& PACDSP & & F 2. MPEG-4 AR f255 B F R

Software Implementationof MPEG-4 Video Decoder

on PACDSP Platform

e . I AN
oy o4 B2

s B gL

& PACDSP & & F 2. MPEG-4 AR f255 B F R

Software Implementation of MPEG-4 Video Decoder

on PACDSP Platform

By o2 EEB Student : Chung-Yen Tsai
R A FEEL Advisor : Dr. David W. Lin
B 20 dis #

T3 1Bk RIBTELS

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of
Master of Science
In
Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

PoE X R4 LT E A

4 PACDSP T % } 2. MPEG-4 4R30 f2 75 B #4809 L

it BEB R R FE L
Rl ~ET3F1m8 % T AR LT

MPEG-4 % - B Ll * 2% AR GHER - & /3% 4 % & PACDSP

T h MPEG4ARAMfEMELR R AT o) —Agfdg £ M ELAIT B -
ARMO20T A2 B 7o o o 5 7 Bl it ARV i Ae - A i 220 1 3F 5 e i A 47 0

DA AR RIS RS EFEE L 2 F R D TERG N AT [H O
Yoo Bon ¥ S LRl

AN Ty Y o ARt 7 MPEG-4 2% $ic#8 » MoMuSys » ¥ 1¥5% %
AL g o A NP A4 MPEG-4 AR R B ERAF R T *ﬁ
DG RF ORI 2 o B F o APRBAAIRZER (DCT) 2 #F1E kpriE
REY > T YRR FIRIRTFF LT EELE 0 50 B RERE
B AR B EE A TS B RIT B2 ki AL R HE L ST
(SIMD) 4 M E - Adp 4 BT 70 R R B2 a8 o S A
ez F @3 (IDCT)2 »xic B /g R > T A0 e It 43 # & IEEE1180-1190
Ttz e o ANPATR Y 2 FE 2 kit s B H B R R v 4o A

Foended it 2 (8 0 AP Ak A R f245 - 5% QCIF #:4 2 Bl % £ 5,700,000

FH oo 4 ,Ta{;ﬁ, » ¥F— B 1 ¥4 175MHz 12 § PACDSP & % @ 3 » 2 i it 43
ErE Az LRE G 2 WREESG o A B BN s) 5 27 Kbytes » o] 3T
PACDSP g ;8 -Br2efp#8 £ /| 32 Kbytes o %5 X i & PSDK X 5 + B 7 B
P ehg o

bBAEHeE Y > APE AL MPEG-4 % 12 2 PADSP T 2 it o
EEFHFLAT R PR AR Z U E I REF AEHE ML E

7B R Ik SLBr s o

Software Implementation of MPEG-4 Video Decoder
on PACDSP Platform

Student: Chung-Yen Tsai Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics
National Chiao Tung University

Abstract

MPEG-4 is a widely-applied multimedia coding standard. This thesis presents an
implementation of MPEG-4 video decoder -.on the PACDSP platform, which consists
of a VLIW digital signal processor (DSP) and an ARM920T processor. We complete
many anlyses to optimize the program flow and utilize the advantage of VLIW
processor to achieve real-time decoding. A simple dual-core demostration is
completed and verified.

In our implementation, the MPEG-4 reference software, MoMuSys, is used as a
golden model to verily our implementation. First, we analyze the computational
complexity of the MPEG-4 frame-based video decoder, and find efficient algorithms
for the implementation. Second, we skip some computations according to the nature
of discrete cosine transform (DCT), and there are also lots of comutation skipped for
all-zero residual blocks. Third, to speed up the execution time, we distribute the
regular computations to both clusters to increase the efficiency of the processor.
Single-instruction-multiple-data (SIMD) instructions and general instruction level

parallelism also utilized to reduce the processor stalls. We also discuss the efficiency

and accuracy of IDCT, and the accuracy of our IDCT implementation can meet the
IEEE 1180-1190 standard. The performance of our alogorithm is also competitive to
other implementations. After all the optimizations, the worst-case computaion time for
QCIF format is less than 5,700,000 cycles. That is, our implementation can achieve
real-time decoding, 30 frame-per-second, for a real PACDSP chip running over 175
MHz. The code size is 27 Kbyte, which is smaller than the 32-Kbyte instruction cache
on PACDSP. Finally, we demonstrate a simple dual-core implementation on the PAC
System Developer’s Kit (PSDK).

In this thesis, we first introduce the MPEG-4 standard and give an overview of the
PACDSP platform. Then the static analysis, implementation strategies, the optimiztion
methods, and the experiment results are discussed. Finally, we brief the system and

mechanism for demonstration of the dual-core implementation on PSDK plarform.

Rhh R A ERE RS R B L R e
NI BATREL > JAS R SRS AR ANRE Y A et

QBRATRE O A e Sy - K- R RAFE LY AR Y 0 A TRAE

\\\
o

_§K AV

\4-\

I: 4e 14 ﬁ’;li_gf'y,;‘; 4 o _:kF:;F F/r}}ﬁz! f‘g_ 72'8_ %i’,:_@_m"i J:F\:E\}i*] TR L

Byt W X2 XFFORA R BOF PR FHL

B#aT 37 Commlab ¢hp + 42§ 2 3 TR &R L S8] FTiho k5 I

i A R hgkk VAOEEE S B it JA P B AR g
A BY BRI PR il R R S pod ~ i R e

HEFHT o ET AR AL BRI AR R

BiS o RBAMRA R EEARF L BEY SA G 4 il F o R
WPy A BA NSRS B ABaom MY LR o ¥Rt
PR LA RF B Bedp o 5 HR PR SR R fiﬁé'hiéﬁ@f,;* A s

m\<—5,ysz<2ﬁ—i4\i}]!a;*—§_l "lii\ﬁ“"f’ﬂﬁﬁ °

< A =3
)

AN

00> &= " 7 377

Contents

1 Introduction 1
2 Overview of the MPEG-4 Video Standard 3
2.1 Structure of MPEG-4 VideoData 3
2.2 MPEG-4Video TextureCoding 6
2.3 MotionCoder &l e 6
231 TextureCoder. . | . i e vin s 10
2.3.2 OtherVideo Coding TooIs[3] . .= 15
2.3.3 RobustVideoCoding . oo, &o 15
234 ScalableCoding " i L 16
2.4 ProflesandLevels[2] 16
3 Overview of The PACDSP 19
3.1 Introduction 19
3.1.1 Architecture Features 20
3.2 Architecture Overview e 12
3.3 Program Sequence ControlUnit 2 2
3.3.1 Branchlnstruction, 22
3.3.2 Loop e 23
3.3.3 Customized Function Unit (CFU) 24
3.34 ExceptionHandling 24
3.35 InterruptHandling 24

3.4 VLIWDatapath 25

3.4.1 Ping-Pong RegisterFile 25

3.4.2 Data/Address/Accumulator Registers 25
3.4.3 Statusand Control Registers 26
3.44 AddressingModes o 28
345 VLIWDatapath. 30
3.46 DataExchange 31
3.4.7 ConstantRegisterFile 33

3.5 ScalarUnit 34
351 OVerview e 34
3.5.2 ControlRegisters e 34
3.5.3 General Purpose Scalar RegisterFile 35

3.6 Conditional Execution Control 36

3.7 ISAandPipeline Stages .«2 v vl . o 7 3

3.8 DSPRUNNINg MOES 5 .\ pv e v e e o o e e e e e e e 38

3.9 Instruction Packet . = "0 . . L oS L S 9 3

3.10 Development Tools and Implementation Considerations 39
3.10.1 DevelopmentTools..o . . . o oo o 39
3.10.2 Implementation Considerations 42

Complexity Analysis and Implementation Strategy of MPEG-4 Famed-Based

Video Decoder 43

4.1 Profiles of The MPEG-4 Frame-Based Video Decoder 44
4.1.1 Approachto Complexity Analysis 44
4.1.2 Profile on PC Using Intel VTune Performance Analyzer 45
4.1.3 Low-Level Computational Analysis 6 4

4.2 Implementation Strategieson PACDSP 49
4.2.1 Efficient Variable Length Decoding (VLD) 50
4.2.2 Efficient Motion Compensation 55

4.2.3 Profile on PACDSP of All Decoder Functions 6 5

5 Optimization of The Implementation on PACDSP 61

5.1 Algorithmic Optimization 61
5.1.1 Algorithmic Optimization for Intra Frames 61
5.1.2 Algorithmic Optimization for P-Frames 65

5.2 Architectural Optimization 67
5.2.1 General Optimization Techniques 68
5.2.2 Advantagesof PACDSP 71

5.3 ExperimentResults 72
5.3.1 Optimization of Dequantization 72
5.3.2 Implementationof IDCT 73
5.3.3 Overall Optimization of the implementation 79

5.4 Conclusion on Optimization 08

5.5 The Effect of Different QuantizationStep (QP) 81
5.5.1 Effectsof QPtol-Frame Decoding 82
5.5.2 Effects of QP:t0 P-Frame Decoding 83

5.6 Comparison with Other Implementations:. 84

Conclusion and Future Work 89

6.1 Conclusion 89

6.2 FutureWork 90

Demonstration of MPEG-4 Frame-Based Video Decoder on Dual-Ge PSDK 94

A.1 Overview of The PSDK 2.0 Platform 94
A.2 Introduction to Dual-Core Demonstration 96
A21 I-FramesDecoding 96
A2.2 P-FramesDecoding. 97
C Program and Assembly Code of IDCT 99
B.1 CProgramof IDCTinMOMuSys 99
B.2 Original Assembly Code of IDCT 99

B.3 Optimized Assembly Code of IDCT 99

List of Figures

2.1 Segmentation of a frame into VOPs (from[3]). 4
2.2 Structure of coded video data (from[4]). 5
2.3 Typesof VOP. 6

2.4 Positions of luminance and chrominance samples in 4&#® (from [5]). 7
2.5 Motion vector prediction (from [5]). 9

2.6 Quantizers in H.263. (a)For intra DC.coefficient only) For inter DC

and all AC coefficients: . L .l e o 12
2.7 Prediction of DC coefficients of blocks in an intra MB (mg3]). 14
2.8 Prediction of AC coefficients of blocks in-an intra MB (nd3]). 14
2.9 ScansfoB x 8 blocks (from2]). ...v L 15
3.1 Architecture of the PACDSP [1]. 22
3.2 Ping-pong register fileinonecluster1]. 26
3.3 The available registersinonecluster[1]. 27
3.4 lllustration of the addressing mode control registeaWi@@R) [1]. 28
3.5 lllustration of multiplication instructions with défent precisions [1]. . . 31
3.6 Different load/store instructions[1]. 32
3.7 Data Exchange between Two Clusters[1]. 33
3.8 Databroadcastamongclusters[1]. 33
3.9 The Constant Register File of onecluster[1]. 35
3.10 PACDSP instruction set architecture[1]. 38
3.11 Pipeline stages ofthe PACDSP [1]. 38
3.12 Transitions between DSP runningmodes [1]. 41

3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Al
A.2
A3
A4

B.1
B.2
B.3

Syntax of instruction packet [1]. 42

Simplified syntax of instruction packet[1]. 42
Block diagram of MPEG-4 frame-based video decoder [2]...... . . . 44
Example of bit by bit matchingon PACDSP. 53
Example of one table mapping with magnitude-offset o6 PAP. 54
Example of multiple-pass matchingon PACDSP. 55
Example of bounded multiple-pass lookup with magniatiset on PACDSP. 56
Comparison of different VLD methods on PACDSP 57
DC spreading from decoded coefficient to output block...... 62
Assembly code of DCspreading.\ 62
Assembly code of new check in vertical AC reconstruction 65
Example of vector additionas™ 0 ire,. . . L Lo 69
Example of static reschedulingtechnique. 70
Example of loop unrolling technique. *. 70
Example of software pipelining-technique 71
Original and optimized assembly codeof 1IQ. 75
The IDCT algorithm used in MOMuSys. 8 7
The even-odd decomposition IDCT algorithm([8]. 79
Speed-up of different optimization methods for I-fean 84
Speed-up of different optimization methods for P-gam. 85
PAC System Developer’s Kit (PSDK)2.0 95
Memory map of the dualcore demonstration 96
Co-processing mechanismforl-frames. 97
Co-processing mechanism for P-frames 98

C program of IDCT in MoMuSys reference software includifigming. . 100
Assembly code of our initial IDCT implementation (horizalnprocessing).101
Assembly code of our initial IDCT implementation (vertigsocessing

andclipping). e 102

B.4 Assembly code of optimized IDCT implementation (horizdpirocessing).103
B.5 Assembly code of optimized IDCT implementation (vertipedcessing

andclipping). e 104

Vi

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8

5.1

Weighting Valuesiy(i, 5), Hi(i,7), andHy(4,7) 11
Default Quantization Matrix (Q) [2] 13
Nonlinear Scaler for DC Coefficients (from[2]) 13
Profilesand Tools (from [2]) 18
Details of Control Register Files 1] 36
Memory-Mapped Control Registers [1] 37
Pipeline Stages and Their Descriptions’ -. 39
Running Modes of the PACDSP[1]. . ./« 40
Instruction Type in EachInstruction Slet 41
Profile of Frame-Based MPEG-4 Decoding of QCIFonPC 46

Complexity of Luminance Motion Compensation in One QCIFhea. . 48
Complexity of Chrominance Motion Compensation in One QCHnteg . 49
Complexity of Dequantization and IDCT for Onex8 Block in Mo-

MuSysCode. e 50
Variable Length Codes for ddc_sizeluminance [2] 52
Execution Time of Different VLD Methods on PACDSP 58
Analysis of Necessary Interpolation Using MOMuSys 59

Estimated Profile of Frame-Based MPEG-4 Decoding of QCIPAXRDSP 60

Number of Skipped Blocks in 90 Intra Frames (Check CBP and ACPlagy
Only) . . . e e 64

VIl

5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19

Number of Skipped Blocks in 90 Intra Frames with FurtherdRhisfter

AC Prediction

Execution Time of Intra Frame Decoding on PACDSP

Number of Skipped Blocksin89 P Frames.

Execution Time of Inter (P) Frame Decoding on PACDSP

Analysis of Skipped Coefficients in Dequantization (9tames)

Improvement after Optimization of Dequatization

Comparison of Computational Complexity for 8-point IDCT
Test of Compliance Using IEEE Std. 1180-1190
Comparison of IDCT on Different Platforms
Improvement After Optimization of IDCT
Overall Optimization after IDCT Optimization
Execution Time Before and After Optimizations

Number of Skipped Blocks in 90 Intra Frames with Differ@®

Effects of Different QP to Execution Time of I-Frame Dding on PACDSP

86
Number of Skipped Blocks.in 89 P-Frames with Different QP.

Percentage of Fractional Motion Vectors with Differé®

87
87

Effects of Different QP to Execution Time of P-Frame &ging on PACDSP 88

Performance of MPEG-4 Video Decoder on Different Btats

Vil

88

Chapter 1

Introduction

In modern industry, compression of audio-visual inforroatbecomes more and more im-
portant, especially for applications on mobile devices.i@es digital signal processors
(DSPs) are also popularly used on‘these maobile devices. @aligthe implementation
of MPEG-4 video decoder on the PACDSP platform.

The MPEG-4 standard for cading of audio-visual informatias been widely adopted
in various consumer products. -There are several tools iIMIPEEG-4 standards, and they
are used for different purposes. Since.the present worleiitst attempt to implement
MPEG-4 video codecs on the PACDSP platform, we decide to ime@le the freme-based
part of the MPEG-4 decoder first, and the corresponding earatt other MPEG-4 video
tools are left to the future work.

PACDSP is a high performance, low cost VLIW (Very Long Instroc Word) DSP
for multimedia applications[1]. Optimized architectuce flata stream applications gives
a strong reason for system designers to use PACDSP to impieneelia codecs. The in-
struction set architecture (ISA) of PACDSP is optimized fodi@ and video applications,
so PACDSP is suitable for products with multi-standard cagegirement. In addition,
the low power design for PACDSP makes it possible to use PACDSf®dable devices.

This thesis is organized as follows. Chapter 2 is the overaeMPEG-4 standards.
Chapter 3 introduces the architecture and specificationeoP&CDSP platform. Chap-
ter 4 is the analysis of complexity for the reference sofevar MPEG-4. In addition,

the implementation strategy of MPEG-4 video decoder is sisgply introduced in this

chapter. The contents of chapter 5 are about the differeithiation technologies and
their experiment results. We also compare our implemenntatith that of other proces-
sors Finally, we will give some conclusions in chapter 6, #relfuture works are listed

as well.

Chapter 2

Overview of the MPEG-4 Video
Standard

2.1 Structure of MPEG-4 Video:Data

The contents of this section have been taken to a large dxten{2]—[5].

A video sequence is composed-of a-succession of frames (orgsy. MPEG-4 di-
vides a frame into a number of video-ebject planes (VOPSs). &eassion of VOPs is
termed a video object (VO). The idea of VOPs is illustratedrig. 2.1. Each VO is
encoded separately and multiplexed to form a bitstreamubats can access and ma-
nipulate. The encoder sends, together with VOs, informagioout scene composition
to indicate where and when VOPs of a VO are to be displayedur€&ig.2 shows the
organization of the coded MPEG-4 video datta in a top-dovemanchical structure. A
frame-based video can be interpreted as having only one Vi@.iA non-scalable cod-
ing, there is only one video object layer (VOL). The meaninfjthe hierarchical layers

are as follows.

e VideoSession (VS): A video session simply consists of arer@d collection of

video objects.

¢ VideoObiject (VO): A video object is a complete scene or aipordf a scene with

a semantic. In the simplest case this can be a rectangutaefrar it can be an

VOP (0

)

VOP 2 :

Figure 2.1: Segmentation of a frame into VOPs (from [3]).

arbitrarily shaped object-corresponding to a-physical dbpe background of the

scene.

¢ VideoObjectLayer (VOL): Each video.object can be encodeddalable (multi-
layer) or non-scalable form (single layer), depending ergipplication, represented
by VOL. The VOL provides support for scalable coding. A vidagiect can be

encoded using spatial or temporal scalability, going frararse to fine resolution.

e GroupOfVideoObjectPlanes (GOV): Group of video objechpkare optional en-
tities. The GOV groups together video object planes. GOVspravide points in
the bitstream where VOPs are encoded independently fromather, and can thus

provide random access points into the bitstream.

¢ VideoObjectPlane (VOP): A VOP is a time sample of a video ctje

As in the earlier MPEG standards, a VOP can be of the |, the ByeoB type, as
illustrated in Fig. 2.3. In addition, there is a fourth type\OP, called S, defined in
MPEG-4. These are briefly explained below:

1. Anintra-coded (I) VOP is coded using information onlyrfratself.

4

VideoSession (VS) ’ VS W Vs,
VideoObject (VO) Vo,

/\
._Z VOLy...VOLy

VideoOhjectLayer (VOL) lvor, VOL, | H

{ ‘: GOVy...GOVy %
GOV |

GroupOfVOPs (GOV) GOV, | | l \
: |

/ N\ | AN
VideoObjectPlane (VOP) VoP || | VvOP, ‘vom% VOPR VOP; H
' o s e

VOPR ...VOP, VOPyi4i...VOPy VOP,...VOPy

\ ;

L%rer 1 La?er 2

Figure 2.2: Structure of coded video data (from [4]).

2. A predictive-coded (P) VOP is a VOP which is coded usingiomtompensated

prediction from a past reference VOP.

3. A bidirectionally predictive-coded (B) VOP is a VOP whichdoded using motion

compensated prediction from a past and/or future refergif(s).

4. A sprite (S) VOP is a VOP for a sprite object or a VOP which egled using
prediction based on global motion compensation from a pHetence VOP. We

omit further introduction of the S VOP.

The macroblock (MB) is a basic coding structure constructé@g. An MB contains
a section of the luminance componentléfx 16 (horizontal x vertical) pixels in size,
non-overlapping with each other, and the sub-sampled dheotoe components in 4:2:0

format. The luminance and chrominance samples are posttias shown in Fig. 2.4. In

et et

I-frame | P—frame| B-frame P—frame |-frame

Figure 2.3: Types of VOP.

this format, an MB is divided into 4 luminance blocks and 2ochinance blocks, each

8 x 8 pixels in size.

2.2 MPEG-4 Video Texture Coding

The contents of this section have beenttakento alarge drbem{3]—[5]. We concentrate

on the techniques pertaining to frame-basedvideo coding.

2.3 Motion Coder

Motion coding applies to P-VOP and B-VOP, for the purpose diioing temporal re-
dundancy. The motion coder consists of a motion estimatotiom compensator, previ-

ous/next VOPs store and motion vector (MV) predictor andecod

Motion Estimation

The motion estimation (ME) techniques used in MPEG-4 carea ss an extension of
standard MPEG-1/2 or H.263 block matching techniques witilifred block (polygon)
matching to handle arbitrary-shaped VOPs. But this modiéinat of little concern to

the current report.

=
—_
2
(5]

2 [X X X X
O O
3 IX X X X
% luminance
¢ chrominance

Figure 2.4: Positions of luminance and chrominance sampk:0 data (from [5]).

The basic motion estimation may be performed 6i 16 luminance MB. The motion
vector is specified to half-pixel aceuracy. In‘many codinfiveare implementations, the
motion estimation is performed by 'some search method tgentgixel accuracy vector
and, using it as the initial estimate, a half pixel searclei$gymed around it. Because the
motion vector may be non-integer,.sample’interpolationeisessary. The interpolation
is carried out only in half sample mode, where the half sanaplees are calculated by
bilinear interpolation.

In the MPEG-4 standard, besides motion vectorliox 16 MB, motion vector can
be sent for individua x 8 blocks to reduce more prediction errors. Both &he 8 block
motion compensation and overlapped motion compensate&licpon are referred to as
advanced prediction in H.263 and are adapted in MPEG-4 t& wah arbitrary shaped
VOPs.

Motion Vector Encoder

When using INTER mode coding, the motion vector must be codedrizontal and
vertical motion vector are coded differentially by usingpaisal neighborhood of three
motion vectors that have already been coded, as illustnatéig. 2.5. These three motion

vectors are candidate predictors for the differential ngdi The differential coding of

motion vectors is performed with reference to the reconstdishape. In the special

cases at the borders of the current VOP the following detisiées are applied:

1. If the MB of one and only one candidate predictor is outsideVOP, it is set to

Zero.

2. If the MBs of two and only two candidate predictors are algéthe VOP, they are

set to the third candidate predictor.

3. Ifthe MBs of all three candidate predictors are outsideAD®, they are set to zero.

The motion vector coding is performed separately on thezbatal and vertical com-
ponents. For each component, the median value of the thredidedies for the same
component is used as predictor, denofedand P,, respectively. After finding the pre-
dictors, the vector differencedV D, = MV, — P, andMV D, = MV, — P, are coded
by variable length coding (VLC).

Motion Compensation

The motion compensator uses motion vectors to.compute motimpensated prediction
block, pred|i][j], from the same reference VOP. In addition to basic motiongmmation
processing, three alternalties are supported, namelgstriated motion compensation,
four MV motion compensation and overlapped motion compkmsa

For unrestricted motion compensation, the motion vect@séowed to point outside
the decoded area of a reference VOP. When a sample referep@edbtion vector is
outside the decoded VOP area, an edge sample is usegrddid|;] is defined through

the following:

zref = min(max(xcurr 4+ dzx, vhmesr), xdim + vhmesr — 1),

yref = min(max(ycurr + dy, vomesr), ydim + vomesr — 1),

wherevhmesr = vop_horizontalmc_spatialref, vomcsr = vop_verticaLmc_spatialref,
(ycurr, xcurr) is the coordinate of a sample in the current VQRe f, zref) is the coor-
dinate of a sample in the reference VO®, dx) is the motion vector, antydim, xdim)

is the dimension of the bounding rectangle of the referer@@.vV

8

MV : Current motion vector
MV2|MV3 MV1: Previous motion vector
MV2: Above motion vector

MV1MV MV3: Above right motion vector
MV2MV3 MV1MV1 MV2{(0,0)
(0,0)|mv MV1 MV MV1 MV

———————— : VOP border
Figure 2.5: Motion vector prediction (from [5]).

One/two/four vectors decision issindicated by the MCBPC camtevand fieldprediction
flag for each MB. If one motion:vectorjis transmitted for a certdB, this is considered
four vectors with the same value ‘as the MV. When:two field motectors are transmit-
ted, each of the four block prediction‘metion-vectors hassdlee equal to the average of
the field motion vectors (rounded such that all-fractionakpoffsets become half pixel
offsets). If MCBPC indicates that four motion vectors are sraitted for the current
MB, the information for the first motion vector is transmitteslthe codeword MVD and
the information for the three additional motion vectorsremsmitted as the codewords
MVD2-4. If four vectors are used, each of the motion vectsissed for all pixels in one
of the four luminance blocks in the MB.

Overlapped motion compensation is performed when the flagcabisable = 0. Each
pixel in an8 x 8 luminance prediction block is a weighted sum of three presthic/alues,

divided by 8 as follows:

P(i,j) = [p(i+ MV}, j+ MV})Hy(i,j)
+pli+ MV}, j+ MV} Hi(i, j)

+p(i + MV2, j+ MV})Hy(i, 5) +4]/8,

where (/V;), MV})) denotes the motion vector for the current block/ (', MV}') the
motion vector of the block above or below/(/;?, MV,?) the motion vector of the block
to the left or to the right, andi, (i, j), H:(i, 7), and Hy(i, j) the weighting of each pixel
in the current block and neighbor blocks. The valuegiofi, j), H1(i,7), and Hs(3, j)
denote the weighting of each pixel in the current block andhi®or blocks, and they are
shown in Table 2.1. It is noted thaf,(i, j) is used for current luminance blocK; (i, j)
for prediction of motion vectors of luminance blocks on tapottom of current block,
and H,(i, 7) for prediction of motion vectors of luminance blocks on thé# br right of
current block.

Since the VOP may be coded in P or B mode, there are three typestion predic-
tion, forward mode, backward mode, and bi-directional mddee different modes make

different predictions(i, j) as follows.

1. Forward mode: Only the forward vector (MVFx,MVFy) is ajguol in this mode.
The prediction block®, (i,3), P.(i, j); Pu(is j) are generated from the forward ref-

erence VOP.

2. Backward mode: Only the backward vector (MVBx,MVBY) is apgli The pre-
diction blocksP, (i, j), P.(i, 7), P, (4, j) are generated from the backward reference

VOP.

3. Bi-directional mode: Both the forward vector (MVFx,MVFyhc the backward
vector (MVBx,MVBY) are applied. The prediction blocks(4,), P.(i,), P.(i, j)
are generated from the forward and the backward referendesM&y doing the
forward and the backward predictions and then averaging fr@dictions pixel by

pixel.

2.3.1 Texture Coder

The texture information of a VOP is present in the luminancand two chrominance
components Cb and Cr of the video signal. In the case of an I-#@Rencoded texture
information directly represents in the values of the lumt®and chrominance compo-

nents. In the case of motion compensated VOPs the encodenleterformation rep-

10

Table 2.1: Weighting Value# (i, j), H1(i,7), andHy(3, j)

(=)
—~
\’@

ljlolo|lojlo|o|lva|a |,
N—
=
—~
\.@

N N = = [EY [N N N | .
N
=
—~
‘e
<
S—

MNlOooj ooy 1|01 |0 | b

g |0 |jor |0 |o1 oo ol

oo o|o | o |o |0 .,

Ojoojlo|o | o | o |0 g

ool |jo o | O

Alaolo|lala|la|la|s
N O N Y e I N N

N|FR|FRP[RPIFRP|FPIFP]DN

NN R FRP|[FRP[FP[IDNIDN

NN RPN DN

N S I S N = A S B N N

O B I I B I S
NN NN

N N T e

gloo|lojlo|lo|o |0 o
NN PRI IN|DN
RINININ|ININ|N|P
RlRr|RP|[RP PP PP
[N T N e N
[N e o Ll L
RINININMNIND|NINRF
NN

resents the residual error remaining after .motion-comgtexdsprediction. The texture
coder includes padding process (for object-based codimg),applied only if needed),
8 x 8 two-dimensional (2D) discrete cosine transform (DCT), dization, coefficient

prediction, coefficient scan and VLC.\We describe the last éements below.

Quantization

MPEG-4 video supports two quantization techniques, orermed to as the H.263 quan-
tization method and the other, the MPEG quantization metAde H.263 quantization
method is uniform with dead zone for intra and inter AC coedfits and uniform for intra
DC coefficients. The MPEG quantization method is uniform.

Figure 2.6 shows the quantizer characteristics in H.263. iffer DC and all AC
coefficients, input betweenTh and+Th is quantized to zero. All coefficients in an MB
go through the same quantizer step size Q, which can be ctiamgerements of 2 from
2 to 62 as desired.

In the MPEG quantizer, each coefficient produced by 2D DCT &ntjmed with a
uniform quantizer. The default quantizer matrix is definedghown in Table 2.2, which

can be changed if desired.

Typically, the DC coefficients df x 8 blocks belonging to an intra MB are scaled by

11

3/2Q Th+1/2Q

1/2Q

. —Th >
-1/2Q -Th-Q Th

— -3/2Q

(@) (b)

Figure 2.6: Quantizers in H.263. (a) For intra DC coefficienly. (b) For inter DC and

all AC coefficients.

a constant scaling factor of 8. However;in MPEG-4 video, @inear scaler as shown in
Table 2.3 is used to provide a higher coding.efficiency. Tharatteristics of nonlinear
scaling are different between theluminance and chrommaiacks and further depend

on the quantizer used for the block;

Intra Prediction

After quantization, the DC coefficients and many AC coeffitseof an intra block are
coded by intra prediction. Intra prediction is a new operatised in MPEG-4 standards
to reduce the spatial redundancy betwg&en8 blocks. There are two types of prediction,
DC prediction and AC prediction.

Figure 2.7 shows the prediction of DC coefficients in irgsa8 blocks. The quantized
intra coefficients are predicted with three previous dedddié coefficients. For example,
the DC coefficients of block X is predicted from the DC coe#iutis of blocks A, B and C.
Unlike MPEG-2, the prediction in MPEG-4 is gradient basedcdmputing the prediction
of block X, if the absolute value of a horizontal gradientasd than the absolute value of
a vertical gradient, then the QDC of block C is used as theigtied, else QDC value of
block A is used.

The AC prediction depends on DC prediction, as shown in Fig. Zhe AC coeffi-

12

Table 2.2: Default Quantization Matrix (Q) [2]
Intra Inter

8 16 19 22 26 27 29 3416 16 16 16 16 16 16
16 16 22 24 27 29 34 3716 16 16 16 16 16 16
19 22 26 27 29 34 34 3816 16 16 16 16 16 16
22 22 26 27 29 34 37 4016 16 16 16 16 16 16
22 26 27 29 32 35 40 4816 16 16 16 16 16 16
26 27 29 32 35 40 48 5816 16 16 16 16 16 16
26 27 29 34 38 46 56 6916 16 16 16 16 16 16
27 29 35 38 46 56 69 8316 16 16 16 16 16 16

Q) Q)

Q)

0 O g0 DA BN W W
e = =
(2]

Table 2.3: Nonlinear Scaler for DC Coefficients (from [2])
Component DC Scaler for Q Range

1-4- 5-8. 9=24 25-31
Luminance 8 20 Q+t8 2Q+16
Chrominance« . 8 (Q+13)/12 Q+16

cients in the first row or in the first column are predicted ifttee previous decoded AC

coefficients. The direction of prediction is the same as Dé&ljation.

Scan and VLC

The predicted DC and AC coefficients (as well as the un-ptedi@&C coefficients) of
DCT blocks are scanned by one of three scans: alternateshtaiz alternate-vertical
and zigzag (the normal scan used in H.263 and MPEG-1) to ehtdregy2D image to
one dimensional data, as shown in Fig. 2.9. The actual sahdepends on the coeffi-
cient prediction method used. For instance, if the DC pteshiaefers to the horizontally
adjacent block, alternate-vertical scan is selected fcthrent block. If the DC predic-
tion refer to the vertically adjacent block, alternatethontal scan is used for the current

block. For all other blocks, the x 8 DCT blocks are zigzag scanned.

13

X Y Macroblock

Figure 2.7: Prediction of DC coefficients of blocks in an@awiB (from [3]).

L
e
=
[]
B

T T

]
§
u
L]
L
§
L]

Ty

Macroblock

Figure 2.8: Prediction of AC coefficients of blocks in an &xmB (from [3]).

The coefficients after scan usually become data with maryszarthe end. This kind
of a data stream is good for run-length coding. In MPEG-4edkintial DC coefficients
in intra blocks are encoded in VLC. But the AC coefficients areoeled by the variable
length codes for EVENTs. An EVENT is a combination of a lash4zero coefficient
indication, the number of successive zeros preceding tbedcooefficient (RUN), and
the non-zero value of the coded coefficient (LEVEL). Somé&siteally rare events have

no VLC words to represent them. For them an escape codingoehéthused.

14

0 |1 |2 |3 (10|11 |12 |13 0
4 |5 [8 |9 |17 |16 [15 |14 1
6 |7 |19 (18 |26 |27 |28 |29 2 19 |24 |34 |40 |50 (54 8 |12 |17 |25 |30 |41 (43
20 (21 |24 |25 |30 |31 (32 (33 3 18 |25 |35 |41 (91 [55 11 [18 |24 |31 (40 |44 |53
22 123 |34 |35 |42 |43 |44 |45 10 |17 |26 |30 |42 |46 |56 |60 10 |19 |23 |32 |39 (45 |52 |54
36 37 |40 (41 |46 |47 |48 |49 11 116 |27 31 |43 |47 |57 |61 20 |22 |33 |38 |46 |51 |55 |60
38 [39 |50 (51 |56 |57 |58 |59 12 |15 |28 (32 |44 |48 |58 |62 21 |34 |37 |47 |50 |56 |59 |61
52 |53 |54 |55 |60 |61 |62 |63 13 |14 |29 (33 |45 |49 |59 |63 35 |36 |48 |49 |57 |58 |62 (63

6 |20 |22 |36 |38 |52
7121 |23 |37 |39 |53

4]

6 |14 |15 |27 |28
13 |16 |26 |29 |42

wl|e|om| &
o|lw|rn]o
.
~

(a) Alternate-Horizontal scan (b) Alternate-Vertical scan (c) Zigzag scan

Figure 2.9: Scans fd¥ x 8 blocks (from [2]).

2.3.2 Other Video Coding Tools [3]

In addition to texture video coding, there are some spec@stdefined in MPEG-4. We

briefly introduce robust video coding and scalable coding he

2.3.3 Robust Video Coding

Error resilience is a particular concern ever-wireless oneta. In the error resilient mode,

the MPEG-4 video offers a number of tools as follows:

1. Object priorities: The object based organization of MPEGdeo facilitates priori-
tizing of the semantic objects based on their relevancehEyithe VOP types are a
form of inherent prioritization since B-VOPs do not conttidto error propagation

and thus can be transmitted at a lower priority or discardexhse of severe errors.

2. Resynchronization: The encoder can enhance error resligy placing resynchro-
nization (resync) markers in the bitstreams with approxélyaconstant spacing,

such as beginning of each MB.

3. Data partitioning: Data partitioning provides a meckanito increase error re-
silience by separating the normal motion and texture daw@ld¥iBs in a video
packet and send all of the motion data followed by a motionkerarfollowed by

all of the texture data.

15

4. Reversible VLCs: The reversible VLCs offer a mechanism foe@der to recover
additional texture data in the presence of errors sincea®eial design of reversible
VLCs enables decoding of codewords in both the forward (nframal the reverse

direction.

5. Intra update and scalable coding: Intra update is a simgliod to reduce error
propagation. However, more intra updates means less cedfficgency. Another
method is scalable coding, which can alleviate error prapag without more intra

coding.

2.3.4 Scalable Coding

The scalability tools in MPEG-4 video are designed to supapplications beyond that
supported by single layer video, suchas internet vide@less video, multi-quality video
services, video database browsing, etciiln scalable viddmg, it is assumed that given
a coded bitstream, decoders of various complexities caodgeand display appropriate
reproductions of coded video.

MPEG-4 video provides several different forms of scal&piliThe basic scalability
tools offered are temporal scalability and spatial scétgbiA Fine Granularity Scala-
bility (FGS) is also defined which supports continuous duiéitg of bit rate and video
quality.

2.4 Profiles and Levels [2]

Although there are many tools in the MPEG-4 standard, natydEG-4 decoder will

have to implement all of them. Similar to MPEG-2, profiles dexkls are defined as
subsets of the entire bitstreams syntax of all the tools. purpose of defining confor-
mance points in the form of profiles and levels is to faciitaiterchange of bitstreams
among different applications. There are eight profiles @efim MPEG-4: simple, core,
main, simple scalable, animated & mesh, basic animatedretill scalable texture and

simple face. The details are given in Table 2.4.

16

Compared with the previous standards, the simple profile cE®GH is similar to
the coding method in H.263. The difference is that the sirppidile has error resilience
but does not have B-frame coding. The simple scalable pr&ilmple profile with
rectangular scalability. The core profile is the profile wathtools of the simple profile,
temporal scalability, B-VOP coding and binary shape codiiigpe main profile is the
profile with all tools in core profile, gray shape coding, ndee and sprite coding. The
other profiles are for particular purposes, such as 2D dynamesh coding and facial
animation coding.

For frame-based coding and decoding, what concerns usmsatreprofile, excluding

the shape coding, interlace, and sprite coding tools.

17

Table 2.4: Profiles and Tools (from [2])

Tools

Simple

Core

Main

Simple
Scalable

Animated
2D Mesh

Basic
Animated

Texture

Still
Scalable

Texture

Simple

Face

Basic

1. 1VOP

2. PVOP

3. AC/DC Prediction

4. 4MV Unrestricted MV

Error resilience

1. Slice Resynchronizatio
2. Data Partitioning

3. Reversible VLC

h

Short Header

B-VOP

Method 1/Method 2

guantization

P-VOP based
temporal scalability
1. Rectangular

2. Arbitrary Shape

Binary Shape

Gray Shape

Interlace

Sprite

< <1< <

Temporal scalability

(rectangular)

Spatial scalability

(rectangular)

Scalable still

texture

2D dynamic mesh

with uniform topology

2D dynamic mesh

with Delaunay topology

Facial animation

parameters

18

Chapter 3

Overview of The PACDSP

The contents of this chapter have been taken to a large drxbem{1].

3.1 Introduction

Programmable embedded solutions are attractive for tbeierl development effort, up-
gradeability to support new applications andreasier maartee. These factors reduce
time-to-market and extend time-in-market,.and thus makebtst profit-sense. Today’s
media processing demands extremely high computationgealftime constraints in au-
dio, image or video applications. Instruction parallelibias been exploited to speed
up the high-performance microprocessors, and VLIW machiree low-cost compiler
scheduling with deterministic execution time and have thesome the trend of high
performance DSP processors.

Conventional VLIW processors are notorious for their poatecdensity, because the
unused instruction slots must be filled by NOPs. Thus, the ceasity gets worse when
the parallelism is limited. Variable-length VLIW instrimh packet eliminates NOPs by
dispatching instructions at run-time, compared to the eatignal position-coded VLIW
processors where each functional unit (FU) has a correspgit-field in the instruc-
tion packet. Indirect VLIW has an internal instruction larffor the VLIW instruction
packets. With this instruction buffer and the pre-fetchesoh, the VLIW processor can

reduce instruction memory bandwidth requirement and powesumption of instruction

19

fetches.

The complexity of the register file (RF) grows exponentiakyraore and more FUs
are integrated on a chip, which operate concurrently toesehthe performance require-
ments. The RF is frequently partitioned for execution clisstth explicit interconnec-
tion networks among the clusters to significantly reducecdbmplexity at the cost of
small performance penalty.

For high performance, the PACDSP is a VLIW processor withlsingstruction mul-
tiple data (SIMD) instruction set architecture (ISA). Thefta/are supported schedule
reduces the complexity of hardware design and the poweruogpison. Variable length
instruction and instruction packet solve the poor codeitiepsoblem of the conventional
VLIW architecture. Another feature of the PACDSP, clustehéecture, reduces not only
ports and entries of the register files but also the powerwuopsion of read/write opera-

tions. More details about the features of PACDSP are disdusgbe following sections.

3.1.1 Architecture Features
Key features of the PACDSP include.the following items:
e Scalable VLIW datapath for easy extension of the perforraanc

e Variable instruction word/packet length to avoid the draakof poor code density

in the conventional VLIW architecture.

e Heterogeneous register files for more straightforward afpens, less ports and

smaller entries in each RF to improve the performance ancceepgower and area.

e Constant register file in each cluster (322 bits) for storage of some fixed data in
the applications to reduce the frequency of data movemeittwhay cost signifi-

cant of power consumption.

¢ Inter-cluster communication (ICC) by memory controller feusing hardware re-
source and reducing the port number of ping-pong RF in ordexdoce power and

area and to increase the scalability.

20

e Optimized interrupt design with fast interrupt responseeti(3 clock cycles) with
hardware supporting context switch to reduce the procggsire of interrupt ser-

vice routine (ISR).

¢ Hierarchical encoding scheme reducing the dependencyekatimstructions and

packets to reduce area and latency of the dispatch unit.
e Dynamic power management for power saving.

e Customized instruction set and functional unit interfagdlie accelerators that are

used to enhance certain DSP operations.

3.2 Architecture Overview

There are three components in the: PACDSP kérnel: progranesegeontrol unit, scalar
unit and VLIW datapath. The accelerators that execute ferdiht threads and synchro-
nize the execution results through the scalar unit can exehtre computation power of
the VLIW datapath. Figure 3.1'shows the-architecture of tRe [PSP.

The program sequence control‘unit-dispatChes instructmiise scalar unit and the
VLIW datapath. It also executes control flow instructions d&andles the interrupt and
exception events. The scalar unit executes the scalauatsins whose characteristics
are low parallelism and high data dependency. It also ctetine power control interface
and the customized functional unit interface.

The VLIW datapath composed of two clusters takes charge wiptex data opera-
tions in the program. Each cluster contains a load/store(Lf8) and an arithmetic unit
(AU). Both units can execute instructions concurrently. #heo feature of the PACDSP,
the ping-pong register file, facilitates data transfersvieen these two units. With this
feature, the typically high power consumption of the DSPkécan be reduced. The
maximum parallelism of the VLIW datapath in instruction amgkration levels is 4 and

12, respectively.

21

Memory Tnterface Unit (MTU

¥ 3 ¥ F ¥ | I
" ™ ™)
- ~ 7 1
Y Cluster]

Dispatch Unit | CIE GG | Frivale BF i

W " L] Ll

] A4]] 44 !

= : 5 a

-.|_|;:IIL-L\I : YyYYy : : Yy :

mandier .)] 1

. Load!Store Unit [. Lowd/Store Un !

i caioton i : i 1 :

o | e =

Program Sequence . ; . ;

Control Unit ' ‘ ' ;

— . RIS R 11

.UGI;E‘:GT :I Putilc PIng-2ong RF I: L_ ; . :I Puhblic Fing-Fong R I:

Y : E CHOEY 1 E

_| . 'Yy b . i

Scalar Unit] h] T .

: : : wimmenic Uit :

1 : = == |

v .

| . | YYD A4 {

L}

LA : : Ty H

[CEoaers] \] Privae BF i

Scalar Unit e e Ty
_— | VLIW Datapath

Customized
\ DSP Kermel | Functional Unit |

Bus Interface Unit (BIL)

Figure 3.1: Architecture of the:PACDSP [1].
3.3 Program Sequence ContrelUnit

The program sequence control unit is a main component in 8@ kernel. It dispatches
Instructions to the scalar unit and the VLIW datapath. lbagecutes the execution flow

control instructions and handles the interrupt and exoapvents.

3.3.1 Branch Instruction

Branch instructions can be grouped into two categories,itiondl branches and uncon-
ditional branches. There are three addressing modes défitieel PACDSP for generat-
ing the branch target address:

e PC-relative

Add the 16-bit signed immediate offset to the address in thedgister, and take

the result as the branch target address, i.e.,

22

TA =PC + OFFSET

where TA is the target address, PC is the address in PC negisttOFFSET is the

16-bit signed immediate value.
Register
Take the value in the register as the target address, i.e.,

TA=Rs

where TA is the target address and Rs is the source registddodss.

Register-relative

Add the 16-bit signed immediate offset to the address savdtkiregister and take

the result as the branch target address; i.e.,

TA = Rs + OFFSET

where TA is the target address, Rs is the source registergtheraddress, OFFSET

is the 16-bit signed immediate value.

The branch instructions defined in the PACDSP support savitigeoreturn address

into the assigned register. The programmer should takeafatee return addresses of

nested loops. There are three branch delay slots in the PACIIf8Rhe independent

instructions can be put in these delay slots.

3.3.2 Loop

The programmer can use the LBCB instruction to effect prog@ops. Loop Boundary
Register (RBCO — RBC3), which are all 32-bit registers, can be useectrd the loop

counts. However, the maximum loop count is 65536 for eachl lesince there are four

Loop Boundary Registers, up to four levels of nested loop casupeorted with the use

of the LBCB instruction.

23

There is a constraint in using LBCB to control a nested loop. diiter loop should
fully contain the inner loop. No exception will be generaitetie constraints are violated,
but the program behavior may be different from expectation.

However, conditional branches can be used inside the nkegipdo implement some
special branch behaviors in higher level languages, fomgka, “break” and “continue”
in C.

3.3.3 Customized Function Unit (CFU)

The PACDSP provides Customized Function Unit Interface féemsion purpose. The
user can attach co-processors or customized function ttnRACDSP and handle them
through the scalar instructions. If some error happens ustomized function unit, it can
inform the PACDSP and the PACDSP can process it based on theutartonfiguration.

If the work given is finished successfully, the PACDSP can tseeisults and continue
to work. It is recommended to use this interface to commueiedth any added co-

processor; otherwise, the user may have to pay significamthe effort to handle it.

3.3.4 Exception Handling

Unpredictable exceptions may occur during program execufl he exceptions need to
be handled correctly for correct execution results. EXxoegtmay be caused by hard-
ware (e.g., overflow), software, internal (e.g., undefinggtruction), or external (e.g.,
coprocessor exception). When an exception happens, the Bxa&eI kvill be frozen or

listen to the main processing unit (MPU) deliverance. Itk aware of debug requests

and will check the corresponding signal to see what kind oépions have happened.

3.3.5 Interrupt Handling

Two types of interrupt are supported by the PACDSP. One idritstrupt request (FIQ),
which has the higher priority, and the second is interrugtiest (IRQ). The difference

between them is that the FIQ uses hardware to reduce thenissving the context and

24

the hardware resources used for the FIQ interrupt servige(ISR) consist only of the
scalar unit and program sequence control unit.

Contrarily, the IRQ can use all the hardware resources in PACiDSfal with the
IRQ request, but the ISR of IRQ needs to save the context by.itsel

In the PACDSP, the minimum latency from interrupt requeshé&dfirst ISR instruction
to be executed is 3 cycles for both types of interrupt, anday ilme postponed when the

ISR experiences cache miss.

3.4 VLIW Datapath

3.4.1 Ping-Pong Register File

A centralized register file (RF) provides storage for andrgdanects to each functional
unit (FU), and each FU can read from or write to any registeation. But in practical
designs, the communication between FU'is usually restribiepartitioning the RF to
reduce the complexity significantly with'some performaneegity. In other words, each
FU can only read and write a limited subset of registers. égimg-pong hierarchical
RF, which is shown in Fig. 3.2, the RF is partitioned into prvand ping-pong sub-
blocks. Each FU (L/S or AU) can simultaneously access tweldabks, one of which
Is private (i.e., dedicated to the FU) and the other is dycaltyi mapped for inter-FU
communications within one cluster. Therefore, each solkobnly requires the access
ports for a single FU. The shared sub-blocks are organizead pmg-pong fashion to
reduce the control overheads, where the dynamic mappingssed to the VLIW ISA
with two switching bits and is directly specified by the pragpmers for each instruction

packet.

3.4.2 Data/Address/Accumulator Registers

As shown in Fig. 3.3, the address registers (A0—A7) are abiBand they are dedicated
to the load/store unit (L/S) for memory accesses. In addid,, A3, A5, and A7 are also

treated as the base registers which contain the base agsiressodulo addressing mode.

25

Private Registers

A0 - A15 (32-bit)

- e e e o e o e e e e e e e e e = = = = =

|
|
|
| |
| |
| |
1 |
|

ACO - ACT (40=bit).+,

=l

=1
"1

Private Registers

Figure 3.2: Ping-pohg register file in one cluster [1].

EO-E3 (A8, A10, A12, and Al4) and DO-D3 (A9, Al1l, A13, and AaB® individually
treated as end registers and displacement registers whinthio end addresses and dis-
placements in modulo addressing mode. Nevertheless,aarliaddressing mode, they
can be treated as the address register like AO—A7. The adatontegisters (ACO-AC7)
are 40-bit (8-bit as guard bits) and are dedicated to thieragtic unit(AU) for data manip-
ulations. The data registers(D0O-D7 and D8-D15) are orgdnizthe form of pingOpong

with 1-bit control and the word-length of these registers22-bit.

3.4.3 Status and Control Registers

The status register and control register which are read etnalyanstructions can be used

to monitor the DSP kernel status and handle the operatiorerabDSP kernel.

26

DO.H | DO.L D8.H | D8.L acod ACO.HIACO.L A0 A8/E0
D1.H| D1.L D9.H | D9.L acrd ACL.HIACLL A2 A10/E1
D2.H| D2.L D10.H D10.L rczd AC2.HIAC2.L A4 A12/E2
D3.H | D3.L D11.H D11.L acsd AC3.HIACS.L A6 A14/E3
D4.H | D4.L D12.H D12.L rcad Ac4.HIACAL A1/BO A9/D0
D5.H | D5.L D13.H D13.L acsd AC5.HIACE.L A3/B1 Al11/D1
D6.H | D6.L D14.H D14.L rcsd AC6.HIACE.L A5/B2 A13/D2
D7.H| D7.L D15.H D15.L rard Ac7.HIACT.L A7/B3 A15/D3
Data Register Data Register Accumulater Register Address Register End/Displacement
32-bit 32-bit 40—bit 32—bit Register
(L/S) (AU) (AU) wus) 32-bit

(L/S)
Figure 3.3: The available registers in one cluster [1].

Program Status Register

The 16-bit program status register records:the operatmtsin each cluster and the
scalar unit. It includes Overflow, Negative, and Carry bits] astructions can only read

the status register, not set it.

Addressing Mode Control Register (AMCR)

The PACDSP provides three types of addressing modes:
e Linear addressing mode,
¢ Bit-reverse addressing mode,
e Modulo addressing mode.

As shown in Fig. 3.4, the addressing mode control registt@R) is a 32-bit read/write
register. This register is used to control the addressindenod relative address registers.
The addressing modes are related to where the operands heeftoind and how the

address calculations are to be made.

27

AMCR |

i . - = - - __
Addressing Mode Control Register & T = = — _ _ _ _
! 32-bit T T T = =— o

. A7 A6 A5 A4 A3 A2 Al A0
Reserved [31:16] | | [15:14] | [13:12] | [11:10] | [9:8] | [7:6] | [5:4) | [3:2] | |

AM[1] | AM[O] | Addressing Mode
0 0 Linear
0 1 Bit-Reverse
1 0 Modulo
1 1 Reserved

Figure 3.4: Illustration of the addressing mode controisteg (AMCR) [1].

3.4.4 Addressing Modes

The addressing modes are related to, where the operands heeftoind and how the

address calculations are to be made.

Linear Addressing Mode

There are three kinds of linear addressing mode, which gistes direct mode, address
register indirect mode, and immediate data mode.

The register direct addressing mode specifies that the ghésan one or more of
the arithmetic unit (AU) registers, load/store unit (L/®pisters, control registers and
program counter (PC) registers. This addressing mode isuals to specify a control
register operand and a PC register operand for specialiatsms.

The address register indirect mode specifies that the ald¥gister is used to point
to a memory location. The term indirect is used because tfisteg contents are not the
operand itself, but the operand address. This addressing specifies that an operand
is in a memory location and specifies the effective addrefisabioperand. There are still

two sub-modes in the address register indirect mode:

e Pre-increment, +(Rs) offset
The operand address is the sum of the contents of the addggster and the offset.

The data stored at the address of the sum of register valuefised will be loaded.

28

e Post-increment, (Rs)+ offset
The operand is in the address register Rs. After the operas@sslis used, it is
incremented by the offset and stored in the same addresseredncrementing the
operand address by the offset places the next availablessldr the register. That
is, the data stored at the location of the address registidseMoaded first, and then

the address is updated with the offset.

The immediate data mode does not use an address registemstihgtions use an

immediate value that is included in the instruction for tlagadvalue or address value.

Bit-Reverse Addressing Mode

Bit-reverse addressing mode is also called reverse-cadgeasing mode. It is useful
for 2%-point FFT addressing. This mode is selected by setting thegponding bits in
AMCR, and address modification is performed in the hardwarerbgggating the carry
from each pair of added bits in‘the reverse direction (froedMEB end toward the LSB
end). It can also use the pre- or post-increment addressiaig m

This address modification is-useful for addressing the svattors in2* point-FFT

addressing as well as to unscramiepoint' FFT data.

Modulo Addressing Mode

Modulo address modification is useful for creating circllaifers for FIFO queues, delay
lines, and sample buffers.

The definition of modulo addressing, using a base regigte) and a modulo register
(M3i), enables the programmer to locate the modulo buffer at ddyeas. The address
pointer,An, is not required to start at the lower address boundary,aend on the upper
address boundary. It can initially point to anywhere (adidno its access width) within
the defined modulo address rangs, < An < Bn + Mi.

Modulo addressing can be selected by configuring correspgitits in AMCR, and
write the desired modulo to modulo registers. The range afutwregistersj)/i, is from

1t02% — 1.

29

Each base address registéin| is associated with an address register (BO with AQ,
and so on). Offset and modifier registers are also assoandtbdhe corresponding ad-

dress registers in the same way.

3.4.5 VLIW Datapath

The VLIW datapath of PACDSP is constructed in two clusterg] aach contains an
arithmetic unit (AU) and a load/store unit (L/S) as shown ig.B.2. Therefore, it can

execute four instructions simultaneously, and is thusdadl four-way VLIW datapath.

Arithmetic Unit (AU)

The arithmetic unit (AU) comprises four 40-bit adders whaatm be reconfigured to two
16-bit adders or four 8-bit adders, two,16-bit multiplieyage shifter and one logical ALU.
All data processing instructions in AU begin at the sameesthgt not finish at the same
time.

There are three types of precision.in DSP — full, integer, faactional. Figure 3.5

shows how it works.

e Full precision: Rd = Rsl.lx Rs2.L.
e Integer: Rd.L = (Rsl.lx Rs2.L)[15:0].

e Fractional: Rd.L = Rsl.lx Rs2.L)[30:15].

Load/Store Unit (L/S)

The load/store unit (L/S) comprises one address genenatibAGU), one logical ALU,
and one shifter. Similar to AU, all instructions in L/S begirthe same stage, but not finish
at the same time.

The L/S unit supports powerful double load/store instautti which can load or store

two operands in one instruction. Figure 3.6 shows how doadevector load/store work.

30

| Rs1.L | >< | Rs2.L |

<~ =

| Rd.H | Rd.L |
Full Precision

| Rsl.L | | Rs2.L
[

>
4 L
= Rd.L |

Integer

_‘ Rs2.L |
<

% Rd.L = %

oL

| Rsl.L

Fractional

Figure 3.5: lllustration of multiplicationsinstructionsitiv different precisions [1].

3.4.6 Data Exchange

As shown in Fig. 3.7, the PACDSP provides a data exchange mischdetween any
two of the scalar unit and the two clusters. Figure 3.8 shdwas it can also provide
data broadcast to facilitate one of them to broadcast its ttathe others even though
the number of clusters may be extended someday. This joleargadished by using the
ports of the memory interface unit (MIU) because MIU has @mtions with all register

files of the scalar unit and the two clusters.

Data Exchange Between Clusters

The PACDSP provides a special instruction (DEX) to accorhplsta exchange between
clusters. For example:

Clusterl instruction: DEX D1, DO

Cluster2 instruction: DEX D1, D2

31

Load/Store Load/Store
Unit Unit

— —

(DO D1) (DO.H DO.L)
D2 D3 D1.H D1.L
D4 D5 D2.H D2.L
D6 D7 D3.H D3.L
Double Vector
Load//Store Load/Store

Figure 3.6: Different load/store instructions [1].

At compile time, this instruction pairwill cause direct &range of the contents of DO
and D2 through MIU and each-cluster will store'them in D1, as\shin Fig. 3.7.

Data Broadcast

Like data exchange between clusters, PACDSP also providpeaas instruction pair
(BDT and BDR) for data broadcast from one cluster to the othenmsekample:

Clusterl instruction: BDT DO

Cluster2 instruction: BDR D3

Scalar instruction: BDR RO

At compile time, this set of instructions will broadcastalftom clusterl to cluster2
and the scalar unit as shown in Fig. 3.8.

On the other hand, if we just want to transmit data from onsteluo another (includ-
ing the scalar unit), it can be considered a special casetaftileadcast. For example:

Clusterl instruction: ADD DO, D1, D2

Cluster2 instruction: BDR D7

Scalar instruction: BDT RO

In this example, the content of RO is transmitted to D7 in euit At the same time,

32

A

A\ 4

Scalar
Unit

Load/Store
Unit

Arithmetic
Unit

A
_ - —
| v

Load/Store
Unit

Arithmetic
Unit

N Clusterl

N Cluster2

Figure 3.7: Data Exchange between Two Clusters [1].

/\m
V A A A

A 4 v

Scalar
Unit

Load/Store
Unit

Arithmetic
Unit

Load/Store
Unit

Arithmetic
Unit

\ Clusterl

\ Cluster2

Figure 3.8: Data broadcast among clusters [1].

clusterl can do other operations without affecting by ttaagmission.

3.4.7 Constant Register File

In many DSP algorithms, such as FIR, IIR, etc., there are masf¥ficent operations
which use fixed data. In order to avoid high frequency of dabaement in the register
file, the PACDSP provides a small size memory, called Constagisie File to maintain
the fixed data. We can also use it to store look up tables wlroclam fixed data for
specific applications. It can reduce the frequency of dateement and thereby reduce
power consumption in such operations.

Data contained in the Constant Register File can be used toeatens including

33

comparison, multiplication, multiplication and accuntida, etc. They are used as the
second source operand in the instructions.

The specifications of Constant Register File (in one clusterpa follows:

e 32 x 32 hits.

e Two read ports and one write port.

As shown in Fig. 3.9, the Constant Register File is initialiteugh the write port by
MIU at the beginning of the program. Not only the L/S but alse AU has a read port
for taking its value as one source operand. There are som&whlen using the Constant

Reqister File:

¢ It can only be modified by particular instructions in L/S.

e Read and write operations may not occur at the same time in L/S.

3.5 Scalar Unit

3.5.1 Overview

The Scalar Unit can perform three types of function, whiah laasic arithmetic oper-
ations, word and halfword-based load/store operationd,raad/write operations per-
formed on the contro/status registers.

Under some running modes, the DSP core may execute a progthoutactivating
the VLIW clusters. In this case, the scalar unit acts likengpde machine, handling some
easy tasks.

Mostly, the scalar unit is in charge of the control-basedkweaile the VLIW clusters
are dealing with data processing. Data can be exchange@é®etilve scalar unit and the
VLIW clusters.

3.5.2 Control Registers

In the PACDSP kernel, there are 15 control registers. Talilsl3ows the names and the

widths of all the control registers in the PACDSP kernel.

34

Memory Interface Unit (MIU)

Private RF

Tt

[
1
1
1
Y Load/Store Unit
<_I_| Customized FU |
1
1
1
1
1
1
—
1
1
1
1
1

ll A A A
Coefficient
Public Ping—Pong RF |
Memory T T
YVvy

Arithmetic Unit

| Customized FU |

HL 1]

Private RF

- Em Em o e o Em O e e Em o e Em Em o o mm P

Figure 3.9: The Constant Register-File of one cluster [1].

Several control registers are memory mapped and can besacdckyg others outside
the PACDSP kernel. Table 3.2 lists the memory mapped comgaters and the mapping
memory addresses.

The control registers can be read or write by the scalaruostms. When writing
the control registers, we can assign a 16-bit immediateeviduhe destination, or set a

general purpose scalar register as the source operand.

3.5.3 General Purpose Scalar Register File

In the scalar unit of the PACDSP kernel, there are sixteeniBg@eberal purpose registers
named RO to R15.

35

Table 3.1: Details of Control Register Files [1]

Type No Name Size(bits) Note

CRO | PREDN 16 Prediction information

CR1 | ENLINT 1 Interrupt enable flag

CR2 | MSK_EX 16 Mask inside exception

CR3 | SWILEX 16 Software exception

Control | CR4 | CFO 32 Custom function register 0

CR5 | CF1 32 Custom function register 1

CR6 | CF2 32 Custom function register 2

CR7 | CF3 32 Custom function register 3

CR8 | SD.MIXIFNO | 32 Mix information O's shadow register

CR9 | SD_Rbcl 32 Loopboundary counter's shadow
registerl

CR10| SD.Rbc2 32 Leopboundary counter’'s shadow
register2

Interrupt| CR11| SD.BCTG 32 Branch target shadow register

CR12| SD.CPC 32 CPC's shadow register
(ISR return address)

CR13| SD.PREDN | 16 Prediction’s shadow register

CR14| SD.RO 32 RO’s shadow register

CR15 Reserved

3.6 Conditional Execution Control

Unlike general purpose processors, the major mission ofR ®% provide more com-
puting power for calculations. To reduce control overhéhd PACDSP supports condi-
tional execution of instructions. Programmers can setipagels by Compare-and-Set in-
structions and then the instructions afterward can refédrdredicates to decide whether
to execute or not. When the program calls a function, we cae g& predicates and
restore them after returning from the function call.

The Compare-and-Set instructions, such as SLT, SGT, etopae source operands

36

Table 3.2: Memory-Mapped Control Registers [1]

No Name Size Note Offset | R/IW
00 | ExceptionCause| 32 | Indicate inside exception causedx50020 | R
01 | Busy 1 DSP is busy 0x5000C| R
02 | Start 1 Start signal 0x50008 | R/W
03 | StartPC 32 | Starting address 0x50000 | R/W
04 | MODE 4 DSP running mode 0x50040

05 | VERSN 4 DSP version 0x50044

and save the results to the predicate registers, and theacmoip results can be saved to

the general purpose registers at the same time. The PACDSRIgsdL6 predicate bits

(PO—P15), and a Compare-and-Set instruction updates Zptediits at the same time.
However, PO is always set to 1y'and each predicate bit cantlby ealy one instruc-

tion at the same time.

3.7 ISA and Pipeline Stages

As said, the PACDSP architecture consists of the programesegucontrol unit, the
scalar unit, and the VLIW datapath. Each of the three hagspanding function units.
Therefore, the instruction set of PACDSP is classified adngrtb the functional unit
in which the instruction is executed. Figure 3.10 depictsitistruction set architecture
(ISA) of the PACDSP.

Figure 3.11 shows the pipeline stages of the PACDSP. The gmmogequence control
can be divided into three stages, which are IF, IDP, and I[2. §dalar unit operation and
the VLIW datapath are both divided into five stages, whichR@e EX1, EX2, EX3, and
WB. The job of each pipeline stage is as described in Table 3.3.

37

PACDSP ISA

Program
Sequence Scalar VLIW

—

Program cr Load/ Ay Load/ Ay
Control Store Store

Figure 3.10: PACDSP instruction set architecture [1].

Program Sequence

Control Unit VLIW Datapath

IF IDP ID RO EX1 EX2 EX3 WB
—— —
Scalar Unit

Figure 3.11: Pipeline stages of the PACDSP [1].

3.8 DSP Running Modes

The PACDSP can work under various running modes. Each moddifferent hardware
utilization. There are 7 different running modes. The cgponding hardware resource
and a simple description of each running mode is given inefaut.

It is noted that not all running modes can be chosen to beesht®r the instructions.
We can only change the three sub-modes of the the user modhe iystructions. The

transitions between running modes are shown in Fig. 3.12.

38

Table 3.3: Pipeline Stages and Their Descriptions

Stage Description

IF Instruction Fetch

IDP | Instruction Dispatch

ID Instruction Decode

RO Read Operand

EX1 | Execution One

EX2 | Execution Two

EX3 | Execution Three

WB Write Back

3.9 Instruction Packet

The PACDSP can issue up to 5.dnstructions-in one cycle. Insbngissued in the same
cycle are packeted into an instruction packet. The-five sibtse instruction packet and
the types of instruction that can be contained in each stlisted in Table 3.5.

The whole instruction packetis bounded by brackets, artd glithin packet are sep-
arated by new-line characters. Figure'3.:13 shows the syftaxcomplete instruction
packet. However, an instruction packet is allowed to betamiin a single line, and be
separated by a pipe charactét. “The simplified syntax is shown in Fig. 3.14. It is noted
that a NOP instruction should be placed in the slot whereetieno instruction to be

executed.

3.10 Development Tools and Implementation Considera-

tions

3.10.1 Development Tools

We have a C-compiler ported from the well-known Open-Rese@ahnpiler (ORC) on

linux systems, and we can give parameters to optimize tHenpesince of compiler. How-

39

Table 3.4: Running Modes of the PACDSP [1]

Running Modes Description Resources
Idle Mode | Idle after reset Execution control
or trap and interrupt interface

Process program

High Performance which needs all resourcesAll available

Process program
User Mode| Medium Performance which does not need All except Cluster 2

all resources

High power saving Process FIQ ISR All except Cluster 1

or scalar program and Cluster 2

Wait for Customized CFU, interrupt,

Wait Mode | -Function Unit debug interface, and
result exception handling unit
Froze DSP since Debug and interrupt interface,

Frozen Mode|.exceptions happened exception handling unit

Debug interface,

Debug Mode| Debugging register files

ever, we can choose only one optimization level to the casttus. In addition, base
utilities are ported from the GNU binutils, and there aresadsler, linker, and other object
handling tools. The debugger is ported from the GNU GDB, and@&an abbreviation
of GNU project debugger. The debugger can be connected tothetinstruction set
simulator (ISS) and embedded ICE. These tool chains are ajgelby Programming
Language Laboratory of National Tsing Hua University intit$iu, Taiwan, R. O. C..
The ISS is developed by SoC Technology Center (STC) of Indlistechnology
Research Institute of Taiwan, R. O. C.. The input file of the sataulis split through a
parsing tool, “as2tic”, which parses the assembly codetimtaparts, data and instruction.
We can configure the ISS to decide which kinds of informati@want to print out to

files. All the registers can be shown in each cycle, but thet@bie memory range is 8

40

Resel received >
Reset received . |d|e MOdE
Jd- E (:';? Changed by
EE- 2z SET_MODE | High Performance
i E ; i " Mode
i_'_:‘ =
Excaption eccured Medium
Frozen Mode Interrupt received User Mode » >
Performance Mode
2 |8 sl 3 5 |Z
s ; H?; i E = High Power
z |£ ¢ 2 2 z Savings Modes
= |z Wait Mode R
e
HE
i3
’| DebugMode [

Figure 3.12: Transitions between DSP running modes [1].

Table 3.5: Instruction Type in Each Instruction Slot

Instruction Slot

Instruction Types

1 (Scalar Unit)

Program Sequence Control Instructions

2 (Clusterl)

VLIW Load/Store Instructions

3 (Clusterl)

VLIW Arithmetic Instructions

4 (Cluster2)

VLIW Load/Store Instructions

5 (Cluster2)

VLIW Arithmetic Instructions

41

Insn_1 ——— [Scalar Unit

Insn 2 ———» | Cluster 1: Load/Store Unit

Insn 3 e | Cluster 1: Arithmetic Unit

Insn_4 ___—p | Cluster 2: Load/Store Unit
- Ly~ | Cluster 2: Arithmetic Unit

H(1,1)——» | Ping-Pong Flag |

Insn 2
Insn 3 ’ Instruction Packet

Figure 3.13: Syntax of instruction packet [1].

inst1 | inst2 | inst3 | inst4 | instS

Figure 3.14: Simplified syntax of instruction packet [1].

Kbytes. It is noted that the ISS can be used.on linux operatpstems only.

3.10.2 Implementation Considerations

Since the goal of our implementation is achieve a real-tinltE3-4 video decoder on
PACDSP, the execution time is the most important issue thatareabout. Although the
compiler provides us facility for implementation, its parhance is not better than well-
scheduled hand code. Moreover, the development of comgpifest completed when we
begin our implementation, so our implementation focusesssembly code programming

and its optimizations.

42

Chapter 4

Complexity Analysis and
Implementation Strategy of MPEG-4

Framed-Based Video Decoder

To begin the DSP implementation work; we first analyze the maational complexity
of the MPEG-4 video codec software. Since the PAC platforthitassociated software
tools are still in their early stage of development, it is raqgdical to carry out the com-
putational complexity analysis directly on PAC. As a reswit, carry out the analysis on
standard personal computers (PCs) and employ Intel's “V'Rerormance Analyzer” in
this work. The resulting numbers may not carry over direttlihe PAC platform, but can
give guidance to the second level of analysis and subsegodet programming on the
PAC platform. The analysis focuses on some important sabklas shown in Fig. 4.1.
After the complexity analysis, we discuss the implemeatatf bitstream accesses.
In addition, different variable length decoding (VLD) metis on PACDSP and efficient
interpolation technique are also discussed in this chapte execution time and corre-

sponding code size of each sub-block are also listed in Hapter.

43

\

Previous
Reconstructed
VOP
D
Coded ; :
ren Bit Strearp MotioON Motion R
u | (motion| Decoding .| Compensation .
I
F > VOP
| Reconstruction
b T T E e E e E s e .
| Coded . _
e Bitstream* | VLD | Inverse .
X |(Texture) ! Scan ' I_E 5
B 1 A
e 1 :
ro Inverse inverse _ .
: AC/D_C_ +—>| Quantization — :
' L,|©] [Prediction :
' o
1

TexturéiDecodind

Figure 4.1: Block diagram of MPEG-4 frame-based video decfitje

4.1 Profiles of The MPEG-4 Frame-Based Video Decoder

4.1.1 Approach to Complexity Analysis

Our approach to codec complexity analysis consists of twelse which may be viewed
as employing a divide-and-conquer strategy.

The first level is an operational analysis of the time the caatgtware spends in cod-
ing of practical video sequences. Two major usages of thatyais are the identification
the time-critical codec functions and the acquisition ahsosenses concerning the rel-
ative complexity of different codec functions in actual deer operation. As a result,
the complexities of various decoder components, such asdtien compensator and the
VLD, are statistically variable and not a set of fixed numbers

To capture the complexity variation over different videotemnel, we consider several
common test video sequences of different amount of motiatlitkely represent the type

of material the PAC platform will largely address in its videoding applications for some

44

years. They are the QCIF (1¥844) “grandmother” sequence and “stefan” sequence.
The second level of analysis is low-level computationallysia of the time-critical
codec functions. We calculate the amount of computatiodiiaths, multiplications,
memory accesses, etc.). This prepares us for implementesg tfunctions on the PAC
platform. One way to carry out such analysis is to examinebtbek diagrams of the
video codec and estimate the number of computations frormtiteematical equations
that define each block’s function. But this way of analysis roegrlook some overhead
needed in a practical software implementation such as asldmmputations. We thus also
employ the MoMuSys software in this level of analysis [6]darstanding that the results
do not necessarily carry directly over to the PAC platformt jpprovide some reference

data.

4.1.2 Profile on PC Using Intel'VTune Performance Analyzer

The computational environment is a laptop with-a 1.7 GHz isentM CPU and 768
MB of DDR RAM, running Windows-XP. The profiling results, indle 4.1, is obtained
from encoding and decoding 2frames employing H.263 quainbiz with a fixed quan-
tization step size (QP), 4. It is noted that the quantizasi@p size affects the length of
bitstream, so larger QP results in smaller bitstream side@thuce the required encoding
and decoding time.

In Table 4.1, it is noted that the data are calculated for tes. However, some
functions, such as “DecodeMBMVs” and “Motion Compensati@ng called for inter (P)
frames only, and “DCACPrediction” is just for intra (I) frameBherefore, the execution
time of functions which are used for both | and P frames shbaldivided by two, when
we want to compare the computational complexity of the MRE@ecoder.

Nevertheless, we can still find in Table 4.1 that IDCT is a venpartant part in the
decoding procedure, and the reason why IDCT consumes so imelistthat the IDCT
in the reference code is implemented in floating-point.

Moreover, the “bitstream access” includes accesses ofdilegdieader and motion
vectors, but most of the execution time is consumed in degpali block coefficients.

Although the test sequences are all in QCIF format, the ei@ttitne of each sub-

45

Table 4.1: Profile of Frame-Based MPEG-4 Decoding of QCIF on PC

stefanqcif grandmotheqcif

Function Name Clockticks % Clockticks %
BitstreamAccess 1,695 1.35 1,865 1.91
DecodeVOLHeader 296 0.24 294 0.30
DecodeVOPHeader 26 0.02 23 0.02
DecodeMBHeader 495 0.40 264 0.27
DecodeMBMVs 1,544 1.23 69 0.07
DCACPrediction 2,584 2.06 2,621 2.69
BlockDequantH263 1,870 1.49 946 0.97
BlockIDCT 28,340, 22.63 7,927 8.14
Blocklinterpolation 1,170 0:93 1,165 1.20
Motion Compensation 8,066 6.44 7,203 7.40
Fill _vOP 424 0.34 413 0.42
Others 79,904 " 63.80 75,723 77.79
Total 125,244 100.00 97,348 100.00

block varies with the characteristics. For example, theldobk, “DecodeMBMVs,”
requires 1,544 clockticks for “stefan,” but only 69 clodkis executed for “grandmother.”
The reason for such a result is that the amount of motion sileshe “grandmother”

sequence, so the “skipped mode”, which has no motion veaiocsirs more frequently.

4.1.3 Low-Level Computational Analysis

In the following analysis, the designation “data” in frorittodash indicates that the oper-
ation is associated with data values (memory contents)re@sethe designation “mem”

indicates that the operation is associated with memoryessés. The reason for distin-

46

guishing “data” and “mem” operations is that many processm@at these two types of
operation differently.
Motion Compensation

In the MPEG-4 simple-profile, there are four steps to coneple¢é motion compensation

for luminance blocks, and they are as follows:

1. The reference frame is padded with 16 pixels around thdexframe.
2. The padded frame is interpolated by two.

3. According to the corresponding motion vectors, we can firedreference block

data.

4. Add the decoded residual data with thereference data.

We can easily find that there,is much cemputation power copduior the data ac-
cesses in memory. That is, the memory load/store and adceiesgations occupy most
of the computational complexity“for motion compensationTable 4.2, we estimate the
necessary computations for completing the compensationeframe.

According to Table 4.2, the storage requirement for lumagamotion compensation

is approximately as follows:

e 25,344 bytes for the previously decoded frame,

36,608 bytes for the padded frame,

146,432 bytes for the interpolated frame,

25,344 bytes for the reference frame data according to MVs,

25,344 bytes for the residual frame data.

The total memory space required is 253 KBytes, regardlesspineemory-share

skill. It is noted that we consider the forward predicted ®R/only. The computational

47

Table 4.2: Complexity of Luminance Motion Compensation in Q@@F Frame

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 181,508 0 25,344

data-shift 0 109,057 0 0

data-load 25,344 36,608 25,344 25,344

data-store 36,608 146,432 25,344 25,344

mem-add 36,608 146,432 26,136 25,344

mem-mult 0 0 396 0
Memory Req.

(bytes) 61,952 _.11146,482 25,344 25,344

Total Storage Requirement: 253 KBytes

complexity and storage requirement of chrominance motmmpensation are listed in
Table 4.3. It is noted that the approximate complexity idyaead under the 4:2:0 format.
Since the memory requirement and the amount of computatioaddresses are very
big, straightforward pointing of the C code for motion comgation to PACDSP will be
inefficient with too many memory accesses. Therefore, wellshiurther analyze the

characteristics of motion compensation, and we leave gmudsion to the next section.

Texture Decoding After VLD

The texture decoding steps after VLD involve inverse scaverse AC/DC prediction,
inverse quantization (or dequantization), and IDCT. Amdmegse, the inverse scan in-
volves some memory manipulation. The inverse AC/DC praglicinvolves relatively
small amount of computation (in the VTune analysis resuld)e concentrate on the
dequantization and the IDCT below.

The MoMuSys code for dequantization and IDCT are relativeyightforward com-

48

Table 4.3: Complexity of Chrominance Motion Compensation ie QCIF Frame

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 89,992 0 12,672

data-shift 0 54,530 0 0

data-load 12,672 18,304 12,672 12,672

data-store 18,304 73,216 12,672 12,672

mem-add 18,304 73,216 13,068 12,672

mem-mult 0 0 198 0
Memory Req.

(bytes) 30,976 73,216 12,672 12,672

Total Storage Requirement: 126.5 KBytes

pared to some other sections (such as motion.compensatiosiead of carrying out
a complexity analysis based on the algorithm as in the caseotibn compensation, we
analyze the MoMuSys code itself. The result, for oneé®lock, is as shown in Table 4.4.
We now consider the storage requirement. The dequantizatay need to store an
8x8 quantization matrix in addition to the data to be dequaudtizrlhe MoMuSys IDCT
(and DCT) code is based on the conventional row-column coatipat algorithm. It
only requires several words to store the DCT coefficients awdral words to store the
intermediate transform results, in addition to that regghifor the input and output data,

where the input and output data can be colocated if desired.

4.2 Implementation Strategies on PACDSP

After the profiling on PC, we know that the bitstream decodm@ wery important and

time-consuming part in MPEG-4 video decoder. Especidtlg, memory accesses and

49

Table 4.4: Complexity of Dequantization and IDCT for One&Block in MoMuSys
Code

Operation DeQuant IDCT

data-comparison 320 0
data-add 192 544
data-mult 64 256
data-shift 128 0
data-load 256 576
data-floor 0 64
mem-add 0 64
mem-mult 0 64

load/store operations, are very-critical issues in'DSP emgintation. Besides, motion
compensation (MC) is also a most complex part in decoding tefHencoded frames.
Therefore, we do some analyses on both PC and PACDSP to fired betthods for VLD
and motion compensation. Discussions of dequantizationGT are left to the next

chapter.

4.2.1 Efficient Variable Length Decoding (VLD)

A big issue concerning software implementation on a VLIWgassor is that if there is
any stall or program sequence branch, the entire proceasdolstall or branch [7]. That
is, we should try to synchronize the program sequence indositer to avoid inefficiency
or incorrect programming. Otherwise, the computation ia oluster will be terminated
by the change of program sequence caused by the other clBssedes, the register files
are not shared between the two clusters, so we cannot abedsisstream in two clusters

simultaneously. Therefore, we will compare the perforneaoicdifferent VLD methods

50

on PACDSP. The methods are proposed in [8] and [9]. We use th@esiVLC table in

Table 4.5 for the following comparison.

Bit by Bit Matching

If the size of variable length code table is not very big, we si@nply check the bitstream
bit by bit, and compare if any one symbol in the table is madchene advantage of this
method is its simplicity, but the number of memory accessexctuire the bits and the
number of comparison instructions are many. Thereforeatlegage execution time to
decode a symbol will be long. The example assembly progralpit bfy bit matching on
the PACDSP is shown in Fig. 4.2

One Table Mapping with Magnitude-Offset

We mentioned that the performance of a VLIW processor woagtade if there are many
program sequence branches. ‘In this technique, we buildl@ ¢abtaining all possible
code words. Each entry in the'table hastwo elements, whetharcorresponding VLC
symbol and its code length. Thus;because the maximum codéhlés 11 bits in this
example, there would be!! items‘in"the-new table, We fetch the first 11 bits in the
bitstream. Then, the magnitude of the 11 bits gives the pffgeich is used to fetch the
corresponding item in the table. Note that we only have tes&the bitstream once per
symbol. The example assembly program of one-table mappithgmagnitude-offset on
the PACDSP is shown in Fig. 4.3

Multiple-Pass Matching

To reduce the frequency of accessing the bitstream, we mvagedihe VLC table into
several subtables. The number of subtables is the numbé&stElm accessing in worst
case. Since the symbol with shorter code appears more fidguge may appropriately
enlarge the first subtable to further reduce bitstream aese$-or example, we divide the
test table into three subtables. The first half with symbe#s &re grouped into the same
table. Then, the second half is also divided into two parth wymbols 7-9 and 10-12,

respectively. Therefore, we read the first five bits in thetletam, and check if any code

51

Table 4.5: Variable Length Codes for didt size luminance [2]

Variable length code datc sizeluminance

011 0
11 1
10 2
010 3
001 4
0001 5
0000 1 6
0000 01 7
0000 001 8
0000 000% 9
0000 0000 1 10
0000 000001 11
0000 0000 001 12

in the first subtable match the bits. If there is not a matchyeael the next three bits
and check the second subtable, and continue until the syimlbelcoded. The example

assembly program of multiple-pass matching on the PACDSRkow1s in Fig. 4.4

Bounded Multiple-Pass Lookup with Magnitude-offset

The methods proposed previously have different advantageslisadvantages in speed
and memory usage. We may take a compromise between exetiati®rand memory
requirement. Similar to the “multiple-pass matching” noathwe still divide the test table
into several subtables. However, the purpose of “multgales matching” is to reduce the
number of bitstream accessing, but the division in this neglre is to reduce the huge

table size in the “one table mapping with magnitude-offse€thod. The required table

52

-)

Bit-by-Bit Matching

{ NOP |MOVI.LD2,2 |[NOP |NOP | NOP } {NOP |MOVI.LD2,3 | NOP | NOP | NOP }
;getdc_size {NOP |MOVI.HD2,0 | NOP |[NOP |NOP }

{ NOP |MOVI.HD2,0 |[NOP | NOP | NOP } {J Show_Bitstream,R1 | NOP | NOP | NOP |NQP
;no need to store dc_size {NOP |NOP |NOP |NOP | NOP }

{ J Show_Bitstream,R1 | NOP |NOP | NOP | NGP {NOP |NOP |NOP |[NOP | NOP }

{ NOP |NOP |NOP |NOP |NOP } {NOP |NOP |[NOP |NOP | NOP }

{ NOP [NOP |NOP |NOP |[NOP } {NOP |SEQ D7,C1,p4,p5 |[NOP |NOP |NOP }
{ NOP |[NOP |[NOP |NOP |NOP } {NOP |[NOP |NOP |NOP | NOP }

{ NOP |SEQD7,C2,p4,p5 | NOP | NOP |NOP } {NOP |[NOP |[NOP |[NOP |NOP }

{ NOP |NOP |NOP |NOP |NOP } {NOP |NOP |NOP |NOP | NOP }

{ NOP |NOP |NOP |NOP |NOP } {(p4)BEnd |[NOP |NOP |NOP | NOP }

{ NOP |[NOP |[NOP |[NOP |[NOP }; symbol2 {NOP |(p4)MOVI.L D5,4 |NOP |NOP |NOP }
{ (p4)BEnd |[NOP |NOP |NOP |NOP } {NOP |(p4)MOVI.HD5,0 |NOP | NOP | NOP };
{ NOP | (p4)MOVIL D5,2 |[NOP |[NOP |NOP } {NOP |NOP |NOP |NOP | NOP };symbol4

{ NOP | (p4)MOVLH D50 |[NOP |[NOP |NOP } {NOP |NOP |NOP |NOP |NOP }

{ NOP [NOP |NOP |NOP |[NOP } {NOP |SEQ D7,C2,p4,p5 |[NOP |NOP |NOP }
{ NOP |NOP |NOP |NOP |NOP } {NOP |NOP |NOP |NOP | NOP }

{ NOP |SEQD7,C3,p4,p5 | NOP | NOP |NOP } {NOP |NOP |NOP |NOP | NOP }

{ NOP |[NOP |NOP |NOP |NOP } {NOP |NOP |NOP |NOP | NOP }

{ NOP |NOP |NOP |NOP |NOP } {(p4)BEnd |[NOP |NOP |NOP | NOP }

{ NOP |NOP |NOP |NOP |NOP } {NOP |(p4)MOVI.L D53 |NOP |NOP |NOP }
{ (p4)BEnd |[NOP |NOP |NOP |NOP } {NOP | (p4)MOVI.HD5,0 |[NOP | NOP | NOP }
{ NOP | (p4)MOVIL D5,1 |[NOP |[NOP |NOP } {NOP |NOP |[NOP |NOP | NOP };symbol3

{ NOP | (p4)MOVLH D50 |NOP |[NOP |NOP } {NOP |NOP |NOP |[NOP | NOP }

\{NOP [NOP |NOP |NOP |NOP }; symbo1 {NOP |SEQ D7,C3,p4,p5 |[NOP |NOP |NOP }

; symbol 0
~— /

Figure 4.2: Example of bit by bit:matching on PACDSP.

size in this technique is shown in Eq. 4.1. We only-need tossctiee bitstream once per

symbol, and the magnitude of code.word. is used to check whlale to be searched in.

Table size = Zf\io 2¢ (4.1)

SN ci=1L whereL is the max code word length.

For example, the VLC table of the example is still partitidneto 3 parts. In this
method, the number of entries in each search table are 32d83,arespectively. The
first five bits are used to be the offset in the first table, ardfttiowing and last three
bits are used in the second and third table, respectivelg sBarch in each subtable is
the same as “one table mapping with magnitude-offset” nmetho conclusion, the total
table size is 48 bytes, which is much smaller than that in tieetable mapping method.
The example assembly program of bounded multiple-passifpukth magnitude-offset

on the PACDSP is shown in Fig. 4.5

Comparison of Different VLD Methods

Using the methods introduced above, we decode a bitstreasist® of all possible sym-

bols on PACDSP. The results are shown in Fig. 4.6 and TableWesfind that the best

53

~

/One Table Mapping with Magnitud® ffset

{NOP |MOVI.LD2,11 |NOP |NOP |NOP }; gdt_size
{NOP |MOVI.HD2,0 | NOP |[NOP |NOP };noe@étostore dc_size
{J Show_Bitstream,R1 | NOP | NOP | NOP |NQP
{NOP |NOP |NOP |NOP | NOP };getcode wor
{NOP |NOP |NOP |NOP | NOP };once access pymbol
{NOP |NOP |[NOP |NOP | NOP }

{NOP |MOVI.LA2,DC_Tabhle |NOP |NOP |NOP }
{NOP |MOVI.HA2,DC_Table |[NOP |NOP | NOP }
{NOP |MOVI.L A3,DC_Size |NOP |NOP |NOP }
{NOP |MOVI.HA3,DC_Size | NOP | NOP | NOP }
{NOP |ADD A2,A2,D7 |[NOP |[NOP |NOP }

{NOP |LBUD5,A2,0 | NOP |NOP |NOP }

{NOP |NOP |NOP |NOP | NOP }

{NOP |NOP |NOP |NOP | NOP }

QIOP | SW D5,A3,0 | NOP |NOP |NOP } /

Figure 4.3: Example of one table mapping with magnitudseifon PACDSP.

performance occurs when the “bit-by-bit matching” methedpplied with the shortest
code word. However, there is significant degradation wherctirresponding code pat-
tern becomes longer. Therefore, because of the charaicterisntropy coding which
uses shorter codes to represent more frquently appeannigady, the “bit-by-bit match-
ing” method can be used when most.symbols may be encodedivattes code words.

The performance of “multiple-pass matching” method hasnalai characteristic,
which is also affected by the length of code pattern. Comptodbe first method, we
need to fetch the bitstream only three times in the worst,cas@/e need 367 rather than
732 cycles for the longest code word.

In the third method, “one table mapping with magnitude-@tfiswe only access the
bitstream once, so the execution time of decoding a symliebisame for all cases in this
example. Nevertheless, the primary drawback of this meihtte memory requirement
of the lookup table because of the exponentially increatsibte size. Thus, this method
is appropriate only when the lookup table is not large.

Finally, since the methods discussed above have differanizhcks, the fourth method
provides a tradeoff between table size and execution tinees&® that the execution time
is very close to that of the third method, and the table siz8igtems rather than!!.

In conclusion, the “bounded multiple pass lookups with nitagie-offset”, is very effi-

54

MItiple-Pass Matching \

NOP |MOVI.L D5,0x2 |[NOP |NOP |NOP }
NOP |SRLID6,D7,3 |NOP |NOP | NOP }

NOP | SEQ D6,D5,p10,p11 | NOP | NOP | NOP }
NOP |[NOP |NOP |[NOP | NOP }

NOP |NOP |NOP |NOP | NOP }

(p10)B Flush_Update,R1 | NOP | NOP |NOP |R®
NOP |(p10)MOVI.L D2,3 [NOP |NOP |NOP }
NOP | (p10)MOVI.HD2,0 |[NOP |NOP |NOP }
NOP |(pl0)SW D5,A3,0 |[NOP |NOP | NOP }
(p10)B End | NOP |NOP |NOP |NOP }

{NOP |MOVI.LD2,5 |NOP |NOP | NOP }
;getdc_size

{ NOP |MOVI.HD2,0 | NOP | NOP | NOP }

;no need to store dc_size

{ J Show_Bitstream,R1 |NOP |NOP | NOP | NQP
{ NOP |NOP |[NOP |NOP |NOP }

{ NOP |NOP |[NOP |NOP |NOP }

{ NOP |NOP |[NOP |NOP |NOP }

{ NOP |SEQ D7,C0,p4,p5 | NOP | NOP |NOP }
{ NOP |MOVI.L A3,DC_Size |NOP |NOP |NOP }
{ NOP |MOVI.H A3,DC_Size |NOP |NOP |NOP }
{ NOP |NOP |[NOP |NOP |NOP
{ (p4)B Check_Tab_1 |NOP | NOP
{ NOP |NOP |[NOP |NOP |NOP
{ NOP |NOP |[NOP |NOP |NOP
{ NOP |NOP |[NOP |NOP |NOP
{ NOP |MOVI.LD5,0x3 | NOP | NOP | NOP }

{ NOP |SRLID6,D7,3 |[NOP |[NOP |NOP }

{ NOP |SEQ D6,D5,p10,p11 |NOP |NOP |NOP }
{ NOP |NOP |[NOP |NOP |NOP }

{ NOP |NOP |[NOP |NOP |NOP }

{ (p10)B Flush_Update,R1 |NOP |NOP | NOP |NQ
{ NOP | (p10)MOVI.LD2,2 | NOP | NOP | NOP }
{ NOP | (p10)MOVI.H D2,0 | NOP |NOP |NOP }
{ NOP | (p10)SW D5,A3,0 NOP |NOP |[NOP }

{ (p10)BEnd | NOP | NOP |[NOP |NOP }

{ NOP |NOP |[NOP |NOP |NOP };syboll

{ NOP |NOP |[NOP |NOP |NOP }

{ NOP |NOP |[NOP |NOP |NOP }

OP |NOP [NOP |NOP | NOP }
OP [NOP [NOP |NOP | NOP }
OP |NOP |[NOP |NOP | NOP }
OP |MOVI.L D50x2 |[NOP |NOP |NOP }

N
N

NOP | NOP } {N

N

NOP |MOVI.HD5,0 | NOP |[NOP |NOP }

N

N

N

N

(

OP |SRLID6,D7,2 |[NOP |NOP | NOP }

OP |SEQ D6,D5,p10,p11 | NOP | NOP | NOP }
OP |NOP |NOP |[NOP | NOP }

OP |[NOP |NOP |[NOP | NOP }

pl0)B Flush_Update,R1 | NOP | NOP |[NOP |RQ
NOP |(p10)MOVI.L D2,2 |[NOP |NOP |NOP }
NOP | (p10)MOVI.HD2,0 |[NOP |NOP |NOP }
NOP |(p10)SW D5,A3,0 |[NOP |NOP | NOP }
(p10)B End | NOP |NOP |NOP |NOP }

NOP |NOP |NOP |[NOP | NOP };symbol0
NOP |NOP |NOP |[NOP | NOP }

NOP |[NOP |NOP |NOP | NOP }

!

Figure 4.4: Example of multiple-pass-matching on PACDSP.

cient, but the simple "bit-by-bit matehing” method is atitige if we can reduce the cycles

required for bitstream accesses.

4.2.2 Efficient Motion Compensation

In the MoMuSys reference software, the motion compensaidone after all the resid-
ual data are decoded. Moreover, the reference frame ipoiteed before the start of
motion compensation. However, the internal memory of PAC3S# KB only, so the
interpolated frame is too large to be stored in the interrexhory. Therefore, we propose
a block-based interpolation and compensation method.

In compensation of the coefficient block by block, noticet ti@ horizontal and the
vertical block motion vectors may be both integers. Thaintgrpolation may not nec-
essary. We analyze the motion vectors of luminance blocdkguke MPEG-4 reference
software. We count the amount of motion vectors, which aetional in both horizon-

tal and vertical directions, and the results are listed ibld&.7. In Table 4.7, “Both”

55

@unded Multiple Pass Lookup with
MagnitudeOffset

{ NOP | MOVI.LD2,11 |[NOP |NOP |NOP }; gdt_size

{ NOP | MOVI.HD2,0 |NOP | NOP | NOP }; no@eto store dc_size
{ J Show _Bitstream,R1 |NOP |NOP | NOP | NGP

{ NOP | NOP |NOP |NOP |NOP }; getcode wor

{ NOP | NOP |NOP |NOP |NOP }; once acce®s pym bol

{ NOP | NOP |NOP |NOP |NOP }

{ NOP | MOVI.L A2,DC_Table | NOP |[NOP |NOP }

{ NOP | MOVI.H A2,DC_Table |NOP |NOP |NOP }

{ NOP | MOVI.L A3,DC_Size |NOP |NOP |NOP }

{ NOP | MOVI.H A3,DC_Size |[NOP |NOP | NOP }

{ NOP | SGTI D7,63,p4,p5 | NOP | NOP |NOP }

{ NOP | SGTID7,8,p6,p7 |[NOP |NOP |NOP }

{ NOP | NOP |NOP |NOP |NOP }

{ (p4)B Check_Tab |NOP |NOP |NOP | NOP }

{ NOP | NOP |[NOP |NOP |NOP
{ NOP | NOP |NOP |NOP |NOP
{ NOP | NOP |[NOP |NOP |NOP
{ (p6 NOP |NOP }
{
{
{

=)
o
O
=
@D
o
=~
|

—
<3}
IU
[
=
©]
o
=
(@]
=)

e S e

NO
NOP | NOP |NOP |NOP | NOP
NOP | NOP |NOP |NOP||NOP

%c k Tab_2: ‘ /

Figure 4.5: Example of bounded multiple-pass lookup witlyniaude-offset on PACDSP.

means that both the horizontal and the vertical motion wveaee fractional. “Hor.” and
“Ver.” mean that the motion vector is fractional only in hawntal and vertical direction,
respectively.

According to the analysis in Table 4.7, we can also undedstaore about the details
of different sequences, such as the directions of motiorrelleer, we know that the more
than 50% of interpolation can be avoided in four of the six$eguences. Thus, if we can
check the characteristic of the motion vectors in both lamoe and chrominance motion

compensation, much computation can be saved.

4.2.3 Profile on PACDSP of All Decoder Functions

Since the simulator of PACDSP is not equipped with the fumctb profiling, we will

estimate the worst case execution cycles of each block andaitiesponding code size,

56

700 —
6 88 // —+— Bit-by-Bit Matching

/ /(_—.’__{ —a— Multiple-Pass Matching
300 // /~,,/ —a— e Table Mapping with
2 0 0 hlag, Offset

- & = - . 4 —— Multiple-Pass Laaky
100 /= with Moz Ofset
0
DA S S SN S
PO S 359@@@ @@@g@ﬁ@a§
& @@
Code Pattem o

Figure 4.6: Comparison ofidifferent VLD methods on PACDSP

which will be evaluated by lines of assembly code. As mertbim the previous chapter,
PACDSP is a VLIW processor; and it can issue 5 instructionsanalgel bounded in one
instruction packet. That is, we can 'simply‘count the numbéneinstruction packets to
estimate the execution time. The estimated profile is showrable 4.8. Note that we
also list the category of each sub-function in Fig. 4.1.

The functionality of some important subblocks is as followBitstreamShowBits”
is used to access the bitstream stored in the correspondiifey,band we can get the
value of nextn bit in the bitstream. “FlushUpdate” will flush the most sificantm bit
in the bitstream, where: andn should be given before entering these two functions,
respectively. Therefore, the bitstream decoding, incigdieaders and coefficients, can
be completed with corresponding andn. In addition, the headers of VOL, VOP, and
MB are also decoded from bitstream with the aid of these twations.

The purpose of “DecodeMBMVSs” is to get the motion vectors of @croblock. To
get a correct motion vector, we need to get “ohiference” with variable length decoding
and “pmv”, which is predicted from the previously decodedtiotovectors. It is noted
that both the difference and the prediction are composeatdntal and vertical parts,

and this function will be called only in inter-encoded fraane

57

Table 4.6: Execution Time of Different VLD Methods on PACDSP
One Table BoundeMultiple-

Code Pattern Bit-by-Bit Multiple-Pass Mapping with Pass Lookup with
Matching Matching Magnitude-Offset Magnitude-Offset

10 94 139 128 128
11 103 148 128 128
001 171 157 128 128
010 180 166 128 128
011 189 175 128 128
0001 258 184 128 128
0000 1 326 193 128 128
0000 01 394 243 128 149
0000 001 462 252 128 149
0000 0001 539 261 128 149
0000 0000 1 598 349 128 158
0000 0000 01 666 358 128 158
0000 0000 001 732 367 128 158

As to “DCACPrediction,” it is involved only when the corresgbng frame is en-
coded in “intra” mode. In this function, DC and AC predict®af an8 x 8 block are
completed with the rules in MPEG-4 standard [2]. In additibvere are three types of in-
verse zigzag scanning in intra encoded frames, and thesegeanning is also completed
in “DCACPrediction” in contrast to the function “Unzigzag’rfimter encoded frames.

There are two types of quatization in the MPEG-4 standare i©H.263 quantization
and the other is MPEG-2 quantization. Our implementatidodsised on simple profile,
which supports H.263 quantization only.

The8 x 8 two dimensional inverse discrete cosine transform (2-D IPfollows the

58

Table 4.7: Analysis of Necessary Interpolation Using MoMsIS

Bitstream Total MV Fractional MV

(QCIF) Number Total % Both % Hor. % Ver. %
grandmother 18,204 2,064 11.34 550 3.02 497 273 1,017 5.59
stefan 33,744 15,385 4559 1954 579 10,478 31.05 2953 8.75
foreman 34,128 15,585 45.67 4,658 13.65 5994 1756 4,933 14.45
akiyo 13,552 1,225 9.04 120 0.89 144 1.06 961 7.09
mobile 35,192 21,663 6156 1,697 4.82 15933 4527 4,033 11.46
football 34,604 27,031 77.23 11,164 32.26 9,198 26.58 6,669 19.27

definition in the MPEG-4 standard. In our.implementatiors thnction includes clipping

of the block coefficients, and the values after clipping ehgtween 0 and 255.
“Blockinterpolation”, “LumaMC”, and “ChromaMC” are used for motion compen-

sation for luminance and chrominance blocks. Finally, I“®MDP” is for filling the de-

coded block to the memory space, for'output frames or referéames.

59

Table 4.8: Estimated Profile of Frame-Based MPEG-4 DecodiiQCiF on PACDSP

Function Name Cycles Code Size (KB) Category
BitstreamShowBits 112 179 VLD
FlushUpdate 32 33 VLD
DecodeVOLHeader 3,704 1432 VLD
DecodeVOPHeader 1,745 149 VLD
DecodeMBHeader 677 199 VLD
DecodeMBMVs 697 538 Motion Decoding
DCACPrediction 2,985 1554 = Inverse AC/DC Prediction
Unzigzag 749 36 Inverse Scan
BlockDequantH263 2,599 104 Inverse Quantization
BlockIDCT 1,749 189 IDCT
BlocklInterpolation 2,361 96 Motion Compensation
MC_Luma 5,359 166 Motion Compensation
MC_Chroma 5,918 244 Motion Compensation
Fill_VOP 3,792 127 VOP Reconstruction

60

Chapter 5

Optimization of The Implementation on
PACDSP

In this chapter, we discuss the optimization of our impletagon of MPEG-4 frame-
based video decoder on PACDSP. The-optimization techniqueesagegorized into two
types, algorithmic and architectural. We also discuss érpmance of the optimization.
Moreover, we compare the performance with some other regponplementation on

other hardware platforms.

5.1 Algorithmic Optimization

Most of our optimizations on algorithm are on the eliminata dequantization and IDCT

[8], [10]. We consider the intra- and inter-encoded franseparately.

5.1.1 Algorithmic Optimization for Intra Frames

Inintra frames decoding, there is a process, prediction®&bd AC coefficients, which is

not applied to inter-encoded frames. However, since sualligions are time-consuming,

if the frequency of these predictions can be reduced, muebution time can be saved.
In addition, an important property of DCT is that it concetgsssignal energy in lower

frequency coefficients. That is, if a block is filled with ctest coefficients, there will be

61

ofofolo|lo]o] oofo 414 alal|lalal sl s
ofofolo|lo]o] ofo 4l a| ala|lalal sl s
olo|l o|lo|o|o| o] o|lDequantize 4 | 4| a| 4| 4| 4| 4| 4
e
0 0 0] 0 0 0 0 0 IDCT 4 4 41| 4 4 4 4 4
oflofolo|lo]o] ofo 4l a| ala|alal sl s
ofofolo|lo]o] oofo 4l a| ala|alal sl s
oflofolo|lo]o] ofo 4l a| ala|alal sl s
8X8 Block Decoded from Bitream 8X8 Output Block Data

Figure 5.1: DC spreading from decoded coefficient to outpadio

only one coefficient at the DC after the transform. In otherdgoif we can make sure
that there is only a DC component decoded from the bitstréda@orresponding output
block data can be obtained with copying the DC componentdetttire block, and such
property is illustrated in Fig. 5:1. There are different hoets to skip the prediction and
transform, and we introduce the implementation” technigues show the analysis and
simulation results in the following.

The assembly code of spreading DC value to the whole blodiows in Fig. 5.2. We
need four iterations to complete one block, so the execuiive is 19 cycles including

the setting of loop register and address registers. Howeasestill need several cycles to

-
DC_Spread())

DC_Spreading:; 4 iterations for one block

{SET_LBCIRBC0,4 | MOVI.LA6,R_Block_2D |COPYI5D14 |[MOVI.LAG6,R_Block 2D |COPYD15D14 }
{NOP |MOVIH A6,R_Block_2D |NOP |MOVIH A6,Block 2D |NOP }; D14 D15 are DC value

{NOP |NOP |NOP |ADDIAG6,A6,128 |[NOP }nd halfin 2nd cluster

Spread_DC_Coeff: ; iterations

{ LBCB RBCO,Spread_DC_Coeff | DSW D14,D15,A6)48/0P |DSW D14,D15,(A6)+8 |NOP }

{NOP |DSW D14,D15,(A6)+8 | NOP |DSW D14,D15¢)+8 | NOP }

{NOP |DSW D14,D15,(A6)+8 | NOP |DSW D14,D15§)+8 | NOP }

{NOP |DSW D14,D15,(A6)+8 | NOP |DSW D14,D15¢)+8 | NOP }; store 16 coefficient in one it ei@t

J

Figure 5.2: Assembly code of DC spreading.

62

update the prediction data “DStore”.

Check Skipped Blocks Using CBP and ACPredFlag

In MPEG-4 video, there are two parameters encoded in theablok header which can
help us reduce the amount of computation. The first one, CBRJisig for Coded Block
Pattern, tells us which blocks in a macroblock are variagtgyth encoded. The second,
ACPredFlag, informs us about the existence of AC coefficients pteath.

In order to find out the proportion of blocks that can be skihpee choose the same
test sequences as mentioned before. The simulation is doR€avith 90 frames to be
encoded, and these frames are all encoded in intra type.ifiaéasion results on PC are
listed in Table 5.1.

In Table 5.1, we can see that the percentage of skipped kdaatitivery high, and a
slow-motion sequence such as “Akiyo” does net have the nkiigped blocks among the
six test sequences. The reason that the-simulation results as what we expected is due
to the parameter ACPreldlag. Since the ACPreBlag is set to 1 if there is any block in
an MB predicted with AC coefficients; we cannot skip some kdowith DC component
only but nonzero ACPrefflag. Therefore, we should improve our method in finding the

blocks that can be skipped.

Check Skipped Blocks After AC Prediction

Since the previously simple checks cannot precisely indittee blocks to be skipped, we
add a check after the prediction of AC coefficients is congaleSimilar to the previous
method, we still need to check if the block data is variablegte encoded through CBP
in the MB header, CBP. If the corresponding bit in CBP is zero, westap this block
because all the AC predicted coefficients are zero.

Consequently, we can further find out all the possible blookiset skipped, but the
effort also increases because of more conditions to be eldetie again do a simulation
on PC to get the percentage of skipped blocks in 90 intraggatérames. The simulation
results are listed in Table 5.2.

Compared to Table 5.1, we can see in Table 5.2 that the pegeeotakipped blocks

63

Table 5.1: Number of Skipped Blocks in 90 Intra Frames (Check QRPALCPredFlag
Only)

Test Seqs.(QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 4,106 7.78
stefan 53,460 2,041 3.82
foreman 53,460 8,343 15.61
akiyo 53,460 6,574 12.30
mobile 53,460 1,422 2.66
football 53,460 5,568 10.42

gets higher with the aid of the new:check., Furthermore, tisé $equence “Grand-
motherqcif’ becomes the one which has the most skipped blocks, arslexpected
that the performance of this optimization should be higlelated the simulation results
listed in Table 5.1 and 5.2.

Conclusion of Optimization for Intra Frames

Based on the analysis of the frequency of skipped blocks na-emcoded frames, we
apply the proposed means to our implementation on PACDSPsifhdation results are
listed in Table 5.3, where noted that the execution time ikegad from the first encoded
frame, not the average over 90 frames.

In Table 5.3, we can see that the performance of optimizateies from one se-
guence to another. The percentage of speedup on PACDSP th#esthe percentage
of skipped blocks, and this phenomenon can be explained lgdahl’'s Law [7]. In
other words, the skipped blocks do not reduce computatitimsr ehan dequantization
and IDCT, and we also need more cycles for the condition chgcki

In conclusion, the above algorithmic optimization for afframe decoding is severely
limited by the nature of the test sequences. To further ingithe performance, we

will take the advantage of VLIW architecture and SIMD instrans. The architectural

64

Vertical AC_Reconstruction() \
vertical, top ROW of block C

7 elements, so unroll the loop to 2 clusters

A2 is Q_block, A3 is P_Coeff (AC)

; Clusterl1, cluster2 5 {NOP |LW D15,(A3)+4 | NOP |LW D15,A3,0 |NOR

{ NOP | ADDI A2,A2,4 |CLR D12 |ADDI A2,A2,20| CLR {NOP |(p7)ADDI D12,D12,1 |NOP |(p9)ADDI D1R]2,1
D12 } INOP }

; D13 is index of Pred_A {NOP |NOP |NOP |NOP |NOP }

{ NOP | ADDI A3,A3,4 |[NOP |ADDI A3,A3,20 [NP } {NOP |ADD D9,D14,D15|NOP ADD D9,D14,D15 | NOP }
{ NOP | LW D14,A2,0 [NOP |LW D14,A2,0 |NOP {NOP | SEQ D9,C0,p6,p7 INOP |[SEQ D9,C0,p8,p9 | NDP
{ NOP | LW D15,(A3)+4 |NOP |LW D15,(A3)+4 |®P } {NOP |SW D9,(A2)+4 |NOP |SW D9,A2,0 |[NOP }

; postincrement ; clusterl 4, cluster2 no

{ NOP [NOP | NOP |NOP |[NOP } {NOP | LW D14,A2,0 | NOP | NOP | NOP }

{ NOP [NOP | NOP |NOP |NOP } {NOP | LW D15,A3,0 | NOP | NOP | NOP }

{ NOP |ADD D9,D14,D15|NOP | ADD D9,D14,D15|NOP {NOP |MOVI.L A7,Fake_AC_Pred | (p7)ADDI D12,D12,]
{ NOP |SEQ D9,C0,p6,p7 [NOP | SEQ D9,C0,p8,p9 [INQ MOVI.L A7,Fake_AC_Pred | (p9)ADDI D12,D12,1}
{ NOP |[SW D9,(A2)+4 NOP |SW D9,(A2)+4 [NOP } {NOP |MOVI.HA7,Fake AC_Pred | NOP |MOVI.H

; postincrement A7,Fake_AC_Pred | NOP }
; Clusterl 2, cluster2 6 {NOP |ADD D9,D14,D15| NOP | NOP |NOP }
{ NOP | LW D14,A2,0 | NOP |LW D14,A2,0 |NOP {NOP |SEQ D9,C0,p6,p7 |[NOP |NOP |NOP }
{NOP | LW D15,(A3)+4 |NOP |LW D15,(A3)+4 |OIP } {NOP |SW D9,A2,0 | NOP |[NOP |NOP }
; postincrement {NOP |NOP |[NOP |NOP |NOP }
{NOP | (p7)ADDI D12,D012,1 | NOP | (p9)ADDI D1R12,1 { NOP |(p7)ADDI D12,012,1 |NOP |NOP |NOP }
| NOP } {NOP | SEQ D12,C0,p10,p11 | NOP | SEQ D12,C0,p13p

{ NOP | NOP | NOP | NOP |NOP } NOP }

{ NOP |ADD D9,D14,D15|NOP | ADD D9,D014,D15[NOP {J End_of_One_Block | SW C0,A7,0 | NOP | NOP | NQP
{ NOP |SEQ D9,CO0,p6,p7 | NOP | SEQ D9,C0,p8,p90MN } { NOP |NOP |NOP |NOP |NOP }

{NOPISW D9,(A2)+4 | NOP | SW D9,(A2)+4 | NOP {NOP |(p10)SW C1,A7,0 |[NOP |NOP |NOP }

; postincrement ; IAC coeff. not zero
; clusterl 3, cluster2 7 {NOP |NOP |NOP |(p12)SW C1,A7,0 |NOP }
{ NOP | LW D14,A2,0 |[NOP |LW D14,A2,0 |NOF : Fake_AC_Pred 0

_ . -

Figure 5.3: Assembly code of new check in vertical AC recartsion.

optimization methods will be introduced and applied in te&trsection.

5.1.2 Algorithmic Optimization for P-Frames

Similar to the optimization for intra-encoded frames, weniM@® reduce the frequency

that dequantization and IDCT are called. Therefore, we ad@aisome analysis on PC to

check how many blocks can be skipped, and we will apply someéiton checking to

skip the null residual blocks.

65

Table 5.2: Number of Skipped Blocks in 90 Intra Frames withttk@mr Check After AC

Prediction

Test Seqs.(QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 15,795 29.55
stefan 53,460 4679 8.75
foreman 53,460 10,976 20.53
akiyo 53,460 11,863 22.19
mobile 53,460 2,864 5.36
football 53,460 8,199 15.34

Table 5.3: Execution Time,of Intra Frame Decoding on PACDSP

Test Seqs. Execution Time (cycles)

(QCIF) Original CBP and ACPredflag Checked. ' speedup(%) AC Prediction also Checked Spe¥gup(
grandmother 6,387,046 6,190,427 3.08 5,743,012 7.01
stefan 8,386,942 8,339,047 0.56 8,161,874 2.12
foreman 6,451,775 6,092,569 5.57 5,980,268 1.84
akiyo 6,183,448 5,885,550 4.82 5,695,724 3.23
mobile 10,211,299 10,189,775 0.21 10,128,500 0.60
football 7,087,360 6,973,907 1.60 6,920,920 0.76

Analysis of Null Residual Blocks

In this optimization, the condition to be checked is whetheresidual blocks are variable
length encoded or not. Therefore, we just check the CBP in thensHler to see if the
dequantization and IDCT can be skipped. We still encode 9@dsawith the first frame
intra-encoded. The data listed in Table 5.4 are obtained the statistics of the 89 inter-
encoded P frames in each sequence.

In Table 5.4, the simulation results tell us that the testisages that are more “static”

skip more blocks.

66

Table 5.4: Number of Skipped Blocks in 89 P Frames
Test Segs. (QCIF) Total Block No. Skipped Block No. %

grandmother 52,866 40,475 76.56
stefan 52,866 14,082 26.64
foreman 52,866 23,261 44.00
akiyo 52,866 43,943 83.12
mobile 52,866 5,734 10.85
football 52,866 15,038 28.45

Conclusion of Optimization for Inter (P) Frames

As a result of many null residual blecks in P frames decodiegapply the skip condition
to our implementation on PACBSP. Similar to:the-simulationifitra frames, we gather
the execution time for one frame, or the simulation:time dlvery long and inefficient.
The execution time of decoding an:inter-encoded(P) framsxadifferent sequences are
listin Table 5.5.

We can see in Table 5.5 that a large amount of execution tinsaved for more
“static” sequences, such as “Akiyo”. Nevertheless, thégoerance of this optimization
is still limited by Amdahl’s Law [7].

To further reduce the execution time in P frame decoding, vileawail ourselves of
the assistance of VLIW architecture and SIMD instructionkjch is discussed in the

next section.

5.2 Architectural Optimization

An important issue of DSP implementation is the utilizatafrthe architectural advan-
tages. In this section, we introduce some general softwatienzation techniques, in-
cluding static rescheduling, loop unrolling, and softwpigelining.

In addition, the computations are dispatched to differentsuo utilize the advantage

67

Table 5.5: Execution Time of Inter (P) Frame Decoding on PAEDS

Test Segs. Execution Time(cycles)

(QCIF) Original CBP Checked speedup(%)

grandmother 5,607,644 3,895,737 30.53
stefan 7,464,140 6,883,885 7.77
foreman 6,494,590 5,294,624 18.48
akiyo 4,693,963 3,159,598 32.69

mobile 8,861,251 8,527,807 3.76

football 8,470,472 7,942,794 6.23

of VLIW processor. Some special SiIMD:instructions of PACD3® ased to compute
or load/store multiple data at the same:time. The advanta@MD instructions is to

increase the throughput of computations.

5.2.1 General Optimization Techniques

To get a higher performance, we should try to fill all the siatan instruction packet.
That is, how to achieve a full-pipeline implementation isyvenportant to a better per-
formance. In this subsection, we introduce three optinoratethods, namely, static
rescheduling, loop unrolling, and software pipelining.eTgurpose of these techniques
is to reduce the stalls resulting from hazards, and the gpiteness for PADCDSP of
these techniques are discussed as well.
In the discussion, we use an example of summing the coefficiana 1-D array,

which contains eight 8-bit data. The corresponding C progisashown in Fig. 5.4. In
order to simplify the utilization of different techniquase use only one instruction slot

in the instruction packet.

68

for (1=0; i<8; I++)
y +=x[i];

Figure 5.4: Example of vector addition.

Static Rescheduling

In the assembly code programming, dependence of data mag csalls in processor,
which increase the required computation time. There areettiypes of data hazard,
namely, read-after-write (RAW), write-after-read (WAR), amdte-after-write (WAW).

In the left half of Fig. 5.5, we simply translate the C programFig. 5.4 to the
PACDSP assembly code. We can see that two stalls after the fidd'liction are resulted
from the dependence of the register,D0,ibecause data loadmgmemory requires two
cycles to be valid in PACDSP.

In addition, the conditional: branch, whese predicate tegis p2, depends on the
comparison instruction SLTI. Therefore, there are sevaifsgiNOPS) in the direct trans-
lation with three delay slots, and-these stalls signifigatiigrade the execution speed.

We can utilize the independence of instructions to elingntae stalls as much as
possible. Inthe right half of Fig. 5.5, we change the ordexohputation, and it is obvious
that the stalls are reduced from seven to four. Howevergdime computation is not very

complex, we cannot further reduce the number of stalls siibugh rescheduling.

Loop Unrolling

Loop unrolling is a general technique to deal with the impdatation of an iterative
computation, especially, if there are any stalls in a siitglation.

To utilize the unrolling technique, we have to find what are thdependent com-
putations in the consecutive iterations. We can use difteregisters to store data from
different iterations, and the instructions still need tsbkeduled well to reduce the stalls.
The number of unrolled loops depends on the stalls and imdkgpe computations in a

single loop. Figure 5.6 shows the assembly code before aadiabp unrolling.

69

Loop: Loop:
LB DO0,A0,0;x]i] LB DO0,A0,0
NOP ADDI A0,A0,1
NOP SLTI AO,8,p2,p3
ADD D1,D0,D1 :y+=x]i] ADD D1,D0,D1
ADDI A0,AQ,1 ;i++ NOP
SLTI A0,8,p2,p3 ;i<8 Reschedule (p2)B Loop
NOP > NOP
Loop NOP NOP
Maintainance (p2)B Loop NOP
NOP
NOP
NOP
7-NOPs 4-NOPs
Original Code Rescheduled

Figure 5.5: Example of static rescheduling technique.

Loop: Loop:
LB D0,A0,0 ;x[i] LB D0,A0,0 ;x[i]
ADDI A0,A0,1 ;i++ LB D2,A0,1 ;x[i+1]
SLTI A0,8,p2,p3 ;i<8 LB D3,A0,2 ;x[i+2]
ADD D1,D0,D1 y+=x]i] LB D4,A0,3 ;x[i+3]
NOP ADDI A0,A0,4 ;i+=4 — |
(p2)B Loop SLTI A0,8,p2,p3 i<8 Loop
NOP Unroll ADD D1,D0,D1 ;y+=x]i] Maintainance
NOP (p2)B Loop —
NOP ADD D1,D2,D1 ;y+=x[i+1]
ADD D1,D3,D1 ;y+=x[i+2]
ADD D1,D4,D1 ;y+=x[i+3]
4-NOPs No NOP
Rescheduled After Unrolling

Figure 5.6: Example of loop unrolling technique.

In Fig. 5.6, we can find that all the stalls (NOPs) are elimadafl he loop maintenance
code and branch condition should be changed to adjust theteesive computations.
However, there is a trade-off between execution time antesponding code size. Al-
though the stalls are all eliminated, the code size inceeafter loop unrolling. Therefore,
we have to assess that if code size is critical or not. In aadithe number of available

registers is a limitation to the utilization of loop unrobj.

Software Pipelining

The concept of software pipelining is to reorganize the laog to interleave dependent

instructions from different loop iterations to separatpatalent instructions within the

70

original loop. Different from loop unrolling, we just resetiule the loop, so the stalls may
not be entirely eliminated. An example of software pipelqis illustrated in Fig. 5.7.

Itis noted that the start-up code and clean-up code are aseidtleave the dependent
code. Compared to loop unrolling, there are still 2 stalls.e Bldvantage of software
pipelining is the smaller code size. However, the loop ogadcannot be reduced through
software pipelining. But we can apply loop unrolling and sa@ite pipelining to our

implementation simultaneously and take the advantagetbftechniques.

5.2.2 Advantages of PACDSP

In order to speed up our implementation on PACDSP, we carzeltiie advantages of
VLIW architecture and SIMD instructions. However, not detcomputations can be
distributed to both clusters, so we have to check if the featd the computations are
appropriate to apply the advantages of PACDSP.

In addition, since the branch instructions affects the mogsequence of both clus-
ters, it is better to put two regular and independent part®ofputations in different clus-
ters. For example, an iterative-computation-can be sephnatie two parts if the com-
putations are independent in different iterations. TaleMPEG-4 frame-based video
decoder for instance, dequantization (1Q) and IDCT (IT) aryvegular computations,
and we will discuss these two functions in the next section.

Moreover, SIMD instructions are also very helpful for optiation. Nevertheless,

Loop: LB D0,A0,0 ;x[0] |, Starteup
LB D0,A0,0 ;x]i] ADDI A0,A0,1 ;i=1 Code
LB D2,A0,1 ;x[i+1] Loop:
LB D3,A0,2 ;x[i+2] SLTI A0,7,p2,03 ;i<7
LB D4,A0,3 ;x[i+3] ADDIAOADLjit+ — |
ADDI A0,A0,4 ;i+=4 ADD D1,00,D1 ‘y+=x]i } oop
SLTI A0,8,p2,p3 ;i<8 (P2)B Loop —}/Maintainance
[ADD D1,D0,D1;y+=x[i] Software LB D0,A0,0 :x]i]
Loop| (p2)B Loop L NOP
MaintdinanceADD D1,D2,D1:y+=x[i+1] Pipeline NGO Cleanu
ADD D1,03,D1 iy+=x{i+2] ADD DL,D0DL iy+=x(7] |— o cogn
ADD D1,D4,D1 ;i+=x]i+3]
No NOP 2-NOPs
After Unrolling S/W Pipelined

Figure 5.7: Example of software pipelining technique

71

most of the arithmetic SIMD instructions cannot be appliecbur implementation be-

cause most of the data that we have length equal a word.

5.3 Experiment Results

In this section, we apply the architectural optimizaticchi@iques mentioned above. Since
IQ and IT are very critical parts in the implementation of thdeo decoder, we particu-

larly introduce the optimization of these two functions ainel resulting improvement.

5.3.1 Optimization of Dequantization

In the MPEG-4 standard, there are two types of quantizatior,is H.263 quantization
and the other is MPEG quantization. Since our implememigoguses on the simple
profile, we only need to support the H.263 quantization, &edts inverse quantization

is defined as follows:

0,if QF[v][u]=0,
|F” [v][u]| = ¢ @ x|1QFR][]| + 1) X quantizer_scale,ift @E][u] # 0, quantizer_scale is odd,
(2 x |QF[v][u]] + 1) x quantizergaale — 1,fQF[v][u] # 0, quantizer_scale is even,
(5.1)
whereF”[0][0] = 8 x QF’[0][0] for intra frames and) /" is the decoded block coefficients.

There are two main computations for the dequantizationst,Five scale the coef-
ficient according to the parameter “quantizeale,” which is dependent on the value
of QP. Secondly, we have to saturate the coefficients to tgega(—20its-per-picel+3) _
(Qbits—per-piczel+3 __ 1),

The computations are very regular in the dequantizatiora Aesult, we can separate
the8 x 8 block into two parts. For example, the first 32 coefficienss@mputed in the
first cluster and the second half are done in the other cluster

However, in the optimization of dequantization, we can skme computations if the
coefficient to be dequatized is zero. Thus, we need to chettieitoefficients in both
clusters are zero. We can deal with two consecutive coettieisimultaneously or the

first 32 coefficients in the one cluster, and the second hdlfarother cluster.

72

We have to decide which strategy of distribution mentionkdva is better for our
optimization. Therefore, we gather the number of skippeeffament pairs on PC with
the MoMusSys reference software. We compress 90 framesria inbde for each of the
six test sequences, and the quatization step is four fomalllations. The results of the
analysis are listed in Table 5.6.

In Table 5.6, we can easily find that it is better to work on twosecutive pixels in
both clusters. Since the data structure in the implememtafi dequatization is not appro-
priate for utilization of SIMD instructions and the limitedimber of registers also restrict
the application of loop-unrolling and software pipleligirwe apply the rescheduling tech-
nique to our implementation of dequantization. The oribarad optimized program are
listed in Fig. 5.8

In the previous chapter, the simulation ok 8 block requires 2599 cycles in worst
case. The execution time is significantly reduced to 600-8@les after applying the
above technigue. Note that the required cycles:dependseonuimber of consecutive
zero coefficients. As a result; the original implementatdrH.263 dequantization is
replaced by the new design, and the simulation results ohd-R-frames are listed in
Table 5.7.

5.3.2 Implementation of IDCT

The DCT and IDCT in MPEG-4 are defined as

2 Nl 2+ Dur 2y + Lor
F(u,v) = NO(U)C(U) xz::o yz::o f(z,y) cos N ST o (5.2)
flz,y) =]3[uz_%) Ui%) C(u)C(v)F(u,v) cos (2 ;—]\;)wr cos 2y ;_]\})WT (5.3)

whereu,v,z,y =0,1,2,...,N — 1

and

4 foru,v =0,
Cu),Co) =4 ¥ "
1, otherwise.

Many fast algorithms have been proposed for efficient coatut. To implement IDCT
on PACDSP, there are two critical issues, namely, efficiemay accuracy, which are

discussed below.

73

Table 5.6: Analysis of Skipped Coefficients in Dequantiza{@0 I-frames)

Test Segs. Method "1 Method 2**
(QCIF) No. % No. %

grandmother 1,331,114 77.8 1,263,074 73.83

stefan 964,767 56.40 930,600 54.40
foreman 1,294,917 75.69 1,212,908 70.90
akiyo 1,394,676 81.53 1,296,934 75.81
mobile 668,798 39.09 609,066 35.60
football 1,303,186 76.18 1,249,742 73.05

Total pixel pairs:176 x 144 x 1.5 x 90 -2 = 1,710, 720

* Two consecutive pixels as a pair.

**Corresponding pixels in 1st and:2nd half as a pair.

Efficiency of IDCT

For the fast computation of 2-DIDCT, the-conventional applo& the row-column
method, which requires 16 1-D IDCTs for the computation of a8 8DCT [11]. Many
fast algorithms for 2-D IDCT have been proposed, and one oh tfegluces the required
1-D IDCTs from 16 to 8 [11]. However, since the number of regdiregisters is very big
in this algorithm, it is not appropriate for the implemergaton PACDSP.

We focuses the IDCT implementation on the efficiency of 1-D IDSifice the com-
putational complexity of direct implementation is very hjghere are also many fast
algorithms for 1-D IDCT. Similar to the derivation from diste Fourier transform (DFT)
to fast Fourier transform (FFT), a fast cosine transform (JFiSTproposed in [12]. The
comparison of computational complexity is listed in Tabl@.5

Note that the computational complexity is estimated fortif@gpoint computation.
Since the transform coefficients used in [12] are recipgoéicosine values, the error
increases because of limited accuracy in the fixed-pointaqopation on PACDSP. In

addition, the number of multiplications is bigger in the maxadd decomposition algo-

74

@ckDequantH%S()

Original Code

Dequant_Next_Coeff:
{NOP |NOP [NOP |LW D14A50 [NOP }

{NOP |NOP |NOP |MOVI.LD15,0xF801 |NOP }
{NOP |NOP |NOP |MOVI.H D15,0xFFFF [NOP-3048
{NOP |NOP |NOP |SEQD14,C0p12,p13 [NOP }
{NOP |NOP |NOP |SLTID14,0,P14p15 |[NOP }
{NOP |NOP [NOP |NOP [NOP }

{NOP |NOP |NOP |NOP [NOP }

{(p12)B Zero_Coeff [NOP [NOP |NOP [NOP }
{NOP |NOP |NOP |NOP |NOP }

{NOP |NOP |NOP |(p14)MOVIL D110 [NOP }
{NOP |NOP |NOP |(p14)MOVIH D11,0 | NOP }
{NOP |NOP [NOP |MAX D14,014,015 [NOP }
{NOP |NOP |NOP |MOVI.LD15,0x07FF |[NOP2p47
{NOP |NOP |NOP |MOVLH D150 |[NOP }

{NOP |NOP |NOP |MIN D14,014,015 |NOP }
{NOP |NOP |NOP |ABS D14,014 [NOP }

Optimized

Dequant_Next_Coeff

{ ANDP p1,p6,p10 |(p7)MAX D14,D15A4 | NOP | (pMAX
D14,D15A4 | NOP }

{ NOP | (p7)MIN D14,D14,A5 | NOP | (pL1)MIN D14,D1A5 |
NOP }

{NOP | (p7)ABS D14,D14 |NOP |(p11)ABS D14,DIUNOP }
;D14 = qeoeff[i

ircoeff[]=D14 = QP *(2*ABS (qcoeff[i])+ 1)-1

{ NOP | (p7)SLLI D14,D14,1 | NOP | (p11)SLLI DIB14,1 |
NOP }

{ (p1)B Zero_Coeff | (p7)ADD D14,014,C1 | NOP({11)ADD
D14,D14,C1 | NOP }

{NOP | (p7)SLLI D14,D14,2 | NOP | (p11)SLLI DIRI14,2 |
NOP }

1QP is 4 here

{NOP | (p7)SUB D14,D14,C1 | NOP | (p11)SUBDDA4,CL |

1014 = qeoefifircoeff=D14 = QP*(2*ABS(qcoefif)+1)-1 NOP }

{NOP [NOP |NOP |SLLI D14,D14,1 [NOP } {NOP | (p8)CLR D11 | NOP | (p12)CLR D11 |NOP

mgg mgg mgg I:EL?ID??éDulfz‘l\ L"(“)?}P))Wheve {NOP | (p8)SUB D14,D11,D14 | NOP | (p12)SUB DD41,D14
D1a, ; NOP

{NOP [NOP |NOP [MOVI.LD15,1 |NOP };2047 |Zem Céeﬂ

NOP |NOP |NOP |MOVI.H D150 |NOP -

%NOP }NOP }NOP :SUB D14‘D14,D|15 \NgJP) { NOP | (p6)CLR D14 | NOP | (p10)CLR D14 |NOP

{NOP [NOP [NOP |(p14)SUBD14,D11 D14 |NQP iD9 s the index of output m atrix

Zero_Coeft { NOP | SGT D14,A6,p4,p5 | NOP | SGT D14,A6,p8,{NOP }

{NOP |NOP |NOP |(p12)MOVIL D14,0 [NOP } { NOP | SLT D14,A7,p6,p7 |NOP |SLT D14,A7,p10p| NOP }

{NOP |NOP |NOP |(p12)MOVIH D140 |NOP } { NOP | LW D15,(A2)+8 |NOP | LW D15,(A2)+8 |@OP }

{NOP [NOP |NOP |ADD D9,D9C1 |NOP } { NOP | (p4)COPY D14,A6 | NOP | (p8)COPY D14 ABNOP }

:D9is the index of output matrix { LBCB RBC1,Dequant_Next_Coeff | (06)COPY D14 ATNOP |

{NOP |NOP [NOP |SLTID9,65p10p11 |NORHeckiflas (p10)COPY D14,A7 | NOP }

{NOP |NOP |NOP |SUB D8,D12,C1 |[NOP }Dig2im { NOP | SEQ D15,C0,p6,p7 |NOP |SEQ D15,CO,mpl0l, |[NOP
{NOP |NOP [NOP |SUB D10011,D12 |NOP }®is -im }

{NOP [NOP [NOP |SGT D14D8p12,p13 |NOP } {NOP | SW D14,(A3)+8 |NOP | SLTI D15,0,p12,p1BNOP }
{NOP |NOP |NOP |SLT D14,D10,p14,p15 | NQP { NOP | SLTID15,0,p8,p9 |NOP |SW D14,(A3)+BNOP }
{NOP |NOP |NOP [NOP |NOP }

{NOP [NOP |NOP [(p12)COPY D14,D8 |NOP }

{NOP |NOP |NOP |(p14)COPY D14D10 |[NOP }

{ (p10)B Dequant_Nex_Coeff [NOP |NOP |NORQP }
{NOP |NOP |NOP |(p10)SW D14,A6.0 |NOP }

{NOP |NOP |NOP |(p10)ADDI A5,A5,4 |NOP }

{NOP |NOP |NOP |(p10)ADDI A6,A6,4 | NOP }

{NOP |MOVILA3VOP_coding_type |NOP |[NORNDP }
{NOP |MOVLH A3VOP_coding_type |NOP |NOROP }
{NOP |LW DI15A3,0 [NOP |[NOP |NOP }

{NOP |NOP |NOP |NOP [NOP }

{NOP |NOP |NOP |NOP |NOP

{NOP |SEQ D15,C0,p14,p15 | NOP |[NOP | NOP }

{NOP |NOP |NOP |NOP |NOP }

{NOP |NOP [NOP |NOP |NOP }

{(p15)B End_of_Dequant [NOP |NOP [NOP |NQP
{NOP |NOP |NOP |NOP [NOP }

{NOP |NOP |NOP |NOP [NOP }

{NOP |NOP |NOP |NOP |NOP }

Figure 5.8: Original and optimized assembly code of IQ.

rithm. As a result, we first implement'the IDCT algorithm of MaBys on PACDSP.

Accuracy of IDCT

Since the PACDSP is not capable of floating-point computatiove have to convert
the IDCT algorithm to an integer computation. There are alsnyrapproximation al-
gorithms to floating-point IDCT. There are integer revemsidlgorithms for DCT/IDCT
[14],[15], but they consist of several matrix computatioasd the computational com-
plexity should be much higher. Therefore, we do not impleaeneversible transform.

Since there are two 16-bit multipliers in both clusters orCBSP, we scale the
floating-point cosine coefficients with'>. We then right shift 15 bits after the multi-
plication, and the multiplication is rounded to the neanet&ger.

After applying this method to our implementation, and theaaiion time is about

1,200 cycles. We now check if the implementation is accueaiteugh.The IEEE Std.

75

Table 5.7: Improvement after Optimization of Dequatizatio

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original Optimized % Origindl Optimized %

grandmother 5,743,012 5,160,154 10.15 3,895,737 3,613,810 7.24

stefan 8,161,874 7,386,839 9.50 6,883,885 6,257,262 9.10
foreman 5,980,268 5,327,327 10.92 5,294,624 4,859,341 8.22
akiyo 5,695,724 5,063,492 11.10 3,159,598 2,962,965 6.22
mobile 10,128,500 8,247,598 8.70 8,527,807 7,781,364 8.75
football 6,920,920 6,172,806 10.81 7,942,794 7,281,423 8.33

1 Original means the execution time after algorithmic optimization.

Table 5.8: Comparison of Computational Complexity for 8-pd€T
Direct Form_' FCT [12] MoMuSys Eve®dd FCT [13]

Multiplications 64 12 16 20

Additions 56 29 26 28

1180-1190, which is currently withdrawn, is usually usedést for the compliance of
the implementation of IDCT algorithms. The compliance tesjuires five statistical

measurements, which are as follows:
e For any pixel location, the peak errgmng) shall not exceed 1 in magnitude.

For any pixel location, the mean square ergone) shall not exceed 0.06.

Overall, the mean square erren{se) shall not exceed 0.02.

For any pixel location, the mean errgm(e) shall not exceed 0.015 in magnitude.

Overall, the mean erronfne) shall not exceed 0.0015 in magnitude.

For all-zero input, the proposed IDCT shall generate albzertput.

76

Table 5.9: Test of Compliance Using IEEE Std. 1180-1190

item IEEE 1180-1190 MoMuSys Evebdd FCT [13]
ppe <1 >1(X) <1O)
pmse <0.06 137.8279(X) 0.0081Y)
omse <0.02 5.2222(X) 0.00560)
pme <0.015 10.8429(X) 0.0019))
ome <0.0015 0.5742(X) 0.00041)
all zeroinput all zero output O O

We test the IDCT algorithm of MoMuSys with rounding to the restiinteger after each
multiplication for the IEEE 1180-1190 compliance, whosgults are listed in Table 5.9.
We see that the simple rounding methad introduces signtficasmatch, so this algo-
rithm does not comply with the IEEE 1180-1190 standard afoewerting to fixed-point
computation, except in the last measurement.

Figure 5.9 shows signal flow inthe algorithm."We see the odiéxed coefficients are
rounded twice. However, each rounding introduces cormedipg error. Therefore, we
try to use the even-odd decomposition algorithm [13]. Inithold, since the multiplied
coefficients are summed immediately, the number of roursdcan be reduced if we
postpone the roundings after the multiplied coefficients srmmed. The signal flow
graph is shown in Fig. 5.10. Note that the roundings are postp to the output stage, so
we have the right shift 19 bits to keep the correct format.

We also test the even-odd decomposition algorithm for theptance of the IEEE
1180-1190 standard, whose results are also listed in Tadlé/e can see that the even-
odd decomposition algorithm complies with the standard, #we less rounding opera-

tions reduce the required execution time as well.

I

cd

F[0] ——e—o0 fl0]

F[4]

Fl2]

F[6]

F[1]

fi5]

6]

fi7]

cf 1

O : round to the nearest integer with right shift 15 bits

1] 2.i=0
Ci = C(E)Ecos[%]les; @)= {J_ .

1 ,ctherwise

Figure 5.9: The IDCT algorithm used in MOMuSys.

Optimization of IDCT on PACDSP

There are two clusters in the PACDSP, and'we can completeidgiudivcomputations
simultaneously because the computations of each row oncoare independent. There-
fore, we can simply distribute eight 1-D row-wise and columse IDCTs to both clus-
ters. As a result, there are four iterations for both row asildran computations.

According to the characteristics of the even-odd decontiposalgorithm, we can
use double-store, MAC, and butterfly instructions to faaiétthe computation, where the
butterfly instruction can sum and subtract the data in thestwwoce registers at the same
time.

The performance of various IDCT implementation are listedable 5.10. We see
that the implementation on PACDSP is competitive, becaudessfarithmetic units re-
quired. The improvement to our implementation of the MPE@e&o decoder is shown
in Table 5.11.

In Table 5.11, we can find that the optimization of IDCT introds at most 11.48

percent improvement. Moreover, since the number of skiggedks is smaller for I-

78

F[0]

F[4]

F[2]

F[6]

F[1]

f[3]

f6]

fI7]

(O : round to the nearest integer with right shift 19 bits

A’ [Fy
Ci= —COS‘
il

2 \16)

?_‘ 15

Figure 5.10: The even-odd.decomposition IDCT algorithm][8].

frames, we have less improvement for P-frames. The C progaaiginal ,and optimized

assembly code of IDCT are listed in'/Appendix B.

5.3.3 Overall Optimization of the implementation

To further optimize the implementation of MPEG-4 video d#goon PACDSP, we review
the entire program and apply the optimization methods éhiced above.

First, we reschedule the program and try to eliminate allitireecessary stalls, and the
delay slots of the branches are filled as well. If there arecamgecutive loads or stores,
we replace the original program with double-loads or storBsus, the execution time
and code size are both reduced. Second, we find out regulgautations and employ the
loop-unrolling and software-pipelining techniques toueel the execution time.

The performance of the implementation after the overalinogation are listed in
Table 5.12. We can find that all the execution time is abol@& @0 cycles in worst case
and 2,000,000 in best case. In other words, if the frequeh&AGDSP is higher than
168MHz, then we can implement a real-time MPEG-4 video decdar QCIF format

79

Table 5.10: Comparison of IDCT on Different Platforms

Designs Processing units Clock (MHz) 2-D fastalgo. Cycles
TI C30[16] 1 MAC,1ALU 40 row-column 1344
TI C62x [16] 2 MUL, 6 ALU 200 row-column 226
TI C64x [17] 2 MUL, 6 ALU 600 row-column 154
IDCT Core [16] 1ALU 33 direct 2-D 1208
PACDSP (ours) 2AU, 2L/S 200 even-odd 384

video on the PACDSP platform. Note that real-time means tlwediag rate is higher
than 30 frames per second. Since the instruction memory 2skB3cache, the program
size of our implementation is 27 KB;whieh is smaller than thehe size. Therefore,
the execution time is not degraded bysthe .cache misses. ltiaaddhe required data
memory size is less than 64 KB depending-on the. size of batstr® be decoded. That

is, we cannot decode too many frames-if the bitstream siz®ibig.

5.4 Conclusion on Optimization

In this chapter, we used several optimization techniquéspoove the code. The simu-
lation results before and after optimization are listedabl€ 5.13.

We can see that about 50% of the execution time for both I- afrdrRe decoding
is reduced, except for the more complicated test sequerntks. performance of our
implementation will be compared with other implementasianthe next section.

We show the speed-ups of different optimization steps fifemint test sequences in
Figs. 5.11 and 5.12. The performance of algorithmic optatiamn is limited for I-frame
decoding because the number of skipped blocks is not very tbayvever, the number
of skipped blocks for P-frame decoding is very big espegi@lt the test sequences that
have less motion.

Moreover, the performance for IQ and IT optimizations asmalot very significant.

80

Table 5.11: Improvement After Optimization of IDCT

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Originait Optimized % Origindll Optimized %

grandmother 5,160,154 4,567,534 11.48 3,613,810 3,362,581 6.95

stefan 7,386,839 6,790,527 8.07 6,257,262 5,727,717 8.46
foreman 5,327,327 4,795,881 9.98 4,859,341 4,478,329 7.84
akiyo 5,063,492 4,541,150 10.32 2,962,965 2,768,631 6.56
mobile 8,247,598 8,606,904 6.93 7,781,364 7,163,932 7.93
football 6,172,806 5,536,382 10.31 7,281,423 6,725,999 7.63

1T Original means the execution time after optimization of dequantization.

Since we spend much execution time on decoding the bitsii€aand IT do not occupy
much of the computation complexity. However, the-perforogenf overall optimization is
very impressive because many redundant stalls are reméeedhe optimization. There-
fore, bitstream decoding as well'as memory accesses aredffiorent if we schedule the

program better.

5.5 The Effect of Different Quantization Step (QP)

In the MPEG-4 video encoder, the quantization follows th€TDcomputation. There-
fore, the value of quantization step affects the floatingdalock coefficients. In the pre-
vious implementation and discussion, we choose the QP waalddn all cases. To have a
further understand of how QP affects the video encoding, ameptete some analysis of
different QP values.

We choose three different test sequences and three diff@fenvalues. The three
sequences are akiyo, stefan, and mobile which are all in Q&Rdt, and they have low,
medium, and high motion, respectively. Note that the thrBev@lues are 3, 4, and 8. In

the following, we discuss the effects to the I- and P-framenodeng.

81

Table 5.12: Overall Optimization after IDCT Optimization

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Originaitf Optimized % Origindllt Optimized %

grandmother 4,567,534 2,969,243 34.99 3,362,581 2,370,949 29.49

stefan 6,790,527 4,324,652 36.31 5,727,717 4,130,700 27.88
foreman 4,795,881 3,093,021 35.51 4,478,329 3,184,234 28.90
akiyo 4,541,150 2,918,622 35.73 2,768,631 2,050,519 25.94
mobile 8,606,904 5,606,101 34.87 7,163,932 5,035,200 29.71
football 5,536,382 3,429,212 38.06 6,725,999 4,743,437 29.48

7Tt Original means the execution time after optimization of IDCT.

5.5.1 Effects of QP to I-Frame Decoding

Since the larger QP value introduces a rougher quantizatiore block coefficients may
be quantized to the same value. ‘Astarresult, the coefficidtes RC/AC prediction
may be simpler, and the number‘of skipped blocks in our algmit optimization may
increase. The analyses of skipped blocks on PC using MoMteSgeence software are
listed in Table 5.14.

In Table 5.14, we find that the number of skipped blocks ireeeawith larger QP if
we check CBP and ACPredlag only. However, if we further check the skip condition
after AC prediction, the number of skipped block of “akiyodes not increase with the
increasing QP. Setting QP as 4, there are most skipped bindke “akiyo” sequence.
Note that the number of skipped blocks are almost the sanfesetting QP as 8 even if
we further check the skip condition after AC prediction.

In addition, since different QP values affects the numbevasfable length coding,
we also complete some simulation on our implementation.ekieeution time of I-frame
decoding with different QP values are listed in Table 5.1%teNthat we compare the
execution time after all optimization methods applied.

In Table 5.15, we see significant affects of different QP &alulr'he execution time of

82

Table 5.13: Execution Time Before and After Optimizations

Test Segs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Before After Speed-up (%) Before After Speed-up (%)

grandmother 6,387,046 2,969,243 53.51 5,607,644 2,370,949 57.72

stefan 8,386,942 4,324,652 48.44 6,464,140 4,130,700 44.66
foreman 6,451,775 3,093,021 52.06 6,494,590 3,184,234 50.97
akiyo 6,183,448 2,918,622 52.80 4,693,963 2,050,519 56.32
mobile 10,211,299 5,606,101 45.10 8,861,251 5,035,200 43.18
football 7,087,360 3,429,212 51.62 8,470,472 4,743,437 44.00

the three test sequences are substantially, reduced witeisiog QP value. The reason

for the significant reduction ofiexecution time may be theustidn of the frequency of

VLD.

5.5.2 Effects of QP to P-Frame Decoding

For the P-frame decoding, we still focus on two parts. Onkasiumber of zero-residual
blocks and the other is the percentage of fractional motewtors.

First, we set different QP values and simulate on PC using M®y48 reference soft-
ware. The number of zero-residual blocks in 89 P-framesstedlin Table 5.16. We can
find that the number of zero-residual blocks increases Wetiricreasing QP values.

Second, we discuss the percentage of fractional motiomrgecdimilar to the analysis
in previous chapter, we also list the number of fractionaliarovectors in Table 5.17, but
we only show the total fractional motion vectors withoutckiag the direction of motion
vectors.

In Table 5.17, we see that the number of total motion vectecsahse with larger QP.
That is, there are more MBs in skip mode. However, the numbéractional motion

vectors increases. It may be resulted from the rougher uadioin. The best motion

83

40.00 3400 3631 35.51 3573 o 57 =
30,00
53 M &lgn. Opt. 1
= B ilgo. Opt. 2
% 2000 NIQ Opt.
EIIT Opt.
r;gf 11 48 10592 11.10 108 B0verll Opt.
101 950 995 . 6.03 31
10.00 T.01 55 70
. b Fag 4.822 .
0.5 WE .60 160
OOO NEZ = A= b e Z=IRNEN

Grandmother Stefan Foreman Akivo Mobile Football

Test Sequences

Figure 5.11: Speed-up of different optimization methoddfivames.

vector of each block may be found in interpelated. pixels wathhigher quantization.
Finally, we also simulate P:frame decoding with. differeft ¢alues in our implemen-
tation. the simulation results are listedin Table 5.18.
Although the number of zero-residual blocks increases lartdper QP, there are more
fractional motion vectors. Therefore, the 'execution tihe-érame decoding on PACDSP
does not decrease with larger QP in the “akiyo” test sequeHosvever, the execution

time is reduced with larger QP.

5.6 Comparison with Other Implementations

Since the MPEG-4 codec is widely used in the audio-visualpression, we can compare
the performance of MPEG-4 video decoder on PACDSP with thadrted for the other
platforms. Table 5.19 lists some numerical information.

The requirement of MPEG-4 conformance test is 25-fps for QC8f. The imple-
mentation on ARM7TDMI uses several architectural and atgoric optimization tech-
nigues, and the frequency of memory access is significaatlyaed. Thus, the perfor-

mance of implementation on ARM7TDMI is much better than thaToC6201.

84

35.00 o

3053
|77 2949 390 2971 29.48

30.00 = 25 94
9500 H |]
= (o an Malgn. Opt 1
5‘ 20.00] | =10 Opt
AT Opt.
E 15.00 uliw-m " [ovwaton
1 O . OO ity filﬂsgs i 22#.54 22 . 8715) Th
\// : 623
o e
O OO N] N] %é 1 A] h i 1 o
Grandmother Stefan Foreman Akivo Mobile Football

Test Sequences

Figure 5.12: Speed-up of different optimization method$fdrames.

The TriMedia CPU64 DSP is a powerful:processor for multimexgiplications, and
it is a 5-issue VLIW processor:with 27 function-units. 64-fitd SIMD instructions are
supported as well [21]. The 4CIF formatis 70476, which is 16 times larger than QCIF.
However, the performance can also be a reference to comieeimplementations.

The performance of our implementation is evaluated with R}y frequency, and
the decoding rate listed in Table 5.19 is estimated by thediag of a P-frame for the
test sequence akiyo. Since the cost of PACDSP is lower thaar o#howed processors,
the performance of the implementation of MPEG-4 video dec@lcompetitive to other
platforms.

Although our implementation can achieve the goal of reaktimplementation, there
are possible optimizations. For example, the data streattiour design is not appro-
priate for most SIMD instructions, and frequent memory ases also consume much
computations time. If we have a better plan for data strectund the usage of registers,

much computation time can be saved.

85

Table 5.14: Number of Skipped Blocks in 90 Intra Frames wittiedbent QP

Check CBP Further Check
Test Segs| QP and ACPredFlag after AC Prediction
(QCIF) Skipped Block No.| % | Skipped Block No.| %
3 5,359 10.02 9,190| 17.04
akiyo 4 6,574| 12.30 11,863 22.19
8 8,426 | 15.76 8,426| 15.76
3 1,684| 3.15 2,806| 5.25
stefan 4 2,041| 3.82 4,679 8.79
8 2,966| 5.55 2,969| 5.55
3 8414,.1.57 1,604| 3.99
mobile 4 1,422 2.66 2,864| 5.36
8 3,323 6.22 3,323| 6.22
Total block number: 53,460

Table 5.15: Effects of Different QP to Execution Time of lkRre Decoding on PACDSP

Test Seqs. Execution Time (Cycles Per Frame)

(QCIF) QP =3 QP =4 QP=8

akiyo 3,236,270 2,918,622 2,405,087

stefan 5,038,011 4,324,652 3,492,219

mobile 6,448,395 5,606,101 4,319,845

86

Table 5.16: Number of Skipped Blocks in 89 P-Frames with Defifie QP

Test Seqs Check CBP and ACPrekHlag
(QCIF) | QP | Skipped Block No. %

3 43,345 81.99

akiyo 4 43,943| 83.12

8 49,113 92.90

3 11,842 22.40

stefan 4 14,082| 26.64

8 26,550 50.22

3 4,385 8.29

mobile 4 5,734 10.85

8 13,849 26.20

Total block humber: 52,866

Table 5.17: Percentage of Fractional Motion Vectors witfiddent QP

Test Segs. (QCIF) QP | Total MV Number | Fractional MVs| %
3 13,520 1,034| 7.65
akiyo 4 13,552 1,225| 9.04
8 7,964 1,373| 17.24
3 34,348 15,324| 44.61
stefan 4 33,744 15,385 45.59
8 31,024 15,930] 51.35
3 35,212 21,703| 61.64
mobile 4 35,192 21,663| 61.56
8 35,088 21,683| 61.80

87

Table 5.18: Effects of Different QP to Execution Time of Rufe Decoding on PACDSP

Test Segs. Execution Time (Cycles Per Frame)
(QCIF) QP =3 QP =14 QP =8
akiyo 1,690,909 2,050,519 1,615,417
stefan 4,477,904 4,130,700 3,003,208
mobile 5,707,100 5,035,200 3,624,436

Table 5.19: Performance of MPEG-4 Video Decoder on DiffeRdatforms

Processor Freq. (MHz) fps Profile
TI1 C6201 [18] 200 28.57 (QCIF) Not mentioned
ARM7TDMI [19] 12 15 (QCIF) Simple profile
Philips TriMedia64 [20] 300 30 (4CIF) Not mentioned
PACDSP 200 97.54 (QCIF) Simple profile

without error resilience

88

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we consider the real-time implementatioM&EG-4 video decoder on
PACDSP platform.

We first focused on the correct of decoading the bitstreamtlamdecoded frames have
been verified with the reference software-of MPEG-4, MoMuSsfore the implemen-
tation, we analyzed the statistics of the MPEG-4 video decod PC. Therefore, we had
an initial understand of the decoding flow and the criticat pacomputation. According
to the analysis, we implemented the MPEG-4 video decoden®PACDSP simulator.

After the implementation was verified, we further analyzeel tharacteristics of de-
coding procedure to find if there was any removable compmrtaBased on the analysis,
we optimized the program sequence to reduce the computtioplexity. The DC/AC
predictions, 1Qs, and ITs were skipped with checking for leader and prediction re-
sults. In addition, we also utilized several general sofen@ptimization techniques, such
as static rescheduling, loop-unrolling, and softwaresapng to reduce the stalls.

The optimization results were discussed and compared \iligr amplementations.
We can decode the MPEG-4 video bitstream over 97 frames penden the best case,
and the program size is 27 KB, which is smaller than the insbocache size. In con-
clusion, the performance our implementation of MPEG-4 @idecoder on PACDSP is

competitive to other processors.

89

6.2 Future Work

There are several improvements and extensions can be ecedich the future:

e Combination of IQ and IDCT

Since the computation of inverse quantization is followgdmCT, we can simply

combine these computations to reduce the number of memadysiore.

e Data structure refinement

The data structure is very important to the implementatiorD&Ps. If the data
structure is designed before the implementation, the mgmaresses can be sig-

nificantly reduced.

e Dual-core implementation

Since the internal memory:of PACDSP is:64 KB only and the acteexternal
memory consumes much execution time, the amount of bitettbat is written
to the memory is limited. Therefore, we can decode limitechber of frames.
Because the ARM core onithe PACDSP platform can access theahteemory of
PACDSP, we can manage the ' memory through ARM core, and theeustiicient

memory size is enlarged.

o Add other MPEG-4 tools

To simplify our implementation, the error-resilience taooMPEG-4 simple profile
Is neglected. However, this tool is very important if thesbigam is transmitted
through real channels. In addition, the special objeced@®mpression technique

can be implemented to extend the capability of PACDSP.

90

Bibliography

[1] SoC Technology Center of Industrual Technology Researatstitute
PACDSP2S0000RACDSP v2.0 — Instruction Set Merdune 2005.

[2] ISO/IEC 14496-2:2001nformation Technology — Coding of Audio-Visual Objects
— Part 2: Visual July 2001.

[3] A. Puri and A. Eleftheriadis, “MPEG-4: an object-basedltimedia coding stan-
dard supporting mobile applicationsyiobile Networks Appli¢.vol. 3, pp. 5-32,
1998.

[4] A. Ebrahimi and C. Horne, *MPEG-4 natural video coding —auerview,” Signal

Processing Image Communol. 15, pp: 8365-385, 2000.

[5] MPEG-4 Video Group, “MPEG-4 video verification model sam 18.0,” doc. no.
ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

[6] http://www.tnt.uni-hannover.de/project/eu/momsisy

[7] J. L. Hennessy and D. A. Pattersd@pmputer Architecture: A Quantitative Ap-

proach, 3rd edSan Francisco: Morgan Kaufmann Publishers, 2003.

[8] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TR&36X DSP
architecture,IEEE Signal Systems Computer Conrbl. 2, Nov. 1998, pp. 1735-
1739.

[9] C. E. Fogg, “Survey of software and hardware VLC architees,” in Proc. SPIE
Image and Video Compressiorgl. 2186, May 1994, pp. 29-37.

91

[10] R. Prasad and R. Korada, “Efficient implementation of MPE@deo encoder on
RISC core," IEEE Trans. Consumer Electroniogl. 49, pp. 204-209, Feb. 2003.

[11] N.I.Choand S. U. Lee, “Fast algorithm and implementagiof 2-D discrete cosine
transform,”IEEE Trans. Circuit Systvol. 38,pp. 297-305, Mar. 1991.

[12] B. G. Lee, “A new algorithm to compute the discrete cosraasform,”IEEE Trans.
Acoust. Speech Signal Processiugl. 32, no. 6, pp. 1243-1245, Dec. 1984.

[13] C. Y. Hung and P. Landman, “A compact IDCT design for MPEGea decoding,”
in Proc. IEEE Workshop Signal Processing Systadoy. 1997.

[14] G. Plonka and M. Tasche, “Reversible integer DCT algangli preprint, Gerhard-
Mercator-Univ. Duisburg, 2002.

[15] Y. Chen and P. Hao, “Integer.reversible transformatmmbke JPEG loselesdtit.
Conf. Siganl Processing, Beijin@hina, Sept. 2004, pp. 835-838.

[16] T.S. Chang, C.S. Kung; and 'C.W. Jen, “A simple processoe aw@sign for
DCT/IDCT transform,”IEEE Trans. Circuits.-'Syst. Video Technolpgwl. 10, no.
3, pp. 439V-447, Apr. 2000.

[17] Texas Instuments,TMS320C64x Image/Video Processing Library — Programmers
ReferencéLiterature number SPRU023B, Oct. 2003.

[18] N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Bapnptotyping for an
optimized MPEG-4 decoder implementation over a paralledtogenous architec-
ture,” in Proc. Int. Conf. Multimedia Expovol. 3, July 2003, pp. 417-420.

[19] K. Ramkishor and U. Gunashree, “Real time implementatioMPEG-4 video de-
coder on ARM7TDMI,” inProc. Int. Symp. Intelligent Multimedia Video Speech
ProcessingMay 2001, pp. 522-526.

[20] J. H. Kuo, J. L. Wu, J. Shiu, and K. L. Huang, “A low-cost die-processor based
real-time MPEG-4 video decodendEEE Int. Conf. Consumer ElectronicSune

2002, pp. 272-273.

92

[21] J. T. J. VanEijndhoven, J.T.®t al, "TriMedia CPUG64 architecture,” ilEEE Int.
Conf. Computer Desigri999

93

Appendix A

Demonstration of MPEG-4
Frame-Based Video Decoder on
Dual-Core PSDK

The implementation of MPEG=4 frame-based video decodevngpteted and optimized
in the previous chapters. In this appendix;-we demonstheeniplementation on the
PAC System Developer’s Kit (PSDK). First, we give an ovewid the PSDK platform.

Then we introduce the dual-core co-processing mechanismaralemonstration.

A.1 Overview of The PSDK 2.0 Platform

The PSDK platform is developed by SoC Technology Center (ST@)dustrial Tech-
nology Research Institute (ITRI) in Taiwan. The PSDK 2.0 systensists of following

items:
e ARM Integrator-compatible Core Module: ARM920T CM
e Multi-ICE of ARM
e PACDSP Core Module (Burned in FPGA now)

e Generic peripherals (LCD translator)

94

i P i 1

Figure A.1: PAC System Develdper's Kit (PSDK) 2.0

L ne

The PSDK 2.0 hardware modules afe shown in Fig. A.1. Sincd”>&@DSP core
module is replaced by an FPGA with the DSP design burnedvenpperating frequency
of PACDSP is at most 33 MHz rather than a 250 MHz real chip. Hawnetere is no
difference for the functionality of a real chip and a burned~PGA.

It is noted that the operation of PACDSP is controlled by the ARMe, and its
internal memory is accessible to the ARM core as well. For a PBE@xecution, we
have to inform the DSP with its corresponding machine codprofjram and the data
in the internal memory. Then we should give some signalsad gte DSP execution.
The memory map of our demonstration is shown in Fig. A.2, aminoted that the start

address of instruction is configurable and we set the instruenemory at 0xb0000000.

95

0x22000000 Start of internal memory

0x2200FFFF End of intemal memory

Start address of instruction
memaory (0xb00d0000)

0x22005008 DSP Start Flag

0x22005000

0xb0000000 Start of instruction memory

Figure A.2: Memory map of the dualcore demonstration
A.2 Introduction to Dual-Core Demonstration

To keep the program sequence of aur block-based implenemtat PACDSP, we gather
the block data whenever its decoding is completed. Since ave ko write back the
reference frame for P-frames decoding,-the program flow of AGe is different for
I-frames decoding and P-frames decoding: We brief the oogssing mechanism in the

following.

A.2.1 I-Frames Decoding

Since the utilization of interrupt is more complicated, vge the polling method to control
the program flow in both processor. The internal memory of PS&€Ds shared with
ARM core, so we defined a flag, détock complete, at the beginning address of internal
memory, 0x22000000, to check if the decoding is completed noted that the flag is
setto 1 if one block data is decoded by PACDSP. The program #@hown in Fig. A.3
Since the internal memory is a critical issue to our impletagon and we have to
store the headers and lookup tables, we can not store musthebin in the internal
memory. Our demonstration can show four consecutive migeded frames of "Fore-

man.qcif’ sequence only.

96

ARM
Initial L CD
PACDSP

|Wr|te|n5truct|on| | Start I

Start DSP

—

Decode BElock

N
polling 0

o
Yes

Polling flag
dec_complete_flag
1: ARM Go
0: DSP Go

.
Yes

Gather Elock

Show on LCD
Clear Flag

Figure A.3: Co-precessing mechanism for I-frames

A.2.2 P-Frames Decoding

For P-frame decoding, because we supposea decoded imr@ifidhe internal memory,
we eliminate the bitstream of first.intra-encoded frame. tThiaall the frames decoded
in this demonstration are P-frames. The program flow in Rvéraecoding is shown in
Fig. A.4.

Although we do not have to do DC and AC prediction in P-frameodiéng, we have
to store the reference frame, so we still can not store mustréam in the internal mem-
ory. In this demonstration, we can decoding six conseclitieames of "Foremaucif”

sequence and forty for "Akiya@jcif” sequence.

97

ARM

[nitial LCD
| Write Mermory |
Polling flag PACDSP
|Write Instructionl dec_complete_flag | Start |
1 1: ARM Go
Start DSP 0: DSP GGo —
[Decode Block |

e

Yes

Gather Elock

[Show on LCD)

Write Reference Frame

—— Clear Flag |-—,

Figure A.4: Co-processing mechanism for P-frames

98

Appendix B

C Program and Assembly Code of
IDCT

B.1 C Program of IDCT in-MoMuSys

The C program of IDCT in MoMuSys reference software is showhign B.1. Note that

clipping of block coefficients is‘also-included-in the pragra

B.2 Original Assembly Code of IDCT

The initial IDCT design in of our implementation is listed ilgFB.2 and B.3. Note that

we use the instruction set of PACDSP.

B.3 Optimized Assembly Code of IDCT

The optimized IDCT design in of our implementation is listadmig. B.4 and B.5. Note
that we use the instruction set of PACDSP.

99

Floating-Point Block IDCT in MoMuSys \
(Int *coeff_in,Int block_out[][8], Int maxval)

Int i I* Vertical */
Double tmp[8], tmpl[8];
Double e, f, g, h,coeff[8][8],block[8][8]; for(i=0;i<8;i++) {
static Double c0,c1,c2,¢3,c4,¢5,c6,c7; for(j=0;j<8;j++){
Int v, tmp[j] = block][]
for (i=0;i<8;i++) }
for (j=0;j<8;j++) e =tmp[l]* c7 -tmp[7] * c1;
coeff[i][j] = (Double)coeff_in[i*8+]]; h=tmp[7]* c7 +tmp[l] * c1;
c0=0.7071068;c1=0.4903926,c2=0.46193¢ f=1tmp[5]* c3 - tmp[3] * c5;
157348;c4=0.3535534; g =tmp[3]* c3 + tmp[5] * c5;
c5=0.2777851;,c6=0.1913417,;,c7=0.09754!
/* Horizontal */ tmp1[0] = (tmp[0] + tmp[4]) * c4;
I* Descan coefficients first */ tmpl[1] = (tmp[0] - tmp[4]) * c4;
for(i=0;i<8;i++){ tmpl[2] =tmp[2] * c6 - tmp[6] * c2;
for (j=0;j< 8;j++){ tmpl[3] = tmp[6] * c6 + tmp[2] * c2;
tmp[j] =coe ff[il[j]; } tmp[4]=e +f;
e = tmp[1]* c7- tmp[7] * c1; tmpl[5]=e-f;
h=tmp[7]* ¢7 + tmp[1] * c1; tmpl[6]=h-g;
f=tmp[5] * ¢3 - tmp[3] * ¢5; tmp[7]=h +g;
g =tmp[3]* c3 +tmp[5] * c5;
tmp1[0] = (tmp[0] + tmp[4]) * c4; tmp[5] = (tmp1[6] - tmp1[5]) * c0;
tmp1[1] = (tmp[0]- tmp[4]) * c4; tmp[6] = (tmpl[6] + tmpl[5]) * cO;
tmp1[2] = tmp[2] * ¢6 - tmp[6] * c2; tmp[0] = tmp1[0] + tmp1[3];
tmp1[3] = tmp[6] * ¢6 + tmp[2] * ¢2; tmp[l] =tmpl[1] + tmpl[2];
tmp[4]=e +f; tmp[2] = tmpl1[1] - tmpl[2];
tmpl[5]=e -f; tmp([3] = tmp1[0] - tmp1[3];
tmpl[6]=h -g;
tmp[7]=h +g; for(j=0;j<4;j++){
tmp[5] = (tmp1[6]- tmp1[5]) * cO; j1=7-J _ _
tmp[6] = (tmp1[6]+ tmpl[5]) * cO; block[j][i] = tmp[j] + tmp[j1];
tmp[0] = tmp1[0] + tmp1[3]; block[j1][i] = tmp[j] - tmp[j1];
tmp[1] = tmpl[1] + tmpl[2]; 1
tmp[2] = tmp1[1] - tmp1[2]; }
tmp[3] = tmpl[0] - tmpl[3];
for (j=0;j<4;j++){ I* Clipping */
i1=7-j for (i=0;i<8;i++)
block[i][j] = tmpl[j] + tmpl[j1]; for(j=0;j<8;j++){
block[i][j1] = tmp[j] - tmp][j1]; v=(Int) floor (block[i][] + 0.5);
1) block_out[i][j] =

(v<-maxval-1) ? -maxval-1 : ((v>maxval) ? maxval);

Figure B.1: C program of IDCT in MoMuSys reference softwardéudmg clipping.

100

Block IDCT: (Horizontal Processing)

Block_IDCT:
{NOP | NOP | NOP | MOVI.L C5,0x5A82 | NOP . __ ymp[3]+c3
{NOP | NOP | NOP | MOVI.L C8,0x3EC5 | NOP [NOP | NOP | NOP | NOP | FMUL D15,010,C12 }

{ NOP | NOP | NOP | MOVI.L C9,0x3B21 [NOP {NOP | NOP | NOP | NOP | SRAI D15,D15,15}
{NOP | NOP | NOP | MOVI.L C10,0x3537 | NOF ; _ tmp[5]*c5

{NOP | NOP | NOP | MOVI.L C11,0x2D41 | NOF { NOp | NOP | NOP | SUB D9,012,013 | FMUL D4,0113 }

{NOP | NOP | NOP | MOVI.L C12,0x238E | NOF { NOP | NOP | NOP | NOP | SRAI D4,D4,15}

{NOP | NOP | NOP | MOVI.L C13,0x187E [NOF st = .. tmp[2]*c6

{ NOP | NOP | NOP | MOVI.L C14,0x0C7C | NO {NOP | NOP | NOP | ADD D10,D14,D15 | FMUL D5,0@39 }
{NOP | NOP | NOP | MOVI.L A5,DCT_Block |N'{ NOP | NOP | NOP | NOP | SRAI D5,D5,15 }

{NOP | NOP | NOP | MOVI.H A5,DCT Block [N ;g = .. tmp[6]*c2

{NOP | NOP | NOP | MOVI.L A6,R_Block_2D | N NOP | NOP | NOP | SUB D12,08,09 | FMUL D6,019G
{NOP | NOP | NOP | MOVI.H A6,R_Block_2D |1 { NOP | NOP | NOP | NOP | SRAI D6,D6,15 }

{ SET_LBCI RBC2,0x8 | NOP | NOP |NOP |NO itmp1[5] = e-f ... -- tmp[2]-c2

Horizontal Processing: {NOP | NOP | NOP | SUBD13,011,D10 | FMUL D7,[33 }
{ NOP | NOP | NOP | LW DO,A5 | NOP } {NOP | NOP | NOP | NOP | SRAI D7,D7,15}

{NOP | NOP | NOP | ADDI A5,A5,4 | NOP } Amp1[6] = h-g ... -- tmp[6]*c6

{NOP | NOP | NOP | LW D8,A5| NOP } {NOP | NOP | NOP | SUBD1,D4,D5| ADD AC4,D8,39
{NOP | NOP | NOP | ADDI A5,A5,4 | NOP } itmp1[2] = tmp[2]*c6-tmp[6]*c2 ... -- tmp[4] = &f

{NOP | NOP | NOP | LW D1,A5| NOP } {NOP | NOP | NOP | ADD D3,D6,D7 | ADD AC7,D1010 }
{NOP | NOP | NOP | ADDI A5,A5,4 | NOP } :tmp1[3] = tmp[2]*c 2+tm p[6]*c6 ... - tmp[7] = hg

{NOP | NOP | NOP | LW D9,A5| NOP} {NOP | NOP | NOP | SUBD14,D13,D12 | ADD ACO,[D8 }
{NOP | NOP | NOP | ADDI A5A5,4 | NOP } :d14 = tmp1[6]-tmp1[5] ... -- tmp[0]= tmp1[0]+tm1[3]

{ NOP | NOP | NOP | LW D2,A5 | NOP } {NOP | NOP | NOP | ADD D15,013,D12 | ADD AC1,D21 }
{NOP | NOP | NOP | ADDI A5,A5,4 | NOP } :d15 = tmp1[6]+tmpl[5] ... -- tmp[l]= tmp1[1]+tml[2]
{NOP | NOP | NOP | LW D10,A5 [NOP } {NOP | NOP | NOP | NOP | FMUL AC5,D14,C5 }

{ NOP | NOP | NOP | ADDI A5,A5,4 | NOP } {NOP | NOP | NOP | NOP | SRAI AC5,AC5,15 }

{NOP | NOP | NOP | LW D3,A5| NOP } tmp[5] = (tmp1[6]-tmp 1[5])*c0

{NOP | NOP | NOP | ADDI A5,A5,4 | NOP } {NOP | NOP | NOP | NOP | FMUL AC6,D15,C5 }

{NOP | NOP | NOP | LW D11,A5 |[NOP } {NOP | NOP | NOP | NOP | SRAI AC6,AC6,15 }

{NOP | NOP | NOP | ADD D4,D0,D2 | FMUL tmp[6] = (tmp 1[6]+tmp1[5])*c 0

D12,08,C14 } {NOP | NOP | NOP | MOVI.L D15,28 | SUB AC2,D 21D}
{NOP | NOP | NOP | NOP | SRAI D12,D12,15 } tmp[2] = tmp1[1]-tmp1[2]

;tmp[0]+tmp[4] -- tmp[1]*c7 {NOP | NOP | NOP | MOVI.H D15,0 | SUB AC3,D0,03
{NOP'| NOP | NOP | SUBD5D0D2|FMUL :mp[3] = tmp1[0]-tmp1[3]

D13,011,C8 } {NOP | NOP | NOP | SUB A5,A5,D15 | ADD D0,AC0,AG
{NOP | NOP | NOP | NOP | SRAI D13,D13,15} {NOP | NOP | NOP | SW D0,A5,0 | ADD D8,AC1,AC6 }

stmp[0]-tmp[4] -~ tmp[7]*c1 {NOP | NOP | NOP | ADDI A5,A5,4 | ADD D1,AC2,ACh
{NOP | NOP | NOP | NOP | FMUL D14,D8,C8 } { NOP | NOP | NOP | SW D8,A5,0 | NOP }
{NOP | NOP | NOP | NOP | SRAID14,D14,15} { NOP | NOP | NOP | ADDI A5,A5,4 | ADD D9,AC3,ACk
;oo tmp[l]*cl {NOP | NOP | NOP | SW D1,A5,0 | NOP }
{NOP | NOP | NOP | NOP | FMUL D15,D11,C14 ¢ NOP | NOP | NOP | ADDI A5,A5,4 | SUB D2,AC3,ACH
{NOP | NOP | NOP | NOP | SRAI D15,D15,15} { NOP | NOP | NOP | SW D9,A5,0 | NOP }

;oo tmp[7]*c7 {NOP | NOP | NOP | ADDI A5,A5,4 | SUB D10,AC2,AC}
{NOP | NOP| NOP |SUBD8D12,D13 |FMUL {NOP | NOP | NOP | SW D2,A5,0 [NOP }

D0,D4,C11} {NOP | NOP | NOP | ADDI A5,A5,4 | SUB D3,AC1,ACh
{NOP | NOP | NOP | NOP | SRAIDO,DO0,15} {NOP | NOP | NOP | SW D10,A5,0 |[NOP }

e = .. -- tmpl[0] = (tmp[0]+tmp[4])*c4 {NOP | NOP | NOP | ADDI A5,A5,4 | SUB D11,AC0,AC}
{NOP | NOP | NOP | ADD D11,D14,D15 | FMUL {NOP | NOP | NOP | SW D3,A5,0 | NOP }

D2,D5,C11 } {NOP | NOP | NOP | ADDI A5,A5,4 | NOP }

{NOP | NOP | NOP | NOP | SRAID2,D2,15} {NOP | NOP | NOP | SW D11,A5,0 |[NOP }

sh=_.. -- tmpl[l] = (tmp[0]-tm p[4])*c 4 { LBCB RBC2,Horizontal_Processing| NOP | NOP QR | NOP }

{NOP | NOP | NOP | NOP | FMUL D12,D10 CLC{NOP | NOP | NOP | ADDI A5,A5,4 | NOP }
{NOP | NOP | NOP | NOP | SRAID12,D12,15} {NOP | NOP | NOP | MOVI.L A5,DCT_Block [NOP }

; -- tmp[5]*c3 {NOP | NOP | NOP | MOVI.H A5,DCT_Block | NOP }
{NOP | NOP| NOP | NOP | FMUL D13,D9,C12

{NOP | NOP | NOP | NOP | SRAI D13,D13,15 }
;== tmp[3]*c5

{NOP | NOP| NOP | NOP | FMUL D14,09,C10}
{NOP | NOP | NOP | NOP | SRAI D14,D14,15}

Figure B.2: Assembly code of our initial IDCT implementatidro(izontal processing).

101

Block IDCT: (Veritical and Clipping)

{NOP| NOP| NOP |MOVI.L A6,R_Block_2D |NOP }
{NOP| NOP| NOP |MOVI.H A6 R_Block_2D | NOP }
{NOP| NOP| NOP |ADDIA6,A6,224 | NOP }
{SET_LBCI RBC2,0x8 | NOP | NOP |[NOP [NOP}
Vertical_P rocessing:

:{NOP | ADDID1D1,1| NOP |NOP [NOP }

{{NOP | MOVI.L D7,4| NOP |NOP |NOP}

{NOP| NOP| NOP |LW DO,A5 |NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP |LW D8,A5 |NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP|LW D1,A5 |NOP }

{NOP | NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP|LW D9,A5 |[NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP |LW D2,A5 |NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP |[LW D10,A5 |NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP|LW D3,A5 |[NOP }

{NOP| NOP| NOP |ADDIA5,A5,32 | NOP }

{NOP| NOP| NOP|LW D11,A5 |NOP }

{NOP| NOP| NOP |ADD D4,00,02 |FMUL D12,D818 }
{NOP| NOP| NOP |NOP | SRAI D12,012,15 }
;tmp[0]+tmp([4] -- tmp[1]*c7

{NOP| NOP| NOP |SUB D5,00,D2 |FMUL D13,D 108 }
{NOP| NOP | NOP |NOP | SRAI D13,013,15 }
;tmp[0]-tmp[4] -- tmp[7]*cl

{NOP| NOP| NOP |NOP |FMUL D1408,C8}

{NOP| NOP| NOP |NOP | SRAI D14,D14,15}

;== tmp[l]¥cl

{NOP| NOP| NOP |NOP |FMUL D15D11,C14}
{NOP | NOP| NOP |NOP | SRAI D15,015,15 }

;- tmp[7]Fc7

{NOP| NOP| NOP |SUB D8,012,D13 | FMUL DO,D@11 }
{NOP| NOP| NOP |NOP | SRAI D0,D0,15 }

;6= ... - tmpl[0] = (tmp[0]+tmp[4])*c4

{NOP| NOP| NOP |ADD D11,014,D15 |[FMUL D 2,051 }
{NOP| NOP| NOP |NOP | SRAI D2,D2,15 }

sh=.. - tmpl[1l] = (tmp[0]-tmp[4])*c4

{NOP| NOP| NOP|NOP |FMUL D12,010,C10 }
{NOP| NOP| NOP |NOP | SRAI D12,012,15 }

;.- tmp[5]*c3

{NOP| NOP| NOP |[NOP|FMULD13,09,C12}
{NOP| NOP | NOP |NOP | SRAI D13,013,15 }

;== tmp[3]*c5

{NOP| NOP| NOP [NOP|FMULD14,09,C10}
{NOP| NOP| NOP |NOP | SRAI D14,D14,15 }

;- tmp[3]*c3

{NOP| NOP| NOP |[NOP|FMULD15,010,C12}
{NOP| NOP| NOP |NOP | SRAI D15,015,15 }

; -- tmp[5]*c5

{NOP| NOP| NOP [SUB D9,012,D13 |FMUL D4,DA13 }
{NOP| NOP| NOP |NOP | SRAI D4,D4,15 }

f=. - tmp[2]*c6

{NOP| NOP| NOP |ADD D10,014,015 |FMUL D5,DB9 }
{NOP| NOP| NOP |NOP | SRAI D5,D5,15 }

9= ... - tmp[6]*c2

{NOP| NOP| NOP |SUB D12,D8,D9 |[FMUL D6,D 19C}
{NOP | NOP| NOP |NOP | SRAI D6,D6,15 }

tmpl[5] =e-f... -- tmp[2]*c2

{ NOP| NOP| NOP |SUBD13,D11,D10 |
FMUL D7,D3,C13 }

{ NOP| NOP| NOP|NOP |SRAID7,D7,15}

;tmp1[6] = h-g ... -- tmp[6]*c6

{NOP | NOP | NOP | SUBD1,D4,D5| ADD AC4,D8,09
tmp1[2] = tmp[2]*c6-tmp[6]*c2 ... -- tmp[4] = ef

{NOP | NOP | NOP | ADD D3,D6,D7| ADD AC7,D1010 }
;tmp 1[3] = tmp[2]*c 2+tmp[6]*c6 ... - tmp[7] = kg
{NOP | NOP | NOP | SUBD14,D13,D12 | ADD ACO,™® }
;d14 = tmpl[6]-tm p1[5] ... -- tmp[0]= tmpl[0]+tml[3]
{NOP | NOP | NOP | ADD D15,013,D12 | ADD AC1,021 }
;d15 = tmp1[6]+tmpl[5] ... -- tmp[l]= tmp1[1]+tpl[2]
{NOP | NOP | NOP | NOP | FMUL AC5,D14,C5 }
{NOP | NOP | NOP | NOP | SRAI AC5,AC5,15}

tmp[5] = (tmp1[6]-tmp 1[5])*cO

{NOP | NOP | NOP | NOP | FMUL AC6,D15,C5 }
{NOP | NOP | NOP | NOP | SRAI AC6,AC6,15 }

;tmp[6] = (tmp1[6]+tmp1[5])*cO

{NOP | NOP | NOP | MOVI.L D15,224 | SUB AC2,D21 }
itmp[2] = tmp1[1]-tmp1[2]

{NOP | NOP | NOP | MOVI.H D15,0 | SUB AC3,D0,0}3
;tmp (3] = tmp1[0]-tmp1[3]

{NOP | NOP | NOP | SUB A6,A6,D15 | ADD D0,AC0,AC
{NOP | NOP | NOP | SUB A5,A5,D15 | NOP }

{NOP | NOP | NOP | SW DO0,A6,0 | ADD D8,AC1,AC6 }
{NOP | NOP | NOP | ADDI A6,A6,32 | ADD D1,AC2 AL}
{NOP | NOP | NOP | SW D8,A6,0 | NOP }

{NOP | NOP | NOP | ADDI A6,A6,32 | ADD D9,AC3, AL}
{NOP | NOP | NOP | SW D1,A6,0 | NOP }

| NOP | NOP | ADDI A6,A6,32 | SUB D2,AC3,AC}
| NOP | NOP | SW D9,A6,0 | NOP }

| NOP | NOP | ADDI A6,A6,32 | SUB D10,AC2C5% }
| NOP | NOP | SW D2,A6,0 | NOP }

| NOP | NOP | ADDI A6,A6,32 | SUB D3,AC1,AC
|

|

|

|

NOP | NOP | SW D10,A6,0 | NOP }

NOP | NOP | ADDI A6,A6,32 | SUB D11,ACOCA }
NOP | NOP | SW D3,A6,0 | NOP }

NOP | NOP | ADDI A6,A6,32 | NOP }

NOP | NOP | SW D11,A6,0 | NOP }

BCB RBC2,Vertical_Processing| NOP | NOP | NOROP }
OP | NOP | NOP | ADDI A5,A5,4 | NOP }

OP | NOP | NOP | ADDI A6,A6,4 | NOP }

{NOP | NOP | NOP | NOP | NOP }

{ SET_LBCI RBC2,64 |NOP |NOP |MOVI.L A6,R_Bi&_2D |
NOP }

{NOP |NOP |NOP | MOVIH A6,R_Block_2D | NOB
Clip_Block:

{NOP |NOP |NOP | LW DO0,A6,0 |NOP }

{NOP |NOP |NOP | NOP | NOP }

{NOP |NOP |NOP | NOP | NOP }

{NOP |NOP |NOP |SLTIDO0,0,p12,p13 |NOP }

{NOP |NOP |NOP | SGTI D0,255,p14,p15 | NGP

{ LBCB RBC2,Clp_Block |NOP | NOP | SW D0,A6,0NOP }
{NOP |NOP |NOP | (p12)SW CO0,A6,0 |NOP }

{NOP |NOP |NOP | (p14)SW C13,A6,0 |[NOP }

{NOP |NOP |NOP | ADDI A6,A6,4 |NOP }

{JRRO |[NOP |NOP |NOP |NOP }

{NOP |NOP |NOP | NOP | NOP }

{NOP |NOP |NOP | NOP | NOP }

{NOP |NOP |NOP | NOP | NOP }

Figure B.3: Assembly code of our initial IDCT implementatio@itical processing and

clipping).

102

Optimized Block IDCT: (Horizontal Processing) \

Block_IDCT:

{BDR R4 |[BDT DO |NOP |NOP |NOP };Ré4 = Hefl

{BDRR5|BDT D1|NOP|NOP |NOP };R5 = buffar

{BDR R3 |BDT D4 |NOP |NOP |NOP };R3 = ginalrest

{BDR R2 |BDT D3|NOP|NOP |NOP };R2= origibit count

{BDR R6 |BDT D8|NOP |NOP |NOP }

{NOP| MOVI.L C13,0xFF | NOP | MOVI.L C13,0xFFNOP }

{NOP| MOVI.L C14,0xFF00 | NOP |[MOVIL C14,0xPR [NOP }

{NOP| MOVI.L C14,0xFFFF | NOP |MOVI.L C14,0xfFfF [NOP }

{NOP| MOVI.L C1,0x3EC5| NOP |[MOVI.L CL,0x3ECENOP }

{NOP| MOVI.L C2,0x3B21 | NOP [MOVI.L C2,0x3B2LNOP }

{NOP | MOVI.L C3,0x3537 | NOP [MOVI.L C3,0x353[/]NOP }

{NOP| MOVI.L C4,0x2D41 | NOP |MOVI.L C4,0x2D4|NOP }

{NOP| MOVI.L C50x238E| NOP |MOVI.L C50x238ENOP }

{NOP| MOVI.L C6,0x187E| NOP [MOVI.L C6,0x187ENOP }

{NOP| MOVI.L C7,0x0C7C | NOP |MOVI.L C7,0x0C7{NOP }

{NOP| MOVI.L C8,0x0 | NOP |[MOVI.L C8,0xONOP }

{NOP| MOVI.HC8,0x4 | NOP|MOVI.H C8,0x4NOP }

{NOP| MOVI.L C9,0xC13B | NOP |MOVI.L C9,0xC13BNOP } -Cl1 -3EC5

{NOP| MOVI.L C10,0xCAC9 | NOP |[MOVI.L C10,0xC&9 | NOP };-C3

{NOP| MOVI.L C11,0xDC72| NOP [MOVI.L C11,0xDT2 | NOP }-C5

{NOP| MOVI.L C12,0xF384 | NOP |MOVIL C12,0xB3 [NOP };-C7

{NOP | MOVI.L A5,DCT _Block | NOP [MOVI.L A5DCTBlock [NOP };.word

{NOP| MOVI.HA5,DCT _Block | NOP |MOVI.H A5,DCTBlock | NOP } ;word

{SET_LBCI RBC2,0x4 | NOP | NOP |ADDI A5,A5,12BNOP }

Horizontal_P rocessing:

{NOP| LW D8A54 | NOP|LW D8,A5,4 |NOP

{NOP| LW D9A512 | NOP|LW D9,A5,12 |NOP

{NOP| LW D10,A5,20 | NOP |LW D10,A5,20 |[NOP

{NOP| LW D11,A528 | FMUL AC4,08,C7|LW D11328 |[FMULAC4,D8,C7 }itmp[1]*c7
{NOP| LW DOA5 | FMUL AC5D8,C5|LW DO0A5 |FMUL AC5,D8,C5 }itmp[1]*c5
{NOP| LW D1,A58 | FMULAC6,D8,C3 |LW D1,AB |FMULAC6,D8,C3 }itmp[1]*c3
{NOP| LW D2,A516 | FMUL AC7,08,C1|LW D2,A86 |FMUL AC7,08,C1}tmp[L]*cl
{NOP| LW D3A524 | FMAC AC4,D9,C11|LW D3A24 |FMAC AC4,D9,C11 };-tmp[3]*c5
{NOP | NOP|FMAC AC5D9,C9 |[NOP |FMAC AC5,089 } -tmp[3]*cl

{NOP| NOP |FMAC AC6,09,C12 |[NOP |FMAC AC6,0812 } ;-tmp[3]*c7

{NOP | NOP |FMAC AC7,09,C3 |NOP |FMAC AC7,0@3 };+tmp[3]*c3

{NOP| NOP |FMAC AC4,D10,C3 |[NOP |FMAC AC4,D1C3 } ;+tmp[5]*c3

{NOP | NOP | FMAC AC5,010,C7 |[NOP |FMAC AC5,1C7 };+tmp[5]*c7

{NOP| ADD D4,D0,D2 | FMAC AC6,010,C9 |ADD D4,0D2 |[FMACAC6,010,C9 } -tmp[5]*cl
{NOP| SUB D5,00,02 | FMAC AC7,010,C5 | SUB D50DD2 |[FMACAC7,D10,C5} +tmp[5]*c5
{NOP |[NOP |FMUL D0,D4,C4 |[NOP |FMULDOMC4 };tmp1[0]->69

{NOP |[NOP |FMUL D2,D5,C4 |NOP |[FMULD2MC4 };tmpl[1]->76

{NOP| NOP|FMUL D4,D1,C6 |[NOP|FMUL D4,D1,C;tmp[2]*c6 ->77

{NOP| NOP |FMUL D5,03,C2 [NOP |FMUL D5,D3,CR;tmp[6]*c2 ->84
{NOP| NOP|FMUL D6,03,C6 |[NOP|FMUL D6,D3,Cf;tmp[6]*c6 ->85
{NOP| NOP|FMUL D7,01,C2 [NOP |FMUL D7,D1,0;tmp[2]*c2 ->92
{NOP| NOP |FMAC AC4,D11,C9 |[NOP |FMAC AC4,011C9 } ;-tmp[7]*cl

{NOP | NOP | FMAC AC5,011,C3 |[NOP |FMAC AC5,01C3 } ;+tmp[7]*c3

{NOP| SUB D1,04,D5|FMAC AC6,011,C11 |SUB DD4,D5|FMACAC6,D11,C11 };-tmp[7]*c5

{NOP| ADD D3,06,D7 | FMAC AC7,011,C7 |ADD D®6,D7 | FMAC AC7,011,C7 };+tmp[7]*c7

{NOP |[NOP |BFACO,D0O,D3 |[NOP |BF ACO,D03D} ;USEBF

{NOP |NOP |BFAC2,D2,01 |[NOP |BF AC2,D21D} ;USE BF

{NOP| NOP |BF DO,AC0,AC7 |NOP |BF DO,ACOGA } ;USE BF

{NOP| ADDI D0,D0,1024 |BF D8, AC2,AC6 | ADDI ©,D0,1024 | BF D8 ,AC2,AC6 }

{NOP| ADDI D8,D8,1024 | SRAI D0,D0,11 |ADDDS8,D8,1024 | SRAI D0,D0,11 }

{NOP| ADDI D1,D1,1024 | SRAI D8,D8,11 |ADDID1,01,1024 |SRAI D8,D8,11}

{NOP| ADDI D9,09,1024 | SRAI D1,D1,11 |ADDD9,D9,1024 | SRAI D1,D1,11}

{NOP| DSwW D0,D8,A5,0 | SRAl D9,D9,11 |DSW DD§ A5,0 |SRAID9,D9,11}

{NOP|DSW D9,D1,A5,24 |BF D4,AC3,AC5 |DSW DDB1,A5,24 |BF D4,AC3AC5 } ;USE BF

{NOP| ADDI D4D4,1024 |[BFD10,AC1,AC4 |ADDID4,D4,1024 |BF D10,AC1,AC4}

{NOP| ADDI D10,010,1024 | SRAl D4,D4,11 |AD D10,010,1024 |SRAID4,D4 11}

{NOP| ADDI D5,D5,1024 | SRAI D10,010,11|ADDD5,05,1024 | SRAl D10,010,11}

{LBCB RBC2,Horizontal_Processing | ADDI D11,D11024 | SRAI D5,05,11 |ADDI D11,D011,1024 | SRAK,D5,11 }
{NOP | DSW D4,0D10,A5,8 [SRAI D11,011,11 |DSW4,D10,A58 |SRAI D11,D11,11}

{NOP| DSW D11,D5,A5,16| NOP |DSW D11,D5A518DP }

{NOP| ADDIA5,A532 |NOP |ADDI A5,A5,32 |[NOB

S

Figure B.4: Assembly code of optimized IDCT implementatioar{fontal processing).

103

Optimized Block IDCT: (Vertical and Clipping)

vertical

{NOP | MOVIL A5 DCT _Block | NOP |MOVI.L A5 DCT_Block |[NOP }

{NOP | MOVI.H A5,DCT _Block | NOP | MOVI.H A5,DCTBlock [NOP }

{NOP | MOVIL A6,R_Block_2D | NOP |[MOVI.L A6 ,RBlock_2D |NOP }

{NOP | MOVI.H A6,R_Block_2D | NOP |MOVI.H A6,RBlock_2D |NOP}

{NOP | NOP | NOP |ADDIA5,A5,16 |NOP }

{SET_LBCIRBC2,0x4 | NOP | NOP |ADDI A6,A6,16NOP }

Vertical_Processing:

{NOP | LW DO, A5 | NOP |LW DO,A5 |OP }

{NOP | LW D8,A5,32 | NOP |LW D8,A5,32 |OP}

{NOP | LW D1,A5,64 | NOP|LW D1,A5,64 |OIP}

{NOP | LW D9,A5,96 | NOP |LW D9,A5,96 |OIP}

{NOP |ADDI A5,A5,128 |[FMULAC4,D8,C7 |ADDI A5A5,128 | FMUL AC4,D8,C7 }
{NOP | LW D2,A50 |FMUL AC5,D8,C5 |[LW D2,30 |FMULAC5D8,C5}
{NOP | LW D10,A5,32 |FMULAC6,D08,C3 |LW D185,32 |FMUL AC6,08,C3}
{NOP | LW D3,A5,64 |FMUL AC7,08,C1 |LW D3464 |FMUL AC7,D8,C1}
{NOP | LW D11,A5,96 |FMACAC4,D9,C11|LW D1A596 |FMAC AC4,D9,C11}
{NOP |ADDI A5,A5,96 | FMACAC5D9,C9 |ADDI A55,96 | FMAC AC5D9,C9 }
{NOP | NOP |FMAC AC6,09,C12 |NOP |FMAC AC6,0012 } -tmp[3]*c7

{NOP | NOP |FMAC AC7,09,C3 |NOP |FMACACT7,D®@3 };+mp[3]*c3

{NOP | NOP |FMAC AC4,010,C3 |NOP | FMAC AC4,DIC3 } ;+tmp[5]*c3

{NOP | NOP |FMAC AC5,010,C7 |NOP |FMAC AC5,DIC7 } ;+tmp[5]*c7

{NOP | ADD D4,D0,D2 |[FMACAC6,010,C9 |ADD D4 ®,D2 | FMAC AC6,010,C9 };-tmp[5]*cl
{NOP | SUBD5D0D2|FMACAC7,010,C5 |SUB D50DD2 | FMAC AC7,D10,C5 };+tmp[5]*c5
{NOP |NOP |FMULDO,D4,C4 |NOP |FMUL DOMC4 };tmpl[0]->69

{NOP |NOP |FMULD2,05,C4 |NOP |FMUL D2MC4 };tmpl[1]->76

{NOP | NOP |FMUL D4,D1,C6 |NOP |FMUL D4,D1,C6;tmp[2]*c6 ->77

{NOP | NOP |FMUL D5,D3,C2 |NOP |FMUL D5,D3,CRitmp[6]*c2 ->84

{NOP | NOP |FMUL D6,D3,C6 |NOP |FMUL D6,D3,Ctmp[6]*c6 ->85

{NOP | NOP |FMUL D7,D1,C2 |NOP |FMUL D7,D1,C2itmp[2]*c2 ->92

{NOP | NOP |FMAC AC4,D11,C9 |NOP |FMAC AC4,01C9 } ;-tmp[7]*cl

{NOP | NOP |FMAC AC5,011,C3 |NOP | FMAC AC5,01C3 } ;+tmp[7]*c3

{NOP | SUB D1,D4,D5|FMAC AC6,011,C11 |SUB DO4,D5 | FMAC AC6,D11,C11 };-tmp[7]*c5
{NOP | ADD D3,D6,07 |FMAC AC7,011,C7 |ADD D®6,07 | FMAC AC7,D11,C7 } ;+tmp[7]*c7
{NOP |NOP |BFACO0,D0,D3 |[NOP |BFACO0DO03D} ;USE BF

{NOP |NOP |BFAC2,D2,D1 |NOP |BFAC2,D2ID} ;USE BF

{NOP |NOP |BF DO,ACO,AC7 |NOP|BFDOAQOC7 } ;USE BF

{NOP | ADD DO0,DO,C8 |BF D8 AC2AC6 |ADD @©DO,C8 |BF D8 ,AC2,AC6 }
{NOP | ADD D8,D8,C8 | SRAI D0,D0,19 |ADD ®D8,C8 | SRAI D0,D0,19 }
{NOP | ADD D1,01,C8 | SRAI D8,08,19 |ADD DD1,C8 |SRAl D8,08,19}
{NOP | ADD D9,09,C8 | SRAI D1,01,19 |ADD DD9,C8 | SRAI D1,D1,19}
{NOP | SWDO0,A6,0 |SRAI D9,D9,19 | SW D0,A6,0/]SRAID9,D9,19}

{NOP | SWD8,A6,32 |BF D4,AC3AC5 |SW D8 A®3BFD4,AC3AC5 } ;USEBF
{NOP | ADD D4,D4,C8 |BFD10,AC1,AC4 |ADD4,D4,C8 |BFD10,AC1,AC4}
{NOP | ADD D10,010,C8 | SRAl D4,D4,19 |ADDD10,D10,C8 | SRAI D4,D4,19}
{NOP | ADD D5,05,C8 |SRAI D10,010,19 |ADDD5,D5,C8 |SRAI D10,010,19}
{NOP | ADD D11,011,C8 | SRAI D5D5,19 |ADDD11,D11,C8 | SRAI D5,D5,19}
{NOP | SWD4,A6,64 | SRAl D11,D11,19| SW D4,A®%, | SRAI D11,D11,19 }

{NOP | SW D10,A6,96 | NOP | SW D10,A6,96/ NOP }

{NOP | ADDI A6,A6,128 |[NOP | ADDI A6,A6,128 |[NB }

{NOP | SWD11,A6,0 |NOP |SW D11,A6,0 |0}

{NOP | SWD5A6,32 |NOP |SW D5,A6,32 | W0}

{LBCB RBC2,Vertical_Processing| SW D9,A6,64 NOP |SW D9A6,64 |NOP}
{NOP | SWD1A6,96 |NOP |SW D1,A6,96 |WC}

{NOP | ADDI A5,A5,-220 | NOP | ADDI A5,6A5,-220NOP }

{NOP | ADDI A6,A6,-124 | NOP |ADDI A6,A6,-124NOP }

clipping

{SET_LBCIRBC1,32 |MOVI.L A6,R_Block_2D |NOP|[MOVI.L A6,R_Block_2D |[NOP }
{NOP |MOVI.H A6,R_Block_2D |NOP |MOVI.H A6 RBlock_2D |NOP }

{NOP |NOP |NOP |ADDI A6,A6,128 |NOP }

Clip_Block:

{NOP |LW DO,A6,0 |[NOP |LW DO,A6,0 |[NOP }

{NOP |NOP |[NOP |NOP |NOP }

{NOP |NOP |NOP |NOP |NOP }

{NOP |SLTI DO0,-256,p2,p3 |NOP |SLTIDO,-2564,p5 [NOP }

{NOP |SGTI DO0,255,p6,p7 |NOP |SGTIDO0,255,p8 |[NOP }

{LBCB RBC1,Clip_Block | SW D0O,A6,0 |[NOP |SW DA6,0 |NOP }

{NOP |(p2)SW C14,A6,0 |NOP |(p4)SW C14 A6JINOP }

{NOP |(p6)SW C13,A6,0 |NOP |(p8)SW C13,A6JINOP }

{NOP |ADDI A6,A6,4 |[NOP |ADDIA6,A6,4 |NOP}

Figure B.5: Assembly code of optimized IDCT implementatioer{ical processing and

clipping).
104

-\J—-'i,%_‘,
TR

g 3F-Ltagl- 1=

I
an
I

[
o

PR RE 50 T AR
Al g oI EL BN TG EL}-,{;ﬁ__I_;’I_jj‘jﬁ,

7

» 2 ALp 4o T A PACDSP =
Lt 2 MPEG-4 #L30 j3AS RIc WA 0 A5 S F S4B L 1 g AR
fe DSP =+ 5+ 2

—~

GREEARG AR T PRE S SHR AL
BEES & o

