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Abstract

Multicarrier modulation, in particular orthogonal frequency division
multiplexing (OFDM), has been successfully applied to a wide variety of digital
communications applications over the past several years. One of the main reason to
use OFDM s to increase the robustness against frequency selective fading and
narrowband interference. In a single carrier system, a single fade or interference can
cause the entire link to fail, but in a multicarrier system, only a small percentage of
subcarriers will affected. We focus on the OFDM uplink and OFDMA downlink
channel estimation based on IEEE 802.16e. Also, we use digital signal processor to
implement OFDM uplink channel estimation schemes. The digital signal processing
environment is Innovative Integration’s Quixote personal computer card, which hosts

Texas Instruments” TMS320C6416 which is a powerful signal processor with strong



arithmetic operation capability.

The channel estimation scheme can be separated into two stages. In the first
stage, we use LS estimator for estimations of pilot subcarriers because of its low
computational complexity. We study polynomial interpolations and cubic spline
interpolations in frequency domain, NLMS adaptation algorithm, least squares in time
domain, two-dimensional interpolations in time domain and maximum likelihood
estimation. Finally, we did joint channel estimation and symbol detection to get better
performance. Also we verify our simulation model on AWGN channel and then did
the simulation on both static and time-variant fading channels.

As for the DSP implementation, combination of linear interpolation and 2D
interpolation are chosen due to computational complexity. In order to increase the
efficiency, we also rewrite the original floating-point C program to fixed-point version
and further refine our codes by taking into account the features of the DSP chip.

In this thesis, we first introduce.to-standard of the IEEE 802.16e OFDM uplink
and OFDMA downlink. Second, “we:describe ‘the channel estimation techniques.
Then the DSP implementation environment will be introduced. Finally, we discuss the

channel estimation performance and the DSP implementation results.
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Chapter 1

Introduction

Oncoming technologies such as WiFi and WiMAX are changing wireless communication.
The demand for high data rate transmission and multimedia type traffic grows rapidly.
Due to its inherent advantages in high-speed communication, orthogonal frequency division
multiplexing (OFDM) has become theichoice for @ number of high wireless systems (e.g.,

DVB-T, WiFi, WiMAX).

OFDM system transmits data using, a set of parallel low bandwidth subcarriers. The
subcarriers are independent from each:other even though their spectra overlap, which results
in its bandwidth efficiency and resistance to the ICI (inter-carrier interference) effect. And
due to the low bandwidth of subcarriers, each subcarrier can avoid worse subchannels. Thus
ISI (inter-symbol-interference) is also reduced. High data rate systems are also achieved by
using a large number of carriers. OFDM can be easily generated using an inverse fast Fourier

transform (IFFT) and received using a fast Fourier transform (FFT).

The TIEEE 802.16 standard committee has developed a group of standards for wireless
metropolitan area networks (MANs). The original 802.16 standard specifies the air interface
for fixed broadband wireless access systems supporting multimedia services. The medium

access control layer (MAC) supports a primarily point-to-multipoint architecture, with an



optional mesh topology. The MAC is structured to support multiple physical layer (PHY)
specifications, each suited to a particular operational environment. For operational frequen-
cies from 10-66 GHz, the WirelessMAN-SC PHY, based on single-carrier modulation, is
specified. For frequencies below 11 GHz, where propagation without a direct line of sight
must be accommodated, three alternatives are provided in the later 802.16a: WirelessMAN-
OFDM (using orthogonal frequency-division multiplexing), WirelessMAN-OFDMA (using
orthogonal frequency-division multiple access), and WirelessMAN-SCa (using single-carrier

modulation).

IEEE 802.16 has developed the IEEE Standard 802.16-2004 for broadband wireless access
systems, which provides a variety of services to fixed outdoor as well as nomadic indoor
users. Work is underway on a mobile extension, referred to as Project 802.16e, supporting

new capabilities needed for the mobile environment. The object of this thesis focus on the

channel estimation part for WirelessMAN-OEDM and' WirelessMAN-OFDMA.

This thesis is organized as follows. “First, in‘chapter 2, we introduce some OFDM basics
together with the IEEE 802.16e OFDM uplink-and OFDMA downlink standard. In chapter
3, the various channel estimation technicues-are introduced. In chapter 4, we describe the
implementation platform, which consists of Texas Instrument’s TMS320C6416 digital signal
processor (DSP) on a ¢PCI board named Quixote made by Innovative Integration. Then in
chapter 5, we discuss the performance of channel estimation methods of OFDM uplink and
some DSP implementation issues. The simulation results of OFDMA downlink will be left

to chapter 6. At last, we give the conclusion and discuss potential future work in chapter 7.



Chapter 2

Introduction to IEEE802.16e OFDM
and OFDMA

This chapter presents a brief overview of the OFDM and the OFDMA techniques for mul-

ticarrier modulation. The OFDM uplink and OFDMA downlink specifications of IEEE

802.16e are also introduced.

2.1 Basics of OFDM and OFDMA

The basic idea of OFDM-like or OFDMA-like system is to split the data stream into several
parallel streams, each transmitted on a separate subcarrier. Moreover, these subcarriers
are made orthogonal is to allow spectral overlapping and better spectral efficiency can be

achieved. Material in this section is taken from [1], [2] and [3].

Figure 2.1 shows the block diagram of a simplex transmission system using OFDM. The

three main principles incorporated are as follows:

1. The IDFT and the DFT are used for modulating and demodulating the data constel-
lations on the orthogonal subcarriers. These signal processing algorithms replace the

banks of I/Q-modulators and demodulators that would otherwise be required. Usually,



N is taken as an integer power of two, enabling the application of the efficient FFT

algorithms for modulation and demodulation.

2. The second key principle is the introduction of a cyclic prefix, whose length should ex-
ceed the maximum excess delay of the multipath propagation channel. Due to the cyclic
prefix, the transmitted signal becomes periodic, and the effect of the time-dispersive
multipath channel is equivalent to a cyclic convolution, after discarding the cyclic pre-
fix at the receiver. Owing to the properties of the cyclic convolution, the effect of the
multipath channel is limited to a pointwise multiplication of the data constellations
by the channel transfer function. The only drawback of this principle is a slight loss
of effective transmit power. The equalization (symbol demapping) required for detect-
ing the data constellations (when there is no error control coding) is an elementwise
multiplication of the DFT output.by 'théfinverse of the estimated channel transfer

function.

3. FEC (forward error control) “eoding and interleaving are usually also applied. The
frequency-selective radio channel may severely attenuate the data symbols transmitted
on one or several subcarriers. Spreading the coded bits over the bandwidth, an efficient
coding scheme can correct the erroneous bits and hence exploit the frequency diversity.
Synchronization is a key issue in the design of a robust OFDM receiver. Time and
frequency synchronization are paramount to identify the start of the OFDM symbol

and to align local oscillator frequencies.

2.1.1 The OFDM Principle

For multicarrier modulation, the available bandwidth W is divided into a number N, of

subbands, commonly called subcarriers, each of width Af = W/N.. The subdivision of the
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Figure 2.1: OFDM system block diagram (from [2]).

bandwidth is illustrated in Fig. 2.2, where arrows represent the different subcarriers. Instead
of transmitting the data symbols in a serial way, at a baud rate R, a multicarrier transmitter
partitions the data stream into blocks of NV, data symbols that are transmitted in parallel by

modulating the N, carriers. The symbgl duration fér a multicarrier scheme is Ty = N../R.

As shown in Fig. 2.3, the general form of the multicarrier signal can be written as a set

of modulated carriers:

s) = YLD ruihllt — mT,) 2.1)
m=—oco k=0

where zy,,,, is the data symbol modulating the Ath subcarrier in the mth signalling interval

and 1, is the waveform for the kth subcarrier.

The symbol duration can be made long compared to the maximum excess delay of the
channel, Ty, > 7,42, or by choosing N, sufficiently high. At the same time, the band-
width of the subbands can be made small to reduce the coherence bandwidth of the channel
(Beon > W/N.). The subbands then experience flat fading, which reduces equalization to a
signal complex multiplication per carrier. Hence, increasing N, reduces the ISI (intersymbol

interference) effects.

However, the performance in time-variant channels is degraded by long symbols. If the
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Figure 2.3: Multicarrier-modulation (from [3]).

coherence time T, of the channel is small compared to T}, the channel frequency response
changes significantly during the transmission of one symbol. As a result, the coherence time
of the channel defines an upper bound for the number of subcarriers. Together with the

condition for flat fading within the subbands, a reasonable range for N, is given by

< N, < RTop. (2.2)

B coh

To assure a high spectral efficiency, the subchannel waveforms have overlapping transmit
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Figure 2.4: Spectrum of an OFDM signal (from [3]).

spectra. A general set of orthogonal waveforms is given by:

—L ekt t €0,
t _ \/rITs b Y Sl 23
Vi(?) { 0, otherwise, (23)
where wy, = wo + kws and £k =0,1,..., N. — 1. Here f; = wy/27 is the subcarrier frequency

and fy = wo/2m is the lowest frequency, used (k= 0). The spacing between the adjacent
subcarriers equals Af = w,/2m = W{N,, Sinéé the waveform 1 (t) is restricted to the time

window [0, T§], the intercarrier spacing must also’satisfy A f = 1/7; = R/N.. The windowing

sinr f Ts )"

results in a convolution with T} - exp(—jat fIg) =5 fr

in the frequency domain. How the

subbands overlap is shown in Fig. 2.4.

2.1.2 Cyclic Prefix

As mentioned, to overcome the ISI and ICI (interchannel interference) problem, the cyclic
prefix (CP) is introduced. A cyclic prefix is a copy of the last part of the OFDM symbol (see
Fig. 2.5). The cyclic prefix should be at least as long as the significant part of the channel
impulse response. The benefit of the CP is twofold. First, it avoids ISI because it acts as
a guard space between successive symbols. Second, it also converts the linear convolution

with channel impulse response into a cyclic convolution. However, the transmitted energy
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Figure 2.5: Cyclic prefix (form [3]).

increases with the length of the CP. The SNR loss is given by

T
SN Riges = —1010g (1 — 72). (2.4)

s

2.1.3 Discrete-Time Equivalent System Model

The discete-time baseband equivalent modeliig'shown in Fig. 2.6. In the transmitter, the data
stream is grouped in blocks of N, data symbaels. These groups are called OFDM symbols and
can be represented by a vector z,, = [Tom @1 * Tn=1m)’ .- Then an IDFT is performed
on each data symbol block, and a cyelic prefixioflength N, is added. The resulting complex

baseband discrete time signal of mth OFDM-symbel can be written as

Ne—1
1 j2mk(n—Ne¢p)/Ne : o
sm(n) =4 kgo Tk me p)Neif o€ [0, N, + Ngp — 1], (2.5)
0, otherwise.

The complete time signal s(n) is given by the concatenation of all OFDM symbols that

are transmitted:

s(n) = Z Sm(n —m(N. + Nep)). (2.6)

m=0

Here we assume that

e The channel fading is slow enough to consider it constant during one OFDM symbol.

e The transmitter and receiver are perfectly synchronized.

8
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Figure 2.6: Discrete-time baseband equivalent model (from [3]).

e The CP is sufficiently long to accommodate the channel impulse response.

We can then write
Nep—1

r(n) = h(n)s(n —n) + n(n). (2.7)

n=0
In the receiver, the incoming sequence is. §plitdinto blocks and the cyclic prefix associated
with each clock is removed. This resultsin a veetor r, = {r(z,) r(zm+1) - - r(zn+N.—1)]7,

with z,, = m(N. + Ng,) + N,p. Performing DETon 7,4, yields

Ne+1
Yo = Y 7(Zm + n)e 72mhm/Ne, (2.8)
n=0

Substituting r(n) in (2.7) into (2.8) gives

Ne—1  Nep—1 Nc—1
Y = D { >~ h(m)sw(Nep+1 - 77>] e PEmInINe Yl 4 m)e BT (2,9)
n=0 n=0 n=0
Then substituting s,,(n) in (2.5) into it yields
Ne—1 p Nep—1 1 Ne—1
Ykm = Z |: Z h(77)F Z $k7m€]27rk(n—77)/Nc:| e—d2mkn/Ne + Mo (2‘10)
n=0 n=0 ¢ k=0
Ne—1 '
where ng, = Y. n(zy, +n)e 92 n/Ne ig the kth sample of the N.-point DFT of n(z, + n).
n=0

Since n(n) is white Gaussian, ny,, is also white Gaussian.

9



Note that h(n) = 0 for all n > N, — 1. Additional swapping the two inner sums and

reordering yields

Ne—1 Ne—1 Ne—1

1 ‘ , .
Yo = D [F ( h(n)e*ﬂ”’m/m)xk,meﬂ“’m/m]e*ﬂ”’m/Nc . (2.11)
n=0 ¢ k=0 n=0
R IDFT B
DFT

The first part of this expression consists of an IDFT operation nested in a DFT operation.
The inner sum is the kth sample of the N.-point DET of h(n), or hgy. The equation hence
translates into

Ykm = MiZrem + M- (2.12)

This equation demonstrates that the received data symbol y,, on each subcarrier k
equals the data symbol zj,,, multiplied by the corresponding frequency-domain channel

coefficient hy, in addition to the transformed noise s, .

For a more compact notation, & matrix equivalent is often used. For a single OFDM
symbol, it equals

ym = Hoxpn+n, = diag(H) - x,, + ny, (2.13)

where o denotes the element-wise product, diag(H) is the diagonal matrix of the elements of

H yn,= [yO,m Yim * chfl,m]Ta n, = [nO,m Nim " nchl,m]T and H = [ho hy --- thfl]T-

2.2 Generic OFDM and OFDMA Symbol Description
for IEEE 802.16e

2.2.1 Time Domain Description

IDFT creates the OFDM symbol waveforms. The time duration of each OFDM symbol is
referred to as the useful symbol time 7. A copy of the last T, of the useful symbol period
is made the CP (see Fig. 2.5). The CP overhead and resultant SNR loss can be reduced

10
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Figure 2.7: OFDM frequency description (from [4]).

by increasing the FFT size, which would however, among other things, adversely affect the
sensitivity of the system to phase noise of the oscillators. Using a cyclic extension, the
samples required for performing the FFT at the receiver can be taken anywhere over the
length of the extended symbol. This provides multipath immunity as well as a tolerance for

symbol time synchronization errors.

2.2.2 Frequency Domain Description

An OFDM (see Fig. 2.7) or OFDMA (see Fig. 2:8) symbol is made up from several carrier

types:

e Data carriers: For data transmission.
e Pilot carriers: For various estimation purposes.

e Null carriers: No transmission ar all, for guard bands, non-active subcarriers and the

DC subcarrier.

2.2.3 Primitive Parameters
Four primitive parameters characterize the OFDM and the OFDMA symbols:

e BW: The nominal channel bandwidth.

11
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Figure 2.8: OFDMA frequency description (from [4]).

® N,seq: Number of used subcarriers.

e n: Sampling factor. This parameter, in conjunction with BW and N,.q, determines

the subcarrier spacing and the useful symbol time.

e (: This is the ratio of CP time to “useful” time, i.e., Tp,/Ts.

2.2.4 Derived Parameters

The following parameters are defined in terms-6f the primitive parameters.

e Nppr: Smallest power of two greater than Nyssq.

e Sampling frequency: F, = floor(n-BW/8000) x 8000.
e Subcarrier spacing: Af = Fy/Nppr.

e Useful symbol time: Ty = 1/Af.

o CP time: T,, = G x T}.

e OFDM or OFDMA symbol time: T' = T 4 T,.

e Sampling time: Ty/Nppr.

12
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2.3 OFDM Uplink Specifications in IEEE 802.16e

This section introduces the IEEE 802.16e OFDM uplink (UL) standard. The material is
mainly taken from [4] and [5]. The parameters are given in Table 2.1. Note that Table 2.1
also indicates the pilot locations and the subchannelization method which will not be detailed

later.

2.3.1 OFDM UL Preamble Structure and Modulation

In the uplink, the data preamble is-as shown in Eig. 2.9. It consists of one OFDM symbol
utilizing only even subcarriers. The time domain waveform consists of 2 times 128 samples

preceded by a CP. The subcarrier values shall be set as

V2 Parr(k), kmod2=0,

Peven(k) = { 0 k mod 2 % 0 (2.14)

13



Table 2.1: OFDM Symbol Parameters (from [4])

Parameter

Value

256

200

For channel bandwidths that are a
multiple of 1.75 MHz then n = 8/7

else for channel bandwidths that are a
multiple of 1.5 MHz then n = 86/75
else for channel bandwidths that are a
multiple of 1.25 MHz then n = 144/125
else for channel bandwidths that are a
multiple of 2.75 MHz then n = 316/275
else for channel bandwidths that are a
multiple of 2.0 MHz then n = 57/50
else for channel bandwidths not
otherwise specified then n = 8/7

G

1/4. 1/8. 1/16, 1/32

Number of lower frequency guard subcarners

Number of higher frequency guard subcarriers

Frequency offset mdices of guard subcarriers

-128-127...-101
+101,+102,...,127

Frequency offset mdices of pilot carriers

—88,-63,38-13.13.38.63.88

Subchannel Index:

0b00100: [
l

[ obo10o0:

[
0b01100: |
l

0b10000: <

0b10100:

—

\ 0b11000:

0b11100:

—

0b00010:

0b00110:

0b01010:

0b01110:

0b10010:

0b10110:

0b11010:

Obl1110:

[ 0b000OL:

l 0b00011:
|' 0b00101:

| oboo111-
. 0b01001-

|
| oboto11:
[ 0bO1101:

| obo1111-
 0b10001:
'l

0b10011:
|' 0b10101:

| obro111-
© 0b11001:

|

| obrio11:
( Obi1101:
l

Ob11111:

Allocated Frequency offset indices of
subcarriers:

{-100:-98, -37:-35_ 1:3. 64:66]
{38}

{-97:-95, -34:-32, 4:6, 67:69}
{-94:-92, =31:=29. 7:9, 70:72}
{13}

{-91-—89, —28:-26. 10:12. 73:75}
{-87-85. —50:—48. 14:16. 51:53}
{-88}

{—84.-82. 47:45,17: 19, 534
{-81:—79, —44:-42 20:22_ 57:
{63}

{—78:—76, —41:-39, 23:25_ 60:62}
{~75:=73,-12:-10. 26:28. §9:91}
{13}

{-72:-70.-9: -7.29:31, 92:94}
{-69:—67. —6: —4. 32:34, 95:97}
{38}

{-66:—64, —3: 1. 35:37, 98:100}
{-62:—60, =25:=23, 39:41. 76:78}
{63}

{-59:—57. —22:-20. 42:44. 7981}
{5634, —19:—17. 45:47_ 82:84}
{88}

{-53:-51, -16:-14, 48:50, 85:87}

h

6}
9%

L

Note that pilot subcarriers are allocated
only if two or more subchannels are
allocated.

14




where

Parr(—100:100) ={1 — 5,1 —j,—1—4, 1+ 751 —41—4 —1+751—41—7
1—3,1+5,-1—-31+414+5,-1—-4514+75,-1—g5,—-1—35,1—45,-1+j5,1—7,
l1—y,-1—-951+45,1=-351—-3,-1+351—-351—-35,1—-3514+75-1—-75147,
147, -1—-51+4,-1—-3,—-1—351—-3,—-14751—-731—35,-1—751+45,1—7,
1—g3,—14+531—-31—-41—4,14+75,—-1—4514+751+5,-1—731+j,—-1—7,
— 11— 1=, -1+4314+73147531—45-147514+7514+75-1—7514+71+7,
145, -1431—45, 145, —-1+731—45, -1+ 1—51—41+75—-1—4,—1—7,
—-1-3-14+351-3-1-35,-1-414+5,-1—-45,-1—35,-1—-351—-7 —147,
1-93,1—-4,-14+31—-4,-1+4,-1+7,-1—-735,1+70,-1—71+j,—-1+7,
1475 -1=-51+51+514+75—-1=41+71—751—451—45—-1+j -1+
-1+, -14+51—-y4-1—4, & =4, =bs4y1=51+51+5-1+751—-71—7,
1—g3,—-14+751—-45,-1—73, -1 =g, —1—gl4+5+51+514+75-1—73,—-1+7,
—1451+5,-1—751—7 1% eialll 41 — 5 —1—51+45,—-1—7 —14 7,
—1+5,-14+51-451—-51—-31=5-1I+51+5,1+5,-1—-45,1+75, -1+,
-1+ -1—-51+51+51+7—-1—-314+751—51—451—73—-1+75 —-1+4+7,
-1+ -14+51—-y5,-1—-4,-1—4,1—3,—-1+4,—-1—45,—-1—35,1—73 -1+,
-1+, -14+51—-5,-1+51+5,1+51+5,-1—-35,-1—45,-1—35,-1—73,1+7,

2.3.2 OFDM UL Pilot Modulation

Pilot subcarriers shall be inserted into each data burst in order to constitute the symbol.

The PRBS (pseudo-random binary sequence) generator depicted in Fig. 2.10 shall be used

15
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Figure 2.10: PRBS for pilot modulation (from [4]).

to produce a sequence, wj. The polynomial for the PRBS generator is X' 4+ X9 4 1.

The initialization sequence shown in Figs2.10 shall be used on the downlink (DL) and
uplink. The value of the pilot modulation for-QFBM symbol k is derived from wj. On both
uplink and downlink, the first symboliof the preamble is denoted by £ = 0. For each pilot,
the BPSK modulation shall be as follows:

DL : C_gg8 — C_38 — Cg3z — Cg’y — 1-— 2wk and C.g3 — C_13 — C13 = C38 — 1-— 2@]@, (215)

UL : C_gg — C_38 = C13 = (C38 = Cg3z — (Cgg — 1-— 2wk and C_g3 = C_13 = 1-— 2wk (216)
2.3.3 OFDM UL Data Modulation

The OFDM data modulation schemes are shown in Fig. 2.11. The data bits are entered
serially to the constellation mapper. BPSK, Gray-mapped QPSK, Gray-mapped 16QAM
and Gray-mapped 64QAM must be supported. The indicated factor ¢ is used to achieve

equal average power.

The constellation-mapped data shall be subsequently modulated onto all allocated data

subcarriers in order of increasing frequency offset index. The first symbol out of the data

16
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Figure 2.11: BPSK, QPSK, 16QAM and 64QAM constellations (from [4]).

constellation mapping shall be modulatedonto the allocated subcarrier with the lowest

frequency offset index.

2.4 OFDMA Downlink Specifications in IEEE 802.16e

This section briefs the IEEE 802.16e OFDMA downlink standard. Both the PUSC (Partial
Usage of SubChannels) and FUSC (Full Usage of SubChannels) are introduced. The material

is mainly taken from [4] and [5].

2.4.1 Definition of OFDMA Basic Terms

In OFDMA, a slot in the OFDMA PHY is a two-dimensional entity spanning both a time

and a subchannel dimension. It is the minimum possible data allocation unit.

17



e For downlink FUSC, one slot is one subchannel by one OFDMA symbol.

e For downlink PUSC, one slot is one subchannel by two OFDMA symbols.

A Data Region is a two-dimensional allocation of a group of contiguous subchannels, in a
group of contiguous OFDMA symbols; a segment is a subdivision of the set of available

OFDMA subchannels.

The downlink data mapping rules are as follows:

1. Segment the data after the modulation block into blocks sized to fit into one OFDMA

slot.

2. Each slot shall span one subchannel in the subchannel axis and one or more OFDMA
symbols in the time axis, as per thesslot definition mentioned before. Map the slots
such that the lowest numbered slot oécupiés. the: lowest numbered subchannel in the

lowest numbered OFDMA symbol.

3. Continue the mapping such that the OFDMA subchannel index is increased. When the
edge of the Data Region is reached, ‘continue the mapping from the lowest numbered

OFDMA subchannel in the next available symbol.

Figure 2.12 illustrates the order in which OFDMA slots are mapped to subchannels and
OFDMA symbols.

2.4.2 OFDMA DL Preamble Structure and Modulation

The first symbol of the downlink transmission is the preamble. There are three types of
preamble carrier-sets, which are defined by allocation of different subcarriers for each one of

them. The subcarriers are modulated using a boosted BPSK modulation with a specific PN

18
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Figure 2.12: Example of mapping OFDMA slots to subchannels and symbols in the downlink
in PUSC mode (from [5]).

(pseudo-noise) code. The PN series imodulating the preamble carrier-sets can be found in [4,
pp. 553-562]. The preamble carrier=sets are.defined as

PreambleCarrierSety. = n + 3 - k, (2.17)
where:

o PreambleCarrierSet, specifies all subcarriers allocated to the specific preamble,
e 1 is the number of the preamble carrier-set indexed 0, 1, 2,

e k is a running index 0,...,567.

Each segment uses one type of preamble out of the three sets in the following manner: The
DC carrier will not be modulated at all and the appropriate PN will be discarded. Therefore,

DC carrier shall always be zeroed. For the preamble symbol, there will be 172 guard band
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Figure 2.13: Cluster structure (from [5]).

subcarriers on both the left side and on the right side of the spectrum. Segment i uses

preamble carrier-set ¢, where ¢ = 0, 1, 2.
The pilot in downlink preamble shall be modulated as

1
R{PreamblePilotsModulated} = 4 - /2 - (5 — wy), (2.18)

S{ Preamble Pilots M odulated} = 0.

2.4.3 OFDMA DL Carrier Allocation

For both uplink and downlink in OFDMA | N, seq Subcarriers are allocated to pilot subcarriers
and data subcarriers. In the downlink, the pilot tones are allocated first; what remains are
data subcarriers, which are divided into subchannels that are used exclusively for data.
Table 2.2 summarizes the parameters of the OFDMA PUSC symbol structure and Table 2.3

the corresponding parameters of OFDMA FUSC.

2.4.3.1 PUSC DL

The OFDMA symbol structure is constructed using pilots, data and zero subcarriers. The
symbol is first divided into basic clusters and zero carriers are allocated. Pilots and data
carriers are allocated within each cluster. Figure 2.13 shows the cluster structure with

subcarriers from left to right in order of increasing subcarrier index.
The allocation of subcarriers to subchannels is performed using the following procedure:

20



Table 2.2: OFDMA DL Subcarrier Allocation under PUSC [4], [5]

Parameter \ Value \ Comments

Number of DC 1 Index 1024 (counting from 0)

subcarriers

Number of guard 184

subcarriers, left

Number of guard 183

subcarriers, right

Number of used 1681 Number of all subcarriers used within a

subcarriers (Nysed) symbol, including all possible allocated
pilots and the DC carrier

Number of subcarriers 14

per cluster

Number of clusters 120

Renumbering sequence 1 Used to renumber clusters before
allocation to subchannels:
6,108,37,81,31,100,42,116,32,107,30,93,54,78,
10,75,50,111,58,106,23,105,16,117,39,95,7,
115,25,.19,53,71,22,98,28,79,17,63,27,72,29,
86,5,101,49,104,9,68,1,73,36,74,43,62,20,84,
52,64,34,60,66,48,97,21,91,40,102,56,92,47,
90,33;114,18,70,15,110,51,118,46,83,45,76,57,
99,35,67,55,85,59,113,11,82,38,88,19,77,3,87,
12,89,26.65,41,109,44,69,8,61,13,96,14,103,2,
80,24,112.,4,94.0

Number of data 24

subcarriers in each

symbol per subchannel

Number of subchannels 60

Basic permutation 12 6,9,4,8,10,11,5,2,7,3,1,0

sequence 12 (for 12

subchannels)

Basic permutation 8 7,4,0,2,1,5,3,6

sequence 8 (for 8

subchannels)

1) Dividing the subcarriers into the number (Ngysers) of physical clusters containing 14

adjacent subcarriers each (starting from carrier 0).
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2) Renumbering the physical clusters into logical clusters using the following formula:

LogicalCluster

RenumberingSequence( Physical Cluster), first DL zone,
= RenumberingSequence((PhysicalC’luster—l—
13- DL_PermBase)mod Nclusms), otherwise.

3) Dividing the clusters into six major groups. Group 0 includes clusters 0-23, group 1
clusters 24-39, group 2 clusters 40-63, group 3 clusters 64-79, group 4 clusters 80—
103 and group 5 clusters 104-119. These groups may be allocated to segments. If a
segment is being used, then at least one group shall be allocated to it. (By default

group 0 is allocated to sector 0, group 2 to sector 1, and group 4 to sector 2).

4) Allocating subcarriers to subchannels in each major group as

ScharTier(ka 3) = Nsubchannels Nk + {ps [nk mod Nsubchannels]+

DI PermBase } mod Nubchannels-
where:

e subcarrier(k,s) is the subcarrier index of subcarrier k in subchannel s;
® N = (k +13- S)mOd Nsubcarriers;

® Ngubchanners 18 the number of subchannels (for PUSC use number of subchannels

in the currently partitioned group);

e ps[j] is the series obtained by rotating basic permutation sequence cyclically to

the left s times;

® Noubcarriers 18 the number of data subcarriers allocated to a subchannel in each

OFDMA symbol;

e DL _PermBase is an integer from 0 to 31.
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2.4.3.2 FUSC DL

In comparison with PUSC, the subcarrier allocation and subchannelization methods for
FUSC are much simpler. For data subcarrier allocation and subchannelization, use the
parameters listed in Table 2.3 and apply the same carrier allocation procedures mentioned

in PUSC part. As for pilot allocation, use

PilotsLocation = [VariableSet#x + 6 - (FUSC_Symbol Number mod 2)]

UConstantSet#0 U ConstantSet#1.

2.4.4 OFDMA DL Pilot Modulation

In OFDMA, the polynomial for PRBS generator istX ! + X + 1, which is the same as that
in OFDM system. However, in this case, the mitialization vector used to generate wy shall
refer to the MAC layer and is not introduced here. The interested reader can get detailed

information from [5, pp. 631-632].

In both FUSC and PUSC modes, each pilot 'shall be transmitted with a boosting of 2.5
dB over the average non-boosted power of each data tone. The pilot subcarriers shall be

modulated according to as

8
3°2 (2.19)
0

2.4.5 OFDMA DL Data Modulation

As shown in Fig. 2.11, in the OFDMA system, the data bits are entered serially to the
constellation mapper. Gray-mapped QPSK and Gray-mapped 16QAM shall be supported,

whereas the support of 64QAM (also Gray-mapped) is optional and BPSK is not supported.
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Table 2.3: OFDMA DL Subcarrier Allocation under FUSC [4], [5]

Parameter \ Value \ Comments
Number if DC 1 Index 1024 (counting from 0)
subcarriers
Number of Guard 173
subcarriers, Left
Number of Guard 172
subcarriers, Right
Number of used 1703 | Number of all subcarriers used within a symbol,
subcarriers (Nyseq) including all possible allocated pilots and the DC
carrier
Pilots
VariableSet #0 71 0,72,144,216,288,360,432,504,576,648,720,792,864,

936,1008,1080,1152,1224,1296,1368,1440,1512,1584,
1656,48,120,192,264,336,408,480,552,624,606, 768,
840,912,984,1056,1128,1200,1272,1344,1416,1488,
1560,1632,24,96,168,240,312,384,456,528,600,672,
744,816,888,960,1032,1104,1176,1248,1320,1392,
1464,1536,1608,1680

ConstantSet #0 12 [0,153,297,441.585,729,873,1017,1161,1305, 1449,
1593
VariableSet #1 71 = | 136,108,180,252;324,396,468,540,612,684,756,828,

900,972,1044,1116,1188,1260,1332,1404,1476,1548,
1620,1692,12,84,156,228,300,372,444,516,538,660,
732.804,876,948,1020,1092,1164,1236,1308,1380,
1452, 1524,1596,1668,60,132,204,276,348,420,492,
564,636,708,780,852,924,996,1068,1140,1212,1284,
1356,1428,1500,1572,1644

ConstantSet #1 12 81,225,369,513,657,801,945,1089,1233,1377,1521,
1665

Number of data 1536

subcarriers

Number of data 48

subcarriers per

subchannel

Number of sunchannels 32

Basic permutation 32 3,18,2,8,16,10,11,15,26,22,6,9,27,20,25,1,29,

sequence 7,21,5,28,31,23,17,4,24,0,13,12,19,14,30
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It is worth noting that before mapping the data to the physical subcarriers, each sub-
carrier shall be multiplied by the factor 2 x (1/2 — wy) according to the subcarrier physical

index k. This extra multiplicative factor is not used in the OFDM system.
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Chapter 3

Channel Estimation Techniques

3.1 Pilot-Symbol-Aided Channel Estimation

Channel estimators usually need some kind of pilot information as a point of reference. A
fading channel requires constant trackingssso pilet information has to be transmitted more
or less continuously. Decision-directed channel estimation can also be used. But even in
these types of schemes, pilot information has t6 be trafsmitted regularly to mitigate error

propagation [6].
3.1.1 The Least-Squares (LS) Estimator

The simplest channel estimator one can imagine consists simply in dividing the received signal
by the symbols that have been actually sent (and that are supposed to be known). Based
on a priori known data, we can estimate the channel information on pilot carriers roughly
by the least-squares (LS) estimator. An LS estimator minimizes the following squared error
[7]:

Y — HpsX||? (3.1)

where Y is the received signal and X is a priori known pilots, both in the frequency domain

and both being N x 1 vectors where N is the FFT size. I:ILS is an N x N matrix whose
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values are 0 except at pilot locations m; where ¢ =0,--- | N, — 1:

Hm(],m() O 0 O
0 Hp o, 0 0
Hps = 0 0 Hypy m 0 (3.2)
0 0 0 0
0 0 0 Hoe ity
Therefore, (3.1) can be rewritten as
[V (m) — Hyg(m)X (m)]?, for all m = m;. (3.3)

Then the estimate of pilot signals, based on only one observed OFDM symbol, is given by

Y(m)  X(m)H(m)+ N(m) N(m)

Hustm) = 05 = X = H(m) + — (3.4)

where N(m) is the complex white Gaussian noise on subcarrier m. We collect Hyg(m) into

A~

H, s, an N, x 1 vector where N, is the total number of pilots, as

A~

H,rs = [Hpis(0) Hyps(1) =+ H, 1s(N, — 1)]"
(3.5)

[ Yp(0)\ Yp(l) Yp(Np—1) ]T
Xp(0) 2 Xp(1)7 7 1 X (Np=1)

The LS estimate of H, based on one OFDM. symbol is susceptible to noise effects, and thus

an estimator better than the LS estimator is preferable.

3.1.2 The LMMSE Estimator

The minimum mean-square error (MMSE) estimate has been shown to be better than the LS
estimate for channel estimation in OFDM systems, but the major drawback of the MMSE
estimate is its high complexity. A low-rank approximation results in a linear minimum mean
squared error (LMMSE) estimator that uses the frequency-domain correlation of the channel
[8]. The linear minimum mean-square error channel estimator tries to minimize the mean

squared error between the actual and estimated channels, obtained by a linear transformation
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applied to IA{p,Ls. The mathematical representation of the LMMSE estimator on pilot signals

is

_ -1 i
p,lmmse — RHpHp,LS RHp,LSHp,LS Hp,LS

- RHpHp (RHpHp + UTZL(Xpr)_l)_lI:Ip,LS (36)

2 is the variance of the Gaussian

where H,, g is the least-square estimate of H,, in (3.5), 02

white noise, X, is the vector of transmitted signal on pilot subcarriers, and the covariance

matrices are defined by

RHpHp,LS - E{HpHgLS}v (37)
RHp,LSHp,LS = E{HP,LSHgLS}v (3'8)
Ruy,n, = E{HH}. (3.9)

Note that there is a matrix inverse inyolved in the MMSE estimator, which must be calculated
every time, and the computation of matrix inversion requires O(N;’) arithmetic operations
[9]. We also need the statistical properties of the inknown channel. Therefore, we use the LS
estimator which requires only O(N,) operations instead of the LMMSE due to the concerns

of complexity and unknown information.

3.2 One-Dimensional Channel Estimators

By one-dimensional channel estimation, we mean that we only use channel information along
the frequency domain. In other words, we use the channel information at pilot subcarriers
obtained by the LS estimator to estimate the channel information at data subcarriers via

interpolation or extrapolation. The material in this section is largely taken from [10].
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3.2.1 Polynomial Interpolation and Extrapolation

The interpolation polynomial of degree N — 1 through the N points y; = f(x1), yo =
f(z2), ..., yv = f(xy) is given by Lagrange’s classical formula as

(x —x9)(x —x3) ... (x — zN) " (x — 1) (x — z3)(x — 2N)
(x1 — z2)(x1 —23) ... (11 — N) (g — 1) (22 — x3) (T2 — TN)
(z —a1)(z — 2)(x — wN-1)

(xn — x1) (2N — 22) (TN — TN-1)

Pz = Y2

(3.10)

YN.

There are N terms, each a polynomial of degree N — 1 and each constructed to be zero at

all of the x; except one, at which it is constructed to be ;.

A better method for constructing the interpolating polynomial is Newille’s algorithm as
follows: Let P; be the value at x of the unique polynomial of degree zero passing through
the point (z1,y1); so P = y;. Likewise define Py, P, ..., Py. Now let Pj5 be the value at z
of the unique polynomial of degree one’passing thrdugh both (x1, ;) and (z2,ys). Likewise
Py3, Psy, ..., Piv—1yn. Similarly, for higher-order polynomials, compute up to P23 n, which
is the value of the unique interpolating polynomial through all N points, i.e., the desired
answer. The various Ps form a “tableau” "on the lefti lading to a single “descendent” at the

extreme right. For example, with N = 4,

Iy - y1 =1
Py
T2 ! Y2 = P Pia3
Py Prasq (3.11)
Z3: yz3 = P Pa3y
Psy
Ty ya =Dy

Neville’s algorithm is a recursive way of filling in the numbers in the tableau a column
at a time, from left to right. It is based on the relationship between a “daughter” P and its

two “parents” as

(= Zigm) Piig1)...i4m—1) + (@5 — ) Plig1)(i+2)...(i4m)

Pi(iv1)...i4m) = (3.12)

Ty — Tiym
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This recurrence works because the two parents already agree at points x;i1, ..., Titm_1-

An improvement on the recurrence (3.12) is to keep track of the small differences between

parents and daughters, namely, to define (for m = 1,2,..., N — 1),

Cm,i = ]Di...(ier) - P@'...(?Hrmfl)a
(3.13)
Dy, = ]Di...(ier) - P(i+1)...(i+m)-

Then one can easily derive from (3.12) the relations

D _ (@itme1 = 2)(Crmyir1 — D)
m+143 — Ti— T )
A i+m-+1 (314)

(l"z‘ - x)(om,i+l - Dm,i)
Ti — Titm41

Om—l—l,i -

At each level m, the Cs and Ds are the corrections that make the interpolation one order
higher. The final answer Py is equal to the sum of any y; plus a set of C's and/or Ds that

form a path through the family tree to the rightmest daughter.

Usually, linear and second-ordersinterpolations are employed due to the consideration of
complexity, as discussed in [11], [12] and|[13]:" The mathematical expression of linear and

second order interpolations are given+below.
3.2.1.1 Linear interpolation

The linear interpolation is given by

Ho(K) = Ho(m -+ 1) = (Hy(m + 1) — Hy(m)) - + Hy(m) (3.15)

where H,(k),k =0,1,---, N,, are the channel frequency responses at pilot subcarriers, L is

the distance between the two given data, that is, the pilot subcarriers spacing, and 0 <[ < L.
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3.2.1.2 Second order interpolation

The second-order interpolation is given by

H.(k) = H.(m+1)

= cH,(m—1)+4coHy(m)+ c_1Hy(m + 1) (3.16)
where ( N
ala —
(==
co=—(a—1)(a+1),
ala+1
C 1= ( 2 )7
[
o= —.
L

Other notations are the same as in linear interpolation.

3.2.2 Rational Function Interpeolation and Extrapolation

Some functions are not well approximated by polynomials, but are well approximated by
rational functions. We denote by R ¢1yii¢+m) @ rational function passing through the m+1
points (74, Y;), - - -, (Tipm, Yitm). Suppose

R/ . :Pu(x):p0+p1x++p#xu
e Qu(x) Qo+ qr+ -+ qar

(3.17)

Since there are p + v + 1 unknown ps and vs (go being arbitrary), we must have m + 1 =

pw+v+1

Rational functions are sometimes superior to polynomials because of their ability to model
functions with poles, that is, zeros of the denominator of (3.17). These poles might occur for
real values of z, if the function to be interpolated itself has poles. More often, the function
f(z) is finite for all finite real x, but has an analytic continuation with poles in the complex

x-plane. Such poles can ruin a polynomial approximation, especially those at real values of z.
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Bulirsch and Stoer found an algorithm of the Neville type which performs rational function

extrapolation on tabulated data. The algorithm is summarized by a recurrence relation:

Riiv1)...i4m) — Ri(irm—1)
(M) (1 _ Rurygrm)y R i4m-1) ) _ 1‘ (3.18)

T—Titm Reit1y...¢i4m)—Ri+1)...(i4m—1)

Riiv1)...i4m) = Bis)..(i4m) T

This recurrence generates the rational functions through m 4+ 1 points from the ones through

m and (the term R;11. (i1+m—-1)) m — 1 points. It is started with

R, =v; and R = [Riit1). (i4m) Wwith m = —1] =0.

Now, we can convert the recurrence (3.18) to one involving only the small differences

Cnyi = Ri...(i—}—m) - Ri...(i+m—1);

(3.19)
Dy = R (i+m) — B(it1)..i+m)-
Note that these satisfy the relation
Cerl,i 1 Dm+1,i = Cm,i+1 - Dm,i (320)
which is useful in proving the recurrences
D _ Cm,i—l—l(cm,i—l—l - Dm,z)
mrle ( _:C._xi )Dml - Omz 17
ool o (3.21)
(f_—mi)Dm,i(Cm,i—i—l - Dm,z) ‘
Crng1i = — w“;tlw .
(I*$i+7:z+1 ) Dm,i - Cm,i—‘rl

3.2.3 Cubic Spline Interpolation [10], [14], [15]

Cubic spline is one very effective, well-behaved, computationally efficient interpolation. The
approach is to fit cubic polynomials to adjacent pairs of points and choose the values of
the two remaining parameters associated with each polynomial such that the polynomials
covering adjacent intervals agree with one another in both slope and curvature at their

common endpoint. The cubic spline interpolation is developed in the following.
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Given a tabulated function y; = y(z;) and its second order derivative y”, i = 1,... N,
let us focus our attention on one particular interval, say between z; and z,4;. The goal of
cubic spline interpolation is to get an interpolation formula that is smooth in the first deriv-
ative and continuous in the second derivative, both within the interval and at its boundaries.

A little calculation shows that there is only one way to arrange this construction, that is,
y = Ay; + Byiy1 + cyj + Dy}, (3.22)

where A, B, C' and D are given by

A:M’ B:l—A:M,
Tj+1 — Tj Titl = T (3.23)
1 1

C7=:6(A3—'A)@%+1—'$ﬂ27 [)216(33—<B)@U+1—'Iﬂ2-

Combined with (3.23), we take the derivatives of (3.22) with respect to z, yielding
dy_yj+1—yj_3A2—1 332—1

de  Zjp — 6 A Ty T(xj“ = )Y (3.24)
for the first derivative and
d2y 1 1
J2 AT By (3.25)

for the second derivative. Since A = T at.x;, A =0-7at x;,,, while B is just the other way
around, (3.25) shows that y” is just the tabulated second derivative, and also that the second
derivative will be continuous across the boundary.

11

The only problem now is that we supposed the ¥

"’s to be known, when actually they are

not. The key idea of a cubic spline is to require the continuity of the first derivative and to

use it to get equations for the second derivatives y/'.

We set (3.24) evaluated for x = z; in the interval (z;_1,z;) equal to the same equation

evaluated for x = x; but in the interval (z;, x;41). With some arrangement, this gives, for

j=2,...,N—1,
Lj—Tj-1_p Ti+1 —Lj—1 | Lj+1 — Lj Yi+1 — Y Y —Yji—1
6 yjil 3 yj 6 A Tjyr1 — Xy Tj —Tj1 ( )
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These are N — 2 linear equations in the N unknowns v/, ¢ = 1,..., N. Therefore there is a

two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken as

boundary conditions at x; and xy. The most common ways of doing this are either

e set one or both ¢} and y4 equal to zero, giving the so-called natural cubic spline, or

e set either of ¢} and y} to some values so as to make the first derivative of the interpo-

lating function have a specified value on either or both boundaries.

3.2.4 The Maximum Likelihood Channel Estimator

As mentioned before, the LMMSE estimator exploits channel correlations in time and fre-
quency domains. It needs knowledge of,the chahnel statistics and the operating SNR. As
indicated in [8], although it can work withumismatched conditions on parameter values, its
performance degrades if the assumed Doppler-frequencies and the delay spread are smaller

than the true ones.

The LMMSE estimator regards the channel impulse response as a random vector whose
particular realization is to be estimated. On the contrary, in maximum likelihood estimation
(MLE), the channel impulse response is viewed as a deterministic but unknown vector and

no information on the channel statistics or the operating SNR is required in this scheme.

The MLE of h is give by [16]

hye = D'BYH, s (3.27)
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where D is a square matrix D = BEB whose entries are given by

[B] = @™*n/N 0<n<N,-1,0<k<L-1, (3.28)
Np—1

D] = Z eI2mn=R)im/N g < k< [—1, (3.29)
m=0

where I/JIpLS is given by (3.5), i, are pilot locations, N, is the number of pilots and L is

channel length.

Equation (3.27) indicates that MLE requires the invertibility of D. Such a condition is
met if and only if B is full rank and /N, > L. this means that the number of pilots must be

not smaller than the number of channel taps.

3.3 Two-Dimensional Channel Estimators

By two-dimensional channel estimation, we meanthat'in addition to using channel informa-
tion along the frequency domain, we also use channel information along the time domain to

get better performance.

3.3.1 Interpolation in Time Domain

Figure 3.1 shows a typical pilot pattern of OFDM symbols. Channel response is interpolated
along the time axis based on that derived along the frequency axis. The interpolation
methods are the same as that used in frequency-domain interpolation and are not detailed

here.

3.3.2 Linear Prediction [10]
We consider the problem of fitting a set of N data points (z;, ;) to a straight-line model:

y(x) = a+ bz. (3.30)
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Figure 3.1: A typical pilot pattern (from [3]).

We assume that the uncertainty o; associated with each measurement y; is known, and that

the x;’s are known exactly.
3.3.2.1 Minimizing the chi-square merit function

To measure how well the model agrées with the-data; we use the chi-square merit function,

which in this case is

X (0, 5, (u) (3.31)

O'.
i=1 v

Equation (3.31) is minimized to determine a and b. At the minimum, derivatives of x?*(a, b)

with respect to a and b vanish as

=1 (
(3.32)
Ox? N zi(y; —a — bx;)
= — = 2
0 0b Z o?

Define the following sums:

= (3.33)




least squares fit

. = c
~——— robust straight-line fit

Figure 3.2: An example where robust statistical methods are desirable (from [10]).

With these definitions (3.32) becomes

aS + bS, = Sy,
(3.34)
aSy + bSyy = Syy.

The solution of these two equationg-in two unknewns is given by

A =185 (52
Spudy = 5,5,
a = A : (3.35)
S,y — 5.9,
e

X -

which gives the solution for the best-fit model parameters a and b.
3.3.2.2 Minimizing absolute deviation
Instead of using chi-square as the merit function, consider minimizing

N
>y —a— by (3.36)
=1

This merit function is more robust, i.e., insensitive to small departures from the idealized
assumptions from which the estimator is optimized. An example where robust statistical

methods are desirable are shown in Fig. 3.2.
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The key simplification is based on the following fact: The median ¢y, of a set of number

¢; 1s also that value which minimizes the sum of the absolute deviations

> e — enl- (3.37)

i

It follows that, for fixed b, the value of a that minimizes (3.36) is
a = median{y; — bz;}. (3.38)

Employing (3.38) for the parameter b gives
N
0= Z zisgn(y; —a — bx;). (3.39)
i=1

We use these two methods to predict the channel response along the time axis (see
Fig. 3.1). Suppose this results in a predietéd ‘cliannel response Hpeqict(k) together with an
interpolated channel response (along the frequency axis) Hi,ierp(k). We combine the two

results by averaging as [Hpcdict (k) 4= Hingerp(E)1/2.

3.3.3 Time Averaging

Because we assume the noise is white Gaussian, averaging several channel responses over a
period of time can mitigate the influence of noise. Now the problem is how long the period
of time should we choose. Coherence time is a statistical measure of the time duration over
which the channel impulse response is essentially invariant, and it quantifies the similarity

of the channel response at different times.

Take OFDMA system for example. Assume the SS has a velocity of 60 km/h. The

maximum Dopper shift with a center frequency 3.5 GHz can be calculated as

fo = % — 194.44 Hz. (3.40)
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Figure 3.3: NLMS equalizer adaptation.

The corresponding coherence time can be approximately obtained as [17]

9
167 fn

e~

= 920.83 yis. (3.41)

As the considered OFDMA system operates with bandwidth 10 MHz, the symbol period is

then (2048 + 64)/ ([ 2 - 10M/8000] x 8000) = 188.57 uis. Hence, the channel response over

L920.83
188.57

= 4 symbols can be regardéd static.-| Thus:we use an averaging over 4 symbols to
reduce noise effect as

Hinterp k Hinterp L Hinterp k Hz’nterp k
Hagth) = T PRI 0) + 52

where H™¢P(k) is the interpolated channel response at the previous nth symbol time.

3.4 Adaptive Channel Estimators [18]

The LMS algorithm is the most widely used adaptive filtering algorithm in practice for its

simplicity. Meanwhile, it is stable and robust against different channel conditions.

3.4.1 Model Based on Equalization

The first approach is to model the inverse of the channel response, i.e., 1/H (k), and the signal

flow is shown in Fig. 3.3, where X is the input signal sent into the decision device, H is the
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channel frequency response, and Y is the channel output. The following equations apply to
our work. Note that for the sake of simplicity, H(n, k| n: time index, k: frequency index) is

denoted H(n) and the frequency index is ignored.

e Estimation error:

e(n) = X(n) — X(n) where X(n)=w(n)-Y(n). (3.43)

e Weights updating function:
w(n +1) = w(n) — vV|le*(n)]]. (3.44)

Hence, we get

w(n+1) = w(n)+ 2ve*(n)Y(n). (3.45)

The w(n) term is the estimated inverse of the channel frequency response. The final

LMS adaptation equation can be written as

1 ek e Y(n)
Bt 1), Hi e V) (3.46)

3.4.2 Model Based on Channel Estimation

The second approach is to model the channel response, as shown in Fig 3.4. The equation

is the same as before except that the estimation error is given by

~

e(n) =Y(n)—Y(n) where Y(n)=w(n)-X(n). (3.47)

Further derivation gives

w(n+1) = w(n) + 2ve*(n)X(n). (3.48)

Here, the w(n) is the estimated channel frequency response and the resulting NLMS

adaptation equation is
X(n)

H(n+1)=H(n e'(n)————.
(n+1) (n) +p ()HX(TLW

(3.49)
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Figure 3.4: NLMS channel estimation.

3.5 Joint Channel Estimation and Symbol Detection

Recall that in the previous chapter, we derived the equation
Y (k) = X(RIH (k) + W-(k) (3.50)

where k is the subcarrier index. Aecording to-[19] and-[20], the joint maximum likelihood

(JML) solution of X (k) and H (k) canbe obtained by

{X,I/—j} =argminp (Y|X, H) = arg { min ||V — )/(\'I/ﬂ ‘2} (3.51)
3.5.1 [Iterative Joint Maximum Likelihood Approximation

A natural way to approximate JML is to estimate alternately the channel maximizing the

conditioned likelihood
L(H|XD) x exp ( — |y - H)A((i)|‘2/c72> (3.52)

by calculating R R
HY = argmax L(H|X®)
(3.53)

= argminHY— H)A((i)HZ
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and to detect the data maximizing the conditioned likelihood
LIX|HD) x exp ( — |y = BOx]| \2/02) (3.54)

by calculating
X0+ = arg max L(X|ﬁl(i))
R (3.55)
= arg min HY — H(i)X| ‘2,

where 7 denotes the iteration counter.

3.5.2 Algorithm Summary

The algorithm is summarized as follows:

1)
Y,

7 P
Hrs ot X
p

where i is the iteration counter. Thisequation is the same as (3.5) and is repeated
here for convenience. Y, stands for the received signal at each pilot subcarrier; X,
stands for the transmitted signal at“each pilot subcarrier and is assumed known for

the receiver.

2)
Hppr.izo = (BTB) 'BTHyg 0. (3.56)
This equation is identical to (3.27).
3)
~ Y -~ .. o
=0 = = and S;_; = Hard-Decision(X;_1) (3.57)
Hprr,i=o

where Y is the received signal, that is, it includes information both on data subcarriers
and on pilot subcarriers. The data detection operations are done on each subcarrier

rather than block detection.
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~ Y
Hpsi==—. (3.58)

i—1

Note that at this moment, we have the estimated information on all used subcarriers.

5)

Hppr; = (F"F) ' F" Hyg (3.59)
where [F| = e 2™n/N () <n < Nygeg— 1, 0 < k < L — 1, with Nyeq being the
number of used subcarriers and L the channel length.

6)
~ Y -~ .. >
X = = and S; = Hard-Decision(X;). (3.60)
Hprr,i

7) Check to see if §Z = §i_1, and if not, go to step 4) to continue the iteration.

Figure 3.5 shows the flowchart of the iterative joint channel estimation and symbol de-

tection (JCESD) algorithm.
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Figure 3.5: Flowchart of the iterative joint channel estimation and symbol detection (JCESD)
algorithm.
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Chapter 4

The DSP Hardware and Associated
Software Development Environment

4.1 The TMS320C6416 DSP

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation of the
TMS320C6000 DSP devices, with a performance of up to 600 million instructions per second
(MIPS) and an efficient C compiler. “The TMS320C64x device is based on the second-
generation high-performance, very-long-instruction-word (VLIW) architecture developed by
Texas Instruments (TI). The C6416 device hasitwo high-performance embedded coproces-
sors, Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP) that sig-
nificantly speed up channel-decoding operations on-chip. But they do not apply to the work

reported in this thesis. Material in this section is mainly taken from [22].

4.1.1 Features and Options of the TMS320c64x

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units,

which are described further below. Features of C6000 devices include :

e Advanced VLIW CPU with eight functional units, including two multipliers and six
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arithmetic units:

— Executes up to eight instructions per cycle.

— Allows designers to develop highly effective RISC-like code for fast development

time.
Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in parallel.

— Reduces code size, program fetches, and power consumption.
Conditional execution of all instructions:

— Reduces costly branching.

— Increases parallelism for higher sustained: performance.
Efficient code execution on independent furictional units:

— Efficient C compiler on DSP. benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.
40-bit arithmetic options add extra precision for applications requiring it.
Saturation and normalization provide support for key arithmetic operations.

Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The additional features of C64x include:
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Figure 4.1: Block diagram of the TMS320C6416 DSP [22].

Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

Bit count and rotate hardware extends support for bit-level algorithms.

4.1.2 Central Processing Unit

The C64x CPU, shaded in Fig. 4.1, contains:
e Program fetch unit.
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e Instruction dispatch unit.

e Instruction decode unit.

e Two data paths, each with four functional units.
e (64 32-bit registers.

e Control registers.

e Control logic.

e Test, emulation, and interrupt logic.

The program fetch, instruction dispatch, and instruction decode units can deliver up to
eight 32-bit instructions to the functional units every CPU clock cycle. The processing of
instructions occurs in each of the twe'data paths (A and B), each of which contains four

functional units (.L, .S, .M, and .D);and 32 32-bit' genetal-purpose registers for the C6416.
4.1.2.1 Pipeline Structure

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve
performance. The pipeline can dispatch eight parallel instructions every cycle. These two

factors provide this flexibility:

e Control of the pipeline is simplified by eliminating pipeline interlocks.

e Increased pipelining eliminates traditional architectural bottlenecks in program fetch,

data access, and multiply operations. This provides single cycle throughput.

The pipeline phases are divided into three stages as shown in Fig. 4.2.

e Fetch has 4 phases:
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Figure 4.2: Pipeline phases of TMS320C6416 DSP [22].

— PG (program address generate): The address of the fetch packet is determined.
— PS (program address send): The address of the fetch packet is sent to memory.
— PW (program access ready wait): A program memory access is performed.

— PR (program fetch packet receive): The fatch packet is at the CPU boundary.
e Decode has two phases:

— DP (instruction dispatch): Thé next éxecute packet in the fetch packet is deter-

mined and sent to the appropriate functional units to be decoded.

— DC (instruction decode)s Instruetions are decoded in functional units.

e Execute has five phases: E1 to ES.

The pipeline operation of the C62x/C64x instructions can be categorized into seven in-
struction types. Six of these are shown in Table 4.1, which gives a mapping of operations
occurring in each execution phase for the different instruction types. The delay slots associ-

ated with each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot. For
example, a multiply instruction has one delay slot, which means that one CPU cycle elapses

before the results of the multiply are available for use by a subsequent instruction. However,
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Table 4.1: Execution Stage Length Description for Each Instruction Type [22]

Instruction Type

16 X 16 Single Cé4x
. Multiply/ Multiply
Single Cycl St Load B h
ingle Lycle C64x .M Unit ore Extensions oa ranc
Non-Multiply
Execution E1 Compute Read operands Compute  Reads oper- Compute Target-
phases result and start address ands and address code
and write to  computations start com- in PGT
register putations
E2 Compute result  Send ad- Send ad-
and write to dress and dress to
register data to memaory
memory
E3 Access Access
memory memaory
E4 Write results ~ Send data
to register back to CFU
ES Whte data
into register
Delay 0 1 ot 3 41 51

slots

results are available from other instructions finishing ‘execution during the same CPU cycle

in which the multiply is in a delay slot:
4.1.2.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four;
each functional unit in one data path is almost identical to the corresponding unit in the

other data path. The functional units are described in Table 4.2.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit to
16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four
8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on an .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
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Table 4.2: Functional Units and Operations Performed [22]

Function Unit

\ Operations

L unit (.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

.S unit (.S1, .52)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfersito/from control register file (.S2 only)
Byte shifts

Data pacKingy/unpacking

Dual 16-bitycompare operations

Quad 8-bit compare operations

Dual 16-bit shift-operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations

Rotation
Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operakions




register file (listed in Fig. 4.3). All units ending in 1 (for example, .L1) write to register file
A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read
ports for source operands srcl and src2. Four units (.L1, .12, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because
each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

4.1.3 Memory Architecture

The C64x has a 32-bit, byte-addressable address space. Internal (on-chip) memory is orga-
nized in separate data and program spaces. When off-chip memory is used, these spaces are
unified on most devices to a single memory space via the external memory interface (EMIF).
The C64x has two 64-bit internal ports to.aceess internal data memory have and a single

internal port to access internal program memory; with-an instruction-fetch width of 256 bits.

A variety of memory options ate awvailable for the €6000 platform. In our system, the

memory types we Ccan use are:

On-chip RAM, up to 875 MB.
e Program cache.

e 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asyn-

chronous memories.

e Two-level caches [23]. Level 1 cache is split into program (L1P) and data (L1D)
cache. FEach L1 cache is 16 KB. Level 2 memory is configurable and can be split into
L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

locations. The size of L2 is 1 MB. External memory can be several MB large. The
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access time depends on the memory technology used but is typically around 100 to 133
MHz. In our system, the external memory usable by the DSP is a 32 MB SDRAM.

4.2 The Quixote cPCI Board [21]

The Quixote is one of Innovative Integration’s Velocia-family baseboard for applications
requiring speed and processing power. Quixote features a processing core built around Texas
Instruments’ fixed-point TMS320C6416 and Xilinx Virtex2 with 32 MB of DSP RAM and
2 MB of FPGA computation RAM (optional). The TI C6416 DSP operating at 600 MHz
offers a processing power of 4800 MIPS. The analog 1O features of the board include dual
channels of 105 MHz A/D and D/A (2 in, 2 out). A block diagram of the Quixote board is

shown in Fig. 4.4.

The Quixote board has a 32 MBsSDRAM forfuse by the DSP. When used with the
advanced cache controller on the C6416; the-SDRAM provides a large, fast external mem-
ory pool for DSP data and code.Z The Quixote has a serial EEPROM for storing data
such as board identification, calibration coefficients, and other data that needs to be stored
permanently on the board. This memory is 16 Kbits in size. Functions for using the serial
EEPROM are included in the Pismo Toolset that allow the software application programmer

to easily write and read from the memory without controlling the low-level interface.

The Caliente subsystem handles the details of interacting with the baseboard in streaming
mode. There are 3 ways for data transmission between host PC and DSP: data streaming,

block mode data streams and message packet 1/0.

Data Streaming. To address high-bandwidth data transfer applications, Quixote is ca-
pable of continuous transmission and reception of data via the PCI bus, using a mechanism

called streaming. When streaming, the target DSP, which must be running a downloaded
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DSP application, transfers data between target DSP memory and host PC memory auto-
matically with no host intervention. Streaming input is independent of streaming output.
It is possible to acquire data from anyrnumber and mix of input devices at a programmed
rate. Simultaneously, data may be streamed out to a variety of output devices at a different
programmed rate. Data flow is fully controlled by use of device drivers called from within

the DSP target application.

During data streaming on baseboards, data flows between peripherals and a dedicated,
onboard, digital signal processor (DSP) while simultaneously flowing data between the DSP
and the host application software. The dedicated DSP can extensively process data as it
travels between peripherals and the host application. Fig. 4.5 illustrates the data streaming

operation.

Block Mode Data Streams. An alternate data flow paradigm is supported for non-
channelized peripherals. This mode is referred to as block mode streaming. In block mode,
the splitter/merger features of Caliente are bypassed, and raw, binary data in peripheral-

specific format is consumed and supplied by the application program. Devices that produce
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data that can be channelized may elect to use block mode because of its higher inherent
efficiency. For very high rate applications, any processing done to each point may result
in a reduction in the maximum data rate that can be achieved. Since block mode does no
implicit processing on a point-by-point basis, the fastest data rates are achievable using this

mode.

Message Packet I/0. In many applications, there is a need for additional, low band-
width channels in addition to a high rate data stream. Velocia baseboards feature a means
to support the asynchronous interchange of low-bandwidth data in conjunction with high-
bandwidth streaming mode 1/O. Messages packets consist of a command code and channel
number plus up to 14 additional 32-bit parametric data values. Messages may be asynchro-
nously transmitted and received from any number of distinct channels by any number of
threads running on both the target DSP andthe host PC. Message transfers have no dele-
terious effect on data streaming and eonsumewirtually none of the bandwidth of the DSP,

so they may be freely used even in conjunction with full rate data streaming.

In our implementation, we use block mode data/streams the most and also use mes-
sage packet 1/O [24]. The Virtex2 FPGA inecludes 18 x 18 hardware multipliers and contains
up to 12 digital clock managers, each providing 256 subdivisions of phase shifting and fre-
quency synthesis capabilities to deliver flexibility in managing both on-chip and off-chip clock
domains and synchronization. On-chip memory blocks in the Virtex-1II fabric provide conve-
nient high-speed memory elements for FIFOs, dual-port RAM and local processing memory.

But our implementation is purely in DSP software and does not make use of the FPGA.
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4.3 The Code Composer Studio Development Tools
[25], [26]

TT supports a useful GUI development tool set to DSP users for developing and debugging
their projects: the Code Composer Studio (CCS). The CCS development tools are a key
element of the DSP software and development tools from TI. The fully integrated devel-
opment environment includes real-time analysis capabilities, easy to use debugger, C/C++
compiler, assembler, linker, editor, visual project manager, simulators, XDS560 and XDS510

emulation drivers and DSP/BIOS support.
Some of CCS’s fully integrated host tools include:
e Simulators for full devices, CPU only and CPU plus memory for optimal performance.

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project:files.

e Source code debugger common interfacerfor-both simulator and emulator targets:

C/C++/assembly language support.

Simple breakpoints.

Advanced watch window.

Symbol browser.

e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.

e Profiler to analyze code performance.

CCS also delivers “foundation software” consisting of:
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e DSP/BIOS kernel for the TMS320C6000 DSPs.

— Pre-emptive multi-threading.
— Interthread communication.

— Interrupt handling.
e TMS320 DSP Algorithm Standard to enable software reuse.

e Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

TI also supports some optimized DSP functions for the TMS320C64x devices: the
TMS320C64x digital signal processor library (DSPLIB). This source code library includes
C-callable functions (ANSI-C language compatible) for general signal processing mathemat-
ical and vector functions [27]. The foutinesiinelided in the DSP library are organized as

follows:

e Adaptive filtering.

e Correlation.

e FFT.

e Filtering and convolution.
e Math.

e Matrix functions.

e Miscellaneous.
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4.4 Code Optimization Methods [28]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly. This
makes the compiler do all the laborious work of instruction selection, parallelizing, pipelining,
and register allocation, which simplifies the maintenance of the code, as everything resides

in a C framework that is simple to maintain, support, and upgrade.

The recommended code development flow for the C6000 involves the phases described in
Fig. 4.6. The tutorial section of the Programmer’s Guide [28] focuses on phases 1 and phase
2, and the Guide also instructs the programmer about the tuning stage of phase 3. What
is learned is the importance of giving the compiler enough information to fully maximize its
potential. An added advantage is that this compiler provides direct feedback on the entire
program’s high MIPS areas (loops). Based on_this feédback, there are some simple steps the
programmer can take to pass complete and better information to the compiler to maximize

the compiler performance.

The following items list the goal for.each phase’in the software development flow shown

in Fig. 4.6.

e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [28] to improve the C code. Use the C6000 profiling tools
to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear assembly.
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Figure 4.6: Code development flow for TI C6000 DSP [28].
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We can use the assembly optimizer to optimize this code.

TT provides high performance C program optimization tools, and they do not suggest the
programmer to code by hand in assembly. In this thesis, the development flow is stopped at
phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

4.4.1 Compiler Optimization Options [25], [26]

The compiler supports several options to optimize the code. The compiler options can be
used to optimize code size or execution performance. Our primary concern in this work is
the execution performance. Hence we do not care very much about the code size. The easiest
way to invoke optimization is to use the cl6x shell program, specifying the -on option on the
cl6x command line, where n denotes the level of optimization (0, 1, 2, 3) which controls the

type and degree of optimization:

e -00.

— Performs control-flow-graph simplification.

Allocates variables to registers.
— Performs loop rotation.

Eliminates unused code.

Simplifies expressions and statements.

— Expands calls to functions declared inline.
e —0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
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— Removes unused assignments.

— Eliminates local common expressions.

e -02. Performs all -0l optimizations, and:

— Performs software pipelining.
— Performs loop optimizations.

— Eliminates global common subexpressions.

Eliminates global unused assignments.
— Converts array references in loops to incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations;‘and:

— Removes all functions that are never called.
— Simplifies functions with-return values-that are never used.
— Inlines calls to small functions.

— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

Identifies file-level variable characteristics.

The -02 is the default if -o is set without an optimization level.

The program-level optimization can be specified by using the -pm option with the -

03 option. With program-level optimization, all of the source files are compiled into one
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intermediate file called a module. The module moves through the optimization and code
generation passes of the compiler. Because the compiler can see the entire program, it

performs several optimizations that are rarely applied during file-level optimization:

e [f a particular argument in a function always has the same value, the compiler replaces

the argument with the value and passes the value instead of the argument.

e If a return value of a function is never used, the compiler deletes the return code in

the function.

e If a function is not called directly or indirectly, the compiler removes the function.

When program-level optimization is selected in Code Composer Studio, options that have
been selected to be file-specific are ignored, ,The program level optimization is the highest

level optimization option. We use thigtoptionste optithize our code.

4.4.2 Using Intrinsics

The C6000 compiler provides intrinsics, which.are ‘special functions that map directly to
C64x instructions, to optimize the C code performance. All instructions that are not easily
expressed in C code are supported as intrinsics. Intrinsics are specified with a leading under-
score (_) and are accessed by calling them as we call a function. A table of TMS320C6000

C/C++ compiler intrinsics can be found in [28].
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Chapter 5

IEEE 802.16e OFDM Uplink Channel
Estimation and DSP Implementation

The aim of this chapter is focus on the DSP implementation of IEEE802.16e OFDM up-
link. Hence, we use only simple channel estimation techniques, such as linear interpolation
and second order interpolation. Detailed comparison between various channel estimation
techniques will be left to the next .chapter. We. evaluate the performance of each channel

estimation approach mainly via symbol errorrate-(SER) and mean square error (MSE).

5.1 Simulation Parameters'and Channel Model

This section gives the parameters and introduce the channel model used in our simulation

work.

5.1.1 OFDM Uplink System Parameters

In chapter 2, we introduce the primitive parameters and derived parameters of the system.

The system parameters used in our simulation are listed in Table 5.1.
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Table 5.2: Power-Delay Profile of the ETSI “Vehicular A” Channel

Table 5.1: OFDM Uplink Parameters

’ Parameters \ Values ‘
Bandwidth 10M Hz
Central frequency 5G Hz
Nused 201
Sampling factor n 1
G L

32
Nrprr 256
Sampling frequency 11.52M Hz
Subcarrier spacing 45k Hz
Useful symbol time 22.2 us
CP time 694.4 ns
OFDM symbol time 22.92 us
Sampling time 86.81 ns

Tap | Relative Delay (4x oversampled) | Average Power (dB)
1 0 0
2 14 —-1.0
3 32 -9.0
4 50 —10.0
5 79 —15.0
6 115 —20.0

5.1.2 Simulation Channel Model

We employ the ETSI “Vehicular A” model with the path delays slightly adjusted for conve-

nience in our simulation. The model is as shown in Table 5.2.

5.2 Simulation Flow and Modified Estimation Tech-
niques

Figure 5.1 illustrates the block diagrams of the simulated system. For channel estimation

simulation, we assume perfect synchronization. After channel estimation, we can calculate
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Figure 5.2: Chanunel estimatign steps (from [29]).

the channel MSE between the real-channel ‘ahd‘ the estimated one. The symbol error rate
(SER) can also be obtained after démapping, where the SER denotes the average symbol
error at the specific E,/Ny. Likewise, the MSE ‘%lso denotes the average |H — H|? at the

E,/Ny, where the above averages are taken over the subcarriers.

The channel estimation simulation contains several steps:

e Estimate the channel response at each pilot location.
e Interpolate for the whole channel response using the estimated values at pilot locations.

e Estimate the transmitted signal using a divider.

These steps are illustrated in Fig. 5.2.

67



5.2.1 Validation of Simulation Model

Before considering multipath channels, we do simulation with an AWGN channel to validate
the simulation model, which means we transmit the data through a one-path channel with
h]0] = 1, and then add AWGN noise to it. We validate this model by comparing theoretical
SER curves and SER curves resulting from simulations. This comparison is illustrated here

for uncoded QPSK modulations.

Expressions for the symbol error rate of rectangular QAM are not hard to derive but yield
rather unpleasant expression. For an even number of bits per symbol, exact expressions are

available. They are most easily expressed in a per carrier sense:
1 3 FEu
P,24(1—-— _— 5.1
(- el ) a2l
where

e VM = Number of symbols in modulation constellation,

e F,, = Average signal energy,

Ny = Noise power spectral density (W/Hz),

P, = Probability of a symbol-error,
e Q(z) = \/LTW [ e ¥dt, x> 0.

In Fig. 5.3, the theoretical symbol error rate (SER) curve versus E;/N, for uncoded
QPSK is plotted together with the SER curve resulting from the simulation. In this figure,
we do not take the channel estimation error into account. This validates the simulation (we

use C/C++ programming language and TI’s code composer studio).
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5.2.2 Utilizing Preamble in Static Multipath Channel

As mentioned before, we adopt the ETSI Mehicular A-channel model and the channel impulse
response is listed in Table 5.2. The amplitude and phase responses of this channel at a

particular time instant are shown in Fig. 5.4.

The utilization of the preamble is vital in OFDM uplink channel estimation. If we do
not utilize the preamble, the performance would be as shown in Fig. 5.5. In this figure, we
shown the performance resulting from one-dimensional linear interpolation (1D-linear), one-
dimensional second-order interpolation (1D-2nd), maximum likelihood estimation (MLE)
and time averaging. Obviously, the performance is very poor. Hence, we must use the
preamble information in our channel estimation work. A simple but not theory-based method

is as follows:
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Figure 5.4: (a) Amplitude response and (b) phase response of the multipath channel at a
certain time instant.
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Each block starts with a preamble and block length is about 10 to 20 OFDM symbols,

depending on the channel coherence time.
In the uplink, the preamble utilizes only even subcarriers.

We interpolate the channel response for all subcarriers using the estimates on even

subcarriers. In consequence, we have raw channel estimation on all subcarriers, called

Hpreamble (k) .

When receiving usual OFDM symbols, we subtract Hpeampie(kp) from Hympor(kp),
where k, is the pilot subcarrier index and Hgympo(kp) is the estimated channel response

in ordinary OFDM symbol.

Then, we interpolate the difference Hympoi(kp) — Hpreambie(kp) to fill in all used sub-

carriers, called Hg;rp(k).

Finally, add Hyifp(k) to Hpreamble(k) to-derive the final channel estimate.

5.3 DSP Implementation

5.3.1 Fixed-Point Implementation

In algorithm development, it is often convenient to employ floating-point computation to

acquire better accuracy. However, for the sake of power consumption, execution speed,

and hardware costs, practical implementations usually adopt fixed-point computations. The

DSP chip used in our work, TT’s TMS320C6416 is also of the fixed-point category. It means

that fixed-point computations are executed more efficiently than floating-point ones on this

platform. Due to these facts, we do simulation in 16-bit fixed-point domain, which is more

accurate than 8-bit computation. Meanwhile, compared with 32-bit computation, it has

better efficiency and negligible accuracy loss.
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Table 5.3: Q1.14 Bit Fields

AWGN

Q-‘I.ll/}\ 05.10
I

0

Bits | 15| 14 13 1 0
Value | S | QIO | Q14 Q1 | QO
. 21.14
Generate Binary Data »- (QP%E???SEM, Q' - Complex_Mul
64QAM) X(EK)H (F)
d%fier_deciiian (k) De-Modulation (j(k Complex_Div I‘:T(:‘Tf) Hp (k)
-— (QPSK, 16-QAM, |- - )'(k) -+ Linear_[nterp -t
) 640AM) —
Output Binary Data H( '(()
01.14 04.11 04.11

Taking modulation into account; the widest range occurs in the case of 64QAM, which is

The fixed-point data formats used in our design based on linear frequency-domain inter-

Figure 5.6: Fixed-point data formats in our design.

as shown in Table 5.3.

5.3.2 Code Profile

polation are as shown in Fig. 5.6.
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Pilot Loacation
00
P

[—7/+/42,7/+/42]. Therefore we must have at-east one bit for the integer part, one bit for

sign, with the remaining 14 bits for fractional part. Hence Q1.14 is the chosen data format

Table 5.4 shows the code size and the execution speed of the DSP implementation, where
“load” gives the fractional consumption of a DSP’s real-time computing power of each func-
tion. Each function in the table corresponds to a block shown in Fig. 5.6. (When “Sec-

ond_Interp” is used, it replaces the “Linear_Interp” function shown in Fig. 5.6.) Note that



Table 5.4: Profile of the Channel Estimator Implementation

Function Code Size | Max. Count | Min. Count | Avg. Count Load
(bytes) (cycles) (cycles) (cycles) (# DSPs)
Modulation (QPSK) 168 604 603 603 0.04
Modulation (16QQAM) 296 9039 9039 9039 0.598
Modulation (64QAM) 484 12568 12432 12498 0.826
Complex_Mul 844 1479 1479 1479 0.098
Linear_Interp 916 6980 6872 6923 0.46
Second_Interp 936 15945 15912 15930 1.054
Complex_Div 360 20561 20241 20443 1.352
Demodulation (QPSK) 236 634 634 634 0.042
Demodulation (16QAM) 444 11763 11763 11763 0.778
Demodulation (64QAM) 1052 18462 16550 17345 1.147

the key functions for channel estimation are “Linear_Interp” and “Second_Interp.” The other

functions merely play a supporting role in.this part of the work. For example, the “Modu-

lation” functions have been addressed morerfullyin the synchronization part of the study,

and the “Demodulation” functions should be eonsidered: in the channel decoding part.

Acknowledgeably, the implemented. ‘Linear-interp” and “Second_interp” functions have

not been fully optimized. For example, we have not eliminated all the divisions shown in

the earlier equations for linear interpolation and second-order interpolation. The functions

are expected to run faster when these divisions are replaced, for example, by multiplications

with the dividers’ inverses.

We list the program structure as well as the fixed-point ¢ code and assembly code of some

basic functions in appendix.
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5.4 Simulation Results

We examine the transmission performance of the implemented channel estimator by sim-
ulating transmission over multipath channels. The simulated multipath channel is derived
from ETSI’s “Vehicular A” channel given in Table 5.2, with the following characteristics:
1) each path delay is rounded to an integer times the sample spacing for convenience of
simulation; 2) we make the channel is static, also for convenience of simulation; and 3) each

path coefficient is the square root of its average power.

Fig. 5.7 shows the MSE in channel estimtion for multipath channel and the resulting SNR,
where the solid represents the linear interpolation simulation and dashed line represents the
second-order interpolation. And It shows that the second-order interpolation outperforms

the liner interpolation.

Fig. 5.8 shows the MSE and SER spreadsover all used subcarrier. By observing the
channel gain spread in this figure, we ean find that thebest subcarrier is about 60 and the
worst subcarrier is about 180. Figs 5.9ishows-the. performance at the best and the worst
subcarriers. It shows that the performance at the worst subcarrier has higher noise flow.

This point corresponds to our expectation.

5.5 Appendix

Fig. 5.10 shows program structure of the implemented system, where the key function in

channel estimation is Linear-Interp and SecondOrder-Interp; other are in supporting role.

Function Modulation(QPSK, 16QAM, 64/QAM) maps binary data to the constellation

points. We only show the fixed-point code for QPSK in Fig. 5.11 for example.

Function Complex_Mulis a multiplier which computes complex multiplication to simulate

channel effects. The original code is shown in Fig. 5.12.
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Figure 5.7: (a)MSE and (b)SER for different interpolation order.
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Figure 5.8: MSE and SER spread over used subcarriers in QPSK at 20 dB.

We add AWGN in the main function instead of an individual function.

The operation in the block Pilot Location is that received signal Y (f) is multiplied by
p=1 or —1 at pilot locations, i.e., the LS estimator. This function is for convenience in

simulation; in real system implementation it can be absorbed into later block.

Function Linear_Interp and SecondOrder_Interp are the interpolation part which plays

7
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Figure 5.10: Program structure for channel estimation.

1
AWGN
X :
Generate Binary Data (Qprgl}gfh;?}gxm » Complex_Mul ‘ﬁ‘I )
64QAM) XOHE

De-Modulation d Lk mE H (k ) HP (k) Pilot Loacation } (k)

(QPSK, 16-QAM, |- (k) - Linear_Interp - L@ -
640QAM) - L
H(k) 7

an important role in the channel estimation scheme. The original code is shown in Figs. 5.13

Function Complex_Div is an equalizer where received signal is divided by the estimated

channel response and d(k) is the output. The code is shown in Fig. 5.15. This function is

also for convenience of simulation; in real implementation its function can be absorbed in
the demodulator and the decoder.
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#define amp_p FIXED2_14CONST(0.7071067812) .~ cos(pis4), sin(pisd4) ~~
#define amp_n FIXEDZ_14CONST(-0.7071067812)

wold encoding QAM{int size.,int #*before_coding ,COMPLEX _FIXED #after_coding)

L
int 1,3:
j=0;
for(i=0:;1{s1ze;1=1+2])
{
if (bhefore_coding[1]==0)
after_coding[j].1.full=amp_p:
else
after_coding[j].1.full=amp_n:
if (before_coding[1+1]==0)
after_coding[j].r.full=amp_p:
else
after_coding[j].r.full=amp_n:
J++:
¥
L

Figure 5.11: Function Modulation (QPSK).

void COMPLEX MUL (int type ,int size,COMPLEX FIXED *a,COMPLEX FIXED xh, COMPLEX FIXED *c)
{

int 1i:
for{i=0;i<size;i++)
{

c¢[i].r.full=FIXED_ MUL(a[i].r.full,b[i].r.full)-FIXED_MUL{af[i].i.full, b[i].i.full);
c[i].1.full=FIXED_ MUL (a[i].r.full,b[i].1i.full)+FIXED_MUL(afi].i.full, bi].r.full);

Figure 5.12: Function Complex_Mul.

Function De_Modulation is the de-mapping function which outputs binary data and the

mapped data cza fter_decision 1N the constellation. The original code is shown in Fig. 5.16.
Their corresponding assembly codes are listed below:

We use -03 option to do optimization. From the compile feedback information, we show
that the function Complex_Mul can be accelerated most because it utilize most registers after

software pipelining, as shown in Fig. 5.23.
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wvoid Linear Interp(int 3ize,COMPLEX *hefore interp, COMPLEX *after interp)

{
int index a,index b=0,1,k,1=1;
COMPLEY a,b:;

b.r=0;
h.i=0;
for (i=0;i<=zi=ze; i++)
{
if | (hefore_interp[i] .r!=0] || (before_interp[i].i'=0])
{
after interp[i] =hefore_ interp[i]:
index_s=index b:
index h=i:
a=h;
b=before interp[i]:
if(index a==index )
{
H
else
i
for (k=index a+l:k<index b:k++)
{
after_interp[k].r=a.r+(b.r—a.r]*lf(index_b—index_a];
after interpl[k].i=a.i+ib.i-a.i) %1/ (index b-index a):
14+
5
1=1;
H
i
H

Figure 5.13: Function Linear_Interp.
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wvold SecondOrder Interpiint size,COMPLEX FIXED *hefore_interp,COMPLEX _FIXED *after_interp)

{

int index_a,index_bh=0,1,k,l1=1,temp;

COMPLEX _FIXED a,b={0},c={0}:

FIXED parameter_a,parameter b, parameter_c,alpha:
for{i=12;i<188;i++) {

}

1f({(before_interp[i].r.fulll=0)]|| (before_interp[i].i.fulll=0}) {
after_interpl[i]=hefore_interp[i]:
index_a=indexz_h;

index_h=i;

c=hefore_interp[i]:

if({index_a==index_h) {
after interpl[index_al=c;

for(k=index_a+l:k<{index_h:k++) |

temp=index_h-index_a;
alpha={(FIXED _DOUBLE}1<<14) temp;
parameter_a=FIXED_MUL(alpha, (alpha-FIXEDZ_ 14CONST(1))1>>1;
parameter_b="FIXED_MUL [ (alpha-FIXEDZ_14CONST (1)), (alpha+FIXEDZ_14COMNST(1)))1+1:
parameter_c=FIXED_MUL (alpha, (alpha+FIXEDZ_14CONST(1)))1>>1;
after_interp([k].r.full=FIXED_MUL (paramseter_a.,a.r.full)

+FIXED_MUL {parameter_h,bh.r.full j+FIXED_MIL (parameter c,c.r.full);
after_interp[k].i.full=FIXED_MIL (parameter_a.,a.i.full)
+FIXED_MUL (parameter_b,b.i.full J+FIXED_MIL (parameter_c,c.1i.full):;
1++;

for({i=0;1<12;1i++)

}

after_interp[i].r.full=(after_interp[l2].r.full=*(37-1i)-after_interp[37].r.full=*{12-1))-25;
after_interp[i].i.full=(after_interp[l2].i.full=*(37-1i)-after_interp[37].1i.full=*{12-1))-25;

for({i=188:1<size:i++)

i

after_interp[i].r.full=({after_interp[l187].r.full=*{i-162)-after_interg[l6Z].r.full=*=(i-187))1-25;
after_interp[i].i.fu11=(after_interp[18?].i.full*(i—162)—after_interﬂ

[162].i.full*({i-187))-25;:

Figure 5.14: Function SecondOrder_Interp.
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voild COMPLEX_DIV(int size,COMPLEX_FIXED *a,COMPLEX_FIXED =L, COMPLEX FIXED =*c)
{

int 1;
FIXED_DOUBLE templ,tempZ_r.tempZ_i:

for(i=0;i{size;i++)
templ=FIXED_MUL_SP(b[i].r.full,b[i].r.full)+FIXED_MUL_SP(b[i].1i.full,b[i].i.full);

tempZ_r=FIXED MUL_SP{a[i1].r.full,b[1].r.full)+FIXED MUL_SP({a[1].1.full,b[1].1.full};
tempZ_i=FIXED_MUL_SP(af[i].i.full,b[i].r.full)-FIXED_MUL_Z3P(af[i].r.full,b[i].i.full):;

if (templ==0) ~~~~divide by zero

if (tempZ_r>0)
¢[i].r.full=0=7FFF;
else
¢[i].r.full=0x8000;
if (tempZ_i>0)
e[1].1.full=0x7FFF;
else
e[i].1.full=0x8000;

else

{
So0(__intb4)temp? . r.full<<15)templ.full
cli].r.full=(FIXED) ( (temp2_r<<12) templ): ~-03.12 divided by 03.12
c[i].i.full=(FIXED) ((temp?_i<<12)- templ):

Figure 5.15: Function Gomplex_Div.

vold decoding QAM{int size,int #*after decoding,COMPLEX FIXED *hefore decoding)
{

[i=0;i<size;i=1+1)

if (before_decoding[1i].r.full>0)
after_decoding[j+1]=0;

else
after decoding[j+1]=1;

if (before_decoding[i].1i.full>0)
after_decoding[j]=0:

else
after_decoding[j]=1:

I=3+2;

Figure 5.16: Function De-modulation(QPSK).
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;**********##***********##************##***********###***********##************

;* FUNCTION MAME: _encoding QaM(int, int *, COMPLEX FIXED ¥#)
s

*
g *
s Fegs Modified : AOD, A1, A2, A3,44,A5,R6,B4,B5,E6,87,B8 &
Ha Fegs Used : AOD,R1,R2,13,A4,A5,05,B3,64,865,E66,B7,B5,0F,5F &
B Local Frame Jize ¢ 0 Args + 0 Auto + 0 Save = 0 hyte o
;#wﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁw#wﬁwﬁﬁﬁﬁﬁﬁﬁﬁw#wﬁwﬁﬁﬁﬁﬁﬁﬁﬁﬁ#w#wﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁw##wﬁﬁﬁﬁﬁﬁﬁﬁﬁw##wﬁﬁﬁﬁﬁﬁﬁﬁ

:?ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ???ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ???ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ???ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁl??ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ???ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

- *
;% Using -g idebuy) with optimization [(-o03) may disable key optimizations'! &
- *

-

:******************************************************************************

_encoding QAM  FiPiP13COMPLEX FIXED:
= Ew

.Sym _before_coding, 4, 20, 17, 32
.SV _after coding,20, 24, 17, 32, COMPLEX FIXED
=k ] _afrter coding,3, 24, 4, 32, _COMPLEX FIXED
=kt ] _hefore coding,3, 20, 4, 32
SUB D1 L4,8, A5
11 MVC = CSR,B7
11 MVE LB OxcO, A3 ;o117
3UE .31 L3, 3, A0
11 AND .D2 -2,B7,B8
11 LDDW LD1T1 *++A5, A3 A2 s (P <00
M =1 ES,C3R ; interrupts off
A e *

Figure 5.17: Assembly code of function Modulation (QPSK).
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A R R R N N R A A R A R A NN A A A A AN A A AR AN A A AR AARL L AR AR EEAALLNT

;% FUNCTION MNAME: COMPLEX MUL (int, int, COMPLEX FIXED *, COMPLEX FIXED *, COMPLEX FIXED *)*

% *
;%  Regs Modified : A0, A1, A3, A4, A5, L6, A7, A5, A%, E4,E5,E6,E7, B8, B9, 416, 417, *
;7 18,419, 420, 421,E16,E17,E18,E19,E20,E21, B2z ®
;% Regs Used : A0, A1, A3, A4, A5, L6, A7, A5, A9, B3, E4,E5, 6, B7, B8, B9, 0P,  *
;7 SP,A16,A17,A418,419, 420, A21,E16,E17,618,E19, 620, *
;7 Bz1,E22 *
g Local Frame Size : 0 Args + 0 Auto + 0 Jave = 0 byte i
i o o o o o o o e o o o O el el o o o e o o ol o

PR L iy

=% *
;% Using -g (debug) with optimization (-o03) may disable kevy optimizations! *
% *

R R R R R R R R R R R R R R AR R R R R AR AR AR AR AR R AR AR AR AR AR A AR AR R AR AR AR AR AR AR AR AR AR AR AR ARATAT
_COMPLEX MUL_FiT1P13COMPLEX FIXEDNZ3:

PEE — j_— — — *

.line a

; &5 | int i;
H 28 | for(i=0;i<size;i++)

. svym _=a,4, 24, 17, 32, _COMPLEX FIXED
. svym _b,z0, 24, 17, 32, _COMPLEX FIXED
. svym _e,.6, 24, 17, 32, _COMPLEX FIXED
. svym _e,3, 24, 4, 32, _COMPLEX FIXED
. svym _b,3, 24, 4, 32, _COMPLEX FIXED
. svym _=,3, 24, 4, 32, _COMPLEX FIXED
M7C .32 C3R,BZZ
7 .D1i L6, A3 ;o 1z4)
Il jxt .91 B4, A5 ;o 1z4)
Il LND .D2 -2,B22,B5
MVE L1 Ox1,41 ; init prolog collapse predicate
Il MVE .51 0x32, A0 ;28|
Il 7 .D2X 14,EB4
|1 3UB .01 A5,16,49 ; undo prolog elim. sSide-effects
|1 urtied .22 BE5,C5R ; interrupts off

Figure 5.18: Assembly code of function Complex_Mul.
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;******************************************************************************

% FUNCTION MNAME: Linear Interpiint, COMPLEX FIXED *, COMPLEX FIZED ¥) &
- 3
B Regs Modified : A0, L1, A2, A3, 44,05, 86,07, 45,49,80,B1,82,B3,E4,B5,B6, ¥
B B7?,B5,B9,53F, A16, 417, A15, 19,816,817 ,E15,B19,B20, *
E E21,B31 £
B Regs Used : AO, A1, A2, A3, A4, A5, BE, A7, A5, A9,B0,B1,B2,B3,E4,B5,B6, ¥
H B7,BS,E9,DP, 5P, A106,A17,A15, 019, B16,B17,B15,EB19, %
B B20,E21,E31 &
g Local Frame Size : 0 Args + 8 Auto + 0 3J3ave = § hyte &
E i a

B

;WTWTWRTWWWtﬁWWWWWWWTWWTWWTWWWWWWWWWTWWTWWTWWWtﬁWWWWTWWTWWTWWWWWWWWWTWWTWWTWW#W

- & L3
;% Using -g (debug) with optimization (-o03) may disable key optimizations! &
- % *

B

;ﬁﬁﬁ?ﬁﬁ?ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁﬁﬁﬁﬁﬁﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁﬁﬁﬁﬁﬁﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁﬁﬁﬁﬁﬁﬁﬁ?ﬁﬁ?ﬁﬁ?ﬁﬁﬁﬁ

_Linear Interp FiP13COMPLEX FIXEDTZ:

N *
-

| int index_a,index_b=0,1,k,1=1;
| COMPLEX FIZED a,b;
; 56 | b.r.full=0;
; |
|
|

;57 h.i.full=0;
;58 int j=0;
;60O whileil)
=] _before_interp,4, 24, 17, 32, CCOMPLEX FIXED
. Sy _after interp,20, 24, 17, 32, _COMPLEX FIXED
.Sy _3.z0, 4, 4, 3z
.Sy _1,7, 4, 4, 32
.SV _index b,5e6, 4, 4, 32
=] _index_a,20, 4, 4, 32
. Sy _hefore interp,23, 24, 4, 32, CONPLEX FIXED
=] _after interp,35, 24, 4, 32, COMPLEX FIZED
.Sy _i,57, 4, 4, 32
At _i,ss, 4, 4, 32
.Sy _i,9, 4, 4, 32
-2t _&a,%, 8, 1, 32, _COMPLEX FIZED
.Sy _b,8, 8, 1, 32, _COMPLEY FIZED
MV LDEE b4, E7 po 53
LDH .D2TZ *B7,EO ;| &0
ZERD D2 ES HE -1
SUE .32 SF,8, 5P :o 53
3TH LDETZ BS, *+3F (5] HE -1
3TH LD2T2 BE, *+3P(10) -
[ BEO] EMNOP .51 L25,2 ;| a0
MV D1 hg, A3 ;53
M L2 B3,EB31 HER ]|
M LS1E B4, A15 HER ]|
|1 ZERD o A E4 ;59
; BRANCH OCCURS ;| &0
:** __________________________________________________________________________ *
LIDH L.D1T1 ®+AT (2] A1 ;|63 (Py <0,0= *
HNOP 2
MVC o =4 C3E,BS
MVE D2 Ox1,B1
|1 AND o S)A -2,EB5,E68
mr D2 El,EZ2
|1 MVC = Bo,C3R ; interrupts off
|| ['a1] ALDD L2 1,E4,E4 ;|64 (P) «<O,5x *
B R I ————— *
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Figure 5.19: Assembly code of function Linear_Interp.



:***ﬂ'ﬂ'****ﬂ'ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'ﬂ'****ﬂ'ﬂ'*****#*****#*****#*****#

;¥ FUNCTION NAME: SecondOrder Interp(int, COMPLEX FIXED *, COMPLEX FIXED ¥)

. %

B

-

Regs Modified 10,141, k2,143, L4, L5, L6, L7, L5, L9, B0, B1, B2, B3, B4, 5, B6,
E7,EB8,E9, 5P, 416, 417, 418, 419, 420, A21,EB16,E17,B18,

*
*
*
*
E19,Bz0,B21,E31 *
*
*
*
*
*

"

w
*

’1?

:%*  Regs Used 10,141, k2,143, L4, L5, L6, L7, L5, L9, B0, B1, B2, B3, B4, 5, B6,
* E7,EB8,E9, 5P, 416, 417, 418, 419, 420, A21,EB16,E17,B18,
* B19,B20,E21,B31
w
*

Local Frame Size 0 Arg=s 4+ 12 bLuto + 0 Save = 12 hyte
e o o e e i e i e e e e e i i e e i e i e i o i

"

B

-

:***ﬂ'ﬂ'****ﬂ'ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'*****ﬂ'ﬂ'****ﬂ'ﬂ'*****#*****#*****#*****#

oW *
;% Using -g (debug) with optimization (-03) mway disable key optimizations! *
- & *

-

:W'ﬁ‘ﬂ"ﬂ"ﬂ'?\'t'ﬁ‘ﬂ"ﬂ‘WTW‘N‘K'&‘WTW‘N‘NWWTWT‘N‘K'ﬂ'?\'tt‘ﬁ'ﬂ‘WTTW‘N‘KWTTW‘N‘K'ﬂ"ﬂ'?\'t‘ﬁ‘ﬂ"ﬂ"ﬂ'?\'t‘ﬁ‘ﬂ“ﬂ‘WTW‘NW‘KWTWTW‘KWTWIW‘KW

_SecondCrder_Interp FiP13COMPLEX FIZEDTZ:

:1;1; __________________________________________________________________________ *
line 2
;117 | int index_a, index_b=0,1i,k, 1=1,cemp;
;115 | COMPLEX FIXED &,b={0},c={0};
; 119 | FIXED parameter_a, parameter_b, parameter_c,alpha;
. SYm _hefore interp,4, =24, 17, 3Z, COHMFLEX FIZED
. SYm _after_interp,20, 24, 17, 32, _COMPLEX FIZED
.3ym _index_h, 57, 4, 4, 32
. SYm _index _a,53, 4, 4, 32
. Sym _before_interp,21, 24, 4, 32, _COMPLEX FIZED
.3ym _after_ interp,40, 24, 4, 32, COMPLEX FIZED
- SYI0 _i,55, 4, 4, 3Z
- SV _i,35, 4, 4, 32
- S¥m _i,ss, 4, 4, 32
LSV _a,4, 8, 1, 32, _COMPLEX FIZED
=k ] _b,8, 8, 1, 32, _COMPLEX FIXED
.Sy _e,l2, &, 1, 32, COMPLEY FIXED
MVEL B2 _$T1$2$4+2,BS ;o 115]
MV EH B2 _$T1$2$4+2,BS ;o 115]
LDHU LDETZ *Be,B6 ;1115
|1 MVEL 31 _$T2$3$4+2;A3 ;1 115]
MV EH =k _$T2$3$4+2,A3 ;o 115]
LDHU .D1T1 *AG, AT ;1115
|1 ZEROD =i B4 s 1 115]
|1 3UE D2 3P,16, 3P ;| 116]
|1 okt 31X E4, 419 ;o 11a]
3TH LDETEZ Ed, *+3P (3) ;1 118]
|1 okt LOE2XE Ad,BS ;1 11a]
ADDAD D2 E5,6,E19
3TH LDETE E&, *+3P(10) ;o1 115]
3TH LDETEZ Bd, *+3P (1) ;1 115]
|1 okt = BE3i,B3l ;1 11a]
3TH LDETL AS T3P (14) ;1 115]
|1 MVE .31 0x3530, A5
11 ZERO B2 EZ0 :o1 117
11 MVE .LZ Oxc,B15 ;| 120]
LDH LDETE *E19,E0 ;122
.line f

Figure 5.20

: Assembly code of function SecondOrder_Interp.



R R R R AR R R AR AR AR R A A AR AR R R R A A A R A A AR A R A A A A A R AR AR A AR AR TR A AR TR A AR AR AARFAAFH
;% FUNCTICH MAME: COMPLEX DIV (int, COMPLEX FIXED *, COMPLEX FIXED *, COMPLEX FIXED #)*

= w
:%  Regs Modified r A0, L1,AZ,L3,Ad,L5, L6, L7, AS,A9,B0,E1,B2,E3,B4,E5,B6, ¥
H B7,BS,4le, A17,B31 &
H Regs Used MO, A1, A2, A3, A4, AD, A, A7, A5, 49,B0,B1,B2,B3,684,B5,B6, %
s B7,BS8,416, 417,E31 &
g Local Frame Size 0 Args + 0 Auto + 0 3ave = 0 bhyte G
R o o o o o o o o o o o o o

R R N A R A R R N A R N A RN A AN A RN R R A A R A A AN AR ANALANSALAL AN

- w
;7 Using -g (debug) with optimization (-03) may disable key optimizations! i
= w

H
I N N N A R A N A A A AN AN A AN AR A A A AN A AN AN AAAARARANTATANAN

_COMPLEX DIV FiP13COMPLEX FIXEDNZ2Z:

;66 | int i:
B8 67 | FIXED_DOUELE templ,tempiZ_r,temp_i:

.= _=a,4, 24, 17, 32, COMPLEX FIXED
.=y _b,z0, 24, 17, 3z, COMPLEX FIZED
.=y _c,6, 24, 17, 32, COMPLEX FIXED
. =vm _c©,3, 24, 4, 33, COMPLEX FIXED
. =vm _b,3, 24, 4, 33, COMPLEX FIXED
. SV _&,3, 24, 4, 32, _COMPLEX FIZED
. SV _templ,5, 4, 4, 32
. SV _tempi 1,22, 4, &4, 32
MVE .32 OxcB,BS EE Y|
wr LD1E B4, 4l6 ;| 65|
nwr LD1X B5, 47
I MV L1 L6, LS : |85]
| MV LDZE L4, ES ;|65
| MVE .31 Oxff£££000, A9
| MV .3z E3,E31 : | EBE|
LDH .D1T1 *+A16(2) , A3 E ]|
LDH .D1T1 *h16, A4 E ]|
LDH LD2T2 *+BS (21,85 ;|76
line g

Figure 5.21: Assembly code of function Complex_Div.
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:1?1?1?%‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘?ﬁﬁﬁﬁﬁﬂ‘??ﬁﬁﬁﬁﬂ‘ﬂ‘?ﬁﬁﬁ

;% FUMNCTICN NAME: decoding QAM{int, int *, COMPLEX FIZED *| &
- % *
H Regs Modified : AOD,A1,A5,A4,A5, A6, A7,BO,E4,E5,B6,B7,BG i
H Regs Used : MO, A1,A5,A4,A5, A6, A7,BO,ES,E4,B5,860,87,B5,DF,5F &
= Local Frame Size @ 0O Args + 0 Auto + 0 Sgve = 0 hyte &

*

:*‘k‘k‘k'k'k***‘k‘k‘k'k***‘k‘k‘k'k'k***‘k‘k‘k'k'k**‘k‘k‘k'k'k***‘k‘k‘k'k'k***‘k‘k'k****‘k‘k‘k**************‘k*****

:1?1?1?%‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘?ﬁﬁﬁﬁﬁﬂ‘??ﬁﬁﬁﬁﬂ‘ﬂ‘?ﬁﬁﬁ

- & *
;% Using -g (debug) with optimization [(-o03) way disable key optimizations! i
- *

B

;1?1?1?%‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘?ﬁﬁﬁﬁﬁﬂ‘??ﬁﬁﬁﬁﬂ‘ﬂ‘?ﬁﬁﬁ

_decoding QLM FiPiF13COMPLEX FIXED:

O *
"

. Sym _after decoding,4, 20, 17, 32
=10 _kefore decoding,20, 24, 17, 32, _CONPLEX FIXED
. Sy _hefore decoding,3, 24, 4, 32, _COMPLEX FIXED
. SY¥m _after decoding,3, 20, 4, 32
my LD2E L4, E4 Po138|
11 M D1 g, L3 :o138|
1 M LS1E B, L4 ;138
mC o C3R,B7
11 LLH .D1T1 *h44++(4) , AS ; (P} 0,0
MK .32 OxcS, BS HE =y
11 AID D2 -Z,B87,E8
11 LLH .D1T1 *—A4 (2], A6 ; (P} <0,1>
MJC .52 BES,CSR ! interrupts off
W e o *

Figure 5.22: Assembly code of function De-modulation(QPSK).
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; Loop source line : 28
: Loop opening brace source line : 29
H Loop closing hrace source line 8 33
: Loop Unroll Multiple HIE 3 4
H FEnown Minimum Trip Count : 50
: Frnown Maximum Trip Count : 50
H Known Max Trip Count Factor : 50
B Loop Carried Dependency Bound(*) : 7

H Onpartitioned Resource Bound T 26
B Partitioned Resource Boundi(®*) : 26

Resource Fartition:
A-zide E-zide

H L units u] u}

g .8 units Ze% 25

H LIounitcs 249 16

g .M units 7 9

g % cross paths 11 10

B .T address paths 21 19

g Long read paths u] u]

; Long write paths o a

g Logical ops (.L3) 2 a [.L or .3 unit)
; bhddition ops (.L3D) 7 G ([.L or .3 or .I unit)
H Bound(.L .3 .L3) 14 13

H Bound(.L .3 .DI .L3 .L3DI) 20 16

SJearching for software pipeline schedule at
: ii = 26 Zchedule found with 2 iterations in parallel

Figure 5.23: Software pipelining information of 16-bit fixed-point Complex_Mul.
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Chapter 6

IEEE 802.16e OFDMA Downlink
Channel Estimation

This chapter focuses on the performance comparison between various channel estimation
techniques. First, let us review some simulation parameters and channel characteristics.

Then simulation results of OFDMA downlink PUSCsand OFDMA downlink FUSC will be

illustrated separately.

6.1 Simulation Parameters and Channel Model

This section gives the parameters and introduce the channel model used in our simulation

work.

6.1.1 OFDMA Downlink System Parameters

These system parameters used in our simulation are listed in Table 6.1. We have given

primitive parameters and derived parameters in the table.
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Table 6.1: OFDMA Downlink Parameters

Parameters Values
Bandwidth 10M Hz
Central frequency 3.5G Hz
Nuysed 1681 for PUSC

1703 for FUSC

Sampling factor n 1
G L

32
Nrpr 2048
Sampling frequency 11.2M Hz
Subcarrier spacing 5.47k Hz
Useful symbol time 182.86 us
CP time 2.71 ps
OFDM symbol time 188.57 ps
Sampling time 89.29 ns

6.1.2 Simulation Channel Model

We employ the ETSI “Vehicular A” model, the same as that in the last chapter. The
model has been shown in Table 5.2: However,in this chapter, the simulation is done under

nonsample-spaced multipath condition.

There are six paths in this model and"we'express each path using Jakes fading model.
Jakes fading model is a deterministic method for simulating time-correlated Rayleigh fading
waveforms. The model assumes N equal-strength rays arriving at the moving receiver with

uniformly distributed arrival angles, so the kth fading waveform can be modelled as [30]

No
To(t) = 1/ Nio S A(n) (08 B + J 5in Ba) cOS(wrr €8 - £+ 0,) (6.1)
n=1

where k = 1,2,..., No, Ny = N/4, ap, = (2on/N) — (7/N), B, = mn/Ny, wyr = 27v/\ is
the maximum Doppler frequency shift and 6,, are the independent random phases, each of

which uniformly distributed in [0, 27). Ag(n) is the kth Walsh-Hadamard codeword in n

91



which satisfies

No
1 . (L k=1
EEAA”W”)—{ -

The time variations of amplitude at different velocities are as shown in Fig. 6.1. The z-axis
denotes the symbol sample, that is, 188.57 us per sample and the y-axis denotes the ampli-
tude in decibel. Meanwhile, the Doppler rate (maximum Doppler frequency shift multiplied

by symbol time) in each condition is also listed.
6.1.2.1 Some Effects of Nonsample-Spaced Multipath Channel

A sample-spaced channel has all delayed impulses of its channel impulse response at integer
multiples of the system sampling interval. Hence, the continuous Fourier transform of the
channel impulse response is a channel frequency response with non-zero values at multiples
of the system’s sampling rate. Due to this particular frequency response, the samples of the

channel frequency response coincides:exactlysith the DF'T of the channel impulse response.

For the nonsample-spaced channel, like the-one listed:in Table 5.2, the channel is actually
resampled in the receiver sampling process. As‘a-consequence, there is no exact correspon-
dence between the channel frequency response and the DFT of the sampled channel impulse
response. In fact, the resampling process results in an extension of the equivalent sample-
spaced channel response (as shown in Fig 6.2). This leads to the need for a longer guard
interval to ease synchronization. It can also cause performance loss of the channel estimator,

if it is based on a limited channel length assumption.

6.2 Simulation Flow

Figure 5.1 illustrates the simulation flow of the OFMDA system and Fig. 5.2 accounts for

the channel estimation steps. These steps are already described in the last chapter.
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Figure 6.1: Amplitude variations for different velocities. (a) v = 60 km/h. (b) v = 120
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km/h. (¢) v = 180 km/h. (d) v = 240 km/h. (e) v = 300 km/h. (f) v = 360 km/h.
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Channel Channel
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Figure 6.2: Resampling a nonsample-spaced channel extends the channel (from [3]).

Before considering multipath channels, we must validate our simulation on an AWGN
channel by comparing theoretical SER curves and SER curves resulting from simulations.
This comparison is illustrated here for uncoded QPSK, 16QAM and 64QAM modulations.
Fig. 6.3(a) shows the MSE results from simulation. *Fig 6.3(b) shows their corresponding
SER values and compare them with .the theory givenzin (5.1). As seen, the simulation
results match well with the theoryy validating our simulation model. In Fig. 6.3, we use

simple one-dimensional linear interpolation for channel estimation.

6.3 OFDMA DL PUSC Channel Estimation Simula-
tion

Here, we assume that only one of three segments are used, say, Segment 0. And we use
the subcarriers belonging to clusters of Group 0, which is assigned to Segment 0 by default.

More specifically, we use 288 data subcarriers and 48 pilot subcarriers.

Due to nonsample-spaced multipath channels, the path extension effect appears and is

as shown in Fig. 6.4.
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—A— - Simulated—64QAM
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(b) SER

Figure 6.3: Simulation results (1D linear interpolation) for AWGN channel. (a) MSE. (b)

SER.
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Figure 6.4: The path extension effect in our model. (a) Nonsample-spaced multipath channel.
(b) Equivalent sample-spaced multipath channel.

6.3.1 One-Dimensional Channel Estimators

6.3.1.1 Polynomial Interpolation Results

Fig. 6.5 shows the MSE and SER in each modulation for v.= 60 km/h. It indicates that
third-order or fourth-order interpolation”lhas the best.performance, and followed by spline
interpolation, second-order interpolation, and linear interpolation. The results of MSE are
unrelated to the modulation type because the pilots are boosted-BPSK modulated in each

modulation case. And the channel response is interpolated only using the pilot information.

Fig. 6.6 shows the MSE and the SER spread over used subcarriers. We can find that
the best subcarrier is around 310 and the worst subcarrier is around 600. Fig. 6.7 shows

performance at best and worst subcarriers.

We also want to know the impact of velocity on channel estimation performance. Some
results are shown in Fig. 6.8. The 1D interpolation-based channel estimation seems unrelated
to channel time variations because the time variations over OFDMA symbols is not taken

into account in this method.
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Figure 6.5: OFDMA DL PUSC MSE and SER for v = 60 km/h in each modulation scheme.
(a) MSE for QPSK. (b) SER for QPSK. (¢) MSE for 16QAM. (d) SER for 16QAM. (e) MSE
for 64QAM. (f) SER for 64QAM.
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Figure 6.6: MSE and SER spread over used subcarriers in QPSK at 30 dB.

6.3.2 Two-Dimensional Channel Estimators

6.3.2.1 Time-Domain Interpolation

We apply interpolation along both the frequency and the time axes. For simplicity, we just

combine the frequency-interpolated Hy,.,(k) with the time-interpolated Hyim.(k) by

_ Hfreq(k> + Htime(k>

Hnew<k) 9

(6.2)

The interpolation on Hy;,(k) is done on the real part and the imaginary part separately.
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Figure 6.8: The performance of 1D linear interpolation for different velocity with 16QAM.
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Figure 6.7: Performance at worst and best subcarriers. (a) MSE. (b) SER.
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The results are shown in Fig. 6.9 for different kinds of interpolation order. Similarly,
the results under different velocities are as shown in Fig. 6.10. Here the first number in the
parentheses denotes the interpolation order along the frequency axis and the second denotes
that along the time axis. For example, “2D-(21)” means that second-order interpolation is

done along the frequency axis and linear interpolation is done along the time axis. From

1D linear interpolation under different velocity

SER
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2D interpolation for v=60km/hr
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Figure 6.9: Performance of 2D interpolation for v =
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Figure 6.10: Performance of 2D-(21) interpolation for different velocities with 16QAM. (a)

MSE. (b) SER.

these figures, we may conclude that the time variations of channel characteristics are hard

to predict via simple interpolation.

60 km/h with 16QAM. (a) MSE. (b)



2D linear prediction v=60km/hr

MSE

10°

—6— QPSK-LSs(14)
—0— - QPSK-Robust(14)

—B5— 16QAM-LSs(14)
—B— 16QAM-Robust(14)

—A— 64QAM-LSs(14)

—A— - 64QAM-Robust(14)

Figure 6.11: Performance of linear prediction using different merit functions. (a) MSE. (b)

SER.

6.3.2.2 Linear Prediction

Instead of using interpolation in thestime-domain,.we now consider linear prediction based
on recent symbols. We use (3.31) and"(3.36) as the merit functions. In fact, the former is
the linear least squares method denoted “LSs” in Fig. 6.11 and the latter is more robust

against noise, denoted “Robust” in Fig: 6.1

In Fig. 6.11, the first number in each parenthesis means the interpolation order along
the frequency axis while the second number means how many recent symbols we use in the

prediction. Intuitively, in high SNR, the noise effects are small and the least squares should

2D linear prediction v=60km/hr

—6— QPSK-LSs(14)
—O— - QPSK-Robust(14)

—&— 16QAM-LSs(14)
—B- 16QAM-Robust(14)

—A— 64QAM-LSs(14)
—4— - 64QAM-Robust(14)

=4

\*lé,f‘jgf i\

0 10 20 30 40 50
EIN, (dB)

(b)

have better performance. This point corresponds to our simulation results.

6.3.3 Time Averaging

As mentioned in chapter 3, within the coherent time, the channel can be regarded as nearly

time-invariant. We can mitigate noise effects by averaging the estimated channel responses

over several OFDMA symbols based on the maximum Doppler spread.
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Figure 6.12: Performance of time-averaging. (a) SER for averaging 4 symbols (b) SER for
averaging 6 symbols

Note that although the envelope of each path varies more slowly than the phase. The
phase of each path is more unpredictable over time.-That is, we can not just average the
real part and imaginary part of H (&) over several OFDMA symbols. Therefore, we amend
(3.42) to

1 ) . .
Havg (k) = 7 % {Hént”p(k) FHHESTER)]| < Hy" ™ (k) +

(6.3)
|| HI P (k)| £ H " (k) + !!Hi’?”p(k)lliHé"t”p(k)}

where H™¢P(k) is the interpolated channel response at the previous nth symbol time. In
other words, we average the amplitude at each subcarrier k£ but force their phases equal
to that of H{"?(k). Fig. 6.12(a) shows the results of averaging latest 4 symbols under
3 different velocities. And Fig. 6.12(b) shows the simulation results of averaging latest 6
symbols. Because the maximum Doppler shift is not severe in each case, so the performance

is almost the same.

102



6.4 OFDMA DL FUSC Channel Estimation Simula-

tion

This section shows simulation results of the OFDMA downlink FUSC system. The system

parameters are as shown in Table 6.1.

6.4.1 One-Dimensional Channel Estimators

6.4.1.1 Polynomial and Rational Function Interpolation Results

Fig. 6.13 shows the simulation results of polynomial interpolation. To verify its consistency
on all used subcarriers, Fig. 6.14 shows the MSE and SER distribution situation over the 1703
used subcarriers. It shows a fact that the lower channel gain will cause worst performance in
accordance with our knowledge. The worst subcarrier index is about 500 and best subcarrier
is about 1100. Fig. 6.15 indicates that the simulation results does not differ much at worst

and best subcarriers

As for the rational function interpolations the-xesults are shown in Fig. 6.16. Here, we
let 4 =0 and v = 1 in (3.17). It can be seen that the performance of rational function
interpolation is much worse than that of polynomial interpolation. Also it can be seen that

the curve of the channel gain in Fig. 6.14 is not suitable for rational interpolation.

6.4.2 Adaptive Channel Estimators

In the discussion of OFDMA downlink PUSC simulation, we have shown that it is hard to
model the channel time variations via interpolation or prediction. In the following simulation,

we apply normalized least mean square (NLMS) algorithm to track time variations.

We transmit a block starting with a preamble and followed by 10 to 20 OFDMA symbols.

First we interpolate the channel response Hp eampie(k), obtained from the preamble. Then
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Figure 6.13: OFDMA DL FUSC MSE and SER for v = 60 km/h in each modulation scheme.
(a) MSE for QPSK. (b) SER for QPSK. (¢) MSE for 16QAM. (d) SER for 16QAM. (e) MSE

for 64QAM. (f) SER for 64QAM.
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Figure 6.14: MSE and SER spread over used subcarriers in QPSK at 30 dB.
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are given in (3.46) and (3.49).
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we use the interpolated Hpreampie(k) to initialize NLMS algorithm. The detailed algorithms

Figs. 6.17 and 6.18 show the simulation results of NLMS based on equalization and

channel estimation respectively. We may conclude that the NLMS tracking ability on time
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Figure 6.16: Performance of rational function interpolation. (a) MSE. (b) SER.

6.4.3 The Maximum Likelihood Channel Estimator

As described before, in MLE, the channel impulse response is viewed as a deterministic
but unknown vector and no information on the channel statistics or the operating SNR is
required. The MSE and SER based on MLE are as illustrated in Fig. 6.19. The solid lines in

these figures denote results from 64-bit (double-precision) floating-point computation while
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NLMS performance based on channel estimation. (a) MSE for QPSK. (b) SER

the dashed lines denote results from 32-bit (single-precision) floating point computation. It

seems that the performance of MLE depends heavily on computational precision.

Let us review the mathematical expression of MLE in (3.27).

In addition to many

element-by-element multiplications, there needs a matrix inversion in this equation. Usually,



matrix inversions have serious accuracy problems due to error propagation. Even with the
use of some techniques of pivoting, matrix inversion is still a time-consuming and precision-
dependent work. Furthermore, the matrix to be inverted is close to being singular when the

cyclic prefix is lengthened or the pilot locations are not carefully selected.

Fig. 6.20 illustrates the eigenvalue spread of matrix D in (3.27). It shows that the eigen-
value spread increases exponentially as the CP is lengthened. In our simulation program,
the available CP length is 32 or 64. The CP length greater than or equal to 128 will cause

singularity problem.

6.4.4 Joint Channel Estimation and Symbol Detection

The simulation flow of joint channel estimation and symbol detection (JCESD) has been
shown in Fig. 3.5. Fig. 6.21 shows the MSE and SER of JCESD (with one time iteration)
compared with MLE. It can be seensthat the performance of JCESD is slightly better than
that of MLE. This is because that in addition to pilots, we also use the channel response at
data subcarriers. Especially at higher SNR; the data subcarriers are less susceptible to noise

and thus contribute more reliable channel response‘cstimation.

As for the MSE discrepancy between QPSK, 16QAM and 64QAM, this results from
different power level of data symbols. Fig. 6.21(a) only shows results on average. In fact,
QPSK data symbols have equal power, i.e., noise has equal impact on these symbols. On
the contrary, the power levels of 16QAM or 64QAM data symbols differ. Hence, some
data symbols with smaller power will yield less reliable channel response estimation. The
simulation corresponds to our expectation. JCESD improves QPSK much, then 16QAM,
and 64QAM least. A main difference between MLE and JCESD is that JCESD utilize both
data and pilot subcarriers while MLE only use pilot subcarriers. Hence, JCESD has better

performance than MLE.
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Figure 6.19: Maximum likelihood channel estimators for different computational precision.
(a) MSE. (b) SER.
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Figure 6.20: Eigenvalue spread of the matrix D in (3.27).

Fig. 6.22 shows results for different number of JCESD iterations. It shows that one time
iteration is enough and two or more iterations do not improve further. In fact, more iterations
will cause worst performance at lower SNR. This is because data symbols are easily smeared
by noise at low SNR. This effect can be worse due to hard decision and hence contribute

to unreliable channel estimation. Thus the performance at low SNR may be worse after

JCESD.
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Figure 6.22: Performance of JCESD with different number of iterations. (a) MSE. (b) SER.

6.5 Overall Performance Comparison

6.5.1 PUSC Mode Versus FUSC Mode

Intuitively, FUSC mode uses more pilots than PUSC mode and should have better per-

formance. This point corresponds to our simulation results (1D second-order interpolation
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Jshown in Fig. 6.23. Another reason is that when we do second-order interpolation, we need
three estimated pilots and each cluster in PUSC mode contains only two pilots. It means
that the remaining one pilot must be referred to another cluster which may be at a distance

in frequency bands (because clusters in PUSC mode are distributive in available frequency

bands).

6.5.2 Comparison Between Channel Estimation Techniques

We have shown many simulation results of many kinds of channel estimation techniques.
Here we give an overall comparison in Fig. 6.24. The JCESD has the best performance and

is followed by, MLE, 1D interpolation, 2D least squares, 2D interpolation and time averaging.
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PUSC mode versus FUSC mode
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Figure 6.23: PUSC mode versus FUSC mode (1D-2nd interpolation). (a) MSE. (b) SER.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we presented several channel estimation techniques and applied them on
OFDM uplink and OFDMA downlink. In.QFDN aiplink simulation, we used sample-spaced
static multipath channels and in OEDMAdownlink simulation, we adopted nonsample-
spaced time-varying multipath channels. To do the channel estimation, first, we used LS
estimator to estimated the channel frequeficy Fesponse on the pilot subcarriers. Second,
interpolations or MLE were used to get @ tough-channel estimation. Third, we combined the
rough estimation with some time domain information or did channel estimation and symbol

detection iteratively.

In the case of OFDM uplink, it showed that with adroit manipulation of preambles and
pilots, simple linear and second-order interpolation is good enough and their performance is

acceptable.

In the case of OFDMA downlink, one-dimensional interpolation performed well and had
no discrepancy under different velocities. In two-dimensional channel estimation, we wanted
to use interpolation, linear prediction or NLMS to track the channel time variations. How-

ever, from our simulation, it seemed that intending to model the time variation is not a good
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idea. Maximum likelihood estimator was a good one because of its excellent performance.
Nevertheless, it needed great computational precision and had matrix inversion problem,
such like singularity and error propagation. Despite this, MLE was suitable for use with
delicate manipulation. We could pre-compute the matrix with high precision and store it
in the memory or a file. The joint channel estimation and symbol detection had the best
performance but time-consuming. Just as its name suggested, we did channel estimation and
symbol detection iteratively. But two or more times iteration did not give us any promising

improvement. From our simulation, we suggested only doing JCESD one time.

As for the DSP implementation, we only implemented OFDMA uplink on TT’s board. To
achieve the real-time channel estimation, we replaced all operations into 16-bit fixed point
operation. As shown in Table 5.4, the real-time goal was not yet completed and there was

still much room to improvement.

7.2 Potential Future Work

The following work will emphasis on‘the DSP implementation and better estimation tech-

niques. These tasks include the following:

e Implement OFDMA DL PUSC and OFDMA DL FUSC on DSP board.

e The interpolation can be accelerated by loading the pre-computed coefficient matrix

from a file rather than direct computation.

e The matrix in MLE is constructed by adopting all pilots (e.g., 166 in OFDMA DL
FUSC). The matrix can be shrinked while maintaining non-singularity by careful se-

lection of pilots.

e The performance of joint channel estimation and symbol detection can be still boosted
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by excluding those subcarriers whose channel gain are relatively low, that is, susceptible
to noise. All we have to do is to observe the histogram like Fig. 6.14 and only use those

better subcarriers.

e In this thesis, we do not consider the influence of intercarrier interference (ICI). The

ICI simulation can be involved in the future.
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