
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

在 PACDSP 平台上之 MPEG-4 視訊解碼器軟體實現

Software Implementation of MPEG-4 Video Decoder

on PACDSP Platform

研 究 生 : 蔡崇諺

指導教授 : 林大衛 博士

中 華 民 國 九 十 五 年 六 月

在 PACDSP 平台上之 MPEG-4 視訊解碼器軟體實現

Software Implementation of MPEG-4 Video Decoder

on PACDSP Platform

研 究 生 : 蔡崇諺 Student : Chung-Yen Tsai
指導教授 : 林大衛 博士 Advisor : Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

In

Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 五 年 六 月

在 PACDSP 平台上之 MPEG-4 視訊解碼器軟體實現

研究生: 蔡崇諺 指導教授:林大衛 博士

國立交通大學電子工程學系 電子研究所碩士班

摘要

MPEG-4 為一廣泛應用之多媒體訊號壓縮標準。本篇論文介紹在 PACDSP

平台上 MPEG-4 視訊解碼器之實現，本平台由一超長指令數位訊號處理器與一

ARM920T 處理器所組成。為了最佳化程式流程，我們也完成了許多的靜態分析，

並且利用超長指令處理器架構上之特性來達到即時解碼。我們也完成了簡單的雙

核心展示並驗證其正確性。

在我們的實作當中，我們使用了 MPEG-4 參考軟體，MoMuSys，當作驗證

的比較對象。首先，我們分析了 MPEG-4 基於圖像解碼器之運算複雜度並藉此

找到有效率的實現方法。接著，我們根據離散餘弦轉換（DCT）之特性來跳過多

餘的運算，並且對於全零之剩餘方塊亦有許多可略過之計算。為了加速執行時

間，我們將規律之運算分佈於兩組以增加處理器之效能。我們也使用單指令多資

料（SIMD）指令以及一般指令層級平行化來減少處理器之延遲。我們討論了離

散餘弦反轉換（IDCT）之效能與精確度，並且我們的實現能夠符合 IEEE1180-1190

標準之規範。我們所使用之演算法在效能上也具有與其他實現競爭的能力。在所

有的最佳化之後，我們在最差情況下解碼一張 QCIF 格式之圖像需要 5,700,000

週期。也就是說，對一個工作在 175MHz 的真實 PACDSP 晶片而言，我們能夠

達到每秒三十張畫面之即時解碼。而整個程式的大小為 27 Kbytes，也小於

PACDSP 的程式快取記憶體大小 32 Kbytes。最後我們在 PSDK 平台上展示了雙

核心的實現。

在本篇論文當中，我們首先介紹了 MPEG-4 標準以及 PADSP 平台之概述。

接著討論靜態分析、實作策略、最佳化方法、以及實驗結果。最後簡單介紹了展

示雙核心實現的系統與機制。

Software Implementation of MPEG-4 Video Decoder

on PACDSP Platform

Student: Chung-Yen Tsai Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

MPEG-4 is a widely-applied multimedia coding standard. This thesis presents an

implementation of MPEG-4 video decoder on the PACDSP platform, which consists

of a VLIW digital signal processor (DSP) and an ARM920T processor. We complete

many anlyses to optimize the program flow and utilize the advantage of VLIW

processor to achieve real-time decoding. A simple dual-core demostration is

completed and verified.

In our implementation, the MPEG-4 reference software, MoMuSys, is used as a

golden model to verily our implementation. First, we analyze the computational

complexity of the MPEG-4 frame-based video decoder, and find efficient algorithms

for the implementation. Second, we skip some computations according to the nature

of discrete cosine transform (DCT), and there are also lots of comutation skipped for

all-zero residual blocks. Third, to speed up the execution time, we distribute the

regular computations to both clusters to increase the efficiency of the processor.

Single-instruction-multiple-data (SIMD) instructions and general instruction level

parallelism also utilized to reduce the processor stalls. We also discuss the efficiency

and accuracy of IDCT, and the accuracy of our IDCT implementation can meet the

IEEE 1180-1190 standard. The performance of our alogorithm is also competitive to

other implementations. After all the optimizations, the worst-case computaion time for

QCIF format is less than 5,700,000 cycles. That is, our implementation can achieve

real-time decoding, 30 frame-per-second, for a real PACDSP chip running over 175

MHz. The code size is 27 Kbyte, which is smaller than the 32-Kbyte instruction cache

on PACDSP. Finally, we demonstrate a simple dual-core implementation on the PAC

System Developer’s Kit (PSDK).

In this thesis, we first introduce the MPEG-4 standard and give an overview of the

PACDSP platform. Then the static analysis, implementation strategies, the optimiztion

methods, and the experiment results are discussed. Finally, we brief the system and

mechanism for demonstration of the dual-core implementation on PSDK plarform.

誌謝

本篇論文的完成，誠摯地感謝我的指導老師 林大衛 博士，從電控系推甄進

入電子所這個新環境時，多虧老師的循循善誘，不論在課業、研究、或者心理上

遭遇挫折時的鼓勵與指導而能夠一次一次地解決困難，並且讓我學習了分析問題

並加以解決的能力。而老師身體力行與樂觀積極的生活態度也深深地影響了我。

在此，僅向老師及老師的家人致上最高的感謝之意。

感謝在電子研究所 CommLab 的日子裡實驗室所提供完善的研究資源。承蒙崑

健、家揚、俊榮、朝雄等學長的提攜與照顧，在研究與生活上都能夠順利解決問

題。而實驗室的同伴，鴻志、和璋、家賢、治傑、韋霖、旻弘、育彰、宗熹、德

亘，以及室友浩緯、人中等在課業上的砥礪與生活上的幫助也讓我在忙碌的研究

所生涯中仍舊擁有快樂的心情。此外，也要感謝學弟，政達、介遠，在你們的討

論與幫助下，研究才能夠更加迅速與正確地完成。

最後，感謝我的家人，溫暖的家一直是我求學生涯中最強而有力的後盾，感

謝你們的努力讓我能夠無後顧之憂地汲取知識，繼續升學。另外感謝我的女友，

楊晨，在我求學過程一路相伴，面對壓力時不斷地鼓勵。僅將本論文獻給我敬愛

的父母，蔡文彬先生、王阿珠女士，以及我摯愛的楊晨小姐。

 蔡崇諺

二００六年六月于新竹

Contents

1 Introduction 1

2 Overview of the MPEG-4 Video Standard 3

2.1 Structure of MPEG-4 Video Data .3

2.2 MPEG-4 Video Texture Coding . 6

2.3 Motion Coder . 6

2.3.1 Texture Coder . 10

2.3.2 Other Video Coding Tools [3] 15

2.3.3 Robust Video Coding . 15

2.3.4 Scalable Coding . 16

2.4 Profiles and Levels [2] . 16

3 Overview of The PACDSP 19

3.1 Introduction . 19

3.1.1 Architecture Features . 20

3.2 Architecture Overview . 21

3.3 Program Sequence Control Unit . 22

3.3.1 Branch Instruction . 22

3.3.2 Loop . 23

3.3.3 Customized Function Unit (CFU) 24

3.3.4 Exception Handling . 24

3.3.5 Interrupt Handling . 24

3.4 VLIW Datapath . 25

I

3.4.1 Ping-Pong Register File . 25

3.4.2 Data/Address/Accumulator Registers 25

3.4.3 Status and Control Registers . 26

3.4.4 Addressing Modes . 28

3.4.5 VLIW Datapath . 30

3.4.6 Data Exchange . 31

3.4.7 Constant Register File . 33

3.5 Scalar Unit . 34

3.5.1 Overview . 34

3.5.2 Control Registers . 34

3.5.3 General Purpose Scalar Register File35

3.6 Conditional Execution Control .36

3.7 ISA and Pipeline Stages . 37

3.8 DSP Running Modes . 38

3.9 Instruction Packet . 39

3.10 Development Tools and Implementation Considerations 39

3.10.1 Development Tools . 39

3.10.2 Implementation Considerations42

4 Complexity Analysis and Implementation Strategy of MPEG-4 Framed-Based

Video Decoder 43

4.1 Profiles of The MPEG-4 Frame-Based Video Decoder 44

4.1.1 Approach to Complexity Analysis 44

4.1.2 Profile on PC Using Intel VTune Performance Analyzer 45

4.1.3 Low-Level Computational Analysis 46

4.2 Implementation Strategies on PACDSP 49

4.2.1 Efficient Variable Length Decoding (VLD) 50

4.2.2 Efficient Motion Compensation 55

4.2.3 Profile on PACDSP of All Decoder Functions 56

II

5 Optimization of The Implementation on PACDSP 61

5.1 Algorithmic Optimization .. 61

5.1.1 Algorithmic Optimization for Intra Frames 61

5.1.2 Algorithmic Optimization for P-Frames 65

5.2 Architectural Optimization .. . 67

5.2.1 General Optimization Techniques68

5.2.2 Advantages of PACDSP . 71

5.3 Experiment Results . 72

5.3.1 Optimization of Dequantization72

5.3.2 Implementation of IDCT . 73

5.3.3 Overall Optimization of the implementation 79

5.4 Conclusion on Optimization . 80

5.5 The Effect of Different Quantization Step (QP) 81

5.5.1 Effects of QP to I-Frame Decoding 82

5.5.2 Effects of QP to P-Frame Decoding 83

5.6 Comparison with Other Implementations 84

6 Conclusion and Future Work 89

6.1 Conclusion . 89

6.2 Future Work . 90

A Demonstration of MPEG-4 Frame-Based Video Decoder on Dual-Core PSDK 94

A.1 Overview of The PSDK 2.0 Platform .94

A.2 Introduction to Dual-Core Demonstration 96

A.2.1 I-Frames Decoding . 96

A.2.2 P-Frames Decoding . 97

B C Program and Assembly Code of IDCT 99

B.1 C Program of IDCT in MoMuSys . 99

B.2 Original Assembly Code of IDCT . 99

B.3 Optimized Assembly Code of IDCT . 99

III

List of Figures

2.1 Segmentation of a frame into VOPs (from [3]). 4

2.2 Structure of coded video data (from [4]). 5

2.3 Types of VOP. 6

2.4 Positions of luminance and chrominance samples in 4:2:0data (from [5]). 7

2.5 Motion vector prediction (from [5]). 9

2.6 Quantizers in H.263. (a) For intra DC coefficient only. (b) For inter DC

and all AC coefficients. 12

2.7 Prediction of DC coefficients of blocks in an intra MB (from [3]). 14

2.8 Prediction of AC coefficients of blocks in an intra MB (from [3]). 14

2.9 Scans for8 × 8 blocks (from [2]). 15

3.1 Architecture of the PACDSP [1]. .22

3.2 Ping-pong register file in one cluster [1]. 26

3.3 The available registers in one cluster [1]. 27

3.4 Illustration of the addressing mode control register (AMCR) [1]. 28

3.5 Illustration of multiplication instructions with different precisions [1]. . . 31

3.6 Different load/store instructions [1]. 32

3.7 Data Exchange between Two Clusters [1]. 33

3.8 Data broadcast among clusters [1]. 33

3.9 The Constant Register File of one cluster [1]. 35

3.10 PACDSP instruction set architecture [1]. 38

3.11 Pipeline stages of the PACDSP [1]. 38

3.12 Transitions between DSP running modes [1]. 41

IV

3.13 Syntax of instruction packet [1]. 42

3.14 Simplified syntax of instruction packet [1]. 42

4.1 Block diagram of MPEG-4 frame-based video decoder [2]. 44

4.2 Example of bit by bit matching on PACDSP. 53

4.3 Example of one table mapping with magnitude-offset on PACDSP. 54

4.4 Example of multiple-pass matching on PACDSP. 55

4.5 Example of bounded multiple-pass lookup with magnitude-offset on PACDSP. 56

4.6 Comparison of different VLD methods on PACDSP 57

5.1 DC spreading from decoded coefficient to output block. 62

5.2 Assembly code of DC spreading. .62

5.3 Assembly code of new check in vertical AC reconstruction. 65

5.4 Example of vector addition. .. 69

5.5 Example of static rescheduling technique. 70

5.6 Example of loop unrolling technique. 70

5.7 Example of software pipelining technique 71

5.8 Original and optimized assembly code of IQ. 75

5.9 The IDCT algorithm used in MoMuSys. 78

5.10 The even-odd decomposition IDCT algorithm[8]. 79

5.11 Speed-up of different optimization methods for I-frames. 84

5.12 Speed-up of different optimization methods for P-frames. 85

A.1 PAC System Developer’s Kit (PSDK) 2.0 95

A.2 Memory map of the dualcore demonstration 96

A.3 Co-processing mechanism for I-frames 97

A.4 Co-processing mechanism for P-frames 98

B.1 C program of IDCT in MoMuSys reference software including clipping. . 100

B.2 Assembly code of our initial IDCT implementation (horizontal processing).101

B.3 Assembly code of our initial IDCT implementation (vertical processing

and clipping). 102

V

B.4 Assembly code of optimized IDCT implementation (horizontal processing).103

B.5 Assembly code of optimized IDCT implementation (verticalprocessing

and clipping). 104

VI

List of Tables

2.1 Weighting ValuesH0(i, j), H1(i, j), andH2(i, j) 11

2.2 Default Quantization Matrix (Q) [2] 13

2.3 Nonlinear Scaler for DC Coefficients (from [2]) 13

2.4 Profiles and Tools (from [2]) .18

3.1 Details of Control Register Files [1] 36

3.2 Memory-Mapped Control Registers [1]37

3.3 Pipeline Stages and Their Descriptions 39

3.4 Running Modes of the PACDSP [1] . 40

3.5 Instruction Type in Each Instruction Slot 41

4.1 Profile of Frame-Based MPEG-4 Decoding of QCIF on PC 46

4.2 Complexity of Luminance Motion Compensation in One QCIF Frame . . 48

4.3 Complexity of Chrominance Motion Compensation in One QCIF Frame . 49

4.4 Complexity of Dequantization and IDCT for One 8×8 Block in Mo-

MuSys Code . 50

4.5 Variable Length Codes for dctdc size luminance [2] 52

4.6 Execution Time of Different VLD Methods on PACDSP 58

4.7 Analysis of Necessary Interpolation Using MoMuSys 59

4.8 Estimated Profile of Frame-Based MPEG-4 Decoding of QCIF onPACDSP 60

5.1 Number of Skipped Blocks in 90 Intra Frames (Check CBP and ACPred Flag

Only) . 64

VII

5.2 Number of Skipped Blocks in 90 Intra Frames with Further Check After

AC Prediction . 66

5.3 Execution Time of Intra Frame Decoding on PACDSP 66

5.4 Number of Skipped Blocks in 89 P Frames67

5.5 Execution Time of Inter (P) Frame Decoding on PACDSP 68

5.6 Analysis of Skipped Coefficients in Dequantization (90 I-frames) 74

5.7 Improvement after Optimization of Dequatization 76

5.8 Comparison of Computational Complexity for 8-point IDCT 76

5.9 Test of Compliance Using IEEE Std. 1180-1190 77

5.10 Comparison of IDCT on Different Platforms 80

5.11 Improvement After Optimization of IDCT 81

5.12 Overall Optimization after IDCT Optimization 82

5.13 Execution Time Before and After Optimizations 83

5.14 Number of Skipped Blocks in 90 Intra Frames with Different QP 86

5.15 Effects of Different QP to Execution Time of I-Frame Decoding on PACDSP

86

5.16 Number of Skipped Blocks in 89 P-Frames with Different QP. 87

5.17 Percentage of Fractional Motion Vectors with Different QP 87

5.18 Effects of Different QP to Execution Time of P-Frame Decoding on PACDSP 88

5.19 Performance of MPEG-4 Video Decoder on Different Platforms 88

VIII

Chapter 1

Introduction

In modern industry, compression of audio-visual information becomes more and more im-

portant, especially for applications on mobile devices. Besides, digital signal processors

(DSPs) are also popularly used on these mobile devices. Our goal is the implementation

of MPEG-4 video decoder on the PACDSP platform.

The MPEG-4 standard for coding of audio-visual informationhas been widely adopted

in various consumer products. There are several tools in theMPEG-4 standards, and they

are used for different purposes. Since the present work is the first attempt to implement

MPEG-4 video codecs on the PACDSP platform, we decide to implement the freme-based

part of the MPEG-4 decoder first, and the corresponding encoder and other MPEG-4 video

tools are left to the future work.

PACDSP is a high performance, low cost VLIW (Very Long Instruction Word) DSP

for multimedia applications[1]. Optimized architecture for data stream applications gives

a strong reason for system designers to use PACDSP to implement media codecs. The in-

struction set architecture (ISA) of PACDSP is optimized for audio and video applications,

so PACDSP is suitable for products with multi-standard codecrequirement. In addition,

the low power design for PACDSP makes it possible to use PACDSP on portable devices.

This thesis is organized as follows. Chapter 2 is the overviewof MPEG-4 standards.

Chapter 3 introduces the architecture and specification of the PACDSP platform. Chap-

ter 4 is the analysis of complexity for the reference software of MPEG-4. In addition,

the implementation strategy of MPEG-4 video decoder is alsosimply introduced in this

1

chapter. The contents of chapter 5 are about the different optimization technologies and

their experiment results. We also compare our implementation with that of other proces-

sors Finally, we will give some conclusions in chapter 6, andthe future works are listed

as well.

2

Chapter 2

Overview of the MPEG-4 Video

Standard

2.1 Structure of MPEG-4 Video Data

The contents of this section have been taken to a large extentfrom [2]–[5].

A video sequence is composed of a succession of frames (or pictures). MPEG-4 di-

vides a frame into a number of video object planes (VOPs). A succession of VOPs is

termed a video object (VO). The idea of VOPs is illustrated inFig. 2.1. Each VO is

encoded separately and multiplexed to form a bitstream thatusers can access and ma-

nipulate. The encoder sends, together with VOs, information about scene composition

to indicate where and when VOPs of a VO are to be displayed. Figure 2.2 shows the

organization of the coded MPEG-4 video datta in a top-down hierarchical structure. A

frame-based video can be interpreted as having only one VO. And in non-scalable cod-

ing, there is only one video object layer (VOL). The meaningsof the hierarchical layers

are as follows.

• VideoSession (VS): A video session simply consists of an ordered collection of

video objects.

• VideoObject (VO): A video object is a complete scene or a portion of a scene with

a semantic. In the simplest case this can be a rectangular frame, or it can be an

3

Figure 2.1: Segmentation of a frame into VOPs (from [3]).

arbitrarily shaped object corresponding to a physical object or background of the

scene.

• VideoObjectLayer (VOL): Each video object can be encoded inscalable (multi-

layer) or non-scalable form (single layer), depending on the application, represented

by VOL. The VOL provides support for scalable coding. A videoobject can be

encoded using spatial or temporal scalability, going from coarse to fine resolution.

• GroupOfVideoObjectPlanes (GOV): Group of video object planes are optional en-

tities. The GOV groups together video object planes. GOVs can provide points in

the bitstream where VOPs are encoded independently from each other, and can thus

provide random access points into the bitstream.

• VideoObjectPlane (VOP): A VOP is a time sample of a video object.

As in the earlier MPEG standards, a VOP can be of the I, the P, orthe B type, as

illustrated in Fig. 2.3. In addition, there is a fourth type of VOP, called S, defined in

MPEG-4. These are briefly explained below:

1. An intra-coded (I) VOP is coded using information only from itself.

4

Figure 2.2: Structure of coded video data (from [4]).

2. A predictive-coded (P) VOP is a VOP which is coded using motion compensated

prediction from a past reference VOP.

3. A bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion

compensated prediction from a past and/or future referenceVOP(s).

4. A sprite (S) VOP is a VOP for a sprite object or a VOP which is coded using

prediction based on global motion compensation from a past reference VOP. We

omit further introduction of the S VOP.

The macroblock (MB) is a basic coding structure constructingVOP. An MB contains

a section of the luminance component of16 × 16 (horizontal× vertical) pixels in size,

non-overlapping with each other, and the sub-sampled chrominance components in 4:2:0

format. The luminance and chrominance samples are positioned as shown in Fig. 2.4. In

5

I−frame I−frameB−frame P−frameP−frame

Figure 2.3: Types of VOP.

this format, an MB is divided into 4 luminance blocks and 2 chrominance blocks, each

8 × 8 pixels in size.

2.2 MPEG-4 Video Texture Coding

The contents of this section have been taken to a large extentfrom [3]–[5]. We concentrate

on the techniques pertaining to frame-based video coding.

2.3 Motion Coder

Motion coding applies to P-VOP and B-VOP, for the purpose of reducing temporal re-

dundancy. The motion coder consists of a motion estimator, motion compensator, previ-

ous/next VOPs store and motion vector (MV) predictor and coder.

Motion Estimation

The motion estimation (ME) techniques used in MPEG-4 can be seen as an extension of

standard MPEG-1/2 or H.263 block matching techniques with modified block (polygon)

matching to handle arbitrary-shaped VOPs. But this modification is of little concern to

the current report.

6

Figure 2.4: Positions of luminance and chrominance samplesin 4:2:0 data (from [5]).

The basic motion estimation may be performed on16×16 luminance MB. The motion

vector is specified to half-pixel accuracy. In many coding software implementations, the

motion estimation is performed by some search method to integer pixel accuracy vector

and, using it as the initial estimate, a half pixel search is performed around it. Because the

motion vector may be non-integer, sample interpolation is necessary. The interpolation

is carried out only in half sample mode, where the half samplevalues are calculated by

bilinear interpolation.

In the MPEG-4 standard, besides motion vector for16 × 16 MB, motion vector can

be sent for individual8× 8 blocks to reduce more prediction errors. Both the8× 8 block

motion compensation and overlapped motion compensated prediction are referred to as

advanced prediction in H.263 and are adapted in MPEG-4 to work with arbitrary shaped

VOPs.

Motion Vector Encoder

When using INTER mode coding, the motion vector must be coded.Horizontal and

vertical motion vector are coded differentially by using a spatial neighborhood of three

motion vectors that have already been coded, as illustratedin Fig. 2.5. These three motion

vectors are candidate predictors for the differential coding. The differential coding of

7

motion vectors is performed with reference to the reconstructed shape. In the special

cases at the borders of the current VOP the following decision rules are applied:

1. If the MB of one and only one candidate predictor is outsidethe VOP, it is set to

zero.

2. If the MBs of two and only two candidate predictors are outside the VOP, they are

set to the third candidate predictor.

3. If the MBs of all three candidate predictors are outside theVOP, they are set to zero.

The motion vector coding is performed separately on the horizontal and vertical com-

ponents. For each component, the median value of the three candidates for the same

component is used as predictor, denotedPx andPy, respectively. After finding the pre-

dictors, the vector differencesMV Dx = MVx − Px andMV Dy = MVy − Py are coded

by variable length coding (VLC).

Motion Compensation

The motion compensator uses motion vectors to compute motion compensated prediction

block,pred[i][j], from the same reference VOP. In addition to basic motion compensation

processing, three alternalties are supported, namely, unrestricted motion compensation,

four MV motion compensation and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point outside

the decoded area of a reference VOP. When a sample referenced by a motion vector is

outside the decoded VOP area, an edge sample is used. Thepred[i][j] is defined through

the following:

xref = min(max(xcurr + dx, vhmcsr), xdim + vhmcsr − 1),

yref = min(max(ycurr + dy, vvmcsr), ydim + vvmcsr − 1),

wherevhmcsr = vop horizontalmc spatialref, vvmcsr = vop vertical mc spatialref,

(ycurr, xcurr) is the coordinate of a sample in the current VOP,(yref, xref) is the coor-

dinate of a sample in the reference VOP,(dy, dx) is the motion vector, and(ydim, xdim)

is the dimension of the bounding rectangle of the reference VOP.

8

MV2 MV3

MV1 MV

MV3MV2 MV2

MV1

MV1 MV

MVMV(0,0)

(0,0)

MV : Current motion vector
MV1: Previous motion vector
MV2: Above motion vector
MV3: Above right motion vector

: VOP border

MV1 MV1

Figure 2.5: Motion vector prediction (from [5]).

One/two/four vectors decision is indicated by the MCBPC codeword and fieldprediction

flag for each MB. If one motion vector is transmitted for a certain MB, this is considered

four vectors with the same value as the MV. When two field motionvectors are transmit-

ted, each of the four block prediction motion vectors has thevalue equal to the average of

the field motion vectors (rounded such that all fractional pixel offsets become half pixel

offsets). If MCBPC indicates that four motion vectors are transmitted for the current

MB, the information for the first motion vector is transmittedas the codeword MVD and

the information for the three additional motion vectors is transmitted as the codewords

MVD2–4. If four vectors are used, each of the motion vectors is used for all pixels in one

of the four luminance blocks in the MB.

Overlapped motion compensation is performed when the flag obmc disable = 0. Each

pixel in an8× 8 luminance prediction block is a weighted sum of three prediction values,

divided by 8 as follows:

P̄ (i, j) = [p(i + MV 0
x , j + MV 0

y)H0(i, j)

+ p(i + MV 1
x , j + MV 1

y)H1(i, j)

+ p(i + MV 2
x , j + MV 2

y)H2(i, j) + 4]/8,

9

where (MV 0
x ,MV 0

y) denotes the motion vector for the current block, (MV 1
x ,MV 1

y) the

motion vector of the block above or below, (MV 2
x ,MV 2

y) the motion vector of the block

to the left or to the right, andH0(i, j), H1(i, j), andH2(i, j) the weighting of each pixel

in the current block and neighbor blocks. The values ofH0(i, j), H1(i, j), andH2(i, j)

denote the weighting of each pixel in the current block and neighbor blocks, and they are

shown in Table 2.1. It is noted thatH0(i, j) is used for current luminance block,H1(i, j)

for prediction of motion vectors of luminance blocks on top or bottom of current block,

andH2(i, j) for prediction of motion vectors of luminance blocks on the left or right of

current block.

Since the VOP may be coded in P or B mode, there are three types of motion predic-

tion, forward mode, backward mode, and bi-directional mode. The different modes make

different predictions̄P (i, j) as follows.

1. Forward mode: Only the forward vector (MVFx,MVFy) is applied in this mode.

The prediction blocks̄Py(i, j), P̄u(i, j), P̄v(i, j) are generated from the forward ref-

erence VOP.

2. Backward mode: Only the backward vector (MVBx,MVBy) is applied. The pre-

diction blocksP̄y(i, j), P̄u(i, j), P̄v(i, j) are generated from the backward reference

VOP.

3. Bi-directional mode: Both the forward vector (MVFx,MVFy) and the backward

vector (MVBx,MVBy) are applied. The prediction blocks̄Py(i, j), P̄u(i, j), P̄v(i, j)

are generated from the forward and the backward reference VOPs by doing the

forward and the backward predictions and then averaging both predictions pixel by

pixel.

2.3.1 Texture Coder

The texture information of a VOP is present in the luminance Yand two chrominance

components Cb and Cr of the video signal. In the case of an I-VOP,the encoded texture

information directly represents in the values of the luminance and chrominance compo-

nents. In the case of motion compensated VOPs the encoded texture information rep-

10

Table 2.1: Weighting ValuesH0(i, j), H1(i, j), andH2(i, j)

H0(i, j) H1(i, j) H2(i, j)

4 5 5 5 5 5 5 4 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2

5 5 5 5 5 5 5 5 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

5 5 6 6 6 6 5 5 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2

5 5 6 6 6 6 5 5 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2

5 5 6 6 6 6 5 5 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2

5 5 6 6 6 6 5 5 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2

5 5 5 5 5 5 5 5 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

4 5 5 5 5 5 5 4 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2

resents the residual error remaining after motion-compensated prediction. The texture

coder includes padding process (for object-based coding, and applied only if needed),

8 × 8 two-dimensional (2D) discrete cosine transform (DCT), quantization, coefficient

prediction, coefficient scan and VLC. We describe the last four elements below.

Quantization

MPEG-4 video supports two quantization techniques, one referred to as the H.263 quan-

tization method and the other, the MPEG quantization method. The H.263 quantization

method is uniform with dead zone for intra and inter AC coefficients and uniform for intra

DC coefficients. The MPEG quantization method is uniform.

Figure 2.6 shows the quantizer characteristics in H.263. For inter DC and all AC

coefficients, input between−Th and+Th is quantized to zero. All coefficients in an MB

go through the same quantizer step size Q, which can be changed in increments of 2 from

2 to 62 as desired.

In the MPEG quantizer, each coefficient produced by 2D DCT is quantized with a

uniform quantizer. The default quantizer matrix is defined as shown in Table 2.2, which

can be changed if desired.

Typically, the DC coefficients of8 × 8 blocks belonging to an intra MB are scaled by

11

1/2Q

−1/2Q Th

Th+1/2Q

−Th
−Th−Q

(b)(a)

3/2Q

−3/2Q

Figure 2.6: Quantizers in H.263. (a) For intra DC coefficientonly. (b) For inter DC and

all AC coefficients.

a constant scaling factor of 8. However, in MPEG-4 video, a nonlinear scaler as shown in

Table 2.3 is used to provide a higher coding efficiency. The characteristics of nonlinear

scaling are different between the luminance and chrominance blocks and further depend

on the quantizer used for the block.

Intra Prediction

After quantization, the DC coefficients and many AC coefficients of an intra block are

coded by intra prediction. Intra prediction is a new operation used in MPEG-4 standards

to reduce the spatial redundancy between8× 8 blocks. There are two types of prediction,

DC prediction and AC prediction.

Figure 2.7 shows the prediction of DC coefficients in intra8×8 blocks. The quantized

intra coefficients are predicted with three previous decoded DC coefficients. For example,

the DC coefficients of block X is predicted from the DC coefficients of blocks A, B and C.

Unlike MPEG-2, the prediction in MPEG-4 is gradient based. In computing the prediction

of block X, if the absolute value of a horizontal gradient is less than the absolute value of

a vertical gradient, then the QDC of block C is used as the prediction, else QDC value of

block A is used.

The AC prediction depends on DC prediction, as shown in Fig. 2.8. The AC coeffi-

12

Table 2.2: Default Quantization Matrix (Q) [2]

Intra Inter

8 16 19 22 26 27 29 34 16 16 16 16 16 16 16 16

16 16 22 24 27 29 34 37 16 16 16 16 16 16 16 16

19 22 26 27 29 34 34 38 16 16 16 16 16 16 16 16

22 22 26 27 29 34 37 40 16 16 16 16 16 16 16 16

22 26 27 29 32 35 40 48 16 16 16 16 16 16 16 16

26 27 29 32 35 40 48 58 16 16 16 16 16 16 16 16

26 27 29 34 38 46 56 69 16 16 16 16 16 16 16 16

27 29 35 38 46 56 69 83 16 16 16 16 16 16 16 16

Table 2.3: Nonlinear Scaler for DC Coefficients (from [2])

Component DC Scaler for Q Range

1–4 5–8 9–24 25–31

Luminance 8 2Q Q+8 2Q+16

Chrominance 8 (Q+13)/2 Q+16

cients in the first row or in the first column are predicted withthree previous decoded AC

coefficients. The direction of prediction is the same as DC prediction.

Scan and VLC

The predicted DC and AC coefficients (as well as the un-predicted AC coefficients) of

DCT blocks are scanned by one of three scans: alternate-horizontal, alternate-vertical

and zigzag (the normal scan used in H.263 and MPEG-1) to change the 2D image to

one dimensional data, as shown in Fig. 2.9. The actual scan used depends on the coeffi-

cient prediction method used. For instance, if the DC prediction refers to the horizontally

adjacent block, alternate-vertical scan is selected for the current block. If the DC predic-

tion refer to the vertically adjacent block, alternate-horizontal scan is used for the current

block. For all other blocks, the8 × 8 DCT blocks are zigzag scanned.

13

���
���
���
���
���
���
���
���

A

B C D

X MacroblockY

�������
������������������

�����
�����

��
��

or
��������
��������������������

����
����

�
�

or

Figure 2.7: Prediction of DC coefficients of blocks in an intra MB (from [3]).

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������

�����
�����

������
������

������
������

������
������

������
������

�����
����������

�����
�����
�����
����������
����������
�����
�����
�����

�����
�����

������
������
������
������
������
������������
������
������
������

������
������

������
������

�����
�����

������
������

������
������

������
������

������
������

�����
�����

������
������

�����
�����

������
������

������
������

������
������

������
������

�����
�����

A

B

X

DC

or

Macroblock

������
������

�����
�����

������
������

������
������

������
������

������
������

�����
����������

�����
�����
�����
����������
����������
�����
�����
�����

�����
�����

Y

or

Figure 2.8: Prediction of AC coefficients of blocks in an intra MB (from [3]).

The coefficients after scan usually become data with many zeros at the end. This kind

of a data stream is good for run-length coding. In MPEG-4, differential DC coefficients

in intra blocks are encoded in VLC. But the AC coefficients are encoded by the variable

length codes for EVENTs. An EVENT is a combination of a last non-zero coefficient

indication, the number of successive zeros preceding the coded coefficient (RUN), and

the non-zero value of the coded coefficient (LEVEL). Some statistically rare events have

no VLC words to represent them. For them an escape coding method is used.

14

Figure 2.9: Scans for8 × 8 blocks (from [2]).

2.3.2 Other Video Coding Tools [3]

In addition to texture video coding, there are some special tools defined in MPEG-4. We

briefly introduce robust video coding and scalable coding here.

2.3.3 Robust Video Coding

Error resilience is a particular concern over wireless networks. In the error resilient mode,

the MPEG-4 video offers a number of tools as follows:

1. Object priorities: The object based organization of MPEG-4 video facilitates priori-

tizing of the semantic objects based on their relevance. Further, the VOP types are a

form of inherent prioritization since B-VOPs do not contribute to error propagation

and thus can be transmitted at a lower priority or discarded in case of severe errors.

2. Resynchronization: The encoder can enhance error resilience by placing resynchro-

nization (resync) markers in the bitstreams with approximately constant spacing,

such as beginning of each MB.

3. Data partitioning: Data partitioning provides a mechanism to increase error re-

silience by separating the normal motion and texture data ofall MBs in a video

packet and send all of the motion data followed by a motion marker, followed by

all of the texture data.

15

4. Reversible VLCs: The reversible VLCs offer a mechanism for a decoder to recover

additional texture data in the presence of errors since the special design of reversible

VLCs enables decoding of codewords in both the forward (normal) and the reverse

direction.

5. Intra update and scalable coding: Intra update is a simplemethod to reduce error

propagation. However, more intra updates means less codingefficiency. Another

method is scalable coding, which can alleviate error propagation without more intra

coding.

2.3.4 Scalable Coding

The scalability tools in MPEG-4 video are designed to support applications beyond that

supported by single layer video, such as internet video, wireless video, multi-quality video

services, video database browsing, etc. In scalable video coding, it is assumed that given

a coded bitstream, decoders of various complexities can decode and display appropriate

reproductions of coded video.

MPEG-4 video provides several different forms of scalability. The basic scalability

tools offered are temporal scalability and spatial scalability. A Fine Granularity Scala-

bility (FGS) is also defined which supports continuous scalability of bit rate and video

quality.

2.4 Profiles and Levels [2]

Although there are many tools in the MPEG-4 standard, not every MPEG-4 decoder will

have to implement all of them. Similar to MPEG-2, profiles andlevels are defined as

subsets of the entire bitstreams syntax of all the tools. Thepurpose of defining confor-

mance points in the form of profiles and levels is to facilitate interchange of bitstreams

among different applications. There are eight profiles defined in MPEG-4: simple, core,

main, simple scalable, animated & mesh, basic animated texture, still scalable texture and

simple face. The details are given in Table 2.4.

16

Compared with the previous standards, the simple profile of MPEG-4 is similar to

the coding method in H.263. The difference is that the simpleprofile has error resilience

but does not have B-frame coding. The simple scalable profile is simple profile with

rectangular scalability. The core profile is the profile withall tools of the simple profile,

temporal scalability, B-VOP coding and binary shape coding.The main profile is the

profile with all tools in core profile, gray shape coding, interlace and sprite coding. The

other profiles are for particular purposes, such as 2D dynamic mesh coding and facial

animation coding.

For frame-based coding and decoding, what concerns us is themain profile, excluding

the shape coding, interlace, and sprite coding tools.

17

Table 2.4: Profiles and Tools (from [2])
Simple Core Main Simple Animated Basic Still Simple

Tools Scalable 2D Mesh Animated Scalable Face

Texture Texture

Basic

1. I VOP

2. P VOP V V V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronization V V V V V

2. Data Partitioning

3. Reversible VLC

Short Header V V V V

B-VOP V V V V

Method 1/Method 2 V V V

quantization

P-VOP based

temporal scalability

1. Rectangular V V V

2. Arbitrary Shape

Binary Shape V V V

Gray Shape V

Interlace V

Sprite V

Temporal scalability V

(rectangular)

Spatial scalability V

(rectangular)

Scalable still V V V

texture

2D dynamic mesh V V

with uniform topology

2D dynamic mesh V

with Delaunay topology

Facial animation V

parameters

18

Chapter 3

Overview of The PACDSP

The contents of this chapter have been taken to a large extentfrom [1].

3.1 Introduction

Programmable embedded solutions are attractive for their lower development effort, up-

gradeability to support new applications and easier maintenance. These factors reduce

time-to-market and extend time-in-market, and thus make the best profit-sense. Today’s

media processing demands extremely high computations withreal-time constraints in au-

dio, image or video applications. Instruction parallelismhas been exploited to speed

up the high-performance microprocessors, and VLIW machines have low-cost compiler

scheduling with deterministic execution time and have thusbecome the trend of high

performance DSP processors.

Conventional VLIW processors are notorious for their poor code density, because the

unused instruction slots must be filled by NOPs. Thus, the code density gets worse when

the parallelism is limited. Variable-length VLIW instruction packet eliminates NOPs by

dispatching instructions at run-time, compared to the conventional position-coded VLIW

processors where each functional unit (FU) has a corresponding bit-field in the instruc-

tion packet. Indirect VLIW has an internal instruction buffer for the VLIW instruction

packets. With this instruction buffer and the pre-fetch scheme, the VLIW processor can

reduce instruction memory bandwidth requirement and powerconsumption of instruction

19

fetches.

The complexity of the register file (RF) grows exponentially as more and more FUs

are integrated on a chip, which operate concurrently to achieve the performance require-

ments. The RF is frequently partitioned for execution clusters with explicit interconnec-

tion networks among the clusters to significantly reduce thecomplexity at the cost of

small performance penalty.

For high performance, the PACDSP is a VLIW processor with single instruction mul-

tiple data (SIMD) instruction set architecture (ISA). The software supported schedule

reduces the complexity of hardware design and the power consumption. Variable length

instruction and instruction packet solve the poor code density problem of the conventional

VLIW architecture. Another feature of the PACDSP, cluster architecture, reduces not only

ports and entries of the register files but also the power consumption of read/write opera-

tions. More details about the features of PACDSP are discussed in the following sections.

3.1.1 Architecture Features

Key features of the PACDSP include the following items:

• Scalable VLIW datapath for easy extension of the performance.

• Variable instruction word/packet length to avoid the drawback of poor code density

in the conventional VLIW architecture.

• Heterogeneous register files for more straightforward operations, less ports and

smaller entries in each RF to improve the performance and reduce power and area.

• Constant register file in each cluster (32×32 bits) for storage of some fixed data in

the applications to reduce the frequency of data movement which may cost signifi-

cant of power consumption.

• Inter-cluster communication (ICC) by memory controller for reusing hardware re-

source and reducing the port number of ping-pong RF in order toreduce power and

area and to increase the scalability.

20

• Optimized interrupt design with fast interrupt response time (3 clock cycles) with

hardware supporting context switch to reduce the processing time of interrupt ser-

vice routine (ISR).

• Hierarchical encoding scheme reducing the dependency between instructions and

packets to reduce area and latency of the dispatch unit.

• Dynamic power management for power saving.

• Customized instruction set and functional unit interface for the accelerators that are

used to enhance certain DSP operations.

3.2 Architecture Overview

There are three components in the PACDSP kernel: program sequence control unit, scalar

unit and VLIW datapath. The accelerators that execute in different threads and synchro-

nize the execution results through the scalar unit can enhance the computation power of

the VLIW datapath. Figure 3.1 shows the architecture of the PACDSP.

The program sequence control unit dispatches instructionsto the scalar unit and the

VLIW datapath. It also executes control flow instructions and handles the interrupt and

exception events. The scalar unit executes the scalar instructions whose characteristics

are low parallelism and high data dependency. It also controls the power control interface

and the customized functional unit interface.

The VLIW datapath composed of two clusters takes charge of complex data opera-

tions in the program. Each cluster contains a load/store unit (L/S) and an arithmetic unit

(AU). Both units can execute instructions concurrently. Another feature of the PACDSP,

the ping-pong register file, facilitates data transfers between these two units. With this

feature, the typically high power consumption of the DSP kernel can be reduced. The

maximum parallelism of the VLIW datapath in instruction andoperation levels is 4 and

12, respectively.

21

Figure 3.1: Architecture of the PACDSP [1].

3.3 Program Sequence Control Unit

The program sequence control unit is a main component in the DSP kernel. It dispatches

instructions to the scalar unit and the VLIW datapath. It also executes the execution flow

control instructions and handles the interrupt and exception events.

3.3.1 Branch Instruction

Branch instructions can be grouped into two categories, conditional branches and uncon-

ditional branches. There are three addressing modes definedin the PACDSP for generat-

ing the branch target address:

• PC-relative

Add the 16-bit signed immediate offset to the address in the PC register, and take

the result as the branch target address, i.e.,

22

TA = PC + OFFSET

where TA is the target address, PC is the address in PC register, and OFFSET is the

16-bit signed immediate value.

• Register

Take the value in the register as the target address, i.e.,

TA = Rs

where TA is the target address and Rs is the source register of address.

• Register-relative

Add the 16-bit signed immediate offset to the address saved in the register and take

the result as the branch target address, i.e.,

TA = Rs + OFFSET

where TA is the target address, Rs is the source register saving the address, OFFSET

is the 16-bit signed immediate value.

The branch instructions defined in the PACDSP support saving of the return address

into the assigned register. The programmer should take careof the return addresses of

nested loops. There are three branch delay slots in the PACDSP, and the independent

instructions can be put in these delay slots.

3.3.2 Loop

The programmer can use the LBCB instruction to effect program loops. Loop Boundary

Register (RBC0 – RBC3), which are all 32-bit registers, can be used torecord the loop

counts. However, the maximum loop count is 65536 for each level. Since there are four

Loop Boundary Registers, up to four levels of nested loop can besupported with the use

of the LBCB instruction.

23

There is a constraint in using LBCB to control a nested loop. Theouter loop should

fully contain the inner loop. No exception will be generatedif the constraints are violated,

but the program behavior may be different from expectation.

However, conditional branches can be used inside the nestedloop to implement some

special branch behaviors in higher level languages, for example, “break” and “continue”

in C.

3.3.3 Customized Function Unit (CFU)

The PACDSP provides Customized Function Unit Interface for extension purpose. The

user can attach co-processors or customized function unitsto PACDSP and handle them

through the scalar instructions. If some error happens in a customized function unit, it can

inform the PACDSP and the PACDSP can process it based on the particular configuration.

If the work given is finished successfully, the PACDSP can use its results and continue

to work. It is recommended to use this interface to communicate with any added co-

processor; otherwise, the user may have to pay significantlymore effort to handle it.

3.3.4 Exception Handling

Unpredictable exceptions may occur during program execution. The exceptions need to

be handled correctly for correct execution results. Exceptions may be caused by hard-

ware (e.g., overflow), software, internal (e.g., undefined instruction), or external (e.g.,

coprocessor exception). When an exception happens, the DSP kernel will be frozen or

listen to the main processing unit (MPU) deliverance. It is still aware of debug requests

and will check the corresponding signal to see what kind of exceptions have happened.

3.3.5 Interrupt Handling

Two types of interrupt are supported by the PACDSP. One is fastinterrupt request (FIQ),

which has the higher priority, and the second is interrupt request (IRQ). The difference

between them is that the FIQ uses hardware to reduce the time in saving the context and

24

the hardware resources used for the FIQ interrupt service routine (ISR) consist only of the

scalar unit and program sequence control unit.

Contrarily, the IRQ can use all the hardware resources in PACDSPto deal with the

IRQ request, but the ISR of IRQ needs to save the context by itself.

In the PACDSP, the minimum latency from interrupt request to the first ISR instruction

to be executed is 3 cycles for both types of interrupt, and it may be postponed when the

ISR experiences cache miss.

3.4 VLIW Datapath

3.4.1 Ping-Pong Register File

A centralized register file (RF) provides storage for and interconnects to each functional

unit (FU), and each FU can read from or write to any register location. But in practical

designs, the communication between FU is usually restricted by partitioning the RF to

reduce the complexity significantly with some performance penalty. In other words, each

FU can only read and write a limited subset of registers. In the ping-pong hierarchical

RF, which is shown in Fig. 3.2, the RF is partitioned into private and ping-pong sub-

blocks. Each FU (L/S or AU) can simultaneously access two sub-blocks, one of which

is private (i.e., dedicated to the FU) and the other is dynamically mapped for inter-FU

communications within one cluster. Therefore, each sub-block only requires the access

ports for a single FU. The shared sub-blocks are organized ina ping-pong fashion to

reduce the control overheads, where the dynamic mapping is exposed to the VLIW ISA

with two switching bits and is directly specified by the programmers for each instruction

packet.

3.4.2 Data/Address/Accumulator Registers

As shown in Fig. 3.3, the address registers (A0–A7) are all 32-bit and they are dedicated

to the load/store unit (L/S) for memory accesses. In addition, A1, A3, A5, and A7 are also

treated as the base registers which contain the base addresses in modulo addressing mode.

25

A0 − A15 (32−bit)

Private Registers

D0 − D7 (32−bit)

Ping−Pong Register

D8 − D15 (32−bit)

AC0 − AC7 (40−bit)

Private Registers

 L/S

AU

2−bit configuration

Figure 3.2: Ping-pong register file in one cluster [1].

E0–E3 (A8, A10, A12, and A14) and D0–D3 (A9, A11, A13, and A15)are individually

treated as end registers and displacement registers which contain end addresses and dis-

placements in modulo addressing mode. Nevertheless, in linear addressing mode, they

can be treated as the address register like A0–A7. The accumulator registers (AC0–AC7)

are 40-bit (8-bit as guard bits) and are dedicated to the arithmetic unit(AU) for data manip-

ulations. The data registers(D0–D7 and D8–D15) are organized in the form of ping0pong

with 1-bit control and the word-length of these registers are 32-bit.

3.4.3 Status and Control Registers

The status register and control register which are read and set by instructions can be used

to monitor the DSP kernel status and handle the operation mode of DSP kernel.

26

D11.H

D13.H

D14.H

AC1.H

AC6.H

AC7.H

AC0.L

AC1.L

A9/D0

Data Register
32−bit
(L/S)

Data Register
32−bit
(AU)

Accumulater Register
40−bit
(AU)

Address Register
32−bit
(L/S)

End/Displacement
Register
32−bit
(L/S)

AC1.G

AC2.G

AC3.G

AC4.G

AC5.G

AC7.G

D0.H

D1.H

D2.H

D3.H

D4.H

D5.H

D6.H

D7.H

D0.L

D1.L

D2.L

D3.L

D4.L

D5.L

D6.L

D7.L

D8.H

D9.H

D10.H

D12.H

D15.H

D8.L

D9.L

D10.L

D11.L

D12.L

D13.L

D14.L

D15.L

AC0.G AC0.H

AC2.H

AC4.H

AC3.H

AC5.H

AC6.G AC6.L

AC5.L

AC4.L

AC3.L

AC2.L

AC7.L

A0

A2

A4

A6

A1/B0

A3/B1

A7/B3

A5/B2

A8/E0

A10/E1

A12/E2

A14/E3

A11/D1

A13/D2

A15/D3

Figure 3.3: The available registers in one cluster [1].

Program Status Register

The 16-bit program status register records the operation status in each cluster and the

scalar unit. It includes Overflow, Negative, and Carry bits, and instructions can only read

the status register, not set it.

Addressing Mode Control Register (AMCR)

The PACDSP provides three types of addressing modes:

• Linear addressing mode,

• Bit-reverse addressing mode,

• Modulo addressing mode.

As shown in Fig. 3.4, the addressing mode control register (AMCR) is a 32-bit read/write

register. This register is used to control the addressing mode of relative address registers.

The addressing modes are related to where the operands are tobe found and how the

address calculations are to be made.

27

A0
[1:0]

A1
[3:2]

A4
[9:8]

A5
[11:10][13:12]

A6

Addressing Mode Control Register
32 − bit

Reserved [31:16]

AMCR

A7
[15:14]

A3
[7:6]

A2
[5:4]

0 0

AM[0]AM[1]

0 1

1 0

11

Linear

Bit−Reverse

Modulo

Reserved

Addressing Mode

Figure 3.4: Illustration of the addressing mode control register (AMCR) [1].

3.4.4 Addressing Modes

The addressing modes are related to where the operands are tobe found and how the

address calculations are to be made.

Linear Addressing Mode

There are three kinds of linear addressing mode, which are register direct mode, address

register indirect mode, and immediate data mode.

The register direct addressing mode specifies that the operand is in one or more of

the arithmetic unit (AU) registers, load/store unit (L/S) registers, control registers and

program counter (PC) registers. This addressing mode is alsoused to specify a control

register operand and a PC register operand for special instructions.

The address register indirect mode specifies that the address register is used to point

to a memory location. The term indirect is used because the register contents are not the

operand itself, but the operand address. This addressing mode specifies that an operand

is in a memory location and specifies the effective address ofthat operand. There are still

two sub-modes in the address register indirect mode:

• Pre-increment, +(Rs) offset

The operand address is the sum of the contents of the address register and the offset.

The data stored at the address of the sum of register value andoffset will be loaded.

28

• Post-increment, (Rs)+ offset

The operand is in the address register Rs. After the operand address is used, it is

incremented by the offset and stored in the same address register. Incrementing the

operand address by the offset places the next available address in the register. That

is, the data stored at the location of the address register will be loaded first, and then

the address is updated with the offset.

The immediate data mode does not use an address register. Theinstructions use an

immediate value that is included in the instruction for the data value or address value.

Bit-Reverse Addressing Mode

Bit-reverse addressing mode is also called reverse-carry addressing mode. It is useful

for 2k-point FFT addressing. This mode is selected by setting the corresponding bits in

AMCR, and address modification is performed in the hardware by propagating the carry

from each pair of added bits in the reverse direction (from the MSB end toward the LSB

end). It can also use the pre- or post-increment addressing mode.

This address modification is useful for addressing the twidle factors in2k point-FFT

addressing as well as to unscramble2k-point FFT data.

Modulo Addressing Mode

Modulo address modification is useful for creating circularbuffers for FIFO queues, delay

lines, and sample buffers.

The definition of modulo addressing, using a base register (Bn) and a modulo register

(Mi), enables the programmer to locate the modulo buffer at any address. The address

pointer,An, is not required to start at the lower address boundary, nor to end on the upper

address boundary. It can initially point to anywhere (aligned to its access width) within

the defined modulo address range,Bn ≤ An < Bn + Mi.

Modulo addressing can be selected by configuring corresponding bits in AMCR, and

write the desired modulo to modulo registers. The range of modulo registers,Mi, is from

1 to232 − 1.

29

Each base address register (Bn) is associated with an address register (B0 with A0,

and so on). Offset and modifier registers are also associatedwith the corresponding ad-

dress registers in the same way.

3.4.5 VLIW Datapath

The VLIW datapath of PACDSP is constructed in two clusters, and each contains an

arithmetic unit (AU) and a load/store unit (L/S) as shown in Fig. 3.2. Therefore, it can

execute four instructions simultaneously, and is thus called a four-way VLIW datapath.

Arithmetic Unit (AU)

The arithmetic unit (AU) comprises four 40-bit adders whichcan be reconfigured to two

16-bit adders or four 8-bit adders, two 16-bit multipliers,one shifter and one logical ALU.

All data processing instructions in AU begin at the same stage, but not finish at the same

time.

There are three types of precision in DSP — full, integer, andfractional. Figure 3.5

shows how it works.

• Full precision: Rd = Rs1.L× Rs2.L.

• Integer: Rd.L = (Rs1.L× Rs2.L)[15:0].

• Fractional: Rd.L = Rs1.L× Rs2.L)[30:15].

Load/Store Unit (L/S)

The load/store unit (L/S) comprises one address generationunit (AGU), one logical ALU,

and one shifter. Similar to AU, all instructions in L/S beginat the same stage, but not finish

at the same time.

The L/S unit supports powerful double load/store instructions, which can load or store

two operands in one instruction. Figure 3.6 shows how doubleand vector load/store work.

30

��
��
��
��
��

��
��
��
��
��

������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������

Full Precision

Integer

Fractional

Rs2.LRs1.L

Rd.L

Rs1.L

Rs1.L

Rd.H Rd.L

Rd.L

Rs2.L

Rs2.L

Figure 3.5: Illustration of multiplication instructions with different precisions [1].

3.4.6 Data Exchange

As shown in Fig. 3.7, the PACDSP provides a data exchange mechanism between any

two of the scalar unit and the two clusters. Figure 3.8 shows that it can also provide

data broadcast to facilitate one of them to broadcast its data to the others even though

the number of clusters may be extended someday. This job is accomplished by using the

ports of the memory interface unit (MIU) because MIU has connections with all register

files of the scalar unit and the two clusters.

Data Exchange Between Clusters

The PACDSP provides a special instruction (DEX) to accomplish data exchange between

clusters. For example:

Cluster1 instruction: DEX D1, D0

Cluster2 instruction: DEX D1, D2

31

D1

D3

D5

D7

D0.L

D1.L

D2.H

D0

D2

D4

D6

D0.H

D1.H

D3.H

D2.L

D3.L

Unit

Load/Store

Unit
Load/Store

Double
Load//Store Load/Store

Vector

Figure 3.6: Different load/store instructions [1].

At compile time, this instruction pair will cause direct exchange of the contents of D0

and D2 through MIU and each cluster will store them in D1, as shown in Fig. 3.7.

Data Broadcast

Like data exchange between clusters, PACDSP also provides a special instruction pair

(BDT and BDR) for data broadcast from one cluster to the others. For example:

Cluster1 instruction: BDT D0

Cluster2 instruction: BDR D3

Scalar instruction: BDR R0

At compile time, this set of instructions will broadcast data from cluster1 to cluster2

and the scalar unit as shown in Fig. 3.8.

On the other hand, if we just want to transmit data from one cluster to another (includ-

ing the scalar unit), it can be considered a special case of data broadcast. For example:

Cluster1 instruction: ADD D0, D1, D2

Cluster2 instruction: BDR D7

Scalar instruction: BDT R0

In this example, the content of R0 is transmitted to D7 in cluster2. At the same time,

32

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.7: Data Exchange between Two Clusters [1].

Unit
Load/Store

Unit
Arithmetic

Cluster1

Unit
Load/Store

Unit
Arithmetic

Cluster2

M I U

Scalar
Unit

Figure 3.8: Data broadcast among clusters [1].

cluster1 can do other operations without affecting by this transmission.

3.4.7 Constant Register File

In many DSP algorithms, such as FIR, IIR, etc., there are many coefficient operations

which use fixed data. In order to avoid high frequency of data movement in the register

file, the PACDSP provides a small size memory, called Constant Register File to maintain

the fixed data. We can also use it to store look up tables which contain fixed data for

specific applications. It can reduce the frequency of data movement and thereby reduce

power consumption in such operations.

Data contained in the Constant Register File can be used to do operations including

33

comparison, multiplication, multiplication and accumulation, etc. They are used as the

second source operand in the instructions.

The specifications of Constant Register File (in one cluster) are as follows:

• 32 × 32 bits.

• Two read ports and one write port.

As shown in Fig. 3.9, the Constant Register File is initializedthrough the write port by

MIU at the beginning of the program. Not only the L/S but also the AU has a read port

for taking its value as one source operand. There are some rules when using the Constant

Register File:

• It can only be modified by particular instructions in L/S.

• Read and write operations may not occur at the same time in L/S.

3.5 Scalar Unit

3.5.1 Overview

The Scalar Unit can perform three types of function, which are basic arithmetic oper-

ations, word and halfword-based load/store operations, and read/write operations per-

formed on the contro/status registers.

Under some running modes, the DSP core may execute a program without activating

the VLIW clusters. In this case, the scalar unit acts like a simple machine, handling some

easy tasks.

Mostly, the scalar unit is in charge of the control-based work while the VLIW clusters

are dealing with data processing. Data can be exchanged between the scalar unit and the

VLIW clusters.

3.5.2 Control Registers

In the PACDSP kernel, there are 15 control registers. Table 3.1 shows the names and the

widths of all the control registers in the PACDSP kernel.

34

Load/Store Unit

Customized FU

Public Ping−Pong RF

Customized FU

Private RF

Private RF

Memory

Coefficient

Memory Interface Unit (MIU)

Arithmetic Unit

Figure 3.9: The Constant Register File of one cluster [1].

Several control registers are memory mapped and can be accessed by others outside

the PACDSP kernel. Table 3.2 lists the memory mapped control registers and the mapping

memory addresses.

The control registers can be read or write by the scalar instructions. When writing

the control registers, we can assign a 16-bit immediate value to the destination, or set a

general purpose scalar register as the source operand.

3.5.3 General Purpose Scalar Register File

In the scalar unit of the PACDSP kernel, there are sixteen 32-bit general purpose registers

named R0 to R15.

35

Table 3.1: Details of Control Register Files [1]

Type No Name Size(bits) Note

CR0 PREDN 16 Prediction information

CR1 EN INT 1 Interrupt enable flag

CR2 MSK EX 16 Mask inside exception

CR3 SWI EX 16 Software exception

Control CR4 CF0 32 Custom function register 0

CR5 CF1 32 Custom function register 1

CR6 CF2 32 Custom function register 2

CR7 CF3 32 Custom function register 3

CR8 SD MIXIFN0 32 Mix information 0’s shadow register

CR9 SD Rbc1 32 Loopboundary counter’s shadow

register1

CR10 SD Rbc2 32 Loopboundary counter’s shadow

register2

Interrupt CR11 SD BCTG 32 Branch target shadow register

CR12 SD CPC 32 CPC’s shadow register

(ISR return address)

CR13 SD PREDN 16 Prediction’s shadow register

CR14 SD R0 32 R0’s shadow register

CR15 Reserved

3.6 Conditional Execution Control

Unlike general purpose processors, the major mission of a DSP is to provide more com-

puting power for calculations. To reduce control overhead,the PACDSP supports condi-

tional execution of instructions. Programmers can set predicates by Compare-and-Set in-

structions and then the instructions afterward can refer tothe predicates to decide whether

to execute or not. When the program calls a function, we can save the predicates and

restore them after returning from the function call.

The Compare-and-Set instructions, such as SLT, SGT, etc., compare source operands

36

Table 3.2: Memory-Mapped Control Registers [1]

No Name Size Note Offset R/W

00 ExceptionCause 32 Indicate inside exception cause0x50020 R

01 Busy 1 DSP is busy 0x5000C R

02 Start 1 Start signal 0x50008 R/W

03 StartPC 32 Starting address 0x50000 R/W

04 MODE 4 DSP running mode 0x50040 R

05 VERSN 4 DSP version 0x50044 R

and save the results to the predicate registers, and the comparison results can be saved to

the general purpose registers at the same time. The PACDSP provides 16 predicate bits

(P0–P15), and a Compare-and-Set instruction updates 2 predicate bits at the same time.

However, P0 is always set to 1, and each predicate bit can be set by only one instruc-

tion at the same time.

3.7 ISA and Pipeline Stages

As said, the PACDSP architecture consists of the program sequence control unit, the

scalar unit, and the VLIW datapath. Each of the three has corresponding function units.

Therefore, the instruction set of PACDSP is classified according to the functional unit

in which the instruction is executed. Figure 3.10 depicts the instruction set architecture

(ISA) of the PACDSP.

Figure 3.11 shows the pipeline stages of the PACDSP. The program sequence control

can be divided into three stages, which are IF, IDP, and ID. The scalar unit operation and

the VLIW datapath are both divided into five stages, which areRO, EX1, EX2, EX3, and

WB. The job of each pipeline stage is as described in Table 3.3.

37

Program
Sequence

Program
Control

CR Load/
Store

AU Load/
Store

AU

VLIWScalar

PACDSP ISA

Figure 3.10: PACDSP instruction set architecture [1].

IDIDPIF EX1RO EX2 EX3 WB

Program Sequence
Control Unit VLIW Datapath

Scalar Unit

Figure 3.11: Pipeline stages of the PACDSP [1].

3.8 DSP Running Modes

The PACDSP can work under various running modes. Each mode hasdifferent hardware

utilization. There are 7 different running modes. The corresponding hardware resource

and a simple description of each running mode is given in Table 3.4.

It is noted that not all running modes can be chosen to be entered by the instructions.

We can only change the three sub-modes of the the user mode by the instructions. The

transitions between running modes are shown in Fig. 3.12.

38

Table 3.3: Pipeline Stages and Their Descriptions

Stage Description

IF Instruction Fetch

IDP Instruction Dispatch

ID Instruction Decode

RO Read Operand

EX1 Execution One

EX2 Execution Two

EX3 Execution Three

WB Write Back

3.9 Instruction Packet

The PACDSP can issue up to 5 instructions in one cycle. Instructions issued in the same

cycle are packeted into an instruction packet. The five slotsof the instruction packet and

the types of instruction that can be contained in each slot are listed in Table 3.5.

The whole instruction packet is bounded by brackets, and slots within packet are sep-

arated by new-line characters. Figure 3.13 shows the syntaxof a complete instruction

packet. However, an instruction packet is allowed to be written in a single line, and be

separated by a pipe character “|”. The simplified syntax is shown in Fig. 3.14. It is noted

that a NOP instruction should be placed in the slot where there is no instruction to be

executed.

3.10 Development Tools and Implementation Considera-

tions

3.10.1 Development Tools

We have a C-compiler ported from the well-known Open-Research-Compiler (ORC) on

linux systems, and we can give parameters to optimize the performance of compiler. How-

39

Table 3.4: Running Modes of the PACDSP [1]

Running Modes Description Resources

Idle Mode Idle after reset Execution control

or trap and interrupt interface

Process program

High Performance which needs all resourcesAll available

Process program

User Mode Medium Performance which does not need All except Cluster 2

all resources

High power saving Process FIQ ISR All except Cluster 1

or scalar program and Cluster 2

Wait for Customized CFU, interrupt,

Wait Mode Function Unit debug interface, and

result exception handling unit

Froze DSP since Debug and interrupt interface,

Frozen Mode exceptions happened exception handling unit

Debug interface,

Debug Mode Debugging register files

ever, we can choose only one optimization level to the current status. In addition, base

utilities are ported from the GNU binutils, and there are assembler, linker, and other object

handling tools. The debugger is ported from the GNU GDB, and GDB is an abbreviation

of GNU project debugger. The debugger can be connected to both the instruction set

simulator (ISS) and embedded ICE. These tool chains are developed by Programming

Language Laboratory of National Tsing Hua University in Hsinchu, Taiwan, R. O. C..

The ISS is developed by SoC Technology Center (STC) of Industrial Technology

Research Institute of Taiwan, R. O. C.. The input file of the simulator is split through a

parsing tool, “as2tic”, which parses the assembly code intotwo parts, data and instruction.

We can configure the ISS to decide which kinds of information we want to print out to

files. All the registers can be shown in each cycle, but the printable memory range is 8

40

Figure 3.12: Transitions between DSP running modes [1].

Table 3.5: Instruction Type in Each Instruction Slot

Instruction Slot Instruction Types

1 (Scalar Unit) Program Sequence Control Instructions

2 (Cluster1) VLIW Load/Store Instructions

3 (Cluster1) VLIW Arithmetic Instructions

4 (Cluster2) VLIW Load/Store Instructions

5 (Cluster2) VLIW Arithmetic Instructions

41

Figure 3.13: Syntax of instruction packet [1].

Figure 3.14: Simplified syntax of instruction packet [1].

Kbytes. It is noted that the ISS can be used on linux operatingsystems only.

3.10.2 Implementation Considerations

Since the goal of our implementation is achieve a real-time MPEG-4 video decoder on

PACDSP, the execution time is the most important issue that wecare about. Although the

compiler provides us facility for implementation, its performance is not better than well-

scheduled hand code. Moreover, the development of compileris not completed when we

begin our implementation, so our implementation focuses onassembly code programming

and its optimizations.

42

Chapter 4

Complexity Analysis and

Implementation Strategy of MPEG-4

Framed-Based Video Decoder

To begin the DSP implementation work, we first analyze the computational complexity

of the MPEG-4 video codec software. Since the PAC platform and its associated software

tools are still in their early stage of development, it is impractical to carry out the com-

putational complexity analysis directly on PAC. As a result,we carry out the analysis on

standard personal computers (PCs) and employ Intel’s “VTunePerformance Analyzer” in

this work. The resulting numbers may not carry over directlyto the PAC platform, but can

give guidance to the second level of analysis and subsequentcodec programming on the

PAC platform. The analysis focuses on some important sub-blocks as shown in Fig. 4.1.

After the complexity analysis, we discuss the implementation of bitstream accesses.

In addition, different variable length decoding (VLD) methods on PACDSP and efficient

interpolation technique are also discussed in this chapter. The execution time and corre-

sponding code size of each sub-block are also listed in this chapter.

43

Previous

VOP
Reconstructed

Motion
Decoding

Motion
Compensation

VOP
Reconstruction

(Motion)

(Texture)

Coded
Bit Stream

Coded
Bit Stream

e
m
u
l
t
i
p
l
e
x
e
r

D

VLD Inverse
Scan

Inverse
AC/DC
Prediction

Inverse
Quantization IDCT

Texture Decoding

Figure 4.1: Block diagram of MPEG-4 frame-based video decoder [2].

4.1 Profiles of The MPEG-4 Frame-Based Video Decoder

4.1.1 Approach to Complexity Analysis

Our approach to codec complexity analysis consists of two levels, which may be viewed

as employing a divide-and-conquer strategy.

The first level is an operational analysis of the time the codec software spends in cod-

ing of practical video sequences. Two major usages of this analysis are the identification

the time-critical codec functions and the acquisition of some senses concerning the rel-

ative complexity of different codec functions in actual decoder operation. As a result,

the complexities of various decoder components, such as themotion compensator and the

VLD, are statistically variable and not a set of fixed numbers.

To capture the complexity variation over different video material, we consider several

common test video sequences of different amount of motion that likely represent the type

of material the PAC platform will largely address in its video coding applications for some

44

years. They are the QCIF (176×144) “grandmother” sequence and “stefan” sequence.

The second level of analysis is low-level computational analysis of the time-critical

codec functions. We calculate the amount of computation (additions, multiplications,

memory accesses, etc.). This prepares us for implementing these functions on the PAC

platform. One way to carry out such analysis is to examine theblock diagrams of the

video codec and estimate the number of computations from themathematical equations

that define each block’s function. But this way of analysis mayoverlook some overhead

needed in a practical software implementation such as address computations. We thus also

employ the MoMuSys software in this level of analysis [6], understanding that the results

do not necessarily carry directly over to the PAC platform, but provide some reference

data.

4.1.2 Profile on PC Using Intel VTune Performance Analyzer

The computational environment is a laptop with a 1.7 GHz Pentium-M CPU and 768

MB of DDR RAM, running Windows-XP. The profiling results, in Table 4.1, is obtained

from encoding and decoding 2 frames employing H.263 quantization with a fixed quan-

tization step size (QP), 4. It is noted that the quantizationstep size affects the length of

bitstream, so larger QP results in smaller bitstream size and reduce the required encoding

and decoding time.

In Table 4.1, it is noted that the data are calculated for two frames. However, some

functions, such as “DecodeMBMVs” and “Motion Compensation,”are called for inter (P)

frames only, and “DCACPrediction” is just for intra (I) frames. Therefore, the execution

time of functions which are used for both I and P frames shouldbe divided by two, when

we want to compare the computational complexity of the MPEG-4 decoder.

Nevertheless, we can still find in Table 4.1 that IDCT is a very important part in the

decoding procedure, and the reason why IDCT consumes so much time is that the IDCT

in the reference code is implemented in floating-point.

Moreover, the “bitstream access” includes accesses of decoding header and motion

vectors, but most of the execution time is consumed in decoding of block coefficients.

Although the test sequences are all in QCIF format, the execution time of each sub-

45

Table 4.1: Profile of Frame-Based MPEG-4 Decoding of QCIF on PC

stefanqcif grandmotherqcif

Function Name Clockticks % Clockticks %

BitstreamAccess 1,695 1.35 1,865 1.91

DecodeVOLHeader 296 0.24 294 0.30

DecodeVOPHeader 26 0.02 23 0.02

DecodeMBHeader 495 0.40 264 0.27

DecodeMBMVs 1,544 1.23 69 0.07

DCACPrediction 2,584 2.06 2,621 2.69

BlockDequantH263 1,870 1.49 946 0.97

BlockIDCT 28,340 22.63 7,927 8.14

BlockInterpolation 1,170 0.93 1,165 1.20

Motion Compensation 8,066 6.44 7,203 7.40

Fill VOP 424 0.34 413 0.42

Others 79,904 63.80 75,723 77.79

Total 125,244 100.00 97,348 100.00

block varies with the characteristics. For example, the sub-block, “DecodeMBMVs,”

requires 1,544 clockticks for “stefan,” but only 69 clockticks executed for “grandmother.”

The reason for such a result is that the amount of motion is less in the “grandmother”

sequence, so the “skipped mode”, which has no motion vectors, occurs more frequently.

4.1.3 Low-Level Computational Analysis

In the following analysis, the designation “data” in front of a dash indicates that the oper-

ation is associated with data values (memory contents), whereas the designation “mem”

indicates that the operation is associated with memory addresses. The reason for distin-

46

guishing “data” and “mem” operations is that many processors treat these two types of

operation differently.

Motion Compensation

In the MPEG-4 simple-profile, there are four steps to complete the motion compensation

for luminance blocks, and they are as follows:

1. The reference frame is padded with 16 pixels around the whole frame.

2. The padded frame is interpolated by two.

3. According to the corresponding motion vectors, we can findthe reference block

data.

4. Add the decoded residual data with the reference data.

We can easily find that there is much computation power consumed for the data ac-

cesses in memory. That is, the memory load/store and addresscalculations occupy most

of the computational complexity for motion compensation. In Table 4.2, we estimate the

necessary computations for completing the compensation ofone frame.

According to Table 4.2, the storage requirement for luminance motion compensation

is approximately as follows:

• 25,344 bytes for the previously decoded frame,

• 36,608 bytes for the padded frame,

• 146,432 bytes for the interpolated frame,

• 25,344 bytes for the reference frame data according to MVs,

• 25,344 bytes for the residual frame data.

The total memory space required is 253 KBytes, regardless of any memory-share

skill. It is noted that we consider the forward predicted P-VOP only. The computational

47

Table 4.2: Complexity of Luminance Motion Compensation in OneQCIF Frame

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 181,508 0 25,344

data-shift 0 109,057 0 0

data-load 25,344 36,608 25,344 25,344

data-store 36,608 146,432 25,344 25,344

mem-add 36,608 146,432 26,136 25,344

mem-mult 0 0 396 0

Memory Req.

(bytes) 61,952 146,432 25,344 25,344

Total Storage Requirement: 253 KBytes

complexity and storage requirement of chrominance motion compensation are listed in

Table 4.3. It is noted that the approximate complexity is analyzed under the 4:2:0 format.

Since the memory requirement and the amount of computation for addresses are very

big, straightforward pointing of the C code for motion compensation to PACDSP will be

inefficient with too many memory accesses. Therefore, we should further analyze the

characteristics of motion compensation, and we leave the discussion to the next section.

Texture Decoding After VLD

The texture decoding steps after VLD involve inverse scan, inverse AC/DC prediction,

inverse quantization (or dequantization), and IDCT. Among these, the inverse scan in-

volves some memory manipulation. The inverse AC/DC prediction involves relatively

small amount of computation (in the VTune analysis results). We concentrate on the

dequantization and the IDCT below.

The MoMuSys code for dequantization and IDCT are relatively straightforward com-

48

Table 4.3: Complexity of Chrominance Motion Compensation in One QCIF Frame

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 89,992 0 12,672

data-shift 0 54,530 0 0

data-load 12,672 18,304 12,672 12,672

data-store 18,304 73,216 12,672 12,672

mem-add 18,304 73,216 13,068 12,672

mem-mult 0 0 198 0

Memory Req.

(bytes) 30,976 73,216 12,672 12,672

Total Storage Requirement: 126.5 KBytes

pared to some other sections (such as motion compensation).Instead of carrying out

a complexity analysis based on the algorithm as in the case ofmotion compensation, we

analyze the MoMuSys code itself. The result, for one 8×8 block, is as shown in Table 4.4.

We now consider the storage requirement. The dequantization may need to store an

8×8 quantization matrix in addition to the data to be dequantized. The MoMuSys IDCT

(and DCT) code is based on the conventional row-column computation algorithm. It

only requires several words to store the DCT coefficients and several words to store the

intermediate transform results, in addition to that required for the input and output data,

where the input and output data can be colocated if desired.

4.2 Implementation Strategies on PACDSP

After the profiling on PC, we know that the bitstream decoding is a very important and

time-consuming part in MPEG-4 video decoder. Especially, the memory accesses and

49

Table 4.4: Complexity of Dequantization and IDCT for One 8×8 Block in MoMuSys

Code

Operation DeQuant IDCT

data-comparison 320 0

data-add 192 544

data-mult 64 256

data-shift 128 0

data-load 256 576

data-floor 0 64

mem-add 0 64

mem-mult 0 64

load/store operations, are very critical issues in DSP implementation. Besides, motion

compensation (MC) is also a most complex part in decoding of inter-encoded frames.

Therefore, we do some analyses on both PC and PACDSP to find better methods for VLD

and motion compensation. Discussions of dequantization and IDCT are left to the next

chapter.

4.2.1 Efficient Variable Length Decoding (VLD)

A big issue concerning software implementation on a VLIW processor is that if there is

any stall or program sequence branch, the entire processor has to stall or branch [7]. That

is, we should try to synchronize the program sequence in bothcluster to avoid inefficiency

or incorrect programming. Otherwise, the computation in one cluster will be terminated

by the change of program sequence caused by the other cluster. Besides, the register files

are not shared between the two clusters, so we cannot access the bitstream in two clusters

simultaneously. Therefore, we will compare the performance of different VLD methods

50

on PACDSP. The methods are proposed in [8] and [9]. We use the simple VLC table in

Table 4.5 for the following comparison.

Bit by Bit Matching

If the size of variable length code table is not very big, we can simply check the bitstream

bit by bit, and compare if any one symbol in the table is matched. The advantage of this

method is its simplicity, but the number of memory accesses to acquire the bits and the

number of comparison instructions are many. Therefore, theaverage execution time to

decode a symbol will be long. The example assembly program ofbit by bit matching on

the PACDSP is shown in Fig. 4.2

One Table Mapping with Magnitude-Offset

We mentioned that the performance of a VLIW processor would degrade if there are many

program sequence branches. In this technique, we build a table containing all possible

code words. Each entry in the table has two elements, which are the corresponding VLC

symbol and its code length. Thus, because the maximum code length is 11 bits in this

example, there would be211 items in the new table, We fetch the first 11 bits in the

bitstream. Then, the magnitude of the 11 bits gives the offset, which is used to fetch the

corresponding item in the table. Note that we only have to access the bitstream once per

symbol. The example assembly program of one-table mapping with magnitude-offset on

the PACDSP is shown in Fig. 4.3

Multiple-Pass Matching

To reduce the frequency of accessing the bitstream, we may divide the VLC table into

several subtables. The number of subtables is the number of bitstream accessing in worst

case. Since the symbol with shorter code appears more frequently, we may appropriately

enlarge the first subtable to further reduce bitstream accesses. For example, we divide the

test table into three subtables. The first half with symbols 0–6 are grouped into the same

table. Then, the second half is also divided into two parts with symbols 7–9 and 10–12,

respectively. Therefore, we read the first five bits in the bitstream, and check if any code

51

Table 4.5: Variable Length Codes for dctdc size luminance [2]

Variable length code dctdc size luminance

011 0

11 1

10 2

010 3

001 4

0001 5

0000 1 6

0000 01 7

0000 001 8

0000 0001 9

0000 0000 1 10

0000 0000 01 11

0000 0000 001 12

in the first subtable match the bits. If there is not a match, weread the next three bits

and check the second subtable, and continue until the symbolis decoded. The example

assembly program of multiple-pass matching on the PACDSP is shown in Fig. 4.4

Bounded Multiple-Pass Lookup with Magnitude-offset

The methods proposed previously have different advantagesand disadvantages in speed

and memory usage. We may take a compromise between executiontime and memory

requirement. Similar to the “multiple-pass matching” method, we still divide the test table

into several subtables. However, the purpose of “multiple-pass matching” is to reduce the

number of bitstream accessing, but the division in this technique is to reduce the huge

table size in the “one table mapping with magnitude-offset”method. The required table

52

Bit-by-Bit Matching
{ NOP | MOVI.L D2,2 | NOP | NOP | NOP }
; get dc_size
{ NOP | MOVI.H D2,0 | NOP | NOP | NOP }
; no need to store dc_size
{ J Show_Bitstream,R1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C2,p4,p5 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }; symbol 2
{ (p4)B End | NOP | NOP | NOP | NOP }
{ NOP | (p4)MOVI.L D5,2 | NOP | NOP | NOP }
{ NOP | (p4)MOVI.H D5,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C3,p4,p5 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B End | NOP | NOP | NOP | NOP }
{ NOP | (p4)MOVI.L D5,1 | NOP | NOP | NOP }
{ NOP | (p4)MOVI.H D5,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }; symbo 1

{ NOP | MOVI.L D2,3 | NOP | NOP | NOP }
{ NOP | MOVI.H D2,0 | NOP | NOP | NOP }
{ J Show_Bitstream,R1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C1,p4,p5 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B End | NOP | NOP | NOP | NOP }
{ NOP | (p4)MOVI.L D5,4 | NOP | NOP | NOP }
{ NOP | (p4)MOVI.H D5,0 | NOP | NOP | NOP };
{ NOP | NOP | NOP | NOP | NOP }; symbol 4
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C2,p4,p5 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B End | NOP | NOP | NOP | NOP }
{ NOP | (p4)MOVI.L D5,3 | NOP | NOP | NOP }
{ NOP | (p4)MOVI.H D5,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP };symbol 3
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C3,p4,p5 | NOP | NOP | NOP }
; symbol 0

Figure 4.2: Example of bit by bit matching on PACDSP.

size in this technique is shown in Eq. 4.1. We only need to access the bitstream once per

symbol, and the magnitude of code word is used to check which table to be searched in.

Table size =
∑N

i=0 2ci

∑N
i=0 ci = L whereL is the max code word length.

(4.1)

For example, the VLC table of the example is still partitioned into 3 parts. In this

method, the number of entries in each search table are 32, 8, and 8, respectively. The

first five bits are used to be the offset in the first table, and the following and last three

bits are used in the second and third table, respectively. The search in each subtable is

the same as “one table mapping with magnitude-offset” method. In conclusion, the total

table size is 48 bytes, which is much smaller than that in the one table mapping method.

The example assembly program of bounded multiple-pass lookup with magnitude-offset

on the PACDSP is shown in Fig. 4.5

Comparison of Different VLD Methods

Using the methods introduced above, we decode a bitstream consists of all possible sym-

bols on PACDSP. The results are shown in Fig. 4.6 and Table 4.6.We find that the best

53

One Table Mapping with Magnitude-Offset
{ NOP | MOVI.L D2,11 | NOP | NOP | NOP }; get dc_size
{ NOP | MOVI.H D2,0 | NOP | NOP | NOP }; no need to store dc_size
{ J Show_Bitstream,R1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP } ; get code word
{ NOP | NOP | NOP | NOP | NOP }; once access per symbol
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | MOVI.L A2,DC_Table | NOP | NOP | NOP }
{ NOP | MOVI.H A2,DC_Table | NOP | NOP | NOP }
{ NOP | MOVI.L A3,DC_Size | NOP | NOP | NOP }
{ NOP | MOVI.H A3,DC_Size | NOP | NOP | NOP }
{ NOP | ADD A2,A2,D7 | NOP | NOP | NOP }
{ NOP | LBU D5,A2,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SW D5,A3,0 | NOP | NOP | NOP }

Figure 4.3: Example of one table mapping with magnitude-offset on PACDSP.

performance occurs when the “bit-by-bit matching” method is applied with the shortest

code word. However, there is significant degradation when the corresponding code pat-

tern becomes longer. Therefore, because of the characteristic of entropy coding which

uses shorter codes to represent more frquently appearing symbols, the “bit-by-bit match-

ing” method can be used when most symbols may be encoded with shorter code words.

The performance of “multiple-pass matching” method has a similar characteristic,

which is also affected by the length of code pattern. Comparedto the first method, we

need to fetch the bitstream only three times in the worst case, so we need 367 rather than

732 cycles for the longest code word.

In the third method, “one table mapping with magnitude-offset”, we only access the

bitstream once, so the execution time of decoding a symbol isthe same for all cases in this

example. Nevertheless, the primary drawback of this methodis the memory requirement

of the lookup table because of the exponentially increasingtable size. Thus, this method

is appropriate only when the lookup table is not large.

Finally, since the methods discussed above have different drawbacks, the fourth method

provides a tradeoff between table size and execution time. We see that the execution time

is very close to that of the third method, and the table size is48 items rather than211.

In conclusion, the “bounded multiple pass lookups with magnitude-offset”, is very effi-

54

Multiple-Pass Matching

{ NOP | MOVI.L D2,5 | NOP | NOP | NOP }
; get dc_size
{ NOP | MOVI.H D2,0 | NOP | NOP | NOP }
; no need to store dc_size
{ J Show_Bitstream,R1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D7,C0,p4,p5 | NOP | NOP | NOP }
{ NOP | MOVI.L A3,DC_Size | NOP | NOP | NOP }
{ NOP | MOVI.H A3,DC_Size | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B Check_Tab_1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | MOVI.L D5,0x3 | NOP | NOP | NOP }
{ NOP | SRLI D6,D7,3 | NOP | NOP | NOP }
{ NOP | SEQ D6,D5,p10,p11 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p10)B Flush_Update,R1 | NOP | NOP | NOP | NOP }
{ NOP | (p10)MOVI.L D2,2 | NOP | NOP | NOP }
{ NOP | (p10)MOVI.H D2,0 | NOP | NOP | NOP }
{ NOP | (p10)SW D5,A3,0 | NOP | NOP | NOP }
{ (p10)B End | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP };sybol 1
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }

{ NOP | MOVI.L D5,0x2 | NOP | NOP | NOP }
{ NOP | SRLI D6,D7,3 | NOP | NOP | NOP }
{ NOP | SEQ D6,D5,p10,p11 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p10)B Flush_Update,R1 | NOP | NOP | NOP | NOP }
{ NOP | (p10)MOVI.L D2,3 | NOP | NOP | NOP }
{ NOP | (p10)MOVI.H D2,0 | NOP | NOP | NOP }
{ NOP | (p10)SW D5,A3,0 | NOP | NOP | NOP }
{ (p10)B End | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | MOVI.L D5,0x2 | NOP | NOP | NOP }
{ NOP | MOVI.H D5,0 | NOP | NOP | NOP }
{ NOP | SRLI D6,D7,2 | NOP | NOP | NOP }
{ NOP | SEQ D6,D5,p10,p11 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p10)B Flush_Update,R1 | NOP | NOP | NOP | NOP }
{ NOP | (p10)MOVI.L D2,2 | NOP | NOP | NOP }
{ NOP | (p10)MOVI.H D2,0 | NOP | NOP | NOP }
{ NOP | (p10)SW D5,A3,0 | NOP | NOP | NOP }
{ (p10)B End | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }; symbol 0
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }

Figure 4.4: Example of multiple-pass matching on PACDSP.

cient, but the simple ”bit-by-bit matching” method is attractive if we can reduce the cycles

required for bitstream accesses.

4.2.2 Efficient Motion Compensation

In the MoMuSys reference software, the motion compensationis done after all the resid-

ual data are decoded. Moreover, the reference frame is interpolated before the start of

motion compensation. However, the internal memory of PACDSPis 64 KB only, so the

interpolated frame is too large to be stored in the internal memory. Therefore, we propose

a block-based interpolation and compensation method.

In compensation of the coefficient block by block, notice that the horizontal and the

vertical block motion vectors may be both integers. That is,interpolation may not nec-

essary. We analyze the motion vectors of luminance blocks using the MPEG-4 reference

software. We count the amount of motion vectors, which are fractional in both horizon-

tal and vertical directions, and the results are listed in Table 4.7. In Table 4.7, “Both”

55

Bounded Multiple Pass Lookup with
Magnitude-Offset
{ NOP | MOVI.L D2,11 | NOP | NOP | NOP }; get dc_size
{ NOP | MOVI.H D2,0 | NOP | NOP | NOP }; no need to store dc_size
{ J Show_Bitstream,R1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP } ; get code word
{ NOP | NOP | NOP | NOP | NOP }; once access per symbol
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | MOVI.L A2,DC_Table | NOP | NOP | NOP }
{ NOP | MOVI.H A2,DC_Table | NOP | NOP | NOP }
{ NOP | MOVI.L A3,DC_Size | NOP | NOP | NOP }
{ NOP | MOVI.H A3,DC_Size | NOP | NOP | NOP }
{ NOP | SGTI D7,63,p4,p5 | NOP | NOP | NOP }
{ NOP | SGTI D7,8,p6,p7 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p4)B Check_Tab | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p6)B Check_Tab_1 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
Check_Tab_2:

Figure 4.5: Example of bounded multiple-pass lookup with magnitude-offset on PACDSP.

means that both the horizontal and the vertical motion vectors are fractional. “Hor.” and

“Ver.” mean that the motion vector is fractional only in horizontal and vertical direction,

respectively.

According to the analysis in Table 4.7, we can also understand more about the details

of different sequences, such as the directions of motion. Moreover, we know that the more

than 50% of interpolation can be avoided in four of the six test sequences. Thus, if we can

check the characteristic of the motion vectors in both luminance and chrominance motion

compensation, much computation can be saved.

4.2.3 Profile on PACDSP of All Decoder Functions

Since the simulator of PACDSP is not equipped with the function of profiling, we will

estimate the worst case execution cycles of each block and the corresponding code size,

56

Figure 4.6: Comparison of different VLD methods on PACDSP

which will be evaluated by lines of assembly code. As mentioned in the previous chapter,

PACDSP is a VLIW processor, and it can issue 5 instructions in parallel bounded in one

instruction packet. That is, we can simply count the number of the instruction packets to

estimate the execution time. The estimated profile is shown in Table 4.8. Note that we

also list the category of each sub-function in Fig. 4.1.

The functionality of some important subblocks is as follows. “BitstreamShowBits”

is used to access the bitstream stored in the corresponding buffer, and we can get the

value of nextn bit in the bitstream. “FlushUpdate” will flush the most significantm bit

in the bitstream, wherem andn should be given before entering these two functions,

respectively. Therefore, the bitstream decoding, including headers and coefficients, can

be completed with correspondingm andn. In addition, the headers of VOL, VOP, and

MB are also decoded from bitstream with the aid of these two functions.

The purpose of “DecodeMBMVs” is to get the motion vectors of a macroblock. To

get a correct motion vector, we need to get “mvdifference” with variable length decoding

and “pmv”, which is predicted from the previously decoded motion vectors. It is noted

that both the difference and the prediction are composed of horizontal and vertical parts,

and this function will be called only in inter-encoded frames.

57

Table 4.6: Execution Time of Different VLD Methods on PACDSP

One Table BoundedMultiple-

Code Pattern Bit-by-Bit Multiple-Pass Mapping with Pass Lookup with

Matching Matching Magnitude-Offset Magnitude-Offset

10 94 139 128 128

11 103 148 128 128

001 171 157 128 128

010 180 166 128 128

011 189 175 128 128

0001 258 184 128 128

0000 1 326 193 128 128

0000 01 394 243 128 149

0000 001 462 252 128 149

0000 0001 539 261 128 149

0000 0000 1 598 349 128 158

0000 0000 01 666 358 128 158

0000 0000 001 732 367 128 158

As to “DCACPrediction,” it is involved only when the corresponding frame is en-

coded in “intra” mode. In this function, DC and AC predictions of an8 × 8 block are

completed with the rules in MPEG-4 standard [2]. In addition, there are three types of in-

verse zigzag scanning in intra encoded frames, and the inverse scanning is also completed

in “DCACPrediction” in contrast to the function “Unzigzag” for inter encoded frames.

There are two types of quatization in the MPEG-4 standard. One is H.263 quantization

and the other is MPEG-2 quantization. Our implementation isfocused on simple profile,

which supports H.263 quantization only.

The8 × 8 two dimensional inverse discrete cosine transform (2-D IDCT) follows the

58

Table 4.7: Analysis of Necessary Interpolation Using MoMuSys

Bitstream Total MV Fractional MV

(QCIF) Number Total % Both % Hor. % Ver. %

grandmother 18,204 2,064 11.34 550 3.02 497 2.73 1,017 5.59

stefan 33,744 15,385 45.59 1,954 5.79 10,478 31.05 2,953 8.75

foreman 34,128 15,585 45.67 4,658 13.65 5,994 17.56 4,933 14.45

akiyo 13,552 1,225 9.04 120 0.89 144 1.06 961 7.09

mobile 35,192 21,663 61.56 1,697 4.82 15,933 45.27 4,033 11.46

football 34,604 27,031 77.23 11,164 32.26 9,198 26.58 6,669 19.27

definition in the MPEG-4 standard. In our implementation, this function includes clipping

of the block coefficients, and the values after clipping range between 0 and 255.

“BlockInterpolation”, “LumaMC”, and “ChromaMC” are used for motion compen-

sation for luminance and chrominance blocks. Finally, “Fill VOP” is for filling the de-

coded block to the memory space, for output frames or reference frames.

59

Table 4.8: Estimated Profile of Frame-Based MPEG-4 Decoding of QCIF on PACDSP

Function Name Cycles Code Size (KB) Category

BitstreamShowBits 112 179 VLD

FlushUpdate 32 33 VLD

DecodeVOLHeader 3,704 1432 VLD

DecodeVOPHeader 1,745 149 VLD

DecodeMBHeader 677 199 VLD

DecodeMBMVs 697 538 Motion Decoding

DCACPrediction 2,985 1554 Inverse AC/DC Prediction

Unzigzag 749 36 Inverse Scan

BlockDequantH263 2,599 104 Inverse Quantization

BlockIDCT 1,749 189 IDCT

BlockInterpolation 2,361 96 Motion Compensation

MC Luma 5,359 166 Motion Compensation

MC Chroma 5,918 244 Motion Compensation

Fill VOP 3,792 127 VOP Reconstruction

60

Chapter 5

Optimization of The Implementation on

PACDSP

In this chapter, we discuss the optimization of our implementation of MPEG-4 frame-

based video decoder on PACDSP. The optimization techniques are categorized into two

types, algorithmic and architectural. We also discuss the performance of the optimization.

Moreover, we compare the performance with some other reported implementation on

other hardware platforms.

5.1 Algorithmic Optimization

Most of our optimizations on algorithm are on the elimination of dequantization and IDCT

[8], [10]. We consider the intra- and inter-encoded frames,separately.

5.1.1 Algorithmic Optimization for Intra Frames

In intra frames decoding, there is a process, prediction of DC and AC coefficients, which is

not applied to inter-encoded frames. However, since such predictions are time-consuming,

if the frequency of these predictions can be reduced, much execution time can be saved.

In addition, an important property of DCT is that it concentrates signal energy in lower

frequency coefficients. That is, if a block is filled with constant coefficients, there will be

61

00 0 0 0 0 04

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4IDCT

Dequantize

8X8 Output Block Data8X8 Block Decoded from Bitream

Figure 5.1: DC spreading from decoded coefficient to output block.

only one coefficient at the DC after the transform. In other words, if we can make sure

that there is only a DC component decoded from the bitstream,the corresponding output

block data can be obtained with copying the DC component to the entire block, and such

property is illustrated in Fig. 5.1. There are different methods to skip the prediction and

transform, and we introduce the implementation techniquesand show the analysis and

simulation results in the following.

The assembly code of spreading DC value to the whole block is shown in Fig. 5.2. We

need four iterations to complete one block, so the executiontime is 19 cycles including

the setting of loop register and address registers. However, we still need several cycles to

DC_Spread()
DC_Spreading: ; 4 iterations for one block
{ SET_LBCI RBC0,4 | MOVI.L A6,R_Block_2D | COPY D15,D14 | MOVI.L A6,R_Block_2D | COPY D15,D14 }
{ NOP | MOVI.H A6,R_Block_2D | NOP | MOVI.H A6,R_Block_2D | NOP }; D14 D15 are DC value
{ NOP | NOP | NOP | ADDI A6,A6,128 | NOP } ; 2nd half in 2nd cluster
Spread_DC_Coeff: ; iterations
{ LBCB RBC0,Spread_DC_Coeff | DSW D14,D15,(A6)+8 | NOP | DSW D14,D15,(A6)+8 | NOP }
{ NOP | DSW D14,D15,(A6)+8 | NOP | DSW D14,D15,(A6)+8 | NOP }
{ NOP | DSW D14,D15,(A6)+8 | NOP | DSW D14,D15,(A6)+8 | NOP }
{ NOP | DSW D14,D15,(A6)+8 | NOP | DSW D14,D15,(A6)+8 | NOP }; store 16 coefficient in one iteration

Figure 5.2: Assembly code of DC spreading.

62

update the prediction data “DCStore”.

Check Skipped Blocks Using CBP and ACPredFlag

In MPEG-4 video, there are two parameters encoded in the macroblock header which can

help us reduce the amount of computation. The first one, CBP, standing for Coded Block

Pattern, tells us which blocks in a macroblock are variable length encoded. The second,

ACPredFlag, informs us about the existence of AC coefficients prediction.

In order to find out the proportion of blocks that can be skipped, we choose the same

test sequences as mentioned before. The simulation is done on PC with 90 frames to be

encoded, and these frames are all encoded in intra type. The simulation results on PC are

listed in Table 5.1.

In Table 5.1, we can see that the percentage of skipped block is not very high, and a

slow-motion sequence such as “Akiyo” does not have the most skipped blocks among the

six test sequences. The reason that the simulation results is not as what we expected is due

to the parameter ACPredFlag. Since the ACPredFlag is set to 1 if there is any block in

an MB predicted with AC coefficients, we cannot skip some blocks with DC component

only but nonzero ACPredFlag. Therefore, we should improve our method in finding the

blocks that can be skipped.

Check Skipped Blocks After AC Prediction

Since the previously simple checks cannot precisely indicate the blocks to be skipped, we

add a check after the prediction of AC coefficients is completed. Similar to the previous

method, we still need to check if the block data is variable length encoded through CBP

in the MB header, CBP. If the corresponding bit in CBP is zero, we can skip this block

because all the AC predicted coefficients are zero.

Consequently, we can further find out all the possible blocks to be skipped, but the

effort also increases because of more conditions to be checked. We again do a simulation

on PC to get the percentage of skipped blocks in 90 intra-encoded frames. The simulation

results are listed in Table 5.2.

Compared to Table 5.1, we can see in Table 5.2 that the percentage of skipped blocks

63

Table 5.1: Number of Skipped Blocks in 90 Intra Frames (Check CBP and ACPredFlag

Only)

Test Seqs.(QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 4,106 7.78

stefan 53,460 2,041 3.82

foreman 53,460 8,343 15.61

akiyo 53,460 6,574 12.30

mobile 53,460 1,422 2.66

football 53,460 5,568 10.42

gets higher with the aid of the new check. Furthermore, the test sequence “Grand-

motherqcif” becomes the one which has the most skipped blocks, and it is expected

that the performance of this optimization should be highly related the simulation results

listed in Table 5.1 and 5.2.

Conclusion of Optimization for Intra Frames

Based on the analysis of the frequency of skipped blocks in intra-encoded frames, we

apply the proposed means to our implementation on PACDSP. Thesimulation results are

listed in Table 5.3, where noted that the execution time is gathered from the first encoded

frame, not the average over 90 frames.

In Table 5.3, we can see that the performance of optimizationvaries from one se-

quence to another. The percentage of speedup on PACDSP is lessthan the percentage

of skipped blocks, and this phenomenon can be explained by Ahmdahl’s Law [7]. In

other words, the skipped blocks do not reduce computations other than dequantization

and IDCT, and we also need more cycles for the condition checking.

In conclusion, the above algorithmic optimization for intra-frame decoding is severely

limited by the nature of the test sequences. To further improve the performance, we

will take the advantage of VLIW architecture and SIMD instructions. The architectural

64

Vertical_AC_Reconstruction()
 vertical, top ROW of block C
 7 elements, so unroll the loop to 2 clusters
 A2 is Q_block, A3 is P_Coeff (AC)

; cluster1 1, cluster2 5
{ NOP | ADDI A2,A2,4 | CLR D12 | ADDI A2,A2,20 | CLR
D12 }
; D13 is index of Pred_A
{ NOP | ADDI A3,A3,4 | NOP | ADDI A3,A3,20 | NOP }
{ NOP | LW D14,A2,0 | NOP | LW D14,A2,0 | NOP }
{ NOP | LW D15,(A3)+4 | NOP | LW D15,(A3)+4 | NOP }
; post increment
{ NOP |NOP | NOP | NOP | NOP }
{ NOP |NOP | NOP | NOP | NOP }
{ NOP |ADD D9,D14,D15|NOP | ADD D9,D14,D15 | NOP }
{ NOP |SEQ D9,C0,p6,p7 |NOP | SEQ D9,C0,p8,p9 | NOP }
{ NOP |SW D9,(A2)+4 NOP | SW D9,(A2)+4 | NOP }
; post increment
; cluster1 2, cluster2 6
{ NOP | LW D14,A2,0 | NOP | LW D14,A2,0 | NOP }
{ NOP | LW D15,(A3)+4 | NOP | LW D15,(A3)+4 | NOP }
; post increment
{ NOP | (p7)ADDI D12,D12,1 | NOP | (p9)ADDI D12,D12,1
| NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP |ADD D9,D14,D15| NOP | ADD D9,D14,D15 | NOP }
{ NOP |SEQ D9,C0,p6,p7 | NOP | SEQ D9,C0,p8,p9 | NOP }
{ NOP |SW D9,(A2)+4 | NOP | SW D9,(A2)+4 | NOP }
; post increment
; cluster1 3, cluster2 7
{ NOP | LW D14,A2,0 | NOP | LW D14,A2,0 | NOP }

{ NOP | LW D15,(A3)+4 | NOP | LW D15,A3,0 | NOP }
{ NOP | (p7)ADDI D12,D12,1 | NOP | (p9)ADDI D12,D12,1
| NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | ADD D9,D14,D15|NOP ADD D9,D14,D15 | NOP }
{ NOP | SEQ D9,C0,p6,p7 |NOP |SEQ D9,C0,p8,p9 | NOP }
{ NOP | SW D9,(A2)+4 | NOP | SW D9,A2,0 | NOP }
; cluster1 4, cluster2 no
{ NOP | LW D14,A2,0 | NOP | NOP | NOP }
{ NOP | LW D15,A3,0 | NOP | NOP | NOP }
{ NOP | MOVI.L A7,Fake_AC_Pred | (p7)ADDI D12,D12,1 |
MOVI.L A7,Fake_AC_Pred | (p9)ADDI D12,D12,1}
{ NOP | MOVI.H A7,Fake_AC_Pred | NOP | MOVI.H
A7,Fake_AC_Pred | NOP }
{ NOP | ADD D9,D14,D15 | NOP | NOP | NOP }
{ NOP | SEQ D9,C0,p6,p7 | NOP | NOP | NOP }
{ NOP | SW D9,A2,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | (p7)ADDI D12,D12,1 | NOP | NOP | NOP }
{ NOP | SEQ D12,C0,p10,p11 | NOP | SEQ D12,C0,p12,p13 |
NOP }
{ J End_of_One_Block | SW C0,A7,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | (p10)SW C1,A7,0 | NOP | NOP | NOP }
; iAC coeff. not zero
{ NOP | NOP | NOP | (p12)SW C1,A7,0 | NOP }
; Fake_AC_Pred 0

Figure 5.3: Assembly code of new check in vertical AC reconstruction.

optimization methods will be introduced and applied in the next section.

5.1.2 Algorithmic Optimization for P-Frames

Similar to the optimization for intra-encoded frames, we want to reduce the frequency

that dequantization and IDCT are called. Therefore, we againdo some analysis on PC to

check how many blocks can be skipped, and we will apply some condition checking to

skip the null residual blocks.

65

Table 5.2: Number of Skipped Blocks in 90 Intra Frames with Further Check After AC

Prediction

Test Seqs.(QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 15,795 29.55

stefan 53,460 4,679 8.75

foreman 53,460 10,976 20.53

akiyo 53,460 11,863 22.19

mobile 53,460 2,864 5.36

football 53,460 8,199 15.34

Table 5.3: Execution Time of Intra Frame Decoding on PACDSP
Test Seqs. Execution Time (cycles)

(QCIF) Original CBP and ACPredflag Checked speedup(%) AC Prediction also Checked Speedup(%)

grandmother 6,387,046 6,190,427 3.08 5,743,012 7.01

stefan 8,386,942 8,339,047 0.56 8,161,874 2.12

foreman 6,451,775 6,092,569 5.57 5,980,268 1.84

akiyo 6,183,448 5,885,550 4.82 5,695,724 3.23

mobile 10,211,299 10,189,775 0.21 10,128,500 0.60

football 7,087,360 6,973,907 1.60 6,920,920 0.76

Analysis of Null Residual Blocks

In this optimization, the condition to be checked is whetherthe residual blocks are variable

length encoded or not. Therefore, we just check the CBP in the MBheader to see if the

dequantization and IDCT can be skipped. We still encode 90 frames with the first frame

intra-encoded. The data listed in Table 5.4 are obtained from the statistics of the 89 inter-

encoded P frames in each sequence.

In Table 5.4, the simulation results tell us that the test sequences that are more “static”

skip more blocks.

66

Table 5.4: Number of Skipped Blocks in 89 P Frames

Test Seqs. (QCIF) Total Block No. Skipped Block No. %

grandmother 52,866 40,475 76.56

stefan 52,866 14,082 26.64

foreman 52,866 23,261 44.00

akiyo 52,866 43,943 83.12

mobile 52,866 5,734 10.85

football 52,866 15,038 28.45

Conclusion of Optimization for Inter (P) Frames

As a result of many null residual blocks in P frames decoding,we apply the skip condition

to our implementation on PACDSP. Similar to the simulation for intra frames, we gather

the execution time for one frame, or the simulation time willbe very long and inefficient.

The execution time of decoding an inter-encoded(P) frame ofsix different sequences are

list in Table 5.5.

We can see in Table 5.5 that a large amount of execution time issaved for more

“static” sequences, such as “Akiyo”. Nevertheless, the performance of this optimization

is still limited by Amdahl’s Law [7].

To further reduce the execution time in P frame decoding, we will avail ourselves of

the assistance of VLIW architecture and SIMD instructions,which is discussed in the

next section.

5.2 Architectural Optimization

An important issue of DSP implementation is the utilizationof the architectural advan-

tages. In this section, we introduce some general software optimization techniques, in-

cluding static rescheduling, loop unrolling, and softwarepipelining.

In addition, the computations are dispatched to different units to utilize the advantage

67

Table 5.5: Execution Time of Inter (P) Frame Decoding on PACDSP

Test Seqs. Execution Time(cycles)

(QCIF) Original CBP Checked speedup(%)

grandmother 5,607,644 3,895,737 30.53

stefan 7,464,140 6,883,885 7.77

foreman 6,494,590 5,294,624 18.48

akiyo 4,693,963 3,159,598 32.69

mobile 8,861,251 8,527,807 3.76

football 8,470,472 7,942,794 6.23

of VLIW processor. Some special SIMD instructions of PACDSP are used to compute

or load/store multiple data at the same time. The advantage of SIMD instructions is to

increase the throughput of computations.

5.2.1 General Optimization Techniques

To get a higher performance, we should try to fill all the slotsin an instruction packet.

That is, how to achieve a full-pipeline implementation is very important to a better per-

formance. In this subsection, we introduce three optimization methods, namely, static

rescheduling, loop unrolling, and software pipelining. The purpose of these techniques

is to reduce the stalls resulting from hazards, and the appropriateness for PADCDSP of

these techniques are discussed as well.

In the discussion, we use an example of summing the coefficients in a 1-D array,

which contains eight 8-bit data. The corresponding C program is shown in Fig. 5.4. In

order to simplify the utilization of different techniques,we use only one instruction slot

in the instruction packet.

68

for (i=0; i<8; i++)
y += x[i];

Figure 5.4: Example of vector addition.

Static Rescheduling

In the assembly code programming, dependence of data may cause stalls in processor,

which increase the required computation time. There are three types of data hazard,

namely, read-after-write (RAW), write-after-read (WAR), andwrite-after-write (WAW).

In the left half of Fig. 5.5, we simply translate the C programin Fig. 5.4 to the

PACDSP assembly code. We can see that two stalls after the “LB” instruction are resulted

from the dependence of the register D0, because data loadingfrom memory requires two

cycles to be valid in PACDSP.

In addition, the conditional branch, whose predicate register is p2, depends on the

comparison instruction SLTI. Therefore, there are seven stalls (NOPs) in the direct trans-

lation with three delay slots, and these stalls significantly degrade the execution speed.

We can utilize the independence of instructions to eliminate the stalls as much as

possible. In the right half of Fig. 5.5, we change the order ofcomputation, and it is obvious

that the stalls are reduced from seven to four. However, since the computation is not very

complex, we cannot further reduce the number of stalls simply through rescheduling.

Loop Unrolling

Loop unrolling is a general technique to deal with the implementation of an iterative

computation, especially, if there are any stalls in a singleiteration.

To utilize the unrolling technique, we have to find what are the independent com-

putations in the consecutive iterations. We can use different registers to store data from

different iterations, and the instructions still need to bescheduled well to reduce the stalls.

The number of unrolled loops depends on the stalls and independent computations in a

single loop. Figure 5.6 shows the assembly code before and after loop unrolling.

69

Loop:
LB D0,A0,0

ADD D1,D0,D1

ADDI A0,A0,1

NOP

NOP
NOP
NOP

Rescheduled

4−NOPs

Loop:
LB D0,A0,0;x[i]
NOP
NOP
ADD D1,D0,D1 ;y+=x[i]
ADDI A0,A0,1 ;i++

NOP
NOP
(p2)B Loop

NOP
NOP
NOP

(p2)B Loop

SLTI A0,8,p2,p3

RescheduleSLTI A0,8,p2,p3 ;i<8

7−NOPs

Original Code

Loop

Maintainance

Figure 5.5: Example of static rescheduling technique.

4−NOPs

Loop:
LB D0,A0,0 ;x[i]

NOP

NOP
NOP
NOP

Rescheduled

(p2)B Loop
Unroll

Loop:
LB D0,A0,0 ;x[i]

SLTI A0,8,p2,p3 i<8

LB D2,A0,1 ;x[i+1]
LB D3,A0,2 ;x[i+2]
LB D4,A0,3 ;x[i+3]

ADD D1,D2,D1 ;y+=x[i+1]

ADDI A0,A0,4 ;i+=4

(p2)B Loop
ADD D1,D0,D1 ;y+=x[i]

ADD D1,D3,D1 ;y+=x[i+2]
ADD D1,D4,D1 ;y+=x[i+3]

No NOP

After Unrolling

Loop
Maintainance

ADDI A0,A0,1 ;i++

ADD D1,D0,D1 y+=x[i]
SLTI A0,8,p2,p3 ;i<8

Figure 5.6: Example of loop unrolling technique.

In Fig. 5.6, we can find that all the stalls (NOPs) are eliminated. The loop maintenance

code and branch condition should be changed to adjust the newiterative computations.

However, there is a trade-off between execution time and corresponding code size. Al-

though the stalls are all eliminated, the code size increases after loop unrolling. Therefore,

we have to assess that if code size is critical or not. In addition, the number of available

registers is a limitation to the utilization of loop unrolling.

Software Pipelining

The concept of software pipelining is to reorganize the loopand to interleave dependent

instructions from different loop iterations to separate dependent instructions within the

70

original loop. Different from loop unrolling, we just reschedule the loop, so the stalls may

not be entirely eliminated. An example of software pipelining is illustrated in Fig. 5.7.

It is noted that the start-up code and clean-up code are used to interleave the dependent

code. Compared to loop unrolling, there are still 2 stalls. The advantage of software

pipelining is the smaller code size. However, the loop overhead cannot be reduced through

software pipelining. But we can apply loop unrolling and software pipelining to our

implementation simultaneously and take the advantage of both techniques.

5.2.2 Advantages of PACDSP

In order to speed up our implementation on PACDSP, we can utilize the advantages of

VLIW architecture and SIMD instructions. However, not all the computations can be

distributed to both clusters, so we have to check if the feature of the computations are

appropriate to apply the advantages of PACDSP.

In addition, since the branch instructions affects the program sequence of both clus-

ters, it is better to put two regular and independent parts ofcomputations in different clus-

ters. For example, an iterative computation can be separated into two parts if the com-

putations are independent in different iterations. Take the MPEG-4 frame-based video

decoder for instance, dequantization (IQ) and IDCT (IT) are very regular computations,

and we will discuss these two functions in the next section.

Moreover, SIMD instructions are also very helpful for optimization. Nevertheless,

Loop:

ADD D1,D4,D1 ;i+=x[i+3]
ADD D1,D3,D1 ;y+=x[i+2]

ADD D1,D0,D1;y+=x[i]
(p2)B Loop

LB D3,A0,2 ;x[i+2]
LB D4,A0,3 ;x[i+3]

Loop:

ADDI A0,A0,1 ;i++

NOP
NOP

ADD D1,D0,D1 ;y+=x[i]
(p2)B Loop

Start−up
Code

LB D0,A0,0 ;x[0]
ADDI A0,A0,1 ;i=1

SLTI A0,7,p2,p3 ;i<7

LB D0,A0,0 ;x[i]

ADD D1,D0,D1 ;y+=x[7]

LB D0,A0,0 ;x[i]
LB D2,A0,1 ;x[i+1]

ADDI A0,A0,4 ;i+=4
SLTI A0,8,p2,p3 ;i<8

ADD D1,D2,D1;y+=x[i+1]

Software

Pipeline

No NOP

After Unrolling

2−NOPs

S/W Pipelined

Clean−up
Code

Loop
Maintainance

Loop
Maintainance

Figure 5.7: Example of software pipelining technique

71

most of the arithmetic SIMD instructions cannot be applied in our implementation be-

cause most of the data that we have length equal a word.

5.3 Experiment Results

In this section, we apply the architectural optimization techniques mentioned above. Since

IQ and IT are very critical parts in the implementation of thevideo decoder, we particu-

larly introduce the optimization of these two functions andthe resulting improvement.

5.3.1 Optimization of Dequantization

In the MPEG-4 standard, there are two types of quantization,one is H.263 quantization

and the other is MPEG quantization. Since our implementation focuses on the simple

profile, we only need to support the H.263 quantization, and the its inverse quantization

is defined as follows:

|F”[v][u]| =

0,if QF [v][u]=0,

(2 × |QF [v][u]| + 1) × quantizer scale,if QF [v][u] 6= 0, quantizer scale is odd,

(2 × |QF [v][u]| + 1) × quantizer scale − 1,ifQF [v][u] 6= 0, quantizer scale is even,

(5.1)

whereF”[0][0] = 8×QF [0][0] for intra frames andQF is the decoded block coefficients.

There are two main computations for the dequantization. First, we scale the coef-

ficient according to the parameter “quantizerscale,” which is dependent on the value

of QP. Secondly, we have to saturate the coefficients to the range, (−2bits per piexel+3) –

(2bits per piexel+3 − 1).

The computations are very regular in the dequantization. Asa result, we can separate

the8 × 8 block into two parts. For example, the first 32 coefficients are computed in the

first cluster and the second half are done in the other cluster.

However, in the optimization of dequantization, we can skipsome computations if the

coefficient to be dequatized is zero. Thus, we need to check ifthe coefficients in both

clusters are zero. We can deal with two consecutive coefficients simultaneously or the

first 32 coefficients in the one cluster, and the second half inthe other cluster.

72

We have to decide which strategy of distribution mentioned above is better for our

optimization. Therefore, we gather the number of skipped coefficient pairs on PC with

the MoMuSys reference software. We compress 90 frames in intra mode for each of the

six test sequences, and the quatization step is four for all simulations. The results of the

analysis are listed in Table 5.6.

In Table 5.6, we can easily find that it is better to work on two consecutive pixels in

both clusters. Since the data structure in the implementation of dequatization is not appro-

priate for utilization of SIMD instructions and the limitednumber of registers also restrict

the application of loop-unrolling and software piplelining, we apply the rescheduling tech-

nique to our implementation of dequantization. The original and optimized program are

listed in Fig. 5.8

In the previous chapter, the simulation of 8×8 block requires 2599 cycles in worst

case. The execution time is significantly reduced to 600–800cycles after applying the

above technique. Note that the required cycles depends on the number of consecutive

zero coefficients. As a result, the original implementationof H.263 dequantization is

replaced by the new design, and the simulation results of I- and P-frames are listed in

Table 5.7.

5.3.2 Implementation of IDCT

The DCT and IDCT in MPEG-4 are defined as

F (u, v) =
2

N
C(u)C(v)

N−1
∑

x=0

N−1
∑

y=0

f(x, y) cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(5.2)

f(x, y) =
2

N

N−1
∑

u=0

N−1
∑

v=0

C(u)C(v)F (u, v) cos
(2x + 1)uπ

2N
cos

(2y + 1)vπ

2N
(5.3)

whereu, v, x, y = 0, 1, 2, . . . , N − 1

and

C(u), C(v) =

1√
2
, for u, v = 0,

1, otherwise.

Many fast algorithms have been proposed for efficient computation. To implement IDCT

on PACDSP, there are two critical issues, namely, efficiency and accuracy, which are

discussed below.

73

Table 5.6: Analysis of Skipped Coefficients in Dequantization (90 I-frames)

Test Seqs. Method 1∗ Method 2∗∗

(QCIF) No. % No. %

grandmother 1,331,114 77.8 1,263,074 73.83

stefan 964,767 56.40 930,600 54.40

foreman 1,294,917 75.69 1,212,908 70.90

akiyo 1,394,676 81.53 1,296,934 75.81

mobile 668,798 39.09 609,066 35.60

football 1,303,186 76.18 1,249,742 73.05

Total pixel pairs:176 × 144 × 1.5 × 90 ÷ 2 = 1, 710, 720

* Two consecutive pixels as a pair.

**Corresponding pixels in 1st and 2nd half as a pair.

Efficiency of IDCT

For the fast computation of 2-D IDCT, the conventional approach is the row-column

method, which requires 16 1-D IDCTs for the computation of an 8×8 IDCT [11]. Many

fast algorithms for 2-D IDCT have been proposed, and one of them reduces the required

1-D IDCTs from 16 to 8 [11]. However, since the number of required registers is very big

in this algorithm, it is not appropriate for the implementation on PACDSP.

We focuses the IDCT implementation on the efficiency of 1-D IDCT. Since the com-

putational complexity of direct implementation is very high, there are also many fast

algorithms for 1-D IDCT. Similar to the derivation from discrete Fourier transform (DFT)

to fast Fourier transform (FFT), a fast cosine transform (FCT) is proposed in [12]. The

comparison of computational complexity is listed in Table 5.8.

Note that the computational complexity is estimated for floating-point computation.

Since the transform coefficients used in [12] are reciprocals of cosine values, the error

increases because of limited accuracy in the fixed-point approximation on PACDSP. In

addition, the number of multiplications is bigger in the even-odd decomposition algo-

74

BlockDequantH263()

 Original Code Optimized
Dequant_Next_Coeff:
{ NOP | NOP | NOP | LW D14,A5,0 | NOP }
{ NOP | NOP | NOP | MOVI.L D15,0xF801 | NOP }
{ NOP | NOP | NOP | MOVI.H D15,0xFFFF | NOP };-2048
{ NOP | NOP | NOP | SEQ D14,C0,p12,p13 | NOP }
{ NOP | NOP | NOP | SLTI D14,0,P14,p15 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p12)B Zero_Coeff | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | (p14)MOVI.L D11,0 | NOP }
{ NOP | NOP | NOP | (p14)MOVI.H D11,0 | NOP }
{ NOP | NOP | NOP | MAX D14,D14,D15 | NOP }
{ NOP | NOP | NOP | MOVI.L D15,0x07FF | NOP };2047
{ NOP | NOP | NOP | MOVI.H D15,0 | NOP }
{ NOP | NOP | NOP | MIN D14,D14,D15 | NOP }
{ NOP | NOP | NOP | ABS D14,D14 | NOP }
;D14 = qcoeff[i];rcoeff[i]=D14 = QP*(2*ABS(qcoeff[i])+1)-1
{ NOP | NOP | NOP | SLLI D14,D14,1 | NOP }
{ NOP | NOP | NOP | ADDI D14,D14,1 | NOP }
{ NOP | NOP | NOP | SLLI D14,D14,2 | NOP };QP is 4 here
{ NOP | NOP | NOP | MOVI.L D15,1 | NOP };2047
{ NOP | NOP | NOP | MOVI.H D15,0 | NOP }
{ NOP | NOP | NOP | SUB D14,D14,D15 | NOP }
{ NOP | NOP | NOP | (p14)SUB D14,D11,D14 | NOP }
Zero_Coeff:
{ NOP | NOP | NOP | (p12)MOVI.L D14,0 | NOP }
{ NOP | NOP | NOP | (p12)MOVI.H D14,0 | NOP }
{ NOP | NOP | NOP | ADD D9,D9,C1 | NOP }
;D9 is the index of output matrix
{ NOP | NOP | NOP | SLTI D9,65,p10,p11 | NOP };check if last coeff
{ NOP | NOP | NOP | SUB D8,D12,C1 | NOP };D12 is lim
{ NOP | NOP | NOP | SUB D10,D11,D12 | NOP };D10 is -lim
{ NOP | NOP | NOP | SGT D14,D8,p12,p13 | NOP }
{ NOP | NOP | NOP | SLT D14,D10,p14,p15 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | (p12)COPY D14,D8 | NOP }
{ NOP | NOP | NOP | (p14)COPY D14,D10 | NOP }
{ (p10)B Dequant_Next_Coeff | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | (p10)SW D14,A6,0 | NOP }
{ NOP | NOP | NOP | (p10)ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | (p10)ADDI A6,A6,4 | NOP }
{ NOP | MOVI.L A3,VOP_coding_type | NOP | NOP | NOP }
{ NOP | MOVI.H A3,VOP_coding_type | NOP | NOP | NOP }
{ NOP | LW D15,A3,0 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SEQ D15,C0,p14,p15 | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ (p15)B End_of_Dequant | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }

Dequant_Next_Coeff:
{ ANDP p1,p6,p10 | (p7)MAX D14,D15,A4 | NOP | (p11)MAX
D14,D15,A4 | NOP }
{ NOP | (p7)MIN D14,D14,A5 | NOP | (p11)MIN D14,D14,A5 |
NOP }
{ NOP | (p7)ABS D14,D14 | NOP | (p11)ABS D14,D14 | NOP }
;D14 = qcoeff[i]
;rcoeff[i]=D14 = QP*(2*ABS(qcoeff[i])+1)-1
{ NOP | (p7)SLLI D14,D14,1 | NOP | (p11)SLLI D14,D14,1 |
NOP }
{ (p1)B Zero_Coeff | (p7)ADD D14,D14,C1 | NOP | (p11)ADD
D14,D14,C1 | NOP }
{ NOP | (p7)SLLI D14,D14,2 | NOP | (p11)SLLI D14,D14,2 |
NOP }
;QP is 4 here
{ NOP | (p7)SUB D14,D14,C1 | NOP | (p11)SUB D14,D14,C1 |
NOP }
{ NOP | (p8)CLR D11 | NOP | (p12)CLR D11 | NOP }
{ NOP | (p8)SUB D14,D11,D14 | NOP | (p12)SUB D14,D11,D14
| NOP }
Zero_Coeff:
{ NOP | (p6)CLR D14 | NOP | (p10)CLR D14 | NOP }
;D9 is the index of output matrix
{ NOP | SGT D14,A6,p4,p5 | NOP | SGT D14,A6,p8,p9 | NOP }
{ NOP | SLT D14,A7,p6,p7 | NOP | SLT D14,A7,p10,p11 | NOP }
{ NOP | LW D15,(A2)+8 | NOP | LW D15,(A2)+8 | NOP }
{ NOP | (p4)COPY D14,A6 | NOP | (p8)COPY D14,A6 | NOP }
{ LBCB RBC1,Dequant_Next_Coeff | (p6)COPY D14,A7 | NOP |
(p10)COPY D14,A7 | NOP }
{ NOP | SEQ D15,C0,p6,p7 | NOP | SEQ D15,C0,p10,p11 | NOP
}
{ NOP | SW D14,(A3)+8 | NOP | SLTI D15,0,p12,p13 | NOP }
{ NOP | SLTI D15,0,p8,p9 | NOP | SW D14,(A3)+8 | NOP }

Figure 5.8: Original and optimized assembly code of IQ.

rithm. As a result, we first implement the IDCT algorithm of MoMuSys on PACDSP.

Accuracy of IDCT

Since the PACDSP is not capable of floating-point computations, we have to convert

the IDCT algorithm to an integer computation. There are also many approximation al-

gorithms to floating-point IDCT. There are integer reversible algorithms for DCT/IDCT

[14],[15], but they consist of several matrix computations, and the computational com-

plexity should be much higher. Therefore, we do not implement a reversible transform.

Since there are two 16-bit multipliers in both clusters on PACDSP, we scale the

floating-point cosine coefficients with215. We then right shift 15 bits after the multi-

plication, and the multiplication is rounded to the nearestinteger.

After applying this method to our implementation, and the execution time is about

1,200 cycles. We now check if the implementation is accurateenough.The IEEE Std.

75

Table 5.7: Improvement after Optimization of Dequatization

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original† Optimized % Original† Optimized %

grandmother 5,743,012 5,160,154 10.15 3,895,737 3,613,810 7.24

stefan 8,161,874 7,386,839 9.50 6,883,885 6,257,262 9.10

foreman 5,980,268 5,327,327 10.92 5,294,624 4,859,341 8.22

akiyo 5,695,724 5,063,492 11.10 3,159,598 2,962,965 6.22

mobile 10,128,500 8,247,598 8.70 8,527,807 7,781,364 8.75

football 6,920,920 6,172,806 10.81 7,942,794 7,281,423 8.33

† Original means the execution time after algorithmic optimization.

Table 5.8: Comparison of Computational Complexity for 8-pointIDCT

Direct Form FCT [12] MoMuSys EvenOdd FCT [13]

Multiplications 64 12 16 20

Additions 56 29 26 28

1180-1190, which is currently withdrawn, is usually used totest for the compliance of

the implementation of IDCT algorithms. The compliance test requires five statistical

measurements, which are as follows:

• For any pixel location, the peak error (ppe) shall not exceed 1 in magnitude.

• For any pixel location, the mean square error (pmse) shall not exceed 0.06.

• Overall, the mean square error (omse) shall not exceed 0.02.

• For any pixel location, the mean error (pme) shall not exceed 0.015 in magnitude.

• Overall, the mean error (ome) shall not exceed 0.0015 in magnitude.

• For all-zero input, the proposed IDCT shall generate all-zero output.

76

Table 5.9: Test of Compliance Using IEEE Std. 1180-1190

item IEEE 1180–1190 MoMuSys EvenOdd FCT [13]

ppe ≤1 >1(X) ≤1(©)

pmse ≤0.06 137.8279(X) 0.0081(©)

omse ≤0.02 5.2222(X) 0.0056(©)

pme ≤0.015 10.8429(X) 0.0019(©)

ome ≤0.0015 0.5742(X) 0.0001(©)

all zero input all zero output © ©

We test the IDCT algorithm of MoMuSys with rounding to the nearest integer after each

multiplication for the IEEE 1180-1190 compliance, whose results are listed in Table 5.9.

We see that the simple rounding method introduces significant mismatch, so this algo-

rithm does not comply with the IEEE 1180-1190 standard afterconverting to fixed-point

computation, except in the last measurement.

Figure 5.9 shows signal flow in the algorithm. We see the odd-indexed coefficients are

rounded twice. However, each rounding introduces corresponding error. Therefore, we

try to use the even-odd decomposition algorithm [13]. In addition, since the multiplied

coefficients are summed immediately, the number of roundings can be reduced if we

postpone the roundings after the multiplied coefficients are summed. The signal flow

graph is shown in Fig. 5.10. Note that the roundings are postponed to the output stage, so

we have the right shift 19 bits to keep the correct format.

We also test the even-odd decomposition algorithm for the compliance of the IEEE

1180-1190 standard, whose results are also listed in Table 5.9. We can see that the even-

odd decomposition algorithm complies with the standard, and the less rounding opera-

tions reduce the required execution time as well.

77

Figure 5.9: The IDCT algorithm used in MoMuSys.

Optimization of IDCT on PACDSP

There are two clusters in the PACDSP, and we can complete individual computations

simultaneously because the computations of each row or column are independent. There-

fore, we can simply distribute eight 1-D row-wise and column-wise IDCTs to both clus-

ters. As a result, there are four iterations for both row and column computations.

According to the characteristics of the even-odd decomposition algorithm, we can

use double-store, MAC, and butterfly instructions to facilitate the computation, where the

butterfly instruction can sum and subtract the data in the twosource registers at the same

time.

The performance of various IDCT implementation are listed inTable 5.10. We see

that the implementation on PACDSP is competitive, because ofless arithmetic units re-

quired. The improvement to our implementation of the MPEG-4video decoder is shown

in Table 5.11.

In Table 5.11, we can find that the optimization of IDCT introduces at most 11.48

percent improvement. Moreover, since the number of skippedblocks is smaller for I-

78

Figure 5.10: The even-odd decomposition IDCT algorithm[8].

frames, we have less improvement for P-frames. The C program, original ,and optimized

assembly code of IDCT are listed in Appendix B.

5.3.3 Overall Optimization of the implementation

To further optimize the implementation of MPEG-4 video decoder on PACDSP, we review

the entire program and apply the optimization methods introduced above.

First, we reschedule the program and try to eliminate all theunnecessary stalls, and the

delay slots of the branches are filled as well. If there are anyconsecutive loads or stores,

we replace the original program with double-loads or stores. Thus, the execution time

and code size are both reduced. Second, we find out regular computations and employ the

loop-unrolling and software-pipelining techniques to reduce the execution time.

The performance of the implementation after the overall optimization are listed in

Table 5.12. We can find that all the execution time is about 5,600,000 cycles in worst case

and 2,000,000 in best case. In other words, if the frequency of PACDSP is higher than

168MHz, then we can implement a real-time MPEG-4 video decoder for QCIF format

79

Table 5.10: Comparison of IDCT on Different Platforms

Designs Processing units Clock (MHz) 2-D fast algo. Cycles

TI C30 [16] 1 MAC, 1 ALU 40 row-column 1344

TI C62x [16] 2 MUL, 6 ALU 200 row-column 226

TI C64x [17] 2 MUL, 6 ALU 600 row-column 154

IDCT Core [16] 1 ALU 33 direct 2-D 1208

PACDSP (ours) 2 AU, 2 L/S 200 even-odd 384

video on the PACDSP platform. Note that real-time means the decoding rate is higher

than 30 frames per second. Since the instruction memory is a 32 KB cache, the program

size of our implementation is 27 KB, which is smaller than the cache size. Therefore,

the execution time is not degraded by the cache misses. In addition, the required data

memory size is less than 64 KB depending on the size of bitstream to be decoded. That

is, we cannot decode too many frames if the bitstream size is too big.

5.4 Conclusion on Optimization

In this chapter, we used several optimization techniques toimprove the code. The simu-

lation results before and after optimization are listed in Table 5.13.

We can see that about 50% of the execution time for both I- and P-frame decoding

is reduced, except for the more complicated test sequences.The performance of our

implementation will be compared with other implementations in the next section.

We show the speed-ups of different optimization steps for different test sequences in

Figs. 5.11 and 5.12. The performance of algorithmic optimization is limited for I-frame

decoding because the number of skipped blocks is not very big. However, the number

of skipped blocks for P-frame decoding is very big especially for the test sequences that

have less motion.

Moreover, the performance for IQ and IT optimizations are also not very significant.

80

Table 5.11: Improvement After Optimization of IDCT

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original†† Optimized % Original†† Optimized %

grandmother 5,160,154 4,567,534 11.48 3,613,810 3,362,581 6.95

stefan 7,386,839 6,790,527 8.07 6,257,262 5,727,717 8.46

foreman 5,327,327 4,795,881 9.98 4,859,341 4,478,329 7.84

akiyo 5,063,492 4,541,150 10.32 2,962,965 2,768,631 6.56

mobile 8,247,598 8,606,904 6.93 7,781,364 7,163,932 7.93

football 6,172,806 5,536,382 10.31 7,281,423 6,725,999 7.63

†† Original means the execution time after optimization of dequantization.

Since we spend much execution time on decoding the bitstream, IQ and IT do not occupy

much of the computation complexity. However, the performance of overall optimization is

very impressive because many redundant stalls are removed after the optimization. There-

fore, bitstream decoding as well as memory accesses are moreefficient if we schedule the

program better.

5.5 The Effect of Different Quantization Step (QP)

In the MPEG-4 video encoder, the quantization follows the IDCT computation. There-

fore, the value of quantization step affects the floating-point block coefficients. In the pre-

vious implementation and discussion, we choose the QP valueas 4 in all cases. To have a

further understand of how QP affects the video encoding, we complete some analysis of

different QP values.

We choose three different test sequences and three different QP values. The three

sequences are akiyo, stefan, and mobile which are all in QCIF format, and they have low,

medium, and high motion, respectively. Note that the three QP values are 3, 4, and 8. In

the following, we discuss the effects to the I- and P-frame decoding.

81

Table 5.12: Overall Optimization after IDCT Optimization

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original††† Optimized % Original††† Optimized %

grandmother 4,567,534 2,969,243 34.99 3,362,581 2,370,949 29.49

stefan 6,790,527 4,324,652 36.31 5,727,717 4,130,700 27.88

foreman 4,795,881 3,093,021 35.51 4,478,329 3,184,234 28.90

akiyo 4,541,150 2,918,622 35.73 2,768,631 2,050,519 25.94

mobile 8,606,904 5,606,101 34.87 7,163,932 5,035,200 29.71

football 5,536,382 3,429,212 38.06 6,725,999 4,743,437 29.48

††† Original means the execution time after optimization of IDCT.

5.5.1 Effects of QP to I-Frame Decoding

Since the larger QP value introduces a rougher quantization, more block coefficients may

be quantized to the same value. As a result, the coefficients after DC/AC prediction

may be simpler, and the number of skipped blocks in our algorithmic optimization may

increase. The analyses of skipped blocks on PC using MoMuSysreference software are

listed in Table 5.14.

In Table 5.14, we find that the number of skipped blocks increases with larger QP if

we check CBP and ACPredFlag only. However, if we further check the skip condition

after AC prediction, the number of skipped block of “akiyo” does not increase with the

increasing QP. Setting QP as 4, there are most skipped blocksin the “akiyo” sequence.

Note that the number of skipped blocks are almost the same with setting QP as 8 even if

we further check the skip condition after AC prediction.

In addition, since different QP values affects the number ofvariable length coding,

we also complete some simulation on our implementation. Theexecution time of I-frame

decoding with different QP values are listed in Table 5.15. Note that we compare the

execution time after all optimization methods applied.

In Table 5.15, we see significant affects of different QP values. The execution time of

82

Table 5.13: Execution Time Before and After Optimizations

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Before After Speed-up (%) Before After Speed-up (%)

grandmother 6,387,046 2,969,243 53.51 5,607,644 2,370,949 57.72

stefan 8,386,942 4,324,652 48.44 6,464,140 4,130,700 44.66

foreman 6,451,775 3,093,021 52.06 6,494,590 3,184,234 50.97

akiyo 6,183,448 2,918,622 52.80 4,693,963 2,050,519 56.32

mobile 10,211,299 5,606,101 45.10 8,861,251 5,035,200 43.18

football 7,087,360 3,429,212 51.62 8,470,472 4,743,437 44.00

the three test sequences are substantially reduced with increasing QP value. The reason

for the significant reduction of execution time may be the reduction of the frequency of

VLD.

5.5.2 Effects of QP to P-Frame Decoding

For the P-frame decoding, we still focus on two parts. One is the number of zero-residual

blocks and the other is the percentage of fractional motion vectors.

First, we set different QP values and simulate on PC using MoMuSys reference soft-

ware. The number of zero-residual blocks in 89 P-frames are listed in Table 5.16. We can

find that the number of zero-residual blocks increases with the increasing QP values.

Second, we discuss the percentage of fractional motion vectors. Similar to the analysis

in previous chapter, we also list the number of fractional motion vectors in Table 5.17, but

we only show the total fractional motion vectors without checking the direction of motion

vectors.

In Table 5.17, we see that the number of total motion vectors decrease with larger QP.

That is, there are more MBs in skip mode. However, the number offractional motion

vectors increases. It may be resulted from the rougher quantization. The best motion

83

Figure 5.11: Speed-up of different optimization methods for I-frames.

vector of each block may be found in interpolated pixels withrougher quantization.

Finally, we also simulate P-frame decoding with different QP values in our implemen-

tation. the simulation results are listed in Table 5.18.

Although the number of zero-residual blocks increases withlarger QP, there are more

fractional motion vectors. Therefore, the execution time of P-frame decoding on PACDSP

does not decrease with larger QP in the “akiyo” test sequence. However, the execution

time is reduced with larger QP.

5.6 Comparison with Other Implementations

Since the MPEG-4 codec is widely used in the audio-visual compression, we can compare

the performance of MPEG-4 video decoder on PACDSP with that reported for the other

platforms. Table 5.19 lists some numerical information.

The requirement of MPEG-4 conformance test is 25-fps for QCIF[18]. The imple-

mentation on ARM7TDMI uses several architectural and algorithmic optimization tech-

niques, and the frequency of memory access is significantly reduced. Thus, the perfor-

mance of implementation on ARM7TDMI is much better than that on TI C6201.

84

Figure 5.12: Speed-up of different optimization methods for P-frames.

The TriMedia CPU64 DSP is a powerful processor for multimediaapplications, and

it is a 5-issue VLIW processor with 27 function units. 64-bitand SIMD instructions are

supported as well [21]. The 4CIF format is 704×576, which is 16 times larger than QCIF.

However, the performance can also be a reference to compare other implementations.

The performance of our implementation is evaluated with 200MHz frequency, and

the decoding rate listed in Table 5.19 is estimated by the decoding of a P-frame for the

test sequence akiyo. Since the cost of PACDSP is lower than other renowed processors,

the performance of the implementation of MPEG-4 video decoder is competitive to other

platforms.

Although our implementation can achieve the goal of real-time implementation, there

are possible optimizations. For example, the data structure of our design is not appro-

priate for most SIMD instructions, and frequent memory accesses also consume much

computations time. If we have a better plan for data structure and the usage of registers,

much computation time can be saved.

85

Table 5.14: Number of Skipped Blocks in 90 Intra Frames with Different QP

Check CBP Further Check

Test Seqs. QP and ACPredFlag after AC Prediction

(QCIF) Skipped Block No. % Skipped Block No. %

3 5,359 10.02 9,190 17.04

akiyo 4 6,574 12.30 11,863 22.19

8 8,426 15.76 8,426 15.76

3 1,684 3.15 2,806 5.25

stefan 4 2,041 3.82 4,679 8.79

8 2,966 5.55 2,969 5.55

3 841 1.57 1,604 3.99

mobile 4 1,422 2.66 2,864 5.36

8 3,323 6.22 3,323 6.22

Total block number: 53,460

Table 5.15: Effects of Different QP to Execution Time of I-Frame Decoding on PACDSP

Test Seqs. Execution Time (Cycles Per Frame)

(QCIF) QP = 3 QP = 4 QP = 8

akiyo 3,236,270 2,918,622 2,405,087

stefan 5,038,011 4,324,652 3,492,219

mobile 6,448,395 5,606,101 4,319,845

86

Table 5.16: Number of Skipped Blocks in 89 P-Frames with Different QP

Test Seqs. Check CBP and ACPredFlag

(QCIF) QP Skipped Block No. %

3 43,345 81.99

akiyo 4 43,943 83.12

8 49,113 92.90

3 11,842 22.40

stefan 4 14,082 26.64

8 26,550 50.22

3 4,385 8.29

mobile 4 5,734 10.85

8 13,849 26.20

Total block number: 52,866

Table 5.17: Percentage of Fractional Motion Vectors with Different QP

Test Seqs. (QCIF) QP Total MV Number Fractional MVs %

3 13,520 1,034 7.65

akiyo 4 13,552 1,225 9.04

8 7,964 1,373 17.24

3 34,348 15,324 44.61

stefan 4 33,744 15,385 45.59

8 31,024 15,930 51.35

3 35,212 21,703 61.64

mobile 4 35,192 21,663 61.56

8 35,088 21,683 61.80

87

Table 5.18: Effects of Different QP to Execution Time of P-Frame Decoding on PACDSP

Test Seqs. Execution Time (Cycles Per Frame)

(QCIF) QP = 3 QP = 4 QP = 8

akiyo 1,690,909 2,050,519 1,615,417

stefan 4,477,904 4,130,700 3,003,208

mobile 5,707,100 5,035,200 3,624,436

Table 5.19: Performance of MPEG-4 Video Decoder on Different Platforms

Processor Freq. (MHz) fps Profile

TI C6201 [18] 200 28.57 (QCIF) Not mentioned

ARM7TDMI [19] 12 15 (QCIF) Simple profile

Philips TriMedia64 [20] 300 30 (4CIF) Not mentioned

PACDSP 200 97.54 (QCIF) Simple profile

without error resilience

88

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we consider the real-time implementation ofMPEG-4 video decoder on

PACDSP platform.

We first focused on the correct of decoding the bitstream, andthe decoded frames have

been verified with the reference software of MPEG-4, MoMuSys. Before the implemen-

tation, we analyzed the statistics of the MPEG-4 video decoder on PC. Therefore, we had

an initial understand of the decoding flow and the critical part of computation. According

to the analysis, we implemented the MPEG-4 video decoder on the PACDSP simulator.

After the implementation was verified, we further analyzed the characteristics of de-

coding procedure to find if there was any removable computation. Based on the analysis,

we optimized the program sequence to reduce the computationcomplexity. The DC/AC

predictions, IQs, and ITs were skipped with checking for theheader and prediction re-

sults. In addition, we also utilized several general software optimization techniques, such

as static rescheduling, loop-unrolling, and software-pipelining to reduce the stalls.

The optimization results were discussed and compared with other implementations.

We can decode the MPEG-4 video bitstream over 97 frames per second in the best case,

and the program size is 27 KB, which is smaller than the instruction cache size. In con-

clusion, the performance our implementation of MPEG-4 video decoder on PACDSP is

competitive to other processors.

89

6.2 Future Work

There are several improvements and extensions can be considered in the future:

• Combination of IQ and IDCT

Since the computation of inverse quantization is followed by IDCT, we can simply

combine these computations to reduce the number of memory load/store.

• Data structure refinement

The data structure is very important to the implementation on DSPs. If the data

structure is designed before the implementation, the memory accesses can be sig-

nificantly reduced.

• Dual-core implementation

Since the internal memory of PACDSP is 64 KB only and the accessto external

memory consumes much execution time, the amount of bitstream that is written

to the memory is limited. Therefore, we can decode limited number of frames.

Because the ARM core on the PACDSP platform can access the internal memory of

PACDSP, we can manage the memory through ARM core, and the usable efficient

memory size is enlarged.

• Add other MPEG-4 tools

To simplify our implementation, the error-resilience toolin MPEG-4 simple profile

is neglected. However, this tool is very important if the bitstream is transmitted

through real channels. In addition, the special object-based compression technique

can be implemented to extend the capability of PACDSP.

90

Bibliography

[1] SoC Technology Center of Industrual Technology Research Institute

PACDSP2S0000,PACDSP v2.0 — Instruction Set Menu. June 2005.

[2] ISO/IEC 14496-2:2001,Information Technology — Coding of Audio-Visual Objects

— Part 2: Visual. July 2001.

[3] A. Puri and A. Eleftheriadis, “MPEG-4: an object-based multimedia coding stan-

dard supporting mobile applications,”Mobile Networks Applic., vol. 3, pp. 5–32,

1998.

[4] A. Ebrahimi and C. Horne, “MPEG-4 natural video coding — anoverview,”Signal

Processing Image Commun., vol. 15, pp. 365–385, 2000.

[5] MPEG-4 Video Group, “MPEG-4 video verification model version 18.0,” doc. no.

ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

[6] http://www.tnt.uni-hannover.de/project/eu/momusys.

[7] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative Ap-

proach, 3rd ed.San Francisco: Morgan Kaufmann Publishers, 2003.

[8] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TMS320C6X DSP

architecture,”IEEE Signal Systems Computer Conf., vol. 2, Nov. 1998, pp. 1735–

1739.

[9] C. E. Fogg, “Survey of software and hardware VLC architectures,” inProc. SPIE

Image and Video Compression,vol. 2186, May 1994, pp. 29-37.

91

[10] R. Prasad and R. Korada, “Efficient implementation of MPEG-4 video encoder on

RISC core,”IEEE Trans. Consumer Electronics,vol. 49, pp. 204-209, Feb. 2003.

[11] N. I. Cho and S. U. Lee, “Fast algorithm and implementations of 2-D discrete cosine

transform,”IEEE Trans. Circuit Syst., vol. 38,pp. 297–305, Mar. 1991.

[12] B. G. Lee, “A new algorithm to compute the discrete cosinetransform,”IEEE Trans.

Acoust. Speech Signal Processing, vol. 32, no. 6, pp. 1243–1245, Dec. 1984.

[13] C. Y. Hung and P. Landman, “A compact IDCT design for MPEG video decoding,”

in Proc. IEEE Workshop Signal Processing Systems, Nov. 1997.

[14] G. Plonka and M. Tasche, “Reversible integer DCT algorithms,” preprint, Gerhard-

Mercator-Univ. Duisburg, 2002.

[15] Y. Chen and P. Hao, “Integer reversible transformation to make JPEG loseless,”Int.

Conf. Siganl Processing, Beijing, China, Sept. 2004, pp. 835–838.

[16] T.S. Chang, C.S. Kung, and C.W. Jen, “A simple processor core design for

DCT/IDCT transform,”IEEE Trans. Circuits Syst. Video Technology, vol. 10, no.

3 , pp. 439V-447, Apr. 2000.

[17] Texas Instuments, “TMS320C64x Image/Video Processing Library — Programmers

Reference” Literature number SPRU023B, Oct. 2003.

[18] N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Rapid prototyping for an

optimized MPEG-4 decoder implementation over a parallel heterogenous architec-

ture,” in Proc. Int. Conf. Multimedia Expo., vol. 3, July 2003, pp. 417–420.

[19] K. Ramkishor and U. Gunashree, “Real time implementationof MPEG-4 video de-

coder on ARM7TDMI,” in Proc. Int. Symp. Intelligent Multimedia Video Speech

Processing, May 2001, pp. 522–526.

[20] J. H. Kuo, J. L. Wu, J. Shiu, and K. L. Huang, “A low-cost media-processor based

real-time MPEG-4 video decoder,”IEEE Int. Conf. Consumer Electronics, June

2002, pp. 272–273.

92

[21] J. T. J. VanEijndhoven, J.T.J.,et al., ”TriMedia CPU64 architecture,” inIEEE Int.

Conf. Computer Design, 1999

93

Appendix A

Demonstration of MPEG-4

Frame-Based Video Decoder on

Dual-Core PSDK

The implementation of MPEG-4 frame-based video decoder is completed and optimized

in the previous chapters. In this appendix, we demonstrate the implementation on the

PAC System Developer’s Kit (PSDK). First, we give an overview of the PSDK platform.

Then we introduce the dual-core co-processing mechanism ofour demonstration.

A.1 Overview of The PSDK 2.0 Platform

The PSDK platform is developed by SoC Technology Center (STC) of Industrial Tech-

nology Research Institute (ITRI) in Taiwan. The PSDK 2.0 system consists of following

items:

• ARM Integrator-compatible Core Module: ARM920T CM

• Multi-ICE of ARM

• PACDSP Core Module (Burned in FPGA now)

• Generic peripherals (LCD translator)

94

Figure A.1: PAC System Developer’s Kit (PSDK) 2.0

The PSDK 2.0 hardware modules are shown in Fig. A.1. Since thePACDSP core

module is replaced by an FPGA with the DSP design burned-in, the operating frequency

of PACDSP is at most 33 MHz rather than a 250 MHz real chip. However, there is no

difference for the functionality of a real chip and a burned-in FPGA.

It is noted that the operation of PACDSP is controlled by the ARMcore, and its

internal memory is accessible to the ARM core as well. For a PACDSP execution, we

have to inform the DSP with its corresponding machine code ofprogram and the data

in the internal memory. Then we should give some signals to start the DSP execution.

The memory map of our demonstration is shown in Fig. A.2, and it is noted that the start

address of instruction is configurable and we set the instruction memory at 0xb0000000.

95

Figure A.2: Memory map of the dualcore demonstration

A.2 Introduction to Dual-Core Demonstration

To keep the program sequence of our block-based implementation on PACDSP, we gather

the block data whenever its decoding is completed. Since we have to write back the

reference frame for P-frames decoding, the program flow of ARMcore is different for

I-frames decoding and P-frames decoding. We brief the co-processing mechanism in the

following.

A.2.1 I-Frames Decoding

Since the utilization of interrupt is more complicated, we use the polling method to control

the program flow in both processor. The internal memory of PACDSP is shared with

ARM core, so we defined a flag, decblock complete, at the beginning address of internal

memory, 0x22000000, to check if the decoding is completed. It is noted that the flag is

set to 1 if one block data is decoded by PACDSP. The program flow is shown in Fig. A.3

Since the internal memory is a critical issue to our implementation and we have to

store the headers and lookup tables, we can not store much bitstream in the internal

memory. Our demonstration can show four consecutive intra-encoded frames of ”Fore-

manqcif” sequence only.

96

Figure A.3: Co-processing mechanism for I-frames

A.2.2 P-Frames Decoding

For P-frame decoding, because we suppose a decoded intra frame in the internal memory,

we eliminate the bitstream of first intra-encoded frame. That is, all the frames decoded

in this demonstration are P-frames. The program flow in P-frame decoding is shown in

Fig. A.4.

Although we do not have to do DC and AC prediction in P-frame decoding, we have

to store the reference frame, so we still can not store much bitstream in the internal mem-

ory. In this demonstration, we can decoding six consecutiveP-frames of ”Foremanqcif”

sequence and forty for ”Akiyoqcif” sequence.

97

Figure A.4: Co-processing mechanism for P-frames

98

Appendix B

C Program and Assembly Code of

IDCT

B.1 C Program of IDCT in MoMuSys

The C program of IDCT in MoMuSys reference software is shown inFig. B.1. Note that

clipping of block coefficients is also included in the program.

B.2 Original Assembly Code of IDCT

The initial IDCT design in of our implementation is listed in Fig. B.2 and B.3. Note that

we use the instruction set of PACDSP.

B.3 Optimized Assembly Code of IDCT

The optimized IDCT design in of our implementation is listed in Fig. B.4 and B.5. Note

that we use the instruction set of PACDSP.

99

Floating-Point Block_IDCT in MoMuSys
(Int *coeff_in,Int block_out[][8], Int maxval)

 Int j1, i, j;
 Double tmp[8], tmp1[8];
 Double e, f, g, h,coeff[8][8],block[8][8];
 static Double c0,c1,c2,c3,c4,c5,c6,c7;
 Int v;
 for (i=0;i<8;i++)
 for (j=0;j<8;j++)
 coeff[i][j] = (Double)coeff_in[i*8+j];
 c0=0.7071068;c1=0.4903926;c2=0.4619398;c3=0.4
157348;c4=0.3535534;
 c5=0.2777851;c6=0.1913417;c7=0.0975452;
 /* Horizontal */
 /* Descan coefficients first */
 for (i = 0; i < 8; i++) {
 for (j = 0; j < 8; j++) {
 tmp[j] =coeff[i][j]; }
 e = tmp[1] * c7 - tmp[7] * c1;
 h = tmp[7] * c7 + tmp[1] * c1;
 f = tmp[5] * c3 - tmp[3] * c5;
 g = tmp[3] * c3 + tmp[5] * c5;
 tmp1[0] = (tmp[0] + tmp[4]) * c4;
 tmp1[1] = (tmp[0] - tmp[4]) * c4;
 tmp1[2] = tmp[2] * c6 - tmp[6] * c2;
 tmp1[3] = tmp[6] * c6 + tmp[2] * c2;
 tmp[4] = e + f;
 tmp1[5] = e - f;
 tmp1[6] = h - g;
 tmp[7] = h + g;
 tmp[5] = (tmp1[6] - tmp1[5]) * c0;
 tmp[6] = (tmp1[6] + tmp1[5]) * c0;
 tmp[0] = tmp1[0] + tmp1[3];
 tmp[1] = tmp1[1] + tmp1[2];
 tmp[2] = tmp1[1] - tmp1[2];
 tmp[3] = tmp1[0] - tmp1[3];
 for (j = 0; j < 4; j++) {
 j1 = 7 - j;
 block[i][j] = tmp[j] + tmp[j1];
 block[i][j1] = tmp[j] - tmp[j1];
 } }

/* Vertical */

 for (i = 0; i < 8; i++) {
 for (j = 0; j < 8; j++) {
 tmp[j] = block[j][i];
 }
 e = tmp[1] * c7 - tmp[7] * c1;
 h = tmp[7] * c7 + tmp[1] * c1;
 f = tmp[5] * c3 - tmp[3] * c5;
 g = tmp[3] * c3 + tmp[5] * c5;

 tmp1[0] = (tmp[0] + tmp[4]) * c4;
 tmp1[1] = (tmp[0] - tmp[4]) * c4;
 tmp1[2] = tmp[2] * c6 - tmp[6] * c2;
 tmp1[3] = tmp[6] * c6 + tmp[2] * c2;
 tmp[4] = e + f;
 tmp1[5] = e - f;
 tmp1[6] = h - g;
 tmp[7] = h + g;

 tmp[5] = (tmp1[6] - tmp1[5]) * c0;
 tmp[6] = (tmp1[6] + tmp1[5]) * c0;
 tmp[0] = tmp1[0] + tmp1[3];
 tmp[1] = tmp1[1] + tmp1[2];
 tmp[2] = tmp1[1] - tmp1[2];
 tmp[3] = tmp1[0] - tmp1[3];

 for (j = 0; j < 4; j++) {
 j1 = 7 - j;
 block[j][i] = tmp[j] + tmp[j1];
 block[j1][i] = tmp[j] - tmp[j1];
 }
 }

/* Clipping */
for (i=0;i<8;i++)
 for(j=0;j<8;j++) {
 v = (Int) floor (block[i][j] + 0.5);

 block_out[i][j] =
(v<-maxval-1) ? -maxval-1 : ((v>maxval) ? maxval : v);
 }

Figure B.1: C program of IDCT in MoMuSys reference software including clipping.

100

Block_IDCT: (Horizontal Processing)

 Block_IDCT:
{ NOP | NOP | NOP | MOVI.L C5,0x5A82 | NOP }
{ NOP | NOP | NOP | MOVI.L C8,0x3EC5 | NOP }
{ NOP | NOP | NOP | MOVI.L C9,0x3B21 | NOP }
{ NOP | NOP | NOP | MOVI.L C10,0x3537 | NOP }
{ NOP | NOP | NOP | MOVI.L C11,0x2D41 | NOP }
{ NOP | NOP | NOP | MOVI.L C12,0x238E | NOP }
{ NOP | NOP | NOP | MOVI.L C13,0x187E | NOP }
{ NOP | NOP | NOP | MOVI.L C14,0x0C7C | NOP }
{ NOP | NOP | NOP | MOVI.L A5,DCT_Block | NOP }
{ NOP | NOP | NOP | MOVI.H A5,DCT_Block | NOP }
{ NOP | NOP | NOP | MOVI.L A6,R_Block_2D | NOP }
{ NOP | NOP | NOP | MOVI.H A6,R_Block_2D | NOP }
{ SET_LBCI RBC2,0x8 | NOP | NOP | NOP | NOP }
Horizontal_Processing:
{ NOP | NOP | NOP | LW D0,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D8,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D1,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D9,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D2,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D10,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D3,A5 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | LW D11,A5 | NOP }
{ NOP | NOP | NOP | ADD D4,D0,D2 | FMUL
 D12,D8,C14 }
{ NOP | NOP | NOP | NOP | SRAI D12,D12,15 }
;tmp[0]+tmp[4] -- tmp[1]*c7
{ NOP | NOP | NOP | SUB D5,D0,D2 | FMUL
D13,D11,C8 }
{ NOP | NOP | NOP | NOP | SRAI D13,D13,15 }
;tmp[0]-tmp[4] -- tmp[7]*c1
{ NOP | NOP | NOP | NOP | FMUL D14,D8,C8 }
{ NOP | NOP | NOP | NOP | SRAI D14,D14,15 }
; -- tmp[1]*c1
{ NOP | NOP | NOP | NOP | FMUL D15,D11,C14 }
{ NOP | NOP | NOP | NOP | SRAI D15,D15,15 }
; -- tmp[7]*c7
{ NOP | NOP | NOP | SUB D8,D12,D13 | FMUL
D0,D4,C11 }
{ NOP | NOP | NOP | NOP | SRAI D0,D0,15 }
;e = ... -- tmp1[0] = (tmp[0]+tmp[4])*c4
{ NOP | NOP | NOP | ADD D11,D14,D15 | FMUL
 D2,D5,C11 }
{ NOP | NOP | NOP | NOP | SRAI D2,D2,15 }
;h = ... -- tmp1[1] = (tmp[0]-tmp[4])*c4
{ NOP | NOP | NOP | NOP | FMUL D12,D10,C10 }
{ NOP | NOP | NOP | NOP | SRAI D12,D12,15 }
; -- tmp[5]*c3
{ NOP | NOP | NOP | NOP | FMUL D13,D9,C12 }
{ NOP | NOP | NOP | NOP | SRAI D13,D13,15 }
; -- tmp[3]*c5
{ NOP | NOP | NOP | NOP | FMUL D14,D9,C10 }
{ NOP | NOP | NOP | NOP | SRAI D14,D14,15 }

; -- tmp[3]*c3
{ NOP | NOP | NOP | NOP | FMUL D15,D10,C12 }
{ NOP | NOP | NOP | NOP | SRAI D15,D15,15 }
; -- tmp[5]*c5
{ NOP | NOP | NOP | SUB D9,D12,D13 | FMUL D4,D1,C13 }
{ NOP | NOP | NOP | NOP | SRAI D4,D4,15 }
;f = ... -- tmp[2]*c6
{ NOP | NOP | NOP | ADD D10,D14,D15 | FMUL D5,D3,C9 }
{ NOP | NOP | NOP | NOP | SRAI D5,D5,15 }
;g = ... -- tmp[6]*c2
{ NOP | NOP | NOP | SUB D12,D8,D9 | FMUL D6,D1,C9 }
{ NOP | NOP | NOP | NOP | SRAI D6,D6,15 }
;tmp1[5] = e-f ... -- tmp[2]*c2
{ NOP | NOP | NOP | SUB D13,D11,D10 | FMUL D7,D3,C13 }
{ NOP | NOP | NOP | NOP | SRAI D7,D7,15 }
;tmp1[6] = h-g ... -- tmp[6]*c6
{ NOP | NOP | NOP | SUB D1,D4,D5 | ADD AC4,D8,D9 }
;tmp1[2] = tmp[2]*c6-tmp[6]*c2 ... -- tmp[4] = e+f
{ NOP | NOP | NOP | ADD D3,D6,D7 | ADD AC7,D10,D11 }
;tmp1[3] = tmp[2]*c2+tmp[6]*c6 ... -- tmp[7] = h+g
{ NOP | NOP | NOP | SUB D14,D13,D12 | ADD AC0,D0,D3 }
;d14 = tmp1[6]-tmp1[5] ... -- tmp[0]= tmp1[0]+tmp1[3]
{ NOP | NOP | NOP | ADD D15,D13,D12 | ADD AC1,D2,D1 }
;d15 = tmp1[6]+tmp1[5] ... -- tmp[1]= tmp1[1]+tmp1[2]
{ NOP | NOP | NOP | NOP | FMUL AC5,D14,C5 }
{ NOP | NOP | NOP | NOP | SRAI AC5,AC5,15 }
;tmp[5] = (tmp1[6]-tmp1[5])*c0
{ NOP | NOP | NOP | NOP | FMUL AC6,D15,C5 }
{ NOP | NOP | NOP | NOP | SRAI AC6,AC6,15 }
;tmp[6] = (tmp1[6]+tmp1[5])*c0
{ NOP | NOP | NOP | MOVI.L D15,28 | SUB AC2,D2,D1 }
;tmp[2] = tmp1[1]-tmp1[2]
{ NOP | NOP | NOP | MOVI.H D15,0 | SUB AC3,D0,D3 }
;tmp[3] = tmp1[0]-tmp1[3]
{ NOP | NOP | NOP | SUB A5,A5,D15 | ADD D0,AC0,AC7 }
{ NOP | NOP | NOP | SW D0,A5,0 | ADD D8,AC1,AC6 }
{ NOP | NOP | NOP | ADDI A5,A5,4 | ADD D1,AC2,AC5 }
{ NOP | NOP | NOP | SW D8,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | ADD D9,AC3,AC4 }
{ NOP | NOP | NOP | SW D1,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | SUB D2,AC3,AC4 }
{ NOP | NOP | NOP | SW D9,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | SUB D10,AC2,AC5 }
{ NOP | NOP | NOP | SW D2,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | SUB D3,AC1,AC6 }
{ NOP | NOP | NOP | SW D10,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | SUB D11,AC0,AC7 }
{ NOP | NOP | NOP | SW D3,A5,0 | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | SW D11,A5,0 | NOP }
{ LBCB RBC2,Horizontal_Processing | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | MOVI.L A5,DCT_Block | NOP }
{ NOP | NOP | NOP | MOVI.H A5,DCT_Block | NOP }

Figure B.2: Assembly code of our initial IDCT implementation (horizontal processing).

101

Block_IDCT: (Veritical and Clipping)

{ NOP | NOP | NOP | MOVI.L A6,R_Block_2D | NOP }
{ NOP | NOP | NOP | MOVI.H A6,R_Block_2D | NOP }
{ NOP | NOP | NOP | ADD I A6,A6,224 | NOP }
{ SET_LBCI RBC2,0x8 | NOP | NOP | NOP | NOP }
Vertical_P rocessing:
;{ NOP | ADDI D1,D1,1 | NOP | NOP | NOP }
;{ NOP | MOVI.L D7,4 | NOP | NOP | NOP }
{ NOP | NOP | NOP | LW D0,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D8,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D1,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D9,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D2,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D10,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D3,A5 | NOP }
{ NOP | NOP | NOP | ADD I A5,A5,32 | NOP }
{ NOP | NOP | NOP | LW D11,A5 | NOP }
{ NOP | NOP | NOP | ADD D4,D0,D2 | FMUL D12,D8,C14 }
{ NOP | NOP | NOP | NOP | SRAI D12,D12,15 }
;tmp[0]+tmp[4] -- tmp[1]*c7
{ NOP | NOP | NOP | SUB D5,D0,D2 | FMUL D13,D11,C8 }
{ NOP | NOP | NOP | NOP | SRAI D13,D13,15 }
;tmp[0]-tmp[4] -- tmp[7]*c1
{ NOP | NOP | NOP | NOP | FMUL D14,D8,C8 }
{ NOP | NOP | NOP | NOP | SRAI D14,D14,15 }
; -- tmp[1]*c1
{ NOP | NOP | NOP | NOP | FMUL D15,D11,C14 }
{ NOP | NOP | NOP | NOP | SRAI D15,D15,15 }
; -- tmp[7]*c7
{ NOP | NOP | NOP | SUB D8,D12,D13 | FMUL D0,D4,C11 }
{ NOP | NOP | NOP | NOP | SRAI D0,D0,15 }
;e = ... -- tmp1[0] = (tmp[0]+tmp[4])*c4
{ NOP | NOP | NOP | ADD D11,D14,D15 | FMUL D2,D5,C11 }
{ NOP | NOP | NOP | NOP | SRAI D2,D2,15 }
;h = ... -- tmp1[1] = (tmp[0]-tmp[4])*c4
{ NOP | NOP | NOP | NOP | FMUL D12,D10,C10 }
{ NOP | NOP | NOP | NOP | SRAI D12,D12,15 }
; -- tmp[5]*c3
{ NOP | NOP | NOP | NOP | FMUL D13,D9,C12 }
{ NOP | NOP | NOP | NOP | SRAI D13,D13,15 }
; -- tmp[3]*c5
{ NOP | NOP | NOP | NOP | FMUL D14,D9,C10 }
{ NOP | NOP | NOP | NOP | SRAI D14,D14,15 }
; -- tmp[3]*c3
{ NOP | NOP | NOP | NOP | FMUL D15,D10,C12 }
{ NOP | NOP | NOP | NOP | SRAI D15,D15,15 }
; -- tmp[5]*c5
{ NOP | NOP | NOP | SUB D9,D12,D13 | FMUL D4,D1,C13 }
{ NOP | NOP | NOP | NOP | SRAI D4,D4,15 }
;f = ... -- tmp[2]*c6
{ NOP | NOP | NOP | ADD D10,D14,D15 | FMUL D5,D3,C9 }
{ NOP | NOP | NOP | NOP | SRAI D5,D5,15 }
;g = ... -- tmp[6]*c2
{ NOP | NOP | NOP | SUB D12,D8,D9 | FMUL D6,D1,C9 }
{ NOP | NOP | NOP | NOP | SRAI D6,D6,15 }

;tmp1[5] = e-f ... -- tmp[2]*c2
{ NOP | NOP | NOP | SUB D13,D11,D10 |
 FMUL D7,D3,C13 }
{ NOP | NOP | NOP | NOP | SRAI D7,D7,15 }

;tmp1[6] = h-g ... -- tmp[6]*c6
{ NOP | NOP | NOP | SUB D1,D4,D5 | ADD AC4,D8,D9 }
;tmp1[2] = tmp[2]*c6-tmp[6]*c2 ... -- tmp[4] = e+f
{ NOP | NOP | NOP | ADD D3,D6,D7 | ADD AC7,D10,D11 }
;tmp1[3] = tmp[2]*c2+tmp[6]*c6 ... -- tmp[7] = h+g
{ NOP | NOP | NOP | SUB D14,D13,D12 | ADD AC0,D0,D3 }
;d14 = tmp1[6]-tmp1[5] ... -- tmp[0]= tmp1[0]+tmp1[3]
{ NOP | NOP | NOP | ADD D15,D13,D12 | ADD AC1,D2,D1 }
;d15 = tmp1[6]+tmp1[5] ... -- tmp[1]= tmp1[1]+tmp1[2]
{ NOP | NOP | NOP | NOP | FMUL AC5,D14,C5 }
{ NOP | NOP | NOP | NOP | SRAI AC5,AC5,15 }
;tmp[5] = (tmp1[6]-tmp1[5])*c0
{ NOP | NOP | NOP | NOP | FMUL AC6,D15,C5 }
{ NOP | NOP | NOP | NOP | SRAI AC6,AC6,15 }
;tmp[6] = (tmp1[6]+tmp1[5])*c0
{ NOP | NOP | NOP | MOVI.L D15,224 | SUB AC2,D2,D1 }
;tmp[2] = tmp1[1]-tmp1[2]
{ NOP | NOP | NOP | MOVI.H D15,0 | SUB AC3,D0,D3 }
;tmp[3] = tmp1[0]-tmp1[3]
{ NOP | NOP | NOP | SUB A6,A6,D15 | ADD D0,AC0,AC7 }
{ NOP | NOP | NOP | SUB A5,A5,D15 | NOP }
{ NOP | NOP | NOP | SW D0,A6,0 | ADD D8,AC1,AC6 }
{ NOP | NOP | NOP | ADDI A6,A6,32 | ADD D1,AC2,AC5 }
{ NOP | NOP | NOP | SW D8,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | ADD D9,AC3,AC4 }
{ NOP | NOP | NOP | SW D1,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | SUB D2,AC3,AC4 }
{ NOP | NOP | NOP | SW D9,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | SUB D10,AC2,AC5 }
{ NOP | NOP | NOP | SW D2,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | SUB D3,AC1,AC6 }
{ NOP | NOP | NOP | SW D10,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | SUB D11,AC0,AC7 }
{ NOP | NOP | NOP | SW D3,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,32 | NOP }
{ NOP | NOP | NOP | SW D11,A6,0 | NOP }
{ LBCB RBC2,Vertical_Processing | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,4 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ SET_LBCI RBC2,64 | NOP | NOP | MOVI.L A6,R_Block_2D |
NOP }
{ NOP | NOP | NOP | MOVI.H A6,R_Block_2D | NOP }
Clip_Block:
{ NOP | NOP | NOP | LW D0,A6,0 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | SLTI D0,0,p12,p13 | NOP }
{ NOP | NOP | NOP | SGTI D0,255,p14,p15 | NOP }
{ LBCB RBC2,Clip_Block | NOP | NOP | SW D0,A6,0 | NOP }
{ NOP | NOP | NOP | (p12)SW C0,A6,0 | NOP }
{ NOP | NOP | NOP | (p14)SW C13,A6,0 | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,4 | NOP }
{ JR R0 | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }

Figure B.3: Assembly code of our initial IDCT implementation (vertical processing and

clipping).

102

Optimized Block_IDCT: (Horizontal Processing)

Block_IDCT:
{ BDR R4 | BDT D0 | NOP | NOP | NOP } ;R4 = buffer1
{ BDR R5 | BDT D1 | NOP | NOP | NOP } ; R5 = buffer2
{ BDR R3 | BDT D4 | NOP | NOP | NOP } ;R3 = original rest
{ BDR R2 | BDT D3 | NOP | NOP | NOP } ; R2 = original bit count
{ BDR R6 | BDT D8 | NOP | NOP | NOP }
{ NOP | MOVI.L C13,0xFF | NOP | MOVI.L C13,0xFF | NOP }
{ NOP | MOVI.L C14,0xFF00 | NOP | MOVI.L C14,0xFF00 | NOP }
{ NOP | MOVI.L C14,0xFFFF | NOP | MOVI.L C14,0xFFFF | NOP }
{ NOP | MOVI.L C1,0x3EC5 | NOP | MOVI.L C1,0x3EC5 | NOP }
{ NOP | MOVI.L C2,0x3B21 | NOP | MOVI.L C2,0x3B21 | NOP }
{ NOP | MOVI.L C3,0x3537 | NOP | MOVI.L C3,0x3537 | NOP }
{ NOP | MOVI.L C4,0x2D41 | NOP | MOVI.L C4,0x2D41 | NOP }
{ NOP | MOVI.L C5,0x238E | NOP | MOVI.L C5,0x238E | NOP }
{ NOP | MOVI.L C6,0x187E | NOP | MOVI.L C6,0x187E | NOP }
{ NOP | MOVI.L C7,0x0C7C | NOP | MOVI.L C7,0x0C7C | NOP }
{ NOP | MOVI.L C8,0x0 | NOP | MOVI.L C8,0x0 | NOP }
{ NOP | MOVI.H C8,0x4 | NOP | MOVI.H C8,0x4 | NOP }
{ NOP | MOVI.L C9,0xC13B | NOP | MOVI.L C9,0xC13B | NOP } ;-C1 -3EC5
{ NOP | MOVI.L C10,0xCAC9 | NOP | MOVI.L C10,0xCAC9 | NOP };-C3
{ NOP | MOVI.L C11,0xDC72 | NOP | MOVI.L C11,0xDC72 | NOP };-C5
{ NOP | MOVI.L C12,0xF384 | NOP | MOVI.L C12,0xF384 | NOP };-C7
{ NOP | MOVI.L A5,DCT_Block | NOP | MOVI.L A5,DCT_Block | NOP } ;.word
{ NOP | MOVI.H A5,DCT_Block | NOP | MOVI.H A5,DCT_Block | NOP } ;.word
{ SET_LBCI RBC2,0x4 | NOP | NOP | ADDI A5,A5,128 | NOP }
Horizontal_P rocessing:
{ NOP | LW D8,A5,4 | NOP | LW D8,A5,4 | NOP }
{ NOP | LW D9,A5,12 | NOP | LW D9,A5,12 | NOP }
{ NOP | LW D10,A5,20 | NOP | LW D10,A5,20 | NOP }
{ NOP | LW D11,A5,28 | FMUL AC4,D8,C7 | LW D11,A5,28 | FMUL AC4,D8,C7 };tmp[1]*c7
{ NOP | LW D0,A5 | FMUL AC5,D8,C5 | LW D0,A5 | FMUL AC5,D8,C5 };tmp[1]*c5
{ NOP | LW D1,A5,8 | FMUL AC6,D8,C3 | LW D1,A5,8 | FMUL AC6,D8,C3 };tmp[1]*c3
{ NOP | LW D2,A5,16 | FMUL AC7,D8,C1 | LW D2,A5,16 | FMUL AC7,D8,C1 };tmp[1]*c1
{ NOP | LW D3,A5,24 | FMAC AC4,D9,C11 | LW D3,A5,24 | FMAC AC4,D9,C11 };-tmp[3]*c5
{ NOP | NOP | FMAC AC5,D9,C9 | NOP | FMAC AC5,D9,C9 } ;-tmp[3]*c1
{ NOP | NOP | FMAC AC6,D9,C12 | NOP | FMAC AC6,D9,C12 } ;-tmp[3]*c7
{ NOP | NOP | FMAC AC7,D9,C3 | NOP | FMAC AC7,D9,C3 } ;+tmp[3]*c3
{ NOP | NOP | FMAC AC4,D10,C3 | NOP | FMAC AC4,D10,C3 } ;+tmp[5]*c3
{ NOP | NOP | FMAC AC5,D10,C7 | NOP | FMAC AC5,D10,C7 } ;+tmp[5]*c7
{ NOP | ADD D4,D0,D2 | FMAC AC6,D10,C9 | ADD D4,D0,D2 | FMAC AC6,D10,C9 } ;-tmp[5]*c1
{ NOP | SUB D5,D0,D2 | FMAC AC7,D10,C5 | SUB D5,D0,D2 | FMAC AC7,D10,C5 } ;+tmp[5]*c5
{ NOP | NOP | FMUL D0,D4,C4 | NOP | FMUL D0,D4,C4 } ;tmp1[0]->69
{ NOP | NOP | FMUL D2,D5,C4 | NOP | FMUL D2,D5,C4 } ;tmp1[1]->76
{ NOP | NOP | FMUL D4,D1,C6 | NOP | FMUL D4,D1,C6 } ;tmp[2]*c6 ->77
{ NOP | NOP | FMUL D5,D3,C2 | NOP | FMUL D5,D3,C2 } ;tmp[6]*c2 ->84
{ NOP | NOP | FMUL D6,D3,C6 | NOP | FMUL D6,D3,C6 } ;tmp[6]*c6 ->85
{ NOP | NOP | FMUL D7,D1,C2 | NOP | FMUL D7,D1,C2 } ;tmp[2]*c2 ->92
{ NOP | NOP | FMAC AC4,D11,C9 | NOP | FMAC AC4,D11,C9 } ;-tmp[7]*c1
{ NOP | NOP | FMAC AC5,D11,C3 | NOP | FMAC AC5,D11,C3 } ;+tmp[7]*c3
{ NOP | SUB D1,D4,D5 | FMAC AC6,D11,C11 | SUB D1,D4,D5 | FMAC AC6,D11,C11 } ;-tmp[7]*c5
{ NOP | ADD D3,D6,D7 | FMAC AC7,D11,C7 | ADD D3,D6,D7 | FMAC AC7,D11,C7 } ;+tmp[7]*c7
{ NOP | NOP | BF AC0,D0,D3 | NOP | BF AC0,D0,D3 } ;USE BF
{ NOP | NOP | BF AC2,D2,D1 | NOP | BF AC2,D2,D1 } ;USE BF
{ NOP | NOP | BF D0,AC0,AC7 | NOP | BF D0,AC0,AC7 } ;USE BF
{ NOP | ADDI D0,D0,1024 | BF D8,AC2,AC6 | ADDI D0,D0,1024 | BF D8,AC2,AC6 }
{ NOP | ADDI D8,D8,1024 | SRAI D0,D0,11 | ADDI D8,D8,1024 | SRAI D0,D0,11 }
{ NOP | ADDI D1,D1,1024 | SRAI D8,D8,11 | ADDI D1,D1,1024 | SRAI D8,D8,11 }
{ NOP | ADDI D9,D9,1024 | SRAI D1,D1,11 | ADDI D9,D9,1024 | SRAI D1,D1,11 }
{ NOP | DSW D0,D8,A5,0 | SRAI D9,D9,11 | DSW D0,D8,A5,0 | SRAI D9,D9,11 }
{ NOP | DSW D9,D1,A5,24 | BF D4,AC3,AC5 |DSW D9,D1,A5,24 | BF D4,AC3,AC5 } ;USE BF
{ NOP | ADDI D4,D4,1024 | BF D10,AC1,AC4 | ADDI D4,D4,1024 | BF D10,AC1,AC4 }
{ NOP | ADDI D10,D10,1024 | SRAI D4,D4,11 | ADDI D10,D10,1024 | SRAI D4,D4,11 }
{ NOP | ADDI D5,D5,1024 | SRAI D10,D10,11 | ADD I D5,D5,1024 | SRAI D10,D10,11 }
{LBCB RBC2,Horizontal_Processing | ADDI D11,D11,1024 | SRA I D5,D5,11 | ADDI D11,D11,1024 | SRAI D5,D5,11 }
{ NOP | DSW D4,D10,A5,8 | SRA I D11,D11,11 | DSW D4,D10,A5,8 | SRAI D11,D11,11 }
{ NOP | DSW D11,D5,A5,16| NOP | DSW D11,D5,A5,16| NOP }
{ NOP | ADDI A5,A5,32 | NOP | ADDI A5,A5,32 | NOP }

Figure B.4: Assembly code of optimized IDCT implementation (horizontal processing).

103

Optimized Block_IDCT: (Vertical and Clipping)

;vertical
{ NOP | MOVI.L A5,DCT _Block | NOP | MOVI.L A5,DCT_Block | NOP }
{ NOP | MOVI.H A5,DCT_Block | NOP | MOVI.H A5,DCT_Block | NOP }
{ NOP | MOVI.L A6,R_Block_2D | NOP | MOVI.L A6,R_Block_2D | NOP }
{ NOP | MOVI.H A6,R_Block_2D | NOP | MOVI.H A6,R_Block_2D | NOP }
{ NOP | NOP | NOP | ADDI A5,A5,16 | NOP }
{ SET_LBCI RBC2,0x4 | NOP | NOP | ADDI A6,A6,16 | NOP }
Vertical_Processing:
{ NOP | LW D0,A5 | NOP | LW D0,A5 | NOP }
{ NOP | LW D8,A5,32 | NOP | LW D8,A5,32 | NOP }
{ NOP | LW D1,A5,64 | NOP | LW D1,A5,64 | NOP }
{ NOP | LW D9,A5,96 | NOP | LW D9,A5,96 | NOP }
{ NOP | ADDI A5,A5,128 | FMUL AC4,D8,C7 | ADDI A5,A5,128 | FMUL AC4,D8,C7 }
{ NOP | LW D2,A5,0 | FMUL AC5,D8,C5 | LW D2,A5,0 | FMUL AC5,D8,C5 }
{ NOP | LW D10,A5,32 | FMUL AC6,D8,C3 | LW D10,A5,32 | FMUL AC6,D8,C3 }
{ NOP | LW D3,A5,64 | FMUL AC7,D8,C1 | LW D3,A5,64 | FMUL AC7,D8,C1 }
{ NOP | LW D11,A5,96 | FMAC AC4,D9,C11 | LW D11,A5,96 | FMAC AC4,D9,C11 }
{ NOP | ADDI A5,A5,96 | FMAC AC5,D9,C9 | ADDI A5,A5,96 | FMAC AC5,D9,C9 }
{ NOP | NOP | FMAC AC6,D9,C12 | NOP | FMAC AC6,D9,C12 } ;-tmp[3]*c7
{ NOP | NOP | FMAC AC7,D9,C3 | NOP | FMAC AC7,D9,C3 } ;+tmp[3]*c3
{ NOP | NOP | FMAC AC4,D10,C3 | NOP | FMAC AC4,D10,C3 } ;+tmp[5]*c3
{ NOP | NOP | FMAC AC5,D10,C7 | NOP | FMAC AC5,D10,C7 } ;+tmp[5]*c7
{ NOP | ADD D4,D0,D2 | FMAC AC6,D10,C9 | ADD D4,D0,D2 | FMAC AC6,D10,C9 } ;-tmp[5]*c1
{ NOP | SUB D5,D0,D2 | FMAC AC7,D10,C5 | SUB D5,D0,D2 | FMAC AC7,D10,C5 } ;+tmp[5]*c5
{ NOP | NOP | FMUL D0,D4,C4 | NOP | FMUL D0,D4,C4 } ;tmp1[0]->69
{ NOP | NOP | FMUL D2,D5,C4 | NOP | FMUL D2,D5,C4 } ;tmp1[1]->76
{ NOP | NOP | FMUL D4,D1,C6 | NOP | FMUL D4,D1,C6 } ;tmp[2]*c6 ->77
{ NOP | NOP | FMUL D5,D3,C2 | NOP | FMUL D5,D3,C2 } ;tmp[6]*c2 ->84
{ NOP | NOP | FMUL D6,D3,C6 | NOP | FMUL D6,D3,C6 } ;tmp[6]*c6 ->85
{ NOP | NOP | FMUL D7,D1,C2 | NOP | FMUL D7,D1,C2 } ;tmp[2]*c2 ->92
{ NOP | NOP | FMAC AC4,D11,C9 | NOP | FMAC AC4,D11,C9 } ;-tmp[7]*c1
{ NOP | NOP | FMAC AC5,D11,C3 | NOP | FMAC AC5,D11,C3 } ;+tmp[7]*c3
{ NOP | SUB D1,D4,D5 | FMAC AC6,D11,C11 | SUB D1,D4,D5 | FMAC AC6,D11,C11 } ;-tmp[7]*c5
{ NOP | ADD D3,D6,D7 | FMAC AC7,D11,C7 | ADD D3,D6,D7 | FMAC AC7,D11,C7 } ;+tmp[7]*c7
{ NOP | NOP | BF AC0,D0,D3 | NOP | BF AC0,D0,D3 } ;USE BF
{ NOP | NOP | BF AC2,D2,D1 | NOP | BF AC2,D2,D1 } ;USE BF
{ NOP | NOP | BF D0,AC0,AC7 | NOP | BF D0,AC0,AC7 } ;USE BF
{ NOP | ADD D0,D0,C8 | BF D8,AC2,AC6 | ADD D0,D0,C8 | BF D8,AC2,AC6 }
{ NOP | ADD D8,D8,C8 | SRAI D0,D0,19 | ADD D8,D8,C8 | SRAI D0,D0,19 }
{ NOP | ADD D1,D1,C8 | SRAI D8,D8,19 | ADD D1,D1,C8 | SRAI D8,D8,19 }
{ NOP | ADD D9,D9,C8 | SRAI D1,D1,19 | ADD D9,D9,C8 | SRAI D1,D1,19 }
{ NOP | SW D0,A6,0 | SRAI D9,D9,19 | SW D0,A6,0 | SRAI D9,D9,19 }
{ NOP | SW D8,A6,32 | BF D4,AC3,AC5 | SW D8,A6,32 | BF D4,AC3,AC5 } ;USE BF
{ NOP | ADD D4,D4,C8 | BF D10,AC1,AC4 | ADD D4,D4,C8 | BF D10,AC1,AC4 }
{ NOP | ADD D10,D10,C8 | SRAI D4,D4,19 | ADD D10,D10,C8 | SRAI D4,D4,19 }
{ NOP | ADD D5,D5,C8 | SRAI D10,D10,19 | ADD D5,D5,C8 | SRAI D10,D10,19 }
{ NOP | ADD D11,D11,C8 | SRAI D5,D5,19 | ADD D11,D11,C8 | SRAI D5,D5,19 }
{ NOP | SW D4,A6,64 | SRAI D11,D11,19| SW D4,A6,64 | SRAI D11,D11,19 }
{ NOP | SW D10,A6,96 | NOP | SW D10,A6,96| NOP }
{ NOP | ADDI A6,A6,128 | NOP | ADDI A6,A6,128 | NOP }
{ NOP | SW D11,A6,0 | NOP | SW D11,A6,0 | NOP }
{ NOP | SW D5,A6,32 | NOP | SW D5,A6,32 | NOP }
{ LBCB RBC2,Vertical_Processing | SW D9,A6,64 | NOP | SW D9,A6,64 | NOP }
{ NOP | SW D1,A6,96 | NOP | SW D1,A6,96 | NOP }
{ NOP | ADDI A5,A5,-220 | NOP | ADDI A5,A5,-220 | NOP }
{ NOP | ADDI A6,A6,-124 | NOP | ADDI A6,A6,-124 | NOP }
;clipping
{ SET_LBCI RBC1,32 | MOVI.L A6,R_Block_2D | NOP | MOVI.L A6,R_Block_2D | NOP }
{ NOP | MOVI.H A6,R_Block_2D | NOP | MOVI.H A6,R_Block_2D | NOP }
{ NOP | NOP | NOP | ADDI A6,A6,128 | NOP }
Clip_Block:
{ NOP | LW D0,A6,0 | NOP | LW D0,A6,0 | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | NOP | NOP | NOP | NOP }
{ NOP | SLTI D0,-256,p2,p3 | NOP | SLTI D0,-256,p4,p5 | NOP }
{ NOP | SGTI D0,255,p6,p7 | NOP | SGTI D0,255,p8,p9 | NOP }
{ LBCB RBC1,Clip_Block | SW D0,A6,0 | NOP | SW D0,A6,0 | NOP }
{ NOP | (p2)SW C14,A6,0 | NOP | (p4)SW C14,A6,0 | NOP }
{ NOP | (p6)SW C13,A6,0 | NOP | (p8)SW C13,A6,0 | NOP }
{ NOP | ADDI A6,A6,4 | NOP | ADDI A6,A6,4 | NOP }

Figure B.5: Assembly code of optimized IDCT implementation (vertical processing and

clipping).

104

自傳

 蔡崇諺，男，民國七十年十一月三十日出生於台灣省桃園縣。高中

就讀於國立桃園高級中學，民國九十三年六月畢業於交通大學電機與

控制工程學系，並於同年九月進入交通大學電子工程研究所碩士班就

讀，於民國九十五年六月取得碩士學位，論文題目為:『在 PACDSP 平

台上之 MPEG-4 視訊解碼器軟體實現』，研究範圍與興趣為：軟、硬體

和 DSP 平台上之系統整合與開發，主要應用範圍在多媒體訊號處理與

壓縮方面。

