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Abstract

With modern day advances in computer processing and multimedia applications,
improvements in the area of image processing and video compression are analogous.
Video compression allows the reduction of high-resolution video into a more compact
memory space to thereby reduce storage and video processing resources during
playback.

According to the literature published' before: we can find that the motion
estimation process is the most time consumed part. To further realize this process, we
can mainly divide it into two parts. integerrmotion estimation and fractional motion
estimation. Integer motion estimation cost maost part of time under the original
algorithm unchanged. The main reason is'that the search window is too large. So we
have a very simple idea that we want to decrease the search window. We can reduce
88% (input sequence as CIF size) and 75% (input sequence as D1 size) search points
respectively. Fractional motion estimation will not affect obviously under the original
condition. But when the fast algorithm is applied for integer motion estimation, the
portion of encoding time due to fractional motion estimation is getting larger. Based
on the assumption of uni-modal error surface, we want to use the results of half pixel
step to predict the slope of error surface. We also apply early termination technique.
We can get 50% search points reduction in this part. By applying both fast algorithms,
we get 20 times speed up with the input sequence size as 1280 x 720. Making use of
hardware parallelism to speed up is also a common method in H.264 research field.
By the benefit of applying fast fractiona motion estimation algorithm, we decrease
40% area and speed up by 14% in our fast fractional motion estimation architecture.
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Chapter 1 Introduction

1.1 THE SCENE

Pervasive, seamless, high quality digital video has been the goa of companies,
researchers and standards bodies over the last two decades. In some areas (for
example broadcast television and consumer video storage), digital video has clearly
captured the market (such as videoconferencing, video email, mobile video), market
success is perhaps still too early to judge. However, there is no doubt that digital
video is a globally important industry which will continues to pervade businesses,
networks and homes. The continuous evolution of the digital video industry is being
driven by commercial and technical forces. The commercial drive comes from the
huge revenue potential of persuading consumers and businesses:

1. Replace analogue technology .and older digital technology with new, efficient,
high quality digital video products.

2. Adopt new communication and jentertainment products those have been made
possibly by the move to digital video:

The technical drive comes from continuing improvements in processing performance,
the availability of higher capacity storage and transmission mechanisms and research
and development of video and image processing technol ogy.

Getting digital video from its source (a camera or a stored clip) to its destination
(a display) involves a chain of components or processes. Keys to this chain are the
processes of compression (encoding) and decompression (decoding), in which
bandwidth-intensive ‘raw’ digital video is reduced to a manageable size for
transmission or storage, then reconstructed for display. Getting the compression and
decompression processes ‘right’ can give a significant technical and commercial edge
to a product, by providing better image quality, greater reliability and more flexibility
than competing solutions. There is therefore a knee interest in the continuing
development and improvement of video compression and decompression methods and
systems. The interested parties include entertainment, communication and
broadcasting companies, software and hardware developers, researchers and holders
of potentially lucrative patents on new compression algorithms.



The early successes in the digital video industry (notably broadcast digital
television and DVD-video) were underpinned by international standard ISO/IEC
13818 [1], popularly known as ‘MPEG-2' (after the working group that developed the
standard, the Moving Picture Experts Group). Anticipation of a need for better
compression tools has led to the development of two further standards for video
compression, known as ISO/IEC 14496 Part 2 (MPEG-4 Visud) [2] and ITU-T
Recommendation H.264/1SO/IEC14496 Part 10 (H.264) [3]. MPEG-4 Visua and
H.264 share the same ancestry and some common features (they both draw on
well-proven techniques from earlier standards) but have notably different visions,
seeking to improve upon the older standards in different ways. The vision of MPEG-4
Visua isto move away from a restrictive reliance on rectangular video images and to
provide an open, flexible framework for visual communications that uses the best
features of efficient video compression and object-oriented processing. In contrast,
H.264 has a more pragmatic vision, aiming to do what previous standards did
(provide a mechanism for the compression of rectangular video images) but todo it in
amore efficient, robust and practical way; supporting the types of applications that are
becoming widespread in the marketpl ace (such.as broadcast, storage and streaming).

1.2 VIDEO COMPRESSION

Network bit rates continue toincrease (dramatically in the local area and
somewhat less so in the wider area), high bit rate connections to the home are
commonplace and the storage capacity of hard disks, flash memories and optical
media is greater than ever before. With the price per transmitted or stored bit
continually falling, it is perhaps not immediately obvious why video compression is
necessary (and why there is such a significant effort to make it better). Video
compression has two important benefits. First, it makes it possible to use digital video
in transmission and storage environments that would not support uncompressed raw
video. For example, current internet throughput rates are insufficient to handle
uncompressed video in real time (even at low frame rates or smal frame size). A
Digital Versatile Disk (DVD) can only store a few seconds of raw video at television
quality resolution and frame rate, so DVD video storage would not be practical
without video and audio compression. Second, video compression enables more
efficient use of transmission and storage resources. If a high bit rate transmission
channel is available, then it is more attractive proposition to send high resolution
compressed video or multiple compressed video channels than to send a single, low
resolution, uncompressed stream. Even with constant advances in storage and
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transmission capacity, compression is likely to be an essentia component of
multimedia services for many years to come.

Aninformation carrying signal may be compressed by removing redundancy from the
signal. In alossless compression system statistical redundancy is removed so that the
original signal can be perfectly reconstructed at the receiver. Unfortunately, at the
present time lossless methods can only achieve a modest amount of compression of
image and video signals. Most practical video compression techniques are based on
lossy compression, in which greater compression is achieved with the penalty that the
decoded signal is not identical to the original. The goal of avideo compression
agorithm is to achieve efficient compression whilst minimizing the distortion
introduced by the compression process.

Video compression algorithms operate by removing redundancy in the temporal,
gpatial frequency domain. The human eye and brain (Human Visual System) are more
sensitive to lower frequencies. By removing different types of redundancy (spatial and
temporal) it is possible to compress theidata significantly at the expense of a certain
amount of information loss (distortion).. Further:.compression can be achieved by
encoding the processed data using an entropy coding scheme such as Huffman coding
or Arithmetic coding.

Image and video compression:has been-a-very active field of research and
development for over twenty years and many different systems and agorithms for
compression and decompression have been proposed and developed. In order to
encourage inter-working, competition and increased choice, it has been necessary to
define standard methods of compression encoding and decoding to allow products
from different manufacturers to communicate effectively. This has led to the
development of a number of key International Standards for image and video
compression, including the JPEG, MPEG and H.26X series of standards.

1.3 MPEG-4 AND H.264

MPEG-4 Visua and H.264 (adso known as Advanced Video Coding) are
standards for the coded representation of visual information. Each standard is a
document that primarily defines two things, a coded representation (or syntax) that
describes visual data in a compressed form and a method of decoding the syntax to
reconstruct visual information. Each standard aims to ensure that compliant encoders
and decoders can successfully inter-work with each other, whilst alowing
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manufacturers the freedom to develop competitive and innovative products. The
standards specially do not define an encoder; rather, they define the output that an
encoder should produce. A decoding method is defined in each standard but
manufacturers are free to develop alternative decoders as long as they achieve the
same result as the method in the standard.

MPEG-4 Visua and H.264 have related but significantly different visions. Both
are concerned with compression of visual data but MPEG-4 Visual emphasizes
flexibility whilst H.264's emphasis is on efficiency and reliability. MPEG-4 Visual
provides a highly flexible toolkit of coding techniques and resources, making it
possible to deal with awide range of types of visual dataincluding rectangular frames
(traditional video material), video objects (arbitrary-shaped regions of avisual scene),
still images and hybrids of natural (real-world) and synthetic (computer-generated)
visual information. MPEG-4 Visua provides its functionality through a set of coding
tools, organized into ‘profiles’, recommended groupings of tools suitable for certain
applications. Classes of profile include ‘simple’ profiles (coding of rectangular video
frames), object-based profiles (coding, of rarbitrary-shaped visual objects), still texture
profiles (coding of still images.or texture),.scalable profiles (coding at multiple
resolutions or quality levels) and studio profiles (coding for high quality studio
applications).

In contrast with the highly flexible approach of MPEG-4 Visua, H.264
concentrates specificaly on efficient compression of video frames. Key features of
the standard include compression efficiency (providing significantly better
compression than any previous standard), transmission efficiency (with a number of
built-in features to support reliable, robust transmission over a range of channels and
networks) and a focus on popular applications of video compression. Only three
profiles are currently supported (in contrast to nearly 20 in MPEG-4 Visual), each
targeted at a class of popular video compression applications. The Baseline profile
may be particularly useful for ‘conversational’ applications such as video
conferencing, the extended profile adds extra tools that are likely to be useful for
video streaming across networks and the Main profile includes tools that may be
suitable for consumer applications such as video broadcast and storage.

1.4 INTRODUCTION

With modern day advancesin computer processing and multimedia applications,
improvements in the area of image processing and video compression are anal ogous.
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Video compression allows the reduction of high-resolution video into a more compact
memory space to thereby reduce storage and video processing resources during
playback. Reduced memory requirements for video footage can aid in lengthy video
segments being stored onto portable media to and improve the mobility and
transferability of large files. Bandwidth is aso increased when performing file
transfers, as quicker download and upload times are achieved through Internet and
other transfer protocols.

Videos are produced through a series of different frames (or images) played in
sequence. Therefore, the area of video compression reduces down to specialized
forms of image compression with specific consideration for video playback. The art
of video compression tends to fall into one of two categories: lossless compression
and lossy compression. Lossy compression entails the reduction of certain finer image
details that are sacrificed for the sake of saving a little more bandwidth or storage
space. Lossless compression, on the other hand, involves compressing data such that
it will be an exact replica of the original data upon decompression. For many types of
binary data, such as documents andivarious programs, lossless compression is
required as the integrity of the original .data.needs to be preserved. Many types of
multimedia, on the other hand, need not be.reproduced exactly as before. An
approximation of the origina imageis usualy sufficient for most purposes, as long as
the error between the original and the compressed image is tolerable.

In performing lossy compression, a common technique is to remove redundant
information between adjacent frames to reduce memory constraints and increase
bandwidth. This technique is referred to as motion estimation (ME), of which H.264
and MPEG-4 are the current known standards. These standards exploit and remove
temporal redundancies between successive frames, or more simply, select a reference
frame and predict subsequent frames based on the reference frame. Motion estimation
makes the assumption that the objects in the scene solely possess translational motion.
This assumption holds as long as there is no pan, zoom, changes in luminance, or
rotational motion. Motion estimation is an intensive process which generdly
consumes 60-90% of the computational time of arelated encoder or micro-controller.

The ME process begins first by dividing the current frame into macroblocks. The
size of a macroblock is typically 16x16 pixels, but can vary for each ME technique
according to the desired tradeoff between resolution and computational cost. Each
macroblock of a current frame is compared to a macroblock of a reference frame by
calculating a cost value for selected search points of the macroblocks. A current



macroblock that is sufficiently similar reference macroblock is then selected and
paired together. Vectors denoting a displacement between each matching reference
macroblock and each matching current macroblock are then determined. These
vectors are known as motion vectors, and serve as a representation of the
displacement between matching macroblocks from the reference frame to the current
frame for use in the prediction process.

Using the reference frame and motion vectors, one can now reconstruct an
approximation of the current frame (now the reconstructed frame) by copying the
matching reference macroblock of the reference frame to the location noted by the
corresponding motion vectors. This form of image reconstruction is aso known as
motion compensation. In this manner, subsequent frames can be continually predicted,
without having to store redundant macroblocks from a current frame into memory.
Certain macroblocks from the reconstructed frame are ssimply produced from a
matching macroblock from a reference frame according to a motion vector. This
process therefore compresses video sizes by omitting the storage of redundantly used
macroblocks. The level of compression: varies with the number of macroblocks
replaced from frame to frame, and'the desired image resolution.

The matching process in ME entails comparing selected pixels from a current
macroblock with the same pixels from-areference macroblock using a cost function.
A search algorithm provides the selection of search points indicating which pixels are
to be used for comparison in the matching process. The cost function provides avaue
indicating the degree of similarity between the compared search points. One of the
more common cost functions to determine the similarity between two input images
includes the sum of absolute differences (SAD). The greater the similarity between
the two inputs, the smaller the SAD value will result. The matching process in ME
therefore uses a cost function to compare search points of a current macroblock to
search points of areference macroblock to determine the degree of similarity between
the two macroblocks. If the cost values between the two macroblocks are sufficiently
low, then the reference macroblock is suitable to replace the current macroblcok in
motion estimation.

1.5 MOTIVATION

According to the literature published before, we can find that the motion
estimation process is the most time consumed part. To further realize this process, we
can mainly divide it into two parts: integer motion estimation and fractional motion
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estimation. Integer motion estimation cost most part of time under the origina
algorithm unchanged. The main reason is that the search window is too large. So we
have avery simple idea that we want to decrease the search window. Reducing search
range is the most effective way to decrease search window and memory accesses can
be saved significantly. This is the main reason why we choose the way but other
methods such as search pattern rearrangement. Fractional motion estimation will not
affect obvioudy under the original condition. But when the fast algorithm is applied
for integer motion estimation, the portion of encoding time due to fractional motion
estimation is getting larger. Based on the assumption of uni-modal error surface, we
want to use the results of half pixel step to predict the slope of error surface. We also
apply early termination technique. Due to the unchanged system order, we use the
information from integer part to predict the threshold of fractional part. Making use of
hardware parallelism to speed up is also a common method in H.264 research field.
To trade off between speed and area, we use certainly paralelism and decompose
variable block size into 4X4. In the topic of speed up, we reach the goal by applying
early termination technique.

1.6 THESISORGANIZATION

In the thesis, we will introduce the H.264 standard and some published
algorithmsin chapter2. In integer.motion estimation part, we develop fast algorithm
as dynamic search range prediction. Wewill-detail it in chapter3. In fractional motion
estimation part, fast algorithm named as adaptive search pattern prediction is
described in chapter4. The co-simulation result by applying both fast algorithms
mentioned in chapter3 and chapter4 is shown in chapter5. Then, we will show the
hardware architecture and result comparisons in chapter6. Finally, a conclusionis
given in chapter?.



Chapter 2 Overview of H.264/AVC standard

2.1 OVERVIEW

H.264 consists of a number of tools. Its basic structure is the so-called
motion-compensated transform coder. Compared to the prior video coding standards,
many important and new techniques are employed in H.264 and they together bring
significant improvement on coding performance. Some of these techniques are
highlighted here [5]. We may want to add that the concepts of some of these tools
have existed for some time but they are nicely tuned and integrated together to form a
good compression schemein H.264.

2.1.1 Variable block-size motion compensation with multiple references

The basic unit in H.264 motion_estimation is the 16x16 macroblock. It can be
further split into a tree structure, with a minimum-motion compensation block size as
small as 4x4. Also, up to five reference frames may be used for motion compensation.

2.1.2 Directional spatial intracoding

To reduce the correlation inside“a block, H.264 adopts the intra-prediction
technique, which estimates the current block pixel values based on the known pixels
of its neighbor blocks. The prediction results implicitly follow the edge direction, and
often bring significant improvements.

2.1.3 In-loop deblocking filter

Block-based video coding produces artifacts known as blocking artifacts at low
bit rates. This in-loop deblocking filter adjusts its filter strength adaptively according
to the image local characteristics, and thus it provides better quality pictures at the
decode end.

2.1.4 Context adaptive entropy coding

Two entropy coding methods, Context-based Adaptive Binary Arithmetic Coding
(CABAC) and Context-based Adaptive Variable Length Coding (CAVLC), are
provided in H.264. Both methods use context-base adaptivity to improve the entropy
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coding performance and the results show this approach is quite successful.

A simplified encoding flow of H.264 is shown in Fig 1. A video frame is first
partitioned into a number of 16x16 macroblocks. Then, each macroblock goes
through the intra-prediction or the inter-prediction unit. The intra prediction unit uses
the neighboring block data to predict the current block. The inter-prediction uses
reference frames to predict the current frame. Each predictor has a number of modes.
A good design should pick up the best mode with the lowest rate and distortion. The
prediction residuals are then transformed, quantized and further entropy-coded into
the output bitstream. In order to continue operating on the next incoming frame, the
quantized current frame is reconstructed and stored. The decoder data flow is the
reverse of the encoder flow.

video I"""""';
I .| Entropy |
" "l T e | | Coder
) |_—_-_—_—_-_—_—j,;_—_-1
1 |
| T & Q1 I
R Intra |___________I
Pred.
Y 204
Q@
Deblk
» ME = MC Filter
I'_'T__l
: Ref 1 :
—1 | Ref2 | I+
I I

Fig 1 Block diagram of H.264 encoder



2.1.5 Computational profile

The H.264 encoder reference software provided by the ITU/MPEG standard
committee is known for its high computational complexity. A typical computational
profile of the H.264 encoder (ITU/MPEG reference software) running on Intel PC, is
shown in Fig 2. It shows that the tools of (&) motion estimation, (b) entropy coding, ()
transform and quantization, (d) interpolation, and (€) mode decision and
intra-prediction are the most time-consuming modules. Although the other results of
profiling would have somewhat different, by and large, the trend is pretty much the
same. As for the decoder, the tools of (@ motion compensation (including
interpolation), (b) entropy decoding, and (c) intra-prediction have the CPU load.
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Fig 2 Computational profile of H.264 video encoding.
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2.2 INTRA PREDICTION
2.2.1 Overview

Intra-prediction uses the high correlation property of neighboring samples in
gpatial domain to predict the current encoded samples. For the luma samples, each
prediction block may be formed for each 4x4 block (denoted as 14MB) or for an entire
MB (denoted as 116MB). When utilizing Intra_4x4 prediction, each 4x4 block
chooses one of the nine prediction modes, which include one DC mode plus eight
directional prediction modes, as shown in Fig 3 (a), as the best one. In the luma
component of an MB, the Intra_16x16 prediction is typically chosen for smooth
image areas, and thus, only four prediction modes are specified as shown in Fig 3 (b)
except for the DC mode. The chroma samples of an MB are predicted using a similar
prediction pattern, Intra_8x8, which is similar to the luma Intra_16x16 prediction.

horizontal

3 4 plane plane

L
vertical |

@ (b)

Fig 3 Intra prediction modes for (a)Intra_4x4 and (b) Intra_16x16.

2.2.2 Fast algorithms

The fast algorithms of intra prediction can be classified into several types. The
first approach is “early termination”, which ends the search operation when the
calculated distortion is samller than a pre-chosen threshold. The selection of a proper
measure for deciding termination is critical to the performance. It may be derived
based on the macroblock smoothness [6][7] or the most probable mode [8]. The early
termination based on the macroblock smoothness calcul ates a smoothness measure of
a macroblock to determine the block type. For example, the large block type such as
Intra_16x16 is chosen often for the flat image areas [6][7]. “ Smooth” means that all
the pixel values in a MB are similar; that is, their variance is small. The variance
computation shall be simple to save computation. Therefore, the Mean Absolute
Difference (MAD) operation [6] or the AC/DC ratio [7] is often used. If the variableis
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smaller than a pre-selected threshold value, the Intra_16x16 mode is chosen and thus
the costly Intra_4x4 can be skipped.

Another kind of early termination proposal examines the most probable mode
first. For example, in searching for the best Intra_4x4 mode, if its residual is smaller
than a threshold, then the other eight Intra 4x4 modes are skipped (not chosen).
Otherwise, al nine modes have to be tested. Then, we set another threshold to decide
whether to keep on checking the Intra_16x16 prediction or not. It was reported that in
one case, this method together with the 2:1 downsampling and rate-distortion
optimization (RDO) can reduce 68.8% of total computation time with only 1.35% of
bit rate increase comparing to the reference software [8]. The major issue in this type
of algorithms is how to determine the threshold. The threshold value can be adjusted
according to the quantization parameters for instance. To construct a more efficient
scheme, we propose a mixed fast intra prediction algorithm. It first examines both the
most probable mode and the DC mode to determine if it meets the early termination
criterion. The threshold value is decided by the average of SATD (sum of absolute
transformed difference) of all the previeusintra, 4x4 blocksin thisframe. Once the 16
Intra_4x4 blocks are done, their total cost will be used as the threshold for deciding
Intra_16x16 mode. These threshold values seem. to be able to match the video local
characteristics and provide good results.“Even when RDO is turned off, we can
achieve around 30% computationa savingsforthe intra prediction module.

The second approach uses the edge analysis to quickly identify the edge direction
since the intra prediction is basically a directional prediction [9][10]. Often the Sobel
operators or the first order derivative are used as the edge analysis tool to find the
most probable edge, which will be used as one of the final edge candidates. The final
mode candidate list includes the one selected by the edge detector together with the
other highly probable modes. In the case Intra_4x4, this would mean two modes of
the neighboring blocks and the DC mode; and in the Intra_16x16 and Intra_8x8 cases,
only the DC mode is considered highly probable. Therefore, only four candidate
modes (for Intra 4x4) or two candidate modes (other types) are needed to be
examined. The result shows that 60% of intra_only computation time reduction is
observed with RDO and the bit rate increase is around 2~3% [9]. The bit rate increase
may be owing to the irregular edges within a block. On the other side, the extra
computation needed for edge analysis can be a computation burden and reduce the
overall saving significantly.

The third approach uses the so-called three step approach [11]. It first tests the
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horizontal and vertical directions, it then tests the neighboring 22.5 degree modes
close to the better one from the previous step, and finally the best mode up-to-now is
checked against the DC mode for the final winner. This approach has the advantage of
a fixed number of modes are examined for all cases. However, computation time
reduction is around 33% with about 1% bit rate increase.

The last approach makes use of the correlation in the temporal domain [12] since
the best prediction mode in the current macroblock is likely similar to that in the
reference macroblock in the previously coded frame(s). Thus, the primary intra
prediction mode is selected from the mode of the most overlapped block in motion
estimation. The computational overhead is nearly zero since al information is
obtained during the inter-prediction operation. It is reported that the coding
performance is nearly unchanged while the computational savings is about 50%
assuming the intra-frame period is 10 [12].

In summarizing various fast intra-prediction agorithms, although we cite the
experimental results from the proposed idecuments, a fair comparison among all
methods is difficult because their: simulation.environments are quite different. One
important element affecting computation is the option of RDO in the reference
software. Thisis particularly true forthe early termination method with thresholds.
The algorithms described in the above cantbe combined together to achieve further
speed-up. For example, the first step could be the decision on Intra 4x4 or
Intra_16x16. The second step could be the early termination for the chosen intra type.
Finally, the rest of mode tests could be a fast algorithm to select one from the nine or
four candidate modes.
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2.3 INTER PREDICTION
2.3.1 Overview

Block matching based motion estimation and compensation is a fundamental
process in the current international video compression standards. It can efficiently
remove interframe redundancy. A direct implementation is the full search algorithm
that examines exhaustively every candidate motion vector in the search window to
find the globally best matched block in the reference frame. However, its
computationally intensive nature prevents it from practical implementation on a
processor for real-time applications. The computation burden is increased drastically
for the H.264 encoder because there are a number of combinations of partitioning a
macroblock into sub-block(s) ranging from 4x4 to 16x16. Potentially each sub-block
can have its own motion vector. This feature significant increases the computational
complexity in motion estimation. Thus, many fast motion estimation agorithms have
been proposed to alleviate the computational |oad.

Most of the fast algorithms are‘based on the:well-known a priori knowledge, “the
motion field of a real world image sequence:is usually gentle, smooth and varies
slowly”. Fast motion estimation ‘agorithms:can”be: categorized into roughly three
families as described below.
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2.3.2 Fast algorithms
2.3.2.1 Reduce possible candidate points
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Fig4 (a) S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block matching motion estimation”,[19]. (b) C. Zhu, X.
Lin,and L.—P. Chau, “Hexagon-based search pattern for fast block motion estimation,[21]

Based on the assumption of conveéxity of the uni-modal error surface, i.e., block
matching distortion increases monotonically.-avay .from the global minimum point,
many gradient-based search methods with carefully designed search patterns have
been developed to limit search pointsto asmall subset of all possible candidates. This
category includes the well-known three-step-search (3SS) [13], the new three-step
search (N3SS) [14], the cross search (€S) [15], the one-dimensional gradient descent
search (1DGDYS) [16], the block-based gradient descent search (BBGDS) [17], the
four-step search (4SS) [18], the diamond search (DS) [19], the cross-diamond search
(CD9)[20] and the hexagon-based search (HEXBS) [21]. Although this category of
algorithms may be trapped into alocal minimum point and hence the efficiency of the
motion compensation may drop, they can considerably reduce the number of block
matching computations.
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2.3.2.2 Motion vector prediction
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Fig 5 Tempora Neighboring Ref-frame Prediction

Fig 6 Spatial Up-Layer Prediction

Motion in most natural image sequences involves a few blocks and lasts for a
few frames. Therefore, spatially or temporally adjacent blocks often have similar
motion vectors. Taking the advantage of the correlation among neighboring motion
vectors, the search window can be constrained to a small clique surrounding the
“predicted vector”, a candidate position predicated based on the known neighboring
motion vectors. Many prediction algorithms have been developed with different
complexities. The prediction search algorithm (PSA) [22] simply predicts the current
block motion vector as the mean value of its neighboring blocks' motion vectors.
Fuzzy search [23] applies fuzzy logic to predict the motion vector. In [24], motion
vectors are predicted by integral projections. In [25], a spatial-temporal AR model of
motion vectors is constructed and an adaptive Kaman filter is employed. The
multi-resolution search [26] down-samples a picture to obtain raw motion vectors at
different resolution levels, then it estimates finer motion vectors from the coarser
ones.The multi-resolution-spatiotemporal (MRST) scheme [26] modifies the normal
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raster scan order so that some blocks can reference more motion information by
increasing their neighboring blocks along more directions. It then combines a
multi-resolution scheme and spatiotemporal correlation to predict motion vectors. For
burst motions and blocks at the top-left corner, which has little correlation information,
the performance of this category of agorithms may deteriorate because the refinement
of prediction is restricted to a small search region. Moreover, the prediction overhead
may reduce the speed gain.

2.3.2.3 Low complexity block matching criteria

The magjority of the computations in motion estimation originate from
computations of block matching distortion. In general, block matching metrics, such
as the mean absolute difference (MAD) and the mean square error (MSE), involve
pixel-wise operations, which are highly computationally intensive. Some methods try
to simplify distortion computation by substituting the distortion defined on a subset of
pixels for the whole block distortion. For instance, the MAD of 128 pixelsis used as
the matching distortion for a 16x16:macroblock in [26]; the computations can be
reduced by one half with little performaneeiloss. However, this method is not suitable
for small blocks such as 4x4-blocks. Partial distortion elimination (PDE) in [27]
compares every line's distortion in a block to avoid:computing the distortion of the
entire block. In [28], hypothesis testing is'used to estimate the MAD from the partial
mean absolute difference (PMAD), and the estimated MAD value is used to judge the
matching result.

When fast algorithms in the above three categories are put together, the motion

estimation accuracy may degrade. Additional calculations such as the initial motion
vector prediction could lead to a considerable amount of computational overhead.
An approach proposed without quality degradation is the successive elimination
algorithm (SEA) suggested by Li and Salari [29], which pre-excludes some
impossible candidate points before completing the matching distortion calculation.
SEA is a fast full search algorithm having a performance identical to FS while it
speeds up the search process approximately by 10 times for 16x16 macroblock based
motion estimation. Some further improvements have been made in subsequent
research [27][30]-[33].
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2.3.2.4 Fast fractional motion estimation
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C.-C. Cheng, Y.-J. Wang, and T.-S. Chang, “A fast fractional pel motion estimation algorithm for H.264/AVC" ,[36].

In the H.264 video coding scheme [4], the inter prediction (motion vectors)
precision has been increased to quarter pixel. Typically, people perform the integer
pixel motion estimation (IME) first:- Then,sthe sub-pixel motion estimation or
fractional motion estimation (FME) is appliedto achieve refinement. As compared to
the integer-value search, FME has a somewhat different statistical character. This may
due to the facts that the search window of FME refinement is much smaller than that
of IME and that the referenced sub-pixels.are interpolated from the integer-coordinate
pixels. Consequently, the error surface of FMEis much closer to a uni-modal one,
which favors fast algorithms.

Therefore, traditional fast agorithms in IME can aso be used and can be more
effective. The scheme adopted by the H.264 reference software is a three-step-like
fast algorithm. It first checks the nine candidates surrounding the best match of IME,
and then checks further the nine candidates surrounding the best match from the
previous step. However, to take even more advantage of the uni-modal surface
property and the highly centralized distribution of sub-pixel motion vectors, several
fast FME agorithms with additional features are proposed. In [35], a gradient based
search agorithm is brought up. The search direction is determined first and looks for
the best motion vector along that direction. In [36], an adaptive search-pattern
algorithm is proposed. The search-pattern is determined by outcome of the previous
step and it biased towards the search center. This method saves half of the
computations when compared to the reference software.
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2.3.2.5 Somerecent approaches

The recent trend to further reduce the motion estimation calculations is to
combine the techniques mentioned before. The ideais each technique, afast algorithm,
is placed its most suitable target area. Thus, how to find a specific combination that
achieves the optimal solution for a specific application becomes the most important
issue. In [37], afast algorithm with better coding efficiency on residuals is proposed,
which leads to a lower bit rate compared to the full search algorithm. The method
proposed in [38] produces larger residuals (due to fewer search points) but less
motion information. Overall, it has a better encoding efficiency and a rather fast
coding speed. This type of solutions seems to the target now researchers are aiming at.
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Fig 8 Comparison of bit stream portion with different fast algorithm.
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2.4 FAST MODE DECISION
2.4.1 Overview

The mode decision algorithm determines the best mode of the macroblock from
various combinations of inter-prediction and intra-prediction. It can be coded with
seven different block sizes for motion-compensation in the inter mode, and various
spatial directional prediction modes in the intra mode. To achieve the highest coding
efficient as close as possible, the reference software calcul ates the rate distortion costs
of all possible modes and the it chooses the best one that has the minimum cost. This
is a very time-consuming process. To reduce the computation load, a fast mode
decision algorithm is necessary, which can do a quick screening to drop most poor
modes and then it examines the reminders and identifies the (nearly) best one.

24.2 FAST ALGORITHMS

The fast mode decision algorithm can be divided into two types. The first type
uses an early termination thresholdito terminate the lengthy mode decision process.
The early termination step can: be placed between the intra and inter prediction
processes [43][44] or inside theinter prediction process [45].

The scheme proposed in [43][44]" uses the fact that intra mode needs more bits
for coding and thus has a lower priority-than the inter mode. Thus, if the best inter
mode cost is smaller than a threshold, the intra prediction mode is skipped. The
threshold can be the average of rate distortion cost of a number of previously coded
intra blocks [43] or aratio between the average boundary error (ABE) and average
rate (AR) [44], where AR is the average bits for encoding the motion-compensated
residuals and ABE is the average pixel error between the pixels at boundary of the
current and its adjacent blocks in the best inter mode. The simulation results show that
it can achieve about 20% reduction of computational time with a dight bitrate
increase.

In [45], it observes the fact that the 16x16 block usually is the best block size for
large areas of background with still or uniform motion since it has less motion vector
overhead. Thus, it first checks the cost of 16x16 block size. If it is smaller than a
threshold, say, an average value of previous 16x16 blocks, the inter prediction process
isterminated. Otherwise, asimilar procedure is applied to the 8x8 block size.

The second type of the mode decision algorithms s to reduce the number of candidate
modes. Intuitively, if the cost of alarger block-size mode is higher than the cost of the
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current block-size mode, the even larger block-size modes can be excluded. Similarly,
if the cost of a smaller block-size is higher than that of the current block-size mode,
the even smaller block-size modes can be excluded. Following this argument, we give
different priority to each mode. If the mode with higher priority can provide sufficient
image quality, we can skip the other lower priority modes. A specific caseis the SKIP
mode. The SKIP mode refers to the 16x16 mode of which no motion and residual
information is coded. Thus, no motion search is required and it has the lowest
complexity. Therefore, many agorithms assign the highest priority to the SKIP mode
and thus a large percentage of macroblocks would get the SKIP mode based on
gpatial-temporal neighborhood information [46]-[48]. This approach can save a
significant proportion of the encoding time with a dlightly bit rate increase and quality
drop.

In summary, the fast mode decision algorithms can be combined with the other
fast intra and inter prediction algorithms to achieve further speedup. In all these
agorithms, the SKIP mode first approach can save significant computationa time.
How to determine proper threshold values in a ssmple and automatic way is one
critical issue for research and many proposals have been suggested.
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Chapter 3 Dynamic search range prediction

for integer motion estimation

3.1 DESCRIPTION OF PRIOR ART

Motion estimation is a well known technique in video coding to achieve high
coding efficiency by reducing the temporal redundancy between successive frames.
Motion estimation plays an important role in such an inter-frame predictive coding
system.

The full search block matching algorithm for motion estimation is the ssimplest
but computationally very intensive, especially when the search range is large. It
provides an optimal solution by exhaustively evaluating all the possible candidates
within the search range in the reference frame."Many fast agorithms, such as the new
three-step search [14], the block=based ‘gradient descent search [17], the three-step
search [39], the dynamic search window scheme {40], and one-at-a-time search [41]
have been proposed to reduce the computational complexity by limiting the number of
check points within the constant: searchrange. The basic idea behind there fast
algorithms is the assumption of the monotonically increasing block distortion function.
Limited points are tested in the first stage; search is then continued in the vicinity of
the point whose distortion is the smallest in previous stage. In [40], the window size
in subsequent stage is determined based on the superiority of the best matched point
to others in the present stage. It is clear that all these algorithms start with a constant
search range and the computational complexity reduction is done at the expense of
estimation accuracy due to its limited number of check points in the first stage.
Different approached of fast algorithms have also been proposed. In [42], the
sub-sampled motion-field estimation scheme is proposed. It starts with sub-sampled
motion-field estimation and then selectively replicates it to produce all the motion
vectors. However, it performs poorly when two or more objects within the same block
are moving in different directions or different velocities [42].

3.2 ANALYSISOF INTEGER MOTION VECTOR

It is well known that the larger search range fed into motion estimation, the
better rate distortion performance is obtained. We can intuitionally know that the
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performance increasing rate will saturate until certain degree video quality has been
achieved. In order to make the compress process more efficient, we may need to know
the saturate boundary of the input search range. The factor straight affected by
changing input search range is motion information. Motion vector can be decomposed
of motion vector predictor and motion vector difference. In Table 1, we can find the
increasing rates of motion vector predictor are really small compare to the increments
of input search range. For the reason that comparisons from 32 to 16 are very similar
as that from 24 to 16, we can easily conclude that the increment of input search range
over the saturate boundary will not get better coding efficiency.

Compare 24 to 16 Compare 32 to 16

MVP x | MVPy | APSNR | Bitrate(%) | MVP x | MVPy | APSNR | Bitrate(%)
Stefan 477 4.58 -0.01 -0.003 7.73 | 1215 -0.01 0.001
Foreman 0.51 117 -0.01 -0.001 1.06 2.64 -0.02 -0.001
Mobile 11.01 17.59 -0.01 -0.005 | 1299 | 2348 -0.01 -0.002
Coastguard 0.45 3.04 -0.01 -0.001 1.24 7.04 -0.01 -0.001
News 0.43 0.89 -0.01 -0.001 0.66 1.10 0.00 -0.004

Table 1 Increasing percentage,of motionvector predictor with different search range.

Compare 24 to 16 Compare 32 to 16

MVD x | MVD_y | APSNR | Bitrate(%) | MVD_x | MVD_y | APSNR | Bitrate(%)
Stefan 20.44 15.18 -0.01 -0.003 36.30 38.28 -0.01 0.001
Foreman 6.23 4.50 -0.01 -0.001 11.55 8.87 -0.02 -0.001
Mobile 54.23 45.73 -0.01 -0.005 67.86 59.97 -0.01 -0.002
Coastguard 3.32 21.12 -0.01 -0.001 10.48 50.06 -0.01 -0.001
News 13.12 12.92 -0.01 -0.001 19.00 10.60 0.00 -0.004

Table 2 Increasing percentage of motion vector difference with different search range.

In Table 2, the same conclusion can be epitomized. Motion vector difference
shows larger increasing rate with comparison to motion vector predictor, but it still
not efficient enough when input search range is too large. To determine whether the
input search range is too large or not, we experimented the input sequence size as CIF
size to find the saturate boundary of input search range for every input sequence
respectively.

As shown in Table 3, critical search range means the smallest search range with
similar rate distortion performance. We listed all possible factors that will announce
the search range needed. The factors that we considered can mainly be divided into
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two families. matching error group and motion information group. In the former
group, we record not only sum of absolute difference (SAD) but also sum of absolute
transformed difference (SATD); in the later group, we record motion movement
information. It is generally believed that temporal and spatial correlations of motion
vector exist. Asthe result, it gives us spaces to apply fast algorithm.

Critical SR | SAD SATD MVP_x MVP_y MVD_x MVD_y

Stefan 8 303.34 | 381.88 | 23.86 4.22 1.37 0.40
Foreman 4 176.64 | 267.79 | 17.51 6.51 0.66 0.55
Mobile 4 408.33 | 500.96 | 17.15 3.85 0.96 0.43
Coastguard | 2 276.61 | 436.79 | 19.21 2.33 0.70 0.08

News 2 122.55 | 197.70 | 13.57 4.12 0.12 0.11

Table 3 The correlation between search range and the factors including matching error and motion

information. Critical search range means the smallest search range with similar RD performance.
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Fig 9 Correlation between critical search range and matching error.

The correlation of critical search range and factors mentioned in Table 3 are very
similar. Taking matching error as the example, when the x coordinates (matching error)
are getting larger, the y coordinates (critical search range) are not getting larger
proportionally. In Fig 9, we can obviously find that when the matching error too small
or too large have smaller critical search range. To examine the reason, it is very
straight forward that too small matching error has smaller critical search range. Asthe
belief of the spatial correlation, slight motion movement (usually small matching error)
in previous macroblock means probably dSlight motion movement in current
macroblock. To cover the slight motion movement, only small critical search rangeis
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needed. In the case of larger matching error, it usually means that we can not find a
good match position in the search window such as changing scene or complex texture
within the macroblock. Indeed even if we increase the input search range will have
very little RD performance improvement. As the result that motion estimation does
not compress the macroblock information with large matching error, we may want to
reduce the search range to achieve our goal as speedup.
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3.3 PROPOSED ALGORITHM

A fast algorithm for motion estimation is proposed in this chapter. In contrast to
previously proposed fast algorithms which use limited number of check points in a
constant search range. The proposed algorithm performs search in a dynamic search
range.

Block motion fields in real world video sequences are usually smooth and varies
slowly. This produces a high correlation between the motion vectors of neighboring
blocks. We record the matching error of the previous macroblock. By making use of
this information, we will determine the search range used in current macroblock
dynamically. The proposed agorithm can mainly divided into three steps. The details
are asfollows:

Sep 1: Predict search range.

If (qp > 30)
gp_factor = 2;
else
gp_factor = 1;

sr_factor = (input->search_range)>>4;
shift_factor = gp_factor + sr_factor;

To serve different resolution video content, we should adjust the predict scheme
dynamically. Two main factors result in different resolution are quantization
parameter and input video size. The former one let users can define the final video
quality according to their application. The later one let users can compress video
content with different input size such as QCIF for network streaming and D1 for DVD
player. As the different input size, the different input search range comes. In order to
reduce the error generate by predicting search range, we should adjust the sr_factor
dynamically.

Mvd_max = ( |mvd_x_prev|, |mvd_y prev|]);
max_sr = Mvd_max << shift_factor;

We record the motion vector difference of the previous macroblock for the
reason that correlation exists. It is generally believed that motion vector is likely
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similar as the previous one. However, this is not point motion vector difference
directly. We may know the entire motion vector likely is but we can not judge the
refined part (motion vector difference) accurately, so Mvd_max need to be increased
to generate the probabl e predict search range (max_sr).

Sep 2: Check the upper bound.

if(sad_previous > 600)
max_sr_up = (search_range >> 2);

elseif(sad_previous > 50)
max_sr_up = search_range;

ese
max_sr_up = (search_range>> 1);

max_sr = min(maxzsr, max_sr_up);

In this step, we want to clip some redundant.search range that was over predicted
in previous step. The main ideais cut off the search range when the match error is too
large or too small. The correlation is showrninFig.9-and details are mentioned above.
600 and 50 are experiment result*with input sequence as CIF size. Bad match (with
too large matching error) shows more spaces to reduce search range than good match
(with too small matching error) does. When matching error is over 600, it means that
there is no good match position in search window. In other words, even if we skip the
motion estimation process, it will not result in terrible performance loss. The amount
of residual data can not be saved, so spending time to refine motion vector is not
efficient and can be reduced.

Sep 3: Check the lower bound.

if(max_sr == 0)
max_sr = 4,

The last step is to avoid skipping motion refined operation. In this step, we will

make sure that the max_sr is not equal to zero. The action that skipped motion refined
operation will lead to significantly rate distortion performance | oss.
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3.4 COMPARISON

This section shows the speedup improved by proposed fast agorithm. Saving
mentioned below means the reduced search points compared to original ones. We
record every determined search range in all macroblocks and calculate the average of
them. Saving is calculated manually. It means not the total encoding time saving but
motion refinement time saving. As listed in Table 4, the input sequence size is CIF
size and input search range is given by 16. We find that the proposed algorithm
obviously decreases the number of search points. When the quantization parameter is
smaller than 30, almost 90% saving can be achieved. It still has more than 80% saving
even the quantization parameter is bigger than 30.

CIF QP=20 QP=24 QP=28 QP=32

SR=16 Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%)
Stefan 6.764 | 82.126 | 6.753 | 82.184 | 6.663 | 82.652 | 7.915 | 75.528
Mobile 4573 [ 91.828 | 4544 | 91.931 |4.464 |92.213 |6.453 | 83.732
Foreman 5.665 | 87.462 |5.704.+[87.287,| 5676 | 87.410 |7.335 | 78.978
Coastguard | 4.699 | 91.373 | 4745 | 91204 |4.790 | 91.034 | 6.639 | 82.778
News 4.365 | 92555 |4.391 | 92465 | 4.391 | 92468 | 4.758 | 91.154
Average 89.069 89.014 89.156 82.434

Table 4 saving statistic with input search range =16 and input sequence size as CIF size.

CIF QP=20 QP=24 QP=28 QP=32

SR=32 Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%)
Stefan 1190 | 86.162 |11.76 |86.475 | 1145 | 87.184 | 13.53 | 82.100
Mobile 8.537 | 82.882 | 8447 |93.031 |8.216 |93.407 |11.57 | 86.918
Foreman 9.801 | 90.618 | 9.906 |90.416 |9.816 |90.588 | 12.68 | 84.288
Coastguard | 7.664 | 94.263 | 7.813 | 94.037 | 7.923 | 93.869 | 11.44 | 87.201
News 5430 | 97.120 | 5.501 | 97.044 |5473 |97.074 | 6.015 | 96.466
Average 92.209 92.201 92.424 87.395

Table 5 saving statistic with input search range = 32 and input sequence size as CIF size.

In Table 5, we see the similar result with different ssimulation environment. We

get even better result than that shown in Table 4. As the total encoding time issue,
when the search range is larger, the time spending on motion estimation occupies
bigger portion of total encoding time. So we can achieve 40% ~ 60% total encoding
time saving with input search range given by 16 but 60% ~ 80% total encoding time
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saving with input search range given by 32.

D1 QP=20 QP=24 QP=28 QP=32

SR=32 Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%)
Crew 1723 | 70.984 | 1585 | 75452 |14.43 | 79.653 | 16.21 | 74.311
Harbour 1254 | 84.633 | 11.91 |86.144 |11.07 |88.031 | 13.51 | 82.153
Might 1348 | 82239 | 1291 |83.718 | 1243 | 84.890 | 13.97 | 80.922
Sailormen | 14.93 | 78.203 | 13.97 | 80.927 | 13.10 | 83.239 | 17.45 | 70.237
Average 79.015 81.560 83.953 76.906

Table 6 saving statistic with input search range = 32 and input sequence sizeas D1 size.

D1 QP=20 QP=24 QP=28 QP=32

SR=64 Sr avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%) | Sr_avg | Saving(%)
Crew 4249 | 55919 |39.39 | 62.103 | 36.20 | 67.992 | 40.39 | 60.155
Harbour 3251 | 74.184 | 30.87 | 76.723 | 28.69 | 79.898 | 35.50 | 69.216
Might 30.36 | 77.489 | 28.72 | 79.862: 27.58 | 81.421 | 3112 | 76.348
Sailormen | 39.99 | 60.940 | 37.88 ,64.955. | 36.04 | 68.284 | 46.44 | 47.332
Average 67.133 70.911 74.399 63.263

Table 7 saving statistic with input searchfange =.64 and:input sequence sizeas D1 size.

In order to make the method suitable fer-all*kinds of video content, we concerned
about many factors and adjusted the prediction scheme respectively. We devel oped the
algorithm with input sequence size as CIF size. As shown in Table 6 and Table 7, we
took input sequence size in D1 size as an experiment. The results show that smaller
saving comes with larger input sequence size. It means that the proposed algorithm is
a little conservative for larger input sequence size. Even if the determined search
range is over predicted, it still has almost 80% saving as listed in Table 6 and almost
70% saving as listed in Table 7. As the total encoding time issue, both of them are
about 40% ~ 60% saving.

3.5 SSMULATION RESULT

After the comparison of the speedup, this section shows the corresponding rate
distortion performance. We summarized the result into Table 8 to Table 11. We have
less than 0.03 dB PSNR drop and less than 0.5 % bit rate increased in the case of
input sequence size as CIF size (Table 8 and Table 9).
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JM 8.2 CIF QP=20 QP=24
SR =16 Origina Proposed | A(dB,%) | Origina Proposed | /\(dB,%)
Stefan PSNR 41.57 4154 -0.03 38.42 38.37 -0.05

Bit rate 3974.9 4042.69 | 1.705 2493.37 | 2538.14 | 1.795
Mobile PSNR 40.61 40.6 -0.01 37.08 37.07 -0.01

Bit rate 4996.31 | 4973.41 | -0.458 3199.12 | 3187.18 | -0.373
Foreman PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03

Bit rate 1834.93 | 1859.84 | 1.357 969.3 987.24 1.850
Coastguard | PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01

Bit rate 3289.18 | 3274.37 | -0.450 2003.72 | 1996.76 | -0.347
News PSNR 43.13 43.13 0 40.67 40.64 -0.03

Bit rate 622.02 623.01 0.159 373.98 374.66 0.181
Average PSNR -0.014 -0.026

Bit rate 0.462 0.621

Table 8 rate distortion result with input search range = 16 and input sequence size as CIF size.

M 8.2 CIF QP=20 QP=24
SR=32 Origina Proposed | /\(dB,%) | Original Proposed | /\(dB,%)
Stefan PSNR 41.59 41.55 -0.04 38.45 384 -0.05

Bit rate 3907.46 - 3931661 0.619 2414.45 | 244522 | 1.274
Mobile PSNR 40.6 40.59 -0.01 37.08 37.06 -0.02

Bit rate 5016.42 | 49831 -0.664 3212.55 | 3190.48 | -0.686
Foreman PSNR 41.72 41.7 -0.02 38.83 38.8 -0.03

Bit rate 1837.43 | 1854.24 | 0.914 970.15 983.24 1.349
Coastguard | PSNR 40.83 40.82 -0.01 37.52 37.51 -0.01

Bit rate 3296.59 | 3279.85 | -0.507 2006.07 | 1997.74 | -0.415
News PSNR 43.14 43.12 -0.02 40.67 40.63 -0.04

Bit rate 624.8 627.92 0.499 375.32 378.82 0.932
Average PSNR -0.02 -0.03

Bit rate 0.172 0.490

Table 9 rate distortion result with input search range = 32 and input sequence size as CIF size.

The previous section have pointed out that the speedup of the larger input
sequence size has less speedup. In other words, less speedup means better rate
distortion performance. The argumentation can be proved in this section through
Table 10 to Table 11. We can find that both PSNR drop and bit rate increased are
obviously smaller than that in Table 8 and Table 9.
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JM 8.2 D1 QP=20 QP=24
SR=32 Origina Proposed | A\(dB,%) | Original Proposed | /\(dB,%)
Crew PSNR 41.97 41.95 -0.02 39.34 39.33 -0.01

Bit rate 9727.04 | 9611.98 | -1.182 4935.23 | 4896.6 -0.782
Harbour PSNR 41.22 41.19 -0.03 38.28 38.26 -0.02

Bit rate 13516.99 | 13176.58 | -2.518 8157.34 | 7999.64 | -1.933
Night PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02

Bit rate 10574.44 | 10446.64 | -1.208 5740.23 | 5712.69 | -0.479
Sailormen | PSNR 41.04 41.02 -0.02 38.01 38 -0.01

Bit rate 12398.86 | 12267.2 | -1.061 5955.03 | 5920.67 | -0.576
Average PSNR -0.022 -0.015

Bit rate -1.492 -0.943

Table 10 rate distortion result with input search range = 32 and input sequence size as D1 size.

JM 8.2 D1 QP=20 QP=24
SR=64 Origina Proposed | A\(dB,%) | Original Proposed | /\(dB,%)
Crew PSNR 41.97 41:96 -0.01 39.35 39.33 -0.02

Bit rate 9806.21 |[:9725.62 - | -0.821 4973.31 | 4941.56 | -0.638
Harbour PSNR 41.22 41.2 -0.02 38.29 38.26 -0.03

Bit rate 13616.41+ 13328.96"| -2.111 8195.73 | 8064.2 -1.604
Night PSNR 41.97 41.95 -0.02 39.1 39.08 -0.02

Bit rate 10663.88 | 10503.1 [ -1.507 5779.62 | 5727.58 | -0.900
Sailormen | PSNR 41.04 41.03 -0.01 38.02 38 -0.02

Bit rate 12449.29 | 12354.03 | -0.765 5974.17 | 5948.22 | -0.434
Average PSNR -0.015 -0.022

Bit rate -1.301 -0.894

Table 11 rate distortion result with input search range = 64 and input sequence size as D1 size.

We have less than 0.022 dB PSNR drop and even lower than origina bit rate
performance. When the quantization parameter is getting bigger, the less coding
efficiency is carried with. However, in order to get so huge a speedup, sacrificing
small amount of quality lossis still worth. Rate-distortion curves are shown in Fig 10
and Fig 11. Asthe input sequence as CIF size, we simulated search range equal to 16
and 32; as the input sequence as D1 size, we also ssmulated search range equal to 32
and 64. All of them are very close to original method.
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Fig 10 rate distortion curve with CIF size and search range =16.
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Fig 11 rate distortion curve with D1 size and search range =64.

JVT-B022 JVT-D117 JVT-Q088 Our proposed
Worst PSNR loss (dB) 0.068 0.09 0.022 0.03
Worst Bit rate increase 1.37% 01.63% 0.42% 1.58%
ME Time saving n/a n/‘a 13% 75%
Total Time saving 49.44% 61.27% 8.3% 51%

Table 12 performance comparison
As listed in Table 12, we can find that our proposed algorithm is not the fastest
one and not the most accurate one either. But it is the best solution if we have to
consider speedup and video quality at the same time.
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Chapter 4 Adaptive search pattern prediction

for fractional motion estimation

4.1 ANALYSISOF FRACTIONAL PEL MOTION VECTOR

It is generaly believed that the fast ME agorithm works best if the error surface
inside the search window is unimodal.

As shows in Fig 12, the error surface of integer pel ME is not unimodal due to
the large search window and complexity of video content. So the ME search would
easily be trapped into a local minimum. On the other hand, since the sub-pels are
generated from the interpolation of integer pels, the correlation inside a fractiona pel
search window is much higher than that of the integer pel search window. Thus, the
uni-modal error surface will be valid in most .cases of the fractional pels. So the
matching error decreases monotonically,asithe search point moves closer to the global
minimum.
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Fig 12 (a) Error surface of integer pel ME (search range: 32); (b) Error surface of fractional pel ME
(1/8-pel case)

In the full search method, every fractiona pels around the original integer pels
are treated equal. However, with the valid unimodal error surface assumption, a fast
agorithm can work well if every candidate of the sub-pel refinement has different
occurring probabilities. Fig 13 shows the distribution of the fractional motion vector
around the best integer motion vector. It is obvious that more than 90% of fractiona
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motion vector are at the search center in all kinds of video content. However, we still
can not just avoid the fractional part even there are huge density diagram appear near

the bias search center. The small error drift of fractional part in motion vector will
lead to significantly bit rate increase.
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Fig 13 Distribution of the fractional ME.



4.2 ORIGINAL SEARCH ALGORITHM

100
120/130 /

—————————————————————————————————————

Fig 14 Search algorithm inreference software.

Fig 14 details atypica searchragorithmfor the ME process 100 according to the
reference software. The searchr process-in fractional motion estimation is typically
divided into two parts. The first-part<consists of half-pel motion estimation, where
specific pixels at half-pel spacing ‘arersearched for comparison. The second part
consists of quarter-pel motion estimation, where pixels at quarter-pel spacing centered
around a search point obtained in the first part are used for comparison.

In the first part of half-pel ME, a cost value for each of eight search points 120 in
a square search pattern surrounding the integer spaced pel called search center 110 is
calculated. A cost value calculation for the search center 110 is not performed. The
single search point from the group of search points 120 possessing the lowest cost
value is then selected as the quarter-pel motion estimation search center 130 in the
next step. The fractional motion estimation step utilizes an additional eight fractional
search points 140 displaced around the FME search center 130 in a smaller square
pattern. A total of 17 search points (1 search point from integer pel, 8 search points
from half-pel ME and 8 search points from quarter-pel motion estimation) are
therefore searched and compared in a single round of the traditional ME procedure
according to the reference software.

Although the typical search agorithm for the ME process 100 does manage to
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sufficiently locate suitable search points for the motion vector refinement process, the
excess amount of search points may result in significant delays in the encoding
process. The typical search agorithm for the ME process 100 may possess too many
search points to visit within one motion vector refinement process. Furthermore, the
search pattern used in the ME process 100 may provide further constraints in finding
optimal search points, as refinement in the fractional ME searching can cause the
search areato stray away from the search center.

In order to overcome these problems, and produce a more efficient search pattern,
a fast ME search algorithm is proposed. This algorithm produces a search pattern
based on the high statistical probability that fractional motion is located close to the
integer search center (as shown in Fig 13). In this way, fewer search points based near
or on the integer search center should be visited in the proposed algorithm. This
alows the complete fractional ME process to be accomplished with fewer overall
search points compared to the original method, while providing a comparable
accuracy. Furthermore, the overall computational resources and complexity to search
apredefined search areais greatly reduced:
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4.3 PROPOSED ALGORITHM

---------------------------------------

---------------------------------------

---------------------------------------

———————————————————————————————————————

Fig 15 Proposed algorithmefor half-pel.

Fig 15 illustrates a fast ME search agorithm. The algorithm is used to determine
an optimized search pattern comprising-ahalf-pel search pattern 200 and a quarter-pel
search pattern (discussed later). An integer spaced pel 210, or search center is shown
as acircle in the center of the macroblock-in'Fig 15. The first stage of the algorithm
comprises half-pel ME, where the half-pel search pattern is formulated. A total of 5
search points 220 are selected to form the half-pel search pattern: four search points
aligned to form a cross pattern around the search center and one search point located
at the search center. Fewer search points can be used in other embodiments. Once the
half-pel search pattern has been determined, the cost value for each search point 220
is calculated. Any suitable cost function can be used in this step, however, the sum of
absolute transform differences (SATD) is generaly used for the fractiona ME. The
cost function is used to determine the lowest 2 (or 3) cost values of the search points
220. Upon determination of the search points 220 producing the lowest cost values, a
quarter-pel search pattern for the fractional ME processis adaptively selected.

The next stage of the fast ME algorithm process entails selecting a quarter-pel
search pattern. The quarter-pel search pattern is selected according to the ranking of
cost values for each specific search point, and provides search pointsin a certain area
to approach the global minimum cost in the search window. In an effort to reduce
confusion, the search points deduced in the quarter-pel ME stage will be referred to as
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quarter-pel search points. However, both types of search points serve the same
purpose in providing matching points for the ME process.

Once the quarter-pel search pattern is determined (further below), cost values for
the quarter-pel search points of the fractiona search pattern are then calculated. The
cost values attained here are used in conjunction with the cost data accumulated from
search points in the first stage to determine whether the current macroblock is a
suitable match to the reference macroblock. The entire search pattern therefore
comprises the half-pel search pattern used in the first stage and the quarter-pel search
pattern used the second stage for fractional ME.

The following casesillustrate how the quarter-pel search pattern is selected in the
second stage in fractional ME. The quarter-pel search pattern is based on a ranking of
the cost values for each search point in the first stage for half-pel ME. The cases are
asfollows
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Case 1: The lowest cost search point is located at the search center, and the second
and third lowest search points are opposite to each other.

This caseisillustrated in Fig 16. In this case, the lowest cost search point 320 is
the located at the search center 310, and the second lowest cost search point 330 and
third lowest cost search point (not shown) are opposite each other. For this case, three
quarter-pel search points 340 placed between the minimum cost search point 320 and
the second lowest cost search point 330 are selected as the quarter-pel search pattern
in fractiona ME. The three quarter-pel search points 340 are configured such that
they form a straight line perpendicular to the axis formed by the lowest cost search
point 320 and the second lowest cost search point 330, and are located in between the
two half-pel search points 320 and 330.

Fig16 Proposed algorithm for quarter-pel (case 1).
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Case 2: The lowest cost search point is located at the search center, and the second
and third lowest cost search points are adjacent to each other.

This case isillustrated in Fig 17. The lowest cost search point 420 is located at
the search center 410, and the second lowest cost search point 430 is adjacent to the
third lowest cost search point 440. For this case, three quarter-pel search points 450
are used to form the quarter-pel search pattern in fractiona ME. The three quarter-pel
search points 450 are arranged between the three lowest cost search points such that a
connection among the three quarter-pel search points 450 would from a right angle
with the vertex of the right angle concave to the search center 410.
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Fig 17 Proposediagorithm for-quarter-pel (case 2).
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Case 3: The two lowest cost search points are adjacent to each other and surround
the search center.

Thiscaseisillustrated in Fig 18. The lowest cost search point 520 and the second
lowest cost search point 530 are adjacent to each other and both surround the search
center 510. For this case, three quarter-pel search points 550 are used to form the
quarter-pel search pattern in fractional ME. The three quarter-pel search points 550
are arranged between the two lowest cost search points such that lines connecting the

three quarter-pel search points 550 would from a right angle, with the vertex of the
right angle convex to the search center 510.
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Fig 18 Proposedalgorithm for-quarter-pel (case 3).
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Case 4: The two lowest cost search points are opposite to each other and surround
the search center.

This caseisillustrated in Fig 19. The lowest cost search point 620 is opposite to
the second lowest cost search point 630, neither being located at the search center 610.
For this case, four quarter-pel search points 650 are used to form the quarter-pel
search pattern in fractional ME. The quarter-pel search pattern is arranged such that
the four quarter-pel search points 650 surround the lowest cost search point 620 in a
sguare pattern.

O WY A e mwm ]

Fig 19 Proposed algorithmfor quarter-pel (case 4).

Once a fractional search pattern is selected based on one of the 4 above cases,
calculations for each quarter-pel search point using a specified cost function can be
performed to complete the matching process. The data provided from the half-pel
search points and the quarter-pel search points serve to provide a comprehensive data
set in an area approaching a local minimum of the cost function. This allows for a
more accurate match result, while lowering the need for calculating additional search
points. The best matching macroblock that minimizes the difference between the
current and reference macroblock can now be chosen.

4.4 COMPLEXITY AND ACCURACY COMPARISON

The following table provides a summary of the total search points used in the
method of the present invention for each potential case, compared to alternative
search agorithms for ME.
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Total Search Points
Full Search Algorithm 49
Reference software Algorithm 17
Casel 8
Proposed Algorithm Case2 8
Case3 8
Cased 9

Table 13 Search point comparisons for different algorithms

Asillustrated above in Table 13, the search agorithm of the present invention for
motion estimation significantly reduces the total search points in comparison with the
reference software method. For cases 1-3, a 52% reduction in search points is attained,
while a 47% reduction in search points is achieved in case 4. This significantly
reduces the hardware processing time required by a related compression encoder or a
microprocessor for use in video compression.

Reference software Proposed algorithm

MV _x hit rate .4 MV_yhitrate 1. MV_x hitrate | MV _y hit rate
Sefan 0.95086006 0.94094485 0.81168958 0.84223568
Mobile 0.93886042 0.90366406 0.79969447 0.78225377
Foreman 0.9223743 0.88868022 0.82468642 0.82102286
News 0.9759824 0.96602579 0.9272946 0.91579924
Coastguard 0.9268235 0.94608455 0.77841821 0.84063553

Table 14 Algorithms prediction correctness compare to full search algorithm

Additionally the method of the present invention manages to arrive at a
comparable matching accuracy while reducing the total search points and processing
time. Table 14 below details the prediction accuracy of both the proposed algorithm
and the reference software algorithm. The prediction accuracies are measured as a hit
rate of the fractiona motion vector in the x and y axis of the respective algorithm
compared to the motion vector produced through the full search algorithm applied in
the fractional search window. We see that the algorithm of the reference software
manages to consistently produce a hit rate of around 90% for the various video
samples. The proposed algorithm produces a comparable hit hate of about 80%, while
reducing the search points by roughly half.




45 EARLY TERMINATION

We aso apply the early termination technique to every single search point in
each step. The problem for early termination is how to define the threshold. The
matching error considered as SATD is used in fractional motion estimation and SAD
in integer motion estimation. SATD is the results after SAD go through 2D Hadamard
transform. The threshold value (SATD) used in fractional ME can be estimated from
the integer-pels matching error (SAD). We experiment from several test sequences
and get the formulalisted in the Fig 20.
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Fig 20 Relationship between best SAD in‘integer part' & best SATD in fractional part

In most of situations, we can use above approximated formula to predict the
threshold. However, direct linear prediction may lead to a too large threshold and
arise too much imprecision when the SAD getting larger. To solve the problem and
avoid second or high order approximation, we adopt adaptive linear prediction
threshold. We have found that while the quantization parameter (QP) is getting larger,
the rate distortion performance is getting better. It means that we have more spaces to
save when larger QP comes. To achieve the shorter searching time without significant
performance loss, we increase the threshold associating to the current QP. The final
prediction formulas are listed below.

if (SAD > 1000)

{ threshold = SAD*0.75 + (QP-28)*16 + 375 + 36; }
elseif (SAD > 500)

{ threshold = SAD* 1+ (QP - 28)*16 + 125 + 36;}
else

{ threshold = SAD*1.25 + (QP - 28)*16 + 36;}
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Every coefficient used in the formula could be calculated by add and shift, and
the summation of constants could be combined easily. Constant with the value of 36 is
obtained in the formula listed in Fig 20. Constants with the value of 375 and 125 are
used to maintain the continuity of the adaptive prediction curve. The adaptive
threshold prediction curve is shown in Fig 21.
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Fig 21 Adaptive threshold.prediction curve

By applying early termination technique, we can improve searching speed about
8.5 % to 14%. While the QP is getting larger, we may get a bigger threshold and lead
to the shorter searching time.

4.6 SIMULATION RESULT

Table 15 shows the simulation results of the proposed agorithm compared with
that of the reference software. We integrate our algorithm into the reference software
and use the full search algorithm for integer ME for fair comparison. It can be found
that our algorithm greatly reduces computational complexity but only leads to a small
amount of quality loss. For the low motion sequences, our algorithm has about
0.1-0.2dB PSNR degradation at the same bit rate as reference software. For the
median motion sequence, such as foreman, and coastguard, we can find that about 0.1
dB PSNR degradation at the same bit rate with respect to algorithm in reference
software.
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QP=28 Stefan Mobile |Foreman |Coastguard |News
bit rate 1441.14| 1888.69 498.62 1127.87 223.72

ref. software |PSNR 35.36 33.75 36.24 34.52 38.12
time (sec) 491.604| 4719931 496.974 4388.039 450.37
bit rate 1474.06] 1933.34 507.5 1139.94 228.72

proposed PSNR 35.27 33.64 36.17 34.48 38.06
time (sec) 209.884| 210.554| 210.435 213.736| 200.354
/A\Dbit rate(%) 2.2843 2.36407| 1.780915 1070159 2.23494
APSNR -0.09 -0.11 -0.07 -0.04 -0.06
speed up 234227 2.24167| 2.361651 2.283373| 2.24787

Table 15 Simulation result when QP = 28, speed up is only the performance in fractional ME part.

RDO is off, reference frame number = 1, CIF.

In the high motion sequences, such as stefan, our algorithm has about 0.2 dB
PSNR degradation at the same bit rate of reference software. The reason of the quality
loss is the coverage of our search window is not big enough. Thus, some position can
not be arrived by our fast algorithm. However, it is still acceptable since the loss is

still small.

4.7 COMPARISON

Besides the simulation result with constant QP, we aso turn on the rate control
option. The comparison result are listed in Table 16, we can see that our proposed
algorithm is the fastest and the most accurate one. The lower bit rate is; the better
performance comes. Our algorithm is very kind for network communication.

Rate control enable 64kbps 128kbps 256kbps 512kbps
2SS FSIP | Our | 2SS | FSIP | Our | 2SS | FSIP | Our | 2SS | FSIP | Our
Foreman APSNR 017 | 019 | 002 | 017 | 017 | 002 | 01 0.1 | 004 | 013 | 0.14 | 0.09
Speedup 2| 262 | 452 2| 255 452 2| 285|391 2| 27| 352
Coastguard | APSNR | 005 | 007 | 001 | 002 | 002 | 001 | 0.03 | 004 | 002 | 0.05| 0.05 | 0.05
Speedup 2 3| 353 2| 289 | 353 2| 301|318 2| 282 283

Table 16 Comparison between different fast algorithms for fractional ME.

LAPSNR: PSNR drop compare with original method used in reference software.

Speedup: speedup in fractional motion estimation.

2SS: fast algorithm proposed in [34].

46

FSIP: fast algorithm proposed in [35].




Chapter 5 Integration

In this chapter, we applied the fast algorithms mentioned in chapter 3 and chapter
4. We used dynamic search range prediction scheme for integer motion estimation and
adaptive search pattern prediction scheme for fractiona motion estimation. Fast
algorithms are necessary for intolerant large computation time, such as SDTV or even
HDTV applications. For the great reduction of computational complexity, we take
720p (1280 x 720) as the input sequence size. The total encoding time can be reduced
to 5% compared to original one. In other words, we can achieve 20 times speed up.
The details arelisted in Table 17.

M 8.2 720p QP=20 QP=24
SR =64 Origina Proposed | /A\(dB,%) | Original Proposed | /\(dB,%)
Mobcal PSNR 40.78 40.74 -0.04 37.54 37.51 -0.03

Bit rate 44878.75 | 45184,024:0.680211 | 23555.1 | 23794.68 | 1.017105

Parkrun PSNR 40.37 40.33 -0.04 36.76 36.71 -0.05
Bit rate 68330.01 | 67666.61 | -0.97088 | 44269.89 | 43893.55 | -0.8501

Shields PSNR 40.86 40.82 -0.04 37.7 37.66 -0.04

Bit rate 39812.74 39968:137-0:390302 | 18962.41 | 19028.51 | 0.348584
Stockholm | PSNR 40.75 40,74 -0.01 37.49 37.46 -0.03

Bit rate 42461.87 | 42881.22 | 0.987592 | 20223.58 | 20335.03 | 0.551089
Average PSNR -0.035 -0.037

Bit rate 0.271 0.267

Table 17 rate distortion result with input search range = 64 and input sequence size as 720p size.

As the 20 times speedup, the rate distortion performance is quite good enough.
Furthermore, we propose s VLSI architecture design of sub-pel ME for H.264/AVC in
chapter 5. By taking advantage of the correlation between motion vectors and
uni-modal error surface, the proposed algorithm can significantly decrease more than
95% computational complexity and with at worst 0.04 dB PSNR degradation. The
corresponding architecture can significantly decrease the total number of 4x4 block
PU by reducing the candidates in the same step and speed up the search process by
modified early termination technique. The resulting architecture achieves the slight
video quality loss but nearly 40% area saving and 14% time saving when compared to
the previous one (proposed architecture in [51]). Finally, some intermediate results of
fast sub-pel ME are shown in appendix.
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Chapter 6 Architecturedesign for fast sub-pel
inter coding in H.264

6.1 HARDWARE CONSIDERATION

The encoding procedure is dominated (90%) by the inter prediction for new
techniques in H.264 as variable block sizes, multiple reference frames and
Largrangian mode decision. Inter prediction can be mainly divided into two parts:
integer motion estimation (IME) and fractional motion estimation (FME).
Complexities of the former one and the later one are quite the same and both
dominate the encoding time of inter prediction. For the speed up in system level, we
may pipeline the IME and FME process. So the dedicated hardware is needed for
FME only. For the speed up in the macroblock level, we can use the fast algorithm
instead of the method applied in IM8:2 [52).

Largrangian mode decision of.a macroblock- should be done after choosing the
best cost among the 41 sub-blocks in every reference frame with quarter precision. In
Fig 22, we can find there are-total seven-types of block sizes and may execute
independently. If the critical concern:is.the-encoding time, the paralelism as the
hardware acceleration technique can be applied. But it will result in unacceptable
huge chip area and power consumption. So we should make use of the common part
of different block sizes. Every type of block sizes can be decomposed by 4X4 block.
Only 4X4 block should be implemented necessarily, refinement of all the other types
can be done with the hardware technigue named as folding.

In spite of the regular agorithm of FME used in JVT, the complex Largrangian
mode decision will also arouse the difficulty of hardware implementation, so irregular
search agorithm is further not prefer to implement. In [35], the gradient based search
algorithm is proposed. In which, the interpolated pixels needed in next stage have
higher variation probability in search window and that is often regarded as the defect
of hardware implementation.
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4X4 block decomposition and vertical integration are proposed in [51]. All block
types can be decomposed by 4X4 block, and the SATD of each element is
accumulated to get the final cost. For the data reusability, vertical integration is one of
the ways to reduce the encoding time.-Redundant interpolating operations appear in
the overlapped area of adjacent interpolation *window and can be merged by
scheduling technique. But the overhead "as the more complex timing control circuit

will be introduced.
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MYV and ref frames of best predicted MB

Fig 22 Mode decision flow in H.264.
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6.2 ALGORITHM FOR HARDWARE MODIFICATION

The algorithm implemented is dightly different from the fast agorithm
mentioned before. The main difference is when to apply the early termination
technique. As the method mentioned before, we still use adaptive prediction SATD as
criterion to terminate the refine process or not. However, early termination at each
search point is only reasonable for the application running on DSP or CPU since
instruction is executed sequentially. But in the case of hardware design, the available
resources allow us to use parallel processing unit to speed up the whole FME process.
Thus, we use five 4X4 block PU’s (processing element, discuss later) to manage all of
the search points in the same step, and only terminate the second step process if
meeting the requirement.

As shown in Table 18, we numerate the probability when different early
termination techniques activated. Point Check (PC) means the way used on DSP or
CPU, it will check the final cost after every search point refinement. Step Check (SC)
means the way used in hardware design, it will-only check the criteria after the best
cost in each step is determined: In Table 18, we:.can see that the count of early
termination occurrences decréased from PC (56%) to SC (28%), but is still
significantly.

QP=28 Point Check(PC) |PC hit rate(%) |Step Check(SC)|SC hit rate(%) |total count
Stefan 3164430 65.1846386 1761015 36.2754513 4854564
Foreman |2869524 59.1098191 |1634614 33.6716953 4854564
Coastguard|{2099169 43.2411438 1026942 21.1541551 4854564
News 3068064 63.1995788 1325303 27.3001448 4854564
Mobile 2577329 53.0908440 1000258 20.6044868 4854564
average |2755703.2 56.7652049 |1349626.4 27.8011867 4854564

Table 18 Simulation result when QP = 28, point check means the early termination applied in every

search point, step check means the early termination just applied in half step

The total encoding time of above modification can be calculated as follows. First,
the encoding time is the same in each step refinement since every search point is
calculated in parallel. Let us assume the total time without early termination is T, and t
as the total time with step stop early termination. We can find the following
relationship:
t=T*(1-0.28)+05T*0.28=0.86T
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Thus, by using step stop early termination technique, we can save 14% search time in
FME module. The related quality loss will be shown latter.

6.3 ARCHITECTURE

Fig 23 shows proposed architecture for fast FME module. The core procedure of FME
includes interpolation, residual generation and Hadamard transform.

Ref frame Original MB
Mode ~ Control dTa data
)
Search window data
rearrangement
> Interpolation Unit

v

Adaptive Search Pattern

Selection Unit
Early - -
Te[’[{l}l[lllietltlon ‘;,¢,,,":::::::;V:::i::::;;::*::::;';,,V,,,,,,1} i | % %
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Block || Block | | Block | | Block || Block | —* /
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Compare and determine | | buffer
» quarter search pattern type
A 4
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Fig 23 Block diagram of fast FME hardware.
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Fig 24 (a) 4X4 block PU (b) 6-tap 1-D FIR filter.

The 4X4 block PU has four times parallelization of horizontal adjacent pixels
and is in charge of residua generation and.Hadamard transform. The architecture of
PU is shown in Fig 24(a), four-processing:elements (PE), 2-D Hadamard transform
decomposed by two 1-D Hadamard transform and atranspose register array [53] can
continually process four pixels-in each cycle'without any latency. It processes 4X4
element blocks decomposed from sub:block in sequential order.

Five 4X4 block PUs around the refinement center process five candidates
simultaneously. Four horizontal adjacent pixels from original MB are broadcasted to
every PU at the same time and the reference sub pixels are provided by interpolation
unit.
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As shown in Fig 25, the 6-tap 2-D FIR filter is divided into two directions
(horizontal and vertical) 1-D FIR filter which is shown in Fig 24(b). First, we
interpolate the horizontal half pixels by five FIR filters from 10 adjacent integer
pixels. These five intermediate values and six integer pixels are stored and shifted
cycle by cycle in the interpolation buffer. We use the same way to interpolate the
vertica haf pixels with 11 FIR filter. In our agorithm, since we will not visit the
entire positions in the whole refinement window, some redundant interpolations
appear in certain pixelsin the quarter precision.
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Fig 26 Bilinear filters of interpolation unit.

Only the rhombuses in the Fig 26 are the required bilinear filters. To avoid the
redundant interpolate operation, we remove those redundant bilinear filters that is
reduced from 106 (no positions skipped) to 68 (no positions redundant). Thus, the
36% of bilinear filters that each includes an adder and a shifter can be saved by using
the proposed al gorithm.

Because of the irregular search pattern used in.second step, the adaptive selection
should be done before the pixelssent into-PU. That is one of the overhead by applying
fast FME algorithm. The othersare the early termination unit and compare unit. In the
former one, the way to predict thresholdisthesame but different in check time. In the
later one, we should know not only:the best position but also second and third places.

Mode decision is combined with comparator shown in Fig 23. MB header related
information included motion vector, reference frames and type of block sizes are sent
into the compare and determination unit for the Largrangian mode decision. The
information of the first step is sent into selection unit to choose the input of the next
step. At the same time, the final cost is checked by early termination unit to judge the
refine process should be skipped or not.
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6.4 PERFORMANCE ANALYSIS

With the little modification of fast algorithm, the quality loss and speed up of the
hardware design are shown in Table 19. Due to the decreased probability for early

termination, we may slower encoding speed but get smaller PSNR drop.

QP=28 Stefan Mobile |Foreman |Coastguard [News
bit rate 1441.14 |1888.69 |498.62 |1127.87 223.72

ref. software |PSNR 35.36 33.75 36.24 34.52 38.12
time(sec) |491.604 [471.993 |496.974 |488.039 450.37
bit rate 1475.09 |1940.28 |508.88 |1142.9 227.35

proposed PSNR 35.29 33.68 36.19 34.49 38.02
time(sec) |220.261 |219.782 (220.254 |222.32 211.988
A\bit rate(%) [2.35577 |2.73152 |2.057679 |1.3326 1.62256
/APSNR -0.07 -0.07 -0.05 -0.03 -0.1
speed up 2.23192 (2.14755 |2.256368 |2.19521 2.12451

Table 19 Performance analysis after algorithm modification

55IMPLEMENTATION RESULT

Due to the 4X4 block decomposition and the adaptive search pattern, the control
unit is the most challenge part of the whole'design. We implement this part with finite
state machine. The proposed FME architecture for H.264 is implemented by Verilog
and synthesized in UMC 0.18u technology at 100MHz. The details of every part are
listed in Table 20. The latency per MB can be calculated as follows if al 41 modes do

the FME.

Gate Count

Interpolation Unit 15436
Selection Unit 4933
PUX5 21335
Control 349
Compare and Determine | 4658

Early Termination 1354

Total 48065

Table 20 Implementation result of proposed architecture
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Latency per macroblock is added by latencies of seven different block size
respectively and the re-calculate stage. To avoid so large the register area, we decide
to calculate the residual data after we have know the most suitable block size for
current macroblock, the following equation shows the detail:

Latency per MB = 21x16 + 21x2x8 + 29x8 + 29x2x4 + 29x4x2 + 45x2x2 + 45x4 |
+[ 17x16] = 2000 cycles

For such case, our design can process 50K MB/sec in 100MHz and is sufficient
to support SDTV format in 30Hz for one reference frame. When compared with other
design [51], our design has slight quality loss but 14% faster and 40% smaller.

Architecturein [51] | Propose
A\bit rate (%) 0 2.02003
/APSNR (dB) 0 -0.064
Operating clock 100MHz 100MHz
Largrangian mode decision | .Support Support
Gate count (total) 79372 48065
Time to refine MV L 0.86T
MB/sec 49K 50K
Technology UMC 0.18u UMC 0.18u

Table 21 Comparison between the proposed-architecture and architecture in [51]

56



Chapter 7 Conclusion

7.1 SUMMARY
The point proposed in the paper can be mainly summarized into three parts:

7.1.1 Fast integer motion estimation
7.1.1.1 Search range determination part

Too large matching error means can not find a good match position in the whole
search window. In this case, we can reduce the search range because the magnitude of
search range does not matter. Too low matching error means perfect match. In this
case, we can aso reduce the search range.

7.1.2 Fast fractional motion estimation
7.1.2.1 Search pattern part

Higher probability the best position-will fall near the search center, so we use
center bias search pattern.

7.1.2.2 Early termination part

The system order can not be changed, so we use SAD from integer motion
estimation to predict the SATD threshold of fractional motion estimation.

7.1.3 Architecture design of fractional motion estimation
7.1.3.1 Areareduction part

We use parallelism technique for hardware implementation. The search points in
the same step of our proposed algorithm decrease, so we do not have to calculate as
many points as the origin simultaneously. We can reduce the process elements
duplicate for parallelism.

7.1.3.2 Latency reduction part

We modify early termination check time from point to step. Once the matching
criterion is satisfied, the second step process can be skipped and certainly result in
shorter refined time.
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7.2 PERFORMANCE ANALYSIS

7.2.1 Fast integer motion estimation

We can reach the biggest speed up by applying fast algorithm for integer motion
estimation. From our simulation result, we can get average 9/12.5 times speed up with
input search range equal to 16/32. We have less than 1% bit rate increase and degrade
PSNR only 0.02 dB.

7.2.2 Fast fractional motion estimation

In this part, the portion of search point reduction is fixed and early termination
does not happen very often. So we can only reach 2.25 times speed up. Besides this,
we have almost 2% bit rate increase and degrade PSNR 0.1 dB.

7.2.3 Architecture design of fractional motion estimation

We propose the fractional motion estimation architecture with smaller area cost
and shorter refined time than architecture proposed in [51]. We save almost 40 % area
cost and achieve 1.15 times speed up:.iBesides this, we have average 2 % hit rate
increase and degrade PSNR 0.064dB.

7.3 FUTURE WORK

One of integer or fractiona ‘motion estimation-apply fast algorithm mentioned in
chapter 3 and chapter 4 and the other remain the same as origina method shows
tolerable performance loss. But when we applied fast agorithms for both integer and
fractional motion estimation, the experiment result shows inferior R-D performance,
especialy in lower resolution sequence. We guess the main reason is both of our fast
algorithms are not accurate enough. Improvement of R-D performance is needed if we
want to use fast algorithms for both motion estimation modules.

Hardware implementation is completed only in fast fractional motion estimation
part. For fast integer motion estimation, the architecture design is very straight
forward. The calculation core is full search systolic array and only the control unit and
scheduling timing should be redesigned. The area of the design depends on how large
the systolic array is. The larger systolic array comes more data reusability and
hardware utilization. The main advantage of this fast algorithm architecture is to
shorten the searching time. We can flow less data when the search range becomes
smaller.
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APPENDI X

This section gives the experiment inter-media result. Even the methods tried in
this section were not implemented in my design; they are still reported in order to
offer the readers more reference material. Only the sub-pel correlated results are listed
below.

PARAMETER DEFINITION:

AVG POINT:

This index means the average search points needed for sub-pel motion estimation.
The result of first step will lead to different search pattern next step. To make the
dispassion observation, we combined the probability concern into the index. For
example, if 5 points needed in first step, the result will 90% fall on the search center
(casel) and 10% fall on one of the other points (case2). Then average points needed
are equal to

AV G POINT = (points needed in first-step) '+ 0.9 * (points needed in casel) + 0.1 *
(points needed in case2)

By using this approximation, we may.get more accurate comparison of speeding up.
PSNR:

The index is the video quality degradation. Only luminance PSNR is listed. The
simulation result is the average of four different input sequences as Stefan, Foreman,

Mobile and news.

Bit rate:
The index is the transmit bandwidth changing percentage.
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Algorithm

Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel
Gray point (rectangle): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 27. When the half pixel best position
falls on the search center (the initial position before refinement regard as the integer
pixel position), we will find the eight points surrounding the search center. When the
half pixel best position fall on one of the four end points in step one, we will use
horizontal and vertical search pattern according to the best position determined in

previous step.
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Fig 27 Pattern 1
Simulation Result:
AVG POINT 12.4
PSNR (dB) -0.08
Bit rate (%) 3.767

Conclusion:

Too much quality loss and not significantly speeding up.
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Algorithm
Yellow point (circle): the first step search position
Red point (hexagon): the second step search position

First we visit the five circle points shown in Fig 28. When the half pixel best position
falls on the search center (the initial position before refinement regard as the integer
pixel position), we will find the eight points surrounding the search center. When the
half pixel best position falls on one of the four end points in step one, we will use four
different directiona triangle patterns according to the best position determined in
previous step.

Fig 28 Pattern 2

Simulation Result:

AVG POINT 12.6
PSNR (dB) -0.043
Bit rate (%) 2.221

Conclusion:
Quiality loss is acceptable but not significantly speeding up.
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Yellow point (circle): the first step search position in half pixel.

Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 29. No matter where the half pixel
best position in step one fall, we still find the cross pattern in step two.

Fig 29 Pattern 3
Simulation Result:
AVG POINT 9
PSNR (dB) -0.043
Bit rate (%) 2.388

Conclusion:

Quality loss and speeding up are acceptable up but the method is proposed before

(used in original x264).
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Algorithm
Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 30. When the half pixel best position
falls on the search center (the initial position before refinement regard as the integer
pixel position), we will find cross four points surrounding the search center. When the
half pixel best position falls on one of the four end points in step one, we will use four
different direction triangle patterns according to the best position determined in
previous step.

RO

Fig 30 Pattern 4

Simulation Result:

AVG POINT 9
PSNR (dB) -0.06
Bit rate (%) 3.330

Conclusion:
Quality loss is a little serious and significant speeding up but high overhead
complexity will be introduced in this method.



Algorithm

Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 31. When the half pixel best position
falls on the search center (the initial position before refinement regard as the integer
position), we will find eight points surrounding the search center. When the half pixel
best position falls on one of the four end points in step one, we will use cross search

pattern.

@ OO0

Fig 31 Pattern 5
Simulation Result:
AVG POINT 12.6
PSNR (dB) -0.023
Bit rate (%) 1.455

Conclusion:

Little quality lossis produced but with not significantly speeding up.
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Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the nine circle points shown in Fig 32. We make the most part of effort
to find the best half pixel search position. After that, we just need to find only two
search positions except two positions appears on the end points on y axis. The two
exceptions will visit four cross search points around the best position refined in

previous step.
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Fig 32 Pattern 6
Simulation Result:
AVG POINT 11.2
PSNR (dB) -0.046
Bit rate (%) 1.833

Conclusion:

Little quality lossis produced but with not significantly speeding up.
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Algorithm
Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 33. It is a modification version of
dual cross search. When the half pixel best position falls on the search center (the
initial position before refinement regard as the integer pixel position), we find cross
pattern with one x one y axis distance. When the half pixel best position falls on they
axis end points, we find cross pattern with two x one y axis distance. Besides, we find
cross pattern with one x two y axis distance.
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Fig 33 Pattern 7

Simulation Result:

AVG POINT 9
PSNR (dB) -0.09
Bit rate (%) 4,092

Conclusion:
Quality lossis serious but good speeding up.
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Algorithm

Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 34. It is a modification version of
dual cross search. When the half pixel best position falls on the search center (the
initial position before refinement regard as the integer pixel position), we find eight
points surrounding the search center. When the half pixel best position falls on the y
axis end points, we find cross pattern with two x one y axis distance. Besides, we find

cross pattern with one x two y axis distance.

O

Fig 34 Pattern 8
Simulation Result:
AVG POINT 12.6
PSNR (dB) -0.056
Bit rate (%) 2.889

Conclusion:

Quality lossis alittle serious and not significantly speeding up.
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Algorithm
Yellow point (circle): the first step search position in half pixel.
Red point (hexagon): the second step search position in quarter pixel.

First we visit the five circle points shown in Fig 35. When the half pixel best position
falls on the search center (the initial position before refinement regard as the integer
pixel position), we will find four cross points around the search center. When the half
pixel best position falls on one of the four end points in step one, we will use
horizontal and vertical search pattern according to the best position determined in
previous step.
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Fig 35 Pattern 9

Simulation Result:

AVG POINT 8.4
PSNR (dB) -0.116
Bit rate (%) 5.469

Conclusion:
Quality lossis very serious but good speeding up. Extralow area can be introduced by

applying this architecture; the requirement of register array in interpolation unit can
significantly decrease.
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