2x

4e 3,11,2x 3e 3,11,2c

, ,m j kc

mo j  exist or not, and the count of them dose not matter. 



 

Finally, we use these new fixed channel allocation variables instead of original ones to 

count the interconnection resource. The resource counting constraints are rewritten as 

follows: 
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> ≥

> ≥
  , , ,

, , ,

, ,
{ | }

, ,
{ |( : ) }{ | }

0,     | | 0,  | | 0

0,      | | 0
m j k m j

k y W m j k m j

k m j k W
m c Y

y i j k
k w r E m c Y

Nw c E k T j

Nr c T j
∈

→ ∈ ∈

− ≥ > ≥

− ≥

∑

∑ ∑

 

The new constraints take the  and  instead of , ,m j kc ,m jY , ,i j kx  and ,i jX  and these 

constraints of example in Fig. 21 for cycle 11 to 12 are also shown here: 

 

 

2 3,11,2

4 3,11,4

6 3,12,6

8 3,12,8

1 3,11,2

2 3,11,4

3 3,12,6 3,12,8

0,
0,
0,
0,

0,
0,

0,

Nw c
Nw c
Nw c
Nw c
Nr c
Nr c
Nr c c

− ≥

− ≥

− ≥

− ≥

− ≥

− ≥

− − ≥

 

4.2. Integrating Bi-directional Channels in the Model 

To minimize the wiring overhead, the bi-directional channel is usually considered in the 

scope of design methodology. There are two ways to achieve the goal in our proposed ILP 

formulation. One is introducing the new bi-directional wires in topology information and 

making some modification in continuity constraints, resource counting constraints and 

objective function. 



 

 

Fig. 22. Modeling the bi-directional channel 

We take a new example in Fig. 22. It should transfer one datum  from  to , and 

the other two data  and  from  to  at cycle 15. The new bi-directional channel 

5e 0r 1r

6e 7e 1r 0r

12x  is used to share the transfer loading instead of only directed ones (i.e.  and ). 

Intuitively, at cycle 15 we can write down the substitute resource counting constraints as 

follows: 

2w 3w

  
2 5,15,2

3 6,15,3 7,15,3

12 5,15,12 6,15,12 7,15,12

0
( ) 0
( )

Nw x
Nw x x
NB x x x

− ≥

− + ≥

− + + 0≥

 

This method is straightforward, but it introduces lots of additional allocation variables. In 

the worst case, if we take bi-directional channels beside all directed pairs of wires which are 

mutually inverse, they will introduce at most two times of original allocation variables in 

our ILP formulation. These additional variables will be a nightmare for the ILP solver 

especially in a great scale application. 

The other way to reach the goal is using post processing. In fact, the original formulation 

with only directed channels has captured enough information about the behavior of transfer. 

All we need to do is to decide who should take these transfers loading, the directed channel 

or bi-directional one? In other words, the original directed channels could be treaded as the 

permission of transfer direction but not the physical channels. However, after finding out 
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the feasible channel allocation by these permissions, we choose the type of interconnection 

resources to take these possible loadings. It has the modification in resource counting 

constraints, which adds the new term xSB . This new term is the transfer resource supported 

by additional bi-directional channels: 

 
 

, , ,

, ,
{ | }

0,     | | 0,  | | 0
i j x i j

x x i j x W
i x X

Nw SB x E x T j
∈

+ − ≥ > ≥ >∑ ≥  

The third term is the transfer requirements, the first and second ones could be treaded as 

two types of transfer resource sharing the loading together. Because of the bi-direction of 

channel, there is another side of transfer written as:  

 
 

, , ,

, ,
{ | }

0,     | | 0,  | | 0
i j y i j

y y i j y W
i x X

Nw SB x E y T j
∈

+ − ≥ > ≥ >∑ ≥  

Thus, the added bi-directional channels represented by the resource counting variable 

,x yNB  take the loading from xw  and  at the same time. Hence, it should subject to the 

resource counting constraints which could be written as: 

yw

 
  , 0,     | | 0x y x yNB SB SB T j− − ≥ > ≥

The same example in Fig. 22 could be reformulated with this post processing: 

 

  
2 2 5,15,2

3 3 6,15,3 7,15,3

2,3 2 3

0
( )

0

Nw SB x
Nw SB x x
SB SB SB

+ − ≥

+ − + ≥

− − ≥

0

Finally, the rest work would give the weight of resource overhead on directed channels 

(i.e. , ) and bi-directional channel (i.e. ) individually in the objective 

function. In summary, this type of formulation takes only some post processing without 

introducing any additional allocation variables. 

2Nw 3Nw 2,3SB
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5.1. 

Chapter 5 Experimental Result 

In this chapter, we will introduce the pre-work of our experiment initially. Then the 

experimental results compared to the two previous works will be presented. Finally, we will 

give a brief summary about this experiment. 

Pre-work for the Input of Experiment 

One of the input source in the channel and register allocation problem is the scheduled 

and bound data flow graph and the placement of functional units. For getting this 

information, we construct a simplified architecture level synthesis flow including these 

tasks - data flow graph generation, scheduling, functional units binding and placement of 

functional units with rescheduling. However, the synthesis flow does not address any 

performance issue (e.g. cycle time or overall latency). It is just generating the inputs of our 

experiments. 

This synthesis flow takes the c++ code as input application. First, the task of data flow 

graph generation takes the SUIF compiler infrastructure [17] as the front end and generates 

the virtual machine codes by Machine SUIF [18]. Then we convert the internal 

representation of this code to our desired data flow graph. Second, we use force-directed 

scheduling with the minimal cycle timing constraints [15] to get the resource allocation and 

the initial scheduled data flow graph. Third, an approximate max-clique based algorithm 

[14] is performed to assign the operations in data flow graph to functional units. Fourth, we 

randomly put the functional units to cluster and perform rescheduling, because of adding 

multi-cycle interconnection. Finally, we have got the final scheduled and bound data flow 

graph and also know in which cluster these operations are executed. 



 

 
Fig. 23. The target architecture in experiment 

The other input of our experiment is the topology information which has the specification 

of distributed register architecture. In out experiment, we use a 3 3×  cluster array with 

vertical and horizontal adjacent connectivity as our target architecture. There are 9 available 

register stations and 33 available directed channels including 9 self loops shown in Fig. 23. 

The system is implemented in C++/UNIX environment and using the lpsolve version 

5.5.0.0 [19] as the ILP solver. 

5.2. Experimental Result 

We take the source code of mpeg2enc, jpeg and rasta from Mediabench [16] as our input 

applications and classify these operations into two functional unit types - ALU and 

multiplier. One stage ALU and two-stage multiplier are adopted as our functional units. 

We have implemented three methods including two previous works and the proposed ILP 

formulation. For addressing the minimization on interconnection wires, we give the weight 

ratio to register and wires are 5 to 1, that is  
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Tab. 2. Information of data flow graph in applications 

Resource (FU)# 
 Node# 

ALU# MUL# 
Cycle Count 

(1) mpeg2enc (dfg 1) 66 5 2 23 
(2) mpeg2enc (dfg 2) 101 9 4 23 
(3) mpeg2enc (dfg 3) 196 18 8 18 
(4) jpeg (dfg 1) 93 9 2 35 
(5) jpeg (dfg 2) 109 9 2 33 
(6) jpeg (dfg 3) 140 11 6 23 
(7) rasta 119 7 5 33 
 

Tab. 2 shows the information of each data flow graph in applications. The nodes in data 

flow graph represent the operations. After initial scheduling, we can get the number of 

ALUs and multipliers. Because of the functional placement, the final cycle count presents 

after the rescheduling. 

We implement three methods to solve the channel and register allocation problem. 

Method 1 is the previous one which has dedicated interconnection wireS without pipelining. 

Method 2 is also the previous work which pipelines the interconnection wires and performs 

the transfer scheduling to improve the wiring overhead. The third method is our proposed 

ILP model, which share all interconnection resource globally and solved by ILP solver. 

The interconnection overhead including wires and registers are all the metrics to evaluate 

the performance. Those results are shown in Tab. 3, which report the requirement of 

interconnection wires and registers and normalized the average count to method 1. 
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Tab. 3. Experimental result in three methods 

Method 1 Method 2 Method ILP  
Ch# Reg# Ch# Reg# Ch# Reg# Run time (sec)

(1) mpeg2enc (dfg 1) 42 28 37 45 25 25 0.16 
(2) mpeg2enc (dfg 2) 76 53 60 76 42 38 102.58 
(3) mpeg2enc (dfg 3) 130 92 109 133 68 61 6.26 
(4) jpeg (dfg 1) 81 50 64 78 24 28 8.9 
(5) jpeg (dfg 2) 78 44 59 68 28 28 0.98 
(6) jpeg (dfg 3) 75 72 58 87 24 48 235.53 
(7) rasta 74 56 57 75 25 27 340.11 

average 79.43 56.43 63.43 80.29 33.71 36.43 
normalized to 

Method 1 
1 1 0.798 1.423 0.424 0.646 

 

 

Method 1 uses lots of interconnection wires, which seems a nightmare for whole system. 

Method 2 pipelines the interconnection wires and tries to share the dedicated wires between 

each two clusters. It improves about 20% in wiring overhead but pays the 40% additional 

registers cost. However, the sharing scheme of method 2 is limited to divided local region. 

In our formulation, we try to let all transferred data share whole interconnection resource 

by taking the wire segments instead of the dedicated interconnections. Besides, we also take 

the pipeline registers as general ones. We enable a global sharing and using ILP solver to 

find the optimal solution, which make around 60% and almost 45% improvement on 

requirement of wires and registers relatively at the same time. 
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Chapter 6 Conclusions and Future Works 

Base on the regular distributed register architecture, we extend the capability of register 

stations and try to use the global sharing of interconnection resource to improve the wiring 

overhead. We propose the channel and register allocation problem and give it a formal 

formulation. This formal model has high flexibility to make lots of extension, because it 

captures the basic behavior of transferred data at each cycle. Through ILP solver, we get the 

optimal solution under some experimental specification. It results in 53% wires and 35% 

registers improvement on average compared to previous methods. However, it must be 

noticed that the ILP solver cannot deal with large scale applications. Thus, we still need to 

propose a heuristic algorithm to firmly establish our method in the future.  
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