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針對壓縮視訊之畫面解析度改善 

 

研究生: 吳宗翰 指導教授: 王聖智 博士

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

在本文中，我們首先實作了一個針對壓縮視訊（像是 H.264/AVC）之畫面解析度改善

的方法。接著，我們分析這個方法的模擬結果。我們在模擬結果裡面發現這個畫面解析度

改善方法的幾樣缺點，像是模擬結果裡出現的一些瑕疵(artifacts)，還有場景變換(scene 

change)及快速運動(fast motion)所造成的一些問題。因此，我們提出了兩個方法去壓抑這些

瑕疵的出現，一個是空間域的中位數正則項(median regularization term)，一個是時間軸的中

位數濾波器(median filter)。為了克服場景變換及快速運動在先前的超解析度(super-resolution)

演算法裡所造成的問題，我們提出了兩個方法，一個是全域性的方法(global method)，一個

是區域性的方法(local method)。加入這些修改後，先前方法遇到的瑕疵及問題，明顯獲得改

善。 
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Spatial Resolution Enhancement for Compressed Videos 

 

Student: Tsung-Han Wu Advisor: Dr. Shengjyh Wang 

 
Institute of Electronics 

National Chiao Tung University 
 

Abstract 
 

In this thesis, we first implement a spatial resolution enhancement algorithm for H.264/AVC 

compressed videos. Based on the analysis of the simulation results, we identify a few 

shortcomings of this algorithm, like some visual artifacts in the enhanced videos and some 

problems caused by scene change and fast motion. Then, we propose two methods to suppress 

these artifacts, including adding a median regularization term in the spatial-domain and using a 

median filter in the temporal domain. We also propose two methods, a global method and a 

local method, to overcome the scene change and fast motion problems. With these 

modifications, the artifacts and problems are suppressed significantly. 
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Chapter 1  Introduction  
 

H.264/AVC video coding is a high-coding-efficiency video coding standard [1]. It is based on 

the framework of block-based motion compensation and transform coding. This new H.264/AVC 

standard improves the coding efficiency through the adding of new features and functionality. 

From time to time, due to the constraints of channel bandwidth, storage size, and acquisition 

devices, the acquired video sequences are compressed into low-resolution videos. In order to 

improve the video quality, a resolution enhancement algorithm could be very helpful. 

Multiframe resolution enhancement (“Super-Resolution”) techniques try to recover 

high-resolution images by exploring the useful information that is available in a sequence of 

low-resolution images. Super-resolution method has many applications, including the 

enhancement of medical images and surveillance videos. However, even though many methods 

have already been proposed to enhance non-compressed videos, only a few methods have been 

specially designed for compressed videos.  

In this thesis, we propose a resolution enhancement method for compressed videos. This thesis 

is organized as follows. In Chapter 2, we describe the H.264/AVC coding standard and introduce a 

few super-resolution (SR) methods for compressed videos. In Chapter 3, we give a detail 

introduction to our resolution enhancement scheme and the proposed modifications for artifact 

reduction and quality improvement. Chapter 4 shows some simulation results. Finally, we give 

conclusions in Chapter 5. 
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Chapter 2  Background 
 

In this chapter, we’ll first introduce the H.264/AVC[1] video coding standard. Then, we’ll 

introduce several super-resolution techniques for compressed video sequences.  

2.1 Introduction to H.264/AVC 
H.264/AVC, the ITU-T Recommendation H.264 and ISO/IEC International Standard 

14496-10 Advance Video coding (AVC), is the newest video coding standard. The main 

contributions of H.264/AVC are the extremely high coding efficiency and the network-friendly 

video representation. The coding structure of this standard is similar to that of prior video coding 

standards, like H.261, MPEG-1, MPEG-2 / H.263, and MPEG-4 part 2. In the subsequent section, 

we will briefly introduce the H.264/AVC standard.  

 

2.1.1 H.264/AVC Codec 
As shown in Fig 2.1, the scope of the H.264/AVC standard only includes the decoder part to 

describe the bitstream syntax and the decoding process. This scope restriction provides the 

maximal freedom to the encoder for various kinds of applications. 

 

 

Fig 2.1 Scope of H.264/AVC standardization[2] 

 

 

2.1.1.1 The H.264/AVC Encoder 
The H.264/AVC design covers a Video Coding Layer (VCL), which is designed to efficiently 

represent the video content, and a Network Abstraction Layer (NAL), which formats the VCL 
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representation of the video and provides the header information in a manner appropriate for 

conveyance by a variety of transport layers or storage media, as shown in Fig 2.2. 

 

Fig 2.2 Structure of H.264/AVC [2] 

  The functional elements of a compliant H.264/AVC encoder is shown in Fig 2.3. With the 

exception of the deblocking filter, most functional elements (prediction, transform, quantization, 

entropy encoding) are present in previous standards (MPEG-1, MPEG-2, MPEG-4, H.261, H.263). 

However, there exist some crucial changes in some of these functional blocks. 

 

Fig 2.3 H.264 Encoder [4] 

The Encoder includes two dataflow paths, a forward path (left to right) and a reconstruction 

path (right to left). During the forward path, an input frame/field Fn is processed in units of 

macroblock, and each macroblock is encoded in intra or inter mode. After the prediction process, 

the prediction P is subtracted from the current block to produce a residual (difference) block Dn. 

Then, Dn is transformed (using a block transform) and quantized to the coefficient X. This set of 

quantized and transformed coefficients, together with the side information needed for the 
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decoding of the macroblock, is reordered and then entropy encoded. Finally, this compressed 

bitstream is passed to an NAL for transmission or storage. 

During the reconstruction path, the encoder decodes the coefficient X to provide a reference 

picture for future predictions. There is a deblocking filter that is used to reduce blocking effects. 

 

2.1.1.2 The H.264/AVC Decoder 
The functional elements of a H.264/AVC decoder is shown in Fig 2.4. The dataflow path in 

the decoder is similar to the reconstruction path in the encoder. The decoder receives a bitstream 

from the NAL and decodes it to produce the residual block Dn’. 

Using the header information decoded from the bitstream, the decoder creates a prediction 

block P, same as the prediction P in the encoder. Then P is added to Dn’ to produce uFn’, which 

is filtered to create the decoded block Fn’. 

 

 

Fig 2.4 H.264 Decoder [4] 

 

 

2.1.2 H.264/AVC Structure 
H.264/AVC standard defines four different profiles: baseline profile, main profile, extended 

profile, and Fidelity Range Extensions (FRExt) profile. The Baseline Profile supports intra and 

inter-coding (I- and P-slices) and performs CAVLC (context-adaptive variable-length codes) [3] 

entropy coding. The Main Profile supports interlaced videos, inter-coding using B-slices, inter 

coding with weighted prediction, and entropy coding with context-based arithmetic coding 

(CABAC). The Extended Profile does not support interlaced videos nor CABAC, but adds modes 

to enable switching between coded bitstreams (SP- and SI-slices) and to offer data partitioning to 
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improve the capability of error resilience. Fig 2.5 shows the relationship among these three 

profiles. 

 

 

Fig 2.5 H.264 Baseline, Main, and Extended profiles [4] 

 

The FRExt Profile, the newest profile, supports 8×8 Intra Spatial Prediction, 8×8 Transform, 

and further extensions. As shown in Fig 2.6, it specifies a set of four new profiles, which are 

constructed as nested subsets of capabilities. The main difference between FRExt and non-FRExt 

H.264/MPEG4-AVC coding is the use of an 8x8 transform, in addition to the 4×4 transforms. 

 

Fig 2.6 H.264 FRExt profiles [6]   
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2.1.2.1 The Baseline Profile 
The Baseline Profile supports I-slices and P-slices. In an I-slice, it contains only intra-coded 

macroblocks (MBs). On the other hand, a P-slice may contain intra-coded, inter-coded or skipped 

macroblocks. 

 

2.1.2.1.1 Slices 

Slices are sequences of macroblocks which are processed in the order of a raster scan. As 

shown in Fig 2.7, a frame may be split into one or several slices. Each slice can always be 

decoded correctly without the use of the data from other slices. However, when using deblocking 

filter across slice boundaries, it may need some information from other slices. In addition to the 

raster scan order of macroblocks in one slice, the Flexible Macroblcok Ordering (FMO) method 

can be used in H.264/AVC to partition a picture into several slice groups. Each slice group can be 

partitioned into one or more slices. Using FMO, a picture can be split into many scanning patterns 

of macroblock, as shown in Fig 2.8. 

 

Fig 2.7 Subdivision of a picture into slices [2] 

 

Fig 2.8 Subdivision of a picture into slices using FMO [2] 
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2.1.2.1.2 Intra Prediction 

There are several intra prediction modes in H.264/AVC, mainly Intra 4x4 prediction and Intra 

16x16 prediction modes. The Intra 4x4 mode predicts each 4x4 luma block separately and is well 

suited for the coding of texture parts in a picture. On the other hand, the Intra 16x16 mode 

predicts each 16x16 luma block separately and is suitable for the coding of smooth regions in a 

picture. 

When doing intra prediction, the neighboring samples of previously-coded blocks, which are 

to the left and /or the top of the current block, are used. As shown in Fig 2.9, nine prediction 

modes can be used in the Intra 4x4 mode. The prediction modes in Intra 16x16 mode are similar 

to those in Intra 4x4 mode, but with only four prediction modes. 

 

Fig 2.9 Nine prediction modes [4] 

 

2.1.2.1.3 Inter Prediction 

Inter prediction creates a prediction block from one or more previously encoded video frames 

or fields, by using block-based motion compensation. The main differences from previous coding 

standards are that H.264/AVC supports six different block sizes, as shown in Fig 2.10, and 

supports more accurate motion vectors (quarter-sample resolution in the luma component). For 

sub-sample motion compensation, the corresponding samples are obtained by using an 

interpolation process to generate sub-sampled image data. 
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Fig 2.10 Segmentations of macroblock for motion compensation [2] 

 

2.1.2.1.4 Transformation and Quantization 

Depending on the type of residual data that are to be coded, three different transformations 

can be used in H.264/AVC: a Hadamard transform for the 4×4 array of luma DC coefficients 

(Intra 16x16 prediction mode only); a Hadamard transform for the 2x2 array of chroma DC 

coefficients; and a DCT-based transform for all other 4 x4 blocks in the residual data. 

H.264/AVC assumes a scalar quantizer. A quantization parameter (QP: 0~51) is used to 

determine the quantization step size of transform coefficients. Theses values are arranged so that 

an increase of 1 in the quantization parameter means a 12% increase of the quantization step size. 

An increase of step size by 12% also means a reduction of bit rate by approximately 12% 

 

2.1.2.1.5 Deblocking Filter 

The deblocking filter is used to reduce blocking effects in the decoded frame. It is applied 

after the inverse transform in the encoder/decoder. With this filter, H.264/AVC can further 

improve the coding efficiency because a filtered image is often a more faithful reconstruction of 

the original frame. After filtering, the subjective quality is significant improved, as shown in Fig 

2.11. 
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(a) Without deblocking filter; (b) With deblocking filter 

Fig 2.11 Performance of the deblocking filter for highly compressed pictures [4] 

 

2.1.2.1.6 Entropy Coding 

H.264/AVC supports two methods for entropy coding, Content Adaptive Variable Length 

Coding (CAVLC) and Content Adaptive Binary Arithmetic Coding (CABAC). In the Baseline 

Profile, CAVLC is adopted. In CAVLC, the VLC tables are designed to match the corresponding 

conditioned statistics, the entropy coding performance is better than the case when using a single 

VLC table only. 

 

2.1.2.2 The Main Profile 

2.1.2.2.1 B-slices 

Each macroblock partition in a B-slice may be predicted from one or two reference pictures 

that are before or after the current picture in the temporal order. Depending on the reference 

pictures stored in the encoder/decoder, there are many options for the prediction references for a 

macroblock in a B-slice. Fig 2.12 shows three examples. 
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Fig 2.12 Reference pictures from (a) past / future; (b) past; (c) future [4] 

 

2.1.2.2.2 Interlaced Video 

In interlaced frames, whenever there is motion in the image, either caused by moving objects 

or caused by the camera movement, two adjacent rows tend to have a reduced degree of statistical 

dependency. In this case, it may be more efficient to compress the top field and the bottom field 

separately. Fig 2.13 shows the difference between progressive frames and interlaced frames. As 

field coding is used, the type of picture is signaled in the header of each slice. In the 

macroblock-adaptive frame/field (MB-AFF) coding mode, the coding type will be specified at the 

macroblock level. In this mode, the current slice is processed in units of 16 luminance samples 

wide and 32 luminance samples high. Each macroblock pair can be encoded as (a) two frame 

macroblocks or (b) two field macroblocks. The macroblock pair concept is illustrated in Fig 2.14. 

 

Fig 2.13 Progressive and interlaced frames [2] 
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Fig 2.14 Conversion of a frame macroblock pair into a field macroblock pair [2] 

 

2.1.2.2.3 CABAC 

The efficiency of entropy coding can be improved further if the Context-Adaptive Binary 

Arithmetic Coding (CABAC) is used. CABAC gets good compression performance by selecting 

probability models for each syntax element according to the element’s context, by adapting 

probability estimates based on local statistics, and by using arithmetic coding rather than 

variable-length coding. Compared to CAVLC, CABAC typically reduces the bit rate by 5%–15% 

[2].  

 

2.1.2.3 The Extended Profile 

2.1.2.3.1 SP and SI slices 

SP and SI slices are specially coded slices that enable efficient switching between video 

streams and enable efficient random access for video decoders. SP slices support switching 

between similar coded sequences without increasing the bitrate in I slices, as shown in Fig 2.15(a). 

SI slices can switch to I slice that allows an exact match in an SP slice for random access or error 

control, as shown in Fig 2.15(b). 
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(a) Switching stream using SP-slices; (b) switching stream using I-slices 

Fig 2.15 Illustration of SP and SI-slices[4] 

 

2.1.2.3.2 Data Partition 

The encoded bitstream that makes up a slice is placed in three separate data partitions and 

each contains a subset of the coded slice. Partition A contains the slice header for each 

macroblock in the slice, Partition B contains coded residual data for Intra- and SI slice 

macroblocks, and Partition C contains coded residual data for inter coded macroblocks. Each 

Partition can be placed in a separate NAL unit and may be transported separately.  

If A is lost, the decoder cannot decode this slice. B and C can be made to be independently 

decodable. The property that a decoder may decode A and B only, or A and C only, lends 

flexibility in an error-prone environment. 

 

2.1.2.4 The FRExt Profile 

2.1.2.4.1 8x8 Intra Spatial Prediction 

In the FRExt Profile [5], it supports an 8x8 intra spatial prediction mode in addition to the 

Intra 4x4 mode and Intra 16x16 mode. The Intra 8x8 mode is introduced by extending the concept 

of Intra 4x4 mode, as shown in Fig 2.16. 
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Fig 2.16 Left: Samples used for 8×8 spatial luma prediction; 

         Right: Directions of spatial luma prediction modes [5] 

 

2.1.2.4.2 8x8 Transform 

For high-fidelity, the preservations of fine details and texture, which generally requires larger 

basis functions, become equally important. In order to achieve this goal, the FRExt Profile 

includes an 8x8 integer transform and allows the encoder to choose adaptively between the 4x4 

and 8x8 transforms for luma samples on a macroblock level. 

 

2.1.2.4.3 Further Extension 

The FRExt Profile contains three more important tools to support for extended sample bit 

depth and monochrome, as well as 4:2:2 and 4:4:4 chroma formats. 

(1) Encoder-specified scaling matrices for perceptual tuned, frequency-dependent 

quantization. 

(2) A residual color transform consisting of a reversible inter-based color conversion from 

RGB to YCgCo color space. This transform is applied to residual data only. 

(3) A lossless coding capability requiring only a relatively simple bypass of transform and 

de-quantization. 
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2.2 Super-Resolution Methods for Compressed Video 
Super-resolution (SR) techniques have been used to construct high-resolution images/videos 

from low-resolution images/videos, as shown in Fig 2.17. Super-resolution algorithms construct 

high-resolution images by exploiting sub-pixel shifts in the low-resolution data. These shifts are 

introduced by motion in the sequence and these shifts can be used to reveal the high-resolution 

information in the low-resolution frames.  

While many methods have been proposed to enhance raw videos, only a few have been 

proposed to operate for compressed videos. Of course, any algorithm that enhances 

uncompressed-video algorithms can be used for compressed videos if we can decompress the 

compressed videos first. However, this process discards some important information about the 

quantization effects in the compressed videos. In the subsequent section, we will briefly introduce 

the super-resolution techniques for compressed videos. 

 

Fig 2.17 SR methods may be used to construct a high-resolution video from a low-resolution 

source video [6] 

2.2.1 System Model 
This subsection introduces the general image model for compressed videos. This model relates 

the original high-resolution images to the decoded low-resolution images. Derivation of the model 

begins by generating an intermediate image sequence according to 

 

AHfg = ,                                                  (2.1) 
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where g is an (MN) ×1 vector that represents the low-resolution image, f is a (PMPN)×1 vector 

that represents a (PM)×(PN) high-resolution image, A is an (MN)×(PMPN) matrix that realizes the 

down-sampling operation, and H is a (PMPN)×(PMPN) filtering matrix. 

Using the relationship between low and high-resolution images in (2.1), the compressed 

observation becomes 

 

MCMC

DCTDCT ggAHFTQQTg
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⎥
⎦
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⎢
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⎥
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−= *1 ,                          (2.2) 

where
∧

g  is the decoded low-resolution image; DCTT and 1−
DCTT  are the forward and inverse 

Block-DCT operators, respectively; Q and Q* are the quantization and de-quantization operators, 

respectively; and 
MC

g
∧

 is the motion-compensated prediction of the current frame. If parts of the 

image are encoded as intra-blocks, then the predicted values for that region are zero. 

Now, the high-resolution images of a dynamic image sequence are coupled through the 

motion field according to 

 

kkll fCf ,= ,                       (2.3) 

 

where lf  and kf  are (PMPN)×1 vectors that denote the high-resolution images at the time 

instances l and k, respectively; and klC ,  is a (PMPN)×(PMPN) matrix that describes the motion 

vectors relating the pixels at Time k to the pixels at Time l. These motion vectors describe the 

actual displacement between high-resolution frames. 

Combining (2.2) and (2.3), we get the relationship between a high-resolution and compressed 

image sequence at different time instances: 
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l
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⎟⎟
⎠

⎞
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⎝

⎛
−=

∧ MC

lkklDCTl gfAHCTd , ,                                   (2.5) 

where 
∧

lg  is the compressed frame at time l ,
MC

lg
∧

is the motion-compensated prediction utilized 

in generating the compressed observation, and ld  is the DCT-domain residual coefficients. 

 

2.2.2 Quantizers 

We rewrite part of (2.4) by letting Q
lN , Q

ln denote the errors introduced by quantization at the 

time instance l in the DCT-domain and in the spatial domain, respectively. We also denote ld~  as 

the DCT-domain residual after quantization. 

 

[ ][ ] Q
llll NddQQd +== *~ ,                                         (2.6) 

Q
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.   (2.7) 

 

Substituting (2.7) into (2.4), the relationship between a high-resolution image and the 

low-resolution observations becomes 

 

Q
lkkll nfAHCg +=

∧

, .                                             (2.8) 

 

Now, the quantization procedure is treated as an additive noise process. The quantization is 

usually realized by dividing each transform coefficients by a quantization factor. The result is 

then rounded to the nearest integer. The transform coefficients can be reconstructed by the 

following relationship 
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,
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where ( )igTDCT , and ⎟
⎠
⎞

⎜
⎝
⎛ ∧

igTDCT , denote the ith transform coefficient of the low-resolution image g 

and the decoded estimate
∧

g , respectively. q(i) is the quantization factor, and Round(· ) is an 

operator that maps each value to the nearest integer. From the above equations, we can see that 

Q
lN  is restricted to half of the quantization factor. Thus, 
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⎫

⎩
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⎠
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⎜
⎝
⎛ −≤−∈
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22
: ,
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lkklDCT

l
kk

q
gfAHCT

q
ff .                       (2.9) 

 

The equation (2.9) can be used as a constraint in some super-resolution techniques, like the 

Projection onto Convex Set (POCS) approach. This POCS approach is to be briefly described in 

the subsequent section. 

In (2.6), we can treat Q
lN  as a deterministic quantity that is defined as the difference between 

ld and ld~ . We may also treat Q
lN  as a stochastic vector for reconstruction. This stochastic 

vector can be modeled by various distributions [7]. For example, it can be modeled as a 

zero-mean independent identically distributed (I.I.D.) Gaussian random process, which leads to a 

mathematically tractable solution [8]. The noise model in the DCT-domain and the spatial-domain 

can be expressed as follow: 

 

( ) ( ) ( )
⎭
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⎩
⎨
⎧−=

− Q
k

Q
k

TQ
k

Q
kN NKNZNP 1

2
1exp)( ,  and                          (2.10) 

 

( ) ( ) ( )
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−− Q
kDCT

Q
kDCT

TQ
k

Q
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2
1exp)( ,                          (2.11) 

 

where Q
kK  is the covariance matrix for Q

kN , and Z is the normalization factor. 

After we have established the model of the quantization noise, we can use some stochastic 

approaches to estimate the high-resolution frames. We will introduce these methods in the 

subsequent sections. 
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2.2.3 Motion Vectors 
Incorporating the motion vectors into the super-resolution algorithm is also an important issue. 

Super-resolution techniques rely on sub-pixel relationships between frames in an image sequence. 

These SR techniques require an accurate estimate of the actual motion based on the observed 

low-resolution images. When a compressed bit-stream is available, the transmitted motion vectors 

provide additional information about the underlying motion. These vectors represent a degraded 

observation of the actual motion field and are generated by a motion estimation algorithm within 

the encoder. However, these motion vectors generated by the encoder may not be dense enough 

for super-resolution. Hence, in a super-resolution algorithm, it may be needed to re-estimate the 

true motion or improve the accuracy of the transmitted motion vectors. The latter one can be 

shown as follow, 

 

( ) ( )
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Encoder
kl

T
MVkllkklCkl iCAicgfAHCC

kl
λ ,         (2.12) 

 

where klC ,
ˆ  is a matrix that represents the estimated motion field, ( )ic kl , is a two-dimensional 

vector that contains the motion vector for the pixel location i, Encoder
klC , is a matrix that contains the 

motion vectors provided by the encoder, ( )iCA Encoder
kl

T
MV ,,  produces an estimate for the motion at 

pixel location i from the transmitted motion vectors, and λ quantifies the confidence in the 

transmitted information. 
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2.2.4 Compression Artifacts 

2.2.4.1 Artifact Types 
In video coding, several artifacts are commonly observed. They are listed below. 

(1) Blocking errors: 

During the encoding process, images are divided into equally sized blocks and are 

transformed with a de-correlating operator, like the blockwise DCT transform. During the 

quantization of the DCT coefficients, blocking errors may be generated. Moreover, 

sometimes neighboring regions may be assigned with different quantization parameters 

even though these regions actually have similar visual contents. In this case, there could be 

some apparent artificial boundary in the decoded images. 

(2) Temporal flickers: 

        Temporal flickers are attributed to an improper allocation of bits. In some applications, 

bits are distributed based on an assumption of future contents. If the assumption is 

inaccurate, the encoder may have to quickly adjust the amount of quantization to satisfy 

the rate constraint. In this case, the encoded video sequence possesses a temporally 

varying image quality. This phenomenon is called temporal flicker. 

(3) Ringing artifacts: 

    Edges and impulsive features have high-frequency components. When utilizing a 

perceptually weighted quantization process, the encoder will preserve the low-frequency 

information more than the high-frequency information. Once if too many high-frequency 

components are lost, there could be some ringing artifacts in the decoded images. 

 

2.2.4.2 Suppression of Artifacts 
In super-resolution methods, some methods have been developed to attenuate compression 

artifacts. These techniques try to find a solution that may satisfy some predefined constraint while 

remain faithful to the observed data. 
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2.2.4.2.1 Constrained Least Square Method 
In this method, a cost function is assigned to each type of artifact. The final reconstructed 

image can be found by minimizing the following cost function. 

( ) 2

3
2

2
2

1
2 ˆˆ MCgpRpBpgppE −+++−= λλλ ,                     (2.13) 

where p is a vector representing the reconstructed image, ĝ  is the estimate decoded from the 

bit-stream, B and R are matrices that penalize the appearance of blocking and ringing artifects, 

respectively. MCĝ is the motion compensated prediction. λ1, λ2, and λ3 express the relative 

importance of each constraint. Practically, B is implemented as a difference operator across 

block-boundaries and R is implemented as a high-pass filter within each block. 

 

2.2.4.2.2 Projection onto Convex Set Method 
In the framework, blocking and ringing artifacts are removed by defining a set of images that 

do not exhibit compression artifacts. For instance, the set of images that are smooth would not 

contain ringing artifacts and blocking artifacts. To define the set, the amount of smoothness must 

be quantified. Then, the solution is constrained by  

{ }BTBggp ≤∈ 2: ,                 (2.14) 

where TB is the smoothness threshold used for the block boundaries and B is a difference operator 

between blocks. 

 

2.2.4.2.3 Maximum a Posteriori Method 
In this frame work, we’ll use the idea of Baye’s rule. Thus the final reconstructed image is 

given by 

 

( ) ( )
( )gp

pppgpp p ˆ
|ˆ

maxarg= ,                                       (2.15) 

or 

( ) ( )pppgpp p log|ˆlogmaxarg += .                                (2.16) 

By solving (2.16), we will get the reconstructed image. 
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2.2.5 Super-Resolution Methods 
In this sub-section, we will introduce three commonly used methods in super resolution: the 

Projection onto Convex Set (POCS) method, the Maximum a posteriori (MAP) method, and the 

Maximum Likelihood (ML) method. 

 

 

2.2.5.1 Projection onto Convex Set Methods 
The POCS [9] method describes an iterative approach to incorporate prior knowledge about 

the solution into the reconstruction process. The incorporation of a priori knowledge into the 

solution can be interpreted as restricting the solution to be a member of a closed convex set Ci 

that are defined as a set of vectors satisfying a particular property. If the constraint sets have a 

nonempty intersection, then a solution that belongs to the intersection set i
m
iS CC 1=∩= , which is 

also a convex set, can be found by applying alternating projections onto these convex sets. Indeed, 

any solution in the intersection set is consistent with the a priori constraint and therefore is a 

feasible solution. We can use the recursion as following to get a vector belonging to the 

intersection. That is, 

 

n
mm

n xPPPPx 121
1 L−
+ = ,                (2.17) 

 

where x0 is an arbitrary starting point, and Pi is the projection operator which projects an arbitrary 

signal x onto the closed convex sets, ( )miCi L1= . 

As mentioned before, (2.9), (2.12), and (2.14) can be convex sets. The following example 

shows the projection operation that satisfies (2.9), 
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where [ ]kl fP ˆ  is the projection operator that accounts for the influence of the observation lĝ on the 

estimate of the high-resolution image kf̂ . 

 

The advantage of POCS method is its simplicity. It allows a convenient inclusion of a priori 

information. These methods have the disadvantages of non-unique solutions, slow convergence, 

and high computational cost. 

 

2.2.5.2 Stochastic Methods 
Stochastic SR image reconstruction, which is a Bayesian approach, provides a flexible and 

convenient way to model a priori knowledge concerning the solution. 

Bayesian estimation methods are used when the a posteriori probability density function (PDF) 

of the original image can be established. The Maximum a posteriori (MAP) estimator of x 

maximizes the a posteriori PDF P(x|yk) with respect to x. That is, 

 

( )pyyyxPx ,,,|maxarg 21 L= .                                    (2.19) 

Equivalently, 

( ) ( ){ }xPxyyyPx p log|,,,logmaxarg 21 += L .                      (2.20) 

 

Both the a priori image model P(x) and the conditional density ( )xyyyP p |,,, 21 L  will be 

defined by a priori knowledge concerning the high-resolution image x and the statistical 

information of noise. Since the MAP optimization in (2.20) includes a priori constraints 
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essentially, it provides regularized high-resolution estimates effectively. 

The priori image can be modeled as different distributions. It can be model as a Gaussian 

random process[8], or a Markov random filed (MRF) priori[9]. Different priori models will have 

different effects on the reconstructed high-resolution images. 

As mentioned in Section 2.2.2, (2.10) and (2.11) can be used as the conditional PDF for the 

MAP estimators in the DCT-domain[8] and spatial-domain[10], respectively. 

Finally, we’ll introduce another stochastic method for super-resolution, the Maximum 

likelihood (ML) estimator. The ML method is similar to the MAP method. It can be seen as a 

special case of MAP estimation. The ML estimator maximizes the following conditional PDF 

 

( ){ }xyyyPx p |,,,logmaxarg 21 L= .                                (2.21) 

 

An ML estimator does not use the prior term to regularized its estimation. Due to the ill-posed 

nature of super-resolution inverse problems, MAP methods are usually used in preference to ML 

methods. 

Robustness and flexibility in modeling noise characteristics and a priori knowledge about the 

solution are the major advantage of the stochastic SR approach. Assuming that the noise process 

is white Gaussian, an MAP estimation with convex energy functions in the priors ensures the 

uniqueness of solution. Therefore, efficient gradient descent methods can be used to estimate the 

high-resolution images. It is also possible to estimate the motion information and the 

high-resolution images simultaneously. 

 

2.2.5.3 Hybrid Methods 
In above sub-sections, we have introduced the POCS estimator, the MAP estimator, and the 

ML estimator. It is possible to combine the POCS method with the ML (or MAP) method to get a 

hybrid estimator [11], [12]. The advantage of hybrid approach is that all a priori knowledge is 

effectively combined, and it ensures a single optimization solution in contrast to the POCS 

method.  
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Chapter 3                   
Spatial Resolution Enhancement on 
Compressed Videos 

In this chapter, we will first describe the system model used in this thesis. Then, we will 

discuss the spatial-domain MAP estimator for compressed videos. We will also describe the 

proposed modifications to overcome some problems. Finally, we will discuss the optimization 

procedure. 

 

3.1 System Model 
In this sub-section, we will first model the video acquisition, video compression, and noise. 

Then, we will formulate the super resolution problem. 

 

3.1.1 Video Acquisition 
The video acquisition process models the relationship between the continuous-time 

high-resolution images and discrete-time low-resolution images. The video acquisition process 

can be modeled as 

 

),(),;,(),(),( klvkltnhtnfklg
n

rrd += ∑ ,                                (3.1)                    

 

where n, l are the index of high-resolution images and low-resolution images respectively, ( )klgd ,  

is the kth low-resolution (LR) image, ),( rtnf  is the high-resolution (HR) image at the reference 

time rt , ),;,( kltnh r  is the linear shift-varying blur mapping between the HR image and the kth 

LR image, and ),( klv  is the acquisition noise. The video acquisition process can be depicted in 

Fig. 3.1. 
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Fig 3.1 Video acquisition process 

 

3.1.2 Video Compression 
The MPEG encoder and decoder can be generally expressed as Fig. 3.2 and Fig 3.3.  

 
Fig 3.2 Video encoder 

 

 

Fig 3.3 Video decoder 

 

The LR image, ( )klgd , , as discussed before, will be encoded first in the encoder stage. The 

encoder will first perform motion compensation of this LR frame and we will get the prediction 

frame ( )klg p , . Then, the encoder will perform a series of block-DCTs to the difference frame of 

( )klgd ,  and ( )klg p ,  to produce the DCT coefficients ( )kmd , . The DCT coefficients ( )kmd ,  

are then quantized to produced the quantized DCT coefficients ( )kmdq , . We can expressed these 

operations as 
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( ) ( ){ }klgDCTkmG pp ,, = ,            (3.4) 

 

( ) ( ){ }klvDCTkmV ,, = ,             (3.5) 

 

and ( ) ( ) ( )∑=
n

rDCTr kmtnhtnfkmG ,;,,, ,            (3.6) 

 

where m is the index in the DCT domain, and ( )kmtnh rDCT ,;,  is the block-DCT of ),;,( kltnh r . 

   The quantized DCT coefficients ( )kmdq ,  and the corresponding step-sizes are available at 

the decoder. Thus, in the decoder stage, we can get the LR frames, y(l,k), by taking the 

block-IDCT and motion compensation. We can model the decoder stage as 

 

( ) ( ){ } ( )klgkmdIDCTkly pq ,,, +=               (3.7) 

In this thesis, we will only use the inter block search 8x8 and 8x8 block-DCT in the 

H.264/AVC encoder in the FRExt profile. 

 

3.1.3 Noise Model 
In this thesis, we assume that the compression is the major source of noise. This allows us to 

focus on integrating the compression stage into the super-resolution algorithm. 

The quantization operator in (3.3) introduces the quantization noise in the DCT-domain. These 

errors correspond to the information discarded during quantization. We can express the 



 27

relationship between ( )kmd ,  and ( )kmdq ,  as  

 

( ) ),(,),( kmnkmdkmd DCTqq −+= ,           (3.8) 

 

where ),( kmn DCTq−  is the quantization noise in the DCT-domain. Because we will perform the 

resolution enhancement in the spatial-domain, we have to express this noise in the spatial-domain. 

The quantization noise in the DCT domain and the spatial-domain is related as 

 

{ }),(),( kmnIDCTkln DCTqspatialq −− = .           (3.9) 

 

The quantization noise in the spatial-domain is a linear combination of independent noise 

components in the DCT domain. Hence, by the Central Limit Theorem, the resulting noise 

process approaches the Gaussian distribution. Since we assume that the quantization noise is 

dominant, we can rewrite (3.7) as 

 

( ) ( ) ( ){ } ( )
( )klnkltnhtnf

klgkmnkmdIDCTkly

spatialq
n

rr

pDCTq

,),;,(),(

,,,,

−

−

+=

++=

∑ ,        (3.10) 

where 

 

( ) ( )kspatialqspatialq KNkln ,,0~, −− .              (3.11) 

 

kspatialqK ,−  is the covariance matrix in the spatial domain at Frame k. 
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3.1.4 Problem Formulation 
The system model in (3.10) is used for the formulation of an algorithm that reconstructs 

high-resolution frames from a sequence of low-resolution compressed frames. This approach is 

based on the assumption that information about a high-resolution frame may appear in multiple 

low-resolution observations. When the assumption is valid, then each low-resolution observation 

provides additional information about the high-resolution image frame. 

Because of the flexibility and robustness of the Bayesian maximum a posteriori (MAP) 

approach, we choose this framework to construct our thesis. The spatial-domain MAP estimator 

for spatial resolution enhancement can be written as 

 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }
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where ( )rtnf ,ˆ  is the estimate of the high-resolution image. With the use of the monotonic log 

function, the MAP estimator becomes 

 

( ) ( ) ( ) ( ) ( ) ( ){ }
rrpr tnftnfklyklytnfr pptnf ,,|,,,,, loglogmaxarg,ˆ

1
+= L .      (3.13) 
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3.2 Spatial-Domain MAP Estimator for 
Super-Resolution 
 

Obtaining a frame with enhanced resolution according to (3.13) requires definitions of the 

probability density functions (PDFs) ( ) ( ) ( )rp tnfklyklyp ,|,,,, 1 L  and ( )rtnfp , . These PDFs incorporate 

information about the compressed system, as well as a priori knowledge of the high-resolution 

images into the reconstruction framework. In this subsection, we will propose models for the 

PDFs and discuss the details of the MAP estimator. 

 

3.2.1 Fidelity Constraint 
The first term of (3.13) is called the fidelity constraint. From (3.11), the quantization noise 

process in the spatial domain is modeled as an additive Gaussian noise process. Thus, we can 

express this conditional PDF as follow by assuming ( ) ( )pklykly ,,,, 1 L  are independent 
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( ) ( ) ( ) ( ) ( )∑
=

−−∝⋅
p

rp

k

kk
rrtnfklykly tnfkltnHklyp

1

1

2
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Because ),;,( kltnH r  in the fidelity constraint consists of motion warping, blurring, and 

compression stage, we have to discuss how to find the motion warping and how to define the blur 

in Fig 3.1. 

 

3.2.1.1 Motion Warping 
In our thesis, we want to use multiple low-resolution observations to reconstruct a single 

high-resolution image. Hence, we have to know the relationship between the observation at the 
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time index of reconstruction and observations at the time index of reference. As shown in Fig 3.4, 

if we want to reconstruct Frame i, we must find the relative motion between Frame i and other 

frames. 

 

 

Fig 3.4 Relationship between Frame i and other frames 

 

In order to find the relative motion between Frame i and other frames, we have to perform 

motion estimation. This step is a critical step in our approach. We need to choose an appropriate 

motion estimation method. Here, we adopt the Hierarchical Block Matching (HBM) algorithm [13] 

to do this motion estimation. This method is more suitable for super-resolution algorithm than 

other traditional block matching methods. The illustration of hierarchical block matching is shown 

in Fig 3.5.  

 

 
Fig 3.5 Illustration of the HBM algorithm [13] 
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The same block size is used at different levels. If we use an L-level HBM, then the block size 

NxN at Level l corresponds to the block size 2L-1Nx2L-1N at the full resolution. Because of this 

hierarchical structure, the HBM approach can catch more accurate object motions. After we have 

these accurate motion vectors, we can warp back the additional information from observations to 

the high-resolution frame that we want to reconstruct. 

 

3.2.1.2 Blur 
In the video acquisition process in Fig. 3.1, there are two kinds of blurs. One is from the 

sensor blur, while the other is from the nonzero aperture time. As we capture the image, we have 

no information about these two kinds of blurs. For simplicity, we use a simple spatial-domain 

Gaussian low-pass filter instead of estimating the accurate blur of the video acquisition process. 

The standard deviation of the Gaussian low-pass filter can be chosen according to the 

zooming ratio. For a larger zooming ratio, we use a Gaussian low-pass filter with a larger standard 

deviation. For a smaller zooming ratio, we need a Gaussian low-pass filter with a smaller standard 

deviation.  

This kind of choice can be explained in digital signal processing. For a larger zooming ratio, it 

seems the original high-resolution frame is downsampled more. Thus, there could be a serious 

aliasing effect in the low-resolution observations. Hence, we need a low-pass filter with a 

narrower bandwidth to suppress the aliasing effect. On the other hand, for a smaller zooming ratio, 

we can use a low-pass filter with a wider bandwidth. A Gaussian low-pass filter with a larger 

standard deviation in the spatial domain equals to a low-pass filter with a narrower bandwidth in 

frequency domain, and vice versa. This is why we can choose the standard deviation in this 

manner. The frequency response of Gaussian low-pass filter with different standard deviations are 

illustrated in Fig 3.6. 
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(a) STD = 0.5; (b) STD = 1; (c) STD = 2; 

Fig 3.6 Frequency response of a Gaussian low-pass filter with different standard deviations 

 

3.2.2 Prior Model 

Now, we have to model the prior distribution ( ) ( )⋅rtnfp , , the second term of (3.13). This prior 

distribution is also called the regularization term. Because super resolution is always an ill-posed 

problem, it is very useful to include the regularization term to derive a stable solution. Moreover, 

the regularization term may also help the algorithm to remove artifacts and improve the speed of 

convergence. Here, we define the regularization term as 

( ) fpf log−=γ .               (3.16) 

 

We may model the prior distribution as a Gaussian random process, a Markov random field, or 

some other more complicated random processes. If we use the first-order Markov random field as 

the prior distribution, then it can be written as 
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where N means the four neighbor of the pixel at (n,tr). The RHS of (3.18) can also be seen as a 

Laplacian operator, a kind of high-pass filter. It penalizes the difference between a pixel intensity 
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and an averaging intensities of its four neighbors. As the noise and edge pixels both contain 

high-frequency energy, they will be removed in the regularization process and the resulting image 

will not contain sharp edges. 

In order to preserve edges and some other features, we may use other kinds of regularization 

terms. In [14], the author proposes a useful regularization method for denoising and deblurring, 

named the bilateral total variation method (BTV). The most useful property of the BTV method 

is that it tends to preserve edges in the reconstruction process. This regularization term can be 

written as 
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where l
xS , and m

yS shift ( )rtf by l, and m pixels in horizontal and vertical directions respectively, 

presenting several scales of derivatives. The scalar α is used to offer the spatial decaying effect to 

the summation of the regularization terms.  

In a simple simulation, the author added Gaussian white noise with zero mean and variance 

0.045 into the original image. Then, as shown in Fig. 3.7, we can easily compare the performance 

between the traditional regularization method (3.18) and the BTV method (3.19) 

 

 
(a) Original; (b) Noisy; (c) Regularization 

using (3.18); 
(d) Regularization 
using (3.19) with p 
= 2 

Fig 3.7 Simulation of denoising using different regularization methods [14] 

 

In Fig 3.7, we can see that the performance of the BTV method is much better than the 

traditional method. Hence, we choose the BTV method to be our prior. 
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3.2.3 Optimization Procedure 
The first term and the second term in (3.13) are defined as (3.15) and (3.19) respectively. 

Hence, we can write the cost function of the spatial-domain MAP estimator as 

 

( )( ) ( ) ( )( )rBTV

k

kk
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where ( )ky , );( ktH r , and )( rtf  are ( )kly , , ),;,( kltnH r , and ),( rtnf , respectively. Here, 

we drop the spatial index l and n for simplicity and λ is the regularization parameter. 

After we have the cost function, we can use any optimization method to find the optimized 

estimation of the high-resolution image, f̂ . Here, we adopt the steepest descent method to find 

the solution to this optimization problem: 
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where β is a scalar matrix to define the step size in the direction of the gradient, and ⊗  is 

defined as the element multiplication. 

The scalar matrix β may be fixed or adaptive. Here we use the information about the sign of 

the gradient in the nth iteration and the (n+1)th iteration to decide whether each scalar element in 

the matrix β should be larger or smaller. This adaptation method can be expressed as 

 

( )( ) ( )( ) nnnnn fEsignfEsign βωββ ⊗∇⊗∇⋅+= ++ 11
ˆˆ ,        (3.24) 

 

where ω  is a scalar constant between 0 and 1 and is used to define the increasing/decreasing rate 
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of the scalar matrix 1+nβ . We can initially choose an starting value 0β , and then change the value 

of β  adaptively at each iteration. 

In (3.20), the regularization parameter λ is used to balance the contribution of the fidelity 

constraint and the regularization term. This parameter can be either fixed or adaptive. Since it 

could be a tedious work to choose the λ manually, we will use an adaptive way to decide the value 

of λ in each iteration. Based on the concept of [15], [16], we can also assume some properties for 

λ. Here, we assume 

1. λ is proportional to the first-term in the RHS of (3.20). 

2. λ is inversely proportional to the second-term in the RHS of (3.20). 

3. λ is larger than zero. 

 

Thus, we use a logarithmic type of regularization function to adapt the regularization 

parameter in each iteration. Here, we have 
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where ξ is used to prevent the denominator from becoming zero. 

 

 The optimization procedure of super resolution algorithm is illustrated in Fig 3.8 and is 

described as follows : 

1. Choose an observation of a low-resolution image that is to be reconstructed; bilinearly 

interpolated it to get an initial estimate of the high-resolution image. 

2. The relative motion between the frame to be reconstructed and other frame is estimated to get 

),;,( kltnH r . 

3. Calculate ( )fE ˆ∇ . 

4. Use (3.25) to update the regularization parameter. 

5. Use (3.21) to reconstruct the high-resolution image. 



 36

6. Use (3.24) to update the step-size. 

7. Repeat Steps 3 to 6 till the stop criterion is reached. 

 

 

Fig 3.8 Flow chart of the resolution enhancement algorithm 

 

Some simulations using the above methods are shown below. The parameter settings of these 

simulations as shown in Table 3.1 and Table 3.2. 
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Table 3.1 Parameter settings of super-resolution 

Sequence QP Size Ref. frame No. STD of Blur α m

Mobile 28 QCIF to CIF 4 0.5 1 2 

Stefan 28 QCIF to CIF 4 0.5 1 2 

News 28 QCIF to CIF 4 0.5 1 2 

Foreman 28 QCIF to CIF 4 0.5 1 2 

 

 
Table3.2 Parameter settings of hierarchical block matching 

Sequence Levels Block Size Search Range 

Mobile 3 8 4 

Stefan 3 8 4 

News 3 8 4 

Foreman 3 8 4 

 
 

(a) 5th frame; bilinear interpolation; (b) 5th frame; our method 

Fig 3.9 Resolution enhancement simulation of the Mobile sequence. 
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(a) 184th frame; bilinear interpolation; (b) 184th frame; our method 

Fig 3.10 Resolution enhancement simulation of Stefan sequence. 

(a) 150th frame; bilinear interpolation; (b) 150th frame; our method; 

Fig 3.11 Resolution enhancement simulation of News sequence. 

 

(a) 157th frame; bilinear interpolation; (b) 157th frame; our method 

Fig 3.12 Resolution enhancement simulation of Foreman sequence. 



 39

In the simulations of Mobile, News, and Foreman, our simulation results contain less noise in 

smooth regions and have sharper edges. However, there exist many unpleased artifacts as shown 

in our simulation results. The worst case is the simulation results of Stefan. We will discuss the 

reason for these artifacts and will propose methods to overcome these problems in the next 

section. The PSNR comparison is shown in Fig 3.13. Because artifacts arise in the reconstruction 

results, the PSNR performance of our method may be worse than that of bilinear interpolation 

method. 

 

Fig 3.13 PSNR performance: bilinear v.s. our method 

 

 

(a) Mobile; (b) Stefan; 

(c) News; (d) Foreman 
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3.3 Proposed Modifications 
The main reason for these artifacts in the previous simulations arise from incorrect motion 

estimations. Incorrect motion estimations will cause errors during the warp back process. To deal 

with this problem, we discuss two issues. First, in the motion estimation process, we find the  

motion vector based on the minimum MAD/MSE criterion. The “optimal” motion vector may not 

be the true object motion vector. Second, there exist fast motions (FM) or scene changes (SC) in 

the sequence. Both FM and SC may cause incorrect estimation of motion vectors. Based on these 

two issues, we will propose some modifications over the resolution enhancement algorithm to 

improve the visual quality of the reconstructed videos. 

 

3.3.1 Artifact Reduction 
Here, we propose two methods to reduce the artifact in the simulation results. First, we add a 

new regularization term in the spatial domain to suppress the noise that may affect the final result.  

 

Fig 3.14 Pepper and salt noise in the reconstructed image of the Mobile sequence 

 

We can see some salt-and-pepper noise in the simulation results, as indicated within the red 

circles in Fig 3.14. Here, we propose a new regularization term as follows 
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( )( ) ( ) ( )( ) 2
rrrmed tfmedfilttftf −=γ ,               (3.26) 

 

where ( )( )rtfmedfilt  means the median filtering of ( )rtf  in the 3x3 neighborhood.  

 

We can modify the cost function in (3.20) to be 
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where µ is another regularization parameter that controls the strength of ( )( )rmed tfγ . µ may be 

assigned a very small value, like 0.05, to suppress the noise but not to dramatically affect the edge 

pixels. 

Second, we will use a pixel-wise median filter across the temporal axis to remove the outliers 

in the back-projected error frames, which is the first term in (3.22). This filtering is illustrated in 

Fig 3.15. 

 

Fig 3.15 Pixel-wise median filter across the temporal axis 
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We define the median-filtered back-projected error frame as ( )fθ . After we have the new 

regularization term and the median-filtered back-projected error frame, we can modified (3.22) to 

be  

 

( ) ( ) ( ) ( )nmednBTVnn fffpfE ˆˆˆˆ γµγλθ ∇⋅+∇⋅+⋅−=∇ ,        (3.28) 

where p is the number of LR images that have been used to reconstruct an HR image. 

We use the same optimization procedure to minimize the modified cost function. Here, we 

show some simulation results. The parameter settings are the same as the settings in Table 3.1 and 

Table 3.2. 

(a) 5th frame; previous SR; (b) 5th frame; SR with artifact reduction 

Fig 3.16 Simulation result of resolution enhancement with artifact reduction: Mobile 

 

(a) 184th frame; previous SR; (b) 184th frame; SR with artifact reduction 

Fig 3.17 Simulation result of resolution enhancement with artifact reduction: Stefan 
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(a) 150th frame; previous SR; (b) 150th frame; SR with artifact reduction 

Fig 3.18 Simulation result of resolution enhancement with artifact reduction: News 

 

(a) 157th frame; previous SR; (b) 157th frame; SR with artifact reduction 

Fig 3.19 Simulation result of resolution enhancement with artifact reduction: Foreman 

 

After adding these two artifact reduction methods into our method, we can see there are fewer 

artifacts in the reconstructed images. The performance of the modified method is better than 

before. This is shown in Fig 3.20. However, there are still apparent PSNR drops in the simulation 

results. This is because motion estimation errors caused from scene change and fast motion are 

still not removed. We will discuss this SC/FM problem in the next subsection. 
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Fig 3.20 PSNR performance: bilinear v.s. our method with artifact reduction 

 
 
 

(a) Mobile; (b) Stefan; 

(c) News; (d) Foreman 
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3.3.2 Scene Change and Fast Motion Detection 
In real-life video sequences, scene change and fast motion situations always occur. When 

scene change or fast motion happens, there could be many incorrect motion estimations. Hence, 

we propose two possible modifications to deal with the SC/FM problem. First, we will propose a 

global method. Then, we will propose a local method. 

 

3.3.2.1 Global Method 

SC/FM causes performance drop of the resolution enhancement method. To deal with the 

SC/FM problem, we have to identify the occurrence of SC/FM. If a frame is marked as a SC/FM 

frame, then, instead of performing the resolution enhancement method, we will simply use the 

bilinear interpolation for resolution enhancement. Here, we perform the skip of the resolution 

enhancement method for the whole frame. Hence, we call this method a global method. The 

flowchart of this global method is shown in Fig 3.21. 

 

 
Fig 3.21 The flowchart of the global method 

 

To identify SC/FC frames, we set up a table first. Here, we use the simple frame difference 

MAD (Mean Absolute Difference) to build the table. In Fig 3.22, we can see that if we set an 

appropriate threshold, this simple method could reliably catch SC/FM frames. 
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(a) same as Fig 3.20 (c); (b) Frame difference MAD of News 

Fig 3.22 Example of frame difference MAD 

 

In the above example, the input video sequence contains 200 frames and we build the table as 

follows: 

 

1. Calculate the MADs for every pair of adjacent frames. 

2. Calculate the mean, M, and the standard deviation, STD, of these MADs. 

3. Set the threshold, T, to be (M + STD). 

4. If the MAD of Frame i is larger than T, than Frame i is marked as a SC/FM frame. 

 

In Fig 3.23, we show the PSNR performance of our resolution enhancement method with both 

artifact reduction and the global SC/FM detection method. The parameter settings are the same as 

these in Table 3.1 and Table 3.2. 
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Fig 3.23 PSNR performance: bilinear v.s. our method with artifact reduction and global SC/FM 

detection 

 

Comparing Fig 3.23 with Fig 3.20, we can see that most of the PSNR drops due to SC/FM are 

recovered. However, there still exist some PSNR drops. The cause of these PSNR drops will be 

discussed in the next subsection. 

 

 

 

 

(a) Mobile; (b) Stefan; 

(c) News; (d) Foreman 
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3.3.2.2 Local Method 

We have discussed the global method in the last subsection. If we use the global method for 

SC/FM detection, we still have some shortcomings. First, we can only find the frame with a large 

region of SC/FM. If the frame only contain small regions of SC/FM, the MAD may not have a 

significant increase. Second, for a SC/FM frame, the global method uses the bilinear interpolation 

to construct the whole image. However, in a SC/FM frame, there could be many other regions that 

actually do not have scene change/fast motion. If we can apply the bilinear transformation to these 

SC/FM regions but apply the resolution enhancement method to these non-SC/FM regions, we 

may be able to benefit some PSNR gain. The flowchart of this method is shown as below. 

 

 
Fig 3.24 The flowchart of local method 

 

Reviewing the first term in (3.22), this term contains a warpped-back process, which warps 

error images to the high-resolution image. These error images in the high-resolution coordinates 

are called warpped-back error images. As discussing before, the performance of the motion 

estimation process could be very inaccurate in the case of SC/FM. Hence, the warpped-back 

errors should be much larger if SC/FM occurs. The examples in Fig 3.24 show this kind of error.  
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(a) 150th frame of News; (b) 151st frame of News; 

 (c) Warpping the 151st frame to the 150th 

coordinate; 

(d) difference between (a) and (c); 

Fig 3.25 Example of SC/FM region 

 

The red rectangles in Fig 3.25 show the SC/FM region in the 151st frame of news. Here, we 

could reasonably assume that the regions with small warpped-back errors may still offer useful 

motion information for the resolution reconstruction method. Only those regions with larger 

warpped-back erros need to be interpolated via the bilinear transformation.   
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Fig 3.26 Distribution of the difference in Fig 3.24(d) 

 

In order to detect these SC/FM regions, we have to determine the threshold. We could set the 

threshold manually or adaptively. For the adaptive way, we may first analyze the distribution of 

these warpped-back errors, as shown in Fig 3.25(d). The distribution of the difference in Fig 

3.25(d) is plotted in Fig 3.26. This distribution looks like a Laplacian distribution. Hence, we may 

try to set the SC/FM threshold as  

 

wwFMSCT σµ ×+= 2/ ,             (3.29) 

 

where wµ , wσ are the mean and the standard deviation of the warpped-back error image. wµ  

always approaches zero. The threshold value is dominated by wσ .  

However, this approach still has some problems, especially when wσ  is too small. As wσ  is 

too small, the warpped-back errors may be all near zeros, or the warpped-back errors only contain 

small parts of large errors. In this case, we may set FMSCT /  to a small enough value and discard 

some useful information. This will be harmful to the resolution enhancement method. Hence, we 

may set FMSCT /  to a certain value, τ, as FMSCT /  is smaller than τ. Hence, we have 
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The procedure to decide the SC/FM region is shown in Fig 3.27 and is described as follows. 

 

1. Do motion estimation to get relative motion between the observed image and the image we are 

interested in. 

2. Warp the observed image from its original coordinates to the coordinates of the interested 

image. 

3. Calculate the warpped-back error image, the difference between the warpped-back image and 

the interested image. 

4. Set the SC/FM threshold adaptively or manually. 

5. Do the SC/FM region detection for every pixel in the warpped-back error image. 

6. Record the position of SC/FM regions. 

7. Output the detection result. 

 



 52

 
Fig 3.27 Flowchart of the local SC/FM detection method 

 

In the experiment, we increase the image resolution from QCIF to CIF. We use four QCIF 

observation images to reconstruct each single CIF image. In this case, we have to do the motion 

estimation three times, as shown in Fig 3.4. Then, we have three warpped-back images and also 

three warpped-back error images. Here, we will show some simulation results of this SC/FM 

detection method with adaptive threshold setting. 
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(a) error image of Frame (i-1); (b) error image of Frame (i+1) (c) error image of Frame (i+2) 

   
(d) detection result of (a); (e) detection result of (b); (f) detection result of (c); 

Fig 3.28 SC/FM region detection results for News: i = 150 

 

   

(a) error image of Frame (i-1); (b) error image of Frame (i+1) (c) error image of Frame (i+2) 

   
(d) detection result of (a); (e) detection result of (b); (f) detection result of (c); 

Fig 3.29 SC/FM region detection results for Foreman: i = 157 
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(a) error image of Frame (i-1); (b) error image of Frame (i+1) (c) error image of Frame (i+2) 

   
(d) detection result of (a); (e) detection result of (b); (f) detection result of (c); 

Fig 3.30 SC/FM region detection results for Stefan: i = 184 

 

From Fig 3.28 to Fig 3.30, we can see that the SC/FM detection method with adaptive 

threshold setting could detect SC/FM regions effectively. Now we will combine this local SC/FM 

detection method with the resolution enhancement method, together with the aforementioned 

artifact reduction methods. We will use the detection result to be set the update region in the 

resolution enhancement process. For those regions marked as SC/FM regions, we will not use 

back-projected errors in the resolution enhancement process. Those regions are called non-update 

regions. Otherwise, regions marked as non-SC/FM regions are called update-regions. We will use 

back-projected errors in update-regions to increase the details of the reconstructed HR images. 

The back-projected error images are filtered by a median filter. Then, we simply use the same way 

as discussed in Section 3.3.1 to do resolution enhancement. We will show some simulation results 

of the modified resolution enhancement approach. All of the parameter settings are the same as 

the settings in Table 3.1 and Table 3.2. 
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(a) 5th frame; bilinear interpolation; (b) 5th frame; SR method 

Fig 3.31 Simulation result of SR method with artifacts reduction and local SC/FM detection : 

Mobile 

 

(a) 184th frame; bilinear interpolation; (b) 184th frame; SR method 

Fig 3.32 Simulation result of SR method with artifacts reduction and local SC/FM detection :  

Stefan 
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(a) 150th frame; bilinear interpolation; (b) 150th frame; SR method 

Fig 3.33 Simulation result of SR method with artifacts reduction and local SC/FM detection : 

News 

 

(a) 157th frame; bilinear interpolation; (b) 157th frame; SR method 

Fig 3.34 Simulation result of SR method with artifacts reduction and local SC/FM detection : 

Foreman 
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Fig 3.35 PSNR performance: bilinear v.s. our method with artifact reduction and local SC/FM 

detection 

 

Comparing the simulation results with those in Section 3.2.3 and in Section 3.3.1, we can see 

that the visual quality is much improved. There are much fewer artifacts now. There are no PSNR 

drops in the simulation results. The PSNR gain of our modified method is quite stable.  

(a) Mobile; (b) Stefan; 

(c) News; (d) Foreman 
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3.4 Overall Procedure 
After discussing some modifications in previous subsections, we modify the optimization 

procedure discussed in Section 3.2.3. The overall procedure for the spatial-resolution 

enhancement method is shown in Fig 3.36 and is described as follows: 

1. Choose an observation image; bilinearly interpolated it to get an initial estimate. 

2. Do motion estimation to find the relative motion between the frame to be reconstructed and its 

adjacent frames. 

3. Use the local SC/FM detection method to find the update regions. 

4. (1) Calculate the median-filtered back-projected error frame with the information of the 

update regions; 

(2) Calculate the median regularization term, ( )( )rmed tfγ ; 

(3) Calculate the BTV regularization term, ( )( )rBTV tfγ . 

5. Use (3.25) to update the regularization parameter. 

6. Use (3.28) to reconstruct the high-resolution image. 

7. Use (3.24) to update the step-size. 

8. Repeat 4 to 7 till the stop criterion is reached. 
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Fig 3.36 Flow chart of the modified resolution enhancement algorithm 
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Chapter 4 Experimental Results 

4.1 4× Zooming 
In this section, a 4 times resolution enhancement of compressed videos with different QP’s are 

shown. 

Table 4.1 Parameter settings of super-resolution 

Sequence QP Size Ref. frame No. STD of Blur α m

Mobile 22,28,34 QCIF to CIF 4 0.5 1 2

Stefan 22,28,34 QCIF to CIF 4 0.5 1 2

News 22,28,34 QCIF to CIF 4 0.5 1 2

 

Table 4.2 Parameter settings of hierarchical block matching 

Sequence Levels Block Size Search Range 

Mobile 3 8 4 

Stefan 3 8 4 

News 3 8 4 

 

 

Frame No. 4 
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Frame No. 44 

 

 

Frame No. 54 

 

Fig 4.1 Simulation results with zooming ratio = 4, QP22: Mobile 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 

 

 

Fig 4.2 PSNR with zooming ratio = 4, QP22: Mobile 



 62

Frame No. 4 

 

 

Frame No. 44 

 

 

Frame No. 54 

 

Fig 4.3 Simulation results with zooming ratio = 4, QP28: Mobile 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 
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Fig 4.4 PSNR with zooming ratio = 4, QP28: Mobile 

 

 

 

Frame No. 4 

 

 

Frame No. 44 
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Frame No. 54 

 

Fig 4.5 Simulation results with zooming ratio = 4, QP34: Mobile 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 

 

Fig 4.6 PSNR with zooming ratio = 4, QP34: Mobile 
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Frame No. 20 

 

 

Frame No. 70 

 

 

Frame No. 190 

 

Fig 4.7 Simulation results with zooming ratio = 4, QP22: Stefan 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 
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Fig 4.8 PSNR with zooming ratio = 4, QP22: Stefan 

 

 

 

 

Frame No. 20 

 

 

Frame No. 70 
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Frame No. 190 

 

Fig 4.9 Simulation results with zooming ratio = 4, QP28: Stefan 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 

 

Fig 4.10 PSNR with zooming ratio = 4, QP28: Stefan 
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Frame No. 20 

 

 

Frame No. 70 

 

 

Frame No. 190 

 

Fig 4.11 Simulation results with zooming ratio = 4, QP34: Stefan 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 
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Fig 4.12 PSNR with zooming ratio = 4, QP34: Stefan 

 

 

 

Frame No. 25 

 

 

Frame No. 90 
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Frame No. 150 

 

Fig 4.13 Simulation results with zooming ratio = 4, QP22: News 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 

 

Fig 4.14 PSNR with zooming ratio = 4, QP22: News 
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Frame No. 25 

 

 

Frame No. 90 

 

 

Frame No. 150 

 

Fig 4.15 Simulation results with zooming ratio = 4, QP28: News 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 
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Fig 4.16 PSNR with zooming ratio = 4, QP28: News 

 
 
 

Frame No. 25 

 

 

Frame No. 90 
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Frame No. 150 

 

Fig 4.17 Simulation results with zooming ratio = 4, QP34: News 

Left: Original images; 

Middle: Bilinear interpolation images; 

Right: Resolution enhancement images; 

 

Fig 4.18 PSNR with zooming ratio = 4, QP34: News 
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4.2 16× Zooming 
In this section, a factor of sixteen times resolution enhancement of compressed video 

sequences with different QP’s are shown. 

Table 4.3 Parameter settings of super-resolution 

Sequence QP Size Ref. frame No. STD of Blur α m

Mobile 22,28,34 QCIF to 4CIF 16 2 1 2

Stefan 22,28,34 QCIF to 4CIF 16 4 1 2

News 22,28,34 QCIF to 4CIF 16 4 1 2

 

Table 4.4 Parameter settings of hierarchical block matching 

Sequence Levels Block Size Search Range 

Mobile 3 16 4 

Stefan 3 16 4 

News 3 16 4 

 

 

Frame No. 13 
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Frame No.53 

Frame No. 93 

Fig 4.19 Simulation results with zooming ratio = 16, QP22: Mobile 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images 

Frame No. 13 
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Frame No.53 

Frame No. 93 

Fig 4.20 Simulation results with zooming ratio = 16, QP28: Mobile 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 13 

 



 77

Frame No.53 

Frame No. 93 

Fig 4.21 Simulation results with zooming ratio = 16, QP34: Mobile 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 29 
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Frame No.71 

Frame No. 167 

Fig 4.22 Simulation results with zooming ratio = 16, QP22: Stefan 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 29 
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Frame No.71 

Frame No. 167 

Fig 4.23 Simulation results with zooming ratio = 16, QP28: Stefan 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 29 
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Frame No.71 

Frame No. 167 

Fig 4.24 Simulation results with zooming ratio = 16, QP34: Stefan 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 25 
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Frame No.90 

Frame No. 150 

Fig 4.25 Simulation results with zooming ratio = 16, QP22: News 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 25 

 



 82

Frame No.90 

Frame No. 150 

Fig 4.26 Simulation results with zooming ratio = 16, QP28: News 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 

Frame No. 25 
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Frame No.90 

Frame No. 150 

Fig 4.27 Simulation results with zooming ratio = 16, QP34: News 

Left: Bilinear interpolation images; 

Right: Resolution enhancement images; 
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Chapter 5 Conclusions 
In this thesis, we implement the MAP estimator for spatial resolution enhancement for 

H.264/AVC compressed videos. We propose some modifications to suppress the artifacts in the 

reconstruction results and to overcome the scene-change and fast-motion problems in previous SR 

methods. We conclude our accomplishments as below. 

 

1. We implement the resolution-enhancement method for compressed videos by using an MAP 

estimator. 

2. For the artifacts in the reconstruction results, we propose two methods to suppress these 

artifacts. First, a new regularization term by using a spatial median filter is proposed to 

suppress the pepper and salt noise. Second, a pixel-wise temporal median filter is proposed to 

remove outliers during the reconstruction process. 

3. For the SC/FM problems, we proposed two methods to overcome these problems: a global 

method and a local method. 

4. Compared to the original SR method, the proposed method can overcome the SR/FM 

problems and suppress most artifacts. 
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