|EEE 802.16e OFDM * 7 2 OFDMA ™ = e 35 Fjis

BT ATAIEEF Y

Research in Synchronization Techniques and DSP
Implementation for IEEE802.16e OFDM Uplink and
OFDMA Downlink

oy oA RR®iy

R

\
T,
L



IEEE 802.16e OFDM _} i+ OFDMA T {7 [ 45 H 522 $ic 2 3 5L /e g2 B

FR2ZFAY

Research in Synchronization Techniques and DSP Implementation

for IEEE 802.16e OFDM Uplink and OFDMA Downlink

Boyo2 ERiE Student: Guo Wei Ji

R R E L Advisor: Dr. David W. Lin

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering

June 2006
Hsinchu, Taiwan, Republic of China

PE R4 LT oE



|EEE 802.16e OFDM * 7 2 OFDMA ™ {7 e 35 Fjis

BEEAG SRR R

SR EREE TSI B

£2
*Ew#we i % IEEE 802.16e & & # 7 1(OFDM)fr % ~#F % 1 5 B~
(OFDMA) 1l 3 o 2 343 7 LR % <ok 4B~ i 5 i ~ 112 3 HTHAL ¢

LRSI kM AP AR - B RS AR KRR AER RS

F’_*

RO R R A R E R RBCE R R e BEPFT ALY A %5
I % 75 (preamble) % I 9% > @ -] R A hfS ok A 230 8 L AR F F (cyclic prefix)
ci4p Bt (correlation) k e 2 B {8 o AP e pF AT 4o b ¢ F Ereinid i (AWGN)
E % T Rayleigh % i i T s st R B 60 km/hy F LR HE % o
B NP ipl 32 e BEYL TR d 0 T ARENE T & o
BofR APt i R o BRI s RBAF R g Rk R LHES ERT
MR e Bf APk Buan® - M % B (function block)¥8 i i 1 T a2 (real
time)en® f o
BRI R ok BEEEE R B Ok R 2

W OREEN A U A S BRI S A~ ok 9 #8 % 31 (preamble index) ¥ F &



VRS TN ST TR R VES IR R e
o T R LR T A LR B R B e ] B A o AP e R
LR R T IERN R 2 SIS TR LR 2 Y SRR S AT
BOETF A M SRR @ BT AT 0 o T S -
Al Fla B — R B o AP SR B ROERE PR I e
B 51 R o

Fell AT G 3 b R ST R ERE L R L S TR AT
sefb s & ARSI A S EAE Rayleigh # R T GCER 0 3 @ el

i B B i 300 km/h -



Research in Synchronization Techniques and
DSP Implementation for IEEE 802.16e OFDM
Uplink and OFDMA Downlink

Student: Guo Wei Ji Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University
Abstract

This thesis introduces the synehronization of IEEE 802.16e OFDM and OFDMA
system. We discuss their synchronization ‘problems, algorithms, and implementation
issues.

In the OFDM system, we first design a synchronization system to overcome the
problems of symbol timing offset and fractional carrier frequency offset (CFO), and
implement them with floating-point. The symbol timing is synchronized by invariant
preamble, and the fractional CFO is estimated by cyclic prefix (CP) correlation. We
simulate our system in both AWGN and multipath Rayleigh fading channel, which the
speed is as high as 60 km/h, and see the performance.

Next, we modified these methods into fixed-point version, and then optimize the
speed of our programs on the digital signal processor (DSP) platform. Although the
performance is degraded because of fixed-point modification, the results still can be
accepted. Finally the function blocks of our system can all reach the requirement of
real time.

In the OFDMA system, in addition to symbol timing offset and fractional CFO, it



still has integer CFO, sampling frequency offset (SFO), and preamble index need to
be synchronized. Since the SS does not know the preamble in advance, we view
preamble as a regular symbol and estimate the symbol timing and fractional CFO by
CP correlation. We also use the feature of preamble to estimate the integer CFO and
identify the preamble index. The fractional CFO needs be estimated by averaging
every CP correlation result for a more accurate result, and the SFO can be
synchronized with fractional CFO synchronization because they have the same error
ratio. We also afford a fine timing estimation to improve the error rate of the preamble
index identification.

Like in the OFDM system, we implement these methods in floating-point
version, and simulate them in both AWGN and multipath Rayleigh fading channel,
but the speed is as high as 300 km/h here.



M s @R RHHRA G EF o hn EFT Y T2 R
Z“g:'."_‘lq"/:\fg E‘hl‘\ﬂ'uiﬁgi ’,}__E,j_—}_ Tﬁﬁ?‘ﬁ#’l%f EM §Jgaﬁﬂi"éf'§&%._} R
AR IR L T 0 AR Ll B A i R B A .

oo RBINT F BN 2T HE T O 0 F FEEFE S FE

BEQs S Sk o Rt @ XFE L REELI AL

it
o+
&
‘?\\3
! -—
'3‘
&
I
sk
pbd

2H B IMI ARSI BRE MY FFE CFTIRE A2 AR
AR ERE L ifcnPEphz AL REER P9 %5 - 3 8-

BUEEE ~ F 4 FadEe oo

-
=
s
EN
S

«
=R
e
®
T,
Y
=k
=
£
Nt
\r
d\
o



Research in Synchronization Techniques and DSP
Implementation for IEEE 802.16e OFDM Uplink and
OFDMA Downlink

Prepared by Guo-Wei Ji

Directed by Prof. D. W. Lin

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science
Department of Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

E-mail: lotus1982@Qgmail.com

June 20, 2006






Contents

2.1 OFDM

2.1.1

2.1.2

Introduction

Overview of OFDM and OFDMA

Introduction to OFDM . . . . . . . . ...

Mathematical Description of QEDM =, . . . . . . . . .. .. ... ..

2.2 OFDMA System . . . . =, T e s T b

Overview of the IEEE 802.16eStandard

3.1 Introduction to IEEE 802.16 [11] . . . . . . ... ... ... ... ......

3.2 WirelessMAN-OFDM TDD Uplink (3] . . . ... ... ... ... ......

3.2.1

3.2.2

3.2.3

3.24

3.2.5

OFDM Symbol Parameters . . . . . ... ... ... .. .......
Point-to-Multipoint (PMP) Frame Structure . . . . . ... ... ...
Modulation . . . . . . ...
Preamble Structure and Modulation . . . .. .. .. ... ... ...

Frequency and Timing Requirements . . . . . . . . .. ... ... ..

3.3  WirelessMAN-OFDMA TDD Downlink [3] . . .. ... ... ... ......

vi



3.3.1 OFDMA Basic Terms . . . . . . . . . . . . . 19

3.3.2 OFDMA Symbol Parameters . . . . .. ... ... .. ... ..... 21

3.3.3 Frame Structure . . . . . . ... 21

3.3.4 OFDMA Downlink Subcarrier Allocation . . . . . . . ... ... ... 24

3.3.5 Modulation . . . ..o 31

3.3.6 Frequency and Timing Requirements . . . . . . .. ... .. ... .. 33

3.4 Transmit Spectral Mask . . . . . . ... ... oo 34
3.5 System Parameters . . . . . . . . . .. ... 35
3.5.1 Uplink OFDM Transmission Parameters . . . . .. ... ... .... 35

3.5.2  Downlink OFDMA Transmission Parameters . . . . . . . . ... ... 36

3.6 Transmission Filters [7] . . a8 . amema o Do o o Lo 0oL 37

4 Introduction to the DSP Implementation Platform 39
4.1 The DSP Chip [16] . . . . . . . s o 39
4.2 TI's Code Development Environment [17) . . . . .. .. .. ... ... .. 45
4.2.1 Code Development Flow [18] . . . . . . ... ... ... .. ..... 46

4.2.2  Compiler Optimization Options [18] . . . . . .. ... ... ... .. 48

4.2.3 Software Pipelining [19] . . . . . . .. .o oo 50

424 Intrinsics [18] . . . . . .o 51

5 OFDM TDD Uplink Synchronization 52
5.1 OFDM Uplink Synchronization Problem and Techniques . . . .. ... ... 52

vil



5.2

5.3

5.4

5.5

5.1.1 Timing Offset and Fractional Carrier Frequency Offset . . . . . . .. 53

5.1.2 Integer Carrier Frequency Offset . . . . . . . . ... .. .. ... ... 55
5.1.3 Sampling Frequency Offset . . . . . . . . .. ... ... .. ... ... 55
Channel Model . . . . . . . . ... 57
5.2.1 Gaussian Noise . . . . . . . .. . 57
5.2.2 Slow Fading Channel . . . . . . .. .. ... ... ... ... ..... 57
5.2.3 Fast Fading Channel . . . . . ... .. ... ... ... .. ... 58
5.2.4 Power-Delay Profile Model . . . . . . . .. .. ... ... ... 58
Floating-Point Simulation Results . . . . . . .. .. .. ... ... ... ... 59
5.3.1 Simulation Parameters and Environments . . . .. .. .. ... ... 60
5.3.2  Symbol Timing Estim@tion cwew o o S o 0 0 0 0 000000 L 62
5.3.3 Carrier Frequency Synchronization . .= . . . . ... ... ... ... 63
Fixed-Point Implementation . i sl Jo o o oL 67
5.4.1 Modulation and Subcarrier‘Allocation . . . . . ... ... ... ... 69
54.2 The IFFT and FFT . . . . . . . .. .. ... . ... ... .. .... 70
5.4.3 SRRC Filter with Oversampling and Downsampling . . . . . . . . .. 72
5.4.4 Synchromization . . . . . . ... Lo 74
Fixed-Point Simulation Results . . . . . ... ... ... ... ... ..... 74
5.5.1 Symbol Timing Estimation . . . . . . . .. ... .. ... ... .... 74
5.5.2  Carrier Frequency Synchronization . . . . . . ... .. .. ... ... 75
5.5.3 Bit Error Rate Performance . . . . . . ... . ... ... ... ... 76

viil



5.6 Program Optimization . . . . . . . . ... ... ... ... 79

5.6.1 The Modulation Function . . . .. .. ... ... ... .. ...... 80
5.6.2 The Pilot Generate Function . . . . . . . . . . ... ... ... ... 80
5.6.3 The Allocation Function . . . . . ... ... .. ... ... .. .... 81
5.6.4 The IFFT, Add CP and Tx SRRC, Rx SRRC and downsample, FFT
functions . . . . ... Lo 82
5.6.5 The Preamble Synchronization Function . . . . ... ... ... ... 82
5.6.6 The CFO Synchronization Function . . . . . . . . ... ... .. ... 83
5.6.7 The Frequency Compensation Function . . . . . .. .. .. ... ... 83
5.7 Profile of Optimized DSP Program . . . . . . ... ... ... .. ...... 88
6 OFDMA TDD Downlink Synchronization 94
6.1 OFDMA Downlink Synchronization Problems and Techniques . . . . . . .. 94
6.1.1 Timing Offset and Fractional Carrier Frequency Offset . . . . . . .. 95
6.1.2 Integer Carrier Frequency Offset . . . . . . . . . ... ... ... ... 96
6.1.3 Preamble Index Identification . . . . . ... .. ... ... ... ... 98
6.1.4 Fine Symbol Timing Estimation . . . . . . .. ... ... . ... ... 100
6.2 Floating-Point Simulation Results . . . . . . .. .. .. ... ... ... ... 101
6.2.1 Symbol Timing Estimation . . . . . . . . .. .. .. ... ... .. .. 101
6.2.2 Fractional CFO Estimation . . ... ... .. ... ... .. ..... 102
6.2.3 Integer CFO Estimation . . . . . ... ... ... ... ... ..... 103
6.2.4 Preamble Index Identification . . . . . . .. ... ... ... ... .. 105

X



6.2.5 Fine Symbol Timing Estimation . . . . . . .. ... ... ... .... 106

6.2.6 Comparison of Preamble Indexes . . . . . . ... ... ... ..... 107

7 Conclusion and Future Work 116
7.1 Conclusion . . . . . . . . 116
7.2 Future Work . . . . . . . s, 117




List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Bandwidth efficiency comparison of FDM and OFDM systems (from [5]). . .

The carrier has no crosstalk from other carriers at its center frequency (from

Three time domain waveforms of different carriers (from [5]). . . . . . . . ..

Comparison of OFDM and OFDMA subcarriers allocation (from [12]).

OFDM frame structure with TDD (frem 2]). =. . . . . . ... ... ... ..
PRBS generator for pilot modulatien (from [3]). . . . . . .. ... ... ...
Short preamble tmie domain Structure (from[3]). . . . . . ... .. ... ..
OFDMA frequency description (3-channel schematic example, from [2]). . . .
Example of the data region which defines the OFDMA allocation (from [2]).

Example of an OFDMA frame (with only mandatory zone) in TDD mode
(from [3]). . . . . .

FCH subchannel allocation for all 3 segments (from [3]). . .. ... ... ..

Example of DL renumbering the allocated subchannels for segment 1 in PUSC
(from [3]). . . . . .

Cluster structure (from [3]). . . . . . . .. ... .

xi

10

15

17

18

19

20



3.10 Transmit spectral mask (from [2]). . . . .. .. ... ... ... L. 34

3.11 Transmitter components that are related to synchronization. . . . . . . . .. 36
3.12 Receiver components that are related to synchronization. . . . . . . .. . .. 36
4.1 Functional block and CPU (DSP core) diagram [15].. . . . . .. .. ... .. 40
4.2 The C64x CPU block diagram [16]. . . . . . . . ... ... ... ... .... 42
4.3 Code development flow of C6000 (from [18]). . . . . . . . . .. .. ... ... 47
4.4 Software-pipelined loop (from [16]). . . . . . . . .. ... .o L. 50
5.1 The proposed synchronizer structure for the receiver. . . . . . . . ... ... 53

5.2 Structure of J.-C. Lin’s symbol timing and fractional carrier frequency syn-

chronization method [21].. . . afd W iine, o 0 0oL Lo 54
5.3 BER degradation at 5 ppm-sampling ¢lockerror. . . . . ... ... 56
5.4 UL transmitter structure. =. . Ll e o000 59
5.5 UL receiver structure. . . . . s . . ot L Lo 60
5.6 Structure of the C program for synchronizer simulation. . . . . . . .. . . .. 61
5.7 Distribution of timing offset estimation errors. . . . . . . . .. ... .. ... 63
5.8 Distribution of timing offset estimation errors using J.-C. Lin’s method. . . . 64
5.9 RMSE of symbol timing offset synchronization at SNR =10dB. . . . . . . . 65
5.10 Symbol time synchronization error distribution under different speeds. . . . . 66
5.11 RMSE of fractional CFO synchronization. . . . . . .. .. .. ... ... .. 67
5.12 Fractional CFO synchronization error distribution under different speeds. . . 68
5.13 RMSE of fractional CFO synchronization after averaging. . . . . . . . . . .. 69

xii



5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

Fractional CFO synchronization error distribution under different speeds after

AVETAZING. . . o o o o e e e 70
Fixed-point data formats used at different points in the transmitter. . . . . . 71
Fixed-point data formats used at different points in the receiver. . . . . . . . 71
Implementation of interpolation filter with polyphase decomposition [5]. . . . 73
Convolution kernel at the boundary of a finite-length sequence [7]. . . . . . . 73
Distribution of timing offset estimation errors with fixed-point implementation. 76

RMSE of symbol timing offset estimation with fixed-point and floating-point
implementation. . . . . . . ..o 7
Symbol timing estimation error distribution under different speeds with fixed-
point and floating-point implementationie. . . . . . . . . . ... ... ... 78
RMSE of fractional CFO synchronization with: fixed-point and floating-point
implementation. . . . . . =L ULl L e 79
Fractional CFO synchronization error distribution under different speeds with
fixed-point and floating-point implementation. . . . . . . . ... ... .. .. 80
RMSE of fractional CFO synchronization after averaging with fixed-point and
floating-point implementation. . . . . . . . .. ... .. L. 81
Fractional CFO synchronization error distribution under different speeds after

averaging with fixed-point and floating-point and floating-point implementation. 82

BER performance after synchronization at 60 km/h. . . . . .. ... ... .. 83
A part of C and assembly code for pilot generate function. . . . . . ... .. 84
A part of C code for allocation function. . . . . . . . ... ... ... .... 85

xiii



5.29

5.30

5.31

5.32

5.33

5.34

5.35

5.36

5.37

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Software-pipeline information and a part of assembly code for allocation func-

Tlon. . . . 86
A part of C code for preamble synchronization function. . . . . .. ... .. 86
Software-pipeline information for preamble synchronization function. . . . . 87
A part of C code for CFO synchronization function. . . . . . . . .. ... .. 87
A part of C code for frequency compensate function. . . . . . ... ... .. 89
Software-pipeline information for frequency compensate function. . . . . . . 89
A part of assembly code for frequency compensate function-I. . . . . . . .. 90
A part of assembly code for frequency compensate function—-II. . . . . . . . . 91
Percentage of DSP loading in the Tx and the Rx. . . . . . .. ... ... .. 93
The proposed OFDMA synchronizer strueture. . . . . . . . ... . ... ... 96
Multiplication complexity of two algorithms. .= . . . . . . ... .. ... .. 99
Distribution of timing offset.estimation errors. . . . . . . . . . . .. ... .. 102
Symbol time synchronization error distribution under different speeds (i). . . 103
Symbol time synchronization error distribution under different speeds (ii).. . 104
RMSE of symbol timing offset synchronization. . . . . .. .. ... .. ... 105
RMSE of fractional CFO synchronization. . . . . .. ... .. ... ... .. 108
Fractional CFO synchronization error distribution under different speeds. . . 109

Error probability of integer CFO synchronization in multipath fading channel. 109

Error probability of preamble index synchronization in multipath fading channel. 110

Xiv



6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Probability of error in either the identified preamble index or the estimated

integer CFO. . . . . . . .

Probability of error in either the identified preamble index or the estimated

integer CFO, in perfect symbol timing. . . . . . .. .. ... ... ... ...

Probability of error in either the identified preamble index or the estimated

integer CFO of two methods. . . . . . . . ... ... ... ... ... ..
Distribution of timing offset estimation errors of fine timing synchronization.

Probability of error in either the identified preamble index or the estimated

integer CFO with different fine timing synchronization. . . . . . . . ... ..

Error probability in symbol timing offset estimation with different preambles.

Error probability in integer CFO, estimation with different preambles. . . . .
Error probability in preamble index identification with different preambles. .

CP correlation values of two preambles. . .. .= . . . .. ... ... ... ..

XV

111

113

114

114



List of Tables

2.1

3.1

3.2

3.3

3.4

4.1

4.2

5.1

5.2

5.3

5.4

5.5

6.1

OFDM Advantages and Disadvantages . . . . . . ... .. ... ... .... 7
OFDM Symbol Parameters . . . . .. .. .. ... ... ... .. ...... 13
2048-FFT OFDMA DL Carrier Allocation Under PUSC . . . . . . ... .. 27
2048-FFT OFDMA DK Carrier Allocation Under FUSC . . . . . ... ... 29
Transmit Sprctral Mask . . a0 0 e, oL oL oo 34
The L. and S. Functional Units and Operations Performed [16] . . . . . . . . 43
The M. and D. Functional Units andand Operations Performed [16] . . . . . 44
ETSI “Vehicular A” Channel Model in Different Units [13] . . . . . . . . .. 59
Receiver SNR Assumptions . . . . . . . . . . ... ... 60
Relation Between Speed and Doppler Shift at Carrier Frequency 5 GHz . . . 62
Ranges of Modulated Signal Values . . . . . .. ... ... ... ....... 70
Profile of Synchronization Function Blocks . . . . . . ... ... .. ... .. 92
OFDMA Receiver SNR Assumptions . . . . .. . ... ... ... ...... 101

xXvi



Chapter 1

Introduction

The IEEE 802.16 WirelessMAN standard provides specifications for an air interface for fixed,
portable, and mobile broadband wireless access systems. The standard includes requirements
for high data rate line-of-sight (LOS) operation in the 10-66 GHz range for fixed wireless
networks as well as requirements for nen-line-of-sight (NLOS) fixed, portable, and mobile

systems operating in sub-11 GHz li¢ensed and‘licensed-exempt bands.

The 802.16d upgrade to the 802.16a standardswas. approved in June 2004 (now code-
named 802.16-2004), and primarily introduces seme performance enhancement features in
the uplink [1]. It consolidates IEEE Std 802.16, IEEE Std 802.16a, and IEEE Std 802.16¢,
retaining all modes and major features without adding modes [2]. The IEEE 802.16-2004

has been proposed to provide last-mile connectivity to fixed locations by radio links.

Just like IEEE802.16a, IEEES802.16-2004 deploys in two ranges of frequency bands. 10-66
GHz is used for line-of-sight propagation, and the air interface is designed “WirelessM AN-
SC.” The 2-11 GHz band, both licensed and license-exempt, is what we are interested in.
Design of the 2-11 GHz physical layer is driven by the need for NLOS operation. The three

2-11 GHz air interface specifications in 802.16d are:

e WirelessMAN-SCa: This uses a single-carrier modulation format.

1



e WirelessMAN-OFDM: This uses orthogonal frequency-division multiplexing (OFDM)
with a 256-point transform. Access is by TDMA. This air interface is mandatory for

licenseexempt bands.

e WirelessMAN-OFDMA: This uses orthogonal frequency-division multiple access (OFDMA)
with a 2048-point transform. In this system, multiple access is provided by addressing

a subset of the multiple carriers to individual receivers.

OFDMA is a variation scheme of OFDM, which is a special case of multicarrier transmis-

sion that transmits one data stream over a number of subchannels. What makes OFDMA

different from OFDM is that multiple users can share one OFDM symbol. It is the com-

bination of OFDM and frequency division multiple access (FDMA), but the guard band of

each user could be neglected. OFDMA provides .a highly flexible and efficient structure for

mutltiuser communication.

Mobility enhancements are considered in IEEE 802.16e, which was published in February

2006 [3]. Amendments for the physical (RHY) and medium access control (MAC) layers of

802.16-2004 for mobile operation are being'developed by TGe of the 802.16 Working Group.

The task group’s responsibility is to develop enhancement specifications to the standard to

support subscriber stations (SS) moving at vehicular speeds and thereby specify a system

for combined fixed and mobile broadband wireless access. Functions to support optional

PHY layer structures, mobile-specific MAC enhancements, higher-layer handoff between base

stations (BS) or sectors, and security features are among those specified. Operation in mobile

mode is limited to licensed bands suitable for mobility between 2 and 6 GHz [4].

The concept of scalable OFDMA is introduced to the IEEE 802.16 WirelessMAN OFDMA

mode by the 802.16 TGe. A scalable physical layer enables standard-based solutions to de-

liver optimum performance in channel bandwidths ranging from 1.25 MHz to 20 MHz with

2



fixed subcarrier spacing for both fixed and portable/mobile usage models, while keeping the

product cost low [4].

Either in the uplink (UL) or in the downlink (DL) direction, the receiver needs to know
the exact timing and frequency information of received symbols. By taking advantage of the
cyclic prefix or the preamble symbol, we can estimate the symbol timing and frequency offset.

We also take fast Rayleigh fading into consideration for the purpose of wireless application.

Generally speaking, our study can be divided to two parts. The first part is based on the
IEEE 802.16e OFDM time division duplex (TDD) UL system. We design synchronization al-
gorithms according to the timing and frequency requirements in the IEEE 802.16e standard.
In addition to running simulations in fixed and slowly moving channels, we implement the
algorithms on Texas Instrument (TI)’s digital signal processor (DSP) employing the Code
Composer Studio (CCS). The second«part is designing OFDMA TDD DL timing and fre-
quency synchronization algorithms, and running the corresponding simulation for fixed and
fast moving channels. In this work, we mainlyreference to [5], [6], and [7], where the intents
were to design and implement the uplink synchronization scheme of IEEE 802.16a OFDMA
by using DSP. Their works also included the implementation of the framing/deframing struc-

ture, IFFT/FFT blocks and transmitter/receiver square-root-raised-cosine (SRRC) filters.

This thesis is organized as follows. In chapter 2, we introduce the concepts of OFDM and
OFDMA. Chapter 3 introduces IEEE 802.16e WirelessMAN OFDM and OFDMA standards,
and gives the system parameters. The transmission filtering is also analyzed in chapter 3.
Chapter 4 introduces the DSP platform. Chapter 5 discusses the synchronization issues
of OFDM, and also presents the DSP optimization results. The channel environments are
described in this chapter for simulations. In chapter 6 we study the synchronization works

of OFDMA. Finally, chapter 7 gives the conclusion and future work.



Chapter 2

Overview of OFDM and OFDMA

The material in this chapter is largely taken from the contents of [8] and [9].

2.1 OFDM

2.1.1 Introduction to OFDM

OFDM is a special case of multicarrier transmission, whete a single datastream is transmitted
over a number of lower rate subcarriers.» One-of the main reasons to use OFDM is to
increase the robustness against frequency selective fading or narrowband interference. In a
single carrier system, a single fade or interference can cause the entire link to fail, but in a
multicarrier system, only a small percentage of subcarriers will be affected. Error correction

coding can then be used to correct for the few erroneous subcarriers.

In a classical parallel data system, the total signal frequency band is divided into non-
overlapping frequency channels. It appears good to avoid spectral overlap of channels to
eliminate inter-channel interference. However, this leads to inefficient use of the available
spectrum. To cope with the inefficiency, the concept of using parallel data transmission
by means of frequency division multiplexing (FDM) was published in mid-1960s. The idea

was to use parallel data streams and FDM with overlapping carriers. Fig. 2.1 shows the



"NANNN

Frequency

Frequency

Figure 2.1: Bandwidth efficiency comparison of FDM and OFDM systems (from [5]).

comparison of the bandwidth utilization efficiency for FDM and OFDM. The bandwidth is
saved nearly 50%. For a given overall data rate, the increasing number of carriers due to
overlapping can reduce the data rate that each individual carrier must convey, and hence
lengthen the symbol period. This means that the inter-symbol interference affects a smaller
percentage of each symbol. Therefore complexsequalization is normally not needed in the

receiver.

However, to realize the overlapping multicartier technique, the crosstalk between carriers
is required to be reduced. This means we want.orthogonality between the different modulated
carriers. Figure 2.2 shows that at the centersfrequency of each carrier, there is no crosstalk

from other carriers.

If the number of subchannels is large, the sinusoidal generators and coherent demodula-
tors required in a parallel system would become extremely expensive and complex. Weinstein
and Ebert [10] applied the discrete Fourier transform (DFT) to parallel data transmission
system as part of the modulation and demodulation process. By this way, the banks of car-
rier oscillators and coherent demodulators were eliminated. Moreover, a completely digital
implementation could be built around special-purpose hardware performing the fast Fourier

transform (FFT).

As mentioned in the previous discussion, the symbol duration can be lengthened such



Carriers

V2VAVA JAVAVAN

Frequency

Figure 2.2: The carrier has no crosstalk from other carriers at its center frequency (from

[5])-

that the multipath delay relative to the symbol time can be reduced. In order to eliminate
the inter-symbol interference (ISI) complétely, a-guard time (or guard interval, or cyclic
prefix) is inserted. Therefore the multipathyportion. of ene symbol will only contaminate the
guard interval of the next symbol. For'the target data, it is ISI free. The cyclically extended
guard interval is to replicate part of the OFDM time-domain waveform from the back to the
front to create a guard period. By this way; eyeclic convolution can still be applied between
the OFDM signal and the channel response to model the transmission system. In addition,

the cyclic extension property can be used in synchronization.

Finally, the advantages and disadvantages of OFDM are summarized in Table 2.1. The
advantages are already discussed above. The first two disadvantages will be considered in

this thesis, while the last two are ignored.

2.1.2 Mathematical Description of OFDM

Before discussing the mathematical definition of the OFDM signal, the orthogonal property is

considered first. As described before, the orthogonality is the reason why the carriers can be



Table 2.1: OFDM Advantages and Disadvantages

OFDM advantages OFDM disadvantages
Efficient to deal with multipath Sensitive to frequency offset
Enhance channel capacity Sensitive to timing errors

Robust against narrowband interference | Sensitive to phase noise
Large peak-to-average power ratio

|

T
symbol time

Time

Figure 2.3: Three time domain waveforms of different carriers (from [5]).

overlapped. What is the required condition to.maintain the orthogonality property? As the
transmitted signal is FDM based, the réceiver-acts as a bank of demodulators e/¥t, e7w2 ...
translating each carrier down to DC. The resulting signal is then integrated over a symbol
period to recover the raw data. As Fig. 2.3 shows, if the carriers have a whole number of
cycles in the symbol period 7, then the integration process results in zero contribution from
all the other carriers. Thus the carriers are orthogonal if the carrier spacing is a multiple of

1/7.

The mathematical description of the OFDM system allows us to see how the signal is
generated and how receiver must operate. Mathematically, each carrier can be described as

a complex wave:

Sc(t) — Ac(t)ej[wct'f*%(t)]‘ (21)



The real signal is the real part of s.(¢). Both A.(t) and ¢.(t), the amplitude and phase of the
carrier, can vary on a symbol by symbol basis. The values of the parameters are constant

over the symbol duration .

An OFDM signal consists of many carriers. Thus the complex signals S,(t) is represented
by:
Z Al ey[wnt+¢n(t] (2.2)

where w,, = wy + nAw. This is a continuous-time signal. If we consider the waveforms of
each component of the signal over one symbol period, then the variables A, (t) and ¢,(t)
take on fixed values, which depend on the frequency of that particular carrier, and so can

be rewritten as constants:

Ap(t) = An, du(t) = .

If the signal is sampled using a sampling frequenéy, of 1/7, then the resulting signal is

represented by:
N-1

S,(kT) = Z AqelllvotnBwkT+én] (2.3)

At this point, the time was restricted te be over=which the signal can be analyzed to N

samples. It is convenient to sample over the period of one data symbol, thus
T=NT.

To simplify the signals, let wg = 0. Then the signal becomes

N-1
S,(kT) = Z A, AWk +6n] (2.4)

nO

As we know, the form of the inverse discrete Fourier transform (IDFT) is

~ (2.5)



Since the factor A,e/* is constant in the sampled frequency domain, (2.4) and (2.5) are
equivalent if

Af:Aw 1

== (2.6
or  NT 7’ '
which is equivalent to the condition for orthogonality discussed earlier. Thus as a conclusion,

using DF'T to define the OFDM signal can maintain the orthogonality.

At the transmitter, the signal is defined in the frequency domain. It is a sampled digi-
tal signal, and it is defined such that the discrete Fourier spectrum exists only at discrete
frequencies. Each OFDM carrier corresponds to one element of this discrete Fourier spec-
trum. The amplitudes and phases of the carriers depend on the data to be transmitted. The
data transitions are synchronized for all carriers, and can be processed together, symbol by

symbol.

2.2 OFDMA System

The basic idea of OFDMA is OFDM based frequency: division multiple access. In OFDM,
a channel is divided into carriers which.are used-by one user at any time. In OFDMA,
the carriers are divided into subchannels. Each subchannel has multiple carriers that form
one unit in frequency allocation. In the downlink, a subchannel may be intended for more
than one receiver (user). In the uplink, a transmitter (user) may be assigned one or more
subchannels, and several transmitters may transmit in parallel. By this way, the bandwidth

can be allocated dynamically to the users according to their needs.

An additional advantage of OFDMA is the following. Due to the large variance in
a mobile system’s path loss, inter-cell interference is a common issue in mobile wireless
systems. An OFDMA system can be designed such that subchannels can be composed from

several distinct permutations of subcarriers. This enables significant reduction in inter-cell



OFDM vs OFDMA
OFDM _m___r__.;;mm___r.___;___m Overall

Clustered subcarrier allocation 1""1 — 1""1 — User 1
Multipath diversity limited to the — = ——— = - — User 2
clusters

1 User 3

M MM ysers

OFDMA _']__IT_I_I_ {1 Atte Ieit llr_l.L Overall

Permutated subcarriers t I t I‘ t User 1
allocation with permutation ‘ 1 Fl
varying between cells
ying —T—T—r——T—T—r—7— User2
Inter-Cell Interference limited to . | ] ' | User 3
only some subcarriers " 1 ! \ ! tl il \ ! \ ! {
——r—r—T1—Tr— User4

Optimal for mobile channels

Figure 2.4: Comparison of OFDM and OFDMA subcarriers allocation (from [12]).

interference when the system is not fully*loaded;“because even on occasions where the same
subchannel is used at the same time in two different cells, there is only a partial collision on

the actual sub-carriers.

A simple comparison of the subcarrier allocation of OFDM and OFDMA is shown in Fig.
2.4.

In order to support multiple users, the control mechanism becomes more complex. Be-
sides, the OFDMA system has some implementation issues which are more complicated to
handle. For example, power control is needed for the uplink to make signals from different
users have equal power at the receiver, and all users have to adjust their transmitting time

to be aligned. We shall address some issues in the context of IEEE 802.16e.

10



Chapter 3

Overview of the IEEE 802.16e
Standard

This chapter gives an overview of the IEEE 802.16e OFDM and OFDMA systems, and the
main references are clauses of [2] and [3]. For the sake of simplicity, we only introduce
the specifications that we must used jn-our study. Other specifications like channel coding,
MAP messages, transmit diversity,.etc., are not. our concern, so we ignore these parts in
our introduction. For more detailg we refér the readers to [2] and [3]. We describe the
transmit spectral mask here, and introduce the square-root raised cosine (SRRC) filter used

for shaping of the power spectrum and avoiding of the ISI (intersymbol interference).

3.1 Introduction to IEEE 802.16 [11]

Wireless local-area-networks (WLAN) based on the IEEE 802.11 standards have been widely
deployed and used in airports, offices and homes. Building on this success, the IEEE 802.16
standard approved in 2001 specifies the air interface and MAC protocol for wireless metropol-
itan area networks (MANs). The idea there is to provide broadband wireless access to

buildings through external antennas communicating with radio base stations (BSs).

To overcome the disadvantage of the LOS requirement between transmitters and receivers

11



in the 802.16 standard, the 802.16a standard was approved in 2003 to support NLOS links,
operational in both licensed and unlicensed frequency bands from 2 to 11 GHz, and subse-
quently revised to create the 802.16d standard (now code-named 802.16-2004). With such
enhancements, the 802.16-2004 standard has been viewed as a promising alternative for pro-
viding the last-mile connectivity by radio link. However, the 802.16-2004 specification was
devised primarily for fixed wireless users. The 802.16e committee was subsequently formed

with the goal of extending the 802.16-2004 standard to support mobile terminals.

The TIEEE 802.16e has been published in Febuary 2006, it specifies four air interfaces:
WirelessMAN-SC PHY, WirelessMAN-SCa PHY, WirelessMAN-OFDM PHY, and WirelessM AN-
OFDMA PHY. What we are interested in in this study are WirelessMAN-OFDM uplink and
WirelessMAN-OFDMA downlink.

3.2 WirelessMAN-OEDM_ TDD Uplink [3]

The WirelessMAN-OFDM PHY is:based on OFDM miodulation and designed for NLOS

operation in frequency bands below ¥l GHz.

3.2.1 OFDM Symbol Parameters

The parameters of the transmitted OFDM signal are given in Table 3.1, and some parameter

definitions are listed below.

e BW: Nominal channel bandwidth.
o N,..q: Number of used subcarriers.

e n: Sampling factor. This parameter, in conjunction with BW and N, determines

the subcarrier spacing and the useful symbol time.

12



Table 3.1: OFDM Symbol Parameters

Parameter Value
Ngpr 256
N, used 200
G 1/4,1/8,1/16, 1/32
Number of lower frequency guard subcarriers 28
Number of higher frequency guard subcarriers 27

Frequency offset indices of guard subcarriers

~128,-127...-101,4+101,+102...,+127

Frequency offset indices of pilot carriers

-88,-63,-38,-13,13,38,63,88

For channel bandwidths that are a multiple
of 1.75 MHz then n = 8/7, else for channel
bandwidths that are a multiple of 1.5 MHz
then n = 86/75, else for channel bandwidths
that are a multiple of 1.25 MHz then n
= 144/125, else for channel bandwidths that
are a multiple of 2.75 MHz then n = 316/275,
else for channel bandwidths that are a multiple
of 2.0 MHz then n = 57/50, else for channel
bandwidths not otherwise specified then n = 8/7

G: Ratio of CP time to useful time.

e Nppp: Smallest power of two greater than Vy..q.

e Sampling frequency: F, = |n - BW/8000] x 8000.

e Subcarrier spacing: Af = Fs/Nppr.
e Useful symbol time: T, = 1/Af.

e Cyclic prefix (CP) time: T, = G - Tj,.
e OFDM symbol time: Ty =T, + T},

e Sampling time: Ty,/Nppr.

13




3.2.2 Point-to-Multipoint (PMP) Frame Structure

In licensed bands, the duplexing method shall be either frequency division duplex (FDD) or
TDD. FDD SSs may be half-duplex FDD (H-FDD). In licenseexempt bands, the duplexing
method shall be TDD. In our study we used only TDD duplexing method. The frame interval
contains transmissions (PHY PDUs, where PDU stands for payload data unit) of BS and

SSs, gaps and guard intervals.

The OFDM PHY supports a frame-based transmission. A frame consists of a downlink
subframe and an uplink subframe. A downlink subframe consists of only one downlink PHY
PDU. An uplink subframe consists of contention intervals scheduled for initial ranging and
bandwidth request purposes and one or multiple uplink PHY PDUs, each transmitted from
a different SS.

A downlink PHY PDU starts withsa long preamble, which is used for PHY synchroniza-
tion. The preamble is followed by a frame control header (FCH) burst. The FCH burst is
one OFDM symbol long and is transmitted using BPSK rate 1/2 with the mandatory coding
scheme. The FCH contains DL_Framé<Prefix to spegify burst profile and length of one or sev-
eral downlink bursts immediately following the FCH. A DL-MAP message, if transmitted in
the current frame, shall be the first MAC PDU in the burst following the FCH. An UL-MAP
message shall immediately follow either the DL-MAP message (if one is transmitted) or the
downlink frame prefix (DLFP). If uplink channel descriptor (UCD) and downlink channel
descriptor (DCD) messages are transmitted in the frame, they shall immediately follow the
DL-MAP and UL-MAP messages. Although burst 1 contains broadcast MAC control mes-
sages, it is not necessary to use the most robust well-known modulation and coding. A more
efficient modulation and coding may be used if it is supported and applicable to all the SSs
of a BS.

14



The FCH is followed by one or multiple downlink bursts. Each downlink burst consists
of an integer number of OFDM symbols. With the OFDM PHY, a PHY burst, either a
downlink PHY burst or an uplink PHY burst, consists of an integer number of OFDM
symbols, carrying MAC messages, i.e., MAC PDUs. To form an integer number of OFDM
symbols, unused bytes in the burst payload may be padded by the bytes OxFF. Then the
payload should be randomized, encoded, and modulated using the burst PHY parameters
specified by this standard.

In each TDD frame (see Fig. 3.1), the transmit/receive transition gap (TTG) and re-
ceive/transmit transition gap (RTG) shall be inserted between the downlink and uplink

subframe and at the end of each frame, respectively, to allow the BS to turn around.

time
Frame n—1 Framen ‘ Frame n+1 Frame n+2 ‘
RTG
___--- " DL subframe - UL subframe TTee- L. _|
Contention slof | Contention slot | {JI, PHY PDU UL PHY PDU
] o . -
DL PHY PDU for initial ranging| for BW requests | from SS#1  |*°°| from SS&k
| T | N
! One or multiple DL bursts, -~ !
| each with different modulation/" ~ _ | .
: coding, transmitted in order of s : ‘One UL burst per
, o - . , UL PHY PDU,
! decreasing robustness . ! amcmitted 1o the
: N dulation/codi
F’reamblc FFCH 'DL burst #1 iDL burst 2 | « « 'lDL burst #m Preamble [UL burst :;r;;c?ﬁl :‘;r?f: e
’ i I source 5SS
- 4 o Tt - L T . - .
[MAC Msg 1 CMsgN bad L
MAC PDU-1)|* * {(MAC PDU-n) o "
- ! ‘ ' ‘ : a - ’ II - ‘ ~
DLEP Broadcast regularMAC X [MAC Msg 1 MAC Msg n P
msgs PDUs ! (MAC PDU-1) f * *[(MAC PDU-n) [P?
One OFDM symbel e, DL-MAP. ] - - .
with well-known UL-MAP. DCD. L X e ..
modulation/coding uch * L= .
(BPSK rate 1/2) . L 1 [MAT Header [MAUT msg payload [CRC
as defined in Table 213 L | |6 bytes optional) optional)

.f AC Header C msg payload [CRC
6 bytes (optional) optional)

Figure 3.1: OFDM frame structure with TDD (from [2]).

15



3.2.3 Modulation

Data Modulation

After bit interleaving, the data bits are entered serially to the constellation mapper. The
employed modulations are BPSK, Gray-mapped QPSK, 16-QAM, and 64-QAM, whereas
the support of 64-QAM is optional for license-exempt bands. The constellations shall be
normalized by multiplying the constellation point with the factor ¢ (1 for BPSK, \/Li for

QPSK, \/LTO for 16-QAM, and \/% for 64-QAM) to achieve equal average power.

The constellation-mapped data shall be subsequently modulated onto all allocated data
subcarriers in order of increasing frequency offset index. The first symbol out of the data
constellation mapping shall be modulated onto the allocated subcarrier with the lowest

frequency offset index.
Pilot Modulation

Pilot subcarriers shall be inserted mto each-data.burst in order to constitute the symbol
and they shall be modulated according to their carrier location within the OFDM symbol.
The pseudo-random binary sequence (PRBS) generator depicted in Fig. 3.2 shall be used to

produce a sequence, wy. The polynomial for the PRBS generator is X + X9 4 1.

The value of the pilot modulation for OFDM symbol k is derived from wy. On the
downlink the index k represents the symbol index relative to the beginning of the downlink
subframe. On the uplink the index k represents the symbol index relative to the beginning
of the burst. On both uplink and downlink, the first symbol of the preamble is denoted
by k = 0. The initialization sequences that shall be used on the downlink and uplink are
also shown in Fig. 3.2. For each pilot (indicated by frequency offset index), the BPSK

modulation shall be derived as follows:

16



LSB MSB

Initialization DPL:1 1 1 1 1 1 1 1 1 1 1
Sequences UL:1 0 1 0 1 0 1 0 1 0 1
1|23 (45|67 |8 |9 |10j11

Figure 3.2: PRBS generator for pilot modulation (from [3]).

DL: C_g8 — C_38 — Cg3z — Cgg — 1— Zwk and C_g3 — C_13 = C13 — C38 — 1— QlU_k,

UL: C_gg8 — C_38 — C13 — C38 — Cgg — (Cgg — 1-— 2’LUk and C_g3 — C_13 — 1-— 2w_k

3.2.4 Preamble Structure.and Modulation

Both DL subframe and UL subframe have thé preamble as their first symbol, here we only

introduce the UL preamble.

In the uplink, when the entire 16 subchannels are used (which is the assumption in our
work), the data preamble, as shown in Fig. 3.3 consists of one OFDM symbol utilizing only
even subcarriers. The time domain waveform consists of two times 128 samples preceded by
a CP. The subcarrier values shall be set according to the sequence Pgygy. This preamble
is referred to as the short preamble. This preamble shall be used as burst preamble on the

downlink bursts when indicated in the DL-MAP _IE.

The frequency domain sequence for the two times 128 sequence Pgy gy is defined by:

\/§ : PALL(k)a km0d2 = 07 (31)

PEVEN(k) = { 0 Fomods 7 0.

The factor ofv/2 gives a 3 dB boost. Please see [2] for the values of the sequence Papr.

17



Figure 3.3: Short preamble tmie domain structure (from [3]).

3.2.5 Frequency and Timing Requirements

Knowing the frequency and timing requirements is very important for synchronization work.
At the BS, the transmitted center frequency, receive center frequency and the symbol clock
frequency shall be derived from the same reference oscillator. At the BS, the reference
frequency tolerance shall be better than 48 x 1079 in licensed bands up to 10 years from the

date of equipment manufacture.

At the SS, both the transmitted center frequency and the symbol sampling clock fre-
quency shall be synchronized and 16ekedsto’the BS with a tolerance of maximum 2% of the
subcarrier spacing for the transmitted.center frequency, and 5 ppm for the sampling clock

frequency.

During the synchronization period, the SS shall acquire frequency synchronization within
the specified tolerance before attempting any uplink transmission. During normal operation,
the SS shall track the frequency changes and shall defer any transmission if synchronization

is lost.

All SSs shall acquire and adjust their timing such that all uplink OFDM symbols arrive
time coincident at the BS to an accuracy of +£50% of the minimum guard-interval or better,

which means +4 samples or better.

18



Subchanne] 1 Subchannel 2 DC subcarrier Subchannel 3

/\\»/\\J' ;/\\
BAAERRAA AN AR ORN AR ARE RN

‘\Guard Band Channel Guard band

Figure 3.4: OFDMA frequency description (3-channel schematic example, from [2]).

3.3 WirelessMAN-OFDMA TDD Downlink [3]

The specification of OFDMA system is much more complex than the OFDM system. In the
OFDMA mode, the active subcarriers are divided into subsets of subcarriers, each subset is
termed a subchannel. In the downlink, a subchannel may be intended for different (groups
of) receivers; in the uplink, a transmittetsmay be aSsigned one or more subchannels, several
transmitters may transmit simultadeously. |The subcarriers forming one subchannel may,

but need not be adjacent. The concept is shown in Fig.=3.4.

3.3.1 OFDMA Basic Terms

Some basic terms we introduce below only appear in OFDMA PHY. These definitions may

help readers to understand the concepts of subcarrier allocation of IEEE 802.16e OFDMA.
Slot and Data Region

The definition of an OFDMA slot depends on the OFDMA symbol structure, which varies for
uplink and downlink, for FUSC and PUSC, and for the distributed subcarrier permutations

and the adjacent subcarrier permutation.

e For downlink FUSC and downlink optional FUSC using the distributed subcarrier

19



Slot (Symbol Offset)

Subchannel# oo
offset S S

No subchannels

E——
No OFDM symbols

Figure 3.5: Example of the data region which defines the OFDMA allocation (from [2]).

permutation, one slot is one subchannel by one OFDMA symbol. (PUSC and FUSC
will defined later.)

e For downlink PUSC using the distributed subcarrier permutation, one slot is one sub-

channel by two OFDMA symbols:

e For uplink PUSC using either of the distributed subcarrier permutations, one slot is

one subchannel by three OFDMA symbots:

In OFDMA, a Data Region is a two-dimensional allocation of a group of contiguous sub-
channels, in a group of contiguous OFDMA symbols. All the allocations refer to logical
subchannels. This two dimensional allocation may be visualized as a rectangle, such as the

4% 3 rectangle shown in Fig. 3.5.
Segment

A Segment is a subdivision of the set of available OFDMA subchannels (that may include

all available subchannels). One segment is used for deploying a single instance of the MAC.

20



Permutation Zone

Permutation Zone is a number of contiguous OFDMA symbols, in the DL or the UL, that
use the same permutation formula. The DL subframe or the UL subframe may contain more

than one permutation zone.

3.3.2 OFDMA Symbol Parameters

All parameters have the same definitions as in OFDM PHY. We do not list them here, but

only give their values in later sections.

3.3.3 Frame Structure

Duplexing Modes

In licensed bands, the duplexing method shall be either FDD or TDD. FDD SSs may be
H-FDD. In license-exempt bands, the duplexing.method shall be TDD.

PMP Frame Structure

See Fig. 3.6; when implementing a TDD system, the frame structure is built from BS and SS
transmissions. Each frame in the downlink transmission begins with a preamble followed by
a DL transmission period and an UL transmission period. In each frame, the TTG and RTG
shall be inserted between the downlink and uplink and at the end of each frame, respectively,

to allow the BS to turn around.

Subchannel allocation in the downlink may be performed in the following ways: Partial
usage of subchannels (PUSC) where some of the subchannels are allocated to the transmit-
ter, and full usage of the subchannels (FUSC) where all subchannels are allocated to the

transmitter. The downlink frame shall start in PUSC mode with no transmit diversity. The

21



OFDMA symbol number t

o
k| k] (k3 kS kT B9 (k1 k13 kIS k17 | k20 k23 1 k26 k20| je+301k+32
. Ranging subchannel i

= UL burst #1

DL burst #3
| B

UL burst #2

w

s+1
ls+2

DL burst #1

(carrying the UL MAP

DL burst #4
|

UL burst #3

Preamble
Preamble

DL-MAP
DL-MAP

DL burst #5

subchannel logical number

DL burst #2 DL burst #6 UL burst #4

UL burst #5

s+L

-
A

-— —-—
DL TTG UL RTG

Figure 3.6: Example of an OFDMA frame (with only mandatory zone) in TDD mode (from

3])-

FCH shall be transmitted using QPSK rate 172 with four repetitions using the mandatory
coding scheme (i.e., the FCH informationswill"be“senton four subchannels with successive
logical subchannel numbers) in a PUSC zone.' The FCH contains the DL_Frame_Prefix, and
specifies the length of the DL-MAP message that immediately follows the DL_Frame_Prefix

and the repetition coding used for the DL-MAP message.

The transitions between modulations and coding take place on slot boundaries in time
domain (except in AAS zone, where AAS stands for adaptive antenna system) and on sub-
channels within an OFDMA symbol in frequency domain. The OFDMA frame may include
multiple zones (such as PUSC, FUSC, PUSC with all subchannels, optional FUSC, AMC,
TUSC1, and TUSC2, where AMC stands for adaptive modulation and coding, and TUSC
stands for tile usage of subchannels), the transition between zones is indicated in the DIL-

Map. The PHY parameters (such as channel state and interference levels) may change from

22



one zone to the next.

The maximum number of downlink zones is 8 in one downlink subframe. For each SS,
the maximum number of bursts to decode in one downlink subframe is 64. This includes all

bursts without connection identifier (CID) or with CIDs matching the SS’s CIDs.

Allocation of Subchannels for FCH and DL-MAP, and Logical Subchannel Num-
bering

In PUSC, any segment used shall be allocated at least the same number of subchannels as
in subchannel group #0. For FFT sizes other than 128, the first 4 slots in the downlink part
of the segment contain the FCH as defined before. These slots contain 48 bits modulated
by QPSK with coding rate 1/2 and repetition coding of 4. For FFT-128, the first slot in the
downlink part of the segment is dedicated to FCH and repetition is not applied. The basic
allocated subchannel sets for Segments 0, 1, and 2'are subchannel group #0, #2, and #4,

respectively. Fig. 3.7 depicts this structure.

After decoding the DL_Frame_Ptefix message within-the FCH, the SS has the knowledge
of how many and which subchannels atre allocated to the PUSC segment. In order to observe
the allocation of the subchannels in the downlink as a contiguous allocation block, the
subchannels shall be renumbered. The renumbering, for the first PUSC zone, shall start from
the FCH subchannels (renumbered to values 0-11), then continue numbering the subchannels
in a cyclic manner to the last allocated subchannel and from the first allocated subchannel

to the FCH subchannels. Fig. 3.8 gives an example of such renumbering for segment 1.

For uplink, in order to observe the allocation of the subchannels as a contiguous alloca-
tion block, the subchannels shall be renumbered, and the renumbering shall start from the
lowest numbered allocated subchannel (renumbered to value 0), up to the highest numbered

allocated subchannel, skipping nonallocated subchannels.

23



OFDMA symbol index t

\J

Segment 0
FCH

Segment 1
FCH

Subchannel index

Segment 2
FCH

A
y

Downlink

Figure 3.7: FCH subchahnel allocation for all 3 segments (from [3]).

The DL-MAP of each segment shall be mapped to the slots allocated to the segment
in a frequency first order, starting from the slot" after the FCH (subchannel 4 in the first
symbol, after renumbering), and continuing to the next symbols if necessary. The FCH of
segments that have no subchannels allocated (unused segments) will not be transmitted, and

the respective slots may be used for transmission of MAP and data of other segments.

3.3.4 OFDMA Downlink Subcarrier Allocation

Here we only describe DL subcarrier allocation since our study of OFDMA PHY is only on
DL. For both uplink and downlink, these used subcarriers are allocated to pilot subcarriers
and data subcarriers. However, there is a difference between the different possible zones. For

FUSC and PUSC, in the downlink, the pilot tones are allocated first; what remains are data

24



Logical

Physical Enumeration
Enumeration (Renumbered)
SC 19 none
A ? SC20 SC 0
- SC 21 SC1
= SC22 sC2
* SC 23 SC 3
SC 24 SC4
[] [ ]
[ ] n
L ]
- ] '
s : !
E SC 30 5C 10
5 v SC 31 scil
zj SC 32 none
Ez SC 33 none
= H .
= H .
: :
H
SC 51 - none
SC 52 sSC 12
SC 53 SC 13
SC 54 SC 14
[] [ ]
n ]
L] L]
u n
. 1
. [ ]

‘ | SC 59 SC 19

Figure 3.8: Example of DL renumbjering the allotated subchannels for segment 1 in PUSC
(from [3]).

subcarriers, which are divided into subchannels that are used exclusively for data. Thus, in
FUSC, there is one set of common pilot subcarriers, and in PUSC of the downlink, there is

one set of common pilot subcarriers in each major group.

The downlink can be divided into a three segment structure and includes a preamble
which begins the transmission. In this preamble, subcarriers are divided into three carrier-
sets. There are three possible groups consisting of a carrier-set each, that may be used by

any segment.

25



Preamble

The first symbol of the downlink transmission is the preamble. There are 3 types of preamble
carriersets, which are defined by allocation of different subcarriers for each one of them. The
subcarriers are modulated using a boosted BPSK modulation with a specific pseudo-noise

(PN) code. The preamble carrier-sets are defined using
PreambleCarrierSet, =n+3-k (3.2)

where:

PreambleCarrierSet, specifies all subcarriers allocated to the specific preamble,
n is the number of the preamble carrier-set indexed 0-2,

k is a running index 0-567.

For the preamble symbol there will be 172 guard band subcarriers on the left side and
the right side of the spectrum. FEach segmeént uses a preamble composed of a carrier-set
out of the three available carrier-sets‘in the following manner that segment ¢ uses preamble
carrier-set ¢, where ¢ = 0, 1, 2. In the case of segment 0, the DC carrier will not be modulated
at all and the appropriate PN will be discarded; therefore, DC carrier shall always be zeroed.

Therefore, each segment eventually modulates each third subcarrier.

The 114 different PN series modulating the preamble carrier-set are defined in Table 309
of [2] for the 2k FFT mode. The series modulated depends on the segment used and the

IDcell parameter.

Symbol Structure for PUSC

The symbol is first divided into basic clusters and zero carriers are allocated. Pilots and data

carriers are allocated within each cluster. Table 310 of [3] summarizes the parameters of the

26



Table 3.2: 2048-FFT OFDMA DL Carrier Allocation Under PUSC

Parameter Value | Comments

Number of DC subcarriers 1 Index 1024 (counting from 0)

Number of guard subcarriers, left 184

Number of guard subcarriers, right | 183

Number of used subcarriers, N, eq 1681 | Including all possible pilots and DC

Number of subcarriers per cluster 14

Number of clusters 120

Renumbering sequence 1 Used to renumber clusters before allocation
to subchannels, see [3]

Number of data subcarriers in each 4

symbol per subchannel

Number of subchannels 60

Basic permutation sequence 12 6,9,4,8,10,11,5,2,7,3,1,0

(for 12 subchannels)

Basic permutation sequence 8 7,4,0,2,1,5,3.6

(for 8 subchannels)

symbol structure of different FFT sizes for PUSC mode. Here we only take the 2048-FFT

OFDMA downlink carrier allocation for example, and it'is summarized in Table 3.2.

Fig. 3.9 depicts the cluster structure.
Downlink Subchannels Subcarrier Allocation in PUSC

The carrier allocation to subchannels is performed using the following procedure:

1. Dividing the subcarriers into the number of clusters (Ngysters), Where the physical
clusters contain 14 adjacent subcarriers each (starting from carrier 0). The number of

clusters varies with the FFT size.

2. Renumbering the physical clusters into logical clusters using the following formula:

27



.............. eddeven symbols
0000000000000 evenodd symbols

. data carrier
. pilot carrier

Figure 3.9: Cluster structure (from [3]).

LogicalCluster =

RenumberingSequence( PhysicalCluster),  First DL zone, or Use All SC indicator
= 0 in STC_DL_Zone_IE,
RenumberingSequence(( PhysicalCluster)+ Otherwise.
13- DL_PermBase)modN qusters,
(3.3)

In the first PUSC zone of the downlink (fitst, downlink zone) and in a PUSC zone de-
fined by STC_DL_ZONE_IE() with “use all'SC indicator = 0”7, the default re-numbering

sequence is used for logical cluster defimitions For all other cases DL._PermBase para-

meter in the STC_DL_Zone IE() or AAS-DI.TE() shall be used.

. Allocating logical clusters to groups. The allocation algorithm varies with FFT sizes.
For FFT size = 2048, dividing the clusters into six major groups. Group 0 includes
clusters 0-23, group 1 clusters 24-39, group 2 clusters 40-63, group 3 clusters 64-79,
group 4 clusters 80-103, and group 5 clusters 104-119. These groups may be allocated
to segments; if a segment is being used, then at least one group shall be allocated to it.
By default group 0 is allocated to sector 0, group 2 to sector 1, and group 4 to sector

2).

. Allocating subcarriers to subchannels in each major group, which is performed sepa-

rately for each OFDMA symbol by first allocating the pilot carriers within each cluster,

28



Table 3.3: 2048-FFT OFDMA DK Carrier Allocation Under FUSC

Parameter Value | Comments

Number of DC subcarriers 1 Index 1024 (counting from 0)
Number of guard subcarriers, left 173

Number of guard subcarriers, right 172

Number of used subcarriers, Ngeq 1703 | Including all possible pilots and DC
Pilot sets 166 | See Table 311 of [3]

Number of data subcarriers 1536

Number of data subcarriers per subchannel | 48

Number of Subchannels 32

Basic permutation sequence

3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,
7,21,5,28,31,23,17,4,24,0,13,12,19,14,30

and then taking all remaining data carriers within the symbol and using the same pro-

cedure described in the next subsection (Symbol Structure for FUSC). The parameters

vary with FFT sizes. For FFT size = 2048, use the parameters from Table 3.2, with

basic permutation sequence 123or even nmumbered major groups and basic permutation

sequence 8 for odd numbered imajor groups, to partition the subcarriers into subchan-

nels containing 24 data subcarriérs in each symbol.

Symbol Structure for FUSC

The symbol structure is constructed using pilots, data, and zero subcarriers. The symbol

is first allocated with the appropriate pilots and with zero subcarriers, and then all the

remaining subcarriers are used as data subcarriers (which are divided into subchannels).

There are two variable pilot-sets and two constant pilot-sets. In FUSC, each segment uses

both sets of variable/constant pilot-sets. We only summarize the parameters of 2048-FFT

OFDMA in Table 3.3.

The Variable set of pilots embedded within the symbol of each segment shall obey the




following rule:
PilotLocation = VariableSet#x + 6 - (FUSC_Symbol Number mod 2) (3.4)

where FUSC_SymbolNumber counts the FUSC symbols used in the current zone starting

from 0.
Downlink Subchannels Subcarrier Allocation

Each subchannel is composed of 48 subcarriers. The subchannel indices are formulated
using a Reed-Solomon series, and is allocated out of the data subcarriers domain. The data

subcarriers domain includes 48 x 32 = 1536 subcarriers.

After mapping all pilots, the remainder of the used subcarriers are used to define the data
subchannels. To allocate the data subchannels; the remaining subcarriers are partitioned into
groups of contiguous subcarriers. Each subehannel consists of one subcarrier from each of
these groups. The number of groups'is therefore equal to the number of subcarriers per
subchannel, and it is denoted Ngypeapriers-i Lermumber of the subcarriers in a group is equal
to the number of subchannels, and it is"denoted Ngpchannels- 1 he number of data subcarriers

is thus equal to Nsubcarriers : Nsubchannels-
The exact partitioning into subchannels is according to the permutation formula:

subcarrier(k,s) =
Nsubchannels * Nk + {ps [nk mod Nsubchannels] + DL,PermBase} mod Nsubcahnnels (35)

where:

subcarrier(k, s) is the subcarrier index of subcarrier k in subchannel s,

s is the index number of a subchannel, from the set {0,...,Nsupcnannets — 1},

30



ng = (k+ 13- s) mod Nyypearriers, Where k is the subcarrier-in-subchannel index from the

set {0,---7Nsubca7“riers - 1}7

Nsubchanners 1 the number of subchannels (for PUSC use number of subchannels in the

currently partitioned major group),

pslj] is the series obtained by rotating basic permutation sequence cyclically to the left s

times,

DL_PermBase is an integer ranging from 0 to 31, which is set to the preamble IDCell in

the first zone and determined by the DL-MAP for other zones.

On initialization, an SS must search for the downlink preamble. After finding the preamble,

the user shall know the IDcell used for the data subchannels.

3.3.5 Modulation

Subcarrier Randomization

The PRBS generator, as known in Fig. 3.2, shall'be used to produce a sequence wy. The

value of the pilot modulation on subcarrier k shall be derived from wy.

The initialization vector of the PRBS generator for both uplink and downlink shall be

designated b10..b0, such that:

b0..b4 = five least significant bits of [Dcell as indicated by the frame preamble in the first
downlink zone and in the downlink AAS zone with Diversity_Map support, DL_PermBase
following STC_DL_Zone 1E() and 5 LSB of DL_PermBase following AAS_DL_IE with-
out Diversity_Map support in the downlink. Five least significant bits of IDcell (as
determined by the preamble) in the uplink. For downlink and uplink, b0 is MSB and

b4 is LSB, respectively.

31



b5..b6 = set to the segment number + 1 as indicated by the frame preamble in the first
downlink zone and in the downlink AAS zone with Diversity Map support, PRBS_ID
as indicated by the STC_DL_Zone_IE or AAS_DL_IE without Diversity_Map support
in other downlink zone. Ob11 in the uplink. For downlink and uplink, b5 is MSB and

b6 is LSB, respectively.

b7..b10 = 0b1111 (all ones) in the downlink and four LSB of the Frame Number in the
uplink. For downlink and uplink, b7 is MSB and b10 is LSB, respectively.

Data Modulation

After the repetition block, the data bits are entered serially to the constellation mapper.
Gray-mapped QPSK and 16-QAM shall be supported, whereas the support of 64-QAM is

optional. The Gray-mapped modulationsiare the same as modulations in OFDM PHY.
Pilot Modulation

In all permutations except uplink PUSCrand downlink TUSC1, each pilot shall be transmit-
ted with a boosting of 2.5 dB over the average non-boosted power of each data tone. The

pilot subcarriers shall be modulated according to:
Rice} = 3 —wi) -y, S{er} = 0. (3.6)

where py, is the pilot’s polarity for SDMA (stands for spatial division multiple access) allo-

cations in AMC AAS zone, and p = 1 otherwise.
Preamble Pilot Modulation

The pilots in the downlink preamble shall be modulated according to:

1
R{ PreamblePilot Modulation} = 4 - /2 - (5 — wy,), (3.7)

32



S{ Preamble Pilot M odulation} = 0. (3.8)

3.3.6 Frequency and Timing Requirements

Timing Requirements

For any duplexing, all SSs shall acquire and adjust their timing such that all uplink OFDMA
symbols arrive time coincident at the BS to a accuracy of £25% of the minimum guard-

interval or better. This translates into 416 samples in the case of 2048-FFT OFDMA.
Frequency Requirements

At the BS, the transmitted center frequency, receive center frequency, and the symbol clock
frequency shall be derived from the same reference oscillator. At the BS, the reference

frequency accuracy shall be better than £2ix/107°,

At the SS, both the transmitted:eenter frequency and the sampling frequency shall be
derived from the same reference oscillator. ‘Thereby, the SS uplink transmission shall be
locked to the BS, so that its center frequeney shall-deyiate no more than 2% of the subcarrier

spacing, compared to the BS center frequency.

During the synchronization period, the SS shall acquire frequency synchronization within
the specified tolerance before attempting any uplink transmission. During normal operation,
the SS shall track the frequency changes by estimating the downlink frequency offset and shall
defer any transmission if synchronization is lost. To determine the transmit frequency, the
SS shall accumulate the frequency offset corrections transmitted by the BS (for example in
the RNG-RSP message), and may add to the accumulated offset an estimated UL frequency

offset based on the downlink signal.

33



dBr

0 MHz

Figure 3.10: Transmit spectral mask (from [2]).

Table 3.4: Transmit Sprctral Mask

Bandwidth (MHz) | A B C D
10 9501109 1219.5 | 29.5
20 4751 545 |-9.75 | 14.75

3.4 Transmit Spectral Mask

Due to requrement of bandwidth-limited transmission, the transmitted spectral density of
the transmitted signal shall fall within the spectral mask as shown in Fig. 3.10 and Table
3.4 in license-exempt bands. The measurements shall be made using 100 kHz resolution
bandwidth and a 30 kHz video bandwidth. The 0 dBr level is the maximum power allowed

by the relevant regulatory body. IEEE 802.16e dose not specify the power mask for the

license bands.

34




3.5 System Parameters

The standard is very flexible in choice of bandwidth and cyclic prefix length. However, it
would be difficult to conduct the simulation and implementation study without a particular

set of parameters. Hence we pick the set of parameters shown in this section.

3.5.1 Uplink OFDM Transmission Parameters

There are a number of system profiles defined in IEEE 802.16e standard, each characterized
by five components: a MAC profile, a PHY profile, a RF profile, a duplexing selection, and a
power class. The system profile we choose is PMP, WirelessHUMAN(-OFDM) PHY profile
with 10 MHz channelization, TDD, and SISO operation for the uplink OFDM transmission.
We assume a carrier frequency of 5GHz. Knowing the bandwidth, we can compute the other

parameters as given in the last chaptets:

e BW: 10 MHz (license-exempt band usage only).
e n: 57/50.

o (&: 8.

e Sampling Frequency: 11.4 MHz.

e Subcarrier spacing: 44.53125 kHz.

e Useful symbol time: 22% LS.

e CP time: 2% 1S,

e OFDM symbol time: 25 us.

e Sampling time: 86.81 ns.

35



Encoded data * subcarrier — add 4X LPF
———#| data modulation allocation IFFT [ cyclic prefix [~ upsample [~ (SRRC filter)—» channel

Symbol index preamble generate
—* pilot generator (if symbol index=0)

Figure 3.11: Transmitter components that are related to synchronization.

LPF X ) > To channel estimator
T (SRRCfiter) [ |downsample Synchronizer FFT >

Figure 3.12: Receiver components that are related to synchronization.

A

The modulation could be BPSK, QPSK, 16-QAM, or 64-QAM by random generated binary

data. The frame duration could be 5,:10; or 20 ms.

The transmitter and receiver components that, are rélated to synchronization are shown
in Figs. 3.11 and 3.12. In actual simulation,.we may use an interpolator to change the

sampling rate by an appropriate factor. In our study; we upsample by 4.

3.5.2 Downlink OFDMA Transmission Parameters

Like OFDM PHY, the OFDMA PHY also defines system profiles for systems operating
with the WirelessMAN-OFDMA and WirelessHUMAN-OFDMA air interfaces. The system
profile we select is PMP, WirelessHUMAN(-OFDMA) 10 MHz channel basic PHY profile,
TDD, and SISO operation for the downlink OFDM transmission. The FFT size is 2048, and
the carrier frequency is 3.5 GHz. We choose the PUSC permutation in our simulation, and

use segment 0 with subchannel 0-19 to allocate data subcarriers.

The modulation could be QPSK, 16-QAM, or 64-QAM by random generated binary data.

36



The frame duration could be 2.5, 5, or 8 ms. Other parameter values are as follows:

BW: 10 MHz (license-exempt band usage only).

n: 28/25.

o (G: 8.

Sampling frequency: 11.2 MHz.

Subcarrier spacing: 5.46875 kHz.

Useful symbol time: 182.8571 us.
e CP time: 22.8571 us.

e OFDM symbol time: 205.7143 us.

Sampling time: 89.2587 ns.

The transceiver components of the OEDMA downlink system are very similar to the OFDM

uplink system, so we do not show them again, but refer the reader to Figs. 3.11 and 3.12.

3.6 Transmission Filters [7]

Reference [5] contains a detailed discussion on how to choose a suitable SRRC (square-root
raised cosine) transmission filter. We use the filter designed in [5] directly. Below we give a

simple introduction based on [5].

To avoid the complexity of an ideal lowpass filter and to simulate path delays at non-

integer sample times, an interpolator is added to the transmitter to yield 4-times oversampled

37



transmitter output. The SRRC filter is used as the lowpass interpolation filter. The impulse

response of this filter is given by

sin(w : (1—a)>+4a : COS(’/T . (1+a)>

Teample Teample Teample

Tt <1 - (404%)2>

Tsa'mple sample

SRRC(t) =

)

where « is the roll-off factor. One reason for adopting the SRRC filter is that for this filter
the transmitter and the receiver filters are matched to each other and there is no inter-sample
interference introduced by the filter when fully synchronized. The roll-off factor chosen is
0.155 which results in a filter of 57 taps, which is chosen to satisfy the power mask specified
in 802.16a [5].

38



Chapter 4

Introduction to the DSP
Implementation Platform

In this chapter, we introduce the DSP platform utilized in our implementation. The platform
includes a DSP chip, and Texas Instruments (TI)’s code development environment. Note
that although we just perform software implementatien of the OFDM PHY UL system, we
also need to know something about-the DSP hardware environment. This chapter is mainly

taken form chapters 3 and 4 of [7].

4.1 The DSP Chip [16]

The DSP chip on the load, TI's TMS320C6416, employs the “VelociTI” architecture, a
variant of the traditional VLIW architecture, which consists of multiple execution units
running in parallel, performing multiple instructions during one cycle time. It is a 32-bit

fixed-point DSP, with processing speed at 600 MHz, delivering 4800 MIPS.

The C6416 core CPU, which is shown in Fig. 4.1, consists of 64 general-purpose 32-bit
registers and eight functional units. These eight functional units contain two multipliers
and six arithmetic units. It allows users to develop highly effective RISC-like code for fast

development time.

39



CB4x Digital Signal Proceszor

vept
LiP Cache
" TCP! Direct-Mapped
16K Bytes Total
[_soram__Jer S LT EmFa ool
SBS 16
S bt | -—I EMIF B I¢+
| ZBT SRAM I-G—F C64x DSP Core
|_|‘+ | Timer 2 |<+ Instruction Fetch Control
HED Registers
Instruction Dispatch
S
L_sRAM_Jer Timer 1 Advanced Instruction Packet
Control
I ROM/FLASH I"—F i
- Instruction Decode Logic
| Timer 0 | Data Path A Data Path B
. Test
A Register File B Register File
[ AB1-ATE I B31-816 |
—5
1] meBsPz  |es] I A15-A0 il B15-B0 ||| in-circuit [«
e t t t t t t Emulation
1 —i | i) s1] mi] or]|] .oz me] 2] 2]| mterrum
. ] t3
UTOPIA: — UTOPIA; | Enhanced L2 Control
Up to 400 Mbps DMA Memos
Master ATMC or | Y
Gontroller 1024K
| |isa-channer Bytes
McBSPs: 1 & L
Framing Chips: ] McBSP1# [
H.100, MVIP,
SCSA.T1. E1 { Jl
ﬂglg[?) Devices. | " L1D Cache
; - Bl 2-Way Set-Associative
odecs — McesPo e 16K Bytes Total

15 GPIO[8:0
D § PR g
GPIO[15:9]¢ |
32 ‘
HPI} [+

or ‘
‘ Boot Configuration
PCI¥ | PLL Power-Down

(I —— 4 (ot 6, x12, Logic
and x20)

Interrupt
Selector

Figure 4.1: Functional block and CPU(DSP core) diagram [15].

The C6416 uses a two-level cache-based architecture with 16 kB of L.1 data cache, 16 kB
of L1 program cache, and 1 MB of L2 data/program cache. On-chip peripherals include two
multichannel buffered serial ports (McBSPs), two timers, a 16-bit host port interface (HPI),
a 32-bit external memory interface (EMIF), a direct memory access (DMA) controller and

an enhanced direct memory access (EDMA) controller.

The following gives some sketch of the units just mentioned above:

e The EDMA controller transfers data between the memory without passing through the
DSP core.

40



e McBSPs can buffer serial samples in memory automatically with the aid of the DMA/
EDMA controller.

e HPI is a parallel port through which a host processor can directly access the CPU’s

memory space.

e EMIF provides the interface for the DSP core to connect with several external devices,

allowing additional data and program space.

The C6416 has two 64-bit internal ports to access internal data memory. It supports
double word loads and stores. There are four 32-bit paths for loading/storing data from
memory to the register file. C6416 has two register files (A and B), each containing 32 32-bit
registers for a total of 64 general-purpose registers. The general-purpose registers can be
used for data, data address pointers, or.condition registers. The C6416 register file supports
packed 8-bit types and 64-bit fixed=point data: types. Packed data types store either four
8-bit values or two 16-bit values inta single 32-bit register, or four 16-bit values in a 64-bit

register pair. Note that the C6416 deoes not directly support floating-point data types.

The eight functional units in the C6416"data paths can be divided into two groups of
four; each functional unit in one data path is almost identical to the corresponding unit in
the other data path. The two sets of functional units, along with two register files, compose
sides A and B of the DSP core. Fig. 4.2 illustrates the C6416 DSP CPU. From this figure,

we see that the C6416 CPU contains:

e Program fetch unit.
e Instruction dispatch unit, with advanced instruction packing.

e Instruction decode unit.

41



Program cache/ program memory

¥
Power Program fetch
down Instruction dispatch (See Note) Control
- registers
Instruction decode
Data path A Data path B Control
logic
Test

Register file A Register file B
+“—r
: M1| D1 D2 M2 . . Emulation
Interrupts
e T

Figure 4.2: The C64x CPU block diagram [16].

e Control registers.
e Control logic.

e Test, emulation, and interrupt logic.

The details of each functional units are given in Table 4.1 and 4.2. Most data lines in
the CPU support 32-bit operands, and some support.dong (40-bit) and double word (64-bit)
operands. Each functional unit has its own 32-bit write port into a general-purpose register
file. All units ending in 1 (for example, .LL1) write to register file A, and all units ending in
2 write to register file B. Each functional unit has two 32-bit read ports for source operands
srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit
long writes, as well as an 8-bit input for 40-bit long reads. Because each unit has its own
32-bit write port, when performing 32-bit operations all eight units can be used in parallel

every cycle.

42



Table 4.1: The L. and S. Functional Units and Operations Performed [16]
Functional Unit Fixed-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare
operations

32-bit logical operations

Leftmost 1 or O counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

S unit (.51, .52) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field
operations

32-bit logical operations
Branches
Constant generation

Register transfers to/from control register
file (.52 only)

Byte shifts

Data packing/unpacking

Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations

Dual 16-bit saturated arithmetic
operations

Quad 8-bit saturated arithmetic
operations

43



Table 4.2: The M. and D. Functional Units and and Operations Performed [16]
Functional Unit Fixed-Point Operations

M unit (M1, .M2) | 16 x 16 multiply operations

16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with
add/subtract operations

Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation

Galois Field Multiply

.Dunit (.D1, .D2) | 32-bit add, subtract, linear and circular
address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-hit constant
offset (.D2 only)

Load and store double words with 5-bit
constant

Load and store non-alighed words and
double words

5-bit constant generation
32-bit logical operations

44



4.2 TTI’s Code Development Environment [17]

We now introduce the software environment used in our work and how to successfully develop
an efficient DSP code as quickly. We will introduce some important and useful techniques

to improve the program speed performance.

The Code Composer Studio, TT's GUI code development tool, is the software platform

that we use to develop and debug the projects. Some main features of it are listed below:

e Real-time analysis.
e Source code debugger common interface for both simulator and emulator targets.

— C/C++ assembly language support.
— Simple breakpoints.
— Advanced watch window:

— Symbol browser.
e DSP/BIOS support.

— Pre-emptive multi-threading.
— Interthread communication.
— Interupt handing.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The DSP library includes many C-
callable, assembly-optimized, general-purpose signal-processing and image/video process-

ing routines. These routines are typically used in computationally intensive real-time

45



applications where optimal execution speed is critical. The TMS320C64x digital signal
processor library (DSPLIB) provides some routines for:

— Adaptive filtering.

— Correlation.

— FFT.

Filtering and convolution.

— Math.

Matrix functions.

Miscellaneous.

Some of these routines are used in our.implementation, such as FFT and filtering. We

introduce them in a later chapter.

4.2.1 Code Development Flow [18]

The recommended code development flow invelves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly.
Hence the programmer may let the compiler do all the laborious work of instruction selection,
parallelizing, pipelining, and register allocation. This simplifies the maintenance of the code,
as everything resides in a C framework that is simple to maintain, support, and upgrade.
Fig. 4.3 illustrates the three phases in the code development flow. Because phase 3 is usually
too detailed and time consuming, most of the time we will not go into phase 3 to write linear
assembly code unless the software pipelining efficiency is too bad or the resource allocation is
too unbalanced. The following techniques can be used to analyze the performance of specific

code regions:

46



Phase 1:
Develop C Code

Write C code

¥

Compile

¥

Profile

Yes

No

Complete )

Phase 2:
Refine C Code

Refine C code

¥

Compile

y

Profile

Yes
optimization?,

Complete )

Phase 3:
Write Linear
Assembly

Write linear assembly

X
Assembly optimize
y
Profile
No
Yes

( Complete )

Figure 4.3: Code development flow of C6000 (from [18]).

47



e Use the clock( ) and printf( ) functions in C/C++ to time and display the performance
of specific code regions. Use the stand-alone simulator (load6x) to run the code for

this purpose.

e Use the profile mode of the stand-alone simulator. This can be done by compiling the
code with the -mg option and executing load6x with the -g option. Then enable the
clock and use profile points and the RUN command in the Code Composer debugger
to track the number of CPU clock cycles consumed by a particular section of code.

Use “View Statistics” to view the number of cycles consumed.

Usually, we use the second technique above to analyze the C code performance. The
feedback of the optimization result can be obtained with the -mw option. It shows some
important results of the assembly optimizer for each code section. We take these results into

consideration in improving the computational speed of certain loops in our program.

4.2.2 Compiler Optimization Options [18]

In this subsection, we introduce the ‘ecompiler options that control the operation of the
compiler. The CCS compiler offers high-level language support by transforming C/C++
code into more efficient assembly language source code. The compiler options can be used

to optimize the code size or the executing performance.

The major compiler options we utilize are -03,-k, -pm -op2, -mh<n>, -mw, and -mi.

e -on: The “n” denotes the level of optimization (0, 1, 2, and 3), which controls the type

and degree of optimization.

— -03: highest level optimization, main features are:

x Performs software pipelining.

48



x Performs loop optimizations, and loop unrolling.
* Removes all functions that are never called.

* Reorders function declarations so that the attributes of called functions are

known when the caller is optimized.

*x Propagates arguments into function bodies when all calls pass the same value

in the same argument position.

x Identifies file-level variable characteristics.
e -k: Keep the assembly file to analyze the compiler feedback.
e -pm -op2: In the CCS compiler option, -pm and -op2 are combined into one option.
-pm: Gives the compiler global access to the whole program or module and allows

it to be more aggressive in ruling out dependencies.

-op2: Specifies that the module contains no functions or variables that are called
or modified from outside-the source code provided to the compiler. This improves

variable analysis and allowed assumptions.

e -mh<n>: Allows speculative execution. The appropriate amount of padding, n, must
be available in data memory to insure correct execution. This is normally not a problem

but must be adhered to.

e -mw: Produce additional compiler feedback. This option has no performance or code

size impact.

e -mi: Describes the interrupt threshold to the compiler. If compiler knows that no
interrupts will occur in the code, it can avoid enabling and disabling interrupts before

and after software-pipelined loops for improvement in code size and performance. In

49



A1
B1 A2
=i = = Pipelined-loop prolog
D1 c2 B3 Ad
E1 D2 C3 B4 A5 Kernel
E2 D3 C4 B5
E3 D4 C5
=2 o5 Pipelined-loop epilog
E5

Figure 4.4: Software-pipelined loop (from [16]).

addition, there is potential for performance improvement where interrupt registers may

be utilized in high register pressure loops.

4.2.3 Software Pipelining:[19]

Software pipelining is a technique used te 'sehedule-instructions from a loop so that multiple
iterations of the loop execute in parallel. This is the' most important technique we use to
speed up our system. The compiler always attempts to software-pipeline. Fig. 4.4 illustrates
a software pipelined loop. The stages of the loop are represented by A, B, C, D, and E. In
this figure, a maximum of five iterations of the loop can execute at one time. The shaded
area represents the loop kernel. In the loop kernel, all five stages execute in parallel. The
area above the kernel is known as the pipelined loop prolog, and the area below the kernel

the pipelined loop epilog.
But under the conditions listed below, the compiler will not do software pipelining [18]:
e [f a register value lives too long, the code is not software-pipelined.

e If a loop has complex condition code within the body that requires more than five

20



condition registers, the loop is not software pipelined.

e A software-pipelined loop cannot contain function calls, including code that calls the

run-time support routines.

e In a sequence of nested loops, the innermost loop is the only one that can be software-

pipelined.

e If a loop contains conditional break, it is not software-pipelined.

Usually, we should maximize the number of loops that satisfy the requirements of software
pipelining. Software pipelining is a very important technique for optimization; its importance

cannot be overemphasized.

4.2.4 Intrinsics [18]

We did not use any intrinsic in our cede, but we introduce the concept of this technique
here. The C6000 compiler provides intrinsies, which are special functions that map directly to
inlined C64x instructions, to optimize CfC++ code quickly. All assembly instructions that
are not easily expressed in C/C++ code are supported as intrinsics. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [18].

o1



Chapter 5

OFDM TDD Uplink Synchronization

In this chapter, we consider the uplink synchronization issues under the IEEE 802.16e
OFDM. Further, we describe the considered channel environment. The system profiles we

use are given in chapter 3.

5.1 OFDM Uplink Synchronization Problem and Tech-
niques

Accurate demodulation and detection".of-an OEDM signal requires carrier orthogonality.
Variations of the carrier oscillator, sample clock or the symbol time affect the orthogonality
of the system. Then, before an OFDM receiver can demodulate the carriers, it has to perform
three synchronization tasks. First, timing estimation is needed to detect the proper frame
start time. Secondly, it has to estimate and correct the carrier frequency offset (CFO) of
the received signal. Third, sampling frequency offset (SFO), or symbol clock offset) should
be detected. Note that, in normal uplink transmission, frame synchronization is not needed
because the base station knows roughly when the signal from each SS should arrive. Figure

5.1 shows the proposed synchronizer structure for the receiver.

52



symbol timing offset
preamble symbol |synchronization STO

SRRC filter and » CFO CFO
4X downsample N synchronization

compensate

Figure 5.1: The proposed synchronizer structure for the receiver.

5.1.1 Timing Offset and Fractional Carrier Frequency Offset

A popular algorithm to estimate timing offset and (fractional) CFO is proposed in [20]. By
taking advantage of the cyclic prefix, the proposed technique can accurately estimate the
symbol timing instant and frequency offset relatively accurately in additive white Gaussian
noise (AWGN), blindly with no assistance from pilot symbols. However, it suffers consider-
able performance degradation in multipath propagation or Rayleigh fading [5]. A modified
technique proposed in [21] is shown toshave better performance in fast Rayleigh fading. In

addition, it can obtain a symbol timing estimrate in parallel to the frequency offset estimate.

Figure 5.2 illustrates the algorithm strueture proposed in [21]. Under the assumption
that received samples are jointly Gaussian, symbel time offset 6 and fractional CFO £ is
given by

0 = arg max{cs| A (0)[*}, (5.1)

—), (5.2)

respectively, where

and c3 is set to a constant 1/L.

To get a more accurate CFO estimation, we can average the estimated values over multiple

OFDM symbols.

23

—CFO» » FFT |—»



L

Ty
:@—- Moving Sum =L—lf(2n:)phase( )_(;FO
s (/L)
Delay N ()’ (/L) |
Symbol
timing

arg max

Figure 5.2: Structure of J.-C. Lin’s symbol timing and fractional carrier frequency synchro-
nization method [21].

Our earlier study has considered the above approach. The uplink signal structure defined
in the IEEE 802.16e standard, however, motivates another approach which could yield better
performance in multipath fading. Accotding o the standard, each UL burst contains a
preamble, which consists 2 times 128 samples in the time domain. Although the contents
of preamble is known, it seems good (we will see their performance later) to perform blind

symbol timing detection based on the 128-sample periodical structure as
A i+128
0= argmax Y |r(k+ L)r(k+ L 128" (k + L+ 128)r(k + L + 256)"] (5.3)
k=i

where ¢ = 0, ...,8 because all SSs should adjust their timing such that all OFDM symbols
arrive time coincident at the BS to an accuracy of +4 samples. Note that in the second
term we subtract out the effect of CP, which interferes with the estimation of correct timing

point.

The reason why we do not use the whole known preamble to correlate with the received
preamble is because the received symbol is corrupted by channel response, so the correlation
result of the corrupted preamble and the original preamble is not very well. On the other
hand, if the mobile speed is not very high, the channel response is almost the same during

one symbol duration, so the two halves of the preamble, although still are corrupted, are

o4



very similar and the performance of their correlation is better than using the whole known

preamble.

5.1.2 Integer Carrier Frequency Offset

The technique discussed above can only estimate fractional CFO. Hence, theoretically, we
still need to estimate any possible integer CFO between the transmitter and the receiver. But
practically, this is unnecessary in the UL OFDM transmission because of the wide subscriber
spacing. According to the specifications of the standard, an SS should synchronize their
frequency to the BS to within a maximum tolerance of 0.02 times the subscriber spacing.
Now consider a mobile speed as high as 240 km/h. Then considering a 10 MHz signal
bandwidth at a carrier frequency of 5 GHz, the maximum Doppler shift is on the order
of 1 kHz, which is much smaller than the,44:531 kHz of subcarrier spacing even with the
2% maximum frequency error. (Thesconclusion.is similar for the profile with the smallest
bandwidth, namely, profP3_1.75, in Clause 12 of the'standard.) Therefore, there is no need

to estimate the integer CFO.

5.1.3 Sampling Frequency Offset

From [22], we know the frequency-domain symbol with phase rotation caused by SFO can
be modeled as

2k = (6j2ﬂ((lNS+Ng)/N)Ck)04(¢k)al,ka + nquk + Ny k- (5.4)

where [ is symbol number, Ny = N + N,, k is subcarrier index, ¢ = (7" — T')/T with
T’ being the sampling frequency of receiver and T' the sampling frequency of transmitter,
a(¢y) = sinc(mey) is very close to 1, a; is transmitted data symbol, Hj, is channel impulse

response of subcarrier k, which is assumed to stay constant over two consecutive symbols,

na.x is interchannel interference (ICI), and n;y is AWGN. In the IEEE 802.16e OFDM,

95



BER performance of imperfect frequency synchronization

10 F T T
E perfect synchronization :
—©6— imperfect frequency synchronization, BL=11|" -
—— imperfect frequency synchronization, BL=22|
—4A— imperfect frequency synchronization, BL=33|
102 =
10° =
o
i}
0
107E
10°F
10°

5 10 15 20

"SNR(dB)

Figure 5.3: BER degradation at5 ppm sampling clock error.

N =256, and we let N, = 32; hence N;/=288: Theréfore, in two consecutive symbols, the

phase increment is given by

Ay, = 2m(Ny/N)Ck. (5.5)

Note that the IEEE 802.16e standard has specified the maximum tolerance for the sampling
clock frequency at the SS as 5 ppm. This rule can simplify the synchronization work at BS,
because the performance degradation caused by SFO is not serious if the transmission burst
length is not too long. Figure 5.3 shows our simulation results. The modulation is 16-QAM,
in AWGN channel. A burst with length 11 OFDM symbols transmits about 1kb data (200
used carriers x 4 bits/sample x 11 = 8800 bits )each time. We can see the BER degradation

is very small when burst length is small.

o6



Since the effects of SFO can be ignored, there is no need to do SFO synchronization.

5.2 Channel Model

Typical models of the wireless communication channel include additive noise and multi-
path fading. For channel simulation, noise and multipath fading are described as random

processes, so they can be algorithmically generated as well as mathematically analyzed.

5.2.1 Gaussian Noise

The simplest kind of channel is the AWGN channel, where the received signal is only subject
to added noise. A major source of this noise is the thermal noise in the amplifiers which may
be modeled as Gaussian with zero mean and constant variance. In computer simulations,
random number generators may be used'to generate'Gaussian noise of given power to obtain

a particular signal-to-noise ratio (SNR).

5.2.2 Slow Fading Channel

In slow fading, multipath propagation may exist, but the channel coefficients do not change
significantly over a relatively long transmission period. The channel impulse response over

a short time period can be modeled as

h(T) = Z_ ;%S (r — 7). (5.6)

where N is the number of multipaths, «; and 7; are respectively the amplitude and the
delay of the 7th multipath, and 6; represents the phase shift associated with path i. These

parameters are time-invariant in a short enough time period.

o7



5.2.3 Fast Fading Channel

With sufficiently fast motion of either the transmitter or the receiver, the coefficient of each
propagation path becomes time varying. The equivalent baseband channel impulse response

can then be better modeled as

N—

hir,t) =Y ai(t)e"Dé(r — 7) (5.7)

=0

—_

Note that «; and 6#; are now functions of time. But 7; is still time-invariant, because the
path delays usually change at a much slower pace than the path coefficients. The channel
coefficients are often modeled as complex independent stochastic processes. If there is no line-
of-sight (LOS) path between the transmitter and the receiver, each path may be made of the
superposition of many reflected paths, yielding a Rayleigh fading characteristic. A commonly
used method to simulate Rayleigh fading is Jakes’ ,fading model, which is a deterministic
method for simulating time-correlated Rayleigh fading waveforms. A recent improvement to

Jakes’ model is proposed in [13].

5.2.4 Power-Delay Profile Meodel

For simplicity in analysis and simulation, the delay 7; in the above two models can be
discretized to have a certain easily manageable granularity. This results in a tapped-delay-
line model for the channel impulse response, where the spacing between any two taps is
an integer multiple of the chosen granularity. For convenience, one may excise the initial
delay and make 75 = 0. Often, it is convenient to normalize the path powers relative to the

strongest path. And, often, the first path has the highest average power.

We consider the ETSI “Vehicular A” model considered in [14]. The model is as shown in
Table 5.1. This is a channel model for the vehicular test environment, which the tested speed

is from 120 km/h to 500 km/h. This environment is characterized by larger cells and higher

o8



Table 5.1: ETSI “Vehicular A” Channel Model in Different Units [13]

tap | relative delay (nsec or sample number) average power
(nsec) (4x oversampling) (normal) | (dB) (normal scale) (normalized)
1 0 0 0 0 1.0000 0.4850
2 310 14 3or4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 or 13 | -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 | 2510 115 29 -20.0 0.0100 0.0049

B
=

Burst data Data S/ virtual

R - . s
—»{ Scrambler H FEC H Interleaver H Modulation }_’frammg e | Carmier and|
I pilots
Generate pilots T

— s | mmm e

I
) - ! U DA Tx
— T [ —»{ Addcp }—:—»{Upsamp]eby‘l }——{LPF(SRRC)H—» el B
] L ! |

Interpolator

Figure 5.4: UL transmitter structure.

transmit power, and is valid for NLOS case-only and- describes worse case propagation.
Channel A is the low delay spread case that-oceurs frequently. Please see [14] for more

details.

5.3 Floating-Point Simulation Results

Before modifying the algorithms we discussed above to fixed-point version, consider the
performance of floating-point version first for comparison with the performance of fixed-
point version later. Figures 5.4 and 5.5 are complete structures of OFDM transmitter and
receiver systems. The blocks that have gray color are the functions we implement. The C

program structure is shown in Figure 5.6.

29



S/p

R AD [, >
* R; ™ filter _’{LPF (SRRC) H DOw;vsa‘tmple H Synchronization }—v 256 FFT

(Also compensate frequency)

P/S
—»{ Equalization — Data
192 deframing — FEC decoder |——{ De-scrambler Data

Figure 5.5: UL receiver structure.

Table 5.2: Receiver SNR Assumptions

Modulation | Coding rate | Receiver SNR(dB)
BPSK 1/2 3.0
QPSK 1/2 6.0
QPSK 3/4 85
16-QAM 1/2 11.5
16-QAM 3/1 15.0
64-QAM 2/3 19.0
64-QAM 3/4 21.0

5.3.1 Simulation Parameters and Environments

AWGN channel and multipath Rayléigh fading havebeen described previously. We use fast
fading channel for more practical simulation.: Note that the receiver SNR specified in the
IEEE 802.16e OFDM is from 3 dB to 21 dB (see Table 5.2), and at least 11.5 dB for 16-QAM
modulation, so our simulated range is chosen to be 5 dB to 24 dB in AWGN channel, and

from 5 dB to 20 dB, or fixed at 10 dB in fading channel.

Since the OFDM system is designed for low mobility environments, the tested speed we
choose is from 0 km/h to 60 km/h; their corresponding Doppler shifts are shown in Table
5.3. We can see even speed is as high as 60 km/h, the maximum Doppler shift is still much
smaller than 0.02A f = 890.625 Hz, so we assume in the simulations that CFO is no larger
than 0.1A f, which is more than enough. The 802.16e specifies that the uplink timing offset

should be within +4 samples. Thus we let the offset be random in this range. We also

60



Random burst data or
preamble symbols generate

modulation

:

Pilot generate

l

Subcarrier
allocate

|

IFFT

I

Add CP and
Tx SRRC filter

|

Fading channel

!

Add noise

RX SRRCTilter
and

Downsample |

Symbol generate
function

|

Preamble?

yes

Preamble sync.

CFO
synchronization

Frequency
compensate

Add symbol
timing offset and
CFO

|

FFT

Timing offset

Figure 5.6: Structure of the C program for synchronizer simulation.

assume that there is no sampling clock error in our simulation.




Table 5.3: Relation Between Speed and Doppler Shift at Carrier Frequency 5 GHz

Speed (km/h) | Doppler Shift (Hz) faTs

0 0 0

10 46.296 0.001157
20 92.593 0.002315
30 138.889 0.003472
40 185.185 0.004630
20 231.482 0.005787
60 277.778 0.006944

5.3.2 Symbol Timing Estimation

Figure 5.7 is timing error distribution in AWGN (upper two charts) and 6-path fast fading
channel (lower two charts) at SNR 5 dB and 16 dB, respectively, using (5.3). The mobile
speed is 60 km/h. For comparison, Figure 5.8 shows the simulation results by using (5.1),

which is a guard interval correlation.

We can see that when in AWGN channel, using.method in [21] has some what better
performance than ours, but when it multipath fading ¢hannel, our method has much higher
correct rate. This is because our algorithm can delete the power delay-spread caused by

multipath propagation.

Figure 5.9 shows the root mean-square error (RMSE) of our method at SNR = 10 dB,

12
the RMSE is defined as 4/ E {’9 — 9‘ } The RMSE is a measurement of how spread out a

distribution is.

In Figure 5.10, we can see how different speeds affect the error distribution of symbol
timing estimation. Almost 99.5% of errors are under 2 samples. The probabilities of error
larger than 0 sample are more than that of error smaller than 0 sample, this is caused by
the delay profile. Note that we run 10000 symbols for simulation, so the error rate 1 x 107°
means no error. The SNR is 10 dB.

62



Timing error distribution in AWGN channel with SNR=5 dB

1 T T T T T T T T T
0.8 T
2
Z 06 T
<
Qo
S 04 e
a
0.2 T
0 Il Il Il Il P — Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)
Timing error distribution in AWGN channel with SNR=16 dB
1 T T T T T T T T T
0.8 T
2
Z 06 T
©
Q
S 04 T
a
0.2 b
0 Il Il Il Il | Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)
Time error distribution in 6—path fading channel with SNR=5 dB
l T T T T T T T T T
0.8 1
E 0.6 8
e}
©
8
= 0.4
0.2 .
0 | | = —— b | | |
-10 -8 -6 =4 -2 0 2 4 6 8 10
Time error (samples)
Time error distribution in'6—path fading channel with SNR=16 dB
1 T T T T T T T T T |
0.8 .
£ o6} 1
=}
©
Qo
2 04} 8
o
0.2 .
0 Il Il Il Il —— Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10

Time error (samples)

Figure 5.7: Distribution of timing offset estimation errors.

5.3.3 Carrier Frequency Synchronization

The SNR here, if not mentioned, is 10 dB. Figure 5.11 shows the RMSE of fractional CFO
estimation under € = 0.1Af, where the RMSE is defined as y/E {|e — €\2}. We can see that

63



Time error distribution in AWGN channel with SNR=5 dB, using J. C. Lin's method

T T T T T T T T

=

o
o
T
L

Probability
° o
> o

T T
1 1

0.2 b

0 Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)

Time error distribution in AWGN channel with SNR=16 dB, using J. C. Lin's method

1 T T T T T T T T

o
o
T
L

Probability
o o
» o

T T
1 1

0.2 b

0 Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)

Time error distribution in 6—path channel with SNR=5 dB, using J. C. Lin’s method
T T T T I 1] T T T T

02 ‘ I .
O 1 1 1 | N —— P 1
4 ¥ o 0 2 4 6

-10 -8 -6 -

=

o
o
T
L

Probability
o o
» o

T T

Time error (samples)

Time error distribution in 6—path channel with SNR=16 dB, using J. C. Lin's method

1 T T T T T T T T T

o
°d
T
L

Probability
o o
» o

T T
1 1

0.2f b

0 Il Il Il Il — —— P —
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)

Figure 5.8: Distribution of timing offset estimation errors using J.-C. Lin’s method.

the RMSE grows as the the speed increases. Figure 5.12 shows how the motion speed affects

the error distribution of carrier frequency synchronization. After estimation, in 99.7% of the

64



RMSE of symbol timing estimation
07 T T T T T
AWGN channel

\ — — — 6-path fast fading channel, 60km/h
0.65 \ b

0.6 \ i

0.55 \ i

o
a1
T
-
I

0.45f e b

RMSE (samples)
/

0.35F b

03f k

0.25

Il
4 6 8 10 12 14 16 18 20 22 24
SNR (dB)

Figure 5.9: RMSE of symbol timing offset.symchronization at SNR = 10 dB.

cases the corrected frequency offset<is under-2% of subearrier spacing, as required by IEEE

802.16e, and in more than 90% of the‘gases is under 1% of subcarrier spacing.

For enhanced accuracy, we average consecutive estimated fractional CFOs of received
OFDM symbols in the same burst. Here we set the length of transmission burst to 11
OFDM symbols. The average is calculated as

ékk’—i—ék

k+1 (5:8)

€k+1 —

where €11 is the k 4 1st averaged CFO, ¢ is the kth estimated CFO, and k£ is the symbol
index in a burst. In our case k goes from 0 to 10. Figures 5.13 and 5.14 show the simulation
results for €. Both are obviously better than the results shown in Figures 5.11 and 5.12.

Again, the error rate 10™° means no error occurred in our testing.

65



o Symbol timing synchronization error under different speeds (1)
10 : e o = -

Probability

|
w

10 "k
10E :| —e— error = 0 sample
—+&— error > 0 sample
—— error > 1 sample
error > 2 samples| |
‘| —&— error > 3 samples| |
10‘5 I I I I I
0 10 20 30 40 50 60
Speed (km/h)
0 Symbol timing sync.hroniiation error distri‘b‘ution"under differentspeeds (2)
10 T i R ; T
10 : E
...... e
1072} ]
2 1
% ]
o)
o
o -3
10 °F
10 , ]
—©6— error < 0 sample| 1
—&— error < 1 sample| ]
—— error < 2 sample| ]
error < 3 sample| |
| | | | |
0 10 20 30 40 50 60

Speed (km/h)

Figure 5.10: Symbol time synchronization error distribution under different speeds.

66



o x 107 RMSE of fractional CFO synchronization
T T

AWGN channel

g —©— 6-path channel, 0 km/h
8 —#&— 6-path channel, 30 km/h|
9 —— 6-path channel, 60 km/h
O

RMSE (number of subcarrier spacings)
[6;]

5 10 15 20
SNR (dB)

Figure 5.11: RMSE ¢f fractional CFO synchronization.

5.4 Fixed-Point Implementation

In algorithm development, it is often convenient to ‘employ floating-point computation. But
for power, speed, and hardware cost reasons, practical transceiver implementations normally
use fixed-point computation. The DSP employed in this work, TT's TMS320C6416, is also of
the fixed-point category, which can perform fixed-point computations more efficiently than
floating-point ones. We consider fixed-point DSP implementation in this work, which entails
careful conversion of the original program used in algorithm development from floating-point
to fixed-point. We also try to making the resulting program run fast by making efficient use

of the DSP’s features.

The C6416 CPU contains 8 parallel 32-bit function units, two of which are multipliers

and the remaining six can do a number of arithmetic, logic, and memory access operations.

67



There is also flexibility in arranging the data so that each function unit can do double 16-bit
or quadruple 8-bit operations. Running at 600 MHz, the peak performance is 4800 MIPS. For
many transmission systems, 32-bit computations are an overkill and 8-bit computations do
not provide the necessary accuracy. This appears to be the case with the present system, too.
Hence we choose to use the 16-bit data type mostly, with careful selection of dynamic range
of the data at different points in the function chain. Simulation results confirm that this is
an appropriate choice. In fact, a TI document also suggests use of the short data type (16-
bit) for fixed-point multiplication inputs whenever possible [18]. The chosen data formats
are as shown in Figures 5.15 and 5.16 for the transmitter and the receiver, respectively,
where (Qx.y means there are x bits before the binary points and y bits after. In every case,
x +y = 15 because the sign takes one bit. We discuss the details of each block in the

following subsections.

Fractional CFO synchronizationerror distribution under different speeds
10 T = v S P T T

10

H
o\
b

Speed (km/h)

=
°
w
T
i

10 'k : 9

—=©6— |error|>0.5% subcarrier spacing| ]

—— |error|>1% subcarrier spacing

|error|>2% subcarrier spacing
Il

107 Il Il Il Il
0 10 20 30 40 50 60

Speed (km/h)

Figure 5.12: Fractional CFO synchronization error distribution under different speeds.

68



x 1073 RMSE of fractional CFO synchronization after averaging

— © — 6-path channel, 0 km/h
— * — 6-path channel, 30 km/h

81 — =~ — 6-path channel, 60 km/h| |
D
2T 1
O
I
&
~ 6 s
Q
&
8
5 5K ]
(2] ~
— x
o ~ ~
8 4p T 1
g K~ ~— - _
~ ~ \\X~\_x'4)(§\~~',4\\
o 3oL T —x s —x- Zi= o

©

= )
4 R

2F = .

0= -0 o
o _o .
1r i C R
5 10 15 20
SNR (dB)

Figure 5.13: RMSE of fractionalt CEQsynchronization after averaging.

5.4.1 Modulation and Subecarrier ‘Allocation

The types of modulation supported inthe IEEE 802.16€ standard are BPSK, QPSK, 16-QAM
and, optionally, 64-QAM. The output signals of the modulators have normalized symbol
energy, with the range of signal values of each modulation type as shown in Table 5.4. The
widest range occurs in the case of 64-QAM, which is | \;—412 , \/LE ]. Therefore we must have
at least one bit for the integer part of the signal value. With one bit for sign, there remains
14 fractional bits. Hence Q1.14 is the chosen data format, whose range covers [—2,2). It

can cover the ranges of pilot and preamble modulations as well.

The subcarrier allocation block simply allocates the modulation data samples, null sam-
ples and pilot samples to their assigned subcarriers. There is no need to change data format

in this block.

69



Table 5.4: Ranges of Modulated Signal Values
’ Modulation \ Range ‘
BPSK [—1,1]
QPSK [=1/v2,1/V2]
16-QAM | [-3/V/10,3/V/10]
64-QAM | [~7/v42,7/v/42)

5.4.2 The IFFT and FFT

Since the signals after the IFFT are in the range [—1, 1], we choose Q.15 as the data format
after IFFT and before FFT. For efficiency reason, we employ some functions provided by TI
in the DSPLIB for C64x to implement the IFFT and the FFT.

The DSPLIB contains FFT functions employing 32 x 32-bit and 16x16-bit multiplica-

Fractional CFO estimation after averaging under different speeds
A

10 T ~ AgEygEwe= 1 -
: =i —o— |error|>0.5% subcarrier spacing
=-| —— lerror|>1% subcarrier spacing
"""""""""" lerror|>2% subcarrier spacing
101f_v ] e sy i o <
=
]
Qo
e
a
5
w107
10
107 L L i i i
0 10 20 30 40 50 60

Speed (km/h)

Figure 5.14: Fractional CFO synchronization error distribution under different speeds after
averaging.

70



binary Q1.14 | subcarrier Q1.14 IFET Q.15 _|4Xupsample Q.15

allocation v and SRRC filter >

4

FEC encoder

A 4

modulation

h 4

Figure 5.15: Fixed-point data formats used at different points in the transmitter.

FFT Q1.14

Q.15 SRRC filterand | Q.15 N timing anfj CFO Q.15
4X downsample synchronization

A 4

Figure 5.16: Fixed-point data formats used at different points in the receiver.

tions. The former has higher computational complexity. We resolve to use the latter.

The function DSP_fft16x16r () computes@ complex forward mixed radix FFT with scal-
ing, rounding and digit reversal. The input data z[] and the coefficients w[] are arrays of
complex numbers, with the numbers storédmm-interleaved 16-bit real and imaginary parts.
The output data are returned in a separate array. y[] in normal order, also complex with
interleaved 16-bit real and imaginary parts. The code uses a special ordering of FFT coeffi-
cients (also called twiddle factors). These twiddle factors are generated by using the function

tw_fft16x16 () provided by TL

The DSPLIB does not contain a 16x16-bit IFFT routine. Hence we modify the
DSP_fft16x16r () routine to compute the IFFT. The modification is based on the following
identity:

N—-1 N-1

Dy = S uHOVE) = (

N-1

1

x[n] = N

y[k]*wj’;"> ., n=0,...,N—1,
k=0
(5.9)

where y[] is the input, z[] is the output, and Wy is the twiddle factor. Therefore, we first

71



conjugate the input, then perform FFT, and then conjugate the output to obtain the desired
IFFT.

In DSP_fft16x16xr (), scaling by 2 (i.e., right shift by 1 bit) takes place at each radix-4
stage except the last one. A radix-4 stage could give a maximum bit-growth of 2 bits, which
would require scaling by 4. To prevent overflows, the input data in general should be scaled
by 2B7-8B5 where BT = logy N (total number of bit growth) and BS = [log, N — 1] (2’s
exponent of scaling), with NV being the length of the FFT. All shifts are rounded to reduce

the truncation noise power by 3 dB.

Recall that the length of IFFT/FFT in our system is 256. Hence BT = log, 256 = 8
and BS = [log, 256 — 1] = 3 and theoretically we need to shift the input to the right by 5
bits. But we find that, in our case, scaling the IFFT input by 4 bits is enough to prevent
output overflow, and this can reduce the'noise from scaling by 3 dB. Thus, in principle,
the IFFT output is scaled for a total ofi BS 44 = 7 bits. But as far as fixed-point binary
numbers are concerned, such scaling amounts-merely to relocating the binary point, which
can be relocated anywhere (equivalent to applying an arbitrary integer-power-of-2 scaling)
for the convenience of fixed-point computation: Thus we interpret the IFFT output as in
Q.15 format. For the FFT, we find that right-shift of the input by 1 bit is enough to prevent

output overflow.

5.4.3 SRRC Filter with Oversampling and Downsampling

In order to provide the ability to simulate path delays at non-integer sample times, an
interpolator is induced in the transmitter to yield 4-times oversampled transmitter output.
In our system, we adopt the 57-taps square-root raised-cosine (SRRC) filter with o = 0.155.
We implement a polyphase system, shown in Figure 5.17. This implementation would involve

applying filter coefficients only to input values that are nonzero. In our work, L = 4. When

72



Y

Y
—
o

Ey2)

-1
z
E,@ L > I’

x[n] _ IZ_I
| E@ | HL —""”f
> Ei@ =~ 4L > Jaz

Figure 5.17: Implementation of interpolation filter with polyphase decomposition [5].

Values outside the
sequence

ooy

<O> 1 12 |3 | 4

T

Center of kernel

Figure 5.18: Convolution kernel at the boundary of a finite-length sequence [7].

computing an output value at the boundary of a sequence, a portion of the convolution or
correlation kernel is usually off the edge of sequence, as illustrated in Figure 5.18. We assume
the values outside the data sequence to be 0, that is, we do zero padding. Thus, we can

avoid using many if-else statements to handle the boundary values when doing convolution.

The output of Figure 5.17 is equivalent to oversampling input by 4 times and passing it
through the SRRC filter. In the receiver, we just convolve the input signals with the SRRC

filter, which is like the convolution in the transmitter, and downsample the output by 4

73



times. The data formats of the input and the output are the same.

5.4.4 Synchronization

The detailed synchronization method has been presented in previous sections. Besides trans-
lating floating data type to short data type, here we only make two points relating to fixed-

point implementation:

e In fractional CFO estimation, we use a lookup table to implement the arctan() function.
The table contains 2048 entries covering the range [tan 0, tan 0.47| uniformly, for € in
[0, 0.2] times the subcarrier spacing. The table also applies to negative values of £ since

the tangent function is symmetric.

e In frequency offset compensation, we gonstruct two tables for the sin() and the cos()

functions, each containing 2048%entriegreovering the range [0, 7] uniformly.

5.5 Fixed-Point Simulation Results

We present some simulation results in this subsection. All simulations are just like we ran
in Section 5.3, but in fixed-point implementation. This is for convenience comparing their

performance.

5.5.1 Symbol Timing Estimation

Since the preamble correlation performs better than CP correlation, we only show the re-
sults of the former method. Figure 5.19 shows the performance in AWGN channel and
multipath fast Rayleigh fading channel, in both 5 dB and 16 dB of SNR. Comparing with

the performance of floating-point simulation, the results in AWGN channel perform better.

74



This is because in the fixed-point receiver, the received signal has been truncated from 32-
bit to 16-bit data type, which can increase the SNR of received signal indirectly. But in
multipath fading channel, fixed-point implementation reduces the performance somewhat.
Observe that when the SNR is high, the probability of synchronizing to the correct timing

in a multipath fading channel can be on the order of 0.9 or better.

Figure 5.20 shows the RMSE in AWGN channel and miltipath Rayleigh fading channel
at speed 60 km/hr. We put the results of floating-point and fixed-point simulations together
for ease of comparison. In Figure 5.21 we can see how speeds affect the synchronization of
symbol timing, and the SNR is 10 dB. The floating-point version has better performance
especially when the error is smaller than 0 sample. All RMSE results have a little worse

performance for the fixed-point implementation, but in a range we can accept.

5.5.2 Carrier Frequency Synchronization

Figure 5.22 shows the RMSE of fractional CFO estimation of both fixed-point and floating-
point simulations under € = 0.1A f.*We ge¢ that the performance at 30 km/h and 60 km/h
is worse than the other conditions, but is still-under 2% of subcarrier spacing. In high SNR,
the RMSE are about 0.012 times the subcarrier spacing. Figure 5.23 shows how different
speeds affect the error distribution of carrier frequency synchronization, we can see that when
the speed is not 0, the performance decreases obviously comparing with the floating-point

version.

Since the performance degrades much when in mobile environment, averaging estimated
fractional CFOs is a good solution here. Figures 5.24 and 5.25 show the simulation results.
Although they are still not as good as the floating-point version, the performance is improved.

The RMSEs can be as small as about 0.002 times the subcarrier spacing.

75



Timing error distribution in AWGN channel with SNR=5 dB

1 T T T T T T T T
0.8 B
2
Z 0.6 B
©
Qo
Q 0.4r B
o
0.2 B
Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)
Timing error distribution in AWGN channel with SNR=16 dB
l T T T T T T T T
0.8 B
2
Z 0.6 B
©
Qo
Q 0.4r B
o
0.2 B
Il Il Il Il Il Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10
Time error (samples)
Timing error distribution in 6—path fading channel with SNR=5 dB
1 T T T T T T T T T
0.8 .
2
3 0.6 o
IS
Qo
2 04r .
a
0.2 -
O Il Il . _I— —— Il Il Il
-10 -8 -6 =4 =2 0 2 4 6 8 10
Time error (samples)
Timing error distribution-in 6—path fading channel with SNR= 16 dB
l T T T T T T T T T
0.8 : . i
2
= 0.6 o
[
Qo
© 04F .
a
0.2 .
O Il Il Il Il —— Il Il Il
-10 -8 -6 -4 -2 0 2 4 6 8 10

Time error (samples)

Figure 5.19: Distribution of timing offset estimation errors with fixed-point implementation.

5.5.3 Bit Error Rate Performance

To see the implication on bit error rate (BER) performance of the foregoing CFO synchro-
nization methods, we simulate a transmission system without error-control coding. Figure

76



RMSE of symbol timing estimation
1 T T T T T T
—>— AWGN channel, fixed—point
6—path fast fading channel with 60 km/h speed, fixed—point

09k x -~ AWGN channel, floating—point B
6-path fast fading channel with 60 km/h speed, floating—poin

o
u
T

RMSE (samples)
o
(=2}
T

0.5
0.4
0.3 O T KR R TR T T
0.2 L L L L 1 L L I |
4 6 8 10 12 14 16 18 20 22 24

SNR (dB)

Figure 5.20: RMSE of symbol timingioffset_estimation with fixed-point and floating-point
implementation.

5.26 shows the results. The burst length here“is*11.symbols. The bottom curve gives the
result under perfect synchronization, that is, when the OFDM symbol timing, CFO, and
SFO are estimated and corrected perfectly. The next curve is the case with only 5 ppm
of sampling frequency offset. The following two curves correspond to the case with perfect
OFDM symbol timing but have 5 ppm SFO and imperfect CFO from using the proposed
techniques. We have only considered the simulated CFO synchronization results under 60
km /h multipath fading channel, and have ignored the fading caused by the channel (in other
words, we assumed a perfect channel estimator). It is obvious that averaging estimated

CFOs is important when the SNR is high.

7



Symbol timing synchronization error distribution under different speeds (1)
 ————— ¥

10° = 55—

10°

|
s

10
=
=
]
Qo
<)
a
1073 _________________
E — © — error=0 sample, floating—point
— 8 — error>0 sample, floating—point
— > — error>1 sample, floating—point
-4 — ~ — error>2 samples, floating—point| _|
10 N P =
— & — error>3 samples, floating—point: 3
—©&— error=0 sample, fixed—point 1
—&— error>0 sample, fixed—point .
—— error>1 sample, fixed—point 8
error>2 samples, fixed—point 1
—<&— error>3 samples, fixed—point
107% I I I I I
0 10 20 30 40 50 60
Speed (km/h)
o Symbol timing synehronization error distribution under different speeds (2)
10" T e -1 1 A T T
F F d j]‘
F L "W
[ |
L ]
]
107k
r 7
~ 1
107 E
> £
20 4
o [ e
o L
(=%
10°k
[ e e m T — © — error<0 sample, floating—point
P — 8 — error<-1 sample, floating—point
107 - — % — error<-2 samples, ﬂoat!ngfpo?nt 4
— = — error<-3 samples, floating—point
—=©&— error<0 sample, fixed—point
—+&— error<-1 sample, fixed-point
—— error<-2 samples, fixed—point
error<—3 samples, fixed—point
S5, | | | ] ]
10 E—
0 10 20 30 40 50 60

Speed (km/h)

Figure 5.21: Symbol timing estimation error distribution under different speeds with fixed-
point and floating-point implementation.

78



o RMSE of Fractional CFO synchronization

10

—— fixed-point, AWGN channel 1
—o— fixed—point, 0 km/h 6-path fading channel 1
—>— fixed—-point, 30 km/h 6-path fading channel |. 4
fixed—point, 60 km/h 6-path fading channel
floating—point, AWGN channel

O - floating—point, 0 km/h 6—path fading channel
x - floating—point, 30 km/h 6-path fading channe
+ -+ floating—point, 60 km/h 6—path fading channe

10 “f

RMSE (number of subcarrier spacings)

10'3 I I I
4 6 8 10 12 14 16 18 20

SNR (dB)

Figure 5.22: RMSE of fractional CFO"synchronization with fixed-point and floating-point
implementation. ‘

5.6 Program Optimization

This section, we discuss the optimization techniques we use, and the optimized results of the
function blocks as in Figure 5.6. Besides utilizing the compiler options we mentioned be-
fore, we have to adjust the program for compiler to software-pipeline the loop automatically.
Software-pipeline is the most important technique in our optimization work, also, for sim-
plicity, we only show the software-pipelined loops of our functions in this section (except for
the “Pilot Generate” function). Usually the loops is the most important part of a function.

The optimized profile is given in the later subsection.

79



Fractional CFO synchronization error under different speeds, SNR=10 dB

10 T T T T T
I
AAAAA @,A_;Aé~4~707k_f
- //
10" J
e e s e Ky K e Mt e

. — = = = =+ —

Probability

H
O\
&

— © — |error|>0.5% subcarrier spacing, floating—poin{

— * — |error|>1% subcarrier spacing, floating—point

! — =~ — |error|>2% subcarrier spacing, floating—point

| —6— |error|>0.5% subcarrier spacing, fixed—point

1 —— |error|>1% subcarrier spacing, fixed—point
lerror|>2% subcarrier spacing, fixed—point

-5 i i i i i

0 10 20 30 40 50 60

Speed (km/h)

10™

i

10

Figure 5.23: Fractional CFO synchronization errox’ distribution under different speeds with
fixed-point and floating-point implementation:

5.6.1 The Modulation Function

The modulation function we use is very similarto that used in [7] expect for the length of

modulated data. We refer readers to [7] for more information.

5.6.2 The Pilot Generate Function

“Pilot Generate” is a function that works as a PRBS generator for pilot modulation. Fig-
ure 5.27 is a part of C and assembly code of this function. Since this function has a very
small load for the DSP (see the optimized profile later), we do not further optimize this

function for software-pipeline.

80



. x 1072 RMSE of fravtional CFO synchronization after averaging in 6—path fading channel
T T

—o— fixed—point, 0 km/h
—>— fixed-point, 30 km/h
fixed—point, 60 km/h

— © — floating—point, 0 km/h
— * — floating—point, 30 km/h
— ~ — floating—point, 60 km/h| |

RMSE (number of subcarrier spacings)

5 10 15 20
SNR (dB)

Figure 5.24: RMSE of fractional CFO synchronization after averaging with fixed-point and
floating-point implementation.

5.6.3 The Allocation Function

This function is used to allocate pilots, guard band, DC, and data subcarriers. A software-
pipelined loop cannot contain control code [18], we must allocate these 4 different kinds of
subcarriers in different loops. Figure 5.28 is the code for allocating pilots, DC, guard band,
and a part of data subcarriers. Figure 5.29 shows the software-pipeline information (top)
and the kernel code for the loop in line 41 of Figure 5.28. We see that this loop needs 2
instructions per cycles. The information of other loops are like this one, so we just show one

of them.

81



5.6.4 The IFFT, Add CP and Tx SRRC, Rx SRRC and down-
sample, FFT functions

These four functions are like those used in [7] expect for the processing length, so please see

[7] for more information.

5.6.5 The Preamble Synchronization Function

This function is used to estimation symbol timing offset by the preamble. The algorithm
has been mentioned in Section 5.1. Figure 5.30 is the loop of the program, and it does the
correlation work. Form Fig. 5.31 we see this loop needs a lot of .M and .X instructions. The

ii is 14, and the loop unroll multiple is 4, so this loop needs 14/4 instructions per cycle.

Fractional CFO synchronization after averaging at different speeds, SNR=10 dB

Probability

[
[S)
&
T

| — © — |error|>0.5% subcarrier spacing, floating—poin{
i — % — |error|>1% subcarrier spacing, floating—point
i — — — |error|>1% subcarrier spacing, floating—point
I —&— |error|>0.5% subcarrier spacing, fixed—point
I —— |error|>1% subcarrier spacing, fixed—point
|error|>2% subcarrier spacing, fixed—point
10 Mk I I I I I

0 10 20 30 40 50 60
Speed (km/h)

-4

107

Figure 5.25: Fractional CFO synchronization error distribution under different speeds after
averaging with fixed-point and floating-point and floating-point implementation.

82



BER performance after synchronization, burst length=11

10" ‘ ‘
perfect synchronization
—6— only 5 ppm SFO
—— 5 ppm SFO + unaveraged CFO estimation| 1
5 ppm SFO + averaged CFO estimation
102k
10°F
o
i
0
10k
10°F
10°

SNR (@B)

Figure 5.26: BER performance after synchronization at 60 km/h.

5.6.6 The CFO Synchronization Funection

This function estimates the fractional CFO by CP correlation. Figure 5.32 shows the loop of
this function. We unroll the loop by 4 to speed up by our selves because the compiler cannot
software-pipeline this loop no matter how we adjust it. The compiler can only software-
pipeline the small loops which is not critical in the overload in this function. Note that this

function contains a arctan() function table, so the code size is large

5.6.7 The Frequency Compensation Function

This function use the CFO value estimated by the CFO synchronization function to compen-

sate the received symbol. Figure 5.33 shows the loop of this function. Since the estimated

83



12 short pilot_gen (int order sym)

14 {

15 short temp;//for recording PRES[S]"PRBES[11]

16 short pilot;

17 int j;

18

19 {

20 pilot=PRBS[10];

21 temp=PRBS[S]"PRBS[10];

22 for(J=11;3>0;3--)

23 PRBS[J]=PRBS[]-1];:

24

25 PRES[0]=temp;

26 }

27 return pilot:

28 }

29

'?3 ‘-_\!:\lf\lf\k\lf\lf\lf\lf\lf\!:\lf\lf\k\lf\lf\lf\lf\!:\lf\lf\k\lf\lf\lf\lf\lf\!:\lf*\lf\lf\lf\lf\lf\!:\lf\lf*\lfttt\k****tttt\kk**tttt\k***
74 _pilot_gen:

T5 pRH* ———— - - - - - -
76 .line 2

77 . Sym _order_sym,4, 4, 17, 32

T8 . sym _temp,5%, 3, 4, 16

73 .line a

80 MVE .52 (_PRBS-5bss), B4 ;1201
81 ADD .D2 DP,B4,B4 ;1201
82 LDH .D2T2 *4+B4 (20) ,BS ;1201
ke .line 9

24 LDH .D2T2 *+B4 (16) ,B6E ;o121
85 NOP 4

14 XOR .D2 BS5,B&,B7 ;o121
87 EXT .52 B7,16,16,B22 ;o121
28 .line 11

23 LDH .D2T2 *+B4 (18),B1l6 P23
90 LDH .D2T2 *+B4 (14),B17 P123]
91 LDH .D2T2 *+B4 (12),B18 P123]
92 LDH .D2T2 *+B4 (10),B1S i 1231
93 LDH .D2T2 *+B4 (8),B20 i 1231
94 LDH .D2T2 *+B4(6),B21 ;1231
a5 LDH .D2T2 *+B4 (4), ;o123
9% LDH .D2T2 *+B4 (2), ;o123
97 LDH .D2T2 *+DP (_PRBS] »B7 ;1231
98 STH .D2T2 BS, *+B4 (22) ;1231
89 STH .D2T2 BlGg, *4DP (_PRBS+20) 5 123]
100 STH .D2T2 B17, *+DP (_PRBS+16) 5 123]
101 STH D272 B1§8, *+DP (_PRBS+14) 5 123]
102 STH D272 B1S, *+DP (_PRBS+12) 5 123]
103 STH D272 B20, *+DP (_PRBS+10) 5 123]
104 STH .D2T2 BZ21, *+DP (_PRBS+8) ;o123
105 STH .D2T2 BS,*4+DP (_PRBS+6) i 123
108 STH .D2T2 BE,*4+DP (_PRBS+4) i 123
107 STH .D2T2 B7,*4+DP (_PRBS+2) i 123
108 STH LD2T2 B&, *+DP (_PRBS+13) ;o123
109 .line 13
110 STH LD2T2 B22, *+DP (_PRBS) 7 125]
111 .line 15
112 M .D1X BS5,R24 Fo127]
113 .line le
114 RETNOP .82 B3,5 7 1281
115 ; BRANCH OCCURS ;o128
116 .endfunc 28,000000000h,0
117

Figure 5.27: A part of C and assembly code for pilot generate function.

84



16
17
18
19
20
21
22
23
24
25
26
27
28
28
30
31
3z
33
34
33
36
37
38
33
40
41
42
43
44
43
46
47
48
49
50
51
52

// allocate DC wvalue
Realout[1Z28]=ImageOut[128]=0;
// allocate 8 pilots

RealOut[40]=pl;ImageCut[40]=0;
RealOut[20]=pl;ImageOut [30]=0;
RealOut[141]=pl;ImageCut[141]=0;
Realout[lec]l=pl;ImageCut[lcc]=0;
Realout[1%1]=pl;ImageCut[131]1=0;
RealCut[216]=pl;ImageCut[216]=0;
RealCut[65]=p2;ImageOut [€3]=0;
RealCut[115]=pl;ImageCut[115]=0;

// allocate guard band
for(i=0;i<=26;i++)

{

H

Realout[27]=pl;ImageCut[27]=0;
// allocate 1%2 data subcarriers

Realout[i]=0;Realout[i+22%]=0;
ImageOut[1]=0; ImageOut [14225]=0;

for (i=28;i<40;i++)

{

}

fo

{

}

for

{

Figure 5.28: A part of C code for allocation function.

RealOut[i]=RealIn[j];

ImageOut[i]=ImageIn[]j];

J++:

r{i=41;i<65;1i++)

RealOut[i]=RealIn[]j];

ImageOut[i]=ImageIn[j];

J++7
(1=66;1<90;1i++)

RealOut[i]=RealIn[j];

ImageOut[i]=ImageIn[]j];

J++:

85



tion.

28
z8
30
31
3z
33
34
35
38
37
38
39
40
41
4z
43
44
45
46
47
48
49

SOFTWARE PIPELINE INFORMATION

; Loop source line 41
; Loop cpening brace source line : 42
; Loop closing brace source line : 46
i Enown Minimum Trip Count : 24
i Enown Maximum Trip Count Ha:!
H Known Max Trip Count Factor : 24
H Loop Carried Dependency Bound(™) : 0
; Unpartitioned Rescurce Bound H
; Partitioned Resource Bound(*) : 2

Resource Partition:
A-side B-side

; units 0 0
i units 1 1]
; units 2% 2%

units 0
cross paths o
.T address paths 2
Long read paths a
Long write paths 0
0
o
1
1

M0

(.L or .S unit)
(.L or .8 or .D unit)

Logical ops (.LS)
Addition ops (.LSD)
Bound(.L .5 .LS)
Bound(.L .S .D .LS .LSD)

Searching for software pipeline schedule at

N I N R N I R T T

i ii = 2 8Schedule found with 3 iterations in parallel
;- w* *
L ; PIPED LOOP KERNEL
[ 20] BDEC .81 14,20 ; 146| <2,0>
] LDH .D2T2 *B4++,B6 i 143] <2,0>
I LDH .DIT1  *Ad++,A5 ; 144| <2,0>
STH .D2T2 BG, *B5++ ; 143 <0,5>

] STH .DIT1 A5, *A34+ ; 144| <0,5>

Figure 5.29: Software-pipeline information and a part of assembly code for allocation func-

MulSum=0;
for(k=i;k<i+128;k++)
{

RealMulTemp= (RealPream[k+L] *RealPream[k+L+128] +ImagPream[k+L] *ImagPream[k+L+128]) >>16;
ImagMulTemp= (ImagPream[k+L] *RealPream[k+L+128]-RealPream[k+L] *ImagPream [k+L+128]) >>16;
RealMulTemp—=

(RealPream[k+L+128] *RealPream[k+L+256] +ImagPream[k+L+128] *ImagPream[k+L+256])>>16;
ImagMulTemp—=

(ImagPream[k+L+128] *RealPream[k+L+256] —RealPream[k+L+128] *ImagPream[k+L+256])>>16;
MulSumTemp= (RealMulTemp*RealMulTemp+ImagMulTemp* ImagMulTemp) >>7;
MulsSum+=MulsSumTemp;
}
1f (MulSum>PreMulSum)
{
MaxPosi=ij;
PreMulsSum=MulSum;
}
H
SyncResult[0]=MaxPosi;

Figure 5.30: A part of C code for preamble synchronization function.

86



SOFTWARE PIPELINE INFORMATION

; Loop source line : 32
H Loop opening brace source line : 33
H Loop closing brace source line : 42
H Loop Unroll Multiple HIES 3
; Known Minimum Trip Count : 32
; Known Maximum Trip Count : 32
; Known Max Trip Count Factor : 32
; Loop Carried Dependency Bound (™) : 2

; Unpartitioned Resource Bound 12
; Partitioned Resource Bound (¥*) : 13

Resource Partition:
A-side B-side

N T T R TR I R N T R R I

; .L units 0 o
; .S units 9 12
; .D units 3 3
; .M units 12 12
; .X cross paths 12 13*
; .T address paths ) &
; Long read paths 0 1]
; Long write paths 0 0
; Logical ops (.LS) 5 1 (.L or .8 unit)
; ARddition ops (.LSD) 11 i8 (.L or .8 or .D unit)
; Bound(.L .5 .LS) 7 7
Bound(.L .S .D .LS .LSD) 10 12
=k
P Searching for software pipeline schedule at
P ii = 13 Did not find schedule
Pk ii = 14 schedule found with 3 iteratiocns in parallel

Figure 5.31: Software-pipeline information for preamble synchronization function.

for (i=0;i<(L+12) /4;1i++)

{
RealMull=(RealIn[4*i]*RealIn[4*i+N]+ImagIn[4*1]*ImagIn[4%i+N])>>15; RealSuml=RealSuml+RealMull-RealWindow [L-1];
ImagMull= (ImagIn[4*i]*RealIn[4¥i+N]-RealIn[4%*i]*ImagIn[4*i+N])>>15; ImagSuml=ImagSuml+ImagMull-ImagWindow[L-1];
RealMul2= (Realln[4%i+1]*Realln[4%i+N+1]+TmagTn[4%i+1]*TmagTn[4*i+N+1])>>15 RealSum2=RealSuml+RealMul2-RealWindew [L-2];
ImagMul2= (ImagIn[4*i+1]*Realln[4*i+N+1]-RealIn[4*i+1]*ImagIn[4*i+N+1])>>15 ImagSum2=ImagSuml+ImagMul2-ImagWindow [L-2];
RealMul3=(RealIn([4*i+2]*RealIn[4*i+N+2]+ImagIn[4*i+2]*ImagIn[4*i+N+2])>>15 RealSum3=RealSum2+RealMul3-RealWindow [L-3];
ImagMul3= (ImagIn[4*i+2]*RealIn[4*i+N+2]-RealIn[4*i+2]*ImagIn[4*i+N+2])>>15 ImagSum3=ImagSum2+ImagMul3-ImagWindow [L-2];
RealMul4=(RealIn[4*i+3]*Realln[4*i+N+2]+ImagIn[4*i+2]*ImagIn[4*i+N+3])>>15 RealSumd—RealSum3+RealMul4-RealWindow [L-4];
ImagMul4= (ImagIn[4*i+3]*RealIn[4*i+N+2]-Realln[4%i+3]*ImagIn[4¥i+N+3])>>15

ImagSumi=ImagSum3+ImagMuli-Imagiindow [L-4];

for (j=L-1;3>=4;j--)
{
RealWindow [j]=RealWindow []-4];
ImagWindow [j]=ImagWindow[j—-4];
}

RealWindow[3]=RealMull; corre_amp[4*1]=(RealSuml*RealSuml+ImagSuml*TmagSuml) >>5;// "»»5" means divides by 32!!
ImagWindow[3]=ImagMull; corre_phase[0] [4*i]=ImagSuml;

RealWindow[2]=RealMul2; corre_phase[1] [4*1]=RealSuml;

ImagWindow[2]=ImagMul2; corre_amp[4%i+1]=(RealSum2*RealSum2+ImagSum2*ImagSum2)>>5;// ">>5" means divides by 321!
RealWindow [l]=RealMull; corre_phase[0] [4*i+1]=ImagSum2;

ImagWindow[1]=ImagMul3; corre phase[1l][4*i+1]=RealSum2;

RealWindow [0]=RealMul4; corre amp[4*i+2]=(RealSum3*RealSum3+ImagSum3*ImagSum3)>>5;// ">>5" means divides by 32!!
ImagWindow [0]=ImagMuld; corre_ phase[0] [4*i+2]=ImagSum3;

corre phase[1][4*i+2]=RealBum3;
corre_amp[4*%1+3]= (RealSumd*RealSumd+ImagSumd* TnagSumd) >»5; // ">>5" means divides by 3

]

corre_phase[0] [4*i+3]=TmagSumé;
corre_phase[1] [4*i+3]=RealSumé;
// Find the position of the corrslation valuss
if(corre_amp[4*i]>corre_amp [max])
max=4*i;
if(corre amp[4*i+l]>corre amp[max])
max=4%i+1;

if (corre_amp[4*i+2]*corre_amp[max])
max=4%i+Z;
if (corre_amp[4*i+3]>corre_amp[max])
max=4%i+3;

RealSuml=RealSumd;
ImagSuml=ImagSum4;

Figure 5.32: A part of C code for CFO synchronization function.

87



CFO may be larger than zero or smaller than zero, we divide our program into two loops for
the compiler can software-pipeline them. Figure 5.34 shows the software-pipeline informa-
tion of the loop in line 169. We see this loop needs 12/4 = 3 instructions per cycles. Please
see the Figs. 5.35 and 5.36 for the assembly code of this loop. The loop in line 180 has the
similar information. Note that this function contains a sin() and a cos() tables, so the code

size is large.

5.7 Profile of Optimized DSP Program

We make use of the techniques described in the previous chapter to optimize the fixed-
point program. In our system, the clock frequency of DSP is 600 MHz, and one symbol
duration is 25 us (288 samples). Therefore, the available execution clock cycles are 15000
in a symbol duration, averaging to approximately, 52 in a sample duration. To achieve
real-time processing speed, one symbol must :execute:less than 15000 instruction cycles.
Table 5.5 shows the code size and the mumber of clock cycles each block in Figure 5.6
takes, where “load” gives the fraction.of a"DSP’s real-time computing power. (Note that
in programming terms, an “optimized” program’ does not mean that a program has been
made ultimately efficient without any possibility of further improvement. It merely means
that suitable programming techniques have been used in writing the program to make it
reasonably efficient compared to one without using such techniques.) In Table 5.5 we can
see that every block can be executed in real-time individually. The total requirement for
the transmitter functions is approximately 1.17 DSP chips’ processing power, where that for
the receiver functions is 3.08 DSP chips’ power. Further reduction in clock cycles should be
possible, but is not considered in the present work. Figure 5.37 shows the percentage of each

function in the Tx or the Rx.

88



161
162
1e3
164
165
le6
1a87
168
1a3
170
171
172
173
174
178
176

177

1739

2

182
1a83
18
18
13

a7

¥

5

[e

[

=

ag

for(i=0;i<(N+L);

{

index[1]

if (SyncResult[1]
{
for (1=0;

{

}
if{SyncResult[1]
{

for (1=0;

{

Figure 5.33:

CFO compensate and remove
i++)

=(i%*offset)>>10;

<0)
1< (M) ;1++)

cos_templZCDs_tab[{—index[i+L])];
zin_ templ=—-sin tab[ (-index[i+L])];

RealOut [i]=(FIXED) ( (RealIn[i+L] *cos_ templ-ImagImn[i+L]*sin templ)>>15);
ImagCut [1]=(FIXED) ( (RealIn[i+L]*sin templ+ImagIn[i+L]*cos templ)>>13);
>=0)

1< (N);i++)

cos_templ=cos_tab[index[i+L]]
sin_templ=sin_ tab[index [i+L]]

I
r

RealOut [i]=(FIXED) ((RealIn[i+L]*cos_templ-ImagIn[i+L]*sin_templ)>>15);
ImagOut [1]=(FIXED) ( (RealIn[i+L]*sin templ+ImagIn[i+L]*¥cos templ)>>15);

A part of C codeifor frequency compensate function.

ii =

£ ¢ F F + + £ + £ £ F F F F FE F £ £ F P P P £ £ £ ¥ ¥ F £ %

SOFTWARE FIPELINE INFOEMATION

Loop source line : 165
Loop opening brace source line : 170
Loop closing brace source line : 176
Loop Unroll Multiple : 4x
Enown Minimum Trip Count : 64
Fnown Maximum Trip Count : 64
Enown Max Trip Count Factor 1 64
Loop Carried Dependency Bound (") : 3
Unpartitioned Rescurce Bound » 11
Partitioned Resource Bound (%) : 12

Resource Partition:

L-side E-zide

L units 0 0

.58 units & 7

.D units 10 12+

M units 11 5

.X cross paths 8 11

.T address paths 12+ 12+

Long read paths o o

Long write paths 0 0

Logical ops (.L3) 2 ] (.-L or .5 unit)
Addition ops (.LSD) 11 7 (.L or .5 or .D unit)
Bound(.L .S .LS3) 4 a

Bound(.L .S .D .LS .LSD) 10 12%

Searching for software pipeline schedule at ...

12 schedule found with 4 iterations in parallel

Figure 5.34: Software-pipeline information for frequency compensate function.

89



L5: ; PIPED LOCFP FERNEL

[ BO] MPYSU  .M2 2,B0,B0 ; <0,25>
I MPYHL  .M1X 219,818,245 : |175] <0,25>
I LDNDW  .D2T1  “B4++(8),A5:L4 ;1174 <1,13>
I NEG .52 29,820 ;1171 <1,13>
I NEG \L2 BE17,B18 ;1171 <1,13>
EXT .82 B19,16,16,87 ;1172 <0,26>
I MPY LM1X 28,B16,A5 ; 1175] <0,26>
I SUB LL2X a5,B87,B21 ;1174 <0,26>
Il [ 22] LDH .D2T2  *+B23[B20],B24 ;1172 <1,14>
[l [ 21] LDW .D1T1  *++A22 (16),325 ;1171 <2,2>
MPYHL .Ml 23,R26,A3 ; 1175] <0,27>
I MPYHL  .M2X 23,819,858 ;1174 <0,27>
I ADD .I1 217,25,23 ; 1175] <0,27>
I SHR .82 B21,15,B19 ;1174 <0,27>
Il [ 22] LDHE .D2T1  *+B8[B18],a27 ; 1171 <1,15>
I NEG .12 El6,B21 ;1172 <1,15>
I DD .51 &,SP,R220 ;1172 <2, 3>
[l [ zl] LDW .DIT2  *+R22(8),B17 ;1171 <2, 3>
DD .Il A23,25,R8 ; 1175] <0,28>
I SHR .51 23,15,n24 ; 1175] <0,28>
I MEYHL  .M1X 28,8716 : |175] <0,28>
I EXT .52 E21,16,16,820 s |172] <1,1é>
|l [ z2] LDE .D2T1  *+B22[B20], 326 s |171] <1,1é>
I ADD LL2X 218, SP,B22 ;1171 <2, 4>
[l [ 21] TDW .D1T2  *+m22(4),B17 ;1171 <2, 4>
[ 20] SUB .51 20,1,n0 : |176] <0,29>
I SHR .52 B9, 15,89 : |175] <0,29>
I SUB LL2X 225,817,517 ;1174 <0,29>
[l [!BO] sTH .DIT1 B4, *++R16(8) ;1174 <0,29>
I MEY LM1X 16,816,106 ;1174 <1,17>
|l [ z2] LDE .D2T2  *+B25[B18],B18 ;1172 <1,17>
I MV Tl 26,819 ;1174 <1,17>
SHR .82 B17,15,B18 ;1174 <0, 30>
I ADD .Il 23,R6,026 : |175] <0, 30>
I SUB .51X 29,B8,29 : |174] <0, 30>
I MV .D1 25,23 ;1174 <1,18>
[l [ 21] LDNDW .D2T1  *BS5++(8),A7:26 ;1174 <2, 6>
I ADD LL2X 1@, sp,B8 ;1171 <2, 6>

Figure 5.35: A part of assembly code for frequency compensate function—I.

90



[1B0]
[ 20]

[ a1]

[1BO]
[1BO]

[1BO]

[1BO]

[I1BO]

[ 21]

[ mr2]

[ al1]
[ B1]

[ &1]
[1BO]

Figure 5.36: A part of assembly code for frequency compensate function—II.

STH
B
MV
MPY
ADD
LDW

STH
STH
SHE
MPY
MPY
ADD
NEG
NEG

STH
SHE
STH
SUB
MPY

MPYHL

ADD
ADD

STH
MV

NEG
NEG
MEY
SHE
LDH

SUB
SHE
ADD

MPYHL

EXT

MPYHL

LDH
LDH

SUB
STH

MPYHL

NEG
MEY
EXT

LDH
ADD

.pa2T2
.51
L1
JM1X
92X
.DiTl

.D2T1
.piTz2
.81
JM2X
M1
L2
L1
.82

.DlT2
.51
.D2T1
L1
M2
M1
.82
L2

.D2T1
Ll
.52
L2
M1
.81
.piT2

L1
.51
L2
M2
.82
M1
.D2T1
.piTz2

.81
.D1T1
M1
L2
M2X
.82

.D2T2
WL1X

BY, *++BE6 (B)
5

n4,n23
24,B21,n4
~l18,8P,B9
*+R33(12) , L9

224, %+BE(2)
B19, *+A16(2)
n26,15,A25
219,820,820
27,217,225
8,5®2,B25
25,004
B17,B19

B18, *+216(4)
n8,15,n4
225, *+BE (6)
6,R4,L6
223,B16,B21
223,127,817
8,sP,B23
8,5e,B16

24, %+BE(4)
27,28

B18,E18

B87,B7
23,817,823
26,15,n4
“+n20[R24],B16

n2,1,a2
9,15,220
B21,B520, B9
223,B18,B7
B14,16,16,B18
219,227,285
“+E5[B15], 17
“+n21[n24],B16

21,1,n1
220, *+216 (6)
2E,R26E, R0
524,519
25,857,817
B7,16,16,B16

“+B16[B15],B7
als,sp,n21

¥
r

ETRE TR TR TEE PR TR M me me me e e s ws W e e e e e S TEE T T

meome e e e e s e

TR TR T T

1175
1176
1174
1174
1171
1171

1175
1174
1175
11735
1174
1172
1171
1171

1174
1175
1175
1174
1175
11735
1172
1172

1175
1174
1172
1172
1175
1174
1172

<0, 35
1174
1175
1174
1172
1174
1171
1171

<0, 36
1174
1174
1172
1174
1172

1172
171

<0, 31>
<0, 31>
<1,15>
<1,1%>
<2, 7>
<2,7>

<0, 32>
<0, 32>
<0, 32>
<1,20>
<1,20>
<2,8>
<2,8>
<2,8>

<0, 33>
<0, 33>
<0, 33>
<1,21>
<1,21>
<1,21>
<2,9>
<2, 5>

<0, 34>
<l,22>
<1l,22>
<l1,22>
<1,22>
<1,22>
<2,10>

>
<0, 35>
<1,23>
<1,23>
<1,23>
<1l,23>
<Z,11>
<2,11>

>

<0, 36>
<1, 24>
<l1,24>
<1,24>
<1,24>

<2,1l2>
<3, 0>

91



Table 5.5: Profile of Synchronization Function Blocks

Blocks Code Size | Avg. Clock Load

(Bytes) Cycles (# DSPs)
Modulation 472 537 0.0358
Pilot Generate 120 38 0.0025
Subcarrier Alloc. 1368 1064 0.0709
IFFT* 676 6802 0.4535
Add CP and Tx SRRC 2660 9143 0.6096
Rx SRRC and Downsample 3872 13584 0.9056
Preamble Sync. 976 4860 0.3240
CFO Estimation 1592 9621 0.6414
Frequency Compensate 3484 11229 0.7486
FET* 536 6906 0.4604

* Note: TI DSPLIB employed.

92




Percentage of loading in the Tx

Pilot generate < 1%
9 Modulation 3%

Subcarrier allocate 6%

Figure 5.37: Percentage of DSggloading in the Tx and the Rx.



Chapter 6

OFDMA TDD Downlink
Synchronization

In this chapter, we discuss synchronization problems of the IEEE 802.16e OFDMA TDD
downlink system, and find or design some synchronization techniques to overcome them.
OFDMA is much like OFDM in some issues such as-symbol timing offset, fractional CFO
and SFO, but it also has other issues_we did not face in the last chapter like integer CFO

correction and preamble index identification:

6.1 OFDMA Downlink Synchronization Problems and
Techniques

There are some differences between OFDMA downlink and OFDM uplink:

1. In OFDMA downlink, the SS does not know which preamble is used in advance. Since
there are 114 different preambles, an SS must find the preamble index used in the

currently received frame.

2. Different preamble indexes correspond to different IDcells and different used segments,

so an SS must find the preamble index before processing the following symbols.

94



3. In the downlink, due to potentially large tolerance in the free-running oscillator fre-
quency of the SS, and due to motion-induced Doppler spread, there may be large carrier
frequency offset and sampling frequency offset in the received signal. Hence there may

be integer CFO, and the SFO may be large that the SS cannot ignore it.

4. The 802.16e specifies that the transmitted center frequency and symbol clock frequency
must be derived from the same reference oscillator both at the BS and the SS, so the
CFO and the SFO shall have the same error ratio, and we can estimate and correct

them together.

First we use the preamble symbol to estimate the timing offset and the integer CFO
since these two parameters are fixed in the whole frame even at high mobile speed. Because
the preamble index decides the IDcell and the used segment, the preamble index should
be found before the subsequent symbels.  The fractional CFO is estimated in every symbol
including the preamble, and the estimated values are averaged for more accurate results.
Since the transmitted center frequency, and“symbol clock frequency are reference to the
same oscillator, sampling frequency ‘synchronization.‘can be ignored. Fig. 6.1 shows the
synchronizer structure of the SS. The dotted block “fine timing synchronization” can be

present or absent.

6.1.1 Timing Offset and Fractional Carrier Frequency Offset

In timing offset and fractional CFO estimation, we use a similar technique as that used in
Chapter 5. Thus we do not repeat the detail here. We only note that since we do not yet
know which preamble is used in this step, we just view preamble symbol as a regular symbol
and estimate timing offset and fractional CFO by using CP correlation [21]. However, the
particular quasi-periodic use of the subcarrier in the preamble may give use to some time-

domain symbol structure that can be exploited to some advantage; we leave this to potential

95



-
>

no

l Fy

fine timing
synchronization

to channel
estimator

_|integer CFO and preamble

timing and fractional CFO
FFT "|index synchronization >

synchronization

Figure 6.1: The proposed OFDMA synchronizer structure.

future work.

The equation we use to average estimated CFOs for more accuracy is also different form

that for OFDM. After many experiments, we choosé.the equation below:

Enp1 = LI for 0 <k < 10,

1
€k+1 = €/€+1 x 0.99 + € X 0.01 for k > 10. (6 )

where €, €, and k are as in (5.6).

6.1.2 Integer Carrier Frequency Offset

The integer CFO should be estimated during the preamble symbol duration and before
estimating the preamble index. If we do not know the integer CFO we cannot estimate the

preamble index correctly, and the following processing will be meaningless.

In our work, we synchronize the integer CFO by using the frequency-domain structure
preamble. Note that there are three types of preamble carrier-sets, and each segment uses
only one carrier-set. Carrier-set 0 uses subcarrier indexes 172, 175, 178, ..., 1870, 1873,
the subcarrier indexes that carrier-set 1 uses are those used by carrier-set 0 adding 1, and

adding 2 for carrier-set 2. If the SS knows which carrier-set the BS uses, it can synchronize to

96



the correct integer CFO exactly by shifting the preamble symbol first, and then computing
the power of the subcarriers in the carrier-set. For example if the integer CFO is fr, the
maximum possible integer CFO is f,,42, and the BS uses carrier-set 1, then we can use the
following algorithm to determine the integer CFO:
for(i = — frnarii < frnazsi + +)

{

sum=0;

for(j = 173;5 < 1871;j+ = 3)

{

sum-+=pow(Real_preamble[j + i],2)+pow(Image_preamble[j + i],2);

}

where “pow

29

is the C function used torcompute the power in the preamble subcarriers. The

¢ which has the maximum “sum” is-the estimated integer CFO.

From the algorithm, we see that foreachs#;-there needs 567(subcarrier number in the
carrier-set) x 2(real-part and imaginary=part) =1134 multiplications, and 1134 addtions.
But actually there are many terms repeated across different i, so we can disregard those
repeated terms without affection the performance. If we set the f,... as 15Af (about +23
ppm accuracy of SS’s oscillator), we can reduce the number of required multiplications and
additions to 20 x 2 = 40, about 96.5% of reduction in complexity. The inner loop of the
algorithm then becomes:

for(j =173;5 <173+ 9 x 3;j+ = 3)

{

sum+=pow (Real_preamble[j + i],2)+pow(Image_preamble[j + i],2);

97



for(j = 1874 — 9 x 3;j > 1874;j+ = 3)
{

sum+=pow (Real_preamble[j + i],2)+pow(Image_preamble[j + i],2);

Let us further analyze the complexity of the two above algorithms in general. The original
algorithm needs a total of 567X 2X (2 f,,4. + 1) multiplications and additions. In the modified
algorithm, if f,,,, mod 3 is 0 or 1, then it needs a total of floor(fiaz/3) X 2 X4 X (2fmas+1),
otherwise it needs (floor(fmaz/3) X 2+ 1) X 4 X (2fmar + 1). If the accuracy of the SS’s
oscillator will be no more than 100 ppm, then the largest possible integer CFO is 64Af. We
show the complexity of the two algorithms for f,,., in the range 1 to 64 Af in Fig. 6.2. The

additions have the same complexity as multipligations.

Actually the SS does not know the usedrearriersset in advance, but there still is a simple
relationship of the estimated integer CEO between different carrier-sets. If the SS takes
carrier-set 1 to synchronize the integer CFQ as above; and the estimated integer CFO is f,
then the result will be f;+1 if the SS worked-on €arrier-set 0, and f; —1 if the SS worked on
carrier-set 2. So we can take carrier-set 1 as the carrier-set to estimate the integer CFO, but
keep in mind that the actual situation may be f; + 1 with carrier-set 0, f; with carrier-set
1, or fy — 1 with carrier-set 2. The actual situation will be decided after preamble index

identification, which is discussed in the next subsection.

6.1.3 Preamble Index Identification

In our design, the preamble index identification is performed right after the integer CFO
synchronization. The previous stage gives us three possibilities: f; + 1 with carrier-set 0, f;

with carrier-set 1, or f; — 1 with carrier-set 2. In this stage we will find which one is correct

98



Multiplication complexity of two algorithms

lo T T T T

—— original algorithm 1
complexity-reduced algorithm| "

Required multipliers

1 i

| | | |
10 20 30 40 50 60 70
Integer CFO synchronizationirange (subcarrier spacing)

Figure 6.2: Multiplication c¢omplexity-of two algorithms.

and find the correct preamble index out of 114 candidates.

The method we use to identify the preamble index is intuitive. First we generate a known
preamble, and shift its subcarriers depending on the possible integer CFO of the carrier-set
it belongs to, then we correlate this frequency-shifted preamble with the received symbol.
After 114 preambles are shifted and correlated, choose one that has the largest correlation
value, and this is the estimated preamble index. For example, if we use preamble index 0 to
correlate with the received symbol, then we have the following algorithm:

i=fr+1

for(j = 172;5 < 1873;5+ = 3)

{

sum_real+=Real_preamble[j + i]*known_Preamble[;];

99



sum_imag+=Imag_preamble[j + i]*known_Preamble[j];
}
sum=pow (sum_real,2)+pow(sum_imag,2);
where “sum” is the correlation value, “Real_preamble” is the real part of the received symbol,
and “Imag_preamble” is the imaginary part of received symbol. In total we need 114 x (567 x

2 4 2) multiplications.

There is also another simple method to synchronize integer CFO and preamble index at
once, but the complexity is surprisingly large, and the performance is inferior: After receiving
a preamble, we may generate known preambles and shift subcarriers of every preamble in
the range from — f; to f;, then, correlate these 114 x (2f; + 1) subcarriers shifted preambles
with the received preamble, choose one which has the largest correlation value. We give a

simple comparison of their performance in the later section.

6.1.4 Fine Symbol Timing Estimation

Generally speaking, the effects caused by negative errors (resp. positive errors) in symbol
timing synchronization can be eliminated (resp: mitigated) by channel estimation. But an
accurate timing estimation can improve the performance of the integer CFO and preamble

index identification; we will discuss this point later.

Note that the symbol timing offset in a burst (or even in a subframe) are all the same even
in high speed environment. Although each symbol may have error in its timing estimation,
theoretically speaking, if we observe many consecutive symbols, the correct offset value
should appear most frequently. So, we observe consecutive estimated symbol timings first,
and then see which one appears most frequently. The observed length may be 10, 25, or 50
symbols in our tries. This method can attain a high accuracy, but the disadvantage is that

we need to store many symbols before making the final decision.

100



Table 6.1: OFDMA Receiver SNR Assumptions

Modulation | Coding rate | Receiver SNR(dB)
QPSK 1/2 5.0
QPSK 3/4 8.0
16-QAM 1/2 10.5
16-QAM 3/4 14.0
64-QAM 2/3 18.0
64-QAM 3/4 20.0

6.2 Floating-Point Simulation Results

The system profile parameters we use have been given in Chapter 3, and the channel envi-
ronments are given in Chapter 5. Like in OFDM, we only use 16-QAM modulation in our
simulation for simplicity. The specifications on the receiver SNR are shown in Table 6.1.
Our simulated SNR value are in the rangeof 0:dB to 20 dB, which is a suitable range for
16-QAM modulation. The mobile speed-isfrom 0 t0-300 km/h, and the CFO is 9.25Af.
The symbol timing offset is a random number-between=0 to 49 samples. Note that we do

not take sampling inaccuracy caused by the SFOiiito consideration in our simulation.

6.2.1 Symbol Timing Estimation

Figure 6.3 shows timing error distribution in 6-path fast Rayleigh fading channel with SNR
at 10 dB and 20 dB. The mobile speed is 240 km/h. We can see that the correct rate (the
probability of timing offset 0) is not very high even at high SNR. This is because the speed
240/h makes the channel response vary fast and greatly even in one symbol duration, which
causes the CP correlation to perform badly. If we run simulation in AWGN channel, the
correct rate are almost 100%, similar to the upper two charts in Fig. 5.8. This is because

the length of 256-sample CP is long enough to alleviate white Gaussian noise effect.

In Figures 6.4 and 6.5, we see how different speeds affect the error distribution of symbol

101



6-path fading channel, 240km/h, 10dB

o o
) ©
T
I

probability
o
N
T
|

0.2 i
- 1 1 _— - L 1
-15 -10 -5 0 5 10 15
timing offset (samples)
6-path fading channel, 240km/h, 20dB
08 T T T
0.6 B

probability
o
N
T
|

0.2f i

- 1 1 || S e 1 1
-15 -10 -5 0 5 10 15
timing offset (samples)

Figure 6.3: Distribution of timing offset estimation errors.

timing synchronization. Almost 99:5% off ertors are under +16 samples, which is required
by the specification (2048/32 x 25% = 16). Note that"we run 5000 symbols for simulation,
so the error rate 1 x 10~* actually means no error has occurred in our simulation. The SNR

here is 9 dB.

Figure 6.6 shows the RMSE, which has the same definition in the previous chapter, of

our method.

6.2.2 Fractional CFO Estimation

Figure 6.7 shows the RMSE of fractional CFO estimation in the multipath fading channel.
The top figure is result of estimated CFO without averaging, and the bottom figure is

result after averaging estimated CFOs by (6.1). Obviously, the bottom figure has better

102



Symbol timing estimation error distribution under different speeds (1), SNR=9 dB
10 T T T T T

10+ : : : : .

]
(]

8 oy

Probability
=
o

10°F : . : - .

17| —6&— error = 0 sample
—&— error >= 1 sample | |
—>— error >= 8 samples |-
error >= 16 sample
107 L I I I 1

0 50 100 150 200 250 300
Speed (km/h)

Figure 6.4: Symbol time synchronization error distribution under different speeds (i).

performance than the top one. Actually we.cannot satisfy the frequency requirement of the
IEEE 802.16e without taking the average,’so let us only examine how different speeds affect
the error distribution of fractional CFO synchronization with averaging. In Fig. 6.8 we can
discover that the speed affects the synchronization results greatly. Since the transmitted
center frequency and symbol clock frequency reference to the same oscillator, 2%A f CFO
means 9.766 ppm SFO, 1%A f CFO means 4.883 ppm SFO, and 0.5%A f CFO means 2.442
ppm SFO. So in reference to the BS, the offset in the sampling clock of the SS has a high

probability smaller than 5 ppm if the mobile speed is lower than 240km /h.

6.2.3 Integer CFO Estimation

We assume that the SS knows the correct symbol timing and look at the performance of

integer CFO synchronizer first. Since the SS does not know which preamble it receives,

103



_ Symbol timing estimation error distribution under different speeds (2), SNR=9 dB
10 " T T T T T

—<&— error <= -1 sample | |
—— error <= -8 samples
—&— error <= —16 samples!

107

Probability

10 R

10” i i i
0 50 100 150 200 250 300

Speed (km/h)

Figure 6.5: Symbol time synchronization error distribution under different speeds (ii).

we use subcarriers on the locations of carrier-set 1 to-synchronize the integer CFO, and
see whether it can synchronize to the correct value ¢orresponding to the carrier-set. For
example, if the transmitted preamble belongs to carrier-set 0 with integer CFO f;, then the
correctly synchronized result must be f; —1. The synchronized integer CFO must be exactly
the same as the true value or the following processing will be meaningless, so we use its error

probability to measure its performance.

Figure 6.9 shows the error rate of integer CFO synchronization in the 6-path Rayleigh
fading channel. Here we assume the maximum possible integer CFO is £15Af. We can see
that when SNR is high enough (above 10 dB), the error probability is under 1% no matter
what the speed is. If the channel is AWGN and the SNR is above 0 dB, the error rate is
always 0 when testing 5000 symbols. The preamble we use is index 33. We shall compare

the performance of different preamble sequences in a later subsection where we will see that

104



RMSE of symbol timing synchronization

10" ¢ : :
[ AWGN channel
= = = 6-path channel, 0 km/h
v 6-path channel, 120 km/h| |
S~ = 6—path channel, 240 km/h
10° | ]
w
K}
Q
£
I
L
w
%]
=
74
10"
2 | |

10"
SNR (dB)

Figure 6.6: RMSE of symhel timing offset synchronization.

different preambles do not differ very greatly ininteger CFO estimation performance.

6.2.4 Preamble Index Identification

We assume that the symbol timing and integer CFO synchronizations are perfect, and see
whether the SS can identification the correct preamble index by using preamble correlation
first. Figure 6.10 shows the error rate of preamble index identification in the 6-path Rayleigh
fading channel. We can see that the error probability does not vary greatly even in different
speeds or different SNRs, except when the speed is 0 km/h. The error probability is always

under 1% in our simulation environments.

If we take imperfect symbol timing and integer CFO synchronization into consideration,
Fig. 6.11 shows the probability of either integer CFO or preamble index identification error

with imperfect symbol timing synchronization. We would like to see the error rate of integer

105



CFO and preamble index together because they are done together in practice. In Fig. 6.11
we can see that the error rate is somewhat large. This is because timing offset degrades the
performance of preamble index identification very much. The main influence of timing offset
is phase rotation, which is not a big problem to power calculation of subcarriers in integer
CFO synchronization, but can result in serious performance degradation in preamble corre-
lation. For comparison, Fig. 6.12 shows the case of perfect symbol timing synchronization;
the performance is much better than in Fig. 6.11. It is desirable to find a method that can
yield better preamble identification performance. However, a 10% error rate may not be
unacceptable if the error are statistically independent from one frame to the next, because

then it would only need several frames to yield a highly accurate identification.

Figure 6.13 shows a comparison of performance of the two methods we mentioned in
6.1.3. Method I means the intuitive methodssand method II is what we use in our design.

We see method II performs better if the SNRyisularger than 5 dB.

6.2.5 Fine Symbol Timing Estimation

From Figs. 6.11 and 6.12, we see that thesperformance of timing offset estimation affect
the error rate of integer CFO and preamble index estimation severely. So we can improve
the error rate by a finer symbol timing synchronization. Use the method we mentioned
previously, we try to trace consecutive 10, 25, and 50 symbols, and see their performance.
Figure 6.14 shows the error distributions of these three cases. Clearly, the correct rate grows
as the length of traced symbol increases, but the drawback, as we already mentioned, is that

we must store up to 50 symbols and wait a long time before making a decision. The SNR

here is 9 dB.

Figure 6.15 shows the error probability of integer CFO and preamble index estimation

with fine timing synchronization, which does help in improving the performance.

106



6.2.6 Comparison of Preamble Indexes

Since there are 114 different preambles in the IEEE 802.16e, we would like to see some
synchronization performance of each of them. Here we test three tasks: symbol timing es-
timation, integer CFO estimation and preamble index identification, and see the relative
difference. The SNR here is 5 dB. From Fig. 6.16 to Fig. 6.18 are the error rates in these
three synchronization tasks. Note that the error of symbol timing synchronization means the
estimated timing offset is different from the added one. Clearly, the error rate of timing syn-
chronization differs greatly for each preamble. This is because different preamble sequences
have different CP correlation values, Fig. 6.19 is an example of two CP correlation values of
a good-performance preamble and a bad-performance one in AWGN channel. We see that
the preamble which has lower error rate has a sharper correlation curve than the other, and
this is the reason why their error rates differs greatly. On the other hand, the error rate in
integer CFO estimation or preamble index lidentification under different preambles are less

significantly different, from Figs. 6.17 and 6.18.

107



RMSE (number of subcarrier spacings)

RMSE (number of subcarrier spacings)
o
o
(&}
T

RMSE with no symbol average

0.12 T T T T

0.1r

o

o

®
T

o

o

K
T

%
M —&— 60km/h
—— 120km/h

T
—6— O0km/h

180km/h [
—A— 240km/h |
—— 300km/h

O.OZEM

0 2 4 6 8
SNR (dB)

10

12 14

RMSE after averaging estimated CFOs—under‘r‘nqltipath fading channel

o

o

s

o
T

—O©— 0km/h
—8— 60 km/h
—>— 120 km/h
180 km/h
—+— 240 km/h
—— 300 km/h | |

1

0.004 - b
————
—X———
0.002F —FE—= =] = = = o = 8] & = = 5—
M
O Il Il Il Il Il Il
0 2 4 6 8 10 12 14

SNR (dB)

Figure 6.7: RMSE of fractional CFO synchronization.

108



0Fractional CFO synchronization error distribution with averaging CFOs under different speeds
10 T T T T T

-1

Probability
=
o\
%
T
1

10 'k E
—©6— |error|>0.5% subcarrier spacing
—— |error|>1% subcarrier spacing
|error|>2% subcarrier spacing
10’4 i i i I

Il
0 50 100 150 200 250 300
Speed (km/h)

Figure 6.8: Fractional CFO synchroﬁizatiop error’distribution under different speeds.

1
1

]
Error rate of integral CFO synchronization

100 T BRI - H=rY T ]
. ok i —e—okm/h | ]
4 . F —8—60km/h | ]
fy i e —»—120km/h| ]
180km/h
—*— 240km/h| ]
—<— 300km/h|. |
107k
)
[
S
]
10°F
10’4 | | | I L
0 5 10 15 20 25 30

SNR (dB)

Figure 6.9: Error probability of integer CFO synchronization in multipath fading channel.

109



Error probability of preamble index synchronization

OOl T T T
X
0.009 | } } b
i
0.008 0
0.007 : E
2 0.006 |
=
©
Q
S 0.005 E
o
s
I 0.004 : B
0.003 : B
—o— 0 km/h
0.002 —8—60km/h |
—x— 120 km/h
180 km/h
0.001f —+— 240 km/h | |
—%— 300 km/h
0 4@\5\ N N & )
0 5 10 15 20 25 30

SNR (dB)

Figure 6.10: Error probability of preamble index synchronization in multipath fading chan-
nel.

|
Error rate of Index/integer.CFO estimation undef‘6—path,channel, CFO=9.25, Index=33

10° T T T \%‘ T
5 —6— Okm/h
—+&— 60km/h
—— 120km/h
180km/h
—4&— 240km/h
—#— 300km/h
ki
4
[
[}
5 10 "
m
1]
1072 I 1 1 1 1
0 5 10 15 20 25 30

SNR (dB)

Figure 6.11: Probability of error in either the identified preamble index or the estimated
integer CFO.

110



Error rate of Index/integer CFO estimation, no timing error, CFO=9.25, Index=33
10 T T T T T
—o— O0km/h
—&— 60km/h
—— 120km/h
——— 180km/h
—&— 240km/h
—#— 300km/h

Error rate
=
o
T
i

10” | I I L I
0 5 10 15 20 25 30

SNR (dB)

Figure 6.12: Probability of error in either the identified preamble index or the estimated
integer CFO, in perfect symbol timing.

Comparison‘ of two methods
0.18 T T T T
1 —&6— 0 km/h, method |
gg —&— 60 km/h, method |
0.16 F\ ; 5 —>— 120 km/h, method | | |
\ | — © — 0km/h, method Il
\ ¥ — 8 — 60 km/h, method Il

\ — »* — 120 km/h, method II

Error rate

0.02 I I I I I
0 5 10 15 20 25 30

SNR (dB)

Figure 6.13: Probability of error in either the identified preamble index or the estimated
integer CFO of two methods.

111



Trace 10 symbols
T T T

[

o
©
T
Il

Probability
© o
> o

T T
Il Il

0.2 9

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time offset (samples)
Trace 25 symbols
1 T T T

0.8

o
o

Probability
o
~

o
)

o

-5 -4 -3 2 =1 0 it 2 3 4 5
Time offset (samples)
Trace 50 symbols
T T

[

o o o
N [} o]
T T T
Il Il Il

Probability

o
N
T
Il

o

-5 -4 -3 -2 -1 0 1 2 3 4 5
Time offset (samples)

Figure 6.14: Distribution of timing offset estimation errors of fine timing synchronization.

112



o Comparison of integer CFO/Index error rate under different timing error rate, 6—path channel, 10dB
10 T T T T T
—6— observe 1 symbol ]
—&— observe 10 symbols|
—— observe 25 symbols| ]
observe 50 symbols| |
—%— no timing error 1

Error probability

107 1 L 1 1 1
0 50 100 150 200 250 300
Speed (km/h)

Figure 6.15: Probability of error in either the identified preamble index or the estimated
integer CFO with different fine timing synchrenization.

"1
Symbol L]ming estimation erroﬂrﬂ raté under différent prq"ambles, 5dB
1 T == T T BT

- - = - AWGN channel
'- P L Nk SR ++ 6-path fading channel, 240 km/h
0.9 ; — 1-path fading channel, 240 km/h|
*+ mean=0.5368, std=0.1326
T mean=0.2499, std=0.1601
0.8 [ I = — — mean=0.1452, std=0.1722 b

0.7:

Error probability
o o
0 o

I
S

0.3

0.2

0.1

Preamble index

Figure 6.16: Error probability in symbol timing offset estimation with different preambles.

113



Integer CFO estimation error rate under different preambles SNR=5 dB

0.055

0.05F

W\A

Aol

0.045

o

o

=
T

Error probability

0.035

M
NWV\/V

\/V A \/V\/V

““““ 6-path fading channel, 240 km/h| |
1-path fading channel, 240 km/h
““““ mean=0.0283, std=0.0024
mean=0.0498, std=0.0015

0.02
0

Figure 6.17: Error probability in

0.22

20 40 60 80
Preamble index

Index estimation error rate under different preamblés, SNR=5 dB

0.

N

AAAMAAM\ bonc b i€

T =T T T

AM

0.18

o I

i [

S )
T T

Error probability
o
i
N
T

0.1F

W

e AR

6-path fading channel, 240 km/hr|-q
““““ 1-path fading channel, 240 km/hr|
mean=0.1948, std=0.0071

““““ mean=0.0704, std=0.005 ~

i i i i

0.04
0

Figure 6.18: Error probability in preamble index identification with different preambles.

i
100

20 40 60 80
Preamble index

114

integer. CFO estimation with different preambles.



3 x107 Correlation values of different preamble symbols

T T
"""" preamble index=24, Err=0.5458
preamble index=19, Err=0.0001

2.8

2.6

INd
»

Correlation value
N
N

1.8

1.6 T i
200 250 300 350
Timing (samples)

Figure 6.19: CP correlation values of two preambles.

115



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we first discussed the synchronization problems of the IEEE 802.16e OFDM
TDD UL system, modified to fixed-pointsvetsion, and implemented them on TT's C6416

digital signal processor. Second, we alsodiscussed the synchronization problems of the

OFDMA TDD DL system, which has different issues frém OFDM.

In the OFDM system, we designed a new algorithm:to estimate symbol timing by taking
advantage of the time-domain structure of the preamble. This algorithm had a well per-
formance (more than 80% correction rate) even in the 60 km/h multipath Rayleigh fading
channel. A CP correlation in [21] was used to synchronize fractional CFO of each symbol,
and we averaged each estimated values for more accurate results. After averaging, more
than 99% of synchronized results can reach the requirement of the specification. The inte-
ger CFO and symbol sampling frequency offset synchronization could be ignored. Next, we
modified the whole system to fixed-point version, and used some optimization techniques to
accelerate each block as fast as we can on TI's DSP. The fixed-point modification degraded
the performance of original methods in a range we can accept, and after optimization, every

block could achieve real-time rate.

116



In the OFDMA system, SFO, integer CFO, and preamble index identification were three
problems needed to be considered. Since an SS does not know the exact subcarrier values of
the preamble, we just viewed a preamble symbol as a regular symbol and estimated timing
and fractional CFO by CP correlation in [21]. Like in the OFDM system, we estimated
symbol timing offset only by the preamble, but estimated fractional CFO by averaging
the estimated values of each symbol for more accuracy. After averaging, more than 99%
of results can reach the requirement of the specification if the mobile speed wa less than
240 km/h. We developed a method to estimate symbol timing offset more accurately by
observing consecutive symbols, this can help to improve the performance of preamble index
identification. The integer CFO estimation and preamble index identification were done
together. First we estimated the possible integer CFO, then we used this estimated value
and its corresponding carrier-set to find which index it really was. If the SNR was reasonable,
both error rates of these two synchromization methods were less than 1% even the mobile
speed was high. If we took imperfect symbol timing estimation into consideration, the error
rate of either the integer CFO estimation ot"the preamble index identification was about 1%

when using the fine timing estimation:

7.2 Future Work

There are several possible extensions for our research:

e Take the effect caused by sampling frequency offset into consideration. This is for a

more practical simulation.

e Consider to deal with SFO synchronization in addition, especially in the high mobile

speed environment, this can help the performance of BER.

e Run fixed-point simulation for the OFDMA system. We must change it to fixed-point

117



version so that we can run the system in the hardware.

e Try to use the quasi-periodic time-domain structure of the preamble to estimation

symbol timing offset.

e Analyze the effects of different length of guard interval. The guard interval length may

effect the performance of fractional CFO and symbol timing.

118



Bibliography

1]

A. Ghosh, D. R. Wolter, J. G. Andrews, and R. Chen, “Broadband wireless access
with WiMAX/802.16: current performance benchmarks and future potential,” IEFEFE

Commun. Mayg., vol. 43, pp. 129-136, Feb. 2005.

IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks —
Part 16: Air Interface for Fized Broadband Wireless Access Systems. New York: IEEE,
June 2004.

IEEE Std 802.16e, IEEFE Standard: for Local-and Metropolitan Area Networks — Part
16: Air Interface for Fized Broadband Wireless Acecess Systems. New York: IEEE, Feb.
2006.

H. Yaghoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,” Intel

Technology Journal, vol. 8, pp. 201-212, Aug 2004.

M.-T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD
OFDMA: Transmission filtering and synchronization,” M.S. thesis, Department of Elec-
tronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June

2003.

H.-C. Lin, “Study and DSP implementation of IEEE 802.6a TDD OFDMA uplink
synchronization,” M.S. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., June 2004.

119



[7]

[11]

[12]

[13]

[15]

[16]

C.-C. Tung, “IEEE 802.16a OFDMA TDD uplink transceiver system integration and
optimization on DSP platform,” M.S. thesis, Department of Electronics Engineering,

National Chiao Tung University, Hsinchu, Taiwan, R.O.C., June 2005.

R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston:

Artech House, 2000.

D. Matiae, “OFDM as a possible modulation technique for multimedia application in

the range of mm waves,” http://www.ubicom.tudelft.nl/MMC/Docs/introOFDM.pdf.

S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing
using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. COM-19,
pp. 628-634, Oct. 1971.

K. K. Leung, S. Mukherjee, and G. 4. Rittenhéuse, “Mobility support for IEEE 802.16d
wireless network,” IEEE Commun. Society, vol. 3, -pp. 1446-1452, March 2005.

J. Puthenkulam, and M. Goldhammer, “802.16' overview and coexistence aspects,”

http://grouper.ieee.org/groups/802/secmail /ppt00009.ppt.

P. Dent, G. E. Bottomley, and T. Croft, “Jakes’ fading model revisited,” Electron. Lett.,

vol. 29, no. 13, pp. 1162-1163, June 1993.

ETSITR 101 112, “Selection procedures for the choice of radio transmission technologies

of the UMTS,” ETSI Techbical Report, V3.0.2, pp. 3843, Apr. 1994.

Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fized-Point
Digital Signal Processors. Literature no. SPRS226A, Mar. 2004.

Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. Litera-
ture no. SPRU189F, Oct. 2000.

120



[17] Texas Instruments, Code Composer Studio User’s Guide. Literature no. SPRU328B,

Feb. 2000.

[18] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature no. SPRU198G,
Aug. 2002.

[19] Texas Instrument, TMS320C6000 Optimizing Compiler User Guide. Literature no.
SPRU187K, Oct. 2002.

[20] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM systems,”
IEEFE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.

[21] J.-C. Lin, “Maximum-likelihood frame timing instant and frequency offset estimation
for OFDM communication over a fast Rayleigh-fading channel,” IEEE Trans. Vehicular
Technology, vol. 52, no. 4, pp. 1049-1062, July:2003.

[22] M. Speth et al., “Optimum Receiver Design for Wireless Broad-Band Systems Using
OFDM—Part 1,” IEEE Trans.-Comamun.,vol. 47, pp. 1668-1677, Nov. 1999.

121



	cover.pdf
	abstract.pdf
	誌謝.pdf
	Thesis.pdf

