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摘要 
 

在過去數年間，多載波調變 (multicarrier modulation)，尤其是正交分頻多工 

(OFDM) 技術已經應用在許多數位通訊應用中。採用 OFDM 一個最主要的原因

是增加抗頻率選擇性衰變及窄頻干擾的能力。在單一載波的系統中，衰變或干擾

可能會導致整個連結失效；但在一個多載波的系統，僅僅只有一小部分的載波會

受到影響。我們聚焦在 IEEE 802.16e OFDM 上行及 OFDMA 下行的部分，並用

數位信號處理器去實現通道估測的機制。此數位訊號處理器的環境是 Innovative 

Integration 公司的 Quixote 個人電腦插板，其上裝置為德州儀器公司的

TMS320C6416，是個擁有強大數學運算功能的處理器。 
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通道估測大致可以分成兩個階段。首先我們使用最小平方差的估測器來估計

在導訊上的通道頻率響應，這是為了硬體的計算方便。而內插的方法我們則研究

了多項式內插法及 Cubic Spline 內插法；而在用時域的資料改善的方法有下列三

種：二維內插法、最小平方法 (Least Squares)以及最小平均平方差適應 

(Normalized LMS adaptation）；最後我們將通道估測與信號偵測何在一起作已達

到更好的效果(Joint Channel Estimation and Symbol Detection)。我們先在 AWGN

通道上驗證我們的模擬模型，然後在分別在靜態及時變的 Rayleigh 通道上模擬。 

至於數位信號處理器實現的部份，考量其運算複雜度，只用簡單的內插法綜

合二維內插。為了增進程式的執行效率，我們先將原始的浮點運算 C 程式版本

修改為實數運算的程式版本，接著再考慮數位訊號處理器的特性來修改之前的程

式 

在本篇論文中，我們首先簡介 IEEE 802.16e OFD 上行及 OFDMA 下行的標

準及機制。接著，我們介紹所用通道估測的技巧和 DSP 的實現環境。最後，我

們描述各種通道估測技術的效果及數位訊號處理器實現方面的實驗結果。 
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Abstract 

 

Multicarrier modulation, in particular orthogonal frequency division 

multiplexing (OFDM), has been successfully applied to a wide variety of digital 

communications applications over the past several years. One of the main reason to 

use OFDM is to increase the robustness against frequency selective fading and 

narrowband interference. In a single carrier system, a single fade or interference can 

cause the entire link to fail, but in a multicarrier system, only a small percentage of 

subcarriers will affected. We focus on the OFDM uplink and OFDMA downlink 

channel estimation based on IEEE 802.16e. Also, we use digital signal processor to 

implement OFDM uplink channel estimation schemes. The digital signal processing 

environment is Innovative Integration’s Quixote personal computer card, which hosts 

Texas Instruments’ TMS320C6416 which is a powerful signal processor with strong 

 iii



arithmetic operation capability. 

The channel estimation scheme can be separated into two stages. In the first 

stage, we use LS estimator for estimations of pilot subcarriers because of its low 

computational complexity. We study polynomial interpolations and cubic spline 

interpolations in frequency domain, NLMS adaptation algorithm, least squares in time 

domain, two-dimensional interpolations in time domain and maximum likelihood 

estimation. Finally, we did joint channel estimation and symbol detection to get better 

performance. Also we verify our simulation model on AWGN channel and then did 

the simulation on both static and time-variant fading channels.  

As for the DSP implementation, combination of linear interpolation and 2D 

interpolation are chosen due to computational complexity. In order to increase the 

efficiency, we also rewrite the original floating-point C program to fixed-point version 

and further refine our codes by taking into account the features of the DSP chip. 

In this thesis, we first introduce to standard of the IEEE 802.16e OFDM uplink 

and OFDMA downlink. Second, we describe the channel estimation techniques.  

Then the DSP implementation environment will be introduced. Finally, we discuss the 

channel estimation performance and the DSP implementation results. 
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Chapter 1

Introduction

Oncoming technologies such as WiFi and WiMAX are changing wireless communication.

The demand for high data rate transmission and multimedia type traffic grows rapidly.

Due to its inherent advantages in high-speed communication, orthogonal frequency division

multiplexing (OFDM) has become the choice for a number of high wireless systems (e.g.,

DVB-T, WiFi, WiMAX).

OFDM system transmits data using a set of parallel low bandwidth subcarriers. The

subcarriers are independent from each other even though their spectra overlap, which results

in its bandwidth efficiency and resistance to the ICI (inter-carrier interference) effect. And

due to the low bandwidth of subcarriers, each subcarrier can avoid worse subchannels. Thus

ISI (inter-symbol-interference) is also reduced. High data rate systems are also achieved by

using a large number of carriers. OFDM can be easily generated using an inverse fast Fourier

transform (IFFT) and received using a fast Fourier transform (FFT).

The IEEE 802.16 standard committee has developed a group of standards for wireless

metropolitan area networks (MANs). The original 802.16 standard specifies the air interface

for fixed broadband wireless access systems supporting multimedia services. The medium

access control layer (MAC) supports a primarily point-to-multipoint architecture, with an
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optional mesh topology. The MAC is structured to support multiple physical layer (PHY)

specifications, each suited to a particular operational environment. For operational frequen-

cies from 10–66 GHz, the WirelessMAN-SC PHY, based on single-carrier modulation, is

specified. For frequencies below 11 GHz, where propagation without a direct line of sight

must be accommodated, three alternatives are provided in the later 802.16a: WirelessMAN-

OFDM (using orthogonal frequency-division multiplexing), WirelessMAN-OFDMA (using

orthogonal frequency-division multiple access), and WirelessMAN-SCa (using single-carrier

modulation).

IEEE 802.16 has developed the IEEE Standard 802.16-2004 for broadband wireless access

systems, which provides a variety of services to fixed outdoor as well as nomadic indoor

users. Work is underway on a mobile extension, referred to as Project 802.16e, supporting

new capabilities needed for the mobile environment. The object of this thesis focus on the

channel estimation part for WirelessMAN-OFDM and WirelessMAN-OFDMA.

This thesis is organized as follows. First, in chapter 2, we introduce some OFDM basics

together with the IEEE 802.16e OFDM uplink and OFDMA downlink standard. In chapter

3, the various channel estimation techniques are introduced. In chapter 4, we describe the

implementation platform, which consists of Texas Instrument’s TMS320C6416 digital signal

processor (DSP) on a cPCI board named Quixote made by Innovative Integration. Then in

chapter 5, we discuss the performance of channel estimation methods of OFDM uplink and

some DSP implementation issues. The simulation results of OFDMA downlink will be left

to chapter 6. At last, we give the conclusion and discuss potential future work in chapter 7.
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Chapter 2

Introduction to IEEE802.16e OFDM
and OFDMA

This chapter presents a brief overview of the OFDM and the OFDMA techniques for mul-

ticarrier modulation. The OFDM uplink and OFDMA downlink specifications of IEEE

802.16e are also introduced.

2.1 Basics of OFDM and OFDMA

The basic idea of OFDM-like or OFDMA-like system is to split the data stream into several

parallel streams, each transmitted on a separate subcarrier. Moreover, these subcarriers

are made orthogonal is to allow spectral overlapping and better spectral efficiency can be

achieved. Material in this section is taken from [1], [2] and [3].

Figure 2.1 shows the block diagram of a simplex transmission system using OFDM. The

three main principles incorporated are as follows:

1. The IDFT and the DFT are used for modulating and demodulating the data constel-

lations on the orthogonal subcarriers. These signal processing algorithms replace the

banks of I/Q-modulators and demodulators that would otherwise be required. Usually,
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N is taken as an integer power of two, enabling the application of the efficient FFT

algorithms for modulation and demodulation.

2. The second key principle is the introduction of a cyclic prefix, whose length should ex-

ceed the maximum excess delay of the multipath propagation channel. Due to the cyclic

prefix, the transmitted signal becomes periodic, and the effect of the time-dispersive

multipath channel is equivalent to a cyclic convolution, after discarding the cyclic pre-

fix at the receiver. Owing to the properties of the cyclic convolution, the effect of the

multipath channel is limited to a pointwise multiplication of the data constellations

by the channel transfer function. The only drawback of this principle is a slight loss

of effective transmit power. The equalization (symbol demapping) required for detect-

ing the data constellations (when there is no error control coding) is an elementwise

multiplication of the DFT output by the inverse of the estimated channel transfer

function.

3. FEC (forward error control) coding and interleaving are usually also applied. The

frequency-selective radio channel may severely attenuate the data symbols transmitted

on one or several subcarriers. Spreading the coded bits over the bandwidth, an efficient

coding scheme can correct the erroneous bits and hence exploit the frequency diversity.

Synchronization is a key issue in the design of a robust OFDM receiver. Time and

frequency synchronization are paramount to identify the start of the OFDM symbol

and to align local oscillator frequencies.

2.1.1 The OFDM Principle

For multicarrier modulation, the available bandwidth W is divided into a number Nc of

subbands, commonly called subcarriers, each of width ∆f = W/Nc. The subdivision of the
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Figure 2.1: OFDM system block diagram (from [2]).

bandwidth is illustrated in Fig. 2.2, where arrows represent the different subcarriers. Instead

of transmitting the data symbols in a serial way, at a baud rate R, a multicarrier transmitter

partitions the data stream into blocks of Nc data symbols that are transmitted in parallel by

modulating the Nc carriers. The symbol duration for a multicarrier scheme is Ts = Nc/R.

As shown in Fig. 2.3, the general form of the multicarrier signal can be written as a set

of modulated carriers:

s(t) =
∞∑

m=−∞

( Nc−1∑

k=0

xk,mψk(t−mTs)
)

(2.1)

where xk,m is the data symbol modulating the kth subcarrier in the mth signalling interval

and ψk is the waveform for the kth subcarrier.

The symbol duration can be made long compared to the maximum excess delay of the

channel, Ts À τmax, or by choosing Nc sufficiently high. At the same time, the band-

width of the subbands can be made small to reduce the coherence bandwidth of the channel

(Bcoh À W/Nc). The subbands then experience flat fading, which reduces equalization to a

signal complex multiplication per carrier. Hence, increasing Nc reduces the ISI (intersymbol

interference) effects.

However, the performance in time-variant channels is degraded by long symbols. If the
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Figure 2.2: Subdivision of the bandwidth into Nc subbands (from [3]).

Figure 2.3: Multicarrier modulation (from [3]).

coherence time Tcoh of the channel is small compared to Ts, the channel frequency response

changes significantly during the transmission of one symbol. As a result, the coherence time

of the channel defines an upper bound for the number of subcarriers. Together with the

condition for flat fading within the subbands, a reasonable range for Nc is given by

W

Bcoh

¿ Nc ¿ RTcoh. (2.2)

To assure a high spectral efficiency, the subchannel waveforms have overlapping transmit
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Figure 2.4: Spectrum of an OFDM signal (from [3]).

spectra. A general set of orthogonal waveforms is given by:

ψk(t) =

{ 1√
Ts

ejωkt, t ∈ [0, Ts],

0, otherwise,
(2.3)

where ωk = ω0 + kωs and k = 0, 1, . . . , Nc − 1. Here fk = ωk/2π is the subcarrier frequency

and f0 = w0/2π is the lowest frequency used (k = 0). The spacing between the adjacent

subcarriers equals ∆f = ωs/2π = W/Nc. Since the waveform ψk(t) is restricted to the time

window [0, Ts], the intercarrier spacing must also satisfy4f = 1/Ts = R/Nc. The windowing

results in a convolution with Ts · exp(−jπfTs) · sin(πfTs)
πfTs

in the frequency domain. How the

subbands overlap is shown in Fig. 2.4.

2.1.2 Cyclic Prefix

As mentioned, to overcome the ISI and ICI (interchannel interference) problem, the cyclic

prefix (CP) is introduced. A cyclic prefix is a copy of the last part of the OFDM symbol (see

Fig. 2.5). The cyclic prefix should be at least as long as the significant part of the channel

impulse response. The benefit of the CP is twofold. First, it avoids ISI because it acts as

a guard space between successive symbols. Second, it also converts the linear convolution

with channel impulse response into a cyclic convolution. However, the transmitted energy
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Figure 2.5: Cyclic prefix (form [3]).

increases with the length of the CP. The SNR loss is given by

SNRloss = −10 log10(1−
Tg

Ts

). (2.4)

2.1.3 Discrete-Time Equivalent System Model

The discete-time baseband equivalent model is shown in Fig. 2.6. In the transmitter, the data

stream is grouped in blocks of Nc data symbols. These groups are called OFDM symbols and

can be represented by a vector xm = [x0,m x1,m · · · xNc−1,m]T . Then an IDFT is performed

on each data symbol block, and a cyclic prefix of length Ncp is added. The resulting complex

baseband discrete time signal of mth OFDM-symbol can be written as

sm(n) =





1
Nc

Nc−1∑
k=0

xk,mej2πk(n−Ncp)/Nc , if n ∈ [0, Nc + Ncp − 1],

0, otherwise.
(2.5)

The complete time signal s(n) is given by the concatenation of all OFDM symbols that

are transmitted:

s(n) =
∞∑

m=0

sm(n−m(Nc + Ncp)). (2.6)

Here we assume that

• The channel fading is slow enough to consider it constant during one OFDM symbol.

• The transmitter and receiver are perfectly synchronized.
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Figure 2.6: Discrete-time baseband equivalent model (from [3]).

• The CP is sufficiently long to accommodate the channel impulse response.

We can then write

r(n) =

Ncp−1∑
η=0

h(η)s(n− η) + n(n). (2.7)

In the receiver, the incoming sequence is split into blocks and the cyclic prefix associated

with each clock is removed. This results in a vector rm = [r(zm) r(zm+1) · · · r(zm+Nc−1)]T ,

with zm = m(Nc + Ncp) + Ncp. Performing DFT on rm yields

yk,m =
Nc−1∑
n=0

r(zm + n)e−j2πkn/Nc . (2.8)

Substituting r(n) in (2.7) into (2.8) gives

yk,m =
Nc−1∑
n=0

[ Ncp−1∑
η=0

h(η)sm(Ncp + n− η)

]
e−j2πkn/Nc +

Nc−1∑
n=0

n(zm + n)e−j2πkn/Nc . (2.9)

Then substituting sm(n) in (2.5) into it yields

yk,m =
Nc−1∑
n=0

[ Ncp−1∑
η=0

h(η)
1

Nc

Nc−1∑

k=0

xk,mej2πk(n−η)/Nc

]
e−j2πkn/Nc + nk,m (2.10)

where nk,m =
Nc−1∑
n=0

n(zm + n)e−j2πkn/Nc is the kth sample of the Nc-point DFT of n(zm + n).

Since n(n) is white Gaussian, nk,m is also white Gaussian.
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Note that h(η) = 0 for all η > Ncp − 1. Additional swapping the two inner sums and

reordering yields

yk,m =
Nc−1∑
n=0

[ 1

Nc

Nc−1∑

k=0

( Nc−1∑
η=0

h(η)e−j2πkη/Nc
)
xk,mej2πkn/Nc

︸ ︷︷ ︸
IDFT

]
e−j2πkn/Nc

︸ ︷︷ ︸
DFT

+nk,m. (2.11)

The first part of this expression consists of an IDFT operation nested in a DFT operation.

The inner sum is the kth sample of the Nc-point DFT of h(n), or hk. The equation hence

translates into

yk,m = hkxk,m + nk,m. (2.12)

This equation demonstrates that the received data symbol yk,m on each subcarrier k

equals the data symbol xk,m, multiplied by the corresponding frequency-domain channel

coefficient hk in addition to the transformed noise nk,m.

For a more compact notation, a matrix equivalent is often used. For a single OFDM

symbol, it equals

ym = H ◦ xm + nm = diag(H) · xm + nm (2.13)

where ◦ denotes the element-wise product, diag(H) is the diagonal matrix of the elements of

H, ym = [y0,m y1,m · · · yNc−1,m]T , nm = [n0,m n1,m · · · nNc−1,m]T and H = [h0 h1 · · · hNc−1]
T .

2.2 Generic OFDM and OFDMA Symbol Description

for IEEE 802.16e

2.2.1 Time Domain Description

IDFT creates the OFDM symbol waveforms. The time duration of each OFDM symbol is

referred to as the useful symbol time Ts. A copy of the last Tcp of the useful symbol period

is made the CP (see Fig. 2.5). The CP overhead and resultant SNR loss can be reduced
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Figure 2.7: OFDM frequency description (from [4]).

by increasing the FFT size, which would however, among other things, adversely affect the

sensitivity of the system to phase noise of the oscillators. Using a cyclic extension, the

samples required for performing the FFT at the receiver can be taken anywhere over the

length of the extended symbol. This provides multipath immunity as well as a tolerance for

symbol time synchronization errors.

2.2.2 Frequency Domain Description

An OFDM (see Fig. 2.7) or OFDMA (see Fig. 2.8) symbol is made up from several carrier

types:

• Data carriers: For data transmission.

• Pilot carriers: For various estimation purposes.

• Null carriers: No transmission ar all, for guard bands, non-active subcarriers and the

DC subcarrier.

2.2.3 Primitive Parameters

Four primitive parameters characterize the OFDM and the OFDMA symbols:

• BW : The nominal channel bandwidth.
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Figure 2.8: OFDMA frequency description (from [4]).

• Nused: Number of used subcarriers.

• n: Sampling factor. This parameter, in conjunction with BW and Nused, determines

the subcarrier spacing and the useful symbol time.

• G: This is the ratio of CP time to “useful” time, i.e., Tcp/Ts.

2.2.4 Derived Parameters

The following parameters are defined in terms of the primitive parameters.

• NFFT : Smallest power of two greater than Nused.

• Sampling frequency: Fs = floor(n·BW/8000)× 8000.

• Subcarrier spacing: 4f = Fs/NFFT .

• Useful symbol time: Ts = 1/4f .

• CP time: Tcp = G× Ts.

• OFDM or OFDMA symbol time: T = Ts + Tcp.

• Sampling time: Ts/NFFT .
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Figure 2.9: PEV EN time domain structure (from [4]).

2.3 OFDM Uplink Specifications in IEEE 802.16e

This section introduces the IEEE 802.16e OFDM uplink (UL) standard. The material is

mainly taken from [4] and [5]. The parameters are given in Table 2.1. Note that Table 2.1

also indicates the pilot locations and the subchannelization method which will not be detailed

later.

2.3.1 OFDM UL Preamble Structure and Modulation

In the uplink, the data preamble is as shown in Fig. 2.9. It consists of one OFDM symbol

utilizing only even subcarriers. The time domain waveform consists of 2 times 128 samples

preceded by a CP. The subcarrier values shall be set as

PEV EN(k) =

{ √
2 · PALL(k), k mod 2 = 0,

0, k mod 2 6= 0,
(2.14)
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Table 2.1: OFDM Symbol Parameters (from [4])
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where

PALL(−100 : 100) = {1− j, 1− j,−1− j, 1 + j, 1− j, 1− j,−1 + j, 1− j, 1− j,

1− j, 1 + j,−1− j, 1 + j, 1 + j,−1− j, 1 + j,−1− j,−1− j, 1− j,−1 + j, 1− j,

1− j,−1− j, 1 + j, 1− j, 1− j,−1 + j, 1− j, 1− j, 1− j, 1 + j,−1− j, 1 + j,

1 + j,−1− j, 1 + j,−1− j,−1− j, 1− j,−1 + j, 1− j, 1− j,−1− j, 1 + j, 1− j,

1− j,−1 + j, 1− j, 1− j, 1− j, 1 + j,−1− j, 1 + j, 1 + j,−1− j, 1 + j,−1− j,

− 1− j, 1− j,−1 + j, 1 + j, 1 + j, 1− j,−1 + j, 1 + j, 1 + j,−1− j, 1 + j, 1 + j,

1 + j,−1 + j, 1− j,−1 + j,−1 + j, 1− j,−1 + j, 1− j, 1− j, 1 + j,−1− j,−1− j,

− 1− j,−1 + j, 1− j,−1− j,−1− j, 1 + j,−1− j,−1− j,−1− j, 1− j,−1 + j,

1− j, 1− j,−1 + j, 1− j,−1 + j,−1 + j,−1− j, 1 + j, 0,−1− j, 1 + j,−1 + j,

− 1 + j,−1− j, 1 + j, 1 + j, 1 + j,−1− j, 1 + j, 1− j, 1− j, 1− j,−1 + j,−1 + j,

− 1 + j,−1 + j, 1− j,−1− j,−1− j,−1 + j, 1− j, 1 + j, 1 + j,−1 + j, 1− j, 1− j,

1− j,−1 + j, 1− j,−1− j,−1− j,−1− j, 1 + j, 1 + j, 1 + j, 1 + j,−1− j,−1 + j,

− 1 + j, 1 + j,−1− j, 1− j, 1− j, 1 + j,−1− j,−1− j,−1− j, 1 + j,−1− j,−1 + j,

− 1 + j,−1 + j, 1− j, 1− j, 1− j, 1− j,−1 + j, 1 + j, 1 + j,−1− j, 1 + j,−1 + j,

− 1 + j,−1− j, 1 + j, 1 + j, 1 + j,−1− j, 1 + j, 1− j, 1− j, 1− j,−1 + j,−1 + j,

− 1 + j,−1 + j, 1− j,−1− j,−1− j, 1− j,−1 + j,−1− j,−1− j, 1− j,−1 + j,

− 1 + j,−1 + j, 1− j,−1 + j, 1 + j, 1 + j, 1 + j,−1− j,−1− j,−1− j,−1− j, 1 + j,

1− j, 1− j}.

2.3.2 OFDM UL Pilot Modulation

Pilot subcarriers shall be inserted into each data burst in order to constitute the symbol.

The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.10 shall be used
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Figure 2.10: PRBS for pilot modulation (from [4]).

to produce a sequence, wk. The polynomial for the PRBS generator is X11 + X9 + 1.

The initialization sequence shown in Fig. 2.10 shall be used on the downlink (DL) and

uplink. The value of the pilot modulation for OFDM symbol k is derived from wk. On both

uplink and downlink, the first symbol of the preamble is denoted by k = 0. For each pilot,

the BPSK modulation shall be as follows:

DL : c−88 = c−38 = c63 = c88 = 1− 2wk and c−63 = c−13 = c13 = c38 = 1− 2wk, (2.15)

UL : c−88 = c−38 = c13 = c38 = c63 = c88 = 1− 2wk and c−63 = c−13 = 1− 2wk. (2.16)

2.3.3 OFDM UL Data Modulation

The OFDM data modulation schemes are shown in Fig. 2.11. The data bits are entered

serially to the constellation mapper. BPSK, Gray-mapped QPSK, Gray-mapped 16QAM

and Gray-mapped 64QAM must be supported. The indicated factor c is used to achieve

equal average power.

The constellation-mapped data shall be subsequently modulated onto all allocated data

subcarriers in order of increasing frequency offset index. The first symbol out of the data
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Figure 2.11: BPSK, QPSK, 16QAM and 64QAM constellations (from [4]).

constellation mapping shall be modulated onto the allocated subcarrier with the lowest

frequency offset index.

2.4 OFDMA Downlink Specifications in IEEE 802.16e

This section briefs the IEEE 802.16e OFDMA downlink standard. Both the PUSC (Partial

Usage of SubChannels) and FUSC (Full Usage of SubChannels) are introduced. The material

is mainly taken from [4] and [5].

2.4.1 Definition of OFDMA Basic Terms

In OFDMA, a slot in the OFDMA PHY is a two-dimensional entity spanning both a time

and a subchannel dimension. It is the minimum possible data allocation unit.
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• For downlink FUSC, one slot is one subchannel by one OFDMA symbol.

• For downlink PUSC, one slot is one subchannel by two OFDMA symbols.

A Data Region is a two-dimensional allocation of a group of contiguous subchannels, in a

group of contiguous OFDMA symbols; a segment is a subdivision of the set of available

OFDMA subchannels.

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

slot.

2. Each slot shall span one subchannel in the subchannel axis and one or more OFDMA

symbols in the time axis, as per the slot definition mentioned before. Map the slots

such that the lowest numbered slot occupies the lowest numbered subchannel in the

lowest numbered OFDMA symbol.

3. Continue the mapping such that the OFDMA subchannel index is increased. When the

edge of the Data Region is reached, continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.12 illustrates the order in which OFDMA slots are mapped to subchannels and

OFDMA symbols.

2.4.2 OFDMA DL Preamble Structure and Modulation

The first symbol of the downlink transmission is the preamble. There are three types of

preamble carrier-sets, which are defined by allocation of different subcarriers for each one of

them. The subcarriers are modulated using a boosted BPSK modulation with a specific PN
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Figure 2.12: Example of mapping OFDMA slots to subchannels and symbols in the downlink
in PUSC mode (from [5]).

(pseudo-noise) code. The PN series modulating the preamble carrier-sets can be found in [4,

pp. 553–562]. The preamble carrier-sets are defined as

PreambleCarrierSetn = n + 3 · k, (2.17)

where:

• PreambleCarrierSetn specifies all subcarriers allocated to the specific preamble,

• n is the number of the preamble carrier-set indexed 0, 1, 2,

• k is a running index 0,. . . ,567.

Each segment uses one type of preamble out of the three sets in the following manner: The

DC carrier will not be modulated at all and the appropriate PN will be discarded. Therefore,

DC carrier shall always be zeroed. For the preamble symbol, there will be 172 guard band
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Figure 2.13: Cluster structure (from [5]).

subcarriers on both the left side and on the right side of the spectrum. Segment i uses

preamble carrier-set i, where i = 0, 1, 2.

The pilot in downlink preamble shall be modulated as

<{PreambleP ilotsModulated} = 4 ·
√

2 · (1

2
− wk

)
,

={PreambleP ilotsModulated} = 0.

(2.18)

2.4.3 OFDMA DL Carrier Allocation

For both uplink and downlink in OFDMA, Nused subcarriers are allocated to pilot subcarriers

and data subcarriers. In the downlink, the pilot tones are allocated first; what remains are

data subcarriers, which are divided into subchannels that are used exclusively for data.

Table 2.2 summarizes the parameters of the OFDMA PUSC symbol structure and Table 2.3

the corresponding parameters of OFDMA FUSC.

2.4.3.1 PUSC DL

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The

symbol is first divided into basic clusters and zero carriers are allocated. Pilots and data

carriers are allocated within each cluster. Figure 2.13 shows the cluster structure with

subcarriers from left to right in order of increasing subcarrier index.

The allocation of subcarriers to subchannels is performed using the following procedure:
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Table 2.2: OFDMA DL Subcarrier Allocation under PUSC [4], [5]
Parameter Value Comments

Number of DC
subcarriers

1 Index 1024 (counting from 0)

Number of guard
subcarriers, left

184

Number of guard
subcarriers, right

183

Number of used
subcarriers (Nused)

1681 Number of all subcarriers used within a
symbol, including all possible allocated
pilots and the DC carrier

Number of subcarriers
per cluster

14

Number of clusters 120
Renumbering sequence 1 Used to renumber clusters before

allocation to subchannels:
6,108,37,81,31,100,42,116,32,107,30,93,54,78,
10,75,50,111,58,106,23,105,16,117,39,95,7,
115,25,119,53,71,22,98,28,79,17,63,27,72,29,
86,5,101,49,104,9,68,1,73,36,74,43,62,20,84,
52,64,34,60,66,48,97,21,91,40,102,56,92,47,
90,33,114,18,70,15,110,51,118,46,83,45,76,57,
99,35,67,55,85,59,113,11,82,38,88,19,77,3,87,
12,89,26,65,41,109,44,69,8,61,13,96,14,103,2,
80,24,112,4,94,0

Number of data
subcarriers in each
symbol per subchannel

24

Number of subchannels 60
Basic permutation
sequence 12 (for 12
subchannels)

12 6,9,4,8,10,11,5,2,7,3,1,0

Basic permutation
sequence 8 (for 8
subchannels)

8 7,4,0,2,1,5,3,6

1) Dividing the subcarriers into the number (Nclusters) of physical clusters containing 14

adjacent subcarriers each (starting from carrier 0).
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2) Renumbering the physical clusters into logical clusters using the following formula:

LogicalCluster

=





RenumberingSequence(PhysicalCluster), first DL zone,
RenumberingSequence

(
(PhysicalCluster+

13 ·DL PermBase)mod Nclusters

)
, otherwise.

3) Dividing the clusters into six major groups. Group 0 includes clusters 0–23, group 1

clusters 24–39, group 2 clusters 40–63, group 3 clusters 64–79, group 4 clusters 80–

103 and group 5 clusters 104–119. These groups may be allocated to segments. If a

segment is being used, then at least one group shall be allocated to it. (By default

group 0 is allocated to sector 0, group 2 to sector 1, and group 4 to sector 2).

4) Allocating subcarriers to subchannels in each major group as

subcarrier(k, s) = Nsubchannels · nk +
{
ps[nk mod Nsubchannels]+

DL PermBase
}
mod Nsubchannels.

where:

• subcarrier(k, s) is the subcarrier index of subcarrier k in subchannel s;

• nk = (k + 13 · s)mod Nsubcarriers;

• Nsubchannels is the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group);

• ps[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times;

• Nsubcarriers is the number of data subcarriers allocated to a subchannel in each

OFDMA symbol;

• DL PermBase is an integer from 0 to 31.
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2.4.3.2 FUSC DL

In comparison with PUSC, the subcarrier allocation and subchannelization methods for

FUSC are much simpler. For data subcarrier allocation and subchannelization, use the

parameters listed in Table 2.3 and apply the same carrier allocation procedures mentioned

in PUSC part. As for pilot allocation, use

PilotsLocation =
[
V ariableSet#x + 6 · (FUSC SymbolNumber mod 2)

]

∪ConstantSet#0 ∪ ConstantSet#1.

2.4.4 OFDMA DL Pilot Modulation

In OFDMA, the polynomial for PRBS generator is X11 + X9 + 1, which is the same as that

in OFDM system. However, in this case, the initialization vector used to generate wk shall

refer to the MAC layer and is not introduced here. The interested reader can get detailed

information from [5, pp. 631–632].

In both FUSC and PUSC modes, each pilot shall be transmitted with a boosting of 2.5

dB over the average non-boosted power of each data tone. The pilot subcarriers shall be

modulated according to as

<{ck} =
8

3

(1

2
− wk

)
,

={ck} = 0.

(2.19)

2.4.5 OFDMA DL Data Modulation

As shown in Fig. 2.11, in the OFDMA system, the data bits are entered serially to the

constellation mapper. Gray-mapped QPSK and Gray-mapped 16QAM shall be supported,

whereas the support of 64QAM (also Gray-mapped) is optional and BPSK is not supported.
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Table 2.3: OFDMA DL Subcarrier Allocation under FUSC [4], [5]
Parameter Value Comments

Number if DC
subcarriers

1 Index 1024 (counting from 0)

Number of Guard
subcarriers, Left

173

Number of Guard
subcarriers, Right

172

Number of used
subcarriers (Nused)

1703 Number of all subcarriers used within a symbol,
including all possible allocated pilots and the DC
carrier

Pilots
VariableSet #0 71 0,72,144,216,288,360,432,504,576,648,720,792,864,

936,1008,1080,1152,1224,1296,1368,1440,1512,1584,
1656,48,120,192,264,336,408,480,552,624,696,768,
840,912,984,1056,1128,1200,1272,1344,1416,1488,
1560,1632,24,96,168,240,312,384,456,528,600,672,
744,816,888,960,1032,1104,1176,1248,1320,1392,
1464,1536,1608,1680

ConstantSet #0 12 9,153,297,441,585,729,873,1017,1161,1305,1449,
1593

VariableSet #1 71 36,108,180,252,324,396,468,540,612,684,756,828,
900,972,1044,1116,1188,1260,1332,1404,1476,1548,
1620,1692,12,84,156,228,300,372,444,516,588,660,
732,804,876,948,1020,1092,1164,1236,1308,1380,
1452,1524,1596,1668,60,132,204,276,348,420,492,
564,636,708,780,852,924,996,1068,1140,1212,1284,
1356,1428,1500,1572,1644

ConstantSet #1 12 81,225,369,513,657,801,945,1089,1233,1377,1521,
1665

Number of data
subcarriers

1536

Number of data
subcarriers per
subchannel

48

Number of sunchannels 32
Basic permutation
sequence

32 3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,
7,21,5,28,31,23,17,4,24,0,13,12,19,14,30
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It is worth noting that before mapping the data to the physical subcarriers, each sub-

carrier shall be multiplied by the factor 2× (1/2− wk) according to the subcarrier physical

index k. This extra multiplicative factor is not used in the OFDM system.
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Chapter 3

Channel Estimation Techniques

3.1 Pilot-Symbol-Aided Channel Estimation

Channel estimators usually need some kind of pilot information as a point of reference. A

fading channel requires constant tracking, so pilot information has to be transmitted more

or less continuously. Decision-directed channel estimation can also be used. But even in

these types of schemes, pilot information has to be transmitted regularly to mitigate error

propagation [6].

3.1.1 The Least-Squares (LS) Estimator

The simplest channel estimator one can imagine consists simply in dividing the received signal

by the symbols that have been actually sent (and that are supposed to be known). Based

on a priori known data, we can estimate the channel information on pilot carriers roughly

by the least-squares (LS) estimator. An LS estimator minimizes the following squared error

[7]:

||Y − ĤLSX||2 (3.1)

where Y is the received signal and X is a priori known pilots, both in the frequency domain

and both being N × 1 vectors where N is the FFT size. ĤLS is an N × N matrix whose
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values are 0 except at pilot locations mi where i = 0, · · · , Np − 1:

ĤLS =




Hm0,m0 · · · 0 · · · 0 · · · 0
0 · · · Hm1,m1 · · · 0 · · · 0
0 · · · 0 · · · Hm2,m2 · · · 0
0 · · · 0 · · · 0 · · · 0
0 · · · 0 · · · 0 · · · HmNp−1,HmNp−1




. (3.2)

Therefore, (3.1) can be rewritten as

[Y (m)− ĤLS(m)X(m)]2, for all m = mi. (3.3)

Then the estimate of pilot signals, based on only one observed OFDM symbol, is given by

ĤLS(m) =
Y (m)

X(m)
=

X(m)H(m) + N(m)

X(m)
= H(m) +

N(m)

X(m)
(3.4)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect HLS(m) into

Ĥp,LS, an Np × 1 vector where Np is the total number of pilots, as

Ĥp,LS = [Hp,LS(0) Hp,LS(1) · · ·Hp,LS(Np − 1)]T

= [ Yp(0)

Xp(0)
, Yp(1)

Xp(1)
, . . . , Yp(Np−1)

Xp(Np−1)
]T .

(3.5)

The LS estimate of Hp based on one OFDM symbol is susceptible to noise effects, and thus

an estimator better than the LS estimator is preferable.

3.1.2 The LMMSE Estimator

The minimum mean-square error (MMSE) estimate has been shown to be better than the LS

estimate for channel estimation in OFDM systems, but the major drawback of the MMSE

estimate is its high complexity. A low-rank approximation results in a linear minimum mean

squared error (LMMSE) estimator that uses the frequency-domain correlation of the channel

[8]. The linear minimum mean-square error channel estimator tries to minimize the mean

squared error between the actual and estimated channels, obtained by a linear transformation
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applied to Ĥp,LS. The mathematical representation of the LMMSE estimator on pilot signals

is

Ĥp,lmmse = RHpHp,LS
R−1

Hp,LSHp,LS
Ĥp,LS

= RHpHp(RHpHp + σ2
n(XpX

H
p )−1)−1Ĥp,LS (3.6)

where Ĥp,LS is the least-square estimate of Hp in (3.5), σ2
n is the variance of the Gaussian

white noise, Xp is the vector of transmitted signal on pilot subcarriers, and the covariance

matrices are defined by

RHpHp,LS
= E{HpH

H
p,LS}, (3.7)

RHp,LSHp,LS
= E{Hp,LSH

H
p,LS}, (3.8)

RHpHp = E{HpH
H
p }. (3.9)

Note that there is a matrix inverse involved in the MMSE estimator, which must be calculated

every time, and the computation of matrix inversion requires O(N3
p ) arithmetic operations

[9]. We also need the statistical properties of the unknown channel. Therefore, we use the LS

estimator which requires only O(Np) operations instead of the LMMSE due to the concerns

of complexity and unknown information.

3.2 One-Dimensional Channel Estimators

By one-dimensional channel estimation, we mean that we only use channel information along

the frequency domain. In other words, we use the channel information at pilot subcarriers

obtained by the LS estimator to estimate the channel information at data subcarriers via

interpolation or extrapolation. The material in this section is largely taken from [10].
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3.2.1 Polynomial Interpolation and Extrapolation

The interpolation polynomial of degree N − 1 through the N points y1 = f(x1), y2 =

f(x2), . . . , yN = f(xN) is given by Lagrange’s classical formula as

Px =
(x− x2)(x− x3) . . . (x− xN)

(x1 − x2)(x1 − x3) . . . (x1 − xN)
y1 +

(x− x1)(x− x3)(x− xN)

(x2 − x1)(x2 − x3)(x2 − xN)
y2

+ · · ·+ (x− x1)(x− x2)(x− xN−1)

(xN − x1)(xN − x2)(xN − xN−1)
yN .

(3.10)

There are N terms, each a polynomial of degree N − 1 and each constructed to be zero at

all of the xi except one, at which it is constructed to be yi.

A better method for constructing the interpolating polynomial is Neville’s algorithm as

follows: Let P1 be the value at x of the unique polynomial of degree zero passing through

the point (x1, y1); so P1 = y1. Likewise define P2, P3, . . . , PN . Now let P12 be the value at x

of the unique polynomial of degree one passing through both (x1, y1) and (x2, y2). Likewise

P23, P34, . . . , P(N−1)N . Similarly, for higher-order polynomials, compute up to P123...N , which

is the value of the unique interpolating polynomial through all N points, i.e., the desired

answer. The various P s form a “tableau” on the left lading to a single “descendent” at the

extreme right. For example, with N = 4,

x1 :

x2 :

x3 :

x4 :

y1 = P1

y2 = P2

y3 = P3

y4 = P4

P12

P23

P34

P123

P234

P1234 (3.11)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau a column

at a time, from left to right. It is based on the relationship between a “daughter” P and its

two “parents” as

Pi(i+1)...(i+m) =
(x− xi+m)Pi(i+1)...(i+m−1) + (xi − x)P(i+1)(i+2)...(i+m)

xi − xi+m

. (3.12)

29



This recurrence works because the two parents already agree at points xi+1, . . . , xi+m−1.

An improvement on the recurrence (3.12) is to keep track of the small differences between

parents and daughters, namely, to define (for m = 1, 2, . . . , N − 1),

Cm,i ≡ Pi...(i+m) − Pi...(i+m−1),

Dm,i ≡ Pi...(i+m) − P(i+1)...(i+m).
(3.13)

Then one can easily derive from (3.12) the relations

Dm+1,i =
(xi+m+1 − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

,

Cm+1,i =
(xi − x)(Cm,i+1 −Dm,i)

xi − xi+m+1

.

(3.14)

At each level m, the Cs and Ds are the corrections that make the interpolation one order

higher. The final answer P1...N is equal to the sum of any yi plus a set of Cs and/or Ds that

form a path through the family tree to the rightmost daughter.

Usually, linear and second-order interpolations are employed due to the consideration of

complexity, as discussed in [11], [12] and [13]. The mathematical expression of linear and

second order interpolations are given below.

3.2.1.1 Linear interpolation

The linear interpolation is given by

He(k) = He(m + l) = (Hp(m + 1)−Hp(m))
l

L
+ Hp(m) (3.15)

where Hp(k), k = 0, 1, · · · , Np, are the channel frequency responses at pilot subcarriers, L is

the distance between the two given data, that is, the pilot subcarriers spacing, and 0 ≤ l < L.
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3.2.1.2 Second order interpolation

The second-order interpolation is given by

He(k) = He(m + l)

= c1Hp(m− 1) + c0Hp(m) + c−1Hp(m + 1) (3.16)

where

c1 =
α(α− 1)

2
,

c0 = −(α− 1)(α + 1),

c−1 =
α(α + 1)

2
,

α =
l

L
.

Other notations are the same as in linear interpolation.

3.2.2 Rational Function Interpolation and Extrapolation

Some functions are not well approximated by polynomials, but are well approximated by

rational functions. We denote by Ri(i+1)...(i+m) a rational function passing through the m+1

points (xi, yi), . . . , (xi+m, yi+m). Suppose

Ri(i+1)...(i+m) =
Pµ(x)

Qν(x)
=

p0 + p1x + · · ·+ pµx
µ

q0 + q1x + · · ·+ qνxν
. (3.17)

Since there are µ + ν + 1 unknown µs and νs (q0 being arbitrary), we must have m + 1 =

µ + ν + 1.

Rational functions are sometimes superior to polynomials because of their ability to model

functions with poles, that is, zeros of the denominator of (3.17). These poles might occur for

real values of x, if the function to be interpolated itself has poles. More often, the function

f(x) is finite for all finite real x, but has an analytic continuation with poles in the complex

x-plane. Such poles can ruin a polynomial approximation, especially those at real values of x.

31



Bulirsch and Stoer found an algorithm of the Neville type which performs rational function

extrapolation on tabulated data. The algorithm is summarized by a recurrence relation:

Ri(i+1)...(i+m) = R(i+1)...(i+m) +
R(i+1)...(i+m) −Ri...(i+m−1)(

x−xi

x−xi+m

)(
1− R(i+1)...(i+m)−Ri...(i+m−1)

R(i+1)...(i+m)−R(i+1)...(i+m−1)

)− 1
. (3.18)

This recurrence generates the rational functions through m+1 points from the ones through

m and (the term R(i+1)...(i+m−1)) m− 1 points. It is started with

Ri = yi and R ≡ [Ri(i+1)...(i+m) with m = −1] = 0.

Now, we can convert the recurrence (3.18) to one involving only the small differences

Cm,i ≡ Ri...(i+m) −Ri...(i+m−1),

Dm,i ≡ Ri...(i+m) −R(i+1)...(i+m).
(3.19)

Note that these satisfy the relation

Cm+1,i −Dm+1,i = Cm,i+1 −Dm,i (3.20)

which is useful in proving the recurrences

Dm+1,i =
Cm,i+1(Cm,i+1 −Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

,

Cm+1,i =

(
x−xi

x−xi+m+1

)
Dm,i(Cm,i+1 −Dm,i)(

x−xi

x−xi+m+1

)
Dm,i − Cm,i+1

.

(3.21)

3.2.3 Cubic Spline Interpolation [10], [14], [15]

Cubic spline is one very effective, well-behaved, computationally efficient interpolation. The

approach is to fit cubic polynomials to adjacent pairs of points and choose the values of

the two remaining parameters associated with each polynomial such that the polynomials

covering adjacent intervals agree with one another in both slope and curvature at their

common endpoint. The cubic spline interpolation is developed in the following.
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Given a tabulated function yi = y(xi) and its second order derivative y′′, i = 1, . . . , N ,

let us focus our attention on one particular interval, say between xj and xj+1. The goal of

cubic spline interpolation is to get an interpolation formula that is smooth in the first deriv-

ative and continuous in the second derivative, both within the interval and at its boundaries.

A little calculation shows that there is only one way to arrange this construction, that is,

y = Ayi + Byi+1 + cy′′j + Dy′′j+1 (3.22)

where A, B, C and D are given by

A =
xj+1 − x

xj+1 − xj

, B = 1− A =
x− xj

xj+1 − xj

,

C =
1

6
(A3 − A)(xj+1 − xj)

2, D =
1

6
(B3 −B)(xj+1 − xj)

2.

(3.23)

Combined with (3.23), we take the derivatives of (3.22) with respect to x, yielding

dy

dx
=

yj+1 − yj

xj+1 − xj

− 3A2 − 1

6
(xj+1 − xj)y

′′
j +

3B2 − 1

6
(xj+1 − xj)y

′′
j+1 (3.24)

for the first derivative and

d2y

dx2
= Ay′′j + By′′j+1 (3.25)

for the second derivative. Since A = 1 at xj, A = 0 at xj+1, while B is just the other way

around, (3.25) shows that y′′ is just the tabulated second derivative, and also that the second

derivative will be continuous across the boundary.

The only problem now is that we supposed the y′′i ’s to be known, when actually they are

not. The key idea of a cubic spline is to require the continuity of the first derivative and to

use it to get equations for the second derivatives y′′i .

We set (3.24) evaluated for x = xj in the interval (xj−1, xj) equal to the same equation

evaluated for x = xj but in the interval (xj, xj+1). With some arrangement, this gives, for

j = 2, . . . , N − 1,

xj − xj−1

6
y′′j−1 +

xj+1 − xj−1

3
y′′j +

xj+1 − xj

6
y′′j+1 =

yj+1 − yj

xj+1 − xj

− yj − yj−1

xj − xj−1

. (3.26)
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These are N − 2 linear equations in the N unknowns y′′i , i = 1, . . . , N . Therefore there is a

two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken as

boundary conditions at x1 and xN . The most common ways of doing this are either

• set one or both y′′1 and y′′N equal to zero, giving the so-called natural cubic spline, or

• set either of y′′1 and y′′N to some values so as to make the first derivative of the interpo-

lating function have a specified value on either or both boundaries.

3.2.4 The Maximum Likelihood Channel Estimator

As mentioned before, the LMMSE estimator exploits channel correlations in time and fre-

quency domains. It needs knowledge of the channel statistics and the operating SNR. As

indicated in [8], although it can work with mismatched conditions on parameter values, its

performance degrades if the assumed Doppler frequencies and the delay spread are smaller

than the true ones.

The LMMSE estimator regards the channel impulse response as a random vector whose

particular realization is to be estimated. On the contrary, in maximum likelihood estimation

(MLE), the channel impulse response is viewed as a deterministic but unknown vector and

no information on the channel statistics or the operating SNR is required in this scheme.

The MLE of h is give by [16]

ĥMLE = D−1BHĤp,LS (3.27)
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where D is a square matrix D = BHB whose entries are given by

[
B

]
n,k

= e−j2πkin/N , 0 ≤ n ≤ Np − 1, 0 ≤ k ≤ L− 1, (3.28)

[
D

]
n,k

=

Np−1∑
m=0

ej2π(n−k)im/N , 0 ≤ n, k ≤ L− 1, (3.29)

where Ĥp,LS is given by (3.5), in are pilot locations, Np is the number of pilots and L is

channel length.

Equation (3.27) indicates that MLE requires the invertibility of D. Such a condition is

met if and only if B is full rank and Np ≥ L. this means that the number of pilots must be

not smaller than the number of channel taps.

3.3 Two-Dimensional Channel Estimators

By two-dimensional channel estimation, we mean that in addition to using channel informa-

tion along the frequency domain, we also use channel information along the time domain to

get better performance.

3.3.1 Interpolation in Time Domain

Figure 3.1 shows a typical pilot pattern of OFDM symbols. Channel response is interpolated

along the time axis based on that derived along the frequency axis. The interpolation

methods are the same as that used in frequency-domain interpolation and are not detailed

here.

3.3.2 Linear Prediction [10]

We consider the problem of fitting a set of N data points (xi, yi) to a straight-line model:

y(x) = a + bx. (3.30)
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Figure 3.1: A typical pilot pattern (from [3]).

We assume that the uncertainty σi associated with each measurement yi is known, and that

the xi’s are known exactly.

3.3.2.1 Minimizing the chi-square merit function

To measure how well the model agrees with the data, we use the chi-square merit function,

which in this case is

χ2(a, b) =
N∑

i=1

(yi − a− bxi

σi

)
. (3.31)

Equation (3.31) is minimized to determine a and b. At the minimum, derivatives of χ2(a, b)

with respect to a and b vanish as

0 =
∂χ2

∂a
= −2

N∑
i=1

yi − a− bxi

σ2
i

,

0 =
∂χ2

∂b
= −2

N∑
i=1

xi(yi − a− bxi)

σ2
i

.

(3.32)

Define the following sums:

S ≡
N∑

i=1

1

σ2
i

, Sx ≡
N∑

i=1

xi

σ2
i

, Sy ≡
N∑

i=1

yi

σ2
i

,

Sxx ≡
N∑

i=1

x2
i

σ2
i

, Sxy ≡
N∑

i=1

xiyi

σ2
i

.

(3.33)
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Figure 3.2: An example where robust statistical methods are desirable (from [10]).

With these definitions (3.32) becomes

aS + bSx = Sy,

aSx + bSxx = Sxy.
(3.34)

The solution of these two equations in two unknowns is given by

∆ ≡ SSxx − (Sx)
2,

a =
SxxSy − SxSxy

∆
,

b =
SSxy − SxSy

∆
.

(3.35)

which gives the solution for the best-fit model parameters a and b.

3.3.2.2 Minimizing absolute deviation

Instead of using chi-square as the merit function, consider minimizing

N∑
i=1

|yi − a− bxi|. (3.36)

This merit function is more robust, i.e., insensitive to small departures from the idealized

assumptions from which the estimator is optimized. An example where robust statistical

methods are desirable are shown in Fig. 3.2.
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The key simplification is based on the following fact: The median cM of a set of number

ci is also that value which minimizes the sum of the absolute deviations

∑
i

|ci − cM |. (3.37)

It follows that, for fixed b, the value of a that minimizes (3.36) is

a = median{yi − bxi}. (3.38)

Employing (3.38) for the parameter b gives

0 =
N∑

i=1

xisgn(yi − a− bxi). (3.39)

We use these two methods to predict the channel response along the time axis (see

Fig. 3.1). Suppose this results in a predicted channel response Hpredict(k) together with an

interpolated channel response (along the frequency axis) Hinterp(k). We combine the two

results by averaging as [Hpredict(k) + Hinterp(k)]/2.

3.3.3 Time Averaging

Because we assume the noise is white Gaussian, averaging several channel responses over a

period of time can mitigate the influence of noise. Now the problem is how long the period

of time should we choose. Coherence time is a statistical measure of the time duration over

which the channel impulse response is essentially invariant, and it quantifies the similarity

of the channel response at different times.

Take OFDMA system for example. Assume the SS has a velocity of 60 km/h. The

maximum Dopper shift with a center frequency 3.5 GHz can be calculated as

fm =
v

λ
= 194.44 Hz. (3.40)
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Figure 3.3: NLMS equalizer adaptation.

The corresponding coherence time can be approximately obtained as [17]

Tc ≈ 9

16πfm

= 920.83 µs. (3.41)

As the considered OFDMA system operates with bandwidth 10 MHz, the symbol period is

then (2048 + 64)/
(b28

25
· 10M/8000c × 8000

)
= 188.57 µs. Hence, the channel response over

b920.83
188.57

c = 4 symbols can be regarded static. Thus we use an averaging over 4 symbols to

reduce noise effect as

Havg(k) =
H interp

0 (k) + H interp
−1 (k) + H interp

−2 (k) + H interp
−3 (k)

4
(3.42)

where H interp
n (k) is the interpolated channel response at the previous nth symbol time.

3.4 Adaptive Channel Estimators [18]

The LMS algorithm is the most widely used adaptive filtering algorithm in practice for its

simplicity. Meanwhile, it is stable and robust against different channel conditions.

3.4.1 Model Based on Equalization

The first approach is to model the inverse of the channel response, i.e., 1/H(k), and the signal

flow is shown in Fig. 3.3, where X is the input signal sent into the decision device, H is the
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channel frequency response, and Y is the channel output. The following equations apply to

our work. Note that for the sake of simplicity, H(n, k|n: time index, k: frequency index) is

denoted H(n) and the frequency index is ignored.

• Estimation error:

e(n) = X̂(n)−X(n) where X(n) = w(n) ·Y(n). (3.43)

• Weights updating function:

w(n + 1) = w(n)− ν∇||e2(n)||. (3.44)

Hence, we get

w(n + 1) = w(n) + 2νe∗(n)Y(n). (3.45)

The w(n) term is the estimated inverse of the channel frequency response. The final

LMS adaptation equation can be written as

1

H(n + 1)
=

1

H(n)
+ µe∗(n)

Y(n)

||Y(n)||2 . (3.46)

3.4.2 Model Based on Channel Estimation

The second approach is to model the channel response, as shown in Fig 3.4. The equation

is the same as before except that the estimation error is given by

e(n) = Y(n)− Ŷ(n) where Ŷ(n) = w(n) · X̂(n). (3.47)

Further derivation gives

w(n + 1) = w(n) + 2νe∗(n)X̂(n). (3.48)

Here, the w(n) is the estimated channel frequency response and the resulting NLMS

adaptation equation is

H(n + 1) = H(n) + µe∗(n)
X̂(n)

||X̂(n)||2
. (3.49)
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Figure 3.4: NLMS channel estimation.

3.5 Joint Channel Estimation and Symbol Detection

Recall that in the previous chapter, we derived the equation

Y (k) = X(k)H(k) + W (k) (3.50)

where k is the subcarrier index. According to [19] and [20], the joint maximum likelihood

(JML) solution of X(k) and H(k) can be obtained by

{
X̂, Ĥ

}
= arg min p (Y |X, H) = arg

{
min

∣∣∣∣Y − X̂Ĥ
∣∣∣∣2

}
. (3.51)

3.5.1 Iterative Joint Maximum Likelihood Approximation

A natural way to approximate JML is to estimate alternately the channel maximizing the

conditioned likelihood

L(H|X̂(i)) ∝ exp
(
−

∣∣∣∣Y −HX̂(i)
∣∣∣∣2/σ2

)
(3.52)

by calculating

Ĥ(i) = arg max L(H|X̂(i))

= arg min
∣∣∣∣Y −HX̂(i)

∣∣∣∣2
(3.53)
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and to detect the data maximizing the conditioned likelihood

L(X|Ĥ(i)) ∝ exp
(
−

∣∣∣∣Y − Ĥ(i)X
∣∣∣∣2/σ2

)
(3.54)

by calculating

X̂(i+1) = arg max L(X|Ĥ(i))

= arg min
∣∣∣∣Y − Ĥ(i)X

∣∣∣∣2,
(3.55)

where i denotes the iteration counter.

3.5.2 Algorithm Summary

The algorithm is summarized as follows:

1)

ĤLS, i=0 =
Yp

Xp

where i is the iteration counter. This equation is the same as (3.5) and is repeated

here for convenience. Yp stands for the received signal at each pilot subcarrier; Xp

stands for the transmitted signal at each pilot subcarrier and is assumed known for

the receiver.

2)

ĤDFT, i=0 = (BHB)−1BHĤLS, i=0. (3.56)

This equation is identical to (3.27).

3)

X̂i=0 =
Y

ĤDFT, i=0

and Ŝi−1 = Hard-Decision(X̂i−1) (3.57)

where Y is the received signal, that is, it includes information both on data subcarriers

and on pilot subcarriers. The data detection operations are done on each subcarrier

rather than block detection.
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4)

ĤLS, i =
Y

Ŝi−1

. (3.58)

Note that at this moment, we have the estimated information on all used subcarriers.

5)

ĤDFT, i = (FHF )−1FHĤLS, i (3.59)

where
[
F

]
n,k

= e−j2πkin/N , 0 ≤ n ≤ Nused − 1, 0 ≤ k ≤ L − 1, with Nused being the

number of used subcarriers and L the channel length.

6)

X̂i =
Y

ĤDFT, i

and Ŝi = Hard-Decision(X̂i). (3.60)

7) Check to see if Ŝi = Ŝi−1, and if not, go to step 4) to continue the iteration.

Figure 3.5 shows the flowchart of the iterative joint channel estimation and symbol de-

tection (JCESD) algorithm.
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Figure 3.5: Flowchart of the iterative joint channel estimation and symbol detection (JCESD)
algorithm.
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Chapter 4

The DSP Hardware and Associated
Software Development Environment

4.1 The TMS320C6416 DSP

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation of the

TMS320C6000 DSP devices, with a performance of up to 600 million instructions per second

(MIPS) and an efficient C compiler. The TMS320C64x device is based on the second-

generation high-performance, very-long-instruction-word (VLIW) architecture developed by

Texas Instruments (TI). The C6416 device has two high-performance embedded coproces-

sors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that sig-

nificantly speed up channel-decoding operations on-chip. But they do not apply to the work

reported in this thesis. Material in this section is mainly taken from [22].

4.1.1 Features and Options of the TMS320c64x

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units,

which are described further below. Features of C6000 devices include :

• Advanced VLIW CPU with eight functional units, including two multipliers and six
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arithmetic units:

– Executes up to eight instructions per cycle.

– Allows designers to develop highly effective RISC-like code for fast development

time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.

• Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The additional features of C64x include:
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Figure 4.1: Block diagram of the TMS320C6416 DSP [22].

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every clock

cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

• Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

4.1.2 Central Processing Unit

The C64x CPU, shaded in Fig. 4.1, contains:

• Program fetch unit.
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• Instruction dispatch unit.

• Instruction decode unit.

• Two data paths, each with four functional units.

• 64 32-bit registers.

• Control registers.

• Control logic.

• Test, emulation, and interrupt logic.

The program fetch, instruction dispatch, and instruction decode units can deliver up to

eight 32-bit instructions to the functional units every CPU clock cycle. The processing of

instructions occurs in each of the two data paths (A and B), each of which contains four

functional units (.L, .S, .M, and .D) and 32 32-bit general-purpose registers for the C6416.

4.1.2.1 Pipeline Structure

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve

performance. The pipeline can dispatch eight parallel instructions every cycle. These two

factors provide this flexibility:

• Control of the pipeline is simplified by eliminating pipeline interlocks.

• Increased pipelining eliminates traditional architectural bottlenecks in program fetch,

data access, and multiply operations. This provides single cycle throughput.

The pipeline phases are divided into three stages as shown in Fig. 4.2.

• Fetch has 4 phases:
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Figure 4.2: Pipeline phases of TMS320C6416 DSP [22].

– PG (program address generate): The address of the fetch packet is determined.

– PS (program address send): The address of the fetch packet is sent to memory.

– PW (program access ready wait): A program memory access is performed.

– PR (program fetch packet receive): The fatch packet is at the CPU boundary.

• Decode has two phases:

– DP (instruction dispatch): The next execute packet in the fetch packet is deter-

mined and sent to the appropriate functional units to be decoded.

– DC (instruction decode): Instructions are decoded in functional units.

• Execute has five phases: E1 to E5.

The pipeline operation of the C62x/C64x instructions can be categorized into seven in-

struction types. Six of these are shown in Table 4.1, which gives a mapping of operations

occurring in each execution phase for the different instruction types. The delay slots associ-

ated with each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is

a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results

from instructions with delay slots are not available until the end of the last delay slot. For

example, a multiply instruction has one delay slot, which means that one CPU cycle elapses

before the results of the multiply are available for use by a subsequent instruction. However,
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Table 4.1: Execution Stage Length Description for Each Instruction Type [22]

results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

4.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four;

each functional unit in one data path is almost identical to the corresponding unit in the

other data path. The functional units are described in Table 4.2.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit to

16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four

8×8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
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Table 4.2: Functional Units and Operations Performed [22]
Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations
Rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations51



register file (listed in Fig. 4.3). All units ending in 1 (for example, .L1) write to register file

A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read

ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra

8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

4.1.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is orga-

nized in separate data and program spaces. When off-chip memory is used, these spaces are

unified on most devices to a single memory space via the external memory interface (EMIF).

The C64x has two 64-bit internal ports to access internal data memory have and a single

internal port to access internal program memory, with an instruction-fetch width of 256 bits.

A variety of memory options are available for the C6000 platform. In our system, the

memory types we can use are:

• On-chip RAM, up to 875 MB.

• Program cache.

• 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asyn-

chronous memories.

• Two-level caches [23]. Level 1 cache is split into program (L1P) and data (L1D)

cache. Each L1 cache is 16 KB. Level 2 memory is configurable and can be split into

L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

locations. The size of L2 is 1 MB. External memory can be several MB large. The
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Figure 4.3: TMS320C64x CPU data paths [22].
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access time depends on the memory technology used but is typically around 100 to 133

MHz. In our system, the external memory usable by the DSP is a 32 MB SDRAM.

4.2 The Quixote cPCI Board [21]

The Quixote is one of Innovative Integration’s Velocia-family baseboard for applications

requiring speed and processing power. Quixote features a processing core built around Texas

Instruments’ fixed-point TMS320C6416 and Xilinx Virtex2 with 32 MB of DSP RAM and

2 MB of FPGA computation RAM (optional). The TI C6416 DSP operating at 600 MHz

offers a processing power of 4800 MIPS. The analog IO features of the board include dual

channels of 105 MHz A/D and D/A (2 in, 2 out). A block diagram of the Quixote board is

shown in Fig. 4.4.

The Quixote board has a 32 MB SDRAM for use by the DSP. When used with the

advanced cache controller on the C6416, the SDRAM provides a large, fast external mem-

ory pool for DSP data and code. The Quixote has a serial EEPROM for storing data

such as board identification, calibration coefficients, and other data that needs to be stored

permanently on the board. This memory is 16 Kbits in size. Functions for using the serial

EEPROM are included in the Pismo Toolset that allow the software application programmer

to easily write and read from the memory without controlling the low-level interface.

The Caliente subsystem handles the details of interacting with the baseboard in streaming

mode. There are 3 ways for data transmission between host PC and DSP: data streaming,

block mode data streams and message packet I/O.

Data Streaming. To address high-bandwidth data transfer applications, Quixote is ca-

pable of continuous transmission and reception of data via the PCI bus, using a mechanism

called streaming. When streaming, the target DSP, which must be running a downloaded
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Figure 4.4: Block diagram of the Quixote board [21].
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Figure 4.5: Illustration of the DSP streaming mode [21].

DSP application, transfers data between target DSP memory and host PC memory auto-

matically with no host intervention. Streaming input is independent of streaming output.

It is possible to acquire data from any number and mix of input devices at a programmed

rate. Simultaneously, data may be streamed out to a variety of output devices at a different

programmed rate. Data flow is fully controlled by use of device drivers called from within

the DSP target application.

During data streaming on baseboards, data flows between peripherals and a dedicated,

onboard, digital signal processor (DSP) while simultaneously flowing data between the DSP

and the host application software. The dedicated DSP can extensively process data as it

travels between peripherals and the host application. Fig. 4.5 illustrates the data streaming

operation.

Block Mode Data Streams. An alternate data flow paradigm is supported for non-

channelized peripherals. This mode is referred to as block mode streaming. In block mode,

the splitter/merger features of Caliente are bypassed, and raw, binary data in peripheral-

specific format is consumed and supplied by the application program. Devices that produce
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data that can be channelized may elect to use block mode because of its higher inherent

efficiency. For very high rate applications, any processing done to each point may result

in a reduction in the maximum data rate that can be achieved. Since block mode does no

implicit processing on a point-by-point basis, the fastest data rates are achievable using this

mode.

Message Packet I/O. In many applications, there is a need for additional, low band-

width channels in addition to a high rate data stream. Velocia baseboards feature a means

to support the asynchronous interchange of low-bandwidth data in conjunction with high-

bandwidth streaming mode I/O. Messages packets consist of a command code and channel

number plus up to 14 additional 32-bit parametric data values. Messages may be asynchro-

nously transmitted and received from any number of distinct channels by any number of

threads running on both the target DSP and the host PC. Message transfers have no dele-

terious effect on data streaming and consume virtually none of the bandwidth of the DSP,

so they may be freely used even in conjunction with full rate data streaming.

In our implementation, we use block mode data streams the most and also use mes-

sage packet I/O [24]. The Virtex2 FPGA includes 18×18 hardware multipliers and contains

up to 12 digital clock managers, each providing 256 subdivisions of phase shifting and fre-

quency synthesis capabilities to deliver flexibility in managing both on-chip and off-chip clock

domains and synchronization. On-chip memory blocks in the Virtex-II fabric provide conve-

nient high-speed memory elements for FIFOs, dual-port RAM and local processing memory.

But our implementation is purely in DSP software and does not make use of the FPGA.
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4.3 The Code Composer Studio Development Tools

[25], [26]

TI supports a useful GUI development tool set to DSP users for developing and debugging

their projects: the Code Composer Studio (CCS). The CCS development tools are a key

element of the DSP software and development tools from TI. The fully integrated devel-

opment environment includes real-time analysis capabilities, easy to use debugger, C/C++

compiler, assembler, linker, editor, visual project manager, simulators, XDS560 and XDS510

emulation drivers and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal performance.

• Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator targets:

– C/C++/assembly language support.

– Simple breakpoints.

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

• Data transfer for real time data exchange between host and target.

• Profiler to analyze code performance.

CCS also delivers “foundation software” consisting of:
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• DSP/BIOS kernel for the TMS320C6000 DSPs.

– Pre-emptive multi-threading.

– Interthread communication.

– Interrupt handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

TI also supports some optimized DSP functions for the TMS320C64x devices: the

TMS320C64x digital signal processor library (DSPLIB). This source code library includes

C-callable functions (ANSI-C language compatible) for general signal processing mathemat-

ical and vector functions [27]. The routines included in the DSP library are organized as

follows:

• Adaptive filtering.

• Correlation.

• FFT.

• Filtering and convolution.

• Math.

• Matrix functions.

• Miscellaneous.
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4.4 Code Optimization Methods [28]

The recommended code development flow involves utilizing the C6000 code generation tools

to aid in optimization rather than forcing the programmer to code by hand in assembly. This

makes the compiler do all the laborious work of instruction selection, parallelizing, pipelining,

and register allocation, which simplifies the maintenance of the code, as everything resides

in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described in

Fig. 4.6. The tutorial section of the Programmer’s Guide [28] focuses on phases 1 and phase

2, and the Guide also instructs the programmer about the tuning stage of phase 3. What

is learned is the importance of giving the compiler enough information to fully maximize its

potential. An added advantage is that this compiler provides direct feedback on the entire

program’s high MIPS areas (loops). Based on this feedback, there are some simple steps the

programmer can take to pass complete and better information to the compiler to maximize

the compiler performance.

The following items list the goal for each phase in the software development flow shown

in Fig. 4.6.

• Developing C code (phase 1) without any knowledge of the C6000. Use the C6000

profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

• Use techniques described in [28] to improve the C code. Use the C6000 profiling tools

to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear assembly.
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Figure 4.6: Code development flow for TI C6000 DSP [28].

61



We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not suggest the

programmer to code by hand in assembly. In this thesis, the development flow is stopped at

phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

4.4.1 Compiler Optimization Options [25], [26]

The compiler supports several options to optimize the code. The compiler options can be

used to optimize code size or execution performance. Our primary concern in this work is

the execution performance. Hence we do not care very much about the code size. The easiest

way to invoke optimization is to use the cl6x shell program, specifying the -on option on the

cl6x command line, where n denotes the level of optimization (0, 1, 2, 3) which controls the

type and degree of optimization:

• -o0.

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

• -o1. Performs all -o0 optimization, and:

– Performs local copy/constant propagation.
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– Removes unused assignments.

– Eliminates local common expressions.

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inlines calls to small functions.

– Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

– Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

– Identifies file-level variable characteristics.

The -o2 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the -

o3 option. With program-level optimization, all of the source files are compiled into one
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intermediate file called a module. The module moves through the optimization and code

generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

• If a particular argument in a function always has the same value, the compiler replaces

the argument with the value and passes the value instead of the argument.

• If a return value of a function is never used, the compiler deletes the return code in

the function.

• If a function is not called directly or indirectly, the compiler removes the function.

When program-level optimization is selected in Code Composer Studio, options that have

been selected to be file-specific are ignored. The program level optimization is the highest

level optimization option. We use this option to optimize our code.

4.4.2 Using Intrinsics

The C6000 compiler provides intrinsics, which are special functions that map directly to

C64x instructions, to optimize the C code performance. All instructions that are not easily

expressed in C code are supported as intrinsics. Intrinsics are specified with a leading under-

score ( ) and are accessed by calling them as we call a function. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [28].
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Chapter 5

IEEE 802.16e OFDM Uplink Channel
Estimation and DSP Implementation

The aim of this chapter is focus on the DSP implementation of IEEE802.16e OFDM up-

link. Hence, we use only simple channel estimation techniques, such as linear interpolation

and second order interpolation. Detailed comparison between various channel estimation

techniques will be left to the next chapter. We evaluate the performance of each channel

estimation approach mainly via symbol error rate (SER) and mean square error (MSE).

5.1 Simulation Parameters and Channel Model

This section gives the parameters and introduce the channel model used in our simulation

work.

5.1.1 OFDM Uplink System Parameters

In chapter 2, we introduce the primitive parameters and derived parameters of the system.

The system parameters used in our simulation are listed in Table 5.1.
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Table 5.1: OFDM Uplink Parameters
Parameters Values

Bandwidth 10M Hz
Central frequency 5G Hz
Nused 201
Sampling factor n 1
G 1

32

NFFT 256
Sampling frequency 11.52M Hz
Subcarrier spacing 45k Hz
Useful symbol time 22.2 µs
CP time 694.4 ns
OFDM symbol time 22.92 µs
Sampling time 86.81 ns

Table 5.2: Power-Delay Profile of the ETSI “Vehicular A” Channel
Tap Relative Delay (4× oversampled) Average Power (dB)
1 0 0
2 14 −1.0
3 32 −9.0
4 50 −10.0
5 79 −15.0
6 115 −20.0

5.1.2 Simulation Channel Model

We employ the ETSI “Vehicular A” model with the path delays slightly adjusted for conve-

nience in our simulation. The model is as shown in Table 5.2.

5.2 Simulation Flow and Modified Estimation Tech-

niques

Figure 5.1 illustrates the block diagrams of the simulated system. For channel estimation

simulation, we assume perfect synchronization. After channel estimation, we can calculate
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Figure 5.1: Block diagram of the simulated system (from [29]).

Figure 5.2: Channel estimation steps (from [29]).

the channel MSE between the real channel and the estimated one. The symbol error rate

(SER) can also be obtained after demapping, where the SER denotes the average symbol

error at the specific Es/N0. Likewise, the MSE also denotes the average |Ĥ − H|2 at the

Es/N0, where the above averages are taken over the subcarriers.

The channel estimation simulation contains several steps:

• Estimate the channel response at each pilot location.

• Interpolate for the whole channel response using the estimated values at pilot locations.

• Estimate the transmitted signal using a divider.

These steps are illustrated in Fig. 5.2.
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5.2.1 Validation of Simulation Model

Before considering multipath channels, we do simulation with an AWGN channel to validate

the simulation model, which means we transmit the data through a one-path channel with

h[0] = 1, and then add AWGN noise to it. We validate this model by comparing theoretical

SER curves and SER curves resulting from simulations. This comparison is illustrated here

for uncoded QPSK modulations.

Expressions for the symbol error rate of rectangular QAM are not hard to derive but yield

rather unpleasant expression. For an even number of bits per symbol, exact expressions are

available. They are most easily expressed in a per carrier sense:

Ps
∼= 4

(
1− 1√

M

)
Q

(√
3

M − 1

Eav

N0

)
(5.1)

where

• M = Number of symbols in modulation constellation,

• Eav = Average signal energy,

• N0 = Noise power spectral density (W/Hz),

• Ps = Probability of a symbol-error,

• Q(x) = 1√
2π

∫∞
x

e−t2/2dt, x ≥ 0.

In Fig. 5.3, the theoretical symbol error rate (SER) curve versus Es/N0 for uncoded

QPSK is plotted together with the SER curve resulting from the simulation. In this figure,

we do not take the channel estimation error into account. This validates the simulation (we

use C/C++ programming language and TI’s code composer studio).
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Figure 5.3: The SER curve for uncoded QPSK resulting from simulation matches the theo-
retical one.

5.2.2 Utilizing Preamble in Static Multipath Channel

As mentioned before, we adopt the ETSI Vehicular A channel model and the channel impulse

response is listed in Table 5.2. The amplitude and phase responses of this channel at a

particular time instant are shown in Fig. 5.4.

The utilization of the preamble is vital in OFDM uplink channel estimation. If we do

not utilize the preamble, the performance would be as shown in Fig. 5.5. In this figure, we

shown the performance resulting from one-dimensional linear interpolation (1D-linear), one-

dimensional second-order interpolation (1D-2nd), maximum likelihood estimation (MLE)

and time averaging. Obviously, the performance is very poor. Hence, we must use the

preamble information in our channel estimation work. A simple but not theory-based method

is as follows:
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Figure 5.4: (a) Amplitude response and (b) phase response of the multipath channel at a
certain time instant.
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• Each block starts with a preamble and block length is about 10 to 20 OFDM symbols,

depending on the channel coherence time.

• In the uplink, the preamble utilizes only even subcarriers.

• We interpolate the channel response for all subcarriers using the estimates on even

subcarriers. In consequence, we have raw channel estimation on all subcarriers, called

Hpreamble(k).

• When receiving usual OFDM symbols, we subtract Hpreamble(kp) from Hsymbol(kp),

where kp is the pilot subcarrier index and Hsymbol(kp) is the estimated channel response

in ordinary OFDM symbol.

• Then, we interpolate the difference Hsymbol(kp) − Hpreamble(kp) to fill in all used sub-

carriers, called Hdiff (k).

• Finally, add Hdiff (k) to Hpreamble(k) to derive the final channel estimate.

5.3 DSP Implementation

5.3.1 Fixed-Point Implementation

In algorithm development, it is often convenient to employ floating-point computation to

acquire better accuracy. However, for the sake of power consumption, execution speed,

and hardware costs, practical implementations usually adopt fixed-point computations. The

DSP chip used in our work, TI’s TMS320C6416 is also of the fixed-point category. It means

that fixed-point computations are executed more efficiently than floating-point ones on this

platform. Due to these facts, we do simulation in 16-bit fixed-point domain, which is more

accurate than 8-bit computation. Meanwhile, compared with 32-bit computation, it has

better efficiency and negligible accuracy loss.
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Figure 5.5: (a) MSE and (b) SER for QPSK in multipath channel estimation without uti-
lization of the preamble.
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Table 5.3: Q1.14 Bit Fields
Bits 15 14 13 ... 1 0

Value S QI0 Q14 ... Q1 Q0

Figure 5.6: Fixed-point data formats in our design.

Taking modulation into account, the widest range occurs in the case of 64QAM, which is

[−7/
√

42, 7/
√

42]. Therefore we must have at least one bit for the integer part, one bit for

sign, with the remaining 14 bits for fractional part. Hence Q1.14 is the chosen data format

as shown in Table 5.3.

The fixed-point data formats used in our design based on linear frequency-domain inter-

polation are as shown in Fig. 5.6.

5.3.2 Code Profile

Table 5.4 shows the code size and the execution speed of the DSP implementation, where

“load” gives the fractional consumption of a DSP’s real-time computing power of each func-

tion. Each function in the table corresponds to a block shown in Fig. 5.6. (When “Sec-

ond Interp” is used, it replaces the “Linear Interp” function shown in Fig. 5.6.) Note that
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Table 5.4: Profile of the Channel Estimator Implementation

Function Code Size Max. Count Min. Count Avg. Count Load
(bytes) (cycles) (cycles) (cycles) (# DSPs)

Modulation (QPSK) 168 604 603 603 0.04
Modulation (16QAM) 296 9039 9039 9039 0.598
Modulation (64QAM) 484 12568 12432 12498 0.826
Complex Mul 844 1479 1479 1479 0.098
Linear Interp 916 6980 6872 6923 0.46
Second Interp 936 15945 15912 15930 1.054
Complex Div 360 20561 20241 20443 1.352
Demodulation (QPSK) 236 634 634 634 0.042
Demodulation (16QAM) 444 11763 11763 11763 0.778
Demodulation (64QAM) 1052 18462 16550 17345 1.147

the key functions for channel estimation are “Linear Interp” and “Second Interp.” The other

functions merely play a supporting role in this part of the work. For example, the “Modu-

lation” functions have been addressed more fully in the synchronization part of the study,

and the “Demodulation” functions should be considered in the channel decoding part.

Acknowledgeably, the implemented “Linear interp” and “Second interp” functions have

not been fully optimized. For example, we have not eliminated all the divisions shown in

the earlier equations for linear interpolation and second-order interpolation. The functions

are expected to run faster when these divisions are replaced, for example, by multiplications

with the dividers’ inverses.

We list the program structure as well as the fixed-point c code and assembly code of some

basic functions in appendix.
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5.4 Simulation Results

We examine the transmission performance of the implemented channel estimator by sim-

ulating transmission over multipath channels. The simulated multipath channel is derived

from ETSI’s “Vehicular A” channel given in Table 5.2, with the following characteristics:

1) each path delay is rounded to an integer times the sample spacing for convenience of

simulation; 2) we make the channel is static, also for convenience of simulation; and 3) each

path coefficient is the square root of its average power.

Fig. 5.7 shows the MSE in channel estimtion for multipath channel and the resulting SNR,

where the solid represents the linear interpolation simulation and dashed line represents the

second-order interpolation. And It shows that the second-order interpolation outperforms

the liner interpolation.

Fig. 5.8 shows the MSE and SER spread over all used subcarrier. By observing the

channel gain spread in this figure, we can find that the best subcarrier is about 60 and the

worst subcarrier is about 180. Fig. 5.9 shows the performance at the best and the worst

subcarriers. It shows that the performance at the worst subcarrier has higher noise flow.

This point corresponds to our expectation.

5.5 Appendix

Fig. 5.10 shows program structure of the implemented system, where the key function in

channel estimation is Linear-Interp and SecondOrder-Interp; other are in supporting role.

Function Modulation(QPSK, 16QAM, 64QAM) maps binary data to the constellation

points. We only show the fixed-point code for QPSK in Fig. 5.11 for example.

Function Complex Mul is a multiplier which computes complex multiplication to simulate

channel effects. The original code is shown in Fig. 5.12.
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Figure 5.7: (a)MSE and (b)SER for different interpolation order.
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We add AWGN in the main function instead of an individual function.

The operation in the block Pilot Location is that received signal Y(f) is multiplied by

p=1 or −1 at pilot locations, i.e., the LS estimator. This function is for convenience in

simulation; in real system implementation it can be absorbed into later block.

Function Linear Interp and SecondOrder Interp are the interpolation part which plays
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Figure 5.9: Performance at worst and best subcarriers. (a) MSE. (b) SER.

Figure 5.10: Program structure for channel estimation.

an important role in the channel estimation scheme. The original code is shown in Figs. 5.13

and 5.14.

Function Complex Div is an equalizer where received signal is divided by the estimated

channel response and d̂(k) is the output. The code is shown in Fig. 5.15. This function is

also for convenience of simulation; in real implementation its function can be absorbed in

the demodulator and the decoder.
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Figure 5.11: Function Modulation (QPSK).

Figure 5.12: Function Complex Mul.

Function De Modulation is the de-mapping function which outputs binary data and the

mapped data d̂after decision in the constellation. The original code is shown in Fig. 5.16.

Their corresponding assembly codes are listed below:

We use -o3 option to do optimization. From the compile feedback information, we show

that the function Complex Mul can be accelerated most because it utilize most registers after

software pipelining, as shown in Fig. 5.23.
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Figure 5.13: Function Linear Interp.
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Figure 5.14: Function SecondOrder Interp.
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Figure 5.15: Function Complex Div.

Figure 5.16: Function De-modulation(QPSK).
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Figure 5.17: Assembly code of function Modulation (QPSK).
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Figure 5.18: Assembly code of function Complex Mul.
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Figure 5.19: Assembly code of function Linear Interp.
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Figure 5.20: Assembly code of function SecondOrder Interp.
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Figure 5.21: Assembly code of function Complex Div.
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Figure 5.22: Assembly code of function De-modulation(QPSK).
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Figure 5.23: Software pipelining information of 16-bit fixed-point Complex Mul.
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Chapter 6

IEEE 802.16e OFDMA Downlink
Channel Estimation

This chapter focuses on the performance comparison between various channel estimation

techniques. First, let us review some simulation parameters and channel characteristics.

Then simulation results of OFDMA downlink PUSC and OFDMA downlink FUSC will be

illustrated separately.

6.1 Simulation Parameters and Channel Model

This section gives the parameters and introduce the channel model used in our simulation

work.

6.1.1 OFDMA Downlink System Parameters

These system parameters used in our simulation are listed in Table 6.1. We have given

primitive parameters and derived parameters in the table.
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Table 6.1: OFDMA Downlink Parameters
Parameters Values

Bandwidth 10M Hz
Central frequency 3.5G Hz
Nused 1681 for PUSC

1703 for FUSC
Sampling factor n 1
G 1

32

NFFT 2048
Sampling frequency 11.2M Hz
Subcarrier spacing 5.47k Hz
Useful symbol time 182.86 µs
CP time 5.71 µs
OFDM symbol time 188.57 µs
Sampling time 89.29 ns

6.1.2 Simulation Channel Model

We employ the ETSI “Vehicular A” model, the same as that in the last chapter. The

model has been shown in Table 5.2. However, in this chapter, the simulation is done under

nonsample-spaced multipath condition.

There are six paths in this model and we express each path using Jakes fading model.

Jakes fading model is a deterministic method for simulating time-correlated Rayleigh fading

waveforms. The model assumes N equal-strength rays arriving at the moving receiver with

uniformly distributed arrival angles, so the kth fading waveform can be modelled as [30]

Tk(t) =

√
2

N0

N0∑
n=1

Ak(n) (cos βn + j sin βn) cos(ωM cos αn · t + θn) (6.1)

where k = 1, 2, . . . , N0, N0 = N/4, αn = (2πn/N) − (π/N), βn = πn/N0, ωM = 2πν/λ is

the maximum Doppler frequency shift and θn are the independent random phases, each of

which uniformly distributed in [0, 2π). Ak(n) is the kth Walsh-Hadamard codeword in n
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which satisfies

1

N0

N0∑
n=1

A∗
k(n)Al(n) =

{
1, k = l,
0, k 6= l.

The time variations of amplitude at different velocities are as shown in Fig. 6.1. The x-axis

denotes the symbol sample, that is, 188.57 µs per sample and the y-axis denotes the ampli-

tude in decibel. Meanwhile, the Doppler rate (maximum Doppler frequency shift multiplied

by symbol time) in each condition is also listed.

6.1.2.1 Some Effects of Nonsample-Spaced Multipath Channel

A sample-spaced channel has all delayed impulses of its channel impulse response at integer

multiples of the system sampling interval. Hence, the continuous Fourier transform of the

channel impulse response is a channel frequency response with non-zero values at multiples

of the system’s sampling rate. Due to this particular frequency response, the samples of the

channel frequency response coincides exactly with the DFT of the channel impulse response.

For the nonsample-spaced channel, like the one listed in Table 5.2, the channel is actually

resampled in the receiver sampling process. As a consequence, there is no exact correspon-

dence between the channel frequency response and the DFT of the sampled channel impulse

response. In fact, the resampling process results in an extension of the equivalent sample-

spaced channel response (as shown in Fig 6.2). This leads to the need for a longer guard

interval to ease synchronization. It can also cause performance loss of the channel estimator,

if it is based on a limited channel length assumption.

6.2 Simulation Flow

Figure 5.1 illustrates the simulation flow of the OFMDA system and Fig. 5.2 accounts for

the channel estimation steps. These steps are already described in the last chapter.
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Figure 6.1: Amplitude variations for different velocities. (a) v = 60 km/h. (b) v = 120
km/h. (c) v = 180 km/h. (d) v = 240 km/h. (e) v = 300 km/h. (f) v = 360 km/h.
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Figure 6.2: Resampling a nonsample-spaced channel extends the channel (from [3]).

Before considering multipath channels, we must validate our simulation on an AWGN

channel by comparing theoretical SER curves and SER curves resulting from simulations.

This comparison is illustrated here for uncoded QPSK, 16QAM and 64QAM modulations.

Fig. 6.3(a) shows the MSE results from simulation. Fig 6.3(b) shows their corresponding

SER values and compare them with the theory given in (5.1). As seen, the simulation

results match well with the theory, validating our simulation model. In Fig. 6.3, we use

simple one-dimensional linear interpolation for channel estimation.

6.3 OFDMA DL PUSC Channel Estimation Simula-

tion

Here, we assume that only one of three segments are used, say, Segment 0. And we use

the subcarriers belonging to clusters of Group 0, which is assigned to Segment 0 by default.

More specifically, we use 288 data subcarriers and 48 pilot subcarriers.

Due to nonsample-spaced multipath channels, the path extension effect appears and is

as shown in Fig. 6.4.
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Figure 6.3: Simulation results (1D linear interpolation) for AWGN channel. (a) MSE. (b)
SER.

95



−5 0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (samples)

A
m

pl
itu

de

Nonsample−spaced Multipath Channel

(a)

−5 0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (samples)

A
m

pl
itu

de

Equivalent Sample−spaced Multipath Channel

(b)

Figure 6.4: The path extension effect in our model. (a) Nonsample-spaced multipath channel.
(b) Equivalent sample-spaced multipath channel.

6.3.1 One-Dimensional Channel Estimators

6.3.1.1 Polynomial Interpolation Results

Fig. 6.5 shows the MSE and SER in each modulation for v = 60 km/h. It indicates that

third-order or fourth-order interpolation has the best performance, and followed by spline

interpolation, second-order interpolation, and linear interpolation. The results of MSE are

unrelated to the modulation type because the pilots are boosted-BPSK modulated in each

modulation case. And the channel response is interpolated only using the pilot information.

Fig. 6.6 shows the MSE and the SER spread over used subcarriers. We can find that

the best subcarrier is around 310 and the worst subcarrier is around 600. Fig. 6.7 shows

performance at best and worst subcarriers.

We also want to know the impact of velocity on channel estimation performance. Some

results are shown in Fig. 6.8. The 1D interpolation-based channel estimation seems unrelated

to channel time variations because the time variations over OFDMA symbols is not taken

into account in this method.
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Figure 6.5: OFDMA DL PUSC MSE and SER for v = 60 km/h in each modulation scheme.
(a) MSE for QPSK. (b) SER for QPSK. (c) MSE for 16QAM. (d) SER for 16QAM. (e) MSE
for 64QAM. (f) SER for 64QAM.
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Figure 6.6: MSE and SER spread over used subcarriers in QPSK at 30 dB.

6.3.2 Two-Dimensional Channel Estimators

6.3.2.1 Time-Domain Interpolation

We apply interpolation along both the frequency and the time axes. For simplicity, we just

combine the frequency-interpolated Hfreq(k) with the time-interpolated Htime(k) by

Hnew(k) =
Hfreq(k) + Htime(k)

2
. (6.2)

The interpolation on Htime(k) is done on the real part and the imaginary part separately.
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Figure 6.7: Performance at worst and best subcarriers. (a) MSE. (b) SER.
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Figure 6.8: The performance of 1D linear interpolation for different velocity with 16QAM.
(a) MSE. (b) SER.

The results are shown in Fig. 6.9 for different kinds of interpolation order. Similarly,

the results under different velocities are as shown in Fig. 6.10. Here the first number in the

parentheses denotes the interpolation order along the frequency axis and the second denotes

that along the time axis. For example, “2D-(21)” means that second-order interpolation is

done along the frequency axis and linear interpolation is done along the time axis. From
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Figure 6.9: Performance of 2D interpolation for v = 60 km/h with 16QAM. (a) MSE. (b)
SER.
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Figure 6.10: Performance of 2D-(21) interpolation for different velocities with 16QAM. (a)
MSE. (b) SER.

these figures, we may conclude that the time variations of channel characteristics are hard

to predict via simple interpolation.
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Figure 6.11: Performance of linear prediction using different merit functions. (a) MSE. (b)
SER.

6.3.2.2 Linear Prediction

Instead of using interpolation in the time domain, we now consider linear prediction based

on recent symbols. We use (3.31) and (3.36) as the merit functions. In fact, the former is

the linear least squares method denoted “LSs” in Fig. 6.11 and the latter is more robust

against noise, denoted “Robust” in Fig. 6.11.

In Fig. 6.11, the first number in each parenthesis means the interpolation order along

the frequency axis while the second number means how many recent symbols we use in the

prediction. Intuitively, in high SNR, the noise effects are small and the least squares should

have better performance. This point corresponds to our simulation results.

6.3.3 Time Averaging

As mentioned in chapter 3, within the coherent time, the channel can be regarded as nearly

time-invariant. We can mitigate noise effects by averaging the estimated channel responses

over several OFDMA symbols based on the maximum Doppler spread.

101



0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

S
E

R

Time average (4)

 

 
v=60km/hr
v=120km/hr

(a)

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

S
E

R

Time average (6)

 

 
v=60km/hr
v=120km/hr

(b)

Figure 6.12: Performance of time-averaging. (a) SER for averaging 4 symbols (b) SER for
averaging 6 symbols

Note that although the envelope of each path varies more slowly than the phase. The

phase of each path is more unpredictable over time. That is, we can not just average the

real part and imaginary part of H(k) over several OFDMA symbols. Therefore, we amend

(3.42) to

Havg(k) =
1

4
×

{
H interp

0 (k) + ||H interp
−1 (k)||]H interp

0 (k)+

||H interp
−2 (k)||]H interp

0 (k) + ||H interp
−3 (k)||]H interp

0 (k)

} (6.3)

where H interp
n (k) is the interpolated channel response at the previous nth symbol time. In

other words, we average the amplitude at each subcarrier k but force their phases equal

to that of H interp
0 (k). Fig. 6.12(a) shows the results of averaging latest 4 symbols under

3 different velocities. And Fig. 6.12(b) shows the simulation results of averaging latest 6

symbols. Because the maximum Doppler shift is not severe in each case, so the performance

is almost the same.
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6.4 OFDMA DL FUSC Channel Estimation Simula-

tion

This section shows simulation results of the OFDMA downlink FUSC system. The system

parameters are as shown in Table 6.1.

6.4.1 One-Dimensional Channel Estimators

6.4.1.1 Polynomial and Rational Function Interpolation Results

Fig. 6.13 shows the simulation results of polynomial interpolation. To verify its consistency

on all used subcarriers, Fig. 6.14 shows the MSE and SER distribution situation over the 1703

used subcarriers. It shows a fact that the lower channel gain will cause worst performance in

accordance with our knowledge. The worst subcarrier index is about 500 and best subcarrier

is about 1100. Fig. 6.15 indicates that the simulation results does not differ much at worst

and best subcarriers

As for the rational function interpolation, the results are shown in Fig. 6.16. Here, we

let µ = 0 and ν = 1 in (3.17). It can be seen that the performance of rational function

interpolation is much worse than that of polynomial interpolation. Also it can be seen that

the curve of the channel gain in Fig. 6.14 is not suitable for rational interpolation.

6.4.2 Adaptive Channel Estimators

In the discussion of OFDMA downlink PUSC simulation, we have shown that it is hard to

model the channel time variations via interpolation or prediction. In the following simulation,

we apply normalized least mean square (NLMS) algorithm to track time variations.

We transmit a block starting with a preamble and followed by 10 to 20 OFDMA symbols.

First we interpolate the channel response Hpreamble(k), obtained from the preamble. Then
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Figure 6.13: OFDMA DL FUSC MSE and SER for v = 60 km/h in each modulation scheme.
(a) MSE for QPSK. (b) SER for QPSK. (c) MSE for 16QAM. (d) SER for 16QAM. (e) MSE
for 64QAM. (f) SER for 64QAM.
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Figure 6.14: MSE and SER spread over used subcarriers in QPSK at 30 dB.

we use the interpolated Hpreamble(k) to initialize NLMS algorithm. The detailed algorithms

are given in (3.46) and (3.49).

Figs. 6.17 and 6.18 show the simulation results of NLMS based on equalization and

channel estimation respectively. We may conclude that the NLMS tracking ability on time

variations is very limited.
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Figure 6.15: Performance at worst and best subcarriers. (a) MSE. (b) SER.
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Figure 6.16: Performance of rational function interpolation. (a) MSE. (b) SER.

6.4.3 The Maximum Likelihood Channel Estimator

As described before, in MLE, the channel impulse response is viewed as a deterministic

but unknown vector and no information on the channel statistics or the operating SNR is

required. The MSE and SER based on MLE are as illustrated in Fig. 6.19. The solid lines in

these figures denote results from 64-bit (double-precision) floating-point computation while
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Figure 6.17: NLMS performance based on equalization. (a) MSE for QPSK. (b) SER for
QPSK.
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Figure 6.18: NLMS performance based on channel estimation. (a) MSE for QPSK. (b) SER
for QPSK.

the dashed lines denote results from 32-bit (single-precision) floating point computation. It

seems that the performance of MLE depends heavily on computational precision.

Let us review the mathematical expression of MLE in (3.27). In addition to many

element-by-element multiplications, there needs a matrix inversion in this equation. Usually,
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matrix inversions have serious accuracy problems due to error propagation. Even with the

use of some techniques of pivoting, matrix inversion is still a time-consuming and precision-

dependent work. Furthermore, the matrix to be inverted is close to being singular when the

cyclic prefix is lengthened or the pilot locations are not carefully selected.

Fig. 6.20 illustrates the eigenvalue spread of matrix D in (3.27). It shows that the eigen-

value spread increases exponentially as the CP is lengthened. In our simulation program,

the available CP length is 32 or 64. The CP length greater than or equal to 128 will cause

singularity problem.

6.4.4 Joint Channel Estimation and Symbol Detection

The simulation flow of joint channel estimation and symbol detection (JCESD) has been

shown in Fig. 3.5. Fig. 6.21 shows the MSE and SER of JCESD (with one time iteration)

compared with MLE. It can be seen that the performance of JCESD is slightly better than

that of MLE. This is because that in addition to pilots, we also use the channel response at

data subcarriers. Especially at higher SNR, the data subcarriers are less susceptible to noise

and thus contribute more reliable channel response estimation.

As for the MSE discrepancy between QPSK, 16QAM and 64QAM, this results from

different power level of data symbols. Fig. 6.21(a) only shows results on average. In fact,

QPSK data symbols have equal power, i.e., noise has equal impact on these symbols. On

the contrary, the power levels of 16QAM or 64QAM data symbols differ. Hence, some

data symbols with smaller power will yield less reliable channel response estimation. The

simulation corresponds to our expectation. JCESD improves QPSK much, then 16QAM,

and 64QAM least. A main difference between MLE and JCESD is that JCESD utilize both

data and pilot subcarriers while MLE only use pilot subcarriers. Hence, JCESD has better

performance than MLE.
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Figure 6.19: Maximum likelihood channel estimators for different computational precision.
(a) MSE. (b) SER.
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Figure 6.20: Eigenvalue spread of the matrix D in (3.27).

Fig. 6.22 shows results for different number of JCESD iterations. It shows that one time

iteration is enough and two or more iterations do not improve further. In fact, more iterations

will cause worst performance at lower SNR. This is because data symbols are easily smeared

by noise at low SNR. This effect can be worse due to hard decision and hence contribute

to unreliable channel estimation. Thus the performance at low SNR may be worse after

JCESD.

110



0 10 20 30 40 50
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

M
S

E

ML versus JCESD

 

 
OPSK−MLE
16QAM−MLE
64QAM−MLE
QPSK−JCESD(1)
16QAM−JCESD(1)
64QAM−JCESD(1)

(a)

0 10 20 30 40 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

S
E

R

ML versus JCESD

 

 

OPSK−MLE
16QAM−MLE
64QAM−MLE
QPSK−JCESD(1)
16QAM−JCESD(1)
64QAM−JCESD(1)

(b)

Figure 6.21: Maximum likelihood versus joint channel estimation and symbol detection. (a)
MSE. (b) SER.
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Figure 6.22: Performance of JCESD with different number of iterations. (a) MSE. (b) SER.

6.5 Overall Performance Comparison

6.5.1 PUSC Mode Versus FUSC Mode

Intuitively, FUSC mode uses more pilots than PUSC mode and should have better per-

formance. This point corresponds to our simulation results (1D second-order interpolation
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)shown in Fig. 6.23. Another reason is that when we do second-order interpolation, we need

three estimated pilots and each cluster in PUSC mode contains only two pilots. It means

that the remaining one pilot must be referred to another cluster which may be at a distance

in frequency bands (because clusters in PUSC mode are distributive in available frequency

bands).

6.5.2 Comparison Between Channel Estimation Techniques

We have shown many simulation results of many kinds of channel estimation techniques.

Here we give an overall comparison in Fig. 6.24. The JCESD has the best performance and

is followed by, MLE, 1D interpolation, 2D least squares, 2D interpolation and time averaging.
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Figure 6.23: PUSC mode versus FUSC mode (1D-2nd interpolation). (a) MSE. (b) SER.
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Figure 6.24: Comparison of channel estimation techniques. (a) MSE. (b) SER.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented several channel estimation techniques and applied them on

OFDM uplink and OFDMA downlink. In OFDM uplink simulation, we used sample-spaced

static multipath channels and in OFDMA downlink simulation, we adopted nonsample-

spaced time-varying multipath channels. To do the channel estimation, first, we used LS

estimator to estimated the channel frequency response on the pilot subcarriers. Second,

interpolations or MLE were used to get a rough channel estimation. Third, we combined the

rough estimation with some time domain information or did channel estimation and symbol

detection iteratively.

In the case of OFDM uplink, it showed that with adroit manipulation of preambles and

pilots, simple linear and second-order interpolation is good enough and their performance is

acceptable.

In the case of OFDMA downlink, one-dimensional interpolation performed well and had

no discrepancy under different velocities. In two-dimensional channel estimation, we wanted

to use interpolation, linear prediction or NLMS to track the channel time variations. How-

ever, from our simulation, it seemed that intending to model the time variation is not a good
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idea. Maximum likelihood estimator was a good one because of its excellent performance.

Nevertheless, it needed great computational precision and had matrix inversion problem,

such like singularity and error propagation. Despite this, MLE was suitable for use with

delicate manipulation. We could pre-compute the matrix with high precision and store it

in the memory or a file. The joint channel estimation and symbol detection had the best

performance but time-consuming. Just as its name suggested, we did channel estimation and

symbol detection iteratively. But two or more times iteration did not give us any promising

improvement. From our simulation, we suggested only doing JCESD one time.

As for the DSP implementation, we only implemented OFDMA uplink on TI’s board. To

achieve the real-time channel estimation, we replaced all operations into 16-bit fixed point

operation. As shown in Table 5.4, the real-time goal was not yet completed and there was

still much room to improvement.

7.2 Potential Future Work

The following work will emphasis on the DSP implementation and better estimation tech-

niques. These tasks include the following:

• Implement OFDMA DL PUSC and OFDMA DL FUSC on DSP board.

• The interpolation can be accelerated by loading the pre-computed coefficient matrix

from a file rather than direct computation.

• The matrix in MLE is constructed by adopting all pilots (e.g., 166 in OFDMA DL

FUSC). The matrix can be shrinked while maintaining non-singularity by careful se-

lection of pilots.

• The performance of joint channel estimation and symbol detection can be still boosted
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by excluding those subcarriers whose channel gain are relatively low, that is, susceptible

to noise. All we have to do is to observe the histogram like Fig. 6.14 and only use those

better subcarriers.

• In this thesis, we do not consider the influence of intercarrier interference (ICI). The

ICI simulation can be involved in the future.
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