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Abstract

In deep submicron technology, the wiring delay has no longer been trivial and dominated
the system latency gradually. The regular distributed register architecture is proposed to
resolve this problem. The corresponding;synthesis flow partitions the registers and exploits
the physical locality to improve the system latency. However, it introduces the extra
interconnection overhead, which includes-wires and registers, and limits the scale of
applications. We address this problem-and formulate it as channel and register allocation in
architecture level synthesis problem. The inputs are the scheduled and bound DFG, placed
FUs and topology information of the target architecture. The goal is to get the assignment
which maps all transferred data to available channels and registers at each cycle while
minimizing the interconnection resource at the same time. Besides, we propose a formal
model for this problem. With the weighted objective function, we can get the optimal
solution through an ILP solver. Furthermore, due to the benefit of capturing the basic
transfer behavior in our formulation, we also extend the model to get the further
improvement and model the bi-directional channel through post processing. According to
the experimental results, our proposed ILP method improves 58% and 35% on average in
terms of usage on wires and registers compared to the previous method, which uses
dedicated interconnections only. Even compared to another one, which uses pipelined wires
and performs transfer scheduling, our method gets 46% and 54% improvement in terms of

the usage on wires and registers.
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Chapter 1 Introduction

In this chapter, we will introduce the conventional architecture level synthesis flow
briefly and notice the topic of delay overhead made by interconnection. Moreover, some
methods and new target architecture have been proposed to take consideration about the

extra wiring delay problem. Therefore, we will focus on these issues and address the wiring

overhead in distributed register architecture.

1.1. Conventional Architecture Level Synthesis Flow

Architecture level synthesis is a sequence of tasks to transform a higher level behavior
description to RTL design. There are lots,of.ways to implement it according to the desired

architecture style. Therefore, a large variety.of problems, algorithms and tools have been

proposed.

Behavior
description

L

DFG
generation

N2

Scheduling

sl

FUs
Binding

N2

Datapath
synthesis

sl

Control
signal gen.

N
RTL

Fig. 1. Conventional and simplified architecture level synthesis system
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Fig. 1 shows a conventional and simplified architecture level synthesis system, which
includes target architecture and corresponding synthesis flow [14]. First, the synthesis
system will get the internal representation (i.e. data flow graph here) of design by compiling
input application. Second, the scheduling and binding tasks place operations in feasible
functional units and timing slots in sequencing order. Finally, it generates the detailed
interconnections and corresponding control signals which map the behavior of data transfer

and all configurations to circuit cycle by cycle.

This target architecture shown in Fig. 1 has some functional units, centralized register and
a corresponding control unit. The centralized registers store all temporal data and provide
all operands to functional units. In the view of data transfer, we can say that the scheduling
and binding are the tasks which assign when and to where the temporal data go. In addition,
the datapath synthesis task generatés the needed multiplexers, de-multiplexers and wires of

interconnections.

In centralized register architecture, ‘any data generated from some functional unit will be
available for other ones at the next cycle."In other words, it always takes no additional cycle
to transfer data between functional units. However, it should pay the extra cycle time for
this convenience interconnection scheme. Furthermore, the cycle time equal the
computation time plus interconnection delay which includes the delay of multiplexers,

de-multiplexers and wires.

1.2. Distributed Register Architecture

In Deep Submicron Meter (DSM) technology, the wiring delay is no longer trivial [1]. It
will dominate the overall system delay gradually with the scale evaluation of process
technology which is due to RC delay, coupling noises, inductance, etc [2][3]. Obviously, the

fatal long wiring delay will become a big portion in cycle time and worsen the system
2



latency at that time.

In such a situation, it is important to take the interconnection delay into consideration.
Because the interconnection delay information is only available after physical layout, the
conventional architecture level synthesis flow cannot obtain the accurate cycle time. To

overcome this problem, lots of researchers had used the estimated interconnection delay for

a higher level design of abstraction [4][5][6][7][8][9].

In architecture level synthesis, the targeted architecture and corresponding synthesis
algorithm will affect the effectiveness of exploiting the interconnection delay. Therefore, the
distributed register architecture which partitions the registers has been proposed [10][11].
Fig. 2 represents the simplified model, which has some clusters connected through global
interconnection. The cluster includes_seme ;functional units which can only access the

dedicated registers in the same cluster. The global interconnection responds to transfer the

data among all clusters in several cycles.

Global interconnection

A A A A
\A 4 \A 4
Regs Regs
FUs FUs

A A

vy 1

Regs

FUs

I______'I

Cluster

Fig. 2. Model of distributed register architecture



Additionally, some partition constraints prevent the overloading of interconnection delay
constituted by multiplexers (e.g. adding constraints on the number of access ports of
registers) and long wiring (e.g. adding constraints on the number of functional units).
Contrary to the conventional centralized register architecture, the distributed register
architecture partitions the interconnection delay in several cycles. Only the interconnection
delay within a cluster makes a portion in system cycle time. The other one in global
interconnection only makes the additional cycles. Therefore, the partition of interconnection
delay implies multi-cycle communication which enables the parallel execution of

computations and data transfers.

Base on the same concept, the Regular Distributed Register (RDR) architecture was
proposed [12], which offers high regularity and direct support of multi-cycle

communication. The RDR architecture divides the entire chip into an array of clusters.

Fig. 3 shows an example of RDR architecture with 2x3 cluster array. For the highly
regular advantage of RDR architecture, the“information of inter-cluster and intra-cluster
interconnection delay can be accurately recorded in lookup tables and pre-computed once

the parameter of RDR structure (e.g. size of cluster, clock period) are specified.

RF RF RF
M M M
wn wn wn

Fus || = Fus || = Fus || =

RF RF RF
M M M
wn () ()

Fus || = Fus || = Fus || =

Fig. 3. RDR architecture with 2x3 cluster array
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1.3. Extra Wire Loading in RDR-based Architecture

The corresponding synthesis flow for RDR is MCAS (Architectural Synthesis for
Multi-cycle Communication). At the front end, after generating the Control Data Flow
Graph (CDFG) of application, the MCAS performs resource allocation, functional unit
binding and scheduling-driven placement in order. These tasks place the functional units to
clusters and assign the operations in CDFG when and where to be executed. At the backend,
MCAS performs register and port binding followed by datapath and distributed controller
generation. The experimental results reported in [12] shows 44% and 37% improvement on
average in terms of the cycle time and final latency for data flow intensive examples. It also
shows 28% and 23% improvement on average in terms of the cycle time and final latency

for designs with control flow.

However, the RDR architecture-may introduce extra global wiring overhead in the
presence of many simultaneous data ‘transfers,“when each one requires a dedicated global
connection. The significant wiring overhead ‘would eventually limit the scaling of the
application in RDR architecture. To overcome this problem, [13] presents an architecture
level synthesis solution, which is called RDR-pipe, to support automatic interconnection
pipelining extended from RDR. The interconnection pipelining potentially improves the
wiring utilization by sharing the wires between each pair of clusters. Compared to RDR

architecture, 28% global wire-length reduction is reported [13] in RDR-pipe architecture.

A good way to reduce resource demand is sharing. The interconnection pipelining
improves the wiring overhead by sharing the wires between each two clusters. However,
this methodology still limits the sharing capability to divided localized regions, because the
transferred data are still scheduled and allocated within dedicated wires. Therefore, a global

sharing methodology in which the wires and registers are both shared by all transferred data

5



might greatly minimize the interconnection overhead. In this thesis, we propose the formal
formulation of channel and register allocation problem in architecture level synthesis, which
captures the behavior of the transfer data at each cycle in distributed register architecture.
Therefore, base on the formulation, it can be extended to minimize the required

interconnection resource easily.

1.4. Thesis Organization

The rest of the thesis is organized as follows: chapter 2 addresses the channel and register
allocation problem. Then it gives a motivational example which shows the difference
between pervious methods and the desired optimal solution. Chapter 3 presents the detailed
description of the proposed ILP formulation,including problem formulation, variables
definition, constraints and the objective function..Chapter 4 gives some useful extensions to
the ILP model described in Chapter 3. Chapter 5 shows the experimental results compared

to the previous works. Finally, conclusions and future works are drawn in chapter 6.



Chapter 2 Channel and Register Allocation Problem

In this chapter, we introduce the channel and register allocation problem in architecture
level synthesis which has distributed registers. After that, a motivational example is given to

show why we need a new methodology to share the interconnection resource globally.

2.1. Channel and Register Allocation Problem

The RDR architecture gives lots of dedicated interconnection wires between clusters.
Because it has no interconnection pipelining, the sender will hold the transferred data for
several cycles. Therefore, one transferred datum will occupy a long wire for several cycles,

which wastes the interconnection resource.

The RDR-pipe is extended from RDR. It-puts the-registers in appropriate positions to
pipeline the long wires. By performing the transfer scheduling, it has higher utilization in
wiring resource. However, the register'station in"RDR-pipe has no control signal. It makes
the pipeline register dedicate to its interconnection wire only and cannot be shared for the

data generated from the other clusters.

Therefore, we address a further extension on the register station, which is capable of
incoming data and forward them to any directions. Besides, we take the distributed wiring
segments in available channels between register stations instead of the dedicated
interconnection. That is, any interconnection can be combined by several wiring segments.
Consequently, how to allocate those transfers to channels becomes a new problem because
the behavior of transfers deeply affects the interconnection resource including wires and

registers. Thus, this is the proposed channel and register allocation problem.
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Fig. 4. Scheduled and bound DFG of DCT

The given input of this problem is the scheduled and bound data flow graph and
placement of functional units in distributed register architecture. The given input should be
checked whether the transfer latency, is enough:in advance. Fig. 4 shows a data flow graph
of discrete cosine transform [12]:with two- ALUs.and two multipliers. Each circle which is
bound to a specific functional=unit represents an operation. Also, these operations are
scheduled in a time slot divided by horizontal lines. The scheduled and bound data flow

graph describes when and which FU should take the temporary data to be computed.

Fig. 5 shows a 3x3 cluster array architecture and the placement of two ALUs and two
multipliers. One cluster includes a meshed square as FUs which only access the dedicated
registers in the white square called register station. According to the placement of functional
units in Fig. 5(a) and the bound DFG, Fig. 5(b) replaces the relative operations in it.
Therefore, with the scheduling and binding information, we can specify the transfer where

and when it is generated or required.



J8sn|o |

P

[0}
«Q

w

—a" 77

(a) (b)

Fig. 5. Placement functional units in distributed register architecture

2.2. Previous Methodology

Because the channel and register allocation problem is extended from the
RDR/RDR-pipe architecture, we-take those register and port binding tasks as the pervious
work. Fig. 6 shows a simple example“of the scheme performed in RDR/MCAS. The
operation number 1 and 2 are executed.in cluster/Aand the number 3 and 4 are in cluster C.
According to this architecture, the register 1 and 2 of sender A hold these transferred values
at least two cycles. Therefore, two parallel inter-cluster wires are needed between cluster A

and C for the overlap transfer time of data.

Fig. 6. Register and port binding task with dedicated interconnection
9



Fig. 7. Register and port binding task with dedicated pipelining interconnection

Fig. 7 performs the scheme of RDR-pipe/MCAS-pipe in the same example. With the
presence of pipeline register 2 in cluster B, register 1 can forward one data to register 2 at
the first cycle and forward the other one at the next cycle. These two data were issued at
different cycles and forwarded by pipeline_register (i.e. register 2) without stalling until
reaching the cluster C. With transfer scheduling, it serializes the transfers by differing the
issued cycle of each datum. Therefore, only-one interconnection wire is needed and it has

one wire reduction compared to RDR/MCAS.

2.3. Motivational Example

Sharing is the way to reduce resource requirement. We take a motivational example to
illustrate how the sharing capability affects the requirement of interconnection resource.
The comparison of results among RDR/MCAS, RDR-pipe/MCAS-pipe and the idealized
global sharing method will be discussed. Fig. 8 gives the scheduled and bound data flow
graph and the mapping of operations in a 3x3 cluster array. For comparing the result of
resource requirement, we will count the number of registers and the wiring segments. A
simple definition of wiring segment is one wire between two adjacent clusters. The

definition is intuitional and directly proportion to the wire length.

10



Fig. 8. Given scheduled, bound DFG and placed functional units

Fig. 9 shows the result of transfer allocation in RDR/MCAS. The cluster generating data
always holds the transferred value until the slack time equal to the interconnection delay.
No transfer scheduling and pipeline,register makes extra wiring requirement. It needs 12

wiring segments and 10 registers in total.

Fig. 10 shows the result of data transferin- RDR-pipe/MCAS-pipe. The pipeline registers
are inserted in each register stations where interconnections would pass away. Besides, the
transfer scheduling is performed to minimize the wire requirement. Consequently, it reduces

the wiring segments to 7 at the cost of additional 2 registers (i.e. totally 12 registers).

Fig. 9. Result of allocation in RDR/MCAS

11
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Fig. 10. Result of allocation in RDR-pipe/MCAS-pipe

The sharing of wires and registers by transferred data reduce the resource requirement.
Under the principle, we extend the capability of register stations which can store data for
cycles and forward them to arbitrary, directions.-The extension enables the transfer data use
all interconnection wires and registers. Therefore,-it implies global sharing and more
resource reduction. Fig. 11 shows the result, with the hand-scheduling, it use only 4 wire

segments and 7 registers.

o @@ ©

Fig. 11. Result of the global sharing of interconnection resource
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Chapter 3 Proposed ILP Formulation for the Channel

and Register Allocation Problem

In the chapter, we will formulate the behavior of transfers in distributed register
architecture with extended capability, which permits the register station to store or forward
data at each cycle. In our proposed formulation, the definition of problem and input will be
given initially. Then we will make an explanation of variables and decide the feasible region
of them. Finally, we will write down the objective function to minimize interconnection
resources which should be subject to uniqueness, continuity and resource counting

constraints.

3.1. Definition of Problem Given

Before solving the channel and-register allocation problem, we assume the tasks of
scheduling and functional unit binding have been performed. Therefore, the scheduled and
bound data flow graph, functional unit placement are taken as input. Besides, the topology

information including the position and connectivity of clusters is also needed.

First, we use the graph representation G (V,,E;) to describe the input data flow graph.
The vertex set Vg ={0,[i=0,1,2,...,|Vs | -1} represents the operations in data flow graph.

The directed edge set E,={e |i=0,12,...,|Es|-1} represents the data dependency
implying data transfer, such that e :0; — o, means the data generated from o, should

be sentto o, .

13



Fig. 12. Data flow graph as input application

Fig. 12 is a simple example of data flow graph, which has the vertex set
V; ={0,11=0,1,2,3} and the edge set E;={e |i=0,1,2} such that e,:0, >0, ,
e:0 —0, and e,:0, >0;.

Second, we use the graph representation:! G (V,,E, ), called topology information, to

specify the target distributed register architecture, which indicates the available positions for
putting interconnection wires or tegisters. The vertex set V., ={r|i=0,12,...,|V; |-
represents the register stations. The directed edge set E, ={w.|i=0,12,...,|E, |-1}

represents the available channels, such that we can describe the behavior of transferred data

from r, to r, as w :r, >r. It is notable that we can use a self loop to enable the
transferred data stay at the same register station for one cycle.

Fig. 13 takes a 2x2 cluster array of distributed register architecture as topology
information, which has the vertex set V,={r|i=0123} and the edge set
E, ={w |i=0,12,...,11} implying the register station has the capability to transfer data to
adjacent one horizontally, vertically by e,,e,,...,e,, or keeping them for cycles by

€,€,,€5, 6.

14
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Fig. 13. Topology information

The input data flow graph is scheduled and bound. What do the “scheduled” and “bound”
mean for? First, we can treat each data dependency in data flow graph as a transfer. Besides,
by the “scheduled” and “bound” information; we can know when these operations are done

and in which cluster the outputs are stored. In fact, we can use this information with

placement of functional units to specify each transfer like this statement — some transfer e,

is the task that taking data from register station rto r, fromcycle n to m.

Precisely, we can use a set of pair {et, =(st, ft;)|e, € E;} to specify the transfer e,
generated at cycle st, and required at cycle ft,. And another set of pair is used to specify

the transfer e, generated at register station sr, and required at register station fr; .

In Fig. 14, we focus on the edge e,, which is a data dependency between o, and o,.
By the information of et, and er,, we could know there is a datum needed to be
transferred from register station sr,=1 at cycle st,=5 to register station fr,=2 at

cycle ft,=8.

15



eto=(5, 8) er=(1,2)

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9 \&

Fig. 14. Specification of a transfer

3.2. The Definition of Variables

How to define appropriate variables isiimportant, which affects the complexity, flexibility
of an ILP formulation. To minimize the limitation of-extension capability in our proposed

formulation, we decide to capture-the basic behavior of transfer at each cycle. Without lots

of indirect specifications, a simple type of zero-one integer variable X ;  is adopted and

called channel allocation variable.

ern=(1,2)

ety = (5 y 8)

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9

Fig. 15. Specifying a transfer path with channel allocation variables
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The meaning of x ;, is that whether the transfer datum e, at cycle j is allocated to

channel w,. “One” value means yes, and “zero” stands for no. The set X collects all

these zero-one variables and can be written as:

X={x;11=01..|Eg[-1 ft; > j>st;k=01...|E, -1}
How do these variables work for describing a transfer path? Fig. 15 shows an example.
In this example, transfer e, should be taken from register station r, to r, from cycle 6 to
8. If we have chosen a transfer path, which is sending the data to r, at first cycle, staying

one cycle in r, at next step and achieving r, in the end of cycle 8. What we need to do is
specifying this path by setting variablesx,s,, X,;, and X,5,, which means using the

channels w,, w, and w, respectively,cycle by cycle. Then preserve the other allocation
variables of transfer e, to zero:for preventing the ambiguity in assignment of transfer
behavior. Therefore, one assignment of allocation variables without ambiguity stands for
one transfer behavior of data. It is:the one to-one and onto mapping implying that the entire

solution space is included in the variety of‘assignment.

Otherwise, to minimize the interconnection resource, the counting resource variables are
also defined. The interconnection resource includes wires and registers. In our formulation,

we care about the resource requirement in available channels and register stations.

Therefore, the straightforward types of integer variables, Nw. and Nr,, are used. They
mean the number of wires in available channel w, and registers in available register

station r, respectively.

17



3.3. The Feasible Region of Variables

In fact, there are lots of redundant allocation variables included in the set X . With the
specification of generating and requiring register stations, the active region of transferred
data is limited. That is, there are lots of channels of transfers would never be used, and these
corresponding allocation variables are always zero. To minimize the allocation variables
while preserving complete behavior of transfer, it is needed to decide the feasible activitive

region of transfer at each cycle.

As mention above, the activity region of transfer is limited by generating and requiring
register station. We take the same example in Fig. 16. Fig. 16(a) shows that the possible
channels used for transfer e, at cycle 6, Those feasible channels are limited to w,, w,
and w,, which are all emitted fram generating.register station r,. Even at the next cycle,
the feasible channels are also limited to those ones emitted from register stations r,, r,
and r,. Therefore, the feasible channels are-spread out from generating register station and

the effect of limitation can be traced cycle by cycle. Base on this idea, we define the set

WS; ; which includes the number of feasible channels traced from the generating register

station sr, atcycle j:
we Ukewsi,,.,l NW (k)  ft > j>st +1
Tk Iwern, o, weeEy Y j=st+l
Such that

NW(@E) ={jlw:r, >r, wr, —>r;w,w ek}



Wio
(a) (b)

Fig. 16. Limitation of activitive region of transfer

The WS, ; is defined recursively and takes the generating cycle as the initial condition. Fig.
17 shows an example. The set of feasible channels of transfer e;, which is equal to WS, ,
has carried out. The WS, includes channel 1, 3 and 6 which are all leaving from the
generating register stations r, and enteringsinto fy;, 1, or r,. At the next cycle, the WS,
should include those channels leaving from¥y, r;, or r,. We can get WS, in the same
manner.

On the other side, Fig. 16(b) shows that the possible channels used for transfer e, at
cycle 8. Those feasible channels are limited to w,, w, and w,,, which are all achieving
requiring register station r,. Therefore, the feasible channels at the last cycle, or cycle 7,
are limited to those entering into register stations r,, r, or r,. Base on the same idea,

these traceable feasible channels spread out from requiring register station fr. of transfer

e, atcycle jcan be collected in the other sets WF, ; :

UkeWS— LW (k) ,ft.> j>st+1
Wl:ij = i -
{klw, :r, —>r., w ek} j=f

Such that

LW(@) ={jlw;:r,—>r, w:r,—>r;w,weE,}
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cycle 5

cycle 6

cycle 7

cycle 8

cycle 9 :

uonoalIp
aoey}

ety = (5 , 8)

ern=(1,2)
(cy\::le) WS,
6 {1,3,6}
7 {0,1,2,3,46,
7,9,11}
8 {0~11}

Fig. 17. Tracing feasible channels from generating register station

The WF,; is defined recursively and takes the requiring cycle as the initial condition.

Fig. 18 shows the same example in Fig. 17 and contrarily traces from the other side. The

WF,; includes channels 4, 9 and 11 which are all-achieving the requiring register stations

r, and are leaving from r,, r; or r,. At the last cycle, or cycle 7, the WF,, should

include those channels entering into..r,, r, or-K" Then we can get WF,, in the same

manner.

cycle 5

cycle 6

cycle 7

cycle 8

cycle 9 \

uondalIp
ookl

eto=(5, 8)
ern=(1,2)

J

(cycle) WFo,

6 {0~11}

{0,3,4,5,6,8,
9,10,11}

8 {4,9,10}

Fig. 18. Tracing feasible channels from requiring register station
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The set WS;; and WF,; collect the feasible channels from contrary side of register
stations of transfers. Therefore, the new set W,; generated by intersecting WS, ; and

WF, ; can delete all the redundant candidates and preserve the capability of representing all
possible transfer paths at the same time. It can be written as:
Wi =W3i,jﬂWFi,j

W, ; describes the activity region of transfer, which are the all possible number of

feasible channels of transfer e at cycle j. By this information, the set X, including all

feasible channel allocation variables of transfer e, at cycle j could be easily written as

follow:

Xi,j :{Xi,j,k [k eWi,j}
Table 1 follows the example in Fig. 17-and Fig. 18, and generates W,; set by

intersecting WS, ; and WF, ;. Therefore, we can find the feasible channel variables of

transfer e, atcycle 6, cycle 7 and cycle 8 are as followed, respectively:

Xo,e = {Xo,e,v Xo,6,31 Xo,e,e};
X0,7 = {Xo,s,o 1 X0,6,31 X0,6,41 X0,6,67 X0,6,97 X0,6,11};

xo,s = {Xo,6,4 1 X0,6,91 Xo,e,m};

Tab. 1. Possible channels of transfer e, in Fig. 17 and Fig. 18

J (cycle) WS WF W,

6 {1,3,6} (0~11) {1,3,6}

7 {0,1,2,3,4,6,7,9,11} | {0,3,4,5,6,8,9,10,11} | {0,3,4,6,9,11}

8 {0~11} {4,9,10} {4,9,10}
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Addition to allocation variables, we also give the upper bound of resource counting
variables. It is useful for the requirement evaluation of interconnection resource and being
an effective limitation of the variable range in generic ILP solver. The idea is that the
numbers of interconnection resource, which are wires in channels or registers in register

stations, are not more than the possible maximum requirement of all cycles. To do this, we
define the set Rw, ; including all the numbers of transfer. It is possible for all the numbers

of transfer to be allocated in channel w, at cycle j:
Rw, ; ={i|% ;. € X}
With the same idea, Rr, ; is defined to include all the numbers of transfer. It is possible
for all the numbers of transfer to be allocated and entered into register stationr, at cycle j:
Rr, , ={i|war =T, ek, X ;€ X}

Finally, find the maximum -in_these sets; which will be the upper bound of the

corresponding resource requirements..Fhe.upper.bound of the number of wire segments in

channel w, could be written as:

upper bound of Nw, = max({|Rw, ; [ ] =0,1,...,|T |-1})

The upper bound of number of registers in register station r, could be written as:

upper bound of Nr, = max({|Rr, ; | j=0,1,...,|T |-1})

3.4. The Objective Functions and Subjected Constraints

With the previous definition, we can write down our objective function, which is the

summation of all weighted required resources:

[Ewl-1 Vel-1

D aNr+ Y BNw,
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It is notable that the constant factors «, and S weight the affection of resource types,
and usually the weight of self loop which implies to stay one cycle is set to zero. However,
there are some constraints which the formulation should be subject to will preserve the

correctness of transfer behaviors.

The first are the Uniqueness constraints, which describe that the channel allocation of
each transfer should be unique at each cycle. More than one channel allocated at the same
cycle will make ambiguity. The uniqueness constraints can be written as:

Z Xi,j,k:]., | E, [>1>0, fti > > st,

keW, j
It makes a summation of all objects in each set X;, and forces it to one. These

constraints imply that only one allocation variable could be set at one cycle and prevent the
ambiguity of transfer behavior. Fig. 19_shows an example that transfer e, should be
assigned a transfer path from register station.1-to 2 from cycle 6 to 8. Then the allocation

should subject to the uniqueness constraint-written as:

D X ka8 >5

keWg

The expanded equations are followed for cycle 6, cycle 7 and cycle 8, respectively:

Xoe1t Xos3t Xoge = 1
Xo70 T X073t X074 T X076 T X070 Xo711 =1,

Xoga T X089 1 Xog10 = L

The second one are the continuity constraints, which describe that the transfer at two
consecutive cycles must be continuous in feasible channels. These constraints hold the
transfer path available, that is, the register station allocated channel entering into must be
the same one allocated channel leaving from at next cycle. The continuity constraints can be

written as:

Xkt D, Xipwe20, |Ejpix0, ft;>j>st, |E, [>k>0;

K'eNW (K)( Wi ja

23



eto=(5, 8)

cycle 5
erp = (1 , 2)
cycle 6
J
W
(cycle) k
cycle 7
6 {1,3,6}
cycle 8
cycle 9

Fig. 19. Uniqueness constraints of transfer e, at cycle 6

It describes that if the allocation variable entering into register r, atcycle j is set, then
one of those variables which is leaving from r, must be set at cycle j+1 to hold the
continuity of the transfer path. Any channel allocation variable has its own continuity
constraints, except for those onestat the last transfer cycle. Because only the chosen
allocation variable should hold this_constraint; the inequality (i.e. relation of larger than)
exists to prevent the violation from the-other.unset ones. With the same example shown in

Fig. 19, the constraints could be expanded as follows:

At cycle 6,
_Xo,s,l + Xo,7,3 + Xo,7,6 2 O’
~Xoss T X070t X074 >0,
_Xo,e,s + Xo,7,9 + Xo,7,11 > 0;
At cycle 7,

—X0,7,0 T Xog4 >0,
X073 T X084 >0,
—Xo,7,4 T Xog10 >0,
—Xo,76 T X089 20,
—Xo,7,0 T X810 >0,

o711 + Xo,s,g 2 0;
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Additional to hold the correctness of transfer behavior, the other constraints make the
number of interconnection resource enough to transfer all the data. The number of wires in
channel w. is represented by the wiring counting variable Nw., and the number of
registers in register station r. is represented by register counting variable Nr.. However,
they must be more than the amount of the requirement at each cycle. For the wire counting
variable, this can be addressed as:

Nw,— > %20, |E,[>k=0, |[T]>j=0

X ik €Xi ]

Each wiring counting variable has a set of constrains which are formulated to check
whether the number of wires is sufficient. The number of constraints in a set we need to
written down is equal to the total cycle counts. And with the same idea, the constraints of
register counting variables are:

Nr, — > > X206 [T j=0

y
{kiwg >y, WieeBgHilX j €Xi, ¢
Likewise, each register counting variable"has-a set.of constrains which are formulated to
check whether the value of counting variable is sufficient. The number of constraints in a

set we need to write down is equal to the total cycle counts. The example is shown in Fig.

20, which specifies another transfer e,. The constraints checking the resource variables are

written as follows:

cycle 5 0o —_— _—— ety= (5, 8) ety = (6, 9)
a 1
/ GD . I | D a2 eri=(3,2)
o5 _o Pl |
Io W3 r J J
cycle 7 (cycle) Wo, (cycle) Wiy
PR P
e HE 5
cycle 8 1 | 3 | 6 {1,3,6} 7 (9,11}
l - {0,3,4,6,9
o r Wi r 7 | U 8 9.10
cycle 9 \ Y2 C}"’ We 3 11} {810}
Wio Wi 8 {4,9,10}

Fig. 20. Example for resource counting variables
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For wire counting variable

Nw, —
Nw, —
Nw, —
Nw, —
Nw, —
Nw, —
Nw, —
Nw, —

Nw, —
NW, — Xy g
Nw,, —

Nw,, —

For register counting variable

T 06,3 = O’
X

X
- X0,7,0 -
X

AN

~ o84

0,7,3

089
0,6,6 2 O'

><><

0,76 x0,7,11

X0,7,9

0810

XO,?,ll

Xo7,0 2 0,
Xo61 2 0,
X063 = 0,
X073 20,
Xo7.4 20,
Xog4 20,
X066 2 0,

Xo76 20,

— X790 >0,
0 Xigo >0,

X1810 _0

0,

X17920
~Xig9 ™

0810

- X1,7,11 20,
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Chapter 4 Useful Extension on the ILP Formulation

With the high flexibility, the extensions of model, objective function, or specific behavior
of transfer could be introduced in our proposed ILP formulation. Therefore, in this chapter,
we will give two useful extensions. One is the further reduction on requirement of
interconnection resource, which is called resource counting problem. The other one is

modeling the transfer behavior of the bi-directed channel from existing directed ones.

4.1. Resource Counting Problem

In some case, the resource requirement would be overestimated. That is, when more than
one data outputted from the same.operation.and allocated in the same channel, they would
be counted owning individual one channel requirement and result in two wire requirements.
In other words, the formulation would use more wires to transfer the same datum. Thus, the
resource requirement has been overestimated, Not only the wire segments in channel, but
also the registers in register station would face this problem. Fig. 21 shows the example
which experiments this situation. In this example, transfer e, and e, outputted from
operation o, are assumed to be the same datum. From the previous resource constraints
written as:

NWz ~X3112 7 X412 >0,
NW, =X, 1., 20,
X412,6 >0,
Xp108 2 0,

er - X3,11,2 - X4,11,2 2 0'

Nw, —
Nw, —

Nr, — Xg114 2 0,

Nrs - X4,12,6 - X4,12,8 2 0’
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= = 1 = = 1

| wo | | | w, ets = (10, 11) et = (10, 12)
C)':%e er; = (0 s 1) ery = (0 , 3)
cycle | |

11 s 1 _(cycle) 3 (cycle) Wa,
cycle 3

12 11 ‘ ) 1 | 24
cycle
' 12 {6,8}

Wio W14

Fig. 21. Resource counting problem

There are at least two wires in channel w, and two registers in register station r,

counted for the final adoption of (w,,w,) path by transfer e,. However, they are all

overestimated by one.
To overcome this problem, new zero-one-integer variable c_ ;, are introduced instead

of original x;;,. The meaning-of ¢ IS that, whether there is any datum from the

m, j,k
operation o, allocated to the channel  wgratithe cycle j. It implies not only capturing the

behavior of each transfer datum, but alsQ ehecking which operation they come from.

we use the new set Y to collect

To find out the fixed allocation variables c ik

m,j.k?
those original allocation variables x ;, generated from operation o, and allocated in

channel e, atcycle j.The definition could be written as:

Ym,j,k :{xi’j’k | Xi jx € X, . (e,:0, >)eE}

i

Therefore, we can get the fixed allocation variables ¢ from original ones x; ;, and

m,j,k

the set Y by the equation:

m, jk

|Ym,j,k > Ym,j,k |Cm,j,k - z Xijx 2 0

{il%i, 5k €Ym i

This equation describes that if the summation of x ; in set Y larger than zero,

m,j.k
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then the variables c_ ., will be set to one. On the other hand, the variables c_ ., will be

m,j.k m,j.k

forced to zero if the summation is equal to zero. These variables represent the exactly

requirement of wires by resource sharing of the same datum. Four new sets Y, ,,, Y34,
Y., and Y;,,, Which is the transferred data outputted from o, have been generated:

Y3112 {Xa1100 Xa12}
Ya114 ={X3,11,4}
Y106 ={X3,12,e}
Y108 ={X3,12,8}

we now deduced the corresponding fixed channel allocation variables ¢;,,,, Cy;;4,

C3126 and Ca12 by:

2> 2(:3,11,2 = (X3,11,2 + X4,11,2) 20,

1> Calns T Xspli 0,

1> Ca106 = %3126 20,

1> Ciaze ~Xs138 = 0;

Two things are worth to observe. First one is that, if the Y _,, includes only one object

% ;x» than we can get the result c_,, =X, which implies the conversion process affects
nothing. The allocation variables ¢,,,,, ¢c,;,s and c,,,, are in this situation. The second
one is shown in the fixed allocation variable c,,,,. The corresponding set Y,,,, has more
than one object, which are x,,,, and x,,,,. The x,, , isalways taken for the correctness
of transfer e,. Therefore, No matter the x,,,, is adopted by transfer e, or not, the c,,,,
is always one. That is, the fixed variable ¢,  marks only whether the data outputted from

o, atcycle j existor not, and the count of them dose not matter.

m
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Finally, we use these new fixed channel allocation variables instead of original ones to
count the interconnection resource. The resource counting constraints are rewritten as
follows:

Nw,— > ¢,;«20, |E, k=0, |[T]>j=0
{m|cmyjyker‘J}

NQ_ 2: Z: Gij
LKi(wy =1y )eBy HMlcy j « €V i}

>0, [Tl j>0

The new constraints take the c and Y, . instead of x , and X;; and these

m, j,k

constraints of example in Fig. 21 for cycle 11 to 12 are also shown here:

NWZ CSllZZO
C114 20,
o =
NW, +€;155 2.0,
NI‘l—C311220
N (-':3114—O

Nrs ol C3,12,6 312 8 0 O

Nw, —

NWw +*

4.2. Integrating Bi-directional Channels in the Model

To minimize the wiring overhead, the bi-directional channel is usually considered in the
scope of design methodology. There are two ways to achieve the goal in our proposed ILP
formulation. One is introducing the new bi-directional wires in topology information and
making some modification in continuity constraints, resource counting constraints and

objective function.
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ets = (10,11)

cycle

% 4 ers = (0,1) W,
oycle ets = (10,11) fo 2 F1

15 erg = (1,0)

(=73 €5
C%%'e et; = (10,11) &5 —p
- —
er; = (1,0)

Fig. 22. Modeling the bi-directional channel

We take a new example in Fig. 22. It should transfer one datum e, from r, to r, and
the other two data e, and e, from r, to r, atcycle 15. The new bi-directional channel
X, 1S used to share the transfer loading instead of only directed ones (i.e. w, and w,).
Intuitively, at cycle 15 we can write down the substitute resource counting constraints as
follows:

NW, — X515, 20
NW3 - (Xe,15,3 + X7,15,3) >0

NBlZ - (X5,15,12 + X6,15,12 5 X7,15,12) 2 O

This method is straightforward, but it introduces lots of additional allocation variables. In
the worst case, if we take bi-directional channels beside all directed pairs of wires which are
mutually inverse, they will introduce at most two times of original allocation variables in
our ILP formulation. These additional variables will be a nightmare for the ILP solver

especially in a great scale application.

The other way to reach the goal is using post processing. In fact, the original formulation
with only directed channels has captured enough information about the behavior of transfer.
All we need to do is to decide who should take these transfers loading, the directed channel
or bi-directional one? In other words, the original directed channels could be treaded as the

permission of transfer direction but not the physical channels. However, after finding out
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the feasible channel allocation by these permissions, we choose the type of interconnection

resources to take these possible loadings. It has the modification in resource counting

constraints, which adds the new term SB, . This new term is the transfer resource supported
by additional bi-directional channels:
Nw +SB, - > %,;,20, |E,[>x20, |[T|>j=0
{ilxi,j,xEX|,j}
The third term is the transfer requirements, the first and second ones could be treaded as

two types of transfer resource sharing the loading together. Because of the bi-direction of

channel, there is another side of transfer written as:
Nw,+SB,— > x,;,20, [E,[>y=0 |T)j=0
{ilx,j.yeXi i}
Thus, the added bi-directional=channels represented by the resource counting variable

NB,, take the loading from w, and"w, . atthe same time. Hence, it should subject to the

resource counting constraints which.could be written as:

NB,,-SB,—SB, >0, |T|>j>0
The same example in Fig. 22 could be reformulated with this post processing:
Nw, +SB, = X515, 20

NW, +SB; — (X515 + X7153) 2 0
SBzyg - SBZ - SB3 >0

Finally, the rest work would give the weight of resource overhead on directed channels

(i.e. Nw,, Nw;) and bi-directional channel (i.e. SB,,) individually in the objective

function. In summary, this type of formulation takes only some post processing without

introducing any additional allocation variables.
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Chapter 5 Experimental Result

In this chapter, we will introduce the pre-work of our experiment initially. Then the
experimental results compared to the two previous works will be presented. Finally, we will

give a brief summary about this experiment.

5.1. Pre-work for the Input of Experiment

One of the input source in the channel and register allocation problem is the scheduled
and bound data flow graph and the placement of functional units. For getting this
information, we construct a simplified architecture level synthesis flow including these
tasks - data flow graph generation,:scheduling, functional units binding and placement of
functional units with rescheduling.. However; the ‘'synthesis flow does not address any
performance issue (e.g. cycle time or overall latency): It is just generating the inputs of our

experiments.

This synthesis flow takes the c++ code as input application. First, the task of data flow
graph generation takes the SUIF compiler infrastructure [17] as the front end and generates
the virtual machine codes by Machine SUIF [18]. Then we convert the internal
representation of this code to our desired data flow graph. Second, we use force-directed
scheduling with the minimal cycle timing constraints [15] to get the resource allocation and
the initial scheduled data flow graph. Third, an approximate max-clique based algorithm
[14] is performed to assign the operations in data flow graph to functional units. Fourth, we
randomly put the functional units to cluster and perform rescheduling, because of adding
multi-cycle interconnection. Finally, we have got the final scheduled and bound data flow

graph and also know in which cluster these operations are executed.
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Fig. 23. The target architecture in experiment

The other input of our experiment is the topology information which has the specification
of distributed register architecture. In out experiment, we use a 3x3 cluster array with
vertical and horizontal adjacent connectivity as our target architecture. There are 9 available

register stations and 33 available directed channels-including 9 self loops shown in Fig. 23.

The system is implemented in C++/UNIX environment and using the Ipsolve version

5.5.0.0 [19] as the ILP solver.

5.2. Experimental Result

We take the source code of mpeg2enc, jpeg and rasta from Mediabench [16] as our input
applications and classify these operations into two functional unit types - ALU and

multiplier. One stage ALU and two-stage multiplier are adopted as our functional units.

We have implemented three methods including two previous works and the proposed ILP
formulation. For addressing the minimization on interconnection wires, we give the weight

ratio to register and wires are 5 to 1, that is

ilx Nr +i5x Nw;
i=0 j=0
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Tab. 2. Information of data flow graph in applications

Resource (FU)#
Node# Cycle Count
ALU# MUL#
(1) mpeg2enc (dfg 1) 66 5 2 23
(2) mpeg2enc (dfg 2) 101 9 4 23
(3) mpeg2enc (dfg 3) 196 18 8 18
(4) jpeg (dfg 1) 93 2 35
(5) jpeg (dfg 2) 109 2 33
(6) jpeg (dfg 3) 140 11 6 23
(7) rasta 119 7 5 33

Tab. 2 shows the information of each data flow graph in applications. The nodes in data
flow graph represent the operations. After initial scheduling, we can get the number of
ALUs and multipliers. Because of the functional:placement, the final cycle count presents

after the rescheduling.

We implement three methods to 'solver-the-channel and register allocation problem.
Method 1 is the previous one which has dedicated interconnection wireS without pipelining.
Method 2 is also the previous work which pipelines the interconnection wires and performs
the transfer scheduling to improve the wiring overhead. The third method is our proposed

ILP model, which share all interconnection resource globally and solved by ILP solver.

The interconnection overhead including wires and registers are all the metrics to evaluate
the performance. Those results are shown in Tab. 3, which report the requirement of

interconnection wires and registers and normalized the average count to method 1.
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Tab. 3. Experimental result in three methods

Method 1 Method 2 Method ILP
Ch# | Reg# | Ch# | Reg# | Ch# | Reg# | Run time (sec)

(1) mpeg2enc (dfg 1) 42 28 37 45 25 25 0.16
(2) mpeg2enc (dfg 2) 76 53 60 76 42 38 102.58
(3) mpeg2enc (dfg 3) 130 92 109 | 133 68 61 6.26
(4) jpeg (dfg 1) 81 50 64 78 24 28 8.9
(5) jpeg (dfg 2) 78 44 59 68 28 28 0.98
(6) jpeg (dfg 3) 75 72 58 87 24 48 235.53
(7) rasta 74 56 57 75 25 27 340.11

average 79.43 | 56.43 | 63.43 | 80.29 | 33.71 | 36.43

normalized to
Method 1 1 1 0.798 | 1.423 | 0.424 | 0.646

Method 1 uses lots of interconnection wires; which seems a nightmare for whole system.

Method 2 pipelines the interconnection wires and-tries to share the dedicated wires between

each two clusters. It improves about 20%- in wiring overhead but pays the 40% additional

registers cost. However, the sharing scheme of method 2 is limited to divided local region.

In our formulation, we try to let all transferred data share whole interconnection resource

by taking the wire segments instead of the dedicated interconnections. Besides, we also take

the pipeline registers as general ones. We enable a global sharing and using ILP solver to

find the optimal solution, which make around 60% and almost 45% improvement on

requirement of wires and registers relatively at the same time.
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Chapter 6 Conclusions and Future Works

Base on the regular distributed register architecture, we extend the capability of register
stations and try to use the global sharing of interconnection resource to improve the wiring
overhead. We propose the channel and register allocation problem and give it a formal
formulation. This formal model has high flexibility to make lots of extension, because it
captures the basic behavior of transferred data at each cycle. Through ILP solver, we get the
optimal solution under some experimental specification. It results in 53% wires and 35%
registers improvement on average compared to previous methods. However, it must be
noticed that the ILP solver cannot deal with large scale applications. Thus, we still need to

propose a heuristic algorithm to firmly establish our method in the future.
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