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Abstract

In this thesis, we first implement a spatial resolution enhancement algorithm for H.264/AVC
compressed videos. Based on the analysis, of. the simulation results, we identify a few
shortcomings of this algorithm, like some visual'artifacts in the enhanced videos and some
problems caused by scene change and fast motion. Then, we propose two methods to suppress
these artifacts, including adding a median regularization term in the spatial-domain and using a
median filter in the temporal domain. We ‘also propose two methods, a global method and a
local method, to overcome the scene change and fast motion problems. With these

modifications, the artifacts and problems are suppressed significantly.
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Chapter 1 Introduction

H.264/AVC video coding is a high-coding-efficiency video coding standard [1]. It is based on
the framework of block-based motion compensation and transform coding. This new H.264/AVC
standard improves the coding efficiency through the adding of new features and functionality.
From time to time, due to the constraints of channel bandwidth, storage size, and acquisition
devices, the acquired video sequences are compressed into low-resolution videos. In order to
improve the video quality, a resolution enhancement algorithm could be very helpful.

Multiframe resolution enhancement (“Super-Resolution”) techniques try to recover
high-resolution images by exploring the useful information that is available in a sequence of
low-resolution images. Super-resolution method has many applications, including the
enhancement of medical images and surveillance vidées. However, even though many methods
have already been proposed to enhance non-compressed videos, only a few methods have been
specially designed for compressed videos.

In this thesis, we propose a resolution enhancement method for compressed videos. This thesis
is organized as follows. In Chapter 2, we describe the H.264/AVC coding standard and introduce a
few super-resolution (SR) methods for compressed videos. In Chapter 3, we give a detail
introduction to our resolution enhancement scheme and the proposed modifications for artifact
reduction and quality improvement. Chapter 4 shows some simulation results. Finally, we give

conclusions in Chapter 5.



Chapter 2 Background

In this chapter, we’ll first introduce the H.264/AVC(C[1] video coding standard. Then, we’ll

introduce several super-resolution techniques for compressed video sequences.

2.1 Introduction to H.264/AVC

H.264/AVC, the ITU-T Recommendation H.264 and ISO/IEC International Standard
14496-10 Advance Video coding (AVC), is the newest video coding standard. The main
contributions of H.264/AVC are the extremely high coding efficiency and the network-friendly
video representation. The coding structure of this standard is similar to that of prior video coding
standards, like H.261, MPEG-1, MPEG-2 / H.263, and MPEG-4 part 2. In the subsequent section,
we will briefly introduce the H.264/AVC standard.

2.1.1 H.264/AVC Codec

As shown in Fig 2.1, the scope of the H.264/AVC standard only includes the decoder part to
describe the bitstream syntax and the’decoding proeess. This scope restriction provides the

maximal freedom to the encoder for various kinds of applications.

Sa
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Fig 2.1 Scope of H.264/AVC standardization[2]

2.1.1.1 The H.264/AVC Encoder

The H.264/AVC design covers a Video Coding Layer (VCL), which is designed to efficiently

represent the video content, and a Network Abstraction Layer (NAL), which formats the VCL



representation of the video and provides the header information in a manner appropriate for

conveyance by a variety of transport layers or storage media, as shown in Fig 2.2.

[ Video Coding Layer |
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Fig 2.2 Structure of H.264/AVC [2]

The functional elements of a compliant H.264/AVC encoder is shown in Fig 2.3. With the
exception of the deblocking filter, most functional elements (prediction, transform, quantization,
entropy encoding) are present in previous standards (MPEG-1, MPEG-2, MPEG-4, H.261, H.263).

However, there exist some crucial changes,in some of these functional blocks.
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Fig 2.3 H.264 Encoder [4]

The Encoder includes two dataflow paths, a forward path (left to right) and a reconstruction
path (right to left). During the forward path, an input frame/field Fn is processed in units of
macroblock, and each macroblock is encoded in intra or inter mode. After the prediction process,
the prediction P is subtracted from the current block to produce a residual (difference) block Dn.
Then, Dn is transformed (using a block transform) and quantized to the coefficient X. This set of

quantized and transformed coefficients, together with the side information needed for the



decoding of the macroblock, is reordered and then entropy encoded. Finally, this compressed
bitstream is passed to an NAL for transmission or storage.
During the reconstruction path, the encoder decodes the coefficient X to provide a reference

picture for future predictions. There is a deblocking filter that is used to reduce blocking effects.

2.1.1.2 The H.264/AVC Decoder

The functional elements of a H.264/AVC decoder is shown in Fig 2.4. The dataflow path in
the decoder is similar to the reconstruction path in the encoder. The decoder receives a bitstream
from the NAL and decodes it to produce the residual block Dn .

Using the header information decoded from the bitstream, the decoder creates a prediction
block P, same as the prediction P in the encoder. Then P is added to Dn’ to produce uFn’, which

is filtered to create the decoded block Frn’.
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Fig 2.4 H.264 Decoder [4]

2.1.2 H.264/AVC Structure

H.264/AVC standard defines four different profiles: baseline profile, main profile, extended
profile, and Fidelity Range Extensions (FRExt) profile. The Baseline Profile supports intra and
inter-coding (I- and P-slices) and performs CAVLC (context-adaptive variable-length codes) [3]
entropy coding. The Main Profile supports interlaced videos, inter-coding using B-slices, inter
coding with weighted prediction, and entropy coding with context-based arithmetic coding
(CABAC). The Extended Profile does not support interlaced videos nor CABAC, but adds modes

to enable switching between coded bitstreams (SP- and SI-slices) and to offer data partitioning to



improve the capability of error resilience. Fig 2.5 shows the relationship

among these three
profiles.

Extended profile
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Fig 2.5 H.264 Baseline, Main;-and Extended profiles [4]

The FREXxt Profile, the newest profile, supports 8x8 Intra Spatial Prediction, 8x8 Transform,
and further extensions. As shown in Fig 2.6, it specifies a set of four new profiles, which are
constructed as nested subsets of capabilities. The main difference between FRExt and non-FRExt

H.264/MPEG4-AVC coding is the use of an 8x8 transform, in addition to the 4x4 transforms.
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Fig 2.6 H.264 FREXxt profiles [6]



2.1.2.1 The Baseline Profile

The Baseline Profile supports I-slices and P-slices. In an I-slice, it contains only intra-coded
macroblocks (MBs). On the other hand, a P-slice may contain intra-coded, inter-coded or skipped

macroblocks.

2.1.2.1.1 Slices

Slices are sequences of macroblocks which are processed in the order of a raster scan. As
shown in Fig 2.7, a frame may be split into one or several slices. Each slice can always be
decoded correctly without the use of the data from other slices. However, when using deblocking
filter across slice boundaries, it may need some information from other slices. In addition to the
raster scan order of macroblocks in one slice, the Flexible Macroblcok Ordering (FMO) method
can be used in H.264/AVC to partition a picture into several slice groups. Each slice group can be
partitioned into one or more slices. Using FMO, a picture can be split into many scanning patterns

of macroblock, as shown in Fig 2.8.

Nl
Slice #0
| I
| I
Slice #1
| I
| I
Slice #2

Fig 2.7 Subdivision of a picture into slices [2]

Slice Group #1

Slice Group #

Fig 2.8 Subdivision of a picture into slices using FMO [2]



2.1.2.1.2 Intra Prediction

There are several intra prediction modes in H.264/AVC, mainly Intra 4x4 prediction and Intra
16x16 prediction modes. The Intra 4x4 mode predicts each 4x4 luma block separately and is well
suited for the coding of texture parts in a picture. On the other hand, the Intra 16x16 mode
predicts each 16x16 luma block separately and is suitable for the coding of smooth regions in a
picture.

When doing intra prediction, the neighboring samples of previously-coded blocks, which are
to the left and /or the top of the current block, are used. As shown in Fig 2.9, nine prediction

modes can be used in the Intra 4x4 mode. The prediction modes in Intra 16x16 mode are similar

to those in Intra 4x4 mode, but with only four prediction modes.
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M[A[B[C]D[E[F]G[H]| [M[A]B][C] D[ E[F] G[H| [M[A[B[C][D]E[F] G H] [M[A[B][C[D[E[F[G[H] [M AIBICI DJE[F[G[H|
l_ L" L Mz~ |_/ L
[J | I —— ] an ] |
K K——— K] S K K]

L L= [L] [L] LN
5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) { orizontal-up)
M[A]B]C|D[E[F[G[H| [M[A]B[C]D[E[F]G[H] [M[A]B]C|D|E]FIGIH| [M[A[B]C]D[E[F[G[H|
' o~ L L/’
] J ] ]
Z\ (L L} [L]

Fig 2.9 Nine'prediction modes [4]

2.1.2.1.3 Inter Prediction

Inter prediction creates a prediction block from one or more previously encoded video frames
or fields, by using block-based motion compensation. The main differences from previous coding
standards are that H.264/AVC supports six different block sizes, as shown in Fig 2.10, and

supports more accurate motion vectors (quarter-sample resolution in the luma component). For

sub-sample motion compensation, the corresponding samples are obtained by using an

interpolation process to generate sub-sampled image data.
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Fig 2.10 Segmentations of macroblock for motion compensation [2]

2.1.2.1.4 Transformation and Quantization

Depending on the type of residual data that are to be coded, three different transformations
can be used in H.264/AVC: a Hadamard transform for the 4x4 array of luma DC coefficients
(Intra 16x16 prediction mode only); a Hadamard transform for the 2x2 array of chroma DC
coefficients; and a DCT-based transform forall'othier,4 x4 blocks in the residual data.

H.264/AVC assumes a scalar quantizer.,A| quantization parameter (QP: 0~51) is used to
determine the quantization step size of transform coefficients. Theses values are arranged so that
an increase of 1 in the quantization parameétet-means-a 12% increase of the quantization step size.

An increase of step size by 12% also means-a reduction.of bit rate by approximately 12%

2.1.2.1.5 Deblocking Filter

The deblocking filter is used to reduce blocking effects in the decoded frame. It is applied
after the inverse transform in the encoder/decoder. With this filter, H.264/AVC can further
improve the coding efficiency because a filtered image is often a more faithful reconstruction of
the original frame. After filtering, the subjective quality is significant improved, as shown in Fig

2.11.



(a) Without deblocking filter; (b) With deblocking filter

Fig 2.11 Performance of the deblocking filter for highly compressed pictures [4]

2.1.2.1.6 Entropy Coding

H.264/AVC supports two methods for entropy coding, Content Adaptive Variable Length
Coding (CAVLC) and Content Adaptlve Blnary Arlthmetlc Coding (CABAC). In the Baseline
Profile, CAVLC is adopted. In CAVLC the VLp tables are designed to match the corresponding
conditioned statistics, the entropy codmg performance is bdtter than the case when using a single

‘L‘-n_- k. ‘|

VLC table only. "-.:,.; . % 1896 I -

2.1.2.2 The Main Profile

2.1.2.2.1 B-slices

Each macroblock partition in a B-slice may be predicted from one or two reference pictures
that are before or after the current picture in the temporal order. Depending on the reference
pictures stored in the encoder/decoder, there are many options for the prediction references for a

macroblock in a B-slice. Fig 2.12 shows three examples.



(a) one past, one future

() twio past

(c) two future

Fig 2.12 Reference pictures from (a) past / future; (b) past; (c) future [4]

2.1.2.2.2 Interlaced Video

In interlaced frames, whenever there is motion in the image, either caused by moving objects
or caused by the camera movement, two @djacent rows’tend to have a reduced degree of statistical
dependency. In this case, it may be niore efficient to.compress the top field and the bottom field
separately. Fig 2.13 shows the difference between progressive frames and interlaced frames. As
field coding is used, the type of picture.is-signaled-in the header of each slice. In the
macroblock-adaptive frame/field (MB-AFF) ¢oding mode, the coding type will be specified at the
macroblock level. In this mode, the current slice is processed in units of 16 luminance samples
wide and 32 luminance samples high. Each macroblock pair can be encoded as (a) two frame

macroblocks or (b) two field macroblocks. The macroblock pair concept is illustrated in Fig 2.14.

Progressive Top Bottom
Frame Field Field

_
A

Interlaced Frame (Top Field First)

Fig 2.13 Progressive and interlaced frames [2]
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—
A Pair of Macroblocks Top/Bottom Macroblocks
in Frame Mode in Field Mode

Fig 2.14 Conversion of a frame macroblock pair into a field macroblock pair [2]

2.1.2.2.3 CABAC

The efficiency of entropy coding can be improved further if the Context-Adaptive Binary
Arithmetic Coding (CABAC) is used. CABAC gets “ggod compression performance by selecting
probability models for each syntax elément qccordiﬁg‘- to the element’s context, by adapting
probability estimates based on local statistii:si,;;'naﬁld bl‘y.?‘.‘using arithmetic coding rather than
variable-length coding. Compared to 'CAVLC,',-CAB-AC ‘;yp‘ically reduces the bit rate by 5%—15%

[2].

2.1.2.3 The Extended Profile

2.1.2.3.1 SP and SI slices

SP and SI slices are specially coded slices that enable efficient switching between video
streams and enable efficient random access for video decoders. SP slices support switching
between similar coded sequences without increasing the bitrate in I slices, as shown in Fig 2.15(a).
SI slices can switch to I slice that allows an exact match in an SP slice for random access or error

control, as shown in Fig 2.15(b).
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P slices SP slices P slices P slices

Stream A
Stream A . S . .
— — | A2 [— —

\ wtch point
AB
2
Stream B
\ — — — —e
P slices | slica P slices
B Stream B
— — 2 | — —

(a) Switching stream using SP-slices; (b) switching stream using I-slices

Fig 2.15 Ilustration of SP and Sl-slices[4]

2.1.2.3.2 Data Partition

The encoded bitstream that makes up a slice is placed in three separate data partitions and
each contains a subset of the coded slice. Partition A’ contains the slice header for each
macroblock in the slice, Partition B: contains coded -tresidual data for Intra- and SI slice
macroblocks, and Partition C contains coded residual data for inter coded macroblocks. Each
Partition can be placed in a separate NAL unit and may be transported separately.

If A is lost, the decoder cannot decode this slice. B and C can be made to be independently
decodable. The property that a decoder may decode A and B only, or A and C only, lends

flexibility in an error-prone environment.

2.1.2.4 The FREXt Profile

2.1.2.4.1 8x8 Intra Spatial Prediction

In the FRExt Profile [5], it supports an 8x8 intra spatial prediction mode in addition to the
Intra 4x4 mode and Intra 16x16 mode. The Intra 8x8 mode is introduced by extending the concept

of Intra 4x4 mode, as shown in Fig 2.16.

12



AlB|c/D|E|F|G|H|I|J|K|L|M|N|O|P]

8x8 block

>r.|i < r:|—| n :u|ﬂ M~

A - X, Z: Constructed samples of neighboring blocks

Fig 2.16 Left: Samples used for 8x8 spatial luma prediction;

Right: Directions of spatial luma prediction modes [5]

2.1.2.4.2 8x8 Transform

For high-fidelity, the preservations of fine details and texture, which generally requires larger
basis functions, become equally important.iIn ‘order to achieve this goal, the FRExt Profile
includes an 8x8 integer transform and-allows the encoder to choose adaptively between the 4x4

and 8x8 transforms for luma samples on'a macroblock level;

2.1.2.4.3 Further Extension

The FRExt Profile contains three more important tools to support for extended sample bit
depth and monochrome, as well as 4:2:2 and 4:4:4 chroma formats.
(1) Encoder-specified scaling matrices for perceptual tuned, frequency-dependent
quantization.
(2) A residual color transform consisting of a reversible inter-based color conversion from
RGB to YCgCo color space. This transform is applied to residual data only.
(3) A lossless coding capability requiring only a relatively simple bypass of transform and

de-quantization.
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2.2 Super-Resolution Methods for Compressed Video

Super-resolution (SR) techniques have been used to construct high-resolution images/videos
from low-resolution images/videos, as shown in Fig 2.17. Super-resolution algorithms construct
high-resolution images by exploiting sub-pixel shifts in the low-resolution data. These shifts are
introduced by motion in the sequence and these shifts can be used to reveal the high-resolution
information in the low-resolution frames.

While many methods have been proposed to enhance raw videos, only a few have been
proposed to operate for compressed videos. Of course, any algorithm that enhances
uncompressed-video algorithms can be used for compressed videos if we can decompress the
compressed videos first. However, this process discards some important information about the
quantization effects in the compressed videos. In the subsequent section, we will briefly introduce

the super-resolution techniques for compressed videos.

Low-resolution
.-' video frames
Pl |
hH;——- : — J

«_;,_.\
—

I
High-resolution reconstrocted

7 . video frames

- L L L2

Fig 2.17 SR methods may be used to construct a high-resolution video from a low-resolution

source video [6]

2.2.1 System Model

This subsection introduces the general image model for compressed videos. This model relates
the original high-resolution images to the decoded low-resolution images. Derivation of the model

begins by generating an intermediate image sequence according to
g =AHf, 2.1
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where g is an (MN) x1 vector that represents the low-resolution image, f'is a (PMPN)x1 vector
that represents a (PM)x(PN) high-resolution image, 4 is an (MN)x(PMPN) matrix that realizes the
down-sampling operation, and H is a (PMPN)x(PMPN) filtering matrix.

Using the relationship between low and high-resolution images in (2.1), the compressed

observation becomes

é = TDéTQ*|:Q|:TDCT(AHF - éMC J:|:| + g'MC > (2.2)

where g is the decoded low-resolution image; T, and T,., are the forward and inverse

Block-DCT operators, respectively; O and O* are the quantization and de-quantization operators,

A MC

respectively; and g is the motion-compensated prediction of the current frame. If parts of the

image are encoded as intra-blocks, then the predicted values for that region are zero.
Now, the high-resolution images of a dynamie image sequence are coupled through the

motion field according to

f/ = Cl,kfk > (2.3)

where f, and f, are (PMPN)x1 vectors that denote the high-resolution images at the time

instances / and £, respectively; and C,, is a (PMPN)x(PMPN) matrix that describes the motion

vectors relating the pixels at Time £ to the pixels at Time /. These motion vectors describe the
actual displacement between high-resolution frames.
Combining (2.2) and (2.3), we get the relationship between a high-resolution and compressed

image sequence at different time instances:

N . MC . MC
gl=TD_éTQ Q|:TDCT[AHCI,kfk_g1 J:I +g (2.4)
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. MC
d, = TDCT£AHC1,kfk - & ja (2.5)

A A MC
where g, isthe compressed frame attime /, g, is the motion-compensated prediction utilized

in generating the compressed observation, and d, is the DCT-domain residual coefficients.

2.2.2 Quantizers

We rewrite part of (2.4) by letting N?,n? denote the errors introduced by quantization at the

time instance / in the DCT-domain and in the spatial domain, respectively. We also denote d , as

the DCT-domain residual after quantization.

d, =0"[old ]]=d, + N7, (2.6)

MC

A MC N
R - 0
TperQ | O TDCT[AHQ,kfk —8 J =AHC, f, —g +n; (2.7)
Substituting (2.7) into (2.4), the relationship between a high-resolution image and the

low-resolution observations becomes

A

g, =AHC,, f; +np. (2.8)

Now, the quantization procedure is treated as an additive noise process. The quantization is
usually realized by dividing each transform coefficients by a quantization factor. The result is
then rounded to the nearest integer. The transform coefficients can be reconstructed by the

following relationship
A T /
TDCT(g’ij :q(l).ROund( DCT(.gal)j’ (2,8)
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where T, (g, )and Ther (g, jdenote the ith transform coefficient of the low-resolution image g

and the decoded estimate g, respectively. ¢(i) is the quantization factor, and Round(- ) is an

operator that maps each value to the nearest integer. From the above equations, we can see that

N? is restricted to half of the quantization factor. Thus,

}ke{}k: q21 TDCT[AHClkfk gz) qzl} (2.9)

The equation (2.9) can be used as a constraint in some super-resolution techniques, like the
Projection onto Convex Set (POCS) approach. This POCS approach is to be briefly described in

the subsequent section.

In (2.6), we can treat N? as a deterministic:quantity that is defined as the difference between

d,and d .. We may also treat NP -as a stochastic vector for reconstruction. This stochastic

vector can be modeled by various distributions [7]. For example, it can be modeled as a
zero-mean independent identically distributed (I.I.D.) Gaussian random process, which leads to a
mathematically tractable solution [8]. The noise model in the DCT-domain and the spatial-domain

can be expressed as follow:

PN(N,?):Zexp{—%(NkQ)T(EkQ)‘l(ng)}, and (2.10)
Py(nf)= Zexp{—%(nk) o KTy ) (E)}, @.11)

where K2 is the covariance matrix for N2, and Z is the normalization factor.

After we have established the model of the quantization noise, we can use some stochastic
approaches to estimate the high-resolution frames. We will introduce these methods in the

subsequent sections.
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2.2.3 Motion Vectors

Incorporating the motion vectors into the super-resolution algorithm is also an important issue.
Super-resolution techniques rely on sub-pixel relationships between frames in an image sequence.
These SR techniques require an accurate estimate of the actual motion based on the observed
low-resolution images. When a compressed bit-stream is available, the transmitted motion vectors
provide additional information about the underlying motion. These vectors represent a degraded
observation of the actual motion field and are generated by a motion estimation algorithm within
the encoder. However, these motion vectors generated by the encoder may not be dense enough
for super-resolution. Hence, in a super-resolution algorithm, it may be needed to re-estimate the
true motion or improve the accuracy of the transmitted motion vectors. The latter one can be

shown as follow,

A

C,, =arg minc,ﬁk {HAHCl,kfk -8

2 MN- 2
+4 Z ‘cl,k (l) - AAT/IV (Cf:wder ) 11‘ } , (2.12)
20

where CA',,k is a matrix that represents the<estimated motion field, ¢, (z’)is a two-dimensional

vector that contains the motion vector for the pixel location i, C,/“*is a matrix that contains the

motion vectors provided by the encoder, 4,,, (Cf,’:""de",i ) produces an estimate for the motion at

pixel location i from the transmitted motion vectors, and A quantifies the confidence in the

transmitted information.
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2.2.4 Compression Artifacts
2.2.4.1 Artifact Types

In video coding, several artifacts are commonly observed. They are listed below.
(1) Blocking errors:

During the encoding process, images are divided into equally sized blocks and are
transformed with a de-correlating operator, like the blockwise DCT transform. During the
quantization of the DCT coefficients, blocking errors may be generated. Moreover,
sometimes neighboring regions may be assigned with different quantization parameters
even though these regions actually have similar visual contents. In this case, there could be
some apparent artificial boundary in the decoded images.

(2) Temporal flickers:

Temporal flickers are attributed to an improper allocation of bits. In some applications,
bits are distributed based on an’assumption ef future contents. If the assumption is
inaccurate, the encoder may have to-quickly adjust the amount of quantization to satisfy
the rate constraint. In this case, the encoded video sequence possesses a temporally
varying image quality. This phenomenon is-called temporal flicker.

(3) Ringing artifacts:
Edges and impulsive features have high-frequency components. When utilizing a
perceptually weighted quantization process, the encoder will preserve the low-frequency
information more than the high-frequency information. Once if too many high-frequency

components are lost, there could be some ringing artifacts in the decoded images.

2.2.4.2 Suppression of Artifacts

In super-resolution methods, some methods have been developed to attenuate compression
artifacts. These techniques try to find a solution that may satisfy some predefined constraint while

remain faithful to the observed data.
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2.2.4.2.1 Constrained Least Square Method

In this method, a cost function is assigned to each type of artifact. The final reconstructed

image can be found by minimizing the following cost function.

2

, (2.13)

E(p)=lp~&[" + 4 [Bp|" + Au|Ro|" + 43[p - &
where p is a vector representing the reconstructed image, g is the estimate decoded from the
bit-stream, B and R are matrices that penalize the appearance of blocking and ringing artifects,
respectively. " is the motion compensated prediction. A;, A2, and A; express the relative
importance of each constraint. Practically, B is implemented as a difference operator across

block-boundaries and R is implemented as a high-pass filter within each block.

2.2.4.2.2 Projection onto Convex Set Method

In the framework, blocking and ringing attifacts are removed by defining a set of images that
do not exhibit compression artifacts. For instance, 'the set of images that are smooth would not
contain ringing artifacts and blocking-artifacts. To'define the set, the amount of smoothness must

be quantified. Then, the solution is constrainéd-by

pele:|Bef <7, ), (2.14)

where Tpis the smoothness threshold used for the block boundaries and B is a difference operator

between blocks.

2.2.4.2.3 Maximum a Posteriori Method

In this frame work, we’ll use the idea of Baye’s rule. Thus the final reconstructed image is

given by
p =argmax, M , (2.15)
p(@)
or
p =argmax, log p(g | p)+log p(p). (2.16)

By solving (2.16), we will get the reconstructed image.
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2.2.5 Super-Resolution Methods

In this sub-section, we will introduce three commonly used methods in super resolution: the
Projection onto Convex Set (POCS) method, the Maximum a posteriori (MAP) method, and the

Maximum Likelihood (ML) method.

2.2.5.1 Projection onto Convex Set Methods

The POCS [9] method describes an iterative approach to incorporate prior knowledge about
the solution into the reconstruction process. The incorporation of a priori knowledge into the
solution can be interpreted as restricting the solution to be a member of a closed convex set Ci

that are defined as a set of vectors satisfying a particular property. If the constraint sets have a
nonempty intersection, then a solution that belongs to the intersection set C, =N, C,, which is

also a convex set, can be found by applying alternating projections onto these convex sets. Indeed,
any solution in the intersection set i§ consistentywith the a priori constraint and therefore is a
feasible solution. We can use the recursion as following to get a vector belonging to the

intersection. That is,

x"'=PP  --PPx", (2.17)

m

where x” is an arbitrary starting point, and Pi is the projection operator which projects an arbitrary

signal x onto the closed convex sets, C,(i=1---m).
As mentioned before, (2.9), (2.12), and (2.14) can be convex sets. The following example

shows the projection operation that satisfies (2.9),
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CLH AT, {TDCTAHC,Y,{ f, = (Tper8, +0.5g, )}
Ter atC,

CLH AT, {TDCTAHC,Y,{ f. = (Tper&, 0.5, )}
[Focr AHC, |

h

> TDCT(AHCI,k/}k —§1)> 0.5¢,

, (2.18)
> TDCT(AHCZ,k.fAI; _z‘;’/)< -0.5¢,

pli]=17,

f"k , otherwise

where P, [ f k] is the projection operator that accounts for the influence of the observation g, on the

estimate of the high-resolution image fk .

The advantage of POCS method is its simplicity. It allows a convenient inclusion of a priori
information. These methods have the disadvantages of non-unique solutions, slow convergence,

and high computational cost.

2.2.5.2 Stochastic Methods

Stochastic SR image reconstruction, which 1s a Bayesian approach, provides a flexible and
convenient way to model a priori knowledge concerning the solution.

Bayesian estimation methods are used when the a posteriori probability density function (PDF)
of the original image can be established. The Maximum a posteriori (MAP) estimator of x

maximizes the a posteriori PDF P(x|y;) with respect to x. That is,

x:argmaxP(x|yl,yz,---,yp). (2.19)
Equivalently,
X =arg max{logP(y1 2 Var sV, | x)+ logP(x)}. (2.20)

Both the a priori image model P(x) and the conditional density P(yl, VsV, |x) will be

defined by a priori knowledge concerning the high-resolution image x and the statistical

information of noise. Since the MAP optimization in (2.20) includes a priori constraints
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essentially, it provides regularized high-resolution estimates effectively.

The priori image can be modeled as different distributions. It can be model as a Gaussian
random process[8], or a Markov random filed (MRF) priori[9]. Different priori models will have
different effects on the reconstructed high-resolution images.

As mentioned in Section 2.2.2, (2.10) and (2.11) can be used as the conditional PDF for the
MAP estimators in the DCT-domain[8] and spatial-domain[10], respectively.

Finally, we’ll introduce another stochastic method for super-resolution, the Maximum
likelihood (ML) estimator. The ML method is similar to the MAP method. It can be seen as a

special case of MAP estimation. The ML estimator maximizes the following conditional PDF

x=argmax{logP(yl,yz,m,yp |x)} (2.21)

An ML estimator does not use the prior term to:regularized its estimation. Due to the ill-posed
nature of super-resolution inverse problems, MAP.methods are usually used in preference to ML
methods.

Robustness and flexibility in modelinginoise characteristics and a priori knowledge about the
solution are the major advantage of the“stochastic SR-approach. Assuming that the noise process
is white Gaussian, an MAP estimation with convex energy functions in the priors ensures the
uniqueness of solution. Therefore, efficient gradient descent methods can be used to estimate the
high-resolution images. It is also possible to estimate the motion information and the

high-resolution images simultaneously.

2.2.5.3 Hybrid Methods

In above sub-sections, we have introduced the POCS estimator, the MAP estimator, and the
ML estimator. It is possible to combine the POCS method with the ML (or MAP) method to get a
hybrid estimator [11], [12]. The advantage of hybrid approach is that all a priori knowledge is
effectively combined, and it ensures a single optimization solution in contrast to the POCS

method.
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Chapter 3
Spatial Resolution Enhancement on
Compressed Videos

In this chapter, we will first describe the system model used in this thesis. Then, we will
discuss the spatial-domain MAP estimator for compressed videos. We will also describe the
proposed modifications to overcome some problems. Finally, we will discuss the optimization

procedure.

3.1 System Model

In this sub-section, we will first model the video acquisition, video compression, and noise.

Then, we will formulate the super resolution problem.

3.1.1 Video Acquisition

The video acquisition process models the .relationship between the continuous-time
high-resolution images and discrete-time low-resolution images. The video acquisition process

can be modeled as

g Lk) =2 f(nt Yh(n,t,50,k) +v(lLk), (3.1

where n, [ are the index of high-resolution images and low-resolution images respectively, g, (l ,k)
is the kth low-resolution (LR) image, f(n,t,) is the high-resolution (HR) image at the reference
time ¢, h(m,t.;l,k) is the linear shift-varying blur mapping between the HR image and the kth
LR image, and v(/,k) is the acquisition noise. The video acquisition process can be depicted in

Fig. 3.1.
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Fig 3.1 Video acquisition process

3.1.2 Video Compression

The MPEG encoder and decoder can be generally expressed as Fig. 3.2 and Fig 3.3.

gy(LK) —»

Motion

Compesation

Block DCT

d({m,k)

Quantization

Foor {Iq{m,k)

Fig 3.2 Video encodér

d (m,k) —»|

Block IDCT

Motion
Compensation

— y(LK)

Fig 3.3 Video decoder

The LR image, g, (l,k), as discussed before, will be encoded first in the encoder stage. The

encoder will first perform motion compensation of this LR frame and we will get the prediction

frame g, (I,k). Then, the encoder will perform a series of block-DCTs to the difference frame of

g,(l,k) and g, (I,k) to produce the DCT coefficients d(m,k). The DCT coefficients d(m,k)

are then quantized to produced the quantized DCT coefficients d, (m,k). We can expressed these

operations as
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d(m,k)=DCTig,(I.k)-g, (k)

= 30t Voer o, K) =G, (m K)o ) G2
d,(m,k)=Old(m,k)}
= 0{G(m k)~ G, (k) + ¥ (m )} oY
G,(m,k)=DCTig, (1K)}, (3.4)
V(m, k)= DCT{(L,k)}, (3.5)
and Glm.k)=3 f(mt, rocr (n.t,:m.). (3.6)

where m is the index in the DCT domain, and | /i, (3¢, ;. k) is the block-DCT of h(n,t,;1,k) .

The quantized DCT coefficients =d, (m,k) and the corresponding step-sizes are available at

the decoder. Thus, in the decoder stage, we can get the LR frames, y(/k), by taking the

block-IDCT and motion compensation. We can model the decoder stage as

w(l,k)=IDCTd, (m,k)}+ g, (1,k) (3.7)

In this thesis, we will only use the inter block search 8x8 and 8x8 block-DCT in the
H.264/AVC encoder in the FRExt profile.

3.1.3 Noise Model

In this thesis, we assume that the compression is the major source of noise. This allows us to
focus on integrating the compression stage into the super-resolution algorithm.
The quantization operator in (3.3) introduces the quantization noise in the DCT-domain. These

errors correspond to the information discarded during quantization. We can express the
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relationship between d(m,k) and dq(m,k) as
d,(m,k) = d(m,k)+n,_per(m,k), (3.8)

where n,_,.,(m,k) is the quantization noise in the DCT-domain. Because we will perform the

resolution enhancement in the spatial-domain, we have to express this noise in the spatial-domain.

The quantization noise in the DCT domain and the spatial-domain is related as

nq—spatial (17 k) = IDCT{nq—DCT (m7 k)} (39)

The quantization noise in the spatial-domain_is a linear combination of independent noise
components in the DCT domain. Hence, by_the Central Limit Theorem, the resulting noise
process approaches the Gaussian distribution. Since we assume that the quantization noise is

dominant, we can rewrite (3.7) as

W1,k)=IDCTd(m, k) +n,_per (m,k)j+ g, (1)

= f(nt)h(nt ;LK) + 0, (LK) (3.10)

where

nq—spatial (Z’ k) ~ N(O’ Kq—spatial,k ) (3 1 1)

K g—spatial k is the covariance matrix in the spatial domain at Frame k.
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3.1.4 Problem Formulation

The system model in (3.10) is used for the formulation of an algorithm that reconstructs
high-resolution frames from a sequence of low-resolution compressed frames. This approach is
based on the assumption that information about a high-resolution frame may appear in multiple
low-resolution observations. When the assumption is valid, then each low-resolution observation
provides additional information about the high-resolution image frame.

Because of the flexibility and robustness of the Bayesian maximum a posteriori (MAP)
approach, we choose this framework to construct our thesis. The spatial-domain MAP estimator

for spatial resolution enhancement can be written as

/ (n.7,) = argmax flnt,) {p/(n,tr )o(ky >,--~,y(z,k,,)}

= arg maxf(nstr) py(l,k] )""’y(l’kp )f("’tr' )pf(n’tf)

: (3.12)

where f (n,t,) is the estimate of the high-resolution image. With the use of the monotonic log

function, the MAP estimator becomes

f(n, l, ) =argmax ., , {log Dyi) ok, ) r(na,) T log p s, } (3.13)
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3.2 Spatial-Domain MAP Estimator for

Super-Resolution

Obtaining a frame with enhanced resolution according to (3.13) requires definitions of the

probability density functions (PDFs) p ... .0, )(

nY nt,

y and p,.y. These PDFs incorporate

information about the compressed system, as well as a priori knowledge of the high-resolution
images into the reconstruction framework. In this subsection, we will propose models for the

PDFs and discuss the details of the MAP estimator.

3.2.1 Fidelity Constraint

The first term of (3.13) is called the fidelity constraint. From (3.11), the quantization noise
process in the spatial domain is modeled as an_additive Gaussian noise process. Thus, we can

express this conditional PDF as follow by assuming . sl - yix,) are independent

k,
Pyttt ) () € exp{— > |t k) - Hnstpsdstd £ (n.t,) } (3.14)

k=k,

k,
102 2140 )s 1, ) () () € = D2 LK) = H (2,50, 0) f (mt, ) (3.15)

k=k,

Because H(m,t ;/,k) in the fidelity constraint consists of motion warping, blurring, and

compression stage, we have to discuss how to find the motion warping and how to define the blur

in Fig 3.1.

3.2.1.1 Motion Warping

In our thesis, we want to use multiple low-resolution observations to reconstruct a single

high-resolution image. Hence, we have to know the relationship between the observation at the
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time index of reconstruction and observations at the time index of reference. As shown in Fig 3.4,
if we want to reconstruct Frame 1, we must find the relative motion between Frame i and other

frames.

frame 1-1 frame 1 {rame 1+1 [rame 1+2

Fig 3.4 Relationship between Frame 1 and other frames

In order to find the relative motion between Frame i and other frames, we have to perform

B

qr(:hleal,Block Matching (HBM) algorithm [13]

motion estimation. This step is a crltlcalj t ep ;;llour appa:pach We need to choose an appropriate

motion estimation method. Here, we adopt\ the

to do this motion estimation. This methodlf ”.more sultable for super-resolution algorithm than

T

other traditional block matching methods‘\ "The 111ustrat1£)ﬂ of hierarchical block matching is shown

in Fig 3.5. e u;f'.-.":':-

¥ 3

Anchor frame Target frame

Fig 3.5 Illustration of the HBM algorithm [13]
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The same block size is used at different levels. If we use an L-level HBM, then the block size
NxN at Level / corresponds to the block size 2'Nx2"'N at the full resolution. Because of this
hierarchical structure, the HBM approach can catch more accurate object motions. After we have
these accurate motion vectors, we can warp back the additional information from observations to

the high-resolution frame that we want to reconstruct.

3.2.1.2 Blur

In the video acquisition process in Fig. 3.1, there are two kinds of blurs. One is from the
sensor blur, while the other is from the nonzero aperture time. As we capture the image, we have
no information about these two kinds of blurs. For simplicity, we use a simple spatial-domain
Gaussian low-pass filter instead of estimating the accurate blur of the video acquisition process.

The standard deviation of the Gaussian,low-pass filter can be chosen according to the
zooming ratio. For a larger zooming ratio, we usesa Gaussian low-pass filter with a larger standard
deviation. For a smaller zooming ratig, we need a Gaussialow-pass filter with a smaller standard
deviation.

This kind of choice can be explained in digital signal processing. For a larger zooming ratio, it
seems the original high-resolution frame is downsampled more. Thus, there could be a serious
aliasing effect in the low-resolution observations. Hence, we need a low-pass filter with a
narrower bandwidth to suppress the aliasing effect. On the other hand, for a smaller zooming ratio,
we can use a low-pass filter with a wider bandwidth. A Gaussian low-pass filter with a larger
standard deviation in the spatial domain equals to a low-pass filter with a narrower bandwidth in
frequency domain, and vice versa. This is why we can choose the standard deviation in this
manner. The frequency response of Gaussian low-pass filter with different standard deviations are

illustrated in Fig 3.6.
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(a) STD =0.5; (b)STD=1; (c) STD =2;

Fig 3.6 Frequency response of a Gaussian low-pass filter with different standard deviations

3.2.2 Prior Model

Now, we have to model the prior distribution p f(n,,r)(~), the second term of (3.13). This prior

distribution is also called the regularization term. Because super resolution is always an ill-posed
problem, it is very useful to include the regularization term to derive a stable solution. Moreover,
the regularization term may also help the algorithm to remove artifacts and improve the speed of

convergence. Here, we define the regularization term as

y(f)=-logp,. (3.16)

We may model the prior distribution as a Gaussian random process, a Markov random field, or
some other more complicated random processes. If we use the first-order Markov random field as

the prior distribution, then it can be written as

} (3.17)

(3.18)

zeN

P i) ()¢ GXP{ Hf(n t )——Zf(l t,)

and thus

logpfnt

‘f(n t )——Zf(l t )

leN

where N means the four neighbor of the pixel at (7). The RHS of (3.18) can also be seen as a

Laplacian operator, a kind of high-pass filter. It penalizes the difference between a pixel intensity
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and an averaging intensities of its four neighbors. As the noise and edge pixels both contain
high-frequency energy, they will be removed in the regularization process and the resulting image
will not contain sharp edges.

In order to preserve edges and some other features, we may use other kinds of regularization
terms. In [14], the author proposes a useful regularization method for denoising and deblurring,
named the bilateral total variation method (BTV). The most useful property of the BTV method
is that it tends to preserve edges in the reconstruction process. This regularization term can be

written as

Yty (f(t, )) = Zplzp:a‘m‘+‘l‘

[=—pm=0

fle,)-sis7 1)

Llem20,0<ac<l, (3.19)

! m . . . . . . . .
where S, , and S shift f (tr)by [, and m pixels in horizontal and vertical directions respectively,

presenting several scales of derivatives. The scalar aisused to offer the spatial decaying effect to
the summation of the regularization terms.

In a simple simulation, the author added Gaussian white noise with zero mean and variance
0.045 into the original image. Then, as’shown in Fig: 3.7, we can easily compare the performance

between the traditional regularization method (3.18)and the BTV method (3.19)

P o F:Ij"l P

(a) Original; (b) Noisy; (c) Regularization | (d) Regularization
using (3.18); using (3.19) with p
=2

Fig 3.7 Simulation of denoising using different regularization methods [14]

In Fig 3.7, we can see that the performance of the BTV method is much better than the

traditional method. Hence, we choose the BTV method to be our prior.
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3.2.3 Optimization Procedure

The first term and the second term in (3.13) are defined as (3.15) and (3.19) respectively.

Hence, we can write the cost function of the spatial-domain MAP estimator as

T (£(2)), (3.20)

E(f(t,)= illy(k)—H(t,,;k)f(tr)

k=k,

where y(k), H(t;k), and f(t,) are y(l,k), H(nzt,:Lk), and f(n,zt,), respectively. Here,
we drop the spatial index / and » for simplicity and /4 is the regularization parameter.

After we have the cost function, we can use any optimization method to find the optimized

A

estimation of the high-resolution image, f . Here, we adopt the steepest descent method to find

the solution to this optimization problem:

fou =1, -BOVE(F,), (3.21)
vE(f, )= —iH(r,,k)T D), O, e Nrad, ), (3.22)

. pPp N A
Vi )= S s - 57751 sign(7, - 81577 Ji+m=0,0<a<1, (3.23)

I=—pm=0

where £ is a scalar matrix to define the step size in the direction of the gradient, and ® is
defined as the element multiplication.

The scalar matrix B may be fixed or adaptive. Here we use the information about the sign of
the gradient in the nth iteration and the (n+1)th iteration to decide whether each scalar element in

the matrix f should be larger or smaller. This adaptation method can be expressed as

~ n

B = B, +o-sign(VE(f, )@ sign(VE(F,., )® 5, (3.24)

where @ 1is a scalar constant between 0 and 1 and is used to define the increasing/decreasing rate
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of the scalar matrix f

n+l *

We can initially choose an starting value f3,, and then change the value
of [ adaptively at each iteration.

In (3.20), the regularization parameter 4 is used to balance the contribution of the fidelity
constraint and the regularization term. This parameter can be either fixed or adaptive. Since it
could be a tedious work to choose the 4 manually, we will use an adaptive way to decide the value
of 4 in each iteration. Based on the concept of [15], [16], we can also assume some properties for
A. Here, we assume
1. A is proportional to the first-term in the RHS of (3.20).

2. A 1s inversely proportional to the second-term in the RHS of (3.20).

3. A is larger than zero.

Thus, we use a logarithmic type of regularization function to adapt the regularization

parameter in each iteration. Here, we have

S k) - H e,k £

k=k,

Y Brv (f(tr ))+ g

A, =log +1, (3.25)

where & is used to prevent the denominator from becoming zero.

The optimization procedure of super resolution algorithm is illustrated in Fig 3.8 and is
described as follows :
1. Choose an observation of a low-resolution image that is to be reconstructed; bilinearly
interpolated it to get an initial estimate of the high-resolution image.

2. The relative motion between the frame to be reconstructed and other frame is estimated to get

H(n,t,;l,k).
3. Calculate VE ( f )

4. Use (3.25) to update the regularization parameter.

5. Use (3.21) to reconstruct the high-resolution image.
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6. Use (3.24) to update the step-size.

7. Repeat Steps 3 to 6 till the stop criterion is reached.

SR algorithm start

.
>

k4

Motion estimation
(1L2R)

™
el

Y

Caleculate gradient
of cost function

Update the
regularization
parameter

Reconstruct the HR
frame

!

Update the step
size

No

Yes
(Frame No. = Frame No. +

Next frame

Fig 3.8 Flow chart of the resolution enhancement algorithm

Some simulations using the above methods are shown below. The parameter settings of these

simulations as shown in Table 3.1 and Table 3.2.
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Table 3.1 Parameter settings of super-resolution

Sequence | QP Size Ref. frame No. | STD of Blur | o | m
Mobile 28 QCIF to CIF 4 0.5 12
Stefan 28 | QCIF to CIF 4 0.5 1|2

News 28 QCIF to CIF 4 0.5 1|2

Foreman | 28 | QCIF to CIF 4 0.5 1|2

Table3.2 Parameter settings of hierarchical block matching

Sequence Levels Block Size Search Range
Mobile 3 8 4
Stefan 3 8 4
News 3 8 4

Foreman 3 7 ? 4

I-)I‘
B oen B4

m—
=

ErETER

T P
=3

(a) 5™ frame; bilinear interpolation;

(b) 5™ frame; our method

Fig 3.9 Resolution enhancement simulation of the Mobile sequence.
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a) 1840 frame; bilinear interpolation;
p

(b) 184" frame; our method

Fig 3.10 Resolution enhancement simulation of Stefan sequence.

MPEG4
WORLD

r‘f‘

et |

TR 1
\

MPEG4
WORLD

(a) 150™ frame; bilinear interpolation;

(b) 150™ frame; our method;

Fig 3.11 Resolution enhancement simulation of News sequence.

|‘l IS LITT o

|-u (LI o

(a) 157" frame; bilinear interpolation;

(b) 157™ frame; our method

Fig 3.12 Resolution enhancement simulation of Foreman sequence.

38




In the simulations of Mobile, News, and Foreman, our simulation results contain less noise in
smooth regions and have sharper edges. However, there exist many unpleased artifacts as shown
in our simulation results. The worst case is the simulation results of Stefan. We will discuss the
reason for these artifacts and will propose methods to overcome these problems in the next
section. The PSNR comparison is shown in Fig 3.13. Because artifacts arise in the reconstruction
results, the PSNR performance of our method may be worse than that of bilinear interpolation

method.

mobile 264; Log modelBlocksize = 8x8, QF =23 QCIF to CIF stefan 264; Log model,Blacksize = 8x8; QP =28 QCIF to CIF
23 T T T T T T T T 265 T T T T T T T T T

T
— SR
— Bilinear

PSNR
PSHR

23
— SR
—— Bilinear

. . . . . . . . . 225 . . . . " I 1
20 40 60 a0 00 120 140 160 180 200 i} 20 40 &0 a0 oo 1200 1400 160 180 200

218
i}

frame number frame number
(a) Mobile; (b) Stefan;
news 264, Log model;Blocksize = 8x8; QP =28 QCIF to CIF foreman 264; Loy maodel;Blocksize = 8x8; QP =28 QCIF to CIF
285 T T T T T T T T T N T T T T T T T T T
— SR
23 305 — Bilinear
— ER
e — Bilinear |7
T B
x B5[ B o
= =
w w
=Bt | a
2551 B
250 B
250 4
24 L 1 1 L 1 1 1 1 L 25 1 L L 1 1 1 1 L 1
o 20 40 B0 80 100 120 140 160 180 200 i} 20 40 60 a0 100 120 140 160 180 200
frame nurmber frame number
(c) News; (d) Foreman

Fig 3.13 PSNR performance: bilinear v.s. our method
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3.3 Proposed Modifications

The main reason for these artifacts in the previous simulations arise from incorrect motion
estimations. Incorrect motion estimations will cause errors during the warp back process. To deal
with this problem, we discuss two issues. First, in the motion estimation process, we find the
motion vector based on the minimum MAD/MSE criterion. The “optimal” motion vector may not
be the true object motion vector. Second, there exist fast motions (FM) or scene changes (SC) in
the sequence. Both FM and SC may cause incorrect estimation of motion vectors. Based on these
two issues, we will propose some modifications over the resolution enhancement algorithm to

improve the visual quality of the reconstructed videos.

3.3.1 Artifact Reduction

Here, we propose two methods to reduce the artifact in the simulation results. First, we add a
new regularization term in the spatial domain to suppress the noise that may affect the final result.

Fig 3.14 Pepper and salt noise in the reconstructed image of the Mobile sequence

We can see some salt-and-pepper noise in the simulation results, as indicated within the red

circles in Fig 3.14. Here, we propose a new regularization term as follows
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2

Vea (F(0,))= |1 (2, )= medfile(£ (2, ))

; (3.26)

where medfilt(f(z,)) means the median filtering of f(z,) in the 3x3 neighborhood.

We can modify the cost function in (3.20) to be

S ) H £ + 27y (£ ) 17, (1), 62)

k=k,

where u is another regularization parameter that controls the strength of y, , ( f (t, )) | may be
assigned a very small value, like 0.05, to suppress the noise but not to dramatically affect the edge
pixels.

Second, we will use a pixel-wise med@% ﬂ@g;s the temporal axis to remove the outliers

Fig 3.15.

Pixel-wise Median Filtering

across the Temporal-axis

1 1 1 1 ’
1 1 1 1 i
(i-1) i (i+1) (i+2) (frame index) Median-Filtered
Back-Projected Error frames Back-Projected Error frame

Fig 3.15 Pixel-wise median filter across the temporal axis
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We define the median-filtered back-projected error frame as 0( f ) After we have the new

regularization term and the median-filtered back-projected error frame, we can modified (3.22) to

be

VE(f,)=—p- 07, )+ -V 7, )+ 17,7, (3.28)

where p is the number of LR images that have been used to reconstruct an HR image.
We use the same optimization procedure to minimize the modified cost function. Here, we
show some simulation results. The parameter settings are the same as the settings in Table 3.1 and

Table 3.2.

(a) 184" frame; previous SR; (b) 184™ frame; SR with artifact reduction

Fig 3.17 Simulation result of resolution enhancement with artifact reduction: Stefan
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MPEGA DREEES | MPEG4
WORLD BEY/ 4l WORLD

(a) 150™ frame; previous SR; (b) 150™ frame; SR with artifact reduction

Fig 3.18 Simulation result of resolution enhancement with artifact reduction: News

LA LI o

(a) 157" frame; previous SR; (b) 157™ frame; SR with artifact reduction

Fig 3.19 Simulation result of resolution enhancement with artifact reduction: Foreman

After adding these two artifact reduction methods into our method, we can see there are fewer
artifacts in the reconstructed images. The performance of the modified method is better than
before. This is shown in Fig 3.20. However, there are still apparent PSNR drops in the simulation
results. This is because motion estimation errors caused from scene change and fast motion are

still not removed. We will discuss this SC/FM problem in the next subsection.
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rmobile 264; Log model;Blocksize = Bx8; QP =28 QCIF to CIF

23 T T T T T T T

stefan 264; Log model; Blocksize = 8x3; QF =28 QCIF to CIF
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o o
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] 20 40 BD a0 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
frame number frame number
(a) Mobile; (b) Stefan;
news 264; Log model;Blocksize = Bx8; QP =28 QCIF to CIF foreman 264; Log model;Blocksize = 8x8; QF =28 QCIF to CIF
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6 q
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frame number frame number
(c) News; (d) Foreman

Fig 3.20 PSNR performance: bilinear v.s. our method with artifact reduction
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3.3.2 Scene Change and Fast Motion Detection

In real-life video sequences, scene change and fast motion situations always occur. When
scene change or fast motion happens, there could be many incorrect motion estimations. Hence,
we propose two possible modifications to deal with the SC/FM problem. First, we will propose a

global method. Then, we will propose a local method.

3.3.2.1 Global Method

SC/FM causes performance drop of the resolution enhancement method. To deal with the
SC/FM problem, we have to identify the occurrence of SC/FM. If a frame is marked as a SC/FM
frame, then, instead of performing the resolution enhancement method, we will simply use the
bilinear interpolation for resolution enhancements Here, we perform the skip of the resolution
enhancement method for the whole frame. Heneesuwe «call this method a global method. The

flowchart of this global method is showniin Fig 3.2.1-

Input n
frame
Yes Bilinear
interpolation
No

Resolution

enhancement
method

Fig 3.21 The flowchart of the global method

To identify SC/FC frames, we set up a table first. Here, we use the simple frame difference
MAD (Mean Absolute Difference) to build the table. In Fig 3.22, we can see that if we set an

appropriate threshold, this simple method could reliably catch SC/FM frames.
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news 264, Log model;Blocksize = 8x8; GF =28 QCIF to CIF
25 T T T T T T T T T

Mews frame difference MAD and Threshaold

W il — frame MAD | |
—— Threshaold

— SR i [=] sl
—— Bilinear %

28

prE S

2t

PSNR

5| i 4l
N 1
L L I I L L L L I 1] . L L L L L L L 1
BE5 0 a0 eo a0 o0 120 40 60 B0 2 020 40 8O0 BI 100 120 140 180 180 200
frame number frame number
(a) same as Fig 3.20 (c); (b) Frame difference MAD of News

Fig 3.22 Example of frame difference MAD

In the above example, the input video sequence contains 200 frames and we build the table as

follows:

1. Calculate the MADs for every pair of adjacent frames.

2. Calculate the mean, M, and the standard deviation, STD, of these MADs.

3. Set the threshold, T, to be (M + STD).

4. If the MAD of Frame i is larger than T, than Frame 1 is marked as a SC/FM frame.

In Fig 3.23, we show the PSNR performance of our resolution enhancement method with both
artifact reduction and the global SC/FM detection method. The parameter settings are the same as

these in Table 3.1 and Table 3.2.
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(d) Foreman

Fig 3.23 PSNR performance: bilinear v.s. our method with artifact reduction and global SC/FM

detection

Comparing Fig 3.23 with Fig 3.20, we can see that most of the PSNR drops due to SC/FM are

recovered. However, there still exist some PSNR

discussed in the next subsection.
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3.3.2.2 Local Method

We have discussed the global method in the last subsection. If we use the global method for
SC/FM detection, we still have some shortcomings. First, we can only find the frame with a large
region of SC/FM. If the frame only contain small regions of SC/FM, the MAD may not have a
significant increase. Second, for a SC/FM frame, the global method uses the bilinear interpolation
to construct the whole image. However, in a SC/FM frame, there could be many other regions that
actually do not have scene change/fast motion. If we can apply the bilinear transformation to these
SC/FM regions but apply the resolution enhancement method to these non-SC/FM regions, we

may be able to benefit some PSNR gain. The flowchart of this method is shown as below.

Input n,, Pixel

- Simple method

Resolution
enhancement
method

Fig 3.24 The flowchart of local method

Reviewing the first term in (3.22), this term contains a warpped-back process, which warps
error images to the high-resolution image. These error images in the high-resolution coordinates
are called warpped-back error images. As discussing before, the performance of the motion
estimation process could be very inaccurate in the case of SC/FM. Hence, the warpped-back

errors should be much larger if SC/FM occurs. The examples in Fig 3.24 show this kind of error.
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MPEG: S Nl MPEG:
WORLD , ! WORLD

(a) 150" frame of News; (b) 151°" frame of News;

MPEG:
WORLD

(c) Warpping the 151% frame to the 150 (d)difference between (a) and (c);

coordinate;

Fig 3.25 Example of SC/FM region

The red rectangles in Fig 3.25 show the SC/FM region in the 151* frame of news. Here, we
could reasonably assume that the regions with small warpped-back errors may still offer useful
motion information for the resolution reconstruction method. Only those regions with larger

warpped-back erros need to be interpolated via the bilinear transformation.
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w10 Mews 150th frame; Right reference Diff
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-150 -100 A0 1] a0 100 150 200 2450
Diff. gray value

Fig 3.26 Distribution of the difference in Fig 3.24(d)

In order to detect these SC/FM regions, we_have to determine the threshold. We could set the
threshold manually or adaptively. For the adaptive wayy; we may first analyze the distribution of
these warpped-back errors, as shown in Fig 3.25(d). The distribution of the difference in Fig
3.25(d) is plotted in Fig 3.26. This distributiondooks like a-Laplacian distribution. Hence, we may
try to set the SC/FM threshold as

Tse)py =M, +2x0,, (3.29)

where u,, o, are the mean and the standard deviation of the warpped-back error image.
always approaches zero. The threshold value is dominated by o, .

However, this approach still has some problems, especially when o, istoo small. As o, is
too small, the warpped-back errors may be all near zeros, or the warpped-back errors only contain
small parts of large errors. In this case, we may set Ty, ., to a small enough value and discard

some useful information. This will be harmful to the resolution enhancement method. Hence, we

may set Ty, toa certainvalue,t,as Tg. ., 1ssmallerthant. Hence, we have

u,+2xo,, 0,27
Tscipm = (3.30)

M, +2xT , O <T

50



Q o w»n A

The procedure to decide the SC/FM region is shown in Fig 3.27 and is described as follows.

. Do motion estimation to get relative motion between the observed image and the image we are

interested in.

. Warp the observed image from its original coordinates to the coordinates of the interested

image.

. Calculate the warpped-back error image, the difference between the warpped-back image and

the interested image.

. Set the SC/FM threshold adaptively or manually.
. Do the SC/FM region detection for every pixel in the warpped-back error image.
. Record the position of SC/FM regions.

. Output the detection result.
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For Every Pixel
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Pixel Position el

No

Last pixel

Output
Detection Result

Fig 3.27 Flowchart of the local SC/FM detection method

In the experiment, we increase the image resolution from QCIF to CIF. We use four QCIF
observation images to reconstruct each single CIF image. In this case, we have to do the motion
estimation three times, as shown in Fig 3.4. Then, we have three warpped-back images and also
three warpped-back error images. Here, we will show some simulation results of this SC/FM

detection method with adaptive threshold setting.
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(a) error image of Frame (i-1);

(c) error image of Frame (i+2)

(d) detection result of (a);

(e) detection result of (b);

(f) detection result of (c);

Fig 3.28 SC/FM region detection results for News: 1= 150

(a) error image of Frame (i-1);

(b) error image of Frame (i+1)

(c) error image of Frame (i+2)

(d) detection result of (a);

(e) detection result of (b);

(f) detection result of (¢);

Fig 3.29 SC/FM region detection results for Foreman: i = 157
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(a) error image of Frame (i-1); (b) error image of Frame (i+1) (c) error image of Frame (i+2)

(d) detection result of (a); (e) detection result of (b); (f) detection result of (¢);

Fig 3.30 SC/FM region detection results for Stefan: 1 = 184

From Fig 3.28 to Fig 3.30, weZcan see.that the SC/FM detection method with adaptive
threshold setting could detect SC/FM regions effectively."Now we will combine this local SC/FM
detection method with the resolution enhancement method, together with the aforementioned
artifact reduction methods. We will use the detection result to be set the update region in the
resolution enhancement process. For those regions marked as SC/FM regions, we will not use
back-projected errors in the resolution enhancement process. Those regions are called non-update
regions. Otherwise, regions marked as non-SC/FM regions are called update-regions. We will use
back-projected errors in update-regions to increase the details of the reconstructed HR images.
The back-projected error images are filtered by a median filter. Then, we simply use the same way
as discussed in Section 3.3.1 to do resolution enhancement. We will show some simulation results
of the modified resolution enhancement approach. All of the parameter settings are the same as

the settings in Table 3.1 and Table 3.2.
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NelMEEn

s B8

a) 5 frame; bilinear interpolation;
p

Fig 3.31 Simulation result of SR method with artifacts reduction and local SC/FM detection :
Mobile

(a) 184" frame; bilinear interpolation; (b) 184™ frame; SR method

Fig 3.32 Simulation result of SR method with artifacts reduction and local SC/FM detection :

Stefan

55



WORLD WORLD

T4 ﬁ | | ‘I Vi 14
MPEG4 i } ? ¢/, MPEGA

(a) 150" frame; bilinear interpolation; (b) 150" frame; SR method

Fig 3.33 Simulation result of SR method with artifacts reduction and local SC/FM detection :

News

(a) 157™ frame; bilinear interpolation; (b) 157™ frame; SR method

Fig 3.34 Simulation result of SR method with artifacts reduction and local SC/FM detection :

Foreman
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mobile 264; Log model;Blocksize = Bx8; QF =28 QCIF to CIF
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(c) News;

(d) Foreman

Fig 3.35 PSNR performance:

detection

bilinear v.s. our method with artifact reduction and local SC/FM

Comparing the simulation results with those in Section 3.2.3 and in Section 3.3.1, we can see

that the visual quality is much improved. There are much fewer artifacts now. There are no PSNR

drops in the simulation results. The PSNR gain of our modified method is quite stable.
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3.4 Overall Procedure

After discussing some modifications in previous subsections, we modify the optimization

procedure discussed in Section 3.2.3. The overall procedure for the spatial-resolution

enhancement method is shown in Fig 3.36 and is described as follows:

l.
2.

o =N W

Choose an observation image; bilinearly interpolated it to get an initial estimate.

Do motion estimation to find the relative motion between the frame to be reconstructed and its
adjacent frames.

Use the local SC/FM detection method to find the update regions.

(1) Calculate the median-filtered back-projected error frame with the information of the
update regions;

(2) Calculate the median regularization term, y,.,(f(z.));

(3) Calculate the BTV regularization term,, % zs-(f (¢, ).

Use (3.25) to update the regularization parameter:

Use (3.28) to reconstruct the high:resolution image.

Use (3.24) to update the step-size.

Repeat 4 to 7 till the stop criterion is‘treached.
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Fig 3.36 Flow chart of the modified resolution enhancement algorithm




Chapter 4 Experimental Results

4.1 4x Zooming

In this section, a 4 times resolution enhancement of compressed videos with different QP’s are

shown.
Table 4.1 Parameter settings of super-resolution
Sequence QP Size Ref. frame No. | STDof Blur | a | m
Mobile | 22,28,34 | QCIF to CIF 4 0.5 12
Stefan 22,28,34 | QCIF to CIF 4 0.5 12
News 22,28,34 | QCIF to CIF 4 0.5 1|2
Table 4.2 Parameter settings of hierarchical block matching
Sequence Leve'lgg::‘_':' "': o IBlockSue Search Range
Mobile 33 & 4
Stefan 3R o l.%:'e' 4
News 3 _ . 8 4

2 3 X7

e

NRBALET
15 1220 7 L

15870 0D

P B ¢
R

n@eEwEET K
0N BE N &
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Frame No. 44

oo = =~ uS
B ol

Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;

mobile 264; Log model;Blocksize = 8x8; QF =22 QCIF to CIF
23 T T T T T

PSMR
r
[ o
[N m
%

— SR
— Bilinear
215 1 1 1 1 1 1 1 T T
i 20 40 [=i0] a0 100 1200 140 160 180 200
frarne Mo.
045
0.4

PSNR
[}
&

— SR - Bilinear
025 1 1 1 1 1 1 1
i

20 40 [=i0] a0 100 1200 140 160 180 200
frarne Mo.

Fig 4.2 PSNR with zooming ratio = 4, QP22: Mobile
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Frame No. 4

nREsHeERD
B 0NN T HBH

Fig 4.3 Simulation results with zooming ratio = 4, QP28: Mobile
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;
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mobile 264; Log model;Blocksize = 8x8; QF =28 QCIF to CIF

— 5R
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218 1 1 1 1 1 1 1 T T
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frarme Mo.
0&r
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5 04r
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frarme Mo.

Fig 4.4 PSNR with zooming ratio = 4, QP28: Mobile
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Frame No. 54

SMHER!T
R nRHF

Left:

Fig 4.

Original images;

5 Simulation results with zooming ratio = 4, QP34: Mobile

Middle: Bilinear interpolation images;

Right: Resolution enhancement images;

mobile 264; Log model;Blocksize = 8x8; QF =34 QCIF to CIF

222 T T T T T T T T T
22F
o
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o
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04r
— SR - Bilinear
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o
025+
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frarme Mo.

Fig 4.6 PSNR with zooming ratio = 4, QP34: Mobile
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Frame No. 20

Fig 4.7 Simulation results with zooming ratio = 4, QP22: Stefan
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;
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X

stefan 264; Log model;Blocksize = 8x8; QP =22 QCIF to CIF
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Fig 4.8 PSNR with zooming ratio = 4, QP22: Stefan
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Frame No. 190

Fig 4.9 Simulation results with zooming ratio = 4, QP28: Stefan
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;

stefan 264; Log model;Blocksize = 8x8; QOF =28 QCIF to CIF

245 — =R
— Bilinear
2‘.1 1 1 1 1 1 T T 1 1
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nst
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7
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D L

— SR - Bilinear
05 :
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1 1 1 1 1 1
20 40 G0 80 100 120 140 160 180 200
frarme Mo.

Fig 4.10 PSNR with zooming ratio = 4, QP28: Stefan
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Frame No. 20

Fig 4.11 Simulation results with zooming ratio = 4, QP34: Stefan
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;
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Fig 4.12 PSNR with zooming ratio = 4, QP34: Stefan
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Frame No. 150

3

MPEG4
WORLD

‘f \

M PEE

WORLD

MP I-IE

WORLD

Fig 4.13 Simulation results with zooming ratio = 4, QP22: News
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;

0.1
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Fig 4.14 PSNR with zooming ratio = 4, QP22: News
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Frame No. 25
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Frame No. 90
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MPEG4
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Fig 4.15 Simulation results with zooming ratio = 4, QP28: News
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;
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news 264; Log model;Blocksize = 8x8; QP =28 QCIF to CIF
286 T T T T T T T T T

284 |
282 W

28 MMW
Zap|— =R 8

PSHR

— Bilinear
2?6 T T 1 1 1 1 1 1 1
0 20 40 B0 50 100 120 140 180 180 200
frarme Mo.
0&r
04F
o 03F
=
73]
o 02r
01k — SR - Bilinear
D 1 1 1 1

1 1 1 1 1 1
0 20 40 G0 80 100 120 140 160 180 200
frarme Mo.

Fig 4.16 PSNR with zooming ratio = 4, QP28: News
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Frame No. 150

MPEG4
WORLD

MPEG4
WORLD

MPEG4
WORLD

Fig 4.17 Simulation results with zooming ratio = 4, QP34: News
Left: Original images;
Middle: Bilinear interpolation images;

Right: Resolution enhancement images;
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Fig 4.18 PSNR with zooming ratio = 4, QP34: News
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4.2 16x Zooming

In this section, a factor of sixteen times resolution enhancement of compressed

sequences with different QP’s are shown.

Table 4.3 Parameter settings of super-resolution

video

Sequence QP Size Ref. frame No. | STD of Blur | a | m
Mobile 22,28,34 | QCIF to 4CIF 16 2 1|2
Stefan 22,28,34 | QCIF to 4CIF 16 4 1|2
News 22,28,34 | QCIF to 4CIF 16 4 1|2

Table 4.4 Parameter settings of hierarchical block matching

Sequence Levels Block Size Search Range
Mobile 4
Stefan 4
News 4
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Frame No.53

we kal

i

g 12

Fig 4.19 Simulation results with zooming ratio = 16, QP22: Mobile

Left: Bilinear interpolation images;

Right: Resolution enhancement images

Frame No. 13
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Frame No.53
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e J‘ 1\\\-\.\_&-.

w T f'

Fig 4.20 Simulation results with zooming ratio = 16, QP28: Mobile
Left: Bilinear interpolation images;
Right: Resolution enhancement images;

Frame No. 13
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Frame No.53

Fig 4.21 Simulation results with zooming ratio = 16, QP34: Mobile
Left: Bilinear interpolation images;
Right: Resolution enhancement images;

Frame No. 29
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Frame No.71

Fig 4.22 Simulation results with zooming ratio = 16, QP22: Stefan
Left: Bilinear interpolation images;
Right: Resolution enhancement images;

Frame No. 29
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Frame No.71

Fig 4.23 Simulation results with zooming ratio = 16, QP28: Stefan
Left: Bilinear interpolation images;
Right: Resolution enhancement images;

Frame No. 29
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Frame No.71

Fig 4.24 Simulation results with zooming ratio = 16, QP34: Stefan
Left: Bilinear interpolation images;
Right: Resolution enhancement images;
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Fig 4.25 Simulation results with zooming ratio = 16, QP22: News
Left: Bilinear interpolation images;
Right: Resolution enhancement images;

Frame No. 25
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Frame No0.90
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Frame No. 150
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Fig 4.26 Simulation results with zooming ratio = 16, QP28: News
Left: Bilinear interpolation images;
Right: Resolution enhancement images;
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Fig 4.27 Simulation results with zooming ratio = 16, QP34: News
Left: Bilinear interpolation images;

Right: Resolution enhancement images;
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Chapter 5 Conclusions

In this thesis, we implement the MAP estimator for spatial resolution enhancement for
H.264/AVC compressed videos. We propose some modifications to suppress the artifacts in the
reconstruction results and to overcome the scene-change and fast-motion problems in previous SR

methods. We conclude our accomplishments as below.

1. We implement the resolution-enhancement method for compressed videos by using an MAP
estimator.

2. For the artifacts in the reconstruction results, we propose two methods to suppress these
artifacts. First, a new regularization term by using a spatial median filter is proposed to
suppress the pepper and salt noise. Second, a pixel-wise temporal median filter is proposed to
remove outliers during the reconstruetion process.

3. For the SC/FM problems, we proposed two methods to overcome these problems: a global
method and a local method.

4. Compared to the original SR method; the proposed method can overcome the SR/FM

problems and suppress most artifacts.

84



Bibliography

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

ISO/IEC JTC 1/SC 29/WG 11 N6359, Draft Text of Final Draft International Standard for
Advanced Video Coding (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC).

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC
Video Coding Standard,” IEEE Trans. on Circuits Syst. Video Technol., vol. 13, No. 7, pp.
560 — 576, July 2003.

D. Marpe, H. Schwarz, and T. Wiegand, “Context-Based Adaptive Binary Arithmetic
Coding in the H.264/AVC Video Compression Standard,” IEEE Trans. on Circuits Syst.
Video Technol., vol. 13, No. 7, pp. 620 — 636, July 2003.

lain E G Richardson, “H.264 and MPEG-4 Video Compression, ”” John Wiley, 2003

D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC Fidelity Range Extensions:
Tools, Profiles, Performance, and Application Ateas,” Proc. ICIP 2005, Genova, ltaly,
September 11-14, 2005.

Y. Altunbasak, A. J. Patti, and R. M. Mersercau,. “Super- Resolution Still and Video
Reconstruction From MPEG-Coded Video,” IEEE. Trans. on Circuits Syst. Video Technol.,
vol. 12, No. 4, pp. 217 — 226, April 2002.

M. A. Robertson and R. L. Stevenson, “DCT Quantization Noise in Compressed Images,”
IEEE Trans. on Circuits Syst. Video Technol., vol. 15, No. 1, pp. 27 — 28, January 2005.

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Super-Resolution Reconstruction of
Compressed Video Using Transform-Domain Statistics,” IEEE Trans. on Image Processing,
vol. 13, No. 1, pp. 33 — 43, January 2004.

S. C. Park, M. K. Park, and M. G. Kang, ”Super-Resolution Image Reconstruction: A
Technical Overview,” IEEE Signal Proc. Magazine, pp. 21 — 36, 2003.

B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, ‘“Multiframe resolution-enhancement
methods for compressed video,” IEEE Signal Processing Letters, pp. 170 — 174, 2002.

R. R. Schulz and R. L. Stevenson, “Extraction of high-resolution frames from video
sequences,” IEEE Trans. on Image Processing, vol. 5, No. 6, pp. 996 — 1011, June 1996.

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred,

85



noisy, and undersampled measured images,” I[EEE Trans. on Image Processing, vol. 6, No.
12, pp. 1646 — 1658, December 1997.

[13] Y. Wang, J. Ostermann, and Y. Q. Zhang,Video processing and communications, Upper
Saddle River, N.J.: Prentice Hall, 2002.

[14] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super
resolution,” /IEEE Trans. on Image Processing, vol. 13, No. 10, pp. 1327 — 1344, October
2004.

[15] H. Shen, P. Li, L. Zhang, and Y. Zhao, “A MAP algorithm to super-resolution image
reconstruction,” Image and Graphics, 2004. Proceedings. Third International Conference on
18-20, pp. 544 — 547, Dec. 2004.

[16] E. S. Lee and M. G Kang, “Regularized adaptive high-resolution image reconstruction
considering inaccuarte subpixel registration,” /EEE Trans. Image Processing, vol. 12, no. 7,

pp. 826-837, pp. 826 - 837, July 2003.

86



MR

EZio ARTLE QD IB”"E‘_%'&%;*LT" ° 86 & 1
e Al A R
%mi%af¢omi%vﬁﬁér#*@%ﬁﬂ

ks R AT Y L RATIIEL 356 5 82%L 4 W
R % : eathan@archer. ee. nctu. edu. tw

= 3
SRR
<

[l

87

o

’lﬁi% < o '\%:ﬂé}:lgtﬁ)\[&]

B R B



