
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

H.264/MPEG-4 AVC 移動估測的快速演算法與架構設計

Fast Algorithms and Architecture Designs for H.264/MPEG-4

AVC Motion Estimation

研究生: 王裕仁

指導教授: 張添烜

中華民國 九十五年 六月

H.264/MPEG-4 AVC 移動估測的快速演算法與架構設計

Fast Algorithms and Architecture Designs for H.264/MPEG-4 AVC

Motion Estimation

研 究 生: 王裕仁 Student: Yu-Jen Wang

指導教授: 張添烜 博士 Advisor: Tian-Sheuan Chang

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of Requirements

for the Degree of

Master of Science

In

Electrical Engineering

June 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五年 六月

誌 謝

首先，要感謝我的指導教授—張添烜博士，這兩年來給我的支持和鼓勵，讓

我在研究上能自由發揮，每當遇到問題和疑問時總能適時的給予最適當的建議，

當意見相左時也往往能夠給予最大的尊重，永遠以鼓勵的態度支持我的想法。張

老師的溫文儒雅作風也讓我莽莽撞撞的個性有潛移默化的改變，感激之情，非數

十字可以言表。

也要謝謝我的口試委員們，交大電子李鎮宜系主任和清華大學陳永昌教授，

感謝你們百忙中抽空來指導我，因為你們寶貴的意見讓我的論文更加完備。

接著要感謝 VSP 實驗室的好伙伴們。謝謝引我入門的鄭朝鐘學長，給予不少

建議的張彥中學長、林佑坤學長，你們傳給我的經驗，將讓我受用不盡。感謝古

君偉同學，參加 IC 競賽的過程，一起加油打氣，培養出短時間內迅速確實完成

設計的能力。感謝蔡旻奇、吳錦木同學，在面對冷澀堅硬的研究之餘，一起興致

高昂的出遊踏青，醞釀出下次更具爆發力的創意。感謝余國亘同學、郭子筠學弟，

在團體競爭的刺激下，領悟出團體中個人角色如何定位，爲踏出社會做先一步的

準備。感謝史彥芪學長、林嘉俊、吳秈璟、廖英澤、李得瑋學弟們，有你們的陪

伴，我的碩士班生涯充滿了歡笑。所有的一切，都是我在交大寶貴的回憶。

最後要感謝默默支持我的家人們，我的爸媽、哥哥、姊姊，你們的溫暖是我

努力最大的支柱。

在此，把本論文獻給所有愛我與所有我愛的人。

 I

H.264/MPEG-4 AVC 移動估測的快速演算法與架構設計

研究生: 王裕仁 指導教授: 張添烜 博士

國立交通大學電子研究所碩士班

摘 要

隨著高解析數位電視時代的來臨，為了兼顧大且精緻的畫面，高壓縮率規格

(H.264)是我們現行的解決方案。它不僅可有效節省儲存媒體所需的空間，同時

也可在現行的通訊環境下允許傳輸更高解析的畫面。伴隨著種種好處而來的就是

極之龐大的運算量，而大量的快速演算法也因此應運而生。如何兼顧畫質和運算

速度成了當前最重要的課題，而這也是本篇論文的主旨。

根據已出版的文獻，位移估測是整個壓縮過程中最為費時的。更進一步去了

解這個部份，我們可以把他大致上分為整數位移估測和分數位移估測。在原始演

算法的條件下，由於搜尋範圍較大整數位移估測佔去了絕大部分的時間。因此我

們非常直覺的認為，若能大幅減少搜尋範圍又能使畫質維持差不多水準將可以有

效節省壓縮時程，我們提出的快速演算法能夠針對不同解析畫面達到 88% (352 x

288)和 75%(720 x 480)的節省。分數位移估測在原始演算法的架構下，由於搜

尋點數遠少於整數位移估測所以在整個壓縮的過程中並沒有決定性的影響。但隨

著整數位移估測快速演算法的發展，分數位移估測搜尋點數所佔的比例慢慢升

高，分數位移估測快速演算法也愈來愈有存在的必要性。在單一樣式錯誤表面的

假設下，我們利用特定點的錯誤數值去預測整個搜尋視窗的錯誤表面。除此之

外，我們也引進了提前終止的技術。此分數快速位移估測部分可以減少超過 50%

的運算量。在整數和分數位移估測同時使用快速演算法的情形下，以 1280 x 720

為測試解析度，我們可以加速總壓縮時間達 20 倍之鉅。另外一種常見的解決方

式是利用硬體平行化同時處理多筆資料以達到加速的目的。在分數位移估測方

面，拜快速演算法之賜，我們的架構可以減少將近 40%面積和加速 14%。

 II

Fast Algorithms and Architecture Designs for H.264/MPEG-4 AVC
Motion Estimation

Student: Yu-Jen Wang Advisor: Tian-Sheuan Chang

Institute of Electronics

National Chiao Tung University

Abstract

With modern day advances in computer processing and multimedia applications,

improvements in the area of image processing and video compression are analogous.

Video compression allows the reduction of high-resolution video into a more compact

memory space to thereby reduce storage and video processing resources during

playback.

According to the literature published before, we can find that the motion

estimation process is the most time consumed part. To further realize this process, we

can mainly divide it into two parts: integer motion estimation and fractional motion

estimation. Integer motion estimation cost most part of time under the original

algorithm unchanged. The main reason is that the search window is too large. So we

have a very simple idea that we want to decrease the search window. We can reduce

88% (input sequence as CIF size) and 75% (input sequence as D1 size) search points

respectively. Fractional motion estimation will not affect obviously under the original

condition. But when the fast algorithm is applied for integer motion estimation, the

portion of encoding time due to fractional motion estimation is getting larger. Based

on the assumption of uni-modal error surface, we want to use the results of half pixel

step to predict the slope of error surface. We also apply early termination technique.

We can get 50% search points reduction in this part. By applying both fast algorithms,

we get 20 times speed up with the input sequence size as 1280 x 720. Making use of

hardware parallelism to speed up is also a common method in H.264 research field.

By the benefit of applying fast fractional motion estimation algorithm, we decrease

40% area and speed up by 14% in our fast fractional motion estimation architecture.

 III

Contents

Chapter 1 Introduction..1

1.1 THE SCENE ...1

1.2 VIDEO COMPRESSION ...2

1.3 MPEG-4 AND H.264..3

1.4 INTRODUCTION ..4

1.5 MOTIVATION..6

1.6 THESIS ORGANIZATION ..7

Chapter 2 Overview of H.264/AVC standard ..8

2.1 OVERVIEW ...8

2.1.1 Variable block-size motion compensation with multiple references8

2.1.2 Directional spatial intra coding...8

2.1.3 In-loop deblocking filter...8

2.1.4 Context adaptive entropy coding..8

2.1.5 Computational profile...10

2.2 INTRA PREDICTION.. 11

2.2.1 Overview .. 11

2.2.2 Fast algorithms ... 11

2.3 INTER PREDICTION..14

2.3.1 Overview ..14

2.3.2 Fast algorithms ...15

2.4 FAST MODE DECISION...20

2.4.1 Overview ..20

2.4.2 FAST ALGORITHMS..20

Chapter 3 Dynamic search range prediction for integer motion estimation22

3.1 DESCRIPTION OF PRIOR ART ...22

 IV

3.2 ANALYSIS OF INTEGER MOTION VECTOR..22

3.3 PROPOSED ALGORITHM ...26

3.4 COMPARISON...28

3.5 SIMULATION RESULT ..29

Chapter 4 Adaptive search pattern prediction for fractional motion estimation.............33

4.1 ANALYSIS OF FRACTIONAL PEL MOTION VECTOR..33

4.2 ORIGINAL SEARCH ALGORITHM..35

4.3 PROPOSED ALGORITHM ...37

4.4 COMPLEXITY AND ACCURACY COMPARISON ..42

4.5 EARLY TERMINATION..44

4.6 SIMULATION RESULT ..45

4.7 COMPARISON...46

Chapter 5 Integration ..47

Chapter 6 Architecture design for fast sub-pel inter coding in H.264...............................48

6.1 HARDWARE CONSIDERATION ...48

6.2 ALGORITHM FOR HARDWARE MODIFICATION...50

6.3 ARCHITECTURE ..51

6.4 PERFORMANCE ANALYSIS ...55

Chapter 7 Conclusion ..57

7.1 SUMMARY ..57

7.1.1 Fast integer motion estimation ...57

7.1.2 Fast fractional motion estimation ...57

7.1.3 Architecture design of fractional motion estimation...57

7.2 PERFORMANCE ANALYSIS ...58

7.2.1 Fast integer motion estimation ...58

7.2.2 Fast fractional motion estimation ...58

 V

7.2.3 Architecture design of fractional motion estimation...58

7.3 FUTURE WORK..58

BIBLIOGRAPHY ..59

APPENDIX...62

 VI

List of Figures

Fig 1 Block diagram of H.264 encoder .. 9

Fig 2 Computational profile of H.264 video encoding... 10

Fig 3 Intra prediction modes for (a)Intra_4x4 and (b) Intra_16x16.. 11

Fig 4 (a) S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching motion estimation”,[19].

(b) C. Zhu, X. Lin,and L.–P. Chau, “Hexagon-based search pattern for fast block motion estimation,[21].... 15

Fig 5 Temporal Neighboring Ref-frame Prediction.. 16

Fig 6 Spatial Up-Layer Prediction ... 16

Fig 7 (a)H.-M. Wong, O. C Au, and A. Chang, “Fast sub-pixel inter-prediction–based on the texture direction

analysis”, [35](b) C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast fractional pel motion estimation

algorithm for H.264/AVC”,[36]. .. 18

Fig 8 Comparison of bit stream portion with different fast algorithm. ... 19

Fig 9 Correlation between critical search range and matching error... 24

Fig 10 rate distortion curve with CIF size and search range =16.. 32

Fig 11 rate distortion curve with D1 size and search range =64. .. 32

Fig 12 (a) Error surface of integer pel ME (search range: 32); (b) Error surface of fractional pel ME (1/8-pel case)

... 33

Fig 13 Distribution of the fractional ME.. 34

Fig 14 Search algorithm in reference software... 35

Fig 15 Proposed algorithm for half-pel. ... 37

Fig 16 Proposed algorithm for quarter-pel (case 1). .. 39

Fig 17 Proposed algorithm for quarter-pel (case 2). .. 40

Fig 18 Proposed algorithm for quarter-pel (case 3). .. 41

Fig 19 Proposed algorithm for quarter-pel (case 4). .. 42

Fig 20 Relationship between best SAD in integer part & best SATD in fractional part ... 44

Fig 21 Adaptive threshold prediction curve ... 45

 VII

Fig 22 Mode decision flow in H.264.. 49

Fig 23 Block diagram of fast FME hardware. .. 51

Fig 24 (a) 4X4 block PU (b) 6-tap 1-D FIR filter... 52

Fig 25 Interpolation unit .. 53

Fig 26 Bilinear filters of interpolation unit... 54

Fig 27 Pattern 1.. 63

Fig 28 Pattern 2.. 64

Fig 29 Pattern 3.. 65

Fig 30 Pattern 4.. 66

Fig 31 Pattern 5.. 67

Fig 32 Pattern 6.. 68

Fig 33 Pattern 7.. 69

Fig 34 Pattern 8.. 70

Fig 35 Pattern 9.. 71

 VIII

List of Tables

Table 1 Increasing percentage of motion vector predictor with different search range... 23

Table 2 Increasing percentage of motion vector difference with different search range. .. 23

Table 3 The correlation between search range and the factors including matching error and motion information.

Critical search range means the smallest search range with similar RD performance. 24

Table 4 saving statistic with input search range = 16 and input sequence size as CIF size..................................... 28

Table 5 saving statistic with input search range = 32 and input sequence size as CIF size..................................... 28

Table 6 saving statistic with input search range = 32 and input sequence size as D1 size. 29

Table 7 saving statistic with input search range = 64 and input sequence size as D1 size. 29

Table 8 rate distortion result with input search range = 16 and input sequence size as CIF size. 30

Table 9 rate distortion result with input search range = 32 and input sequence size as CIF size. 30

Table 10 rate distortion result with input search range = 32 and input sequence size as D1 size............................ 31

Table 11 rate distortion result with input search range = 64 and input sequence size as D1 size............................ 31

Table 12 performance comparison ... 32

Table 13 Search point comparisons for different algorithms.. 43

Table 14 Algorithms prediction correctness compare to full search algorithm... 43

Table 15 Simulation result when QP = 28, speed up is only the performance in fractional ME part. RDO is off,

reference frame number = 1, CIF. .. 46

Table 16 Comparison between different fast algorithms for fractional ME.. 46

Table 17 rate distortion result with input search range = 64 and input sequence size as 720p size......................... 47

Table 18 Simulation result when QP = 28, point stop means the early termination applied in every search point,

step stop means the early termination just applied in half step... 50

Table 19 Performance analysis after algorithm modification ... 55

Table 20 Implementation result of proposed architecture... 55

Table 21 Comparison between the proposed architecture and architecture in [51]... 56

 1

Chapter 1 Introduction

1.1 THE SCENE

Pervasive, seamless, high quality digital video has been the goal of companies,

researchers and standards bodies over the last two decades. In some areas (for

example broadcast television and consumer video storage), digital video has clearly

captured the market (such as videoconferencing, video email, mobile video), market

success is perhaps still too early to judge. However, there is no doubt that digital

video is a globally important industry which will continues to pervade businesses,

networks and homes. The continuous evolution of the digital video industry is being

driven by commercial and technical forces. The commercial drive comes from the

huge revenue potential of persuading consumers and businesses:

1. Replace analogue technology and older digital technology with new, efficient,

high quality digital video products.

2. Adopt new communication and entertainment products those have been made

possibly by the move to digital video.

The technical drive comes from continuing improvements in processing performance,

the availability of higher capacity storage and transmission mechanisms and research

and development of video and image processing technology.

 Getting digital video from its source (a camera or a stored clip) to its destination

(a display) involves a chain of components or processes. Keys to this chain are the

processes of compression (encoding) and decompression (decoding), in which

bandwidth-intensive ‘raw’ digital video is reduced to a manageable size for

transmission or storage, then reconstructed for display. Getting the compression and

decompression processes ‘right’ can give a significant technical and commercial edge

to a product, by providing better image quality, greater reliability and more flexibility

than competing solutions. There is therefore a knee interest in the continuing

development and improvement of video compression and decompression methods and

systems. The interested parties include entertainment, communication and

broadcasting companies, software and hardware developers, researchers and holders

of potentially lucrative patents on new compression algorithms.

 2

The early successes in the digital video industry (notably broadcast digital

television and DVD-video) were underpinned by international standard ISO/IEC

13818 [1], popularly known as ‘MPEG-2’ (after the working group that developed the

standard, the Moving Picture Experts Group). Anticipation of a need for better

compression tools has led to the development of two further standards for video

compression, known as ISO/IEC 14496 Part 2 (MPEG-4 Visual) [2] and ITU-T

Recommendation H.264/ISO/IEC14496 Part 10 (H.264) [3]. MPEG-4 Visual and

H.264 share the same ancestry and some common features (they both draw on

well-proven techniques from earlier standards) but have notably different visions,

seeking to improve upon the older standards in different ways. The vision of MPEG-4

Visual is to move away from a restrictive reliance on rectangular video images and to

provide an open, flexible framework for visual communications that uses the best

features of efficient video compression and object-oriented processing. In contrast,

H.264 has a more pragmatic vision, aiming to do what previous standards did

(provide a mechanism for the compression of rectangular video images) but to do it in

a more efficient, robust and practical way, supporting the types of applications that are

becoming widespread in the marketplace (such as broadcast, storage and streaming).

1.2 VIDEO COMPRESSION

 Network bit rates continue to increase (dramatically in the local area and

somewhat less so in the wider area), high bit rate connections to the home are

commonplace and the storage capacity of hard disks, flash memories and optical

media is greater than ever before. With the price per transmitted or stored bit

continually falling, it is perhaps not immediately obvious why video compression is

necessary (and why there is such a significant effort to make it better). Video

compression has two important benefits. First, it makes it possible to use digital video

in transmission and storage environments that would not support uncompressed raw

video. For example, current internet throughput rates are insufficient to handle

uncompressed video in real time (even at low frame rates or small frame size). A

Digital Versatile Disk (DVD) can only store a few seconds of raw video at television

quality resolution and frame rate, so DVD video storage would not be practical

without video and audio compression. Second, video compression enables more

efficient use of transmission and storage resources. If a high bit rate transmission

channel is available, then it is more attractive proposition to send high resolution

compressed video or multiple compressed video channels than to send a single, low

resolution, uncompressed stream. Even with constant advances in storage and

 3

transmission capacity, compression is likely to be an essential component of

multimedia services for many years to come.

An information carrying signal may be compressed by removing redundancy from the

signal. In a lossless compression system statistical redundancy is removed so that the

original signal can be perfectly reconstructed at the receiver. Unfortunately, at the

present time lossless methods can only achieve a modest amount of compression of

image and video signals. Most practical video compression techniques are based on

lossy compression, in which greater compression is achieved with the penalty that the

decoded signal is not identical to the original. The goal of a video compression

algorithm is to achieve efficient compression whilst minimizing the distortion

introduced by the compression process.

 Video compression algorithms operate by removing redundancy in the temporal,

spatial frequency domain. The human eye and brain (Human Visual System) are more

sensitive to lower frequencies. By removing different types of redundancy (spatial and

temporal) it is possible to compress the data significantly at the expense of a certain

amount of information loss (distortion). Further compression can be achieved by

encoding the processed data using an entropy coding scheme such as Huffman coding

or Arithmetic coding.

 Image and video compression has been a very active field of research and

development for over twenty years and many different systems and algorithms for

compression and decompression have been proposed and developed. In order to

encourage inter-working, competition and increased choice, it has been necessary to

define standard methods of compression encoding and decoding to allow products

from different manufacturers to communicate effectively. This has led to the

development of a number of key International Standards for image and video

compression, including the JPEG, MPEG and H.26X series of standards.

1.3 MPEG-4 AND H.264

 MPEG-4 Visual and H.264 (also known as Advanced Video Coding) are

standards for the coded representation of visual information. Each standard is a

document that primarily defines two things, a coded representation (or syntax) that

describes visual data in a compressed form and a method of decoding the syntax to

reconstruct visual information. Each standard aims to ensure that compliant encoders

and decoders can successfully inter-work with each other, whilst allowing

 4

manufacturers the freedom to develop competitive and innovative products. The

standards specially do not define an encoder; rather, they define the output that an

encoder should produce. A decoding method is defined in each standard but

manufacturers are free to develop alternative decoders as long as they achieve the

same result as the method in the standard.

 MPEG-4 Visual and H.264 have related but significantly different visions. Both

are concerned with compression of visual data but MPEG-4 Visual emphasizes

flexibility whilst H.264’s emphasis is on efficiency and reliability. MPEG-4 Visual

provides a highly flexible toolkit of coding techniques and resources, making it

possible to deal with a wide range of types of visual data including rectangular frames

(traditional video material), video objects (arbitrary-shaped regions of a visual scene),

still images and hybrids of natural (real-world) and synthetic (computer-generated)

visual information. MPEG-4 Visual provides its functionality through a set of coding

tools, organized into ‘profiles’, recommended groupings of tools suitable for certain

applications. Classes of profile include ‘simple’ profiles (coding of rectangular video

frames), object-based profiles (coding of arbitrary-shaped visual objects), still texture

profiles (coding of still images or texture), scalable profiles (coding at multiple

resolutions or quality levels) and studio profiles (coding for high quality studio

applications).

 In contrast with the highly flexible approach of MPEG-4 Visual, H.264

concentrates specifically on efficient compression of video frames. Key features of

the standard include compression efficiency (providing significantly better

compression than any previous standard), transmission efficiency (with a number of

built-in features to support reliable, robust transmission over a range of channels and

networks) and a focus on popular applications of video compression. Only three

profiles are currently supported (in contrast to nearly 20 in MPEG-4 Visual), each

targeted at a class of popular video compression applications. The Baseline profile

may be particularly useful for ‘conversational’ applications such as video

conferencing, the extended profile adds extra tools that are likely to be useful for

video streaming across networks and the Main profile includes tools that may be

suitable for consumer applications such as video broadcast and storage.

1.4 INTRODUCTION

With modern day advances in computer processing and multimedia applications,

improvements in the area of image processing and video compression are analogous.

 5

Video compression allows the reduction of high-resolution video into a more compact

memory space to thereby reduce storage and video processing resources during

playback. Reduced memory requirements for video footage can aid in lengthy video

segments being stored onto portable media to and improve the mobility and

transferability of large files. Bandwidth is also increased when performing file

transfers, as quicker download and upload times are achieved through Internet and

other transfer protocols.

Videos are produced through a series of different frames (or images) played in

sequence. Therefore, the area of video compression reduces down to specialized

forms of image compression with specific consideration for video playback. The art

of video compression tends to fall into one of two categories: lossless compression

and lossy compression. Lossy compression entails the reduction of certain finer image

details that are sacrificed for the sake of saving a little more bandwidth or storage

space. Lossless compression, on the other hand, involves compressing data such that

it will be an exact replica of the original data upon decompression. For many types of

binary data, such as documents and various programs, lossless compression is

required as the integrity of the original data needs to be preserved. Many types of

multimedia, on the other hand, need not be reproduced exactly as before. An

approximation of the original image is usually sufficient for most purposes, as long as

the error between the original and the compressed image is tolerable.

In performing lossy compression, a common technique is to remove redundant

information between adjacent frames to reduce memory constraints and increase

bandwidth. This technique is referred to as motion estimation (ME), of which H.264

and MPEG-4 are the current known standards. These standards exploit and remove

temporal redundancies between successive frames, or more simply, select a reference

frame and predict subsequent frames based on the reference frame. Motion estimation

makes the assumption that the objects in the scene solely possess translational motion.

This assumption holds as long as there is no pan, zoom, changes in luminance, or

rotational motion. Motion estimation is an intensive process which generally

consumes 60-90% of the computational time of a related encoder or micro-controller.

The ME process begins first by dividing the current frame into macroblocks. The

size of a macroblock is typically 16x16 pixels, but can vary for each ME technique

according to the desired tradeoff between resolution and computational cost. Each

macroblock of a current frame is compared to a macroblock of a reference frame by

calculating a cost value for selected search points of the macroblocks. A current

 6

macroblock that is sufficiently similar reference macroblock is then selected and

paired together. Vectors denoting a displacement between each matching reference

macroblock and each matching current macroblock are then determined. These

vectors are known as motion vectors, and serve as a representation of the

displacement between matching macroblocks from the reference frame to the current

frame for use in the prediction process.

Using the reference frame and motion vectors, one can now reconstruct an

approximation of the current frame (now the reconstructed frame) by copying the

matching reference macroblock of the reference frame to the location noted by the

corresponding motion vectors. This form of image reconstruction is also known as

motion compensation. In this manner, subsequent frames can be continually predicted,

without having to store redundant macroblocks from a current frame into memory.

Certain macroblocks from the reconstructed frame are simply produced from a

matching macroblock from a reference frame according to a motion vector. This

process therefore compresses video sizes by omitting the storage of redundantly used

macroblocks. The level of compression varies with the number of macroblocks

replaced from frame to frame, and the desired image resolution.

The matching process in ME entails comparing selected pixels from a current

macroblock with the same pixels from a reference macroblock using a cost function.

A search algorithm provides the selection of search points indicating which pixels are

to be used for comparison in the matching process. The cost function provides a value

indicating the degree of similarity between the compared search points. One of the

more common cost functions to determine the similarity between two input images

includes the sum of absolute differences (SAD). The greater the similarity between

the two inputs, the smaller the SAD value will result. The matching process in ME

therefore uses a cost function to compare search points of a current macroblock to

search points of a reference macroblock to determine the degree of similarity between

the two macroblocks. If the cost values between the two macroblocks are sufficiently

low, then the reference macroblock is suitable to replace the current macroblcok in

motion estimation.

1.5 MOTIVATION

According to the literature published before, we can find that the motion

estimation process is the most time consumed part. To further realize this process, we

can mainly divide it into two parts: integer motion estimation and fractional motion

 7

estimation. Integer motion estimation cost most part of time under the original

algorithm unchanged. The main reason is that the search window is too large. So we

have a very simple idea that we want to decrease the search window. Reducing search

range is the most effective way to decrease search window and memory accesses can

be saved significantly. This is the main reason why we choose the way but other

methods such as search pattern rearrangement. Fractional motion estimation will not

affect obviously under the original condition. But when the fast algorithm is applied

for integer motion estimation, the portion of encoding time due to fractional motion

estimation is getting larger. Based on the assumption of uni-modal error surface, we

want to use the results of half pixel step to predict the slope of error surface. We also

apply early termination technique. Due to the unchanged system order, we use the

information from integer part to predict the threshold of fractional part. Making use of

hardware parallelism to speed up is also a common method in H.264 research field.

To trade off between speed and area, we use certainly parallelism and decompose

variable block size into 4X4. In the topic of speed up, we reach the goal by applying

early termination technique.

1.6 THESIS ORGANIZATION

In the thesis, we will introduce the H.264 standard and some published

algorithms in chapter2. In integer motion estimation part, we develop fast algorithm

as dynamic search range prediction. We will detail it in chapter3. In fractional motion

estimation part, fast algorithm named as adaptive search pattern prediction is

described in chapter4. The co-simulation result by applying both fast algorithms

mentioned in chapter3 and chapter4 is shown in chapter5. Then, we will show the

hardware architecture and result comparisons in chapter6. Finally, a conclusion is

given in chapter7.

 8

Chapter 2 Overview of H.264/AVC standard

2.1 OVERVIEW

H.264 consists of a number of tools. Its basic structure is the so-called

motion-compensated transform coder. Compared to the prior video coding standards,

many important and new techniques are employed in H.264 and they together bring

significant improvement on coding performance. Some of these techniques are

highlighted here [5]. We may want to add that the concepts of some of these tools

have existed for some time but they are nicely tuned and integrated together to form a

good compression scheme in H.264.

2.1.1 Variable block-size motion compensation with multiple references

The basic unit in H.264 motion estimation is the 16x16 macroblock. It can be

further split into a tree structure, with a minimum motion compensation block size as

small as 4x4. Also, up to five reference frames may be used for motion compensation.

2.1.2 Directional spatial intra coding

To reduce the correlation inside a block, H.264 adopts the intra-prediction

technique, which estimates the current block pixel values based on the known pixels

of its neighbor blocks. The prediction results implicitly follow the edge direction, and

often bring significant improvements.

2.1.3 In-loop deblocking filter

Block-based video coding produces artifacts known as blocking artifacts at low

bit rates. This in-loop deblocking filter adjusts its filter strength adaptively according

to the image local characteristics, and thus it provides better quality pictures at the

decode end.

2.1.4 Context adaptive entropy coding

Two entropy coding methods, Context-based Adaptive Binary Arithmetic Coding

(CABAC) and Context-based Adaptive Variable Length Coding (CAVLC), are

provided in H.264. Both methods use context-base adaptivity to improve the entropy

 9

coding performance and the results show this approach is quite successful.

A simplified encoding flow of H.264 is shown in Fig 1. A video frame is first

partitioned into a number of 16x16 macroblocks. Then, each macroblock goes

through the intra-prediction or the inter-prediction unit. The intra prediction unit uses

the neighboring block data to predict the current block. The inter-prediction uses

reference frames to predict the current frame. Each predictor has a number of modes.

A good design should pick up the best mode with the lowest rate and distortion. The

prediction residuals are then transformed, quantized and further entropy-coded into

the output bitstream. In order to continue operating on the next incoming frame, the

quantized current frame is reconstructed and stored. The decoder data flow is the

reverse of the encoder flow.

Deblk
Filter

+ T Q
Entropy
Coder

Q-1T-1

+

MCME

-

video

Ref 1

Ref 2

Ref 3

Intra
Pred.

Deblk
Filter

+ T Q
Entropy
Coder

Q-1T-1

+

MCME

-

video

Ref 1

Ref 2

Ref 3

Intra
Pred.

Fig 1 Block diagram of H.264 encoder

 10

2.1.5 Computational profile

The H.264 encoder reference software provided by the ITU/MPEG standard

committee is known for its high computational complexity. A typical computational

profile of the H.264 encoder (ITU/MPEG reference software) running on Intel PC, is

shown in Fig 2. It shows that the tools of (a) motion estimation, (b) entropy coding, (c)

transform and quantization, (d) interpolation, and (e) mode decision and

intra-prediction are the most time-consuming modules. Although the other results of

profiling would have somewhat different, by and large, the trend is pretty much the

same. As for the decoder, the tools of (a) motion compensation (including

interpolation), (b) entropy decoding, and (c) intra-prediction have the CPU load.

Fig 2 Computational profile of H.264 video encoding.

 11

2.2 INTRA PREDICTION

2.2.1 Overview

Intra-prediction uses the high correlation property of neighboring samples in

spatial domain to predict the current encoded samples. For the luma samples, each

prediction block may be formed for each 4x4 block (denoted as I4MB) or for an entire

MB (denoted as I16MB). When utilizing Intra_4x4 prediction, each 4x4 block

chooses one of the nine prediction modes, which include one DC mode plus eight

directional prediction modes, as shown in Fig 3 (a), as the best one. In the luma

component of an MB, the Intra_16x16 prediction is typically chosen for smooth

image areas, and thus, only four prediction modes are specified as shown in Fig 3 (b)

except for the DC mode. The chroma samples of an MB are predicted using a similar

prediction pattern, Intra_8x8, which is similar to the luma Intra_16x16 prediction.

(a) (b)

Fig 3 Intra prediction modes for (a)Intra_4x4 and (b) Intra_16x16.

2.2.2 Fast algorithms

The fast algorithms of intra prediction can be classified into several types. The

first approach is “early termination”, which ends the search operation when the

calculated distortion is samller than a pre-chosen threshold. The selection of a proper

measure for deciding termination is critical to the performance. It may be derived

based on the macroblock smoothness [6][7] or the most probable mode [8]. The early

termination based on the macroblock smoothness calculates a smoothness measure of

a macroblock to determine the block type. For example, the large block type such as

Intra_16x16 is chosen often for the flat image areas [6][7]. “Smooth” means that all

the pixel values in a MB are similar; that is, their variance is small. The variance

computation shall be simple to save computation. Therefore, the Mean Absolute

Difference (MAD) operation [6] or the AC/DC ratio [7] is often used. If the variable is

 12

smaller than a pre-selected threshold value, the Intra_16x16 mode is chosen and thus

the costly Intra_4x4 can be skipped.

Another kind of early termination proposal examines the most probable mode

first. For example, in searching for the best Intra_4x4 mode, if its residual is smaller

than a threshold, then the other eight Intra_4x4 modes are skipped (not chosen).

Otherwise, all nine modes have to be tested. Then, we set another threshold to decide

whether to keep on checking the Intra_16x16 prediction or not. It was reported that in

one case, this method together with the 2:1 downsampling and rate-distortion

optimization (RDO) can reduce 68.8% of total computation time with only 1.35% of

bit rate increase comparing to the reference software [8]. The major issue in this type

of algorithms is how to determine the threshold. The threshold value can be adjusted

according to the quantization parameters for instance. To construct a more efficient

scheme, we propose a mixed fast intra prediction algorithm. It first examines both the

most probable mode and the DC mode to determine if it meets the early termination

criterion. The threshold value is decided by the average of SATD (sum of absolute

transformed difference) of all the previous Intra_4x4 blocks in this frame. Once the 16

Intra_4x4 blocks are done, their total cost will be used as the threshold for deciding

Intra_16x16 mode. These threshold values seem to be able to match the video local

characteristics and provide good results. Even when RDO is turned off, we can

achieve around 30% computational savings for the intra prediction module.

The second approach uses the edge analysis to quickly identify the edge direction

since the intra prediction is basically a directional prediction [9][10]. Often the Sobel

operators or the first order derivative are used as the edge analysis tool to find the

most probable edge, which will be used as one of the final edge candidates. The final

mode candidate list includes the one selected by the edge detector together with the

other highly probable modes. In the case Intra_4x4, this would mean two modes of

the neighboring blocks and the DC mode; and in the Intra_16x16 and Intra_8x8 cases,

only the DC mode is considered highly probable. Therefore, only four candidate

modes (for Intra_4x4) or two candidate modes (other types) are needed to be

examined. The result shows that 60% of intra_only computation time reduction is

observed with RDO and the bit rate increase is around 2~3% [9]. The bit rate increase

may be owing to the irregular edges within a block. On the other side, the extra

computation needed for edge analysis can be a computation burden and reduce the

overall saving significantly.

The third approach uses the so-called three step approach [11]. It first tests the

 13

horizontal and vertical directions, it then tests the neighboring 22.5 degree modes

close to the better one from the previous step, and finally the best mode up-to-now is

checked against the DC mode for the final winner. This approach has the advantage of

a fixed number of modes are examined for all cases. However, computation time

reduction is around 33% with about 1% bit rate increase.

The last approach makes use of the correlation in the temporal domain [12] since

the best prediction mode in the current macroblock is likely similar to that in the

reference macroblock in the previously coded frame(s). Thus, the primary intra

prediction mode is selected from the mode of the most overlapped block in motion

estimation. The computational overhead is nearly zero since all information is

obtained during the inter-prediction operation. It is reported that the coding

performance is nearly unchanged while the computational savings is about 50%

assuming the intra-frame period is 10 [12].

In summarizing various fast intra-prediction algorithms, although we cite the

experimental results from the proposed documents, a fair comparison among all

methods is difficult because their simulation environments are quite different. One

important element affecting computation is the option of RDO in the reference

software. This is particularly true for the early termination method with thresholds.

The algorithms described in the above can be combined together to achieve further

speed-up. For example, the first step could be the decision on Intra_4x4 or

Intra_16x16. The second step could be the early termination for the chosen intra type.

Finally, the rest of mode tests could be a fast algorithm to select one from the nine or

four candidate modes.

 14

2.3 INTER PREDICTION

2.3.1 Overview

Block matching based motion estimation and compensation is a fundamental

process in the current international video compression standards. It can efficiently

remove interframe redundancy. A direct implementation is the full search algorithm

that examines exhaustively every candidate motion vector in the search window to

find the globally best matched block in the reference frame. However, its

computationally intensive nature prevents it from practical implementation on a

processor for real-time applications. The computation burden is increased drastically

for the H.264 encoder because there are a number of combinations of partitioning a

macroblock into sub-block(s) ranging from 4x4 to 16x16. Potentially each sub-block

can have its own motion vector. This feature significant increases the computational

complexity in motion estimation. Thus, many fast motion estimation algorithms have

been proposed to alleviate the computational load.

Most of the fast algorithms are based on the well-known a priori knowledge, “the

motion field of a real world image sequence is usually gentle, smooth and varies

slowly”. Fast motion estimation algorithms can be categorized into roughly three

families as described below.

 15

2.3.2 Fast algorithms

2.3.2.1 Reduce possible candidate points

 (a) (b)

Fig 4 (a) S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching motion estimation”,[19]. (b) C. Zhu, X.

Lin,and L.–P. Chau, “Hexagon-based search pattern for fast block motion estimation,[21]

Based on the assumption of convexity of the uni-modal error surface, i.e., block

matching distortion increases monotonically away from the global minimum point,

many gradient-based search methods with carefully designed search patterns have

been developed to limit search points to a small subset of all possible candidates. This

category includes the well-known three-step search (3SS) [13], the new three-step

search (N3SS) [14], the cross search (CS) [15], the one-dimensional gradient descent

search (1DGDS) [16], the block-based gradient descent search (BBGDS) [17], the

four-step search (4SS) [18], the diamond search (DS) [19], the cross-diamond search

(CDS)[20] and the hexagon-based search (HEXBS) [21]. Although this category of

algorithms may be trapped into a local minimum point and hence the efficiency of the

motion compensation may drop, they can considerably reduce the number of block

matching computations.

 16

2.3.2.2 Motion vector prediction

NRMV
uuuuuuv

't ' 1t +

_

'

' 1pred NRP NR

t t
MV MV

t t

−= ×
− −

uuuuuuuuuuuv uuuuuuv

Fig 5 Temporal Neighboring Ref-frame Prediction

Fig 6 Spatial Up-Layer Prediction

Motion in most natural image sequences involves a few blocks and lasts for a

few frames. Therefore, spatially or temporally adjacent blocks often have similar

motion vectors. Taking the advantage of the correlation among neighboring motion

vectors, the search window can be constrained to a small clique surrounding the

“predicted vector”, a candidate position predicated based on the known neighboring

motion vectors. Many prediction algorithms have been developed with different

complexities. The prediction search algorithm (PSA) [22] simply predicts the current

block motion vector as the mean value of its neighboring blocks’ motion vectors.

Fuzzy search [23] applies fuzzy logic to predict the motion vector. In [24], motion

vectors are predicted by integral projections. In [25], a spatial-temporal AR model of

motion vectors is constructed and an adaptive Kalman filter is employed. The

multi-resolution search [26] down-samples a picture to obtain raw motion vectors at

different resolution levels, then it estimates finer motion vectors from the coarser

ones.The multi-resolution-spatiotemporal (MRST) scheme [26] modifies the normal

 17

raster scan order so that some blocks can reference more motion information by

increasing their neighboring blocks along more directions. It then combines a

multi-resolution scheme and spatiotemporal correlation to predict motion vectors. For

burst motions and blocks at the top-left corner, which has little correlation information,

the performance of this category of algorithms may deteriorate because the refinement

of prediction is restricted to a small search region. Moreover, the prediction overhead

may reduce the speed gain.

2.3.2.3 Low complexity block matching criteria

The majority of the computations in motion estimation originate from

computations of block matching distortion. In general, block matching metrics, such

as the mean absolute difference (MAD) and the mean square error (MSE), involve

pixel-wise operations, which are highly computationally intensive. Some methods try

to simplify distortion computation by substituting the distortion defined on a subset of

pixels for the whole block distortion. For instance, the MAD of 128 pixels is used as

the matching distortion for a 16x16 macroblock in [26]; the computations can be

reduced by one half with little performance loss. However, this method is not suitable

for small blocks such as 4x4 blocks. Partial distortion elimination (PDE) in [27]

compares every line’s distortion in a block to avoid computing the distortion of the

entire block. In [28], hypothesis testing is used to estimate the MAD from the partial

mean absolute difference (PMAD), and the estimated MAD value is used to judge the

matching result.

When fast algorithms in the above three categories are put together, the motion

estimation accuracy may degrade. Additional calculations such as the initial motion

vector prediction could lead to a considerable amount of computational overhead.

An approach proposed without quality degradation is the successive elimination

algorithm (SEA) suggested by Li and Salari [29], which pre-excludes some

impossible candidate points before completing the matching distortion calculation.

SEA is a fast full search algorithm having a performance identical to FS while it

speeds up the search process approximately by 10 times for 16x16 macroblock based

motion estimation. Some further improvements have been made in subsequent

research [27][30]-[33].

 18

2.3.2.4 Fast fractional motion estimation

 (a) (b)

Fig 7 (a)H.-M. Wong, O. C Au, and A. Chang, “Fast sub-pixel inter-prediction–based on the texture direction analysis”, [35](b)

C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast fractional pel motion estimation algorithm for H.264/AVC”,[36].

In the H.264 video coding scheme [4], the inter prediction (motion vectors)

precision has been increased to quarter pixel. Typically, people perform the integer

pixel motion estimation (IME) first. Then, the sub-pixel motion estimation or

fractional motion estimation (FME) is applied to achieve refinement. As compared to

the integer-value search, FME has a somewhat different statistical character. This may

due to the facts that the search window of FME refinement is much smaller than that

of IME and that the referenced sub-pixels are interpolated from the integer-coordinate

pixels. Consequently, the error surface of FME is much closer to a uni-modal one,

which favors fast algorithms.

Therefore, traditional fast algorithms in IME can also be used and can be more

effective. The scheme adopted by the H.264 reference software is a three-step-like

fast algorithm. It first checks the nine candidates surrounding the best match of IME,

and then checks further the nine candidates surrounding the best match from the

previous step. However, to take even more advantage of the uni-modal surface

property and the highly centralized distribution of sub-pixel motion vectors, several

fast FME algorithms with additional features are proposed. In [35], a gradient based

search algorithm is brought up. The search direction is determined first and looks for

the best motion vector along that direction. In [36], an adaptive search-pattern

algorithm is proposed. The search-pattern is determined by outcome of the previous

step and it biased towards the search center. This method saves half of the

computations when compared to the reference software.

 19

2.3.2.5 Some recent approaches

The recent trend to further reduce the motion estimation calculations is to

combine the techniques mentioned before. The idea is each technique, a fast algorithm,

is placed its most suitable target area. Thus, how to find a specific combination that

achieves the optimal solution for a specific application becomes the most important

issue. In [37], a fast algorithm with better coding efficiency on residuals is proposed,

which leads to a lower bit rate compared to the full search algorithm. The method

proposed in [38] produces larger residuals (due to fewer search points) but less

motion information. Overall, it has a better encoding efficiency and a rather fast

coding speed. This type of solutions seems to the target now researchers are aiming at.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Full Search UMHexagonS Proposed

Motion Estimation Methods

B
it

R
at

e
[b

its
/fr

am
e] Delta quant

 Coeffs . C

 Coeffs . Y

 CBP Y/C

 Motion Info

 Mode

Fig 8 Comparison of bit stream portion with different fast algorithm.

 20

2.4 FAST MODE DECISION

2.4.1 Overview

The mode decision algorithm determines the best mode of the macroblock from

various combinations of inter-prediction and intra-prediction. It can be coded with

seven different block sizes for motion-compensation in the inter mode, and various

spatial directional prediction modes in the intra mode. To achieve the highest coding

efficient as close as possible, the reference software calculates the rate distortion costs

of all possible modes and the it chooses the best one that has the minimum cost. This

is a very time-consuming process. To reduce the computation load, a fast mode

decision algorithm is necessary, which can do a quick screening to drop most poor

modes and then it examines the reminders and identifies the (nearly) best one.

2.4.2 FAST ALGORITHMS

The fast mode decision algorithm can be divided into two types. The first type

uses an early termination threshold to terminate the lengthy mode decision process.

The early termination step can be placed between the intra and inter prediction

processes [43][44] or inside the inter prediction process [45].

The scheme proposed in [43][44] uses the fact that intra mode needs more bits

for coding and thus has a lower priority than the inter mode. Thus, if the best inter

mode cost is smaller than a threshold, the intra prediction mode is skipped. The

threshold can be the average of rate distortion cost of a number of previously coded

intra blocks [43] or a ratio between the average boundary error (ABE) and average

rate (AR) [44], where AR is the average bits for encoding the motion-compensated

residuals and ABE is the average pixel error between the pixels at boundary of the

current and its adjacent blocks in the best inter mode. The simulation results show that

it can achieve about 20% reduction of computational time with a slight bitrate

increase.

In [45], it observes the fact that the 16x16 block usually is the best block size for

large areas of background with still or uniform motion since it has less motion vector

overhead. Thus, it first checks the cost of 16x16 block size. If it is smaller than a

threshold, say, an average value of previous 16x16 blocks, the inter prediction process

is terminated. Otherwise, a similar procedure is applied to the 8x8 block size.

The second type of the mode decision algorithms is to reduce the number of candidate

modes. Intuitively, if the cost of a larger block-size mode is higher than the cost of the

 21

current block-size mode, the even larger block-size modes can be excluded. Similarly,

if the cost of a smaller block-size is higher than that of the current block-size mode,

the even smaller block-size modes can be excluded. Following this argument, we give

different priority to each mode. If the mode with higher priority can provide sufficient

image quality, we can skip the other lower priority modes. A specific case is the SKIP

mode. The SKIP mode refers to the 16x16 mode of which no motion and residual

information is coded. Thus, no motion search is required and it has the lowest

complexity. Therefore, many algorithms assign the highest priority to the SKIP mode

and thus a large percentage of macroblocks would get the SKIP mode based on

spatial-temporal neighborhood information [46]-[48]. This approach can save a

significant proportion of the encoding time with a slightly bit rate increase and quality

drop.

In summary, the fast mode decision algorithms can be combined with the other

fast intra and inter prediction algorithms to achieve further speedup. In all these

algorithms, the SKIP mode first approach can save significant computational time.

How to determine proper threshold values in a simple and automatic way is one

critical issue for research and many proposals have been suggested.

 22

Chapter 3 Dynamic search range prediction

for integer motion estimation

3.1 DESCRIPTION OF PRIOR ART

Motion estimation is a well known technique in video coding to achieve high

coding efficiency by reducing the temporal redundancy between successive frames.

Motion estimation plays an important role in such an inter-frame predictive coding

system.

The full search block matching algorithm for motion estimation is the simplest

but computationally very intensive, especially when the search range is large. It

provides an optimal solution by exhaustively evaluating all the possible candidates

within the search range in the reference frame. Many fast algorithms, such as the new

three-step search [14], the block-based gradient descent search [17], the three-step

search [39], the dynamic search window scheme [40], and one-at-a-time search [41]

have been proposed to reduce the computational complexity by limiting the number of

check points within the constant search range. The basic idea behind there fast

algorithms is the assumption of the monotonically increasing block distortion function.

Limited points are tested in the first stage; search is then continued in the vicinity of

the point whose distortion is the smallest in previous stage. In [40], the window size

in subsequent stage is determined based on the superiority of the best matched point

to others in the present stage. It is clear that all these algorithms start with a constant

search range and the computational complexity reduction is done at the expense of

estimation accuracy due to its limited number of check points in the first stage.

Different approached of fast algorithms have also been proposed. In [42], the

sub-sampled motion-field estimation scheme is proposed. It starts with sub-sampled

motion-field estimation and then selectively replicates it to produce all the motion

vectors. However, it performs poorly when two or more objects within the same block

are moving in different directions or different velocities [42].

3.2 ANALYSIS OF INTEGER MOTION VECTOR

It is well known that the larger search range fed into motion estimation, the

better rate distortion performance is obtained. We can intuitionally know that the

 23

performance increasing rate will saturate until certain degree video quality has been

achieved. In order to make the compress process more efficient, we may need to know

the saturate boundary of the input search range. The factor straight affected by

changing input search range is motion information. Motion vector can be decomposed

of motion vector predictor and motion vector difference. In Table 1, we can find the

increasing rates of motion vector predictor are really small compare to the increments

of input search range. For the reason that comparisons from 32 to 16 are very similar

as that from 24 to 16, we can easily conclude that the increment of input search range

over the saturate boundary will not get better coding efficiency.

Compare 24 to 16 Compare 32 to 16

MVP_x MVP_y △PSNR Bitrate(%) MVP_x MVP_y △PSNR Bitrate(%)

Stefan 4.77 4.58 -0.01 -0.003 7.73 12.15 -0.01 0.001

Foreman 0.51 1.17 -0.01 -0.001 1.06 2.64 -0.02 -0.001

Mobile 11.01 17.59 -0.01 -0.005 12.99 23.48 -0.01 -0.002

Coastguard 0.45 3.04 -0.01 -0.001 1.24 7.04 -0.01 -0.001

News 0.43 0.89 -0.01 -0.001 0.66 1.10 0.00 -0.004

Table 1 Increasing percentage of motion vector predictor with different search range.

Compare 24 to 16 Compare 32 to 16

MVD_x MVD_y △PSNR Bitrate(%) MVD_x MVD_y △PSNR Bitrate(%)

Stefan 20.44 15.18 -0.01 -0.003 36.30 38.28 -0.01 0.001

Foreman 6.23 4.50 -0.01 -0.001 11.55 8.87 -0.02 -0.001

Mobile 54.23 45.73 -0.01 -0.005 67.86 59.97 -0.01 -0.002

Coastguard 3.32 21.12 -0.01 -0.001 10.48 50.06 -0.01 -0.001

News 13.12 12.92 -0.01 -0.001 19.00 10.60 0.00 -0.004

Table 2 Increasing percentage of motion vector difference with different search range.

In Table 2, the same conclusion can be epitomized. Motion vector difference

shows larger increasing rate with comparison to motion vector predictor, but it still

not efficient enough when input search range is too large. To determine whether the

input search range is too large or not, we experimented the input sequence size as CIF

size to find the saturate boundary of input search range for every input sequence

respectively.

As shown in Table 3, critical search range means the smallest search range with

similar rate distortion performance. We listed all possible factors that will announce

the search range needed. The factors that we considered can mainly be divided into

 24

two families: matching error group and motion information group. In the former

group, we record not only sum of absolute difference (SAD) but also sum of absolute

transformed difference (SATD); in the later group, we record motion movement

information. It is generally believed that temporal and spatial correlations of motion

vector exist. As the result, it gives us spaces to apply fast algorithm.

 Critical SR SAD SATD MVP_x MVP_y MVD_x MVD_y

Stefan 8 303.34 381.88 23.86 4.22 1.37 0.40

Foreman 4 176.64 267.79 17.51 6.51 0.66 0.55

Mobile 4 408.33 500.96 17.15 3.85 0.96 0.43

Coastguard 2 276.61 436.79 19.21 2.33 0.70 0.08

News 2 122.55 197.70 13.57 4.12 0.12 0.11

Table 3 The correlation between search range and the factors including matching error and motion

information. Critical search range means the smallest search range with similar RD performance.

y = 0.0329x - 1.9413

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600

matching error

C
ri

ti
ca

l S
R

Fig 9 Correlation between critical search range and matching error.

The correlation of critical search range and factors mentioned in Table 3 are very

similar. Taking matching error as the example, when the x coordinates (matching error)

are getting larger, the y coordinates (critical search range) are not getting larger

proportionally. In Fig 9, we can obviously find that when the matching error too small

or too large have smaller critical search range. To examine the reason, it is very

straight forward that too small matching error has smaller critical search range. As the

belief of the spatial correlation, slight motion movement (usually small matching error)

in previous macroblock means probably slight motion movement in current

macroblock. To cover the slight motion movement, only small critical search range is

 25

needed. In the case of larger matching error, it usually means that we can not find a

good match position in the search window such as changing scene or complex texture

within the macroblock. Indeed even if we increase the input search range will have

very little RD performance improvement. As the result that motion estimation does

not compress the macroblock information with large matching error, we may want to

reduce the search range to achieve our goal as speedup.

 26

3.3 PROPOSED ALGORITHM

A fast algorithm for motion estimation is proposed in this chapter. In contrast to

previously proposed fast algorithms which use limited number of check points in a

constant search range. The proposed algorithm performs search in a dynamic search

range.

Block motion fields in real world video sequences are usually smooth and varies

slowly. This produces a high correlation between the motion vectors of neighboring

blocks. We record the matching error of the previous macroblock. By making use of

this information, we will determine the search range used in current macroblock

dynamically. The proposed algorithm can mainly divided into three steps. The details

are as follows:

Step 1: Predict search range.

If (qp > 30)

qp_factor = 2;

else

qp_factor = 1;

sr_factor = (input->search_range)>>4;

shift_factor = qp_factor + sr_factor;

To serve different resolution video content, we should adjust the predict scheme

dynamically. Two main factors result in different resolution are quantization

parameter and input video size. The former one let users can define the final video

quality according to their application. The later one let users can compress video

content with different input size such as QCIF for network streaming and D1 for DVD

player. As the different input size, the different input search range comes. In order to

reduce the error generate by predicting search range, we should adjust the sr_factor

dynamically.

Mvd_max = (|mvd_x_prev| , |mvd_y_prev|);

max_sr = Mvd_max << shift_factor;

We record the motion vector difference of the previous macroblock for the

reason that correlation exists. It is generally believed that motion vector is likely

 27

similar as the previous one. However, this is not point motion vector difference

directly. We may know the entire motion vector likely is but we can not judge the

refined part (motion vector difference) accurately, so Mvd_max need to be increased

to generate the probable predict search range (max_sr).

Step 2: Check the upper bound.

if(sad_previous > 600)

max_sr_up = (search_range >> 2);

else if(sad_previous > 50)

max_sr_up = search_range;

else

max_sr_up = (search_range >> 1);

max_sr = min (max_sr, max_sr_up);

In this step, we want to clip some redundant search range that was over predicted

in previous step. The main idea is cut off the search range when the match error is too

large or too small. The correlation is shown in Fig 9 and details are mentioned above.

600 and 50 are experiment result with input sequence as CIF size. Bad match (with

too large matching error) shows more spaces to reduce search range than good match

(with too small matching error) does. When matching error is over 600, it means that

there is no good match position in search window. In other words, even if we skip the

motion estimation process, it will not result in terrible performance loss. The amount

of residual data can not be saved, so spending time to refine motion vector is not

efficient and can be reduced.

Step 3: Check the lower bound.

if(max_sr == 0)

max_sr = 4;

The last step is to avoid skipping motion refined operation. In this step, we will

make sure that the max_sr is not equal to zero. The action that skipped motion refined

operation will lead to significantly rate distortion performance loss.

 28

3.4 COMPARISON

This section shows the speedup improved by proposed fast algorithm. Saving

mentioned below means the reduced search points compared to original ones. We

record every determined search range in all macroblocks and calculate the average of

them. Saving is calculated manually. It means not the total encoding time saving but

motion refinement time saving. As listed in Table 4, the input sequence size is CIF

size and input search range is given by 16. We find that the proposed algorithm

obviously decreases the number of search points. When the quantization parameter is

smaller than 30, almost 90% saving can be achieved. It still has more than 80% saving

even the quantization parameter is bigger than 30.

QP=20 QP=24 QP=28 QP=32 CIF

SR=16 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%)

Stefan 6.764 82.126 6.753 82.184 6.663 82.652 7.915 75.528

Mobile 4.573 91.828 4.544 91.931 4.464 92.213 6.453 83.732

Foreman 5.665 87.462 5.704 87.287 5.676 87.410 7.335 78.978

Coastguard 4.699 91.373 4.745 91.204 4.790 91.034 6.639 82.778

News 4.365 92.555 4.391 92.465 4.391 92.468 4.758 91.154

Average 89.069 89.014 89.156 82.434

Table 4 saving statistic with input search range = 16 and input sequence size as CIF size.

QP=20 QP=24 QP=28 QP=32 CIF

SR=32 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%)

Stefan 11.90 86.162 11.76 86.475 11.45 87.184 13.53 82.100

Mobile 8.537 82.882 8.447 93.031 8.216 93.407 11.57 86.918

Foreman 9.801 90.618 9.906 90.416 9.816 90.588 12.68 84.288

Coastguard 7.664 94.263 7.813 94.037 7.923 93.869 11.44 87.201

News 5.430 97.120 5.501 97.044 5.473 97.074 6.015 96.466

Average 92.209 92.201 92.424 87.395

Table 5 saving statistic with input search range = 32 and input sequence size as CIF size.

In Table 5, we see the similar result with different simulation environment. We

get even better result than that shown in Table 4. As the total encoding time issue,

when the search range is larger, the time spending on motion estimation occupies

bigger portion of total encoding time. So we can achieve 40% ~ 60% total encoding

time saving with input search range given by 16 but 60% ~ 80% total encoding time

 29

saving with input search range given by 32.

QP=20 QP=24 QP=28 QP=32 D1

SR=32 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%)

Crew 17.23 70.984 15.85 75.452 14.43 79.653 16.21 74.311

Harbour 12.54 84.633 11.91 86.144 11.07 88.031 13.51 82.153

Might 13.48 82.239 12.91 83.718 12.43 84.890 13.97 80.922

Sailormen 14.93 78.203 13.97 80.927 13.10 83.239 17.45 70.237

Average 79.015 81.560 83.953 76.906

Table 6 saving statistic with input search range = 32 and input sequence size as D1 size.

QP=20 QP=24 QP=28 QP=32 D1

SR=64 Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%) Sr_avg Saving(%)

Crew 42.49 55.919 39.39 62.103 36.20 67.992 40.39 60.155

Harbour 32.51 74.184 30.87 76.723 28.69 79.898 35.50 69.216

Might 30.36 77.489 28.72 79.862 27.58 81.421 31.12 76.348

Sailormen 39.99 60.940 37.88 64.955 36.04 68.284 46.44 47.332

Average 67.133 70.911 74.399 63.263

Table 7 saving statistic with input search range = 64 and input sequence size as D1 size.

In order to make the method suitable for all kinds of video content, we concerned

about many factors and adjusted the prediction scheme respectively. We developed the

algorithm with input sequence size as CIF size. As shown in Table 6 and Table 7, we

took input sequence size in D1 size as an experiment. The results show that smaller

saving comes with larger input sequence size. It means that the proposed algorithm is

a little conservative for larger input sequence size. Even if the determined search

range is over predicted, it still has almost 80% saving as listed in Table 6 and almost

70% saving as listed in Table 7. As the total encoding time issue, both of them are

about 40% ~ 60% saving.

3.5 SIMULATION RESULT

After the comparison of the speedup, this section shows the corresponding rate

distortion performance. We summarized the result into Table 8 to Table 11. We have

less than 0.03 dB PSNR drop and less than 0.5 % bit rate increased in the case of

input sequence size as CIF size (Table 8 and Table 9).

 30

QP = 20 QP = 24 JM 8.2 CIF

SR = 16 Original Proposed △(dB,%) Original Proposed △(dB,%)

PSNR 41.57 41.54 -0.03 38.42 38.37 -0.05 Stefan

Bit rate 3974.9 4042.69 1.705 2493.37 2538.14 1.795

PSNR 40.61 40.6 -0.01 37.08 37.07 -0.01 Mobile

Bit rate 4996.31 4973.41 -0.458 3199.12 3187.18 -0.373

PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03 Foreman

Bit rate 1834.93 1859.84 1.357 969.3 987.24 1.850

PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01 Coastguard

Bit rate 3289.18 3274.37 -0.450 2003.72 1996.76 -0.347

PSNR 43.13 43.13 0 40.67 40.64 -0.03 News

Bit rate 622.02 623.01 0.159 373.98 374.66 0.181

PSNR -0.014 -0.026 Average

Bit rate 0.462 0.621

Table 8 rate distortion result with input search range = 16 and input sequence size as CIF size.

QP = 20 QP = 24 JM 8.2 CIF

SR = 32 Original Proposed △(dB,%) Original Proposed △(dB,%)

PSNR 41.59 41.55 -0.04 38.45 38.4 -0.05 Stefan

Bit rate 3907.46 3931.66 0.619 2414.45 2445.22 1.274

PSNR 40.6 40.59 -0.01 37.08 37.06 -0.02 Mobile

Bit rate 5016.42 4983.1 -0.664 3212.55 3190.48 -0.686

PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03 Foreman

Bit rate 1837.43 1854.24 0.914 970.15 983.24 1.349

PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01 Coastguard

Bit rate 3296.59 3279.85 -0.507 2006.07 1997.74 -0.415

PSNR 43.14 43.12 -0.02 40.67 40.63 -0.04 News

Bit rate 624.8 627.92 0.499 375.32 378.82 0.932

PSNR -0.02 -0.03 Average

Bit rate 0.172 0.490

Table 9 rate distortion result with input search range = 32 and input sequence size as CIF size.

The previous section have pointed out that the speedup of the larger input

sequence size has less speedup. In other words, less speedup means better rate

distortion performance. The argumentation can be proved in this section through

Table 10 to Table 11. We can find that both PSNR drop and bit rate increased are

obviously smaller than that in Table 8 and Table 9.

 31

QP = 20 QP = 24 JM 8.2 D1

SR = 32 Original Proposed △(dB,%) Original Proposed △(dB,%)

PSNR 41.97 41.95 -0.02 39.34 39.33 -0.01 Crew

Bit rate 9727.04 9611.98 -1.182 4935.23 4896.6 -0.782

PSNR 41.22 41.19 -0.03 38.28 38.26 -0.02 Harbour

Bit rate 13516.99 13176.58 -2.518 8157.34 7999.64 -1.933

PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02 Night

Bit rate 10574.44 10446.64 -1.208 5740.23 5712.69 -0.479

PSNR 41.04 41.02 -0.02 38.01 38 -0.01 Sailormen

Bit rate 12398.86 12267.2 -1.061 5955.03 5920.67 -0.576

PSNR -0.022 -0.015 Average

Bit rate -1.492 -0.943

Table 10 rate distortion result with input search range = 32 and input sequence size as D1 size.

QP = 20 QP = 24 JM 8.2 D1

SR = 64 Original Proposed △(dB,%) Original Proposed △(dB,%)

PSNR 41.97 41.96 -0.01 39.35 39.33 -0.02 Crew

Bit rate 9806.21 9725.62 -0.821 4973.31 4941.56 -0.638

PSNR 41.22 41.2 -0.02 38.29 38.26 -0.03 Harbour

Bit rate 13616.41 13328.96 -2.111 8195.73 8064.2 -1.604

PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02 Night

Bit rate 10663.88 10503.1 -1.507 5779.62 5727.58 -0.900

PSNR 41.04 41.03 -0.01 38.02 38 -0.02 Sailormen

Bit rate 12449.29 12354.03 -0.765 5974.17 5948.22 -0.434

PSNR -0.015 -0.022 Average

Bit rate -1.301 -0.894

Table 11 rate distortion result with input search range = 64 and input sequence size as D1 size.

We have less than 0.022 dB PSNR drop and even lower than original bit rate

performance. When the quantization parameter is getting bigger, the less coding

efficiency is carried with. However, in order to get so huge a speedup, sacrificing

small amount of quality loss is still worth. Rate-distortion curves are shown in Fig 10

and Fig 11. As the input sequence as CIF size, we simulated search range equal to 16

and 32; as the input sequence as D1 size, we also simulated search range equal to 32

and 64. All of them are very close to original method.

 32

R-D curve (CIF search range=16)

30

32

34

36

38

40

42

0 500 1000 1500 2000 2500 3000 3500

Bit rate

PS
N

R

JM8.2

Our proposed

Fig 10 rate distortion curve with CIF size and search range =16.

R-D curve (D1 search range=64)

33

34

35

36

37

38

39

40

41

42

0 2000 4000 6000 8000 10000 12000

Bit rate

PS
N

R

JM8.2

Our proposed

Fig 11 rate distortion curve with D1 size and search range =64.

 JVT-B022 JVT-D117 JVT-Q088 Our proposed

Worst PSNR loss (dB) 0.068 0.09 0.022 0.03

Worst Bit rate increase 1.37% 01.63% 0.42% 1.58%

ME Time saving n/a n/a 13% 75%

Total Time saving 49.44% 61.27% 8.3% 51%

Table 12 performance comparison

As listed in Table 12, we can find that our proposed algorithm is not the fastest

one and not the most accurate one either. But it is the best solution if we have to

consider speedup and video quality at the same time.

 33

Chapter 4 Adaptive search pattern prediction

for fractional motion estimation

4.1 ANALYSIS OF FRACTIONAL PEL MOTION VECTOR

It is generally believed that the fast ME algorithm works best if the error surface

inside the search window is unimodal.

As shows in Fig 12, the error surface of integer pel ME is not unimodal due to

the large search window and complexity of video content. So the ME search would

easily be trapped into a local minimum. On the other hand, since the sub-pels are

generated from the interpolation of integer pels, the correlation inside a fractional pel

search window is much higher than that of the integer pel search window. Thus, the

uni-modal error surface will be valid in most cases of the fractional pels. So the

matching error decreases monotonically as the search point moves closer to the global

minimum.

(a) (b)

Fig 12 (a) Error surface of integer pel ME (search range: 32); (b) Error surface of fractional pel ME

(1/8-pel case)

In the full search method, every fractional pels around the original integer pels

are treated equal. However, with the valid unimodal error surface assumption, a fast

algorithm can work well if every candidate of the sub-pel refinement has different

occurring probabilities. Fig 13 shows the distribution of the fractional motion vector

around the best integer motion vector. It is obvious that more than 90% of fractional

 34

motion vector are at the search center in all kinds of video content. However, we still

can not just avoid the fractional part even there are huge density diagram appear near

the bias search center. The small error drift of fractional part in motion vector will

lead to significantly bit rate increase.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

count

foreman

0

500000

1000000

1500000

2000000

2500000

3000000

count

stefan

(a)foreman. (b)Stefan.

0

500000

1000000

1500000

2000000

2500000

3000000

count

mobile

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

count

coastguard

(c) mobile and calendar. (d)coastguard

Fig 13 Distribution of the fractional ME.

 35

4.2 ORIGINAL SEARCH ALGORITHM

Fig 14 Search algorithm in reference software.

Fig 14 details a typical search algorithm for the ME process 100 according to the

reference software. The search process in fractional motion estimation is typically

divided into two parts. The first part consists of half-pel motion estimation, where

specific pixels at half-pel spacing are searched for comparison. The second part

consists of quarter-pel motion estimation, where pixels at quarter-pel spacing centered

around a search point obtained in the first part are used for comparison.

 In the first part of half-pel ME, a cost value for each of eight search points 120 in

a square search pattern surrounding the integer spaced pel called search center 110 is

calculated. A cost value calculation for the search center 110 is not performed. The

single search point from the group of search points 120 possessing the lowest cost

value is then selected as the quarter-pel motion estimation search center 130 in the

next step. The fractional motion estimation step utilizes an additional eight fractional

search points 140 displaced around the FME search center 130 in a smaller square

pattern. A total of 17 search points (1 search point from integer pel, 8 search points

from half-pel ME and 8 search points from quarter-pel motion estimation) are

therefore searched and compared in a single round of the traditional ME procedure

according to the reference software.

Although the typical search algorithm for the ME process 100 does manage to

 36

sufficiently locate suitable search points for the motion vector refinement process, the

excess amount of search points may result in significant delays in the encoding

process. The typical search algorithm for the ME process 100 may possess too many

search points to visit within one motion vector refinement process. Furthermore, the

search pattern used in the ME process 100 may provide further constraints in finding

optimal search points, as refinement in the fractional ME searching can cause the

search area to stray away from the search center.

In order to overcome these problems, and produce a more efficient search pattern,

a fast ME search algorithm is proposed. This algorithm produces a search pattern

based on the high statistical probability that fractional motion is located close to the

integer search center (as shown in Fig 13). In this way, fewer search points based near

or on the integer search center should be visited in the proposed algorithm. This

allows the complete fractional ME process to be accomplished with fewer overall

search points compared to the original method, while providing a comparable

accuracy. Furthermore, the overall computational resources and complexity to search

a predefined search area is greatly reduced.

 37

4.3 PROPOSED ALGORITHM

Fig 15 Proposed algorithm for half-pel.

 Fig 15 illustrates a fast ME search algorithm. The algorithm is used to determine

an optimized search pattern comprising a half-pel search pattern 200 and a quarter-pel

search pattern (discussed later). An integer spaced pel 210, or search center is shown

as a circle in the center of the macroblock in Fig 15. The first stage of the algorithm

comprises half-pel ME, where the half-pel search pattern is formulated. A total of 5

search points 220 are selected to form the half-pel search pattern: four search points

aligned to form a cross pattern around the search center and one search point located

at the search center. Fewer search points can be used in other embodiments. Once the

half-pel search pattern has been determined, the cost value for each search point 220

is calculated. Any suitable cost function can be used in this step, however, the sum of

absolute transform differences (SATD) is generally used for the fractional ME. The

cost function is used to determine the lowest 2 (or 3) cost values of the search points

220. Upon determination of the search points 220 producing the lowest cost values, a

quarter-pel search pattern for the fractional ME process is adaptively selected.

The next stage of the fast ME algorithm process entails selecting a quarter-pel

search pattern. The quarter-pel search pattern is selected according to the ranking of

cost values for each specific search point, and provides search points in a certain area

to approach the global minimum cost in the search window. In an effort to reduce

confusion, the search points deduced in the quarter-pel ME stage will be referred to as

 38

quarter-pel search points. However, both types of search points serve the same

purpose in providing matching points for the ME process.

Once the quarter-pel search pattern is determined (further below), cost values for

the quarter-pel search points of the fractional search pattern are then calculated. The

cost values attained here are used in conjunction with the cost data accumulated from

search points in the first stage to determine whether the current macroblock is a

suitable match to the reference macroblock. The entire search pattern therefore

comprises the half-pel search pattern used in the first stage and the quarter-pel search

pattern used the second stage for fractional ME.

 The following cases illustrate how the quarter-pel search pattern is selected in the

second stage in fractional ME. The quarter-pel search pattern is based on a ranking of

the cost values for each search point in the first stage for half-pel ME. The cases are

as follows

 39

Case 1: The lowest cost search point is located at the search center, and the second

and third lowest search points are opposite to each other.

This case is illustrated in Fig 16. In this case, the lowest cost search point 320 is

the located at the search center 310, and the second lowest cost search point 330 and

third lowest cost search point (not shown) are opposite each other. For this case, three

quarter-pel search points 340 placed between the minimum cost search point 320 and

the second lowest cost search point 330 are selected as the quarter-pel search pattern

in fractional ME. The three quarter-pel search points 340 are configured such that

they form a straight line perpendicular to the axis formed by the lowest cost search

point 320 and the second lowest cost search point 330, and are located in between the

two half-pel search points 320 and 330.

Fig 16 Proposed algorithm for quarter-pel (case 1).

 40

Case 2: The lowest cost search point is located at the search center, and the second

and third lowest cost search points are adjacent to each other.

This case is illustrated in Fig 17. The lowest cost search point 420 is located at

the search center 410, and the second lowest cost search point 430 is adjacent to the

third lowest cost search point 440. For this case, three quarter-pel search points 450

are used to form the quarter-pel search pattern in fractional ME. The three quarter-pel

search points 450 are arranged between the three lowest cost search points such that a

connection among the three quarter-pel search points 450 would from a right angle

with the vertex of the right angle concave to the search center 410.

Fig 17 Proposed algorithm for quarter-pel (case 2).

 41

Case 3: The two lowest cost search points are adjacent to each other and surround

the search center.

This case is illustrated in Fig 18. The lowest cost search point 520 and the second

lowest cost search point 530 are adjacent to each other and both surround the search

center 510. For this case, three quarter-pel search points 550 are used to form the

quarter-pel search pattern in fractional ME. The three quarter-pel search points 550

are arranged between the two lowest cost search points such that lines connecting the

three quarter-pel search points 550 would from a right angle, with the vertex of the

right angle convex to the search center 510.

Fig 18 Proposed algorithm for quarter-pel (case 3).

 42

Case 4: The two lowest cost search points are opposite to each other and surround

the search center.

This case is illustrated in Fig 19. The lowest cost search point 620 is opposite to

the second lowest cost search point 630, neither being located at the search center 610.

For this case, four quarter-pel search points 650 are used to form the quarter-pel

search pattern in fractional ME. The quarter-pel search pattern is arranged such that

the four quarter-pel search points 650 surround the lowest cost search point 620 in a

square pattern.

Fig 19 Proposed algorithm for quarter-pel (case 4).

Once a fractional search pattern is selected based on one of the 4 above cases,

calculations for each quarter-pel search point using a specified cost function can be

performed to complete the matching process. The data provided from the half-pel

search points and the quarter-pel search points serve to provide a comprehensive data

set in an area approaching a local minimum of the cost function. This allows for a

more accurate match result, while lowering the need for calculating additional search

points. The best matching macroblock that minimizes the difference between the

current and reference macroblock can now be chosen.

4.4 COMPLEXITY AND ACCURACY COMPARISON

The following table provides a summary of the total search points used in the

method of the present invention for each potential case, compared to alternative

search algorithms for ME.

 43

 Total Search Points

Full Search Algorithm 49

Reference software Algorithm 17

Case1 8

Case2 8

Case3 8

Proposed Algorithm

Case4 9

Table 13 Search point comparisons for different algorithms

As illustrated above in Table 13, the search algorithm of the present invention for

motion estimation significantly reduces the total search points in comparison with the

reference software method. For cases 1-3, a 52% reduction in search points is attained,

while a 47% reduction in search points is achieved in case 4. This significantly

reduces the hardware processing time required by a related compression encoder or a

microprocessor for use in video compression.

Reference software Proposed algorithm

MV_x hit rate MV_y hit rate MV_x hit rate MV_y hit rate

Stefan 0.95086006 0.94094485 0.81168958 0.84223568

Mobile 0.93886042 0.90366406 0.79969447 0.78225377

Foreman 0.9223743 0.88868022 0.82468642 0.82102286

News 0.9759824 0.96602579 0.9272946 0.91579924

Coastguard 0.9268235 0.94608455 0.77841821 0.84063553

Table 14 Algorithms prediction correctness compare to full search algorithm

Additionally the method of the present invention manages to arrive at a

comparable matching accuracy while reducing the total search points and processing

time. Table 14 below details the prediction accuracy of both the proposed algorithm

and the reference software algorithm. The prediction accuracies are measured as a hit

rate of the fractional motion vector in the x and y axis of the respective algorithm

compared to the motion vector produced through the full search algorithm applied in

the fractional search window. We see that the algorithm of the reference software

manages to consistently produce a hit rate of around 90% for the various video

samples. The proposed algorithm produces a comparable hit hate of about 80%, while

reducing the search points by roughly half.

 44

4.5 EARLY TERMINATION

We also apply the early termination technique to every single search point in

each step. The problem for early termination is how to define the threshold. The

matching error considered as SATD is used in fractional motion estimation and SAD

in integer motion estimation. SATD is the results after SAD go through 2D Hadamard

transform. The threshold value (SATD) used in fractional ME can be estimated from

the integer-pels matching error (SAD). We experiment from several test sequences

and get the formula listed in the Fig 20.

y = 1.2528x + 36.083

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800

SAD

S
A

T
D

Fig 20 Relationship between best SAD in integer part & best SATD in fractional part

In most of situations, we can use above approximated formula to predict the

threshold. However, direct linear prediction may lead to a too large threshold and

arise too much imprecision when the SAD getting larger. To solve the problem and

avoid second or high order approximation, we adopt adaptive linear prediction

threshold. We have found that while the quantization parameter (QP) is getting larger,

the rate distortion performance is getting better. It means that we have more spaces to

save when larger QP comes. To achieve the shorter searching time without significant

performance loss, we increase the threshold associating to the current QP. The final

prediction formulas are listed below.

if (SAD > 1000)

{ threshold = SAD*0.75 + (QP-28)*16 + 375 + 36; }

else if (SAD > 500)

{ threshold = SAD*1+ (QP - 28)*16 + 125 + 36;}

else

{ threshold = SAD*1.25 + (QP - 28)*16 + 36;}

 45

Every coefficient used in the formula could be calculated by add and shift, and

the summation of constants could be combined easily. Constant with the value of 36 is

obtained in the formula listed in Fig 20. Constants with the value of 375 and 125 are

used to maintain the continuity of the adaptive prediction curve. The adaptive

threshold prediction curve is shown in Fig 21.

Adaptive Threshold Prediction

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500
SAD

T
hr

es
ho

ld

qp28

qp32

qp36

qp40

Fig 21 Adaptive threshold prediction curve

By applying early termination technique, we can improve searching speed about

8.5 % to 14%. While the QP is getting larger, we may get a bigger threshold and lead

to the shorter searching time.

4.6 SIMULATION RESULT

Table 15 shows the simulation results of the proposed algorithm compared with

that of the reference software. We integrate our algorithm into the reference software

and use the full search algorithm for integer ME for fair comparison. It can be found

that our algorithm greatly reduces computational complexity but only leads to a small

amount of quality loss. For the low motion sequences, our algorithm has about

0.1-0.2dB PSNR degradation at the same bit rate as reference software. For the

median motion sequence, such as foreman, and coastguard, we can find that about 0.1

dB PSNR degradation at the same bit rate with respect to algorithm in reference

software.

 46

QP = 28 Stefan Mobile Foreman Coastguard News

bit rate 1441.14 1888.69 498.62 1127.87 223.72

PSNR 35.36 33.75 36.24 34.52 38.12

ref. software

 time (sec) 491.604 471.993 496.974 488.039 450.37

bit rate 1474.06 1933.34 507.5 1139.94 228.72

PSNR 35.27 33.64 36.17 34.48 38.06

proposed

 time (sec) 209.884 210.554 210.435 213.736 200.354

△bit rate(%) 2.2843 2.36407 1.780915 1.070159 2.23494

△PSNR -0.09 -0.11 -0.07 -0.04 -0.06

 speed up 2.34227 2.24167 2.361651 2.283373 2.24787

Table 15 Simulation result when QP = 28, speed up is only the performance in fractional ME part.

RDO is off, reference frame number = 1, CIF.

In the high motion sequences, such as stefan, our algorithm has about 0.2 dB

PSNR degradation at the same bit rate of reference software. The reason of the quality

loss is the coverage of our search window is not big enough. Thus, some position can

not be arrived by our fast algorithm. However, it is still acceptable since the loss is

still small.

4.7 COMPARISON

Besides the simulation result with constant QP, we also turn on the rate control

option. The comparison result are listed in Table 16, we can see that our proposed

algorithm is the fastest and the most accurate one. The lower bit rate is; the better

performance comes. Our algorithm is very kind for network communication.

64kbps 128kbps 256kbps 512kbps Rate control enable

2SS FSIP Our 2SS FSIP Our 2SS FSIP Our 2SS FSIP Our

△PSNR 0.17 0.19 0.02 0.17 0.17 0.02 0.1 0.1 0.04 0.13 0.14 0.09 Foreman

Speedup 2 2.62 4.52 2 2.55 4.52 2 2.85 3.91 2 2.7 3.52

△PSNR 0.05 0.07 0.01 0.02 0.02 0.01 0.03 0.04 0.02 0.05 0.05 0.05 Coastguard

Speedup 2 3 3.53 2 2.89 3.53 2 3.01 3.18 2 2.82 2.83

Table 16 Comparison between different fast algorithms for fractional ME.

△PSNR: PSNR drop compare with original method used in reference software.

Speedup: speedup in fractional motion estimation.

2SS: fast algorithm proposed in [34]. FSIP: fast algorithm proposed in [35].

 47

Chapter 5 Integration

In this chapter, we applied the fast algorithms mentioned in chapter 3 and chapter

4. We used dynamic search range prediction scheme for integer motion estimation and

adaptive search pattern prediction scheme for fractional motion estimation. Fast

algorithms are necessary for intolerant large computation time, such as SDTV or even

HDTV applications. For the great reduction of computational complexity, we take

720p (1280 x 720) as the input sequence size. The total encoding time can be reduced

to 5% compared to original one. In other words, we can achieve 20 times speed up.

The details are listed in Table 17.

QP = 20 QP = 24 JM 8.2 720p

SR = 64 Original Proposed △(dB,%) Original Proposed △(dB,%)

PSNR 40.78 40.74 -0.04 37.54 37.51 -0.03 Mobcal

Bit rate 44878.75 45184.02 0.680211 23555.1 23794.68 1.017105

PSNR 40.37 40.33 -0.04 36.76 36.71 -0.05 Parkrun

Bit rate 68330.01 67666.61 -0.97088 44269.89 43893.55 -0.8501

PSNR 40.86 40.82 -0.04 37.7 37.66 -0.04 Shields

Bit rate 39812.74 39968.13 0.390302 18962.41 19028.51 0.348584

PSNR 40.75 40.74 -0.01 37.49 37.46 -0.03 Stockholm

Bit rate 42461.87 42881.22 0.987592 20223.58 20335.03 0.551089

PSNR -0.035 -0.037 Average

Bit rate 0.271 0.267

Table 17 rate distortion result with input search range = 64 and input sequence size as 720p size.

As the 20 times speedup, the rate distortion performance is quite good enough.

Furthermore, we propose s VLSI architecture design of sub-pel ME for H.264/AVC in

chapter 5. By taking advantage of the correlation between motion vectors and

uni-modal error surface, the proposed algorithm can significantly decrease more than

95% computational complexity and with at worst 0.04 dB PSNR degradation. The

corresponding architecture can significantly decrease the total number of 4x4 block

PU by reducing the candidates in the same step and speed up the search process by

modified early termination technique. The resulting architecture achieves the slight

video quality loss but nearly 40% area saving and 14% time saving when compared to

the previous one (proposed architecture in [51]). Finally, some intermediate results of

fast sub-pel ME are shown in appendix.

 48

Chapter 6 Architecture design for fast sub-pel

inter coding in H.264

6.1 HARDWARE CONSIDERATION

The encoding procedure is dominated (90%) by the inter prediction for new

techniques in H.264 as variable block sizes, multiple reference frames and

Largrangian mode decision. Inter prediction can be mainly divided into two parts:

integer motion estimation (IME) and fractional motion estimation (FME).

Complexities of the former one and the later one are quite the same and both

dominate the encoding time of inter prediction. For the speed up in system level, we

may pipeline the IME and FME process. So the dedicated hardware is needed for

FME only. For the speed up in the macroblock level, we can use the fast algorithm

instead of the method applied in JM8.2 [52].

Largrangian mode decision of a macroblock should be done after choosing the

best cost among the 41 sub-blocks in every reference frame with quarter precision. In

Fig 22, we can find there are total seven types of block sizes and may execute

independently. If the critical concern is the encoding time, the parallelism as the

hardware acceleration technique can be applied. But it will result in unacceptable

huge chip area and power consumption. So we should make use of the common part

of different block sizes. Every type of block sizes can be decomposed by 4X4 block.

Only 4X4 block should be implemented necessarily, refinement of all the other types

can be done with the hardware technique named as folding.

In spite of the regular algorithm of FME used in JVT, the complex Largrangian

mode decision will also arouse the difficulty of hardware implementation, so irregular

search algorithm is further not prefer to implement. In [35], the gradient based search

algorithm is proposed. In which, the interpolated pixels needed in next stage have

higher variation probability in search window and that is often regarded as the defect

of hardware implementation.

 49

Fig 22 Mode decision flow in H.264.

4X4 block decomposition and vertical integration are proposed in [51]. All block

types can be decomposed by 4X4 block, and the SATD of each element is

accumulated to get the final cost. For the data reusability, vertical integration is one of

the ways to reduce the encoding time. Redundant interpolating operations appear in

the overlapped area of adjacent interpolation window and can be merged by

scheduling technique. But the overhead as the more complex timing control circuit

will be introduced.

 50

6.2 ALGORITHM FOR HARDWARE MODIFICATION

The algorithm implemented is slightly different from the fast algorithm

mentioned before. The main difference is when to apply the early termination

technique. As the method mentioned before, we still use adaptive prediction SATD as

criterion to terminate the refine process or not. However, early termination at each

search point is only reasonable for the application running on DSP or CPU since

instruction is executed sequentially. But in the case of hardware design, the available

resources allow us to use parallel processing unit to speed up the whole FME process.

Thus, we use five 4X4 block PU’s (processing element, discuss later) to manage all of

the search points in the same step, and only terminate the second step process if

meeting the requirement.

As shown in Table 18, we numerate the probability when different early

termination techniques activated. Point Check (PC) means the way used on DSP or

CPU, it will check the final cost after every search point refinement. Step Check (SC)

means the way used in hardware design, it will only check the criteria after the best

cost in each step is determined. In Table 18, we can see that the count of early

termination occurrences decreased from PC (56%) to SC (28%), but is still

significantly.

QP=28 Point Check(PC) PC hit rate(%) Step Check(SC) SC hit rate(%) total count

Stefan 3164430 65.1846386 1761015 36.2754513 4854564

Foreman 2869524 59.1098191 1634614 33.6716953 4854564

Coastguard 2099169 43.2411438 1026942 21.1541551 4854564

News 3068064 63.1995788 1325303 27.3001448 4854564

Mobile 2577329 53.0908440 1000258 20.6044868 4854564

average 2755703.2 56.7652049 1349626.4 27.8011867 4854564

Table 18 Simulation result when QP = 28, point check means the early termination applied in every

search point, step check means the early termination just applied in half step

The total encoding time of above modification can be calculated as follows. First,

the encoding time is the same in each step refinement since every search point is

calculated in parallel. Let us assume the total time without early termination is T, and t

as the total time with step stop early termination. We can find the following

relationship:

t = T * (1 – 0.28) + 0.5T * 0.28 = 0.86 T

 51

Thus, by using step stop early termination technique, we can save 14% search time in

FME module. The related quality loss will be shown latter.

6.3 ARCHITECTURE

Fig 23 shows proposed architecture for fast FME module. The core procedure of FME

includes interpolation, residual generation and Hadamard transform.

Fig 23 Block diagram of fast FME hardware.

 52

 (a) (b)

Fig 24 (a) 4X4 block PU (b) 6-tap 1-D FIR filter.

The 4X4 block PU has four times parallelization of horizontal adjacent pixels

and is in charge of residual generation and Hadamard transform. The architecture of

PU is shown in Fig 24(a), four processing elements (PE), 2-D Hadamard transform

decomposed by two 1-D Hadamard transform and a transpose register array [53] can

continually process four pixels in each cycle without any latency. It processes 4X4

element blocks decomposed from sub block in sequential order.

Five 4X4 block PUs around the refinement center process five candidates

simultaneously. Four horizontal adjacent pixels from original MB are broadcasted to

every PU at the same time and the reference sub pixels are provided by interpolation

unit.

 53

Fig 25 Interpolation unit

As shown in Fig 25, the 6-tap 2-D FIR filter is divided into two directions

(horizontal and vertical) 1-D FIR filter which is shown in Fig 24(b). First, we

interpolate the horizontal half pixels by five FIR filters from 10 adjacent integer

pixels. These five intermediate values and six integer pixels are stored and shifted

cycle by cycle in the interpolation buffer. We use the same way to interpolate the

vertical half pixels with 11 FIR filter. In our algorithm, since we will not visit the

entire positions in the whole refinement window, some redundant interpolations

appear in certain pixels in the quarter precision.

 54

Fig 26 Bilinear filters of interpolation unit.

Only the rhombuses in the Fig 26 are the required bilinear filters. To avoid the

redundant interpolate operation, we remove those redundant bilinear filters that is

reduced from 106 (no positions skipped) to 68 (no positions redundant). Thus, the

36% of bilinear filters that each includes an adder and a shifter can be saved by using

the proposed algorithm.

Because of the irregular search pattern used in second step, the adaptive selection

should be done before the pixels sent into PU. That is one of the overhead by applying

fast FME algorithm. The others are the early termination unit and compare unit. In the

former one, the way to predict threshold is the same but different in check time. In the

later one, we should know not only the best position but also second and third places.

Mode decision is combined with comparator shown in Fig 23. MB header related

information included motion vector, reference frames and type of block sizes are sent

into the compare and determination unit for the Largrangian mode decision. The

information of the first step is sent into selection unit to choose the input of the next

step. At the same time, the final cost is checked by early termination unit to judge the

refine process should be skipped or not.

 55

6.4 PERFORMANCE ANALYSIS

With the little modification of fast algorithm, the quality loss and speed up of the

hardware design are shown in Table 19. Due to the decreased probability for early

termination, we may slower encoding speed but get smaller PSNR drop.

QP = 28 Stefan Mobile Foreman Coastguard News

bit rate 1441.14 1888.69 498.62 1127.87 223.72

PSNR 35.36 33.75 36.24 34.52 38.12

ref. software

 time (sec) 491.604 471.993 496.974 488.039 450.37

bit rate 1475.09 1940.28 508.88 1142.9 227.35

PSNR 35.29 33.68 36.19 34.49 38.02

proposed

 time (sec) 220.261 219.782 220.254 222.32 211.988

△bit rate(%) 2.35577 2.73152 2.057679 1.3326 1.62256

△PSNR -0.07 -0.07 -0.05 -0.03 -0.1

 speed up 2.23192 2.14755 2.256368 2.19521 2.12451

Table 19 Performance analysis after algorithm modification

5.5 IMPLEMENTATION RESULT

Due to the 4X4 block decomposition and the adaptive search pattern, the control

unit is the most challenge part of the whole design. We implement this part with finite

state machine. The proposed FME architecture for H.264 is implemented by Verilog

and synthesized in UMC 0.18u technology at 100MHz. The details of every part are

listed in Table 20. The latency per MB can be calculated as follows if all 41 modes do

the FME.

 Gate Count

Interpolation Unit 15436

Selection Unit 4933

PU x 5 21335

Control 349

Compare and Determine 4658

Early Termination 1354

Total 48065

Table 20 Implementation result of proposed architecture

 56

Latency per macroblock is added by latencies of seven different block size

respectively and the re-calculate stage. To avoid so large the register area, we decide

to calculate the residual data after we have know the most suitable block size for

current macroblock, the following equation shows the detail:

Latency per MB = [21x16 + 21x2x8 + 29x8 + 29x2x4 + 29x4x2 + 45x2x2 + 45x4]

+ [17x16] = 2000 cycles

For such case, our design can process 50K MB/sec in 100MHz and is sufficient

to support SDTV format in 30Hz for one reference frame. When compared with other

design [51], our design has slight quality loss but 14% faster and 40% smaller.

 Architecture in [51] Propose

△bit rate (%) 0 2.02003

△PSNR (dB) 0 -0.064

Operating clock 100MHz 100MHz

Largrangian mode decision Support Support

Gate count (total) 79372 48065

Time to refine MV T 0.86T

MB/sec 49K 50K

Technology UMC 0.18u UMC 0.18u

Table 21 Comparison between the proposed architecture and architecture in [51]

 57

Chapter 7 Conclusion

7.1 SUMMARY

The point proposed in the paper can be mainly summarized into three parts:

7.1.1 Fast integer motion estimation

7.1.1.1 Search range determination part

Too large matching error means can not find a good match position in the whole

search window. In this case, we can reduce the search range because the magnitude of

search range does not matter. Too low matching error means perfect match. In this

case, we can also reduce the search range.

7.1.2 Fast fractional motion estimation

7.1.2.1 Search pattern part

Higher probability the best position will fall near the search center, so we use

center bias search pattern.

7.1.2.2 Early termination part

The system order can not be changed, so we use SAD from integer motion

estimation to predict the SATD threshold of fractional motion estimation.

7.1.3 Architecture design of fractional motion estimation

7.1.3.1 Area reduction part

We use parallelism technique for hardware implementation. The search points in

the same step of our proposed algorithm decrease, so we do not have to calculate as

many points as the origin simultaneously. We can reduce the process elements

duplicate for parallelism.

7.1.3.2 Latency reduction part

We modify early termination check time from point to step. Once the matching

criterion is satisfied, the second step process can be skipped and certainly result in

shorter refined time.

 58

7.2 PERFORMANCE ANALYSIS

7.2.1 Fast integer motion estimation

We can reach the biggest speed up by applying fast algorithm for integer motion

estimation. From our simulation result, we can get average 9/12.5 times speed up with

input search range equal to 16/32. We have less than 1% bit rate increase and degrade

PSNR only 0.02 dB.

7.2.2 Fast fractional motion estimation

In this part, the portion of search point reduction is fixed and early termination

does not happen very often. So we can only reach 2.25 times speed up. Besides this,

we have almost 2% bit rate increase and degrade PSNR 0.1 dB.

7.2.3 Architecture design of fractional motion estimation

We propose the fractional motion estimation architecture with smaller area cost

and shorter refined time than architecture proposed in [51]. We save almost 40 % area

cost and achieve 1.15 times speed up. Besides this, we have average 2 % bit rate

increase and degrade PSNR 0.064 dB.

7.3 FUTURE WORK

One of integer or fractional motion estimation apply fast algorithm mentioned in

chapter 3 and chapter 4 and the other remain the same as original method shows

tolerable performance loss. But when we applied fast algorithms for both integer and

fractional motion estimation, the experiment result shows inferior R-D performance,

especially in lower resolution sequence. We guess the main reason is both of our fast

algorithms are not accurate enough. Improvement of R-D performance is needed if we

want to use fast algorithms for both motion estimation modules.

Hardware implementation is completed only in fast fractional motion estimation

part. For fast integer motion estimation, the architecture design is very straight

forward. The calculation core is full search systolic array and only the control unit and

scheduling timing should be redesigned. The area of the design depends on how large

the systolic array is. The larger systolic array comes more data reusability and

hardware utilization. The main advantage of this fast algorithm architecture is to

shorten the searching time. We can flow less data when the search range becomes

smaller.

 59

BIBLIOGRAPHY

[1] ISO/IEC 13818, Information Technology-Generic Coding of Moving Pictures and Associated Audio

Information, 2000.

[2] ISO/IEC 14496-2, Coding of Audio-Visual Objects – Part2 : Visual, 2001..

[3] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.

[4] ITU-T Rec.H.264, ISO/IEC 14496-10 “Advanced video coding”, Final Draft International Standard,

JVT-G050r1, Geneva, Switzerland, May 2003.

[5] T. Wiegand, G. J. Sullivan, G. Bjontegaad, and A. Luthra, “Overview of the H.264/AVC video coding

standard”, IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-575, July 2003.

[6] C.-L. Yang, L.-M. Po, and W.-H. Lam, “A fast H.264 intra prediction algorithm using macroblock

properties,” in Proc. ICIP, vol. 1, pp. 461 – 464, Oct. 2004

[7] Y.-K. Lin and T.-S. Chang, “Fast block type decision algorithm for intra prediction in H.264 FRext,” in

Proc. ICIP, Oct. 2005

[8] B. Meng, O.C. Au, C.-W. Wong, and H.-K. Lam, “Efficient intra-prediction algorithm in H.264,” in Proc.

ICIP, vol. 3, pp. 837-840, Sept. 2003.

[9] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, G. N. Feng, D. J. Wu, and S. Wu, “Fast mode decision

algorithm for JVT intra prediction,” JVT-G013, 7th JVT Meeting, Pattaya, Thailand, March 2003.

[10] Y.-D. Zhang, F. Dai, and S.-X. Lin, ”Fast 4x4 intra-prediction mode selection for H.264,” in Proc. ICME, vol.

2, pp.1151 – 1154, June 2004.

[11] C. C. Chen, T. S. Chang, “Fast three step intra prediction algorithm for 4x4 blocks in H.264,” in Proc. ISCAS,

2005.

[12] M.-C. Hwang, J.-K. Cho, J.-H. Kim, and S.-J. Ko, “A fast intra prediction mode decision algorithm based on

temporal correlation for H.264,” in Proc. of 2005 Int’l Tech. Conf. on Circuits Systems, Computers and

Communications, vol. 4, pp. 1573-1574, Jeiu, July 2005.

[13] J. Jain and A. Jain, “Displacement measurement and its application in interframe image coding,” IEEE Trans.

Commun., Vol.29, (12), pp. 1799–1808, 1981.

[14] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Trans.

Circuits Syst. Video Technol., vol. 4, (4), pp. 438–443, 1994

[15] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Trans. Commun., 38, (7), pp.

950–953, 1990.

[16] O.T.-C. Chen, “Motion estimation using a one-dimensional gradient descent search,” IEEE Trans. Circuits

Syst. Video Technol., 10, (4), pp. 608–616, 2000

[17] L.-K. Liu and E. Feig, “A block-based gradient descent search algorithm for block motion estimation in video

coding,” IEEE Trans. Circuits Syst. Video Technol., 6, (4), pp. 419–422, 1996.

 60

[18] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans.

Circuits Syst. Video Technol., 6, (2), pp. 313–317, 1996.

[19] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching motion estimation,” IEEE

Trans. Image Process., 9, (2), pp. 287–290, 2000

[20] C.-H. Cheung and L.-M. Po, “A novel cross-diamond search algorithm for fast block motion estimation,”

IEEE Trans. Circuits Syst. Video Technol., 12, (12), pp. 1168–1177, 2002

[21] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern for fast block motion estimation,” IEEE

Trans. Circuits Syst. Video Technol., 12, (5), pp. 349–355, 2002

[22] L. Luo, C. Zou, X. Gao, and Z. He, “A new prediction search algorithm for block motion estimation in video

coding,” IEEE Trans. Consumer Electron., 43, (1), pp. 56–61, 1997.

[23] Y.-T. Roan and P.-Y. Chen, “A fuzzy search algorithm for the estimation of motion vectors,” IEEE Trans.

Broadcast., 46, (2), pp. 121–127, 2000

[24] J.H. Lee and J.B. Ra, “Block motion estimation based on selective integral projections,” Int. Conf. on Image

Processing, vol. 1, pp. 689–692, Sept. 2002.

[25] C.-M. Kuo, C-P. Chao, and C-H Hsieh, “A new motion estimation algorithm for video coding using

adaptive Kalman filter,” Real-Time Imaging, 8, pp. 387–398, 2002

[26] J. Chalidabhongse and C.-C.J. Kuo, “Fast motion vector estimation using multiresolution-spatio-temporal

correlations,” IEEE Trans. Circuits Syst. Video Technol., 7, (3), pp. 477–488, 1997

[27] H.-S. Wang and R.M. Mersereau, “Fast algorithms for the estimation of motion vectors,” IEEE Trans. Image

Process., 8, (3), pp. 435–438, 1999

[28] K. Lengwehasatit and A. Ortega, “Probabilistic partial-distance fast matching algorithms for motion

estimation,” IEEE Trans. Circuits Syst. Video Technol., 11, (2), pp. 139–152, 2001

[29] W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE Trans. Image Process.,

4, (1), pp. 105–107, 1995

[30] S.-M. Jung, S.-C. Shin, H. Baik, and M.-S. Park, “New fast successive elimination algorithm,” Proc. 43rd

IEEE Midwest Symp. on Circuits and Systems, vol. 2, pp. 616–619, Aug. 2000

[31] X.Q. Gao, C.J. Duanmu, and C.R. Zou, “A multilevel successive elimination algorithm for block matching

motion estimation,” IEEE Trans. Image Process., 9, (3), pp. 501–504, 2000

[32] S.-M. Jung, S.-C. Shin, H. Baik, and M.-S. Park, “Efficient multilevel successive elimination algorithms

for block matching motion estimation,” IEE Proc., Vis., Image Signal Process., 149, (2), pp. 73–84, 2002

[33] M. Yang, H. Cui, and K. Tang, “Efficient tree structured motion estimation using successive elimination,”

IEE Proc. Vis., Image Signal Process., Vol. 151, No. 5, Oct. 2004

[34] Bo Zhou, Jian Chen, “A fast two-step search algorithm for half pixel motion estimation”, Electronics, Circuits

and Systems, 2003. ICECS. Proceedings of the 10th IEEE International Conference on, 2003 Volume: 2,

Pages: 611 – 614 Vol.2.

 61

[35] H.-M. Wong, O. C Au, and A. Chang, “Fast sub-pixel inter-prediction – based on the texture direction

analysis,” Proc. IEEE International Symposium, Circuits and Systems, Oct. 2005.

[36] C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast fractional pel motion estimation algorithm for

H.264/AVC,” in Proc. VLSI/CAD Conf., 2005.

[37] Z. Chen, P. Zhou, and Y. He, “Fast motion estimation for JVT”, JVT G-016, 2003

[38] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified fast motion estimation for JM,” JVT P-021,

Oct. 2005

[39] T. Koga, K. Iinuma, A. Hirano, and T. Ishiguro, “Motion-compensated interframe coding for video

conferencing” in National Telecommunications Conferences, pp. G5.3.1-G5.3.5, 1981

[40] L.W.Lee, J.F.Wang, J.F.Lee, and J.D.Shie, “Dynamic search window adjustment and interlaced search for

block-matching algorithm” IEEE Transactions on Circuits and Systems for Video Technology, vol.3, pp.

85-87, February 1993.

[41] R. srinivasan and K. Rao, “Predictive coding based on efficient motion estimation” IEEE Transactions on

Communications, vol. COM-33, pp. 888-896, August 1985.

[42] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion vectors” IEEE Transactions

on Circuits and Systems for Video Technology, vol.3, pp. 148-157, April 1993.

[43] K.-H. Han and Y.-L. Lee, “Fast macroblock mode determination to reduce H.264 complexity,” IEICE Trans.

Fundamentals, Vol.E88–A, 3, pp.800-804, March 2005

[44] J. Lee and Y. Jean, “Fast mode decision for H.264”, LG Electronics Inc, Digital media research laboratory

[45] Z. Zhou and M.-T. Sun, “Fast macroblock inter mode decision and motion estimation for H.264/MPEG-4

AVC,” IEEE International Conference on Image Processing, Oct. 2004.

[46] P. Yin, A. M. Towropes, and J. Boyce, “Fast mode decision and motion estimation for JVT/H.264,” Pro.

ICIP, pp.853-856, 2003

[47] A. C. Yu and G.R. Martin, “Advanced block size selection algorithm for inter frame coding in

H.264/MPEG-4 AVC,” Proc. ICIP, pp. 95-98, 2004

[48] C. Grecos and M.Y. Yang “Fast inter mode prediction for P Slices in the H264 video coding standard,” IEEE

Trans on Broadcasting, Vol. 51, 2, pp.256-263, June 2005.

[49] Texas Instruments, TMS320C6000 Programmer Guide, 2001.

[50] S.-W. Wang, Y.-T. Yang, C.-Y. Li, Y.-S. Tung, and J.-L. Wu, “An optimization of H.264/AVC baseline

decoder on low-cost TriMedia DSP processor”, Proc. of 49th SPIE Annual Meeting, 2004.

[51] T. C. Chen, Y.-W. Huang, and L. G. Chen, “Fully utiliized and reusable architecture for fractional motion

estimation of H.264/AVC” in Proc. of ICASSP, vol. 4. pp.9-12, 2004.

[52] JM8.2, Reference Software of JVT.

[53] T. C. Wang, Y. W. Huang H. C. Fang, and L. G. Chen, “Parallel 4x4 2D transform and inverse transform

architecture for MPEG-4 AVC/H.264,” in Proc. of ISCAS, 2003.

 62

APPENDIX

This section gives the experiment inter-media result. Even the methods tried in

this section were not implemented in my design; they are still reported in order to

offer the readers more reference material. Only the sub-pel correlated results are listed

below.

PARAMETER DEFINITION:

AVG POINT:

This index means the average search points needed for sub-pel motion estimation.

The result of first step will lead to different search pattern next step. To make the

dispassion observation, we combined the probability concern into the index. For

example, if 5 points needed in first step, the result will 90% fall on the search center

(case1) and 10% fall on one of the other points (case2). Then average points needed

are equal to

AVG POINT = (points needed in first step) + 0.9 * (points needed in case1) + 0.1 *

(points needed in case2)

By using this approximation, we may get more accurate comparison of speeding up.

PSNR:

The index is the video quality degradation. Only luminance PSNR is listed. The

simulation result is the average of four different input sequences as Stefan, Foreman,

Mobile and news.

Bit rate:

The index is the transmit bandwidth changing percentage.

 63

Research Report

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel

Gray point (rectangle): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 27. When the half pixel best position

falls on the search center (the initial position before refinement regard as the integer

pixel position), we will find the eight points surrounding the search center. When the

half pixel best position fall on one of the four end points in step one, we will use

horizontal and vertical search pattern according to the best position determined in

previous step.

Fig 27 Pattern 1

Simulation Result:

AVG POINT 12.4

PSNR (dB) -0.08

Bit rate (%) 3.767

Conclusion:

Too much quality loss and not significantly speeding up.

 64

Algorithm

Yellow point (circle): the first step search position

Red point (hexagon): the second step search position

First we visit the five circle points shown in Fig 28. When the half pixel best position

falls on the search center (the initial position before refinement regard as the integer

pixel position), we will find the eight points surrounding the search center. When the

half pixel best position falls on one of the four end points in step one, we will use four

different directional triangle patterns according to the best position determined in

previous step.

Fig 28 Pattern 2

Simulation Result:
AVG POINT 12.6

PSNR (dB) -0.043

Bit rate (%) 2.221

Conclusion:
Quality loss is acceptable but not significantly speeding up.

 65

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 29. No matter where the half pixel

best position in step one fall, we still find the cross pattern in step two.

Fig 29 Pattern 3

Simulation Result:

AVG POINT 9

PSNR (dB) -0.043

Bit rate (%) 2.388

Conclusion:

Quality loss and speeding up are acceptable up but the method is proposed before

(used in original x264).

 66

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 30. When the half pixel best position

falls on the search center (the initial position before refinement regard as the integer

pixel position), we will find cross four points surrounding the search center. When the

half pixel best position falls on one of the four end points in step one, we will use four

different direction triangle patterns according to the best position determined in

previous step.

Fig 30 Pattern 4

Simulation Result:

AVG POINT 9

PSNR (dB) -0.06

Bit rate (%) 3.330

Conclusion:

Quality loss is a little serious and significant speeding up but high overhead

complexity will be introduced in this method.

 67

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 31. When the half pixel best position

falls on the search center (the initial position before refinement regard as the integer

position), we will find eight points surrounding the search center. When the half pixel

best position falls on one of the four end points in step one, we will use cross search

pattern.

Fig 31 Pattern 5

Simulation Result:

AVG POINT 12.6

PSNR (dB) -0.023

Bit rate (%) 1.455

Conclusion:

Little quality loss is produced but with not significantly speeding up.

 68

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the nine circle points shown in Fig 32. We make the most part of effort

to find the best half pixel search position. After that, we just need to find only two

search positions except two positions appears on the end points on y axis. The two

exceptions will visit four cross search points around the best position refined in

previous step.

Fig 32 Pattern 6

Simulation Result:

AVG POINT 11.2

PSNR (dB) -0.046

Bit rate (%) 1.833

Conclusion:

Little quality loss is produced but with not significantly speeding up.

 69

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 33. It is a modification version of

dual cross search. When the half pixel best position falls on the search center (the

initial position before refinement regard as the integer pixel position), we find cross

pattern with one x one y axis distance. When the half pixel best position falls on the y

axis end points, we find cross pattern with two x one y axis distance. Besides, we find

cross pattern with one x two y axis distance.

Fig 33 Pattern 7

Simulation Result:

AVG POINT 9

PSNR (dB) -0.09

Bit rate (%) 4.092

Conclusion:

Quality loss is serious but good speeding up.

 70

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 34. It is a modification version of

dual cross search. When the half pixel best position falls on the search center (the

initial position before refinement regard as the integer pixel position), we find eight

points surrounding the search center. When the half pixel best position falls on the y

axis end points, we find cross pattern with two x one y axis distance. Besides, we find

cross pattern with one x two y axis distance.

Fig 34 Pattern 8

Simulation Result:

AVG POINT 12.6

PSNR (dB) -0.056

Bit rate (%) 2.889

Conclusion:

Quality loss is a little serious and not significantly speeding up.

 71

Algorithm

Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 35. When the half pixel best position

falls on the search center (the initial position before refinement regard as the integer

pixel position), we will find four cross points around the search center. When the half

pixel best position falls on one of the four end points in step one, we will use

horizontal and vertical search pattern according to the best position determined in

previous step.

Fig 35 Pattern 9

Simulation Result:

AVG POINT 8.4

PSNR (dB) -0.116

Bit rate (%) 5.469

Conclusion:

Quality loss is very serious but good speeding up. Extra low area can be introduced by

applying this architecture; the requirement of register array in interpolation unit can

significantly decrease.

作 者 簡 歷

姓名: 王裕仁

籍貫: 台北市

學歷:

台北市立建國高級中學 (民國 86 年 09 月 ~ 民國 89 年 06 月)

國立交通大學電子工程學系 學士 (民國 89 年 09 月 ~ 民國 93 年 06 月)

國立交通大學電子所系統組 碩士 (民國 93 年 09 月 ~ 民國 95 年 06 月)

獲獎紀錄:

[1]九十三學年度 大學院校積體電路設計競賽(IC Contest)

 研究所/大學部 標準單元式設計組(Cell-based) 佳作

[2]九十四學年度 大學院校積體電路設計競賽(IC Contest)

 研究所/大學部 標準單元式設計組(Cell-based) 特優

著作:

[1] Chao-Chung Cheng, Yu-Jen Wang, Tian-Sheuan Chang, ‘A Fast Fractional Pel Motion Estimation

Algorithm for H.264/AVC’ VLSI/CAD, 2005

[2] Hung-Chih Lin, Yu-Jen Wang, Kai-Ting Cheng, Shang-Yu Yeh, Wei-Nien Chen, Chia-Yang Tsai,

Tian-Sheuan Chang, Hsueh-Ming Hang, ‘Algorithms and DSP Implementation of H.264/AVC’

ASP-DAC, 2006

[3] Yu-Jen Wang, Chao-Chung Cheng, Tian-Sheuan Chang, ‘A Fast Fractional Pel Motion

Estimation Alogrithm for H.264/MPEG-4 AVC’ ISCAS, 2006

[4] Yu-Jen Wang, Chao-Chung Cheng, Tian-Sheuan Chang, ‘A Fast Fractional Pel Motion Estimation

Algorithm and Hardware Implementation for H.264/AVC’ CSVT, 2006 (minor revision)

