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摘  要 

 

隨著高解析數位電視時代的來臨，為了兼顧大且精緻的畫面，高壓縮率規格

(H.264)是我們現行的解決方案。它不僅可有效節省儲存媒體所需的空間，同時

也可在現行的通訊環境下允許傳輸更高解析的畫面。伴隨著種種好處而來的就是

極之龐大的運算量，而大量的快速演算法也因此應運而生。如何兼顧畫質和運算

速度成了當前最重要的課題，而這也是本篇論文的主旨。 

 

根據已出版的文獻，位移估測是整個壓縮過程中最為費時的。更進一步去了

解這個部份，我們可以把他大致上分為整數位移估測和分數位移估測。在原始演

算法的條件下，由於搜尋範圍較大整數位移估測佔去了絕大部分的時間。因此我

們非常直覺的認為，若能大幅減少搜尋範圍又能使畫質維持差不多水準將可以有

效節省壓縮時程，我們提出的快速演算法能夠針對不同解析畫面達到 88% (352 x 

288)和 75%(720 x 480)的節省。分數位移估測在原始演算法的架構下，由於搜

尋點數遠少於整數位移估測所以在整個壓縮的過程中並沒有決定性的影響。但隨

著整數位移估測快速演算法的發展，分數位移估測搜尋點數所佔的比例慢慢升

高，分數位移估測快速演算法也愈來愈有存在的必要性。在單一樣式錯誤表面的

假設下，我們利用特定點的錯誤數值去預測整個搜尋視窗的錯誤表面。除此之

外，我們也引進了提前終止的技術。此分數快速位移估測部分可以減少超過 50%

的運算量。在整數和分數位移估測同時使用快速演算法的情形下，以 1280 x 720

為測試解析度，我們可以加速總壓縮時間達 20 倍之鉅。另外一種常見的解決方

式是利用硬體平行化同時處理多筆資料以達到加速的目的。在分數位移估測方

面，拜快速演算法之賜，我們的架構可以減少將近 40%面積和加速 14%。 
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Abstract 

 

With modern day advances in computer processing and multimedia applications, 

improvements in the area of image processing and video compression are analogous. 

Video compression allows the reduction of high-resolution video into a more compact 

memory space to thereby reduce storage and video processing resources during 

playback. 

 

According to the literature published before, we can find that the motion 

estimation process is the most time consumed part. To further realize this process, we 

can mainly divide it into two parts: integer motion estimation and fractional motion 

estimation. Integer motion estimation cost most part of time under the original 

algorithm unchanged. The main reason is that the search window is too large. So we 

have a very simple idea that we want to decrease the search window. We can reduce 

88% (input sequence as CIF size) and 75% (input sequence as D1 size) search points 

respectively. Fractional motion estimation will not affect obviously under the original 

condition. But when the fast algorithm is applied for integer motion estimation, the 

portion of encoding time due to fractional motion estimation is getting larger. Based 

on the assumption of uni-modal error surface, we want to use the results of half pixel 

step to predict the slope of error surface. We also apply early termination technique. 

We can get 50% search points reduction in this part. By applying both fast algorithms, 

we get 20 times speed up with the input sequence size as 1280 x 720. Making use of 

hardware parallelism to speed up is also a common method in H.264 research field. 

By the benefit of applying fast fractional motion estimation algorithm, we decrease 

40% area and speed up by 14% in our fast fractional motion estimation architecture. 
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Chapter 1  Introduction 
 

1.1 THE SCENE 

 

Pervasive, seamless, high quality digital video has been the goal of companies, 

researchers and standards bodies over the last two decades. In some areas (for 

example broadcast television and consumer video storage), digital video has clearly 

captured the market (such as videoconferencing, video email, mobile video), market 

success is perhaps still too early to judge. However, there is no doubt that digital 

video is a globally important industry which will continues to pervade businesses, 

networks and homes. The continuous evolution of the digital video industry is being 

driven by commercial and technical forces. The commercial drive comes from the 

huge revenue potential of persuading consumers and businesses: 

 

1. Replace analogue technology and older digital technology with new, efficient, 

high quality digital video products. 

 

2. Adopt new communication and entertainment products those have been made 

possibly by the move to digital video. 

 

The technical drive comes from continuing improvements in processing performance, 

the availability of higher capacity storage and transmission mechanisms and research 

and development of video and image processing technology. 

 

 Getting digital video from its source (a camera or a stored clip) to its destination 

(a display) involves a chain of components or processes. Keys to this chain are the 

processes of compression (encoding) and decompression (decoding), in which 

bandwidth-intensive ‘raw’ digital video is reduced to a manageable size for 

transmission or storage, then reconstructed for display. Getting the compression and 

decompression processes ‘right’ can give a significant technical and commercial edge 

to a product, by providing better image quality, greater reliability and more flexibility 

than competing solutions. There is therefore a knee interest in the continuing 

development and improvement of video compression and decompression methods and 

systems. The interested parties include entertainment, communication and 

broadcasting companies, software and hardware developers, researchers and holders 

of potentially lucrative patents on new compression algorithms. 
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The early successes in the digital video industry (notably broadcast digital 

television and DVD-video) were underpinned by international standard ISO/IEC 

13818 [1], popularly known as ‘MPEG-2’ (after the working group that developed the 

standard, the Moving Picture Experts Group). Anticipation of a need for better 

compression tools has led to the development of two further standards for video 

compression, known as ISO/IEC 14496 Part 2 (MPEG-4 Visual) [2] and ITU-T 

Recommendation H.264/ISO/IEC14496 Part 10 (H.264) [3]. MPEG-4 Visual and 

H.264 share the same ancestry and some common features (they both draw on 

well-proven techniques from earlier standards) but have notably different visions, 

seeking to improve upon the older standards in different ways. The vision of MPEG-4 

Visual is to move away from a restrictive reliance on rectangular video images and to 

provide an open, flexible framework for visual communications that uses the best 

features of efficient video compression and object-oriented processing. In contrast, 

H.264 has a more pragmatic vision, aiming to do what previous standards did 

(provide a mechanism for the compression of rectangular video images) but to do it in 

a more efficient, robust and practical way, supporting the types of applications that are 

becoming widespread in the marketplace (such as broadcast, storage and streaming). 

 

1.2 VIDEO COMPRESSION 

 

 Network bit rates continue to increase (dramatically in the local area and 

somewhat less so in the wider area), high bit rate connections to the home are 

commonplace and the storage capacity of hard disks, flash memories and optical 

media is greater than ever before. With the price per transmitted or stored bit 

continually falling, it is perhaps not immediately obvious why video compression is 

necessary (and why there is such a significant effort to make it better). Video 

compression has two important benefits. First, it makes it possible to use digital video 

in transmission and storage environments that would not support uncompressed raw 

video. For example, current internet throughput rates are insufficient to handle 

uncompressed video in real time (even at low frame rates or small frame size). A 

Digital Versatile Disk (DVD) can only store a few seconds of raw video at television 

quality resolution and frame rate, so DVD video storage would not be practical 

without video and audio compression. Second, video compression enables more 

efficient use of transmission and storage resources. If a high bit rate transmission 

channel is available, then it is more attractive proposition to send high resolution 

compressed video or multiple compressed video channels than to send a single, low 

resolution, uncompressed stream. Even with constant advances in storage and 
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transmission capacity, compression is likely to be an essential component of 

multimedia services for many years to come. 

 

An information carrying signal may be compressed by removing redundancy from the 

signal. In a lossless compression system statistical redundancy is removed so that the 

original signal can be perfectly reconstructed at the receiver. Unfortunately, at the 

present time lossless methods can only achieve a modest amount of compression of 

image and video signals. Most practical video compression techniques are based on 

lossy compression, in which greater compression is achieved with the penalty that the 

decoded signal is not identical to the original. The goal of a video compression 

algorithm is to achieve efficient compression whilst minimizing the distortion 

introduced by the compression process. 

 

 Video compression algorithms operate by removing redundancy in the temporal, 

spatial frequency domain. The human eye and brain (Human Visual System) are more 

sensitive to lower frequencies. By removing different types of redundancy (spatial and 

temporal) it is possible to compress the data significantly at the expense of a certain 

amount of information loss (distortion). Further compression can be achieved by 

encoding the processed data using an entropy coding scheme such as Huffman coding 

or Arithmetic coding. 

 

 Image and video compression has been a very active field of research and 

development for over twenty years and many different systems and algorithms for 

compression and decompression have been proposed and developed. In order to 

encourage inter-working, competition and increased choice, it has been necessary to 

define standard methods of compression encoding and decoding to allow products 

from different manufacturers to communicate effectively. This has led to the 

development of a number of key International Standards for image and video 

compression, including the JPEG, MPEG and H.26X series of standards. 

 

1.3 MPEG-4 AND H.264 

 

 MPEG-4 Visual and H.264 (also known as Advanced Video Coding) are 

standards for the coded representation of visual information. Each standard is a 

document that primarily defines two things, a coded representation (or syntax) that 

describes visual data in a compressed form and a method of decoding the syntax to 

reconstruct visual information. Each standard aims to ensure that compliant encoders 

and decoders can successfully inter-work with each other, whilst allowing 



 4 

manufacturers the freedom to develop competitive and innovative products. The 

standards specially do not define an encoder; rather, they define the output that an 

encoder should produce. A decoding method is defined in each standard but 

manufacturers are free to develop alternative decoders as long as they achieve the 

same result as the method in the standard. 

 

 MPEG-4 Visual and H.264 have related but significantly different visions. Both 

are concerned with compression of visual data but MPEG-4 Visual emphasizes 

flexibility whilst H.264’s emphasis is on efficiency and reliability. MPEG-4 Visual 

provides a highly flexible toolkit of coding techniques and resources, making it 

possible to deal with a wide range of types of visual data including rectangular frames 

(traditional video material), video objects (arbitrary-shaped regions of a visual scene), 

still images and hybrids of natural (real-world) and synthetic (computer-generated) 

visual information. MPEG-4 Visual provides its functionality through a set of coding 

tools, organized into ‘profiles’, recommended groupings of tools suitable for certain 

applications. Classes of profile include ‘simple’ profiles (coding of rectangular video 

frames), object-based profiles (coding of arbitrary-shaped visual objects), still texture 

profiles (coding of still images or texture), scalable profiles (coding at multiple 

resolutions or quality levels) and studio profiles (coding for high quality studio 

applications). 

 

 In contrast with the highly flexible approach of MPEG-4 Visual, H.264 

concentrates specifically on efficient compression of video frames. Key features of 

the standard include compression efficiency (providing significantly better 

compression than any previous standard), transmission efficiency (with a number of 

built-in features to support reliable, robust transmission over a range of channels and 

networks) and a focus on popular applications of video compression. Only three 

profiles are currently supported (in contrast to nearly 20 in MPEG-4 Visual), each 

targeted at a class of popular video compression applications. The Baseline profile 

may be particularly useful for ‘conversational’ applications such as video 

conferencing, the extended profile adds extra tools that are likely to be useful for 

video streaming across networks and the Main profile includes tools that may be 

suitable for consumer applications such as video broadcast and storage. 

 

1.4 INTRODUCTION 

 

With modern day advances in computer processing and multimedia applications, 

improvements in the area of image processing and video compression are analogous. 
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Video compression allows the reduction of high-resolution video into a more compact 

memory space to thereby reduce storage and video processing resources during 

playback. Reduced memory requirements for video footage can aid in lengthy video 

segments being stored onto portable media to and improve the mobility and 

transferability of large files. Bandwidth is also increased when performing file 

transfers, as quicker download and upload times are achieved through Internet and 

other transfer protocols. 

 

Videos are produced through a series of different frames (or images) played in 

sequence. Therefore, the area of video compression reduces down to specialized 

forms of image compression with specific consideration for video playback. The art 

of video compression tends to fall into one of two categories: lossless compression 

and lossy compression. Lossy compression entails the reduction of certain finer image 

details that are sacrificed for the sake of saving a little more bandwidth or storage 

space. Lossless compression, on the other hand, involves compressing data such that 

it will be an exact replica of the original data upon decompression. For many types of 

binary data, such as documents and various programs, lossless compression is 

required as the integrity of the original data needs to be preserved. Many types of 

multimedia, on the other hand, need not be reproduced exactly as before. An 

approximation of the original image is usually sufficient for most purposes, as long as 

the error between the original and the compressed image is tolerable.  

 

In performing lossy compression, a common technique is to remove redundant 

information between adjacent frames to reduce memory constraints and increase 

bandwidth. This technique is referred to as motion estimation (ME), of which H.264 

and MPEG-4 are the current known standards. These standards exploit and remove 

temporal redundancies between successive frames, or more simply, select a reference 

frame and predict subsequent frames based on the reference frame. Motion estimation 

makes the assumption that the objects in the scene solely possess translational motion. 

This assumption holds as long as there is no pan, zoom, changes in luminance, or 

rotational motion. Motion estimation is an intensive process which generally 

consumes 60-90% of the computational time of a related encoder or micro-controller. 

 

The ME process begins first by dividing the current frame into macroblocks. The 

size of a macroblock is typically 16x16 pixels, but can vary for each ME technique 

according to the desired tradeoff between resolution and computational cost. Each 

macroblock of a current frame is compared to a macroblock of a reference frame by 

calculating a cost value for selected search points of the macroblocks. A current 
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macroblock that is sufficiently similar reference macroblock is then selected and 

paired together. Vectors denoting a displacement between each matching reference 

macroblock and each matching current macroblock are then determined. These 

vectors are known as motion vectors, and serve as a representation of the 

displacement between matching macroblocks from the reference frame to the current 

frame for use in the prediction process. 

 

Using the reference frame and motion vectors, one can now reconstruct an 

approximation of the current frame (now the reconstructed frame) by copying the 

matching reference macroblock of the reference frame to the location noted by the 

corresponding motion vectors. This form of image reconstruction is also known as 

motion compensation. In this manner, subsequent frames can be continually predicted, 

without having to store redundant macroblocks from a current frame into memory. 

Certain macroblocks from the reconstructed frame are simply produced from a 

matching macroblock from a reference frame according to a motion vector. This 

process therefore compresses video sizes by omitting the storage of redundantly used 

macroblocks. The level of compression varies with the number of macroblocks 

replaced from frame to frame, and the desired image resolution.   

 

The matching process in ME entails comparing selected pixels from a current 

macroblock with the same pixels from a reference macroblock using a cost function. 

A search algorithm provides the selection of search points indicating which pixels are 

to be used for comparison in the matching process. The cost function provides a value 

indicating the degree of similarity between the compared search points. One of the 

more common cost functions to determine the similarity between two input images 

includes the sum of absolute differences (SAD). The greater the similarity between 

the two inputs, the smaller the SAD value will result. The matching process in ME 

therefore uses a cost function to compare search points of a current macroblock to 

search points of a reference macroblock to determine the degree of similarity between 

the two macroblocks. If the cost values between the two macroblocks are sufficiently 

low, then the reference macroblock is suitable to replace the current macroblcok in 

motion estimation. 

 

1.5 MOTIVATION 

 

According to the literature published before, we can find that the motion 

estimation process is the most time consumed part. To further realize this process, we 

can mainly divide it into two parts: integer motion estimation and fractional motion 
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estimation. Integer motion estimation cost most part of time under the original 

algorithm unchanged. The main reason is that the search window is too large. So we 

have a very simple idea that we want to decrease the search window. Reducing search 

range is the most effective way to decrease search window and memory accesses can 

be saved significantly. This is the main reason why we choose the way but other 

methods such as search pattern rearrangement. Fractional motion estimation will not 

affect obviously under the original condition. But when the fast algorithm is applied 

for integer motion estimation, the portion of encoding time due to fractional motion 

estimation is getting larger. Based on the assumption of uni-modal error surface, we 

want to use the results of half pixel step to predict the slope of error surface. We also 

apply early termination technique. Due to the unchanged system order, we use the 

information from integer part to predict the threshold of fractional part. Making use of 

hardware parallelism to speed up is also a common method in H.264 research field. 

To trade off between speed and area, we use certainly parallelism and decompose 

variable block size into 4X4. In the topic of speed up, we reach the goal by applying 

early termination technique.  

 

1.6 THESIS ORGANIZATION 

 

In the thesis, we will introduce the H.264 standard and some published 

algorithms in chapter2. In integer motion estimation part, we develop fast algorithm 

as dynamic search range prediction. We will detail it in chapter3. In fractional motion 

estimation part, fast algorithm named as adaptive search pattern prediction is 

described in chapter4. The co-simulation result by applying both fast algorithms 

mentioned in chapter3 and chapter4 is shown in chapter5. Then, we will show the 

hardware architecture and result comparisons in chapter6. Finally, a conclusion is 

given in chapter7. 
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Chapter 2  Overview of H.264/AVC standard 
 

2.1 OVERVIEW 
 

H.264 consists of a number of tools. Its basic structure is the so-called 

motion-compensated transform coder. Compared to the prior video coding standards, 

many important and new techniques are employed in H.264 and they together bring 

significant improvement on coding performance. Some of these techniques are 

highlighted here [5]. We may want to add that the concepts of some of these tools 

have existed for some time but they are nicely tuned and integrated together to form a 

good compression scheme in H.264. 

 

2.1.1 Variable block-size motion compensation with multiple references 

 

The basic unit in H.264 motion estimation is the 16x16 macroblock. It can be 

further split into a tree structure, with a minimum motion compensation block size as 

small as 4x4. Also, up to five reference frames may be used for motion compensation. 

 

2.1.2 Directional spatial intra coding 

 

To reduce the correlation inside a block, H.264 adopts the intra-prediction 

technique, which estimates the current block pixel values based on the known pixels 

of its neighbor blocks. The prediction results implicitly follow the edge direction, and 

often bring significant improvements. 

 

2.1.3 In-loop deblocking filter 

 

Block-based video coding produces artifacts known as blocking artifacts at low 

bit rates. This in-loop deblocking filter adjusts its filter strength adaptively according 

to the image local characteristics, and thus it provides better quality pictures at the 

decode end. 

 

2.1.4 Context adaptive entropy coding 

 

Two entropy coding methods, Context-based Adaptive Binary Arithmetic Coding 

(CABAC) and Context-based Adaptive Variable Length Coding (CAVLC), are 

provided in H.264. Both methods use context-base adaptivity to improve the entropy 
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coding performance and the results show this approach is quite successful. 

A simplified encoding flow of H.264 is shown in Fig 1. A video frame is first 

partitioned into a number of 16x16 macroblocks. Then, each macroblock goes 

through the intra-prediction or the inter-prediction unit. The intra prediction unit uses 

the neighboring block data to predict the current block. The inter-prediction uses 

reference frames to predict the current frame. Each predictor has a number of modes. 

A good design should pick up the best mode with the lowest rate and distortion. The 

prediction residuals are then transformed, quantized and further entropy-coded into 

the output bitstream. In order to continue operating on the next incoming frame, the 

quantized current frame is reconstructed and stored. The decoder data flow is the 

reverse of the encoder flow. 
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Fig 1 Block diagram of H.264 encoder 
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2.1.5 Computational profile 

 

The H.264 encoder reference software provided by the ITU/MPEG standard 

committee is known for its high computational complexity. A typical computational 

profile of the H.264 encoder (ITU/MPEG reference software) running on Intel PC, is 

shown in Fig 2. It shows that the tools of (a) motion estimation, (b) entropy coding, (c) 

transform and quantization, (d) interpolation, and (e) mode decision and 

intra-prediction are the most time-consuming modules. Although the other results of 

profiling would have somewhat different, by and large, the trend is pretty much the 

same. As for the decoder, the tools of (a) motion compensation (including 

interpolation), (b) entropy decoding, and (c) intra-prediction have the CPU load. 

 

 

 
 

Fig 2 Computational profile of H.264 video encoding. 
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2.2 INTRA PREDICTION 

2.2.1 Overview 

 

Intra-prediction uses the high correlation property of neighboring samples in 

spatial domain to predict the current encoded samples. For the luma samples, each 

prediction block may be formed for each 4x4 block (denoted as I4MB) or for an entire 

MB (denoted as I16MB). When utilizing Intra_4x4 prediction, each 4x4 block 

chooses one of the nine prediction modes, which include one DC mode plus eight 

directional prediction modes, as shown in Fig 3 (a), as the best one. In the luma 

component of an MB, the Intra_16x16 prediction is typically chosen for smooth 

image areas, and thus, only four prediction modes are specified as shown in Fig 3 (b) 

except for the DC mode. The chroma samples of an MB are predicted using a similar 

prediction pattern, Intra_8x8, which is similar to the luma Intra_16x16 prediction. 

 

 
(a)                         (b) 

Fig 3 Intra prediction modes for (a)Intra_4x4 and (b) Intra_16x16. 

 
2.2.2 Fast algorithms 

 

The fast algorithms of intra prediction can be classified into several types. The 

first approach is “early termination”, which ends the search operation when the 

calculated distortion is samller than a pre-chosen threshold. The selection of a proper 

measure for deciding termination is critical to the performance. It may be derived 

based on the macroblock smoothness [6][7] or the most probable mode [8]. The early 

termination based on the macroblock smoothness calculates a smoothness measure of 

a macroblock to determine the block type. For example, the large block type such as 

Intra_16x16 is chosen often for the flat image areas [6][7]. “Smooth” means that all 

the pixel values in a MB are similar; that is, their variance is small. The variance 

computation shall be simple to save computation. Therefore, the Mean Absolute 

Difference (MAD) operation [6] or the AC/DC ratio [7] is often used. If the variable is 
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smaller than a pre-selected threshold value, the Intra_16x16 mode is chosen and thus 

the costly Intra_4x4 can be skipped. 

 

Another kind of early termination proposal examines the most probable mode 

first. For example, in searching for the best Intra_4x4 mode, if its residual is smaller 

than a threshold, then the other eight Intra_4x4 modes are skipped (not chosen). 

Otherwise, all nine modes have to be tested. Then, we set another threshold to decide 

whether to keep on checking the Intra_16x16 prediction or not. It was reported that in 

one case, this method together with the 2:1 downsampling and rate-distortion 

optimization (RDO) can reduce 68.8% of total computation time with only 1.35% of 

bit rate increase comparing to the reference software [8]. The major issue in this type 

of algorithms is how to determine the threshold. The threshold value can be adjusted 

according to the quantization parameters for instance. To construct a more efficient 

scheme, we propose a mixed fast intra prediction algorithm. It first examines both the 

most probable mode and the DC mode to determine if it meets the early termination 

criterion. The threshold value is decided by the average of SATD (sum of absolute 

transformed difference) of all the previous Intra_4x4 blocks in this frame. Once the 16 

Intra_4x4 blocks are done, their total cost will be used as the threshold for deciding 

Intra_16x16 mode. These threshold values seem to be able to match the video local 

characteristics and provide good results. Even when RDO is turned off, we can 

achieve around 30% computational savings for the intra prediction module. 

 

The second approach uses the edge analysis to quickly identify the edge direction 

since the intra prediction is basically a directional prediction [9][10]. Often the Sobel 

operators or the first order derivative are used as the edge analysis tool to find the 

most probable edge, which will be used as one of the final edge candidates. The final 

mode candidate list includes the one selected by the edge detector together with the 

other highly probable modes. In the case Intra_4x4, this would mean two modes of 

the neighboring blocks and the DC mode; and in the Intra_16x16 and Intra_8x8 cases, 

only the DC mode is considered highly probable. Therefore, only four candidate 

modes (for Intra_4x4) or two candidate modes (other types) are needed to be 

examined. The result shows that 60% of intra_only computation time reduction is 

observed with RDO and the bit rate increase is around 2~3% [9]. The bit rate increase 

may be owing to the irregular edges within a block. On the other side, the extra 

computation needed for edge analysis can be a computation burden and reduce the 

overall saving significantly. 

 

The third approach uses the so-called three step approach [11]. It first tests the 
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horizontal and vertical directions, it then tests the neighboring 22.5 degree modes 

close to the better one from the previous step, and finally the best mode up-to-now is 

checked against the DC mode for the final winner. This approach has the advantage of 

a fixed number of modes are examined for all cases. However, computation time 

reduction is around 33% with about 1% bit rate increase. 

 

The last approach makes use of the correlation in the temporal domain [12] since 

the best prediction mode in the current macroblock is likely similar to that in the 

reference macroblock in the previously coded frame(s). Thus, the primary intra 

prediction mode is selected from the mode of the most overlapped block in motion 

estimation. The computational overhead is nearly zero since all information is 

obtained during the inter-prediction operation. It is reported that the coding 

performance is nearly unchanged while the computational savings is about 50% 

assuming the intra-frame period is 10 [12]. 

 

In summarizing various fast intra-prediction algorithms, although we cite the 

experimental results from the proposed documents, a fair comparison among all 

methods is difficult because their simulation environments are quite different. One 

important element affecting computation is the option of RDO in the reference 

software. This is particularly true for the early termination method with thresholds. 

The algorithms described in the above can be combined together to achieve further 

speed-up. For example, the first step could be the decision on Intra_4x4 or 

Intra_16x16. The second step could be the early termination for the chosen intra type. 

Finally, the rest of mode tests could be a fast algorithm to select one from the nine or 

four candidate modes.  
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2.3 INTER PREDICTION 

2.3.1 Overview 

 

Block matching based motion estimation and compensation is a fundamental 

process in the current international video compression standards. It can efficiently 

remove interframe redundancy. A direct implementation is the full search algorithm 

that examines exhaustively every candidate motion vector in the search window to 

find the globally best matched block in the reference frame. However, its 

computationally intensive nature prevents it from practical implementation on a 

processor for real-time applications. The computation burden is increased drastically 

for the H.264 encoder because there are a number of combinations of partitioning a 

macroblock into sub-block(s) ranging from 4x4 to 16x16. Potentially each sub-block 

can have its own motion vector. This feature significant increases the computational 

complexity in motion estimation. Thus, many fast motion estimation algorithms have 

been proposed to alleviate the computational load. 

 

Most of the fast algorithms are based on the well-known a priori knowledge, “the 

motion field of a real world image sequence is usually gentle, smooth and varies 

slowly”. Fast motion estimation algorithms can be categorized into roughly three 

families as described below. 
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2.3.2 Fast algorithms 

2.3.2.1 Reduce possible candidate points 

 

 
                        (a)                                               (b) 

Fig 4 (a) S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching motion estimation”,[19]. (b) C. Zhu, X. 

Lin,and L.–P. Chau, “Hexagon-based search pattern for fast block motion estimation,[21] 

Based on the assumption of convexity of the uni-modal error surface, i.e., block 

matching distortion increases monotonically away from the global minimum point, 

many gradient-based search methods with carefully designed search patterns have 

been developed to limit search points to a small subset of all possible candidates. This 

category includes the well-known three-step search (3SS) [13], the new three-step 

search (N3SS) [14], the cross search (CS) [15], the one-dimensional gradient descent 

search (1DGDS) [16], the block-based gradient descent search (BBGDS) [17], the 

four-step search (4SS) [18], the diamond search (DS) [19], the cross-diamond search 

(CDS)[20] and the hexagon-based search (HEXBS) [21]. Although this category of 

algorithms may be trapped into a local minimum point and hence the efficiency of the 

motion compensation may drop, they can considerably reduce the number of block 

matching computations. 
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2.3.2.2 Motion vector prediction 
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Fig 5 Temporal Neighboring Ref-frame Prediction 

 

 

Fig 6 Spatial Up-Layer Prediction 

 
Motion in most natural image sequences involves a few blocks and lasts for a 

few frames. Therefore, spatially or temporally adjacent blocks often have similar 

motion vectors. Taking the advantage of the correlation among neighboring motion 

vectors, the search window can be constrained to a small clique surrounding the 

“predicted vector”, a candidate position predicated based on the known neighboring 

motion vectors. Many prediction algorithms have been developed with different 

complexities. The prediction search algorithm (PSA) [22] simply predicts the current 

block motion vector as the mean value of its neighboring blocks’ motion vectors. 

Fuzzy search [23] applies fuzzy logic to predict the motion vector. In [24], motion 

vectors are predicted by integral projections. In [25], a spatial-temporal AR model of 

motion vectors is constructed and an adaptive Kalman filter is employed. The 

multi-resolution search [26] down-samples a picture to obtain raw motion vectors at 

different resolution levels, then it estimates finer motion vectors from the coarser 

ones.The multi-resolution-spatiotemporal (MRST) scheme [26] modifies the normal 
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raster scan order so that some blocks can reference more motion information by 

increasing their neighboring blocks along more directions. It then combines a 

multi-resolution scheme and spatiotemporal correlation to predict motion vectors. For 

burst motions and blocks at the top-left corner, which has little correlation information, 

the performance of this category of algorithms may deteriorate because the refinement 

of prediction is restricted to a small search region. Moreover, the prediction overhead 

may reduce the speed gain. 

 

2.3.2.3 Low complexity block matching criteria 

 

The majority of the computations in motion estimation originate from 

computations of block matching distortion. In general, block matching metrics, such 

as the mean absolute difference (MAD) and the mean square error (MSE), involve 

pixel-wise operations, which are highly computationally intensive. Some methods try 

to simplify distortion computation by substituting the distortion defined on a subset of 

pixels for the whole block distortion. For instance, the MAD of 128 pixels is used as 

the matching distortion for a 16x16 macroblock in [26]; the computations can be 

reduced by one half with little performance loss. However, this method is not suitable 

for small blocks such as 4x4 blocks. Partial distortion elimination (PDE) in [27] 

compares every line’s distortion in a block to avoid computing the distortion of the 

entire block. In [28], hypothesis testing is used to estimate the MAD from the partial 

mean absolute difference (PMAD), and the estimated MAD value is used to judge the 

matching result. 

 

When fast algorithms in the above three categories are put together, the motion 

estimation accuracy may degrade. Additional calculations such as the initial motion 

vector prediction could lead to a considerable amount of computational overhead.  

An approach proposed without quality degradation is the successive elimination 

algorithm (SEA) suggested by Li and Salari [29], which pre-excludes some 

impossible candidate points before completing the matching distortion calculation. 

SEA is a fast full search algorithm having a performance identical to FS while it 

speeds up the search process approximately by 10 times for 16x16 macroblock based 

motion estimation. Some further improvements have been made in subsequent 

research [27][30]-[33]. 
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2.3.2.4 Fast fractional motion estimation 

 

 
                   (a)                                              (b) 

Fig 7 (a)H.-M. Wong, O. C Au, and A. Chang, “Fast sub-pixel inter-prediction–based on the texture direction analysis”, [35](b) 

C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast fractional pel motion estimation algorithm for H.264/AVC”,[36]. 

 

In the H.264 video coding scheme [4], the inter prediction (motion vectors) 

precision has been increased to quarter pixel. Typically, people perform the integer 

pixel motion estimation (IME) first. Then, the sub-pixel motion estimation or 

fractional motion estimation (FME) is applied to achieve refinement. As compared to 

the integer-value search, FME has a somewhat different statistical character. This may 

due to the facts that the search window of FME refinement is much smaller than that 

of IME and that the referenced sub-pixels are interpolated from the integer-coordinate 

pixels. Consequently, the error surface of FME is much closer to a uni-modal one, 

which favors fast algorithms. 

 

Therefore, traditional fast algorithms in IME can also be used and can be more 

effective. The scheme adopted by the H.264 reference software is a three-step-like 

fast algorithm. It first checks the nine candidates surrounding the best match of IME, 

and then checks further the nine candidates surrounding the best match from the 

previous step. However, to take even more advantage of the uni-modal surface 

property and the highly centralized distribution of sub-pixel motion vectors, several 

fast FME algorithms with additional features are proposed. In [35], a gradient based 

search algorithm is brought up. The search direction is determined first and looks for 

the best motion vector along that direction. In [36], an adaptive search-pattern 

algorithm is proposed. The search-pattern is determined by outcome of the previous 

step and it biased towards the search center. This method saves half of the 

computations when compared to the reference software. 
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2.3.2.5 Some recent approaches 

 

The recent trend to further reduce the motion estimation calculations is to 

combine the techniques mentioned before. The idea is each technique, a fast algorithm, 

is placed its most suitable target area. Thus, how to find a specific combination that 

achieves the optimal solution for a specific application becomes the most important 

issue. In [37], a fast algorithm with better coding efficiency on residuals is proposed, 

which leads to a lower bit rate compared to the full search algorithm. The method 

proposed in [38] produces larger residuals (due to fewer search points) but less 

motion information. Overall, it has a better encoding efficiency and a rather fast 

coding speed. This type of solutions seems to the target now researchers are aiming at.  
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Fig 8 Comparison of bit stream portion with different fast algorithm. 
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2.4 FAST MODE DECISION 

2.4.1 Overview 

 

The mode decision algorithm determines the best mode of the macroblock from 

various combinations of inter-prediction and intra-prediction. It can be coded with 

seven different block sizes for motion-compensation in the inter mode, and various 

spatial directional prediction modes in the intra mode. To achieve the highest coding 

efficient as close as possible, the reference software calculates the rate distortion costs 

of all possible modes and the it chooses the best one that has the minimum cost. This 

is a very time-consuming process. To reduce the computation load, a fast mode 

decision algorithm is necessary, which can do a quick screening to drop most poor 

modes and then it examines the reminders and identifies the (nearly) best one. 

 

2.4.2 FAST ALGORITHMS 

 

The fast mode decision algorithm can be divided into two types. The first type 

uses an early termination threshold to terminate the lengthy mode decision process. 

The early termination step can be placed between the intra and inter prediction 

processes [43][44] or inside the inter prediction process [45]. 

 

The scheme proposed in [43][44] uses the fact that intra mode needs more bits 

for coding and thus has a lower priority than the inter mode. Thus, if the best inter 

mode cost is smaller than a threshold, the intra prediction mode is skipped. The 

threshold can be the average of rate distortion cost of a number of previously coded 

intra blocks [43] or a ratio between the average boundary error (ABE) and average 

rate (AR) [44], where AR is the average bits for encoding the motion-compensated 

residuals and ABE is the average pixel error between the pixels at boundary of the 

current and its adjacent blocks in the best inter mode. The simulation results show that 

it can achieve about 20% reduction of computational time with a slight bitrate 

increase. 

 

In [45], it observes the fact that the 16x16 block usually is the best block size for 

large areas of background with still or uniform motion since it has less motion vector 

overhead. Thus, it first checks the cost of 16x16 block size. If it is smaller than a 

threshold, say, an average value of previous 16x16 blocks, the inter prediction process 

is terminated. Otherwise, a similar procedure is applied to the 8x8 block size.   

The second type of the mode decision algorithms is to reduce the number of candidate 

modes. Intuitively, if the cost of a larger block-size mode is higher than the cost of the 
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current block-size mode, the even larger block-size modes can be excluded. Similarly, 

if the cost of a smaller block-size is higher than that of the current block-size mode, 

the even smaller block-size modes can be excluded. Following this argument, we give 

different priority to each mode. If the mode with higher priority can provide sufficient 

image quality, we can skip the other lower priority modes. A specific case is the SKIP 

mode. The SKIP mode refers to the 16x16 mode of which no motion and residual 

information is coded. Thus, no motion search is required and it has the lowest 

complexity. Therefore, many algorithms assign the highest priority to the SKIP mode 

and thus a large percentage of macroblocks would get the SKIP mode based on 

spatial-temporal neighborhood information [46]-[48]. This approach can save a 

significant proportion of the encoding time with a slightly bit rate increase and quality 

drop. 

 

In summary, the fast mode decision algorithms can be combined with the other 

fast intra and inter prediction algorithms to achieve further speedup. In all these 

algorithms, the SKIP mode first approach can save significant computational time. 

How to determine proper threshold values in a simple and automatic way is one 

critical issue for research and many proposals have been suggested.  
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Chapter 3  Dynamic search range prediction 

for integer motion estimation 

 

3.1 DESCRIPTION OF PRIOR ART 

 

Motion estimation is a well known technique in video coding to achieve high 

coding efficiency by reducing the temporal redundancy between successive frames. 

Motion estimation plays an important role in such an inter-frame predictive coding 

system. 

 

The full search block matching algorithm for motion estimation is the simplest 

but computationally very intensive, especially when the search range is large. It 

provides an optimal solution by exhaustively evaluating all the possible candidates 

within the search range in the reference frame. Many fast algorithms, such as the new 

three-step search [14], the block-based gradient descent search [17], the three-step 

search [39], the dynamic search window scheme [40], and one-at-a-time search [41] 

have been proposed to reduce the computational complexity by limiting the number of 

check points within the constant search range. The basic idea behind there fast 

algorithms is the assumption of the monotonically increasing block distortion function. 

Limited points are tested in the first stage; search is then continued in the vicinity of 

the point whose distortion is the smallest in previous stage. In [40], the window size 

in subsequent stage is determined based on the superiority of the best matched point 

to others in the present stage. It is clear that all these algorithms start with a constant 

search range and the computational complexity reduction is done at the expense of 

estimation accuracy due to its limited number of check points in the first stage. 

Different approached of fast algorithms have also been proposed. In [42], the 

sub-sampled motion-field estimation scheme is proposed. It starts with sub-sampled 

motion-field estimation and then selectively replicates it to produce all the motion 

vectors. However, it performs poorly when two or more objects within the same block 

are moving in different directions or different velocities [42]. 

 

3.2 ANALYSIS OF INTEGER MOTION VECTOR 

 

It is well known that the larger search range fed into motion estimation, the 

better rate distortion performance is obtained. We can intuitionally know that the 
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performance increasing rate will saturate until certain degree video quality has been 

achieved. In order to make the compress process more efficient, we may need to know 

the saturate boundary of the input search range. The factor straight affected by 

changing input search range is motion information. Motion vector can be decomposed 

of motion vector predictor and motion vector difference. In Table 1, we can find the 

increasing rates of motion vector predictor are really small compare to the increments 

of input search range. For the reason that comparisons from 32 to 16 are very similar 

as that from 24 to 16, we can easily conclude that the increment of input search range 

over the saturate boundary will not get better coding efficiency. 

 

Compare 24 to 16 Compare 32 to 16  

MVP_x MVP_y △PSNR Bitrate(%) MVP_x MVP_y △PSNR Bitrate(%) 

Stefan 4.77 4.58 -0.01 -0.003 7.73 12.15 -0.01 0.001 

Foreman 0.51 1.17 -0.01 -0.001 1.06 2.64 -0.02 -0.001 

Mobile 11.01 17.59 -0.01 -0.005 12.99 23.48 -0.01 -0.002 

Coastguard 0.45 3.04 -0.01 -0.001 1.24 7.04 -0.01 -0.001 

News 0.43 0.89 -0.01 -0.001 0.66 1.10 0.00 -0.004 

Table 1 Increasing percentage of motion vector predictor with different search range. 

 

Compare 24 to 16 Compare 32 to 16  

MVD_x MVD_y △PSNR Bitrate(%) MVD_x MVD_y △PSNR Bitrate(%) 

Stefan 20.44 15.18 -0.01 -0.003 36.30 38.28 -0.01 0.001 

Foreman 6.23 4.50 -0.01 -0.001 11.55 8.87 -0.02 -0.001 

Mobile 54.23 45.73 -0.01 -0.005 67.86 59.97 -0.01 -0.002 

Coastguard 3.32 21.12 -0.01 -0.001 10.48 50.06 -0.01 -0.001 

News 13.12 12.92 -0.01 -0.001 19.00 10.60 0.00 -0.004 

Table 2 Increasing percentage of motion vector difference with different search range. 

 

In Table 2, the same conclusion can be epitomized. Motion vector difference 

shows larger increasing rate with comparison to motion vector predictor, but it still 

not efficient enough when input search range is too large. To determine whether the 

input search range is too large or not, we experimented the input sequence size as CIF 

size to find the saturate boundary of input search range for every input sequence 

respectively.  

 

As shown in Table 3, critical search range means the smallest search range with 

similar rate distortion performance. We listed all possible factors that will announce 

the search range needed. The factors that we considered can mainly be divided into 
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two families: matching error group and motion information group. In the former 

group, we record not only sum of absolute difference (SAD) but also sum of absolute 

transformed difference (SATD); in the later group, we record motion movement 

information. It is generally believed that temporal and spatial correlations of motion 

vector exist. As the result, it gives us spaces to apply fast algorithm. 

 

 Critical SR SAD SATD MVP_x MVP_y MVD_x MVD_y 

Stefan 8 303.34 381.88 23.86 4.22 1.37 0.40 

Foreman 4 176.64 267.79 17.51 6.51 0.66 0.55 

Mobile 4 408.33 500.96 17.15 3.85 0.96 0.43 

Coastguard 2 276.61 436.79 19.21 2.33 0.70 0.08 

News 2 122.55 197.70 13.57 4.12 0.12 0.11 

Table 3 The correlation between search range and the factors including matching error and motion 

information. Critical search range means the smallest search range with similar RD performance. 
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Fig 9 Correlation between critical search range and matching error. 

 

The correlation of critical search range and factors mentioned in Table 3 are very 

similar. Taking matching error as the example, when the x coordinates (matching error) 

are getting larger, the y coordinates (critical search range) are not getting larger 

proportionally. In Fig 9, we can obviously find that when the matching error too small 

or too large have smaller critical search range. To examine the reason, it is very 

straight forward that too small matching error has smaller critical search range. As the 

belief of the spatial correlation, slight motion movement (usually small matching error) 

in previous macroblock means probably slight motion movement in current 

macroblock. To cover the slight motion movement, only small critical search range is 
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needed. In the case of larger matching error, it usually means that we can not find a 

good match position in the search window such as changing scene or complex texture 

within the macroblock. Indeed even if we increase the input search range will have 

very little RD performance improvement. As the result that motion estimation does 

not compress the macroblock information with large matching error, we may want to 

reduce the search range to achieve our goal as speedup. 

 



 26

3.3 PROPOSED ALGORITHM 

 

A fast algorithm for motion estimation is proposed in this chapter. In contrast to 

previously proposed fast algorithms which use limited number of check points in a 

constant search range. The proposed algorithm performs search in a dynamic search 

range. 

 

Block motion fields in real world video sequences are usually smooth and varies 

slowly. This produces a high correlation between the motion vectors of neighboring 

blocks. We record the matching error of the previous macroblock. By making use of 

this information, we will determine the search range used in current macroblock 

dynamically. The proposed algorithm can mainly divided into three steps. The details 

are as follows: 

 

Step 1: Predict search range. 

 

If (qp > 30) 

qp_factor = 2; 

else 

qp_factor = 1; 

 

sr_factor = (input->search_range)>>4; 

shift_factor = qp_factor + sr_factor; 

 

To serve different resolution video content, we should adjust the predict scheme 

dynamically. Two main factors result in different resolution are quantization 

parameter and input video size. The former one let users can define the final video 

quality according to their application. The later one let users can compress video 

content with different input size such as QCIF for network streaming and D1 for DVD 

player. As the different input size, the different input search range comes. In order to 

reduce the error generate by predicting search range, we should adjust the sr_factor 

dynamically. 

 

Mvd_max = ( |mvd_x_prev| , |mvd_y_prev| ); 

max_sr = Mvd_max << shift_factor; 

 

We record the motion vector difference of the previous macroblock for the 

reason that correlation exists. It is generally believed that motion vector is likely 
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similar as the previous one. However, this is not point motion vector difference 

directly. We may know the entire motion vector likely is but we can not judge the 

refined part (motion vector difference) accurately, so Mvd_max need to be increased 

to generate the probable predict search range (max_sr). 

 

Step 2: Check the upper bound. 

 

if(sad_previous > 600) 

max_sr_up = (search_range >> 2); 

 

else if(sad_previous > 50) 

max_sr_up = search_range; 

 

else 

max_sr_up = (search_range >> 1); 

 

max_sr = min (max_sr, max_sr_up); 

 

In this step, we want to clip some redundant search range that was over predicted 

in previous step. The main idea is cut off the search range when the match error is too 

large or too small. The correlation is shown in Fig 9 and details are mentioned above. 

600 and 50 are experiment result with input sequence as CIF size. Bad match (with 

too large matching error) shows more spaces to reduce search range than good match 

(with too small matching error) does. When matching error is over 600, it means that 

there is no good match position in search window. In other words, even if we skip the 

motion estimation process, it will not result in terrible performance loss. The amount 

of residual data can not be saved, so spending time to refine motion vector is not 

efficient and can be reduced. 

 

Step 3: Check the lower bound. 

 

if(max_sr == 0) 

max_sr = 4; 

 

The last step is to avoid skipping motion refined operation. In this step, we will 

make sure that the max_sr is not equal to zero. The action that skipped motion refined 

operation will lead to significantly rate distortion performance loss. 
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3.4 COMPARISON 

 

This section shows the speedup improved by proposed fast algorithm. Saving 

mentioned below means the reduced search points compared to original ones. We 

record every determined search range in all macroblocks and calculate the average of 

them. Saving is calculated manually. It means not the total encoding time saving but 

motion refinement time saving. As listed in Table 4, the input sequence size is CIF 

size and input search range is given by 16. We find that the proposed algorithm 

obviously decreases the number of search points. When the quantization parameter is 

smaller than 30, almost 90% saving can be achieved. It still has more than 80% saving 

even the quantization parameter is bigger than 30. 

 

QP=20 QP=24 QP=28 QP=32 CIF 

SR=16 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) 

Stefan 6.764 82.126 6.753 82.184 6.663 82.652 7.915 75.528 

Mobile 4.573 91.828 4.544 91.931 4.464 92.213 6.453 83.732 

Foreman 5.665 87.462 5.704 87.287 5.676 87.410 7.335 78.978 

Coastguard 4.699 91.373 4.745 91.204 4.790 91.034 6.639 82.778 

News 4.365 92.555 4.391 92.465 4.391 92.468 4.758 91.154 

Average 89.069 89.014 89.156 82.434 

Table 4 saving statistic with input search range = 16 and input sequence size as CIF size. 

 
QP=20 QP=24 QP=28 QP=32 CIF 

SR=32 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) 

Stefan 11.90 86.162 11.76 86.475 11.45 87.184 13.53 82.100 

Mobile 8.537 82.882 8.447 93.031 8.216 93.407 11.57 86.918 

Foreman 9.801 90.618 9.906 90.416 9.816 90.588 12.68 84.288 

Coastguard 7.664 94.263 7.813 94.037 7.923 93.869 11.44 87.201 

News 5.430 97.120 5.501 97.044 5.473 97.074 6.015 96.466 

Average 92.209 92.201 92.424 87.395 

Table 5 saving statistic with input search range = 32 and input sequence size as CIF size. 

 

In Table 5, we see the similar result with different simulation environment. We 

get even better result than that shown in Table 4. As the total encoding time issue, 

when the search range is larger, the time spending on motion estimation occupies 

bigger portion of total encoding time. So we can achieve 40% ~ 60% total encoding 

time saving with input search range given by 16 but 60% ~ 80% total encoding time 
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saving with input search range given by 32. 

 

QP=20 QP=24 QP=28 QP=32 D1 

SR=32 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) 

Crew 17.23 70.984 15.85 75.452 14.43 79.653 16.21 74.311 

Harbour 12.54 84.633 11.91 86.144 11.07 88.031 13.51 82.153 

Might 13.48 82.239 12.91 83.718 12.43 84.890 13.97 80.922 

Sailormen 14.93 78.203 13.97 80.927 13.10 83.239 17.45 70.237 

Average 79.015 81.560 83.953 76.906 

Table 6 saving statistic with input search range = 32 and input sequence size as D1 size. 

 

 

QP=20 QP=24 QP=28 QP=32 D1 

SR=64 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) 

Crew 42.49 55.919 39.39 62.103 36.20 67.992 40.39 60.155 

Harbour 32.51 74.184 30.87 76.723 28.69 79.898 35.50 69.216 

Might 30.36 77.489 28.72 79.862 27.58 81.421 31.12 76.348 

Sailormen 39.99 60.940 37.88 64.955 36.04 68.284 46.44 47.332 

Average 67.133 70.911 74.399 63.263 

Table 7 saving statistic with input search range = 64 and input sequence size as D1 size. 

 

In order to make the method suitable for all kinds of video content, we concerned 

about many factors and adjusted the prediction scheme respectively. We developed the 

algorithm with input sequence size as CIF size. As shown in Table 6 and Table 7, we 

took input sequence size in D1 size as an experiment. The results show that smaller 

saving comes with larger input sequence size. It means that the proposed algorithm is 

a little conservative for larger input sequence size. Even if the determined search 

range is over predicted, it still has almost 80% saving as listed in Table 6 and almost 

70% saving as listed in Table 7. As the total encoding time issue, both of them are 

about 40% ~ 60% saving. 

 

3.5 SIMULATION RESULT 

 

After the comparison of the speedup, this section shows the corresponding rate 

distortion performance. We summarized the result into Table 8 to Table 11. We have 

less than 0.03 dB PSNR drop and less than 0.5 % bit rate increased in the case of 

input sequence size as CIF size (Table 8 and Table 9). 
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QP = 20 QP = 24 JM 8.2      CIF 

SR = 16 Original Proposed △(dB,%) Original Proposed △(dB,%) 

PSNR 41.57 41.54 -0.03 38.42 38.37 -0.05 Stefan 

Bit rate 3974.9 4042.69 1.705 2493.37 2538.14 1.795 

PSNR 40.61 40.6 -0.01 37.08 37.07 -0.01 Mobile 

Bit rate 4996.31 4973.41 -0.458 3199.12 3187.18 -0.373 

PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03 Foreman 

Bit rate 1834.93 1859.84 1.357 969.3 987.24 1.850 

PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01 Coastguard 

Bit rate 3289.18 3274.37 -0.450 2003.72 1996.76 -0.347 

PSNR 43.13 43.13 0 40.67 40.64 -0.03 News 

Bit rate 622.02 623.01 0.159 373.98 374.66 0.181 

PSNR -0.014 -0.026 Average 

Bit rate 0.462 0.621 

Table 8 rate distortion result with input search range = 16 and input sequence size as CIF size. 

 

QP = 20 QP = 24 JM 8.2      CIF 

SR = 32 Original Proposed △(dB,%) Original Proposed △(dB,%) 

PSNR 41.59 41.55 -0.04 38.45 38.4 -0.05 Stefan 

Bit rate 3907.46 3931.66 0.619 2414.45 2445.22 1.274 

PSNR 40.6 40.59 -0.01 37.08 37.06 -0.02 Mobile 

Bit rate 5016.42 4983.1 -0.664 3212.55 3190.48 -0.686 

PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03 Foreman 

Bit rate 1837.43 1854.24 0.914 970.15 983.24 1.349 

PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01 Coastguard 

Bit rate 3296.59 3279.85 -0.507 2006.07 1997.74 -0.415 

PSNR 43.14 43.12 -0.02 40.67 40.63 -0.04 News 

Bit rate 624.8 627.92 0.499 375.32 378.82 0.932 

PSNR -0.02 -0.03 Average 

Bit rate 0.172 0.490 

Table 9 rate distortion result with input search range = 32 and input sequence size as CIF size. 

 

The previous section have pointed out that the speedup of the larger input 

sequence size has less speedup. In other words, less speedup means better rate 

distortion performance. The argumentation can be proved in this section through 

Table 10 to Table 11. We can find that both PSNR drop and bit rate increased are 

obviously smaller than that in Table 8 and Table 9. 
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QP = 20 QP = 24 JM 8.2      D1 

SR = 32 Original Proposed △(dB,%) Original Proposed △(dB,%) 

PSNR 41.97 41.95 -0.02 39.34 39.33 -0.01 Crew 

Bit rate 9727.04 9611.98 -1.182 4935.23 4896.6 -0.782 

PSNR 41.22 41.19 -0.03 38.28 38.26 -0.02 Harbour 

Bit rate 13516.99 13176.58 -2.518 8157.34 7999.64 -1.933 

PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02 Night 

Bit rate 10574.44 10446.64 -1.208 5740.23 5712.69 -0.479 

PSNR 41.04 41.02 -0.02 38.01 38 -0.01 Sailormen 

Bit rate 12398.86 12267.2 -1.061 5955.03 5920.67 -0.576 

PSNR -0.022 -0.015 Average 

Bit rate -1.492 -0.943 

Table 10 rate distortion result with input search range = 32 and input sequence size as D1 size. 

 

QP = 20 QP = 24 JM 8.2      D1 

SR = 64 Original Proposed △(dB,%) Original Proposed △(dB,%) 

PSNR 41.97 41.96 -0.01 39.35 39.33 -0.02 Crew 

Bit rate 9806.21 9725.62 -0.821 4973.31 4941.56 -0.638 

PSNR 41.22 41.2 -0.02 38.29 38.26 -0.03 Harbour 

Bit rate 13616.41 13328.96 -2.111 8195.73 8064.2 -1.604 

PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02 Night 

Bit rate 10663.88 10503.1 -1.507 5779.62 5727.58 -0.900 

PSNR 41.04 41.03 -0.01 38.02 38 -0.02 Sailormen 

Bit rate 12449.29 12354.03 -0.765 5974.17 5948.22 -0.434 

PSNR -0.015 -0.022 Average 

Bit rate -1.301 -0.894 

Table 11 rate distortion result with input search range = 64 and input sequence size as D1 size. 

 

We have less than 0.022 dB PSNR drop and even lower than original bit rate 

performance. When the quantization parameter is getting bigger, the less coding 

efficiency is carried with. However, in order to get so huge a speedup, sacrificing 

small amount of quality loss is still worth. Rate-distortion curves are shown in Fig 10 

and Fig 11. As the input sequence as CIF size, we simulated search range equal to 16 

and 32; as the input sequence as D1 size, we also simulated search range equal to 32 

and 64. All of them are very close to original method. 
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Fig 10 rate distortion curve with CIF size and search range =16. 

R-D curve ( D1 search range=64 )
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Fig 11 rate distortion curve with D1 size and search range =64. 

 

 JVT-B022 JVT-D117 JVT-Q088 Our proposed 

Worst PSNR loss (dB) 0.068 0.09 0.022 0.03 

Worst Bit rate increase 1.37% 01.63% 0.42% 1.58% 

ME Time saving n/a n/a 13% 75% 

Total Time saving 49.44% 61.27% 8.3% 51% 

Table 12 performance comparison 

As listed in Table 12, we can find that our proposed algorithm is not the fastest 

one and not the most accurate one either. But it is the best solution if we have to 

consider speedup and video quality at the same time. 
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Chapter 4  Adaptive search pattern prediction 

for fractional motion estimation 
 

4.1 ANALYSIS OF FRACTIONAL PEL MOTION VECTOR 

 

It is generally believed that the fast ME algorithm works best if the error surface 

inside the search window is unimodal. 

 

As shows in Fig 12, the error surface of integer pel ME is not unimodal due to 

the large search window and complexity of video content. So the ME search would 

easily be trapped into a local minimum. On the other hand, since the sub-pels are 

generated from the interpolation of integer pels, the correlation inside a fractional pel 

search window is much higher than that of the integer pel search window. Thus, the 

uni-modal error surface will be valid in most cases of the fractional pels. So the 

matching error decreases monotonically as the search point moves closer to the global 

minimum. 

 

 

(a) (b)
 

Fig 12 (a) Error surface of integer pel ME (search range: 32); (b) Error surface of fractional pel ME 

(1/8-pel case)  

 

In the full search method, every fractional pels around the original integer pels 

are treated equal. However, with the valid unimodal error surface assumption, a fast 

algorithm can work well if every candidate of the sub-pel refinement has different 

occurring probabilities. Fig 13 shows the distribution of the fractional motion vector 

around the best integer motion vector. It is obvious that more than 90% of fractional 



 34

motion vector are at the search center in all kinds of video content. However, we still 

can not just avoid the fractional part even there are huge density diagram appear near 

the bias search center. The small error drift of fractional part in motion vector will 

lead to significantly bit rate increase. 
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Fig 13 Distribution of the fractional ME. 
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4.2 ORIGINAL SEARCH ALGORITHM 

 

 
Fig 14 Search algorithm in reference software. 

 

Fig 14 details a typical search algorithm for the ME process 100 according to the 

reference software. The search process in fractional motion estimation is typically 

divided into two parts. The first part consists of half-pel motion estimation, where 

specific pixels at half-pel spacing are searched for comparison. The second part 

consists of quarter-pel motion estimation, where pixels at quarter-pel spacing centered 

around a search point obtained in the first part are used for comparison.  

 

  In the first part of half-pel ME, a cost value for each of eight search points 120 in 

a square search pattern surrounding the integer spaced pel called search center 110 is 

calculated. A cost value calculation for the search center 110 is not performed. The 

single search point from the group of search points 120 possessing the lowest cost 

value is then selected as the quarter-pel motion estimation search center 130 in the 

next step. The fractional motion estimation step utilizes an additional eight fractional 

search points 140 displaced around the FME search center 130 in a smaller square 

pattern. A total of 17 search points (1 search point from integer pel, 8 search points 

from half-pel ME and 8 search points from quarter-pel motion estimation) are 

therefore searched and compared in a single round of the traditional ME procedure 

according to the reference software. 

 

Although the typical search algorithm for the ME process 100 does manage to 
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sufficiently locate suitable search points for the motion vector refinement process, the 

excess amount of search points may result in significant delays in the encoding 

process. The typical search algorithm for the ME process 100 may possess too many 

search points to visit within one motion vector refinement process. Furthermore, the 

search pattern used in the ME process 100 may provide further constraints in finding 

optimal search points, as refinement in the fractional ME searching can cause the 

search area to stray away from the search center. 

 

In order to overcome these problems, and produce a more efficient search pattern, 

a fast ME search algorithm is proposed. This algorithm produces a search pattern 

based on the high statistical probability that fractional motion is located close to the 

integer search center (as shown in Fig 13). In this way, fewer search points based near 

or on the integer search center should be visited in the proposed algorithm. This 

allows the complete fractional ME process to be accomplished with fewer overall 

search points compared to the original method, while providing a comparable 

accuracy. Furthermore, the overall computational resources and complexity to search 

a predefined search area is greatly reduced.  

 



 37

4.3 PROPOSED ALGORITHM 

 

 
Fig 15 Proposed algorithm for half-pel. 

 

 Fig 15 illustrates a fast ME search algorithm. The algorithm is used to determine 

an optimized search pattern comprising a half-pel search pattern 200 and a quarter-pel 

search pattern (discussed later). An integer spaced pel 210, or search center is shown 

as a circle in the center of the macroblock in Fig 15. The first stage of the algorithm 

comprises half-pel ME, where the half-pel search pattern is formulated. A total of 5 

search points 220 are selected to form the half-pel search pattern: four search points 

aligned to form a cross pattern around the search center and one search point located 

at the search center. Fewer search points can be used in other embodiments. Once the 

half-pel search pattern has been determined, the cost value for each search point 220 

is calculated. Any suitable cost function can be used in this step, however, the sum of 

absolute transform differences (SATD) is generally used for the fractional ME. The 

cost function is used to determine the lowest 2 (or 3) cost values of the search points 

220. Upon determination of the search points 220 producing the lowest cost values, a 

quarter-pel search pattern for the fractional ME process is adaptively selected.  

 

The next stage of the fast ME algorithm process entails selecting a quarter-pel 

search pattern. The quarter-pel search pattern is selected according to the ranking of 

cost values for each specific search point, and provides search points in a certain area 

to approach the global minimum cost in the search window. In an effort to reduce 

confusion, the search points deduced in the quarter-pel ME stage will be referred to as 
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quarter-pel search points. However, both types of search points serve the same 

purpose in providing matching points for the ME process. 

 

Once the quarter-pel search pattern is determined (further below), cost values for 

the quarter-pel search points of the fractional search pattern are then calculated. The 

cost values attained here are used in conjunction with the cost data accumulated from 

search points in the first stage to determine whether the current macroblock is a 

suitable match to the reference macroblock. The entire search pattern therefore 

comprises the half-pel search pattern used in the first stage and the quarter-pel search 

pattern used the second stage for fractional ME. 

 

 The following cases illustrate how the quarter-pel search pattern is selected in the 

second stage in fractional ME. The quarter-pel search pattern is based on a ranking of 

the cost values for each search point in the first stage for half-pel ME. The cases are 

as follows 
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Case 1: The lowest cost search point is located at the search center, and the second 

and third lowest search points are opposite to each other. 

 

This case is illustrated in Fig 16. In this case, the lowest cost search point 320 is 

the located at the search center 310, and the second lowest cost search point 330 and 

third lowest cost search point (not shown) are opposite each other. For this case, three 

quarter-pel search points 340 placed between the minimum cost search point 320 and 

the second lowest cost search point 330 are selected as the quarter-pel search pattern 

in fractional ME. The three quarter-pel search points 340 are configured such that 

they form a straight line perpendicular to the axis formed by the lowest cost search 

point 320 and the second lowest cost search point 330, and are located in between the 

two half-pel search points 320 and 330. 

 

 

Fig 16  Proposed algorithm for quarter-pel (case 1). 
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Case 2: The lowest cost search point is located at the search center, and the second 

and third lowest cost search points are adjacent to each other. 

 

This case is illustrated in Fig 17. The lowest cost search point 420 is located at 

the search center 410, and the second lowest cost search point 430 is adjacent to the 

third lowest cost search point 440. For this case, three quarter-pel search points 450 

are used to form the quarter-pel search pattern in fractional ME. The three quarter-pel 

search points 450 are arranged between the three lowest cost search points such that a 

connection among the three quarter-pel search points 450 would from a right angle 

with the vertex of the right angle concave to the search center 410. 

 

 

Fig 17  Proposed algorithm for quarter-pel (case 2). 
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Case 3: The two lowest cost search points are adjacent to each other and surround 

the search center.  

 

This case is illustrated in Fig 18. The lowest cost search point 520 and the second 

lowest cost search point 530 are adjacent to each other and both surround the search 

center 510. For this case, three quarter-pel search points 550 are used to form the 

quarter-pel search pattern in fractional ME. The three quarter-pel search points 550 

are arranged between the two lowest cost search points such that lines connecting the 

three quarter-pel search points 550 would from a right angle, with the vertex of the 

right angle convex to the search center 510. 

 

 

Fig 18  Proposed algorithm for quarter-pel (case 3). 
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Case 4: The two lowest cost search points are opposite to each other and surround 

the search center. 

 

This case is illustrated in Fig 19. The lowest cost search point 620 is opposite to 

the second lowest cost search point 630, neither being located at the search center 610. 

For this case, four quarter-pel search points 650 are used to form the quarter-pel 

search pattern in fractional ME. The quarter-pel search pattern is arranged such that 

the four quarter-pel search points 650 surround the lowest cost search point 620 in a 

square pattern. 

 

 
Fig 19  Proposed algorithm for quarter-pel (case 4). 

 

Once a fractional search pattern is selected based on one of the 4 above cases, 

calculations for each quarter-pel search point using a specified cost function can be 

performed to complete the matching process. The data provided from the half-pel 

search points and the quarter-pel search points serve to provide a comprehensive data 

set in an area approaching a local minimum of the cost function. This allows for a 

more accurate match result, while lowering the need for calculating additional search 

points. The best matching macroblock that minimizes the difference between the 

current and reference macroblock can now be chosen. 

 

4.4 COMPLEXITY AND ACCURACY COMPARISON 
 

The following table provides a summary of the total search points used in the 

method of the present invention for each potential case, compared to alternative 

search algorithms for ME. 
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 Total Search Points 

Full Search Algorithm 49 

Reference software Algorithm 17 

Case1 8 

Case2 8 

Case3 8 

 

Proposed Algorithm 

Case4 9 

Table 13 Search point comparisons for different algorithms 

 

As illustrated above in Table 13, the search algorithm of the present invention for 

motion estimation significantly reduces the total search points in comparison with the 

reference software method. For cases 1-3, a 52% reduction in search points is attained, 

while a 47% reduction in search points is achieved in case 4. This significantly 

reduces the hardware processing time required by a related compression encoder or a 

microprocessor for use in video compression.  

 

Reference software Proposed algorithm  

MV_x hit rate MV_y hit rate MV_x hit rate MV_y hit rate 

Stefan 0.95086006 0.94094485 0.81168958 0.84223568 

Mobile 0.93886042 0.90366406 0.79969447 0.78225377 

Foreman 0.9223743 0.88868022 0.82468642 0.82102286 

News 0.9759824 0.96602579 0.9272946 0.91579924 

Coastguard 0.9268235 0.94608455 0.77841821 0.84063553 

Table 14 Algorithms prediction correctness compare to full search algorithm 

 

Additionally the method of the present invention manages to arrive at a 

comparable matching accuracy while reducing the total search points and processing 

time. Table 14 below details the prediction accuracy of both the proposed algorithm 

and the reference software algorithm. The prediction accuracies are measured as a hit 

rate of the fractional motion vector in the x and y axis of the respective algorithm 

compared to the motion vector produced through the full search algorithm applied in 

the fractional search window. We see that the algorithm of the reference software 

manages to consistently produce a hit rate of around 90% for the various video 

samples. The proposed algorithm produces a comparable hit hate of about 80%, while 

reducing the search points by roughly half. 
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4.5 EARLY TERMINATION 

 

We also apply the early termination technique to every single search point in 

each step. The problem for early termination is how to define the threshold. The 

matching error considered as SATD is used in fractional motion estimation and SAD 

in integer motion estimation. SATD is the results after SAD go through 2D Hadamard 

transform. The threshold value (SATD) used in fractional ME can be estimated from 

the integer-pels matching error (SAD). We experiment from several test sequences 

and get the formula listed in the Fig 20. 
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Fig 20 Relationship between best SAD in integer part & best SATD in fractional part 

 

In most of situations, we can use above approximated formula to predict the 

threshold. However, direct linear prediction may lead to a too large threshold and 

arise too much imprecision when the SAD getting larger. To solve the problem and 

avoid second or high order approximation, we adopt adaptive linear prediction 

threshold. We have found that while the quantization parameter (QP) is getting larger, 

the rate distortion performance is getting better. It means that we have more spaces to 

save when larger QP comes. To achieve the shorter searching time without significant 

performance loss, we increase the threshold associating to the current QP. The final 

prediction formulas are listed below. 

 

if (SAD > 1000) 

{ threshold = SAD*0.75 + (QP-28)*16 + 375 + 36; } 

else if (SAD > 500) 

{ threshold = SAD*1+ (QP - 28)*16 + 125 + 36;} 

else 

{ threshold = SAD*1.25 + (QP - 28)*16 + 36;} 
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Every coefficient used in the formula could be calculated by add and shift, and 

the summation of constants could be combined easily. Constant with the value of 36 is 

obtained in the formula listed in Fig 20. Constants with the value of 375 and 125 are 

used to maintain the continuity of the adaptive prediction curve. The adaptive 

threshold prediction curve is shown in Fig 21. 
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Fig 21 Adaptive threshold prediction curve 

 

By applying early termination technique, we can improve searching speed about 

8.5 % to 14%. While the QP is getting larger, we may get a bigger threshold and lead 

to the shorter searching time. 

 

4.6 SIMULATION RESULT 

 

Table 15 shows the simulation results of the proposed algorithm compared with 

that of the reference software. We integrate our algorithm into the reference software 

and use the full search algorithm for integer ME for fair comparison. It can be found 

that our algorithm greatly reduces computational complexity but only leads to a small 

amount of quality loss. For the low motion sequences, our algorithm has about 

0.1-0.2dB PSNR degradation at the same bit rate as reference software. For the 

median motion sequence, such as foreman, and coastguard, we can find that about 0.1 

dB PSNR degradation at the same bit rate with respect to algorithm in reference 

software. 
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QP = 28 Stefan Mobile Foreman Coastguard News 

bit rate 1441.14 1888.69 498.62 1127.87 223.72 

PSNR 35.36 33.75 36.24 34.52 38.12 

  

ref. software 

  time (sec) 491.604 471.993 496.974 488.039 450.37 

bit rate 1474.06 1933.34 507.5 1139.94 228.72 

PSNR 35.27 33.64 36.17 34.48 38.06 

  

proposed 

  time (sec) 209.884 210.554 210.435 213.736 200.354 

△bit rate(%) 2.2843 2.36407 1.780915 1.070159 2.23494 

△PSNR -0.09 -0.11 -0.07 -0.04 -0.06 

  

  

  speed up 2.34227 2.24167 2.361651 2.283373 2.24787 

Table 15 Simulation result when QP = 28, speed up is only the performance in fractional ME part. 

RDO is off, reference frame number = 1, CIF. 

 

In the high motion sequences, such as stefan, our algorithm has about 0.2 dB 

PSNR degradation at the same bit rate of reference software. The reason of the quality 

loss is the coverage of our search window is not big enough. Thus, some position can 

not be arrived by our fast algorithm. However, it is still acceptable since the loss is 

still small. 

 

4.7 COMPARISON 

 

Besides the simulation result with constant QP, we also turn on the rate control 

option. The comparison result are listed in Table 16, we can see that our proposed 

algorithm is the fastest and the most accurate one. The lower bit rate is; the better 

performance comes. Our algorithm is very kind for network communication. 

 

64kbps 128kbps 256kbps 512kbps Rate control enable 

2SS FSIP Our 2SS FSIP Our 2SS FSIP Our 2SS FSIP Our 

△PSNR 0.17 0.19 0.02 0.17 0.17 0.02 0.1 0.1 0.04 0.13 0.14 0.09 Foreman 

Speedup 2 2.62 4.52 2 2.55 4.52 2 2.85 3.91 2 2.7 3.52 

△PSNR 0.05 0.07 0.01 0.02 0.02 0.01 0.03 0.04 0.02 0.05 0.05 0.05 Coastguard 

Speedup 2 3 3.53 2 2.89 3.53 2 3.01 3.18 2 2.82 2.83 

Table 16 Comparison between different fast algorithms for fractional ME. 

△PSNR: PSNR drop compare with original method used in reference software. 

Speedup: speedup in fractional motion estimation.  

2SS: fast algorithm proposed in [34].    FSIP: fast algorithm proposed in [35]. 
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Chapter 5  Integration 
 

In this chapter, we applied the fast algorithms mentioned in chapter 3 and chapter 

4. We used dynamic search range prediction scheme for integer motion estimation and 

adaptive search pattern prediction scheme for fractional motion estimation. Fast 

algorithms are necessary for intolerant large computation time, such as SDTV or even 

HDTV applications. For the great reduction of computational complexity, we take 

720p (1280 x 720) as the input sequence size. The total encoding time can be reduced 

to 5% compared to original one. In other words, we can achieve 20 times speed up. 

The details are listed in Table 17. 

 

QP = 20 QP = 24 JM 8.2        720p 

SR = 64 Original Proposed △(dB,%) Original Proposed △(dB,%) 

PSNR 40.78 40.74 -0.04 37.54 37.51 -0.03 Mobcal 

Bit rate 44878.75 45184.02 0.680211 23555.1 23794.68 1.017105 

PSNR 40.37 40.33 -0.04 36.76 36.71 -0.05 Parkrun 

Bit rate 68330.01 67666.61 -0.97088 44269.89 43893.55 -0.8501 

PSNR 40.86 40.82 -0.04 37.7 37.66 -0.04 Shields 

Bit rate 39812.74 39968.13 0.390302 18962.41 19028.51 0.348584 

PSNR 40.75 40.74 -0.01 37.49 37.46 -0.03 Stockholm 

Bit rate 42461.87 42881.22 0.987592 20223.58 20335.03 0.551089 

PSNR -0.035 -0.037 Average 

Bit rate 0.271 0.267 

Table 17 rate distortion result with input search range = 64 and input sequence size as 720p size. 

 

As the 20 times speedup, the rate distortion performance is quite good enough. 

Furthermore, we propose s VLSI architecture design of sub-pel ME for H.264/AVC in 

chapter 5. By taking advantage of the correlation between motion vectors and 

uni-modal error surface, the proposed algorithm can significantly decrease more than 

95% computational complexity and with at worst 0.04 dB PSNR degradation. The 

corresponding architecture can significantly decrease the total number of 4x4 block 

PU by reducing the candidates in the same step and speed up the search process by 

modified early termination technique. The resulting architecture achieves the slight 

video quality loss but nearly 40% area saving and 14% time saving when compared to 

the previous one (proposed architecture in [51]). Finally, some intermediate results of 

fast sub-pel ME are shown in appendix. 
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Chapter 6  Architecture design for fast sub-pel 

inter coding in H.264 
 

6.1 HARDWARE CONSIDERATION 

 

The encoding procedure is dominated (90%) by the inter prediction for new 

techniques in H.264 as variable block sizes, multiple reference frames and 

Largrangian mode decision. Inter prediction can be mainly divided into two parts: 

integer motion estimation (IME) and fractional motion estimation (FME). 

Complexities of the former one and the later one are quite the same and both 

dominate the encoding time of inter prediction. For the speed up in system level, we 

may pipeline the IME and FME process. So the dedicated hardware is needed for 

FME only. For the speed up in the macroblock level, we can use the fast algorithm 

instead of the method applied in JM8.2 [52]. 

 

Largrangian mode decision of a macroblock should be done after choosing the 

best cost among the 41 sub-blocks in every reference frame with quarter precision. In 

Fig 22, we can find there are total seven types of block sizes and may execute 

independently. If the critical concern is the encoding time, the parallelism as the 

hardware acceleration technique can be applied. But it will result in unacceptable 

huge chip area and power consumption. So we should make use of the common part 

of different block sizes. Every type of block sizes can be decomposed by 4X4 block. 

Only 4X4 block should be implemented necessarily, refinement of all the other types 

can be done with the hardware technique named as folding. 

 

In spite of the regular algorithm of FME used in JVT, the complex Largrangian 

mode decision will also arouse the difficulty of hardware implementation, so irregular 

search algorithm is further not prefer to implement. In [35], the gradient based search 

algorithm is proposed. In which, the interpolated pixels needed in next stage have 

higher variation probability in search window and that is often regarded as the defect 

of hardware implementation. 
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Fig 22 Mode decision flow in H.264. 

 

4X4 block decomposition and vertical integration are proposed in [51]. All block 

types can be decomposed by 4X4 block, and the SATD of each element is 

accumulated to get the final cost. For the data reusability, vertical integration is one of 

the ways to reduce the encoding time. Redundant interpolating operations appear in 

the overlapped area of adjacent interpolation window and can be merged by 

scheduling technique. But the overhead as the more complex timing control circuit 

will be introduced. 
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6.2 ALGORITHM FOR HARDWARE MODIFICATION 

 

The algorithm implemented is slightly different from the fast algorithm 

mentioned before. The main difference is when to apply the early termination 

technique. As the method mentioned before, we still use adaptive prediction SATD as 

criterion to terminate the refine process or not. However, early termination at each 

search point is only reasonable for the application running on DSP or CPU since 

instruction is executed sequentially. But in the case of hardware design, the available 

resources allow us to use parallel processing unit to speed up the whole FME process. 

Thus, we use five 4X4 block PU’s (processing element, discuss later) to manage all of 

the search points in the same step, and only terminate the second step process if 

meeting the requirement. 

 

As shown in Table 18, we numerate the probability when different early 

termination techniques activated. Point Check (PC) means the way used on DSP or 

CPU, it will check the final cost after every search point refinement. Step Check (SC) 

means the way used in hardware design, it will only check the criteria after the best 

cost in each step is determined. In Table 18, we can see that the count of early 

termination occurrences decreased from PC (56%) to SC (28%), but is still 

significantly. 

 

QP=28 Point Check(PC) PC hit rate(%) Step Check(SC) SC hit rate(%) total count 

Stefan 3164430 65.1846386 1761015 36.2754513 4854564 

Foreman 2869524 59.1098191 1634614 33.6716953 4854564 

Coastguard 2099169 43.2411438 1026942 21.1541551 4854564 

News 3068064 63.1995788 1325303 27.3001448 4854564 

Mobile 2577329 53.0908440 1000258 20.6044868 4854564 

average 2755703.2 56.7652049 1349626.4 27.8011867 4854564 

Table 18 Simulation result when QP = 28, point check means the early termination applied in every 

search point, step check means the early termination just applied in half step 

 

The total encoding time of above modification can be calculated as follows. First, 

the encoding time is the same in each step refinement since every search point is 

calculated in parallel. Let us assume the total time without early termination is T, and t 

as the total time with step stop early termination. We can find the following 

relationship: 

t = T * (1 – 0.28) + 0.5T * 0.28 = 0.86 T 
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Thus, by using step stop early termination technique, we can save 14% search time in 

FME module. The related quality loss will be shown latter. 

 

6.3 ARCHITECTURE 
 

Fig 23 shows proposed architecture for fast FME module. The core procedure of FME 

includes interpolation, residual generation and Hadamard transform. 

 

 

 
 

Fig 23 Block diagram of fast FME hardware. 
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                (a)                                (b) 

Fig 24 (a) 4X4 block PU (b) 6-tap 1-D FIR filter. 

 

The 4X4 block PU has four times parallelization of horizontal adjacent pixels 

and is in charge of residual generation and Hadamard transform. The architecture of 

PU is shown in Fig 24(a), four processing elements (PE), 2-D Hadamard transform 

decomposed by two 1-D Hadamard transform and a transpose register array [53] can 

continually process four pixels in each cycle without any latency. It processes 4X4 

element blocks decomposed from sub block in sequential order. 

 

Five 4X4 block PUs around the refinement center process five candidates 

simultaneously. Four horizontal adjacent pixels from original MB are broadcasted to 

every PU at the same time and the reference sub pixels are provided by interpolation 

unit. 
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Fig 25 Interpolation unit 

 

As shown in Fig 25, the 6-tap 2-D FIR filter is divided into two directions 

(horizontal and vertical) 1-D FIR filter which is shown in Fig 24(b). First, we 

interpolate the horizontal half pixels by five FIR filters from 10 adjacent integer 

pixels. These five intermediate values and six integer pixels are stored and shifted 

cycle by cycle in the interpolation buffer. We use the same way to interpolate the 

vertical half pixels with 11 FIR filter. In our algorithm, since we will not visit the 

entire positions in the whole refinement window, some redundant interpolations 

appear in certain pixels in the quarter precision.  
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Fig 26 Bilinear filters of interpolation unit. 

 

Only the rhombuses in the Fig 26 are the required bilinear filters. To avoid the 

redundant interpolate operation, we remove those redundant bilinear filters that is 

reduced from 106 (no positions skipped) to 68 (no positions redundant). Thus, the 

36% of bilinear filters that each includes an adder and a shifter can be saved by using 

the proposed algorithm. 

 

Because of the irregular search pattern used in second step, the adaptive selection 

should be done before the pixels sent into PU. That is one of the overhead by applying 

fast FME algorithm. The others are the early termination unit and compare unit. In the 

former one, the way to predict threshold is the same but different in check time. In the 

later one, we should know not only the best position but also second and third places.  

 

Mode decision is combined with comparator shown in Fig 23. MB header related 

information included motion vector, reference frames and type of block sizes are sent 

into the compare and determination unit for the Largrangian mode decision. The 

information of the first step is sent into selection unit to choose the input of the next 

step. At the same time, the final cost is checked by early termination unit to judge the 

refine process should be skipped or not. 
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6.4 PERFORMANCE ANALYSIS 

 

With the little modification of fast algorithm, the quality loss and speed up of the 

hardware design are shown in Table 19. Due to the decreased probability for early 

termination, we may slower encoding speed but get smaller PSNR drop.  

 

QP = 28 Stefan Mobile Foreman Coastguard News 

bit rate 1441.14 1888.69 498.62 1127.87 223.72 

PSNR 35.36 33.75 36.24 34.52 38.12 

  

ref. software 

  time (sec) 491.604 471.993 496.974 488.039 450.37 

bit rate 1475.09 1940.28 508.88 1142.9 227.35 

PSNR 35.29 33.68 36.19 34.49 38.02 

  

proposed 

  time (sec) 220.261 219.782 220.254 222.32 211.988 

△bit rate(%) 2.35577 2.73152 2.057679 1.3326 1.62256 

△PSNR -0.07 -0.07 -0.05 -0.03 -0.1 

  

  

  speed up 2.23192 2.14755 2.256368 2.19521 2.12451 

Table 19 Performance analysis after algorithm modification 

 

5.5 IMPLEMENTATION RESULT 

 

Due to the 4X4 block decomposition and the adaptive search pattern, the control 

unit is the most challenge part of the whole design. We implement this part with finite 

state machine. The proposed FME architecture for H.264 is implemented by Verilog 

and synthesized in UMC 0.18u technology at 100MHz. The details of every part are 

listed in Table 20. The latency per MB can be calculated as follows if all 41 modes do 

the FME. 

 

 Gate Count 

Interpolation Unit 15436 

Selection Unit 4933 

PU x 5 21335 

Control 349 

Compare and Determine 4658 

Early Termination 1354 

Total 48065 

Table 20 Implementation result of proposed architecture 
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Latency per macroblock is added by latencies of seven different block size 

respectively and the re-calculate stage. To avoid so large the register area, we decide 

to calculate the residual data after we have know the most suitable block size for 

current macroblock, the following equation shows the detail: 

 

Latency per MB  = [ 21x16 + 21x2x8 + 29x8 + 29x2x4 + 29x4x2 + 45x2x2 + 45x4 ] 

+ [ 17x16 ] = 2000 cycles 

 

For such case, our design can process 50K MB/sec in 100MHz and is sufficient 

to support SDTV format in 30Hz for one reference frame. When compared with other 

design [51], our design has slight quality loss but 14% faster and 40% smaller. 

 

 Architecture in [51] Propose 

△bit rate (%) 0 2.02003 

△PSNR (dB) 0 -0.064 

Operating clock 100MHz 100MHz 

Largrangian mode decision Support Support 

Gate count (total) 79372 48065 

Time to refine MV T 0.86T 

MB/sec 49K 50K 

Technology UMC 0.18u UMC 0.18u 

Table 21 Comparison between the proposed architecture and architecture in [51] 
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Chapter 7  Conclusion 
 

7.1 SUMMARY 

 

The point proposed in the paper can be mainly summarized into three parts: 

 

7.1.1 Fast integer motion estimation 

7.1.1.1 Search range determination part 

Too large matching error means can not find a good match position in the whole 

search window. In this case, we can reduce the search range because the magnitude of 

search range does not matter. Too low matching error means perfect match. In this 

case, we can also reduce the search range. 

 

7.1.2 Fast fractional motion estimation 

7.1.2.1 Search pattern part 

Higher probability the best position will fall near the search center, so we use 

center bias search pattern. 

 

7.1.2.2 Early termination part 

The system order can not be changed, so we use SAD from integer motion 

estimation to predict the SATD threshold of fractional motion estimation. 

 

7.1.3 Architecture design of fractional motion estimation 

7.1.3.1 Area reduction part 

We use parallelism technique for hardware implementation. The search points in 

the same step of our proposed algorithm decrease, so we do not have to calculate as 

many points as the origin simultaneously. We can reduce the process elements 

duplicate for parallelism. 

 

7.1.3.2 Latency reduction part 

We modify early termination check time from point to step. Once the matching 

criterion is satisfied, the second step process can be skipped and certainly result in 

shorter refined time. 
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7.2 PERFORMANCE ANALYSIS 

 

7.2.1 Fast integer motion estimation 

We can reach the biggest speed up by applying fast algorithm for integer motion 

estimation. From our simulation result, we can get average 9/12.5 times speed up with 

input search range equal to 16/32. We have less than 1% bit rate increase and degrade 

PSNR only 0.02 dB. 

 

7.2.2 Fast fractional motion estimation 

In this part, the portion of search point reduction is fixed and early termination 

does not happen very often. So we can only reach 2.25 times speed up. Besides this, 

we have almost 2% bit rate increase and degrade PSNR 0.1 dB. 

 

7.2.3 Architecture design of fractional motion estimation 

We propose the fractional motion estimation architecture with smaller area cost 

and shorter refined time than architecture proposed in [51]. We save almost 40 % area 

cost and achieve 1.15 times speed up. Besides this, we have average 2 % bit rate 

increase and degrade PSNR 0.064 dB. 

 

7.3 FUTURE WORK 

One of integer or fractional motion estimation apply fast algorithm mentioned in 

chapter 3 and chapter 4 and the other remain the same as original method shows 

tolerable performance loss. But when we applied fast algorithms for both integer and 

fractional motion estimation, the experiment result shows inferior R-D performance, 

especially in lower resolution sequence. We guess the main reason is both of our fast 

algorithms are not accurate enough. Improvement of R-D performance is needed if we 

want to use fast algorithms for both motion estimation modules. 

Hardware implementation is completed only in fast fractional motion estimation 

part. For fast integer motion estimation, the architecture design is very straight 

forward. The calculation core is full search systolic array and only the control unit and 

scheduling timing should be redesigned. The area of the design depends on how large 

the systolic array is. The larger systolic array comes more data reusability and 

hardware utilization. The main advantage of this fast algorithm architecture is to 

shorten the searching time. We can flow less data when the search range becomes 

smaller. 
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APPENDIX 
 

This section gives the experiment inter-media result. Even the methods tried in 

this section were not implemented in my design; they are still reported in order to 

offer the readers more reference material. Only the sub-pel correlated results are listed 

below. 

 

PARAMETER DEFINITION: 

 

AVG POINT:  

This index means the average search points needed for sub-pel motion estimation. 

The result of first step will lead to different search pattern next step. To make the 

dispassion observation, we combined the probability concern into the index. For 

example, if 5 points needed in first step, the result will 90% fall on the search center 

(case1) and 10% fall on one of the other points (case2). Then average points needed 

are equal to  

 

AVG POINT = (points needed in first step) + 0.9 * (points needed in case1) + 0.1 * 

(points needed in case2) 

 

By using this approximation, we may get more accurate comparison of speeding up. 

 

PSNR: 

The index is the video quality degradation. Only luminance PSNR is listed. The 

simulation result is the average of four different input sequences as Stefan, Foreman, 

Mobile and news. 

 

Bit rate: 

The index is the transmit bandwidth changing percentage. 
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Research Report 

 

Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel 

Gray point (rectangle): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 27. When the half pixel best position 

falls on the search center (the initial position before refinement regard as the integer 

pixel position), we will find the eight points surrounding the search center. When the 

half pixel best position fall on one of the four end points in step one, we will use 

horizontal and vertical search pattern according to the best position determined in 

previous step. 

 

 

Fig 27 Pattern 1 

 
Simulation Result: 

AVG POINT 12.4 

PSNR (dB) -0.08 

Bit rate (%) 3.767 

 

Conclusion: 

Too much quality loss and not significantly speeding up. 
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Algorithm 

Yellow point (circle): the first step search position 

Red point (hexagon): the second step search position 

 

First we visit the five circle points shown in Fig 28. When the half pixel best position 

falls on the search center (the initial position before refinement regard as the integer 

pixel position), we will find the eight points surrounding the search center. When the 

half pixel best position falls on one of the four end points in step one, we will use four 

different directional triangle patterns according to the best position determined in 

previous step. 

 

 

Fig 28 Pattern 2 

 

Simulation Result: 
AVG POINT 12.6 

PSNR (dB) -0.043 

Bit rate (%) 2.221 

 

Conclusion: 
Quality loss is acceptable but not significantly speeding up. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 29. No matter where the half pixel 

best position in step one fall, we still find the cross pattern in step two. 

 

 

Fig 29 Pattern 3 

 

Simulation Result: 

AVG POINT 9 

PSNR (dB) -0.043 

Bit rate (%) 2.388 

 

Conclusion: 

Quality loss and speeding up are acceptable up but the method is proposed before 

(used in original x264). 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 30. When the half pixel best position 

falls on the search center (the initial position before refinement regard as the integer 

pixel position), we will find cross four points surrounding the search center. When the 

half pixel best position falls on one of the four end points in step one, we will use four 

different direction triangle patterns according to the best position determined in 

previous step. 

 

 

Fig 30 Pattern 4 

 

Simulation Result: 

AVG POINT 9 

PSNR (dB) -0.06 

Bit rate (%) 3.330 

 

Conclusion: 

Quality loss is a little serious and significant speeding up but high overhead 

complexity will be introduced in this method. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 31. When the half pixel best position 

falls on the search center (the initial position before refinement regard as the integer 

position), we will find eight points surrounding the search center. When the half pixel 

best position falls on one of the four end points in step one, we will use cross search 

pattern. 

 

 

Fig 31 Pattern 5 

 

Simulation Result: 

AVG POINT 12.6 

PSNR (dB) -0.023 

Bit rate (%) 1.455 

 

Conclusion: 

Little quality loss is produced but with not significantly speeding up. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the nine circle points shown in Fig 32. We make the most part of effort 

to find the best half pixel search position. After that, we just need to find only two 

search positions except two positions appears on the end points on y axis. The two 

exceptions will visit four cross search points around the best position refined in 

previous step. 

 

 

Fig 32 Pattern 6 

 

Simulation Result: 

AVG POINT 11.2 

PSNR (dB) -0.046 

Bit rate (%) 1.833 

 

Conclusion: 

Little quality loss is produced but with not significantly speeding up. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 33. It is a modification version of 

dual cross search. When the half pixel best position falls on the search center (the 

initial position before refinement regard as the integer pixel position), we find cross 

pattern with one x one y axis distance. When the half pixel best position falls on the y 

axis end points, we find cross pattern with two x one y axis distance. Besides, we find 

cross pattern with one x two y axis distance.  

 

 
Fig 33 Pattern 7 

 

Simulation Result: 

AVG POINT 9 

PSNR (dB) -0.09 

Bit rate (%) 4.092 

 

Conclusion: 

Quality loss is serious but good speeding up. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 34. It is a modification version of 

dual cross search. When the half pixel best position falls on the search center (the 

initial position before refinement regard as the integer pixel position), we find eight 

points surrounding the search center. When the half pixel best position falls on the y 

axis end points, we find cross pattern with two x one y axis distance. Besides, we find 

cross pattern with one x two y axis distance.  

 

 

Fig 34 Pattern 8 

 

Simulation Result: 

AVG POINT 12.6 

PSNR (dB) -0.056 

Bit rate (%) 2.889 

 

Conclusion: 

Quality loss is a little serious and not significantly speeding up. 
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Algorithm 

Yellow point (circle): the first step search position in half pixel. 

Red point (hexagon): the second step search position in quarter pixel. 

 

First we visit the five circle points shown in Fig 35. When the half pixel best position 

falls on the search center (the initial position before refinement regard as the integer 

pixel position), we will find four cross points around the search center. When the half 

pixel best position falls on one of the four end points in step one, we will use 

horizontal and vertical search pattern according to the best position determined in 

previous step. 

 

 
Fig 35 Pattern 9 

 
Simulation Result: 

AVG POINT 8.4 

PSNR (dB) -0.116 

Bit rate (%) 5.469 

 

Conclusion: 

Quality loss is very serious but good speeding up. Extra low area can be introduced by 

applying this architecture; the requirement of register array in interpolation unit can 

significantly decrease. 
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