
國 立 交 通 大 學 

電子工程學系 電子研究所碩士班 

 

碩 士 論 文 
 

 

適用於高解析度靜態影像與視訊應用之 

H.264/MPEG-4 AVC 框內編解碼器設計 

Design of H.264/MPEG-4 AVC Intra Codec for High 

Definition Size Still Image and Video Applications 

 

 

研究生： 古君偉 

指導教授： 張添烜 博士 

中 華 民 國 九十五 年 七 月 



適用於高解析度靜態影像與視訊應用之 

H.264/MPEG-4 AVC 框內編解碼器設計 

Design of H.264/MPEG-4 AVC Intra Codec for High 

Definition Size Still Image and Video Applications 

 

研 究 生：古君偉      Student: Chun-Wei Ku 

指導教授：張添烜 博士    Advisor: Dr. Tian-Sheuan Chang 

 

國 立 交 通 大 學 

電子工程學系 電子研究所 

碩 士 論 文 
 

 

 

A Thesis 
Submitted to Institute of Electronics 

College of Electrical Engineering and Computer Science 
National Chiao Tung University 

in Partial Fulfillment of the Requirements 
for Degree of Master of Science 

in 
Electronic Engineering 

July 2006 
Hsinchu, Taiwan, Republic of China 



誌謝 

首先，要感謝我的指導教授－張添烜博士，在研究所生涯中，除了給我許多

支持與鼓勵之外，在研究上也常和我互相討論想法，解決我的困難與疑問。張教

授的支援讓我無後顧之憂，得以專心致力於研究，才有這本論文的誕生。對於張

教授的恩情，感激不盡。 

同時也要謝謝我的口試委員們，交大電子李鎮宜主任，清大電機陳永昌教授，

感謝各位在百忙之中抽空前來指導我，各位教授的寶貴意見讓本篇論文得以更加

完備。 

接著，我要感謝實驗室的夥伴。謝謝鄭朝鐘學長，帶領我進入視訊處理的領

域，教導許多研究的技巧和寶貴的經驗，並加強我的設計功力，奠定往後比賽得

獎或硬體設計的基礎。謝謝張彥中學長和林佑昆學長，給予課程或研究上的指導，

讓研究能順利進行。謝謝王裕仁同學，和我一起參加兩屆 IC 競賽皆拿下不錯的成

績，並常常交流彼此的想法。也謝謝蔡旻奇同學和余國亘同學，一起共同完成編

碼器的設計。此外，要謝謝海珊學長、史彥芪學長、吳錦木同學、子筠、嘉俊、

得瑋、秈璟、英澤等學弟，你們的幫忙讓我的實驗室生活能順利渡過。所有的一

切，都是我在交大的寶貴回憶。 

最後，我要感謝我的家人們，我的父親、母親、弟弟，你們的默默支持，是

我能夠完成學業的最大動力。 

在此，我謹把這篇論文獻給所有愛我與我愛的人。 



 

 i

適用於高解析度靜態影像與視訊應用之

H.264/MPEG-4 AVC 框內編解碼器設計 

研究生：古君偉       指導教授：張添烜博士 

國立交通大學 

電子研究所 

 

摘要 

近幾十年來，數位視訊科技已被廣泛地使用並成為生活中不可或缺的一部

分。隨著數位訊號處理的發展，以及對較佳編碼效能的要求，H.264/AVC 被認為

是次世代的國際視訊編碼標準。和早期的標準相比，在強大的編碼技術下，新的

視訊標準可以明顯地降低資料量但仍維持視訊品質。在這些技術中，空間性的框

內編碼是具有高編碼效率的新工具。高品質的編碼效率使得框內編碼不但適用於

單張畫面的視訊編碼，也適用於靜態影像壓縮，甚至可以和最新的影像編碼標準

JPEG2000 相比擬。然而，因為複雜的編碼技術，框內編碼的運算複雜度也比之前

的標準高的多。因此，如何減少複雜度並設計一個高效能的框內編碼器或解碼器，

而不會造成太多的效能衰減，是個重要的課題。在本篇論文中，我們提供一個框

內編解碼器和一個快速框內編碼器的兩個硬體實現來解決此問題。 

首先，我們提出一個演算法層次和系統層次皆最佳化的基本規格框內編解碼

器架構。為了在近似相同的視訊品質下減少硬體成本和增加處理速度，以硬體為

目的的演算法移除了佔空間的平面預測並以更準確的代價函數來加強模式決定過

程。在架構設計方面，除了快速的模組實現外，由巨圖塊層次的管線化型式和三



 

 ii

個排程技術來安排編碼過程，以避免閒置的週期並改善資料生產量。整個編解碼

器設計最後可以分別在 117MHz 時脈下支援高解析度 1280x720 尺寸 30fps 的即時

視訊編碼，以及在 58MHz 下支援高解析度 1920x1080 尺寸的視訊解碼。 

另一個成果，是具有快速模式決定演算法和可變像素平行化技術，針對低功

率問題設計的基本規格框內編碼器。經由提出修改後的三步驟演算法流程，模式

決定的過程可以被縮短。此外，可變像素平行化的資料路徑也可以有效地節省約

一半處理週期，並導致較低的頻率需求。在交錯排程的技術和三個低功率考量的

策略下，新設計比之前的設計有較小的晶片面積，並只需 61MHz 即可支援高畫質

1280x720 尺寸 30fps 的即時視訊編碼。 

簡而言之，我們對於 H.264/AVC 框內編碼的貢獻可以分成兩個部分。一個貢

獻是框內編解碼器，在最小的硬體成本和處理速度的改進下，整合了編碼和解碼

的過程。另一個貢獻是快速框內編碼器，特性包括了降低運算複雜度，壓制頻率

需求，以及對於低功率課題的策略。 



 

 iii

Design of H.264/MPEG-4 AVC Intra Codec for High 

Definition Size Still Image and Video Applications 

Student: Chen-Wei Ku     Advisor: Dr. Tian-Sheuan Chang 

Institute of Electronics 

National Chiao Tung University 

 

Abstract 

For the recent decodes, digital video technology has been popularly used and become 

a necessary part in our daily life. With the development of digital signal processing and 

demand of better coding performance, H.264/AVC is regarded as the international video 

coding standard for the next generation. The new standard can achieve significant 

bitrate reduction compared to earlier standards but still maintains the video quality with 

its powerful coding techniques. In these techniques, the spatial intra coding is a newly 

proposed coding tool with high coding efficiency. The high-quality coding efficiency 

makes intra coding not only suitable for single-picture video coding but also for still 

image compression, and even competitve with the latest image coding standard like 

JPEG2000. However, due to the complicated coding techniques, computational 

complexity of intra coding is much higher than previous standards as well. Thus, how to 

reduce the complexity and to design a high-efficient intra coder or decoder without 

much performace degradation is an important issue. In this thesis, we contribute two 

hardware implementation of an intra frame codec and a fast intra frame encoder to solve 

this question. 

We first propose a baseline intra frame codec architecture with both algorithm-level 



 

 iv

and system-level optimization. To reduce hardware cost and increase processing speed 

while providing nearly the same video quality, the hardware-oriented algorithm removes 

the area-costly plane prediction and enhances the mode decision process with more 

accurate cost function. In the architecture design, in addition to fast module 

implementation the process is arranged by the macroblock-level pipelining style 

together with three scheduling techniques to avoid idle cycles and improve data 

throughput. The whole codec design finally can support high definition 1280x720 size 

30fps real-time video coding at 30fps when clocked at 117MHz and high definition 

1920x1080 size decoding at 58MHz respectively. 

The other work is the baseline intra frame encoder targeted on low-power issues with 

techniques like fast mode decision algorithm and vairable-pixel parallelism. The mode 

decision process is shortened by the proposed modified three-step algorithm. Besides, 

the vairable-pixel parallel datapath can also effectively save almost half of processing 

cycles and lead to lower frequency requirement. With the technique of interlaced 

scheduling and three strategies for low-power consideration, the new design has smaller 

chip area relative to previous designs and can support high definition 1280x720 size 

30fps real-time video coding at only 61MHz. 

In brief, our contributions to H.264/AVC intra coding can be divided into two parts. 

One contibution is the intra frame codec, which integrates both encoding and decoding 

processes with minor hardware cost and improvement of processing speed. The other 

contribution is the fast intra frame encoder, with features of reduction of computational 

complexity, suppression of frequency requirement, and strategies for low-power issues. 

  



 

 v

Content 

Chapter 1 Introduction ............................................................................... 1 

1.1. Motivation ............................................................................................................. 1 

1.2. Thesis Organization ............................................................................................... 4 

Chapter 2 Overview of H.264/AVC Standard........................................... 5 

2.1. Fundamental of H.264/AVC.................................................................................. 5 

2.1.1. Coding Structure............................................................................................. 5 

2.1.2. Features of Standard ....................................................................................... 7 

2.1.3. Profiles.......................................................................................................... 10 

2.2. Components of Baseline Intra Coding .................................................................11 

2.2.1. Intra Prediction ..............................................................................................11 

2.2.2. Cost Generation and Mode Decision............................................................ 12 

2.2.3. Transform ..................................................................................................... 14 

2.2.4. Quantization ................................................................................................. 15 

2.2.5. Entropy Coding ............................................................................................ 15 

Chapter 3 H.264/AVC Intra Frame Codec .............................................18 

3.1. Hardware Oriented Algorithm............................................................................. 18 

3.1.1. Enhanced SATD Function for Mode Decision............................................. 18 

3.1.2. Intra Plane Mode Removal ........................................................................... 20 

3.1.3. Simulation Results........................................................................................ 22 

3.2. System Level Scheme.......................................................................................... 27 

3.2.1. Analysis of Hardware Complexity ............................................................... 27 



 

 vi

3.2.2. Macroblock Level Pipelining ....................................................................... 29 

3.3. Architecture Design of Intra Codec..................................................................... 30 

3.3.1. Overall Architecture ..................................................................................... 30 

3.3.2. Schedule of Codec........................................................................................ 33 

3.3.3. Intra Prediction Generation Unit .................................................................. 35 

3.3.4. Transform Unit ............................................................................................. 37 

3.3.5. Quantization and De-quantization................................................................ 38 

3.3.6. Cost Generation and Mode Decision Unit.................................................... 39 

3.3.7. Reconstruction Path...................................................................................... 40 

3.3.8. Memory Organization................................................................................... 41 

3.3.9. CAVLC Codec.............................................................................................. 42 

3.4. Implementation Results ....................................................................................... 44 

3.4.1. Gate-count and Layout ................................................................................. 44 

3.4.2. Comparison................................................................................................... 46 

Chapter 4 Fast H.264/AVC Intra Frame Encoder .................................48 

4.1. Fast Algorithm for Intra Prediction ..................................................................... 48 

4.1.1. Survey of Fast Algorithm ............................................................................. 48 

4.1.2. Modified Fast Algorithm for Intra Prediction .............................................. 50 

4.1.3. Simulation Results........................................................................................ 53 

4.2. Architecture Design of Fast Intra Encoder .......................................................... 57 

4.2.1. Overall Architecture ..................................................................................... 57 

4.2.2. Scheduling of Encoder ................................................................................. 59 

4.2.3. Eight-pixel Parallel Datapath........................................................................ 60 

4.2.4. Memory Organization................................................................................... 62 



 

 vii

4.2.5. Strategies for Low Power Design................................................................. 63 

4.3. Implementation Results ....................................................................................... 65 

4.3.1. Gate-count and Layout ................................................................................. 65 

4.3.2. Comparison................................................................................................... 67 

Chapter 5 Conclusion................................................................................69 



 

 viii

List of Figures 

Fig. 1 Hierarchy of video data components ................................................................ 6 

Fig. 2 Basic structure diagram of H.264/AVC encoder .............................................. 7 

Fig. 3 Basic structure diagram of H.264/AVC decoder .............................................. 7 

Fig. 4 Three profiles of H.264/AVC ......................................................................... 10 

Fig. 5 Nine modes for intra 4x4 prediction............................................................... 12 

Fig. 6 Four modes for Intra 16x16 or 8x8 prediction ............................................... 12 

Fig. 7 Flow diagram of most probable mode selection............................................. 13 

Fig. 8 (a) Prefix and suffix bitstrings, (b) exp-Golomb bitstrings, (c) mapping for 

signed bitstrings.............................................................................................. 16 

Fig. 9 Example of CAVLC Coding........................................................................... 17 

Fig. 10 Four categorized types of intra prediction modes .......................................... 21 

Fig. 11 Intra plane mode for (a) 16x16 (b) 8x8 predictions........................................ 22 

Fig. 12 RD curves of [10] and proposed algorithm for sequence “Stefan” ................ 24 

Fig. 13 RD curves of [10] and proposed algorithm for sequence “Mobile”............... 24 

Fig. 14 RD curves of [10] and proposed algorithm for sequence “Paris” .................. 25 

Fig. 15 RD curves of [10] and proposed algorithm for sequence “Akiyo” ................ 25 

Fig. 16 RD curves of [10] and proposed algorithm for sequence “Foreman” ............ 26 

Fig. 17 RD curves of [10] and proposed algorithm for sequence “Coastguard” ........ 26 

Fig. 18 Ping-pong architecture with macroblock level pipelining for encoder .......... 29 

Fig. 19 Proposed architecture of baseline intra frame codec ...................................... 30 

Fig. 20 Encoder dataflow of the design ...................................................................... 31 

Fig. 21 Decoder dataflow of the design...................................................................... 32 



 

 ix

Fig. 22 Pipelined schedule for codec design............................................................... 35 

Fig. 23 Reconfigurable datapath of intra prediction generation unit .......................... 35 

Fig. 24 Examples of operations for four intra prediction modes ................................ 36 

Fig. 25 Hardware architecture of transform unit [20]................................................. 38 

Fig. 26 Quantization and de-quantization unit............................................................ 39 

Fig. 27 Cost generation and mode decision unit......................................................... 40 

Fig. 28 Memory organization in intra codec............................................................... 41 

Fig. 29 Architecture for CAVLC encoder................................................................... 42 

Fig. 30 Architecture for CAVLC decoder................................................................... 43 

Fig. 31 Layout of the codec chip ................................................................................ 45 

Fig. 32 Decision flow of fast three-step algorithm for intra prediction...................... 50 

Fig. 33 Fast three-step algorithm in pipeline structure ............................................... 51 

Fig. 34 Decision flow of modified three-step algorithm for intra prediction ............. 52 

Fig. 35 Modified fast three-step algorithm in pipeline structure ................................ 52 

Fig. 36 RD curves of [10] and proposed fast algorithm for sequence “Stefan” ......... 54 

Fig. 37 RD curves of [10] and proposed fast algorithm for sequence “Mobile” ........ 55 

Fig. 38 RD curves of [10] and proposed fast algorithm for sequence “Paris”............ 55 

Fig. 39 RD curves of [10] and proposed fast algorithm for sequence “Akiyo”.......... 56 

Fig. 40 RD curves of [10] and proposed fast algorithm for sequence “Foreman” ..... 56 

Fig. 41 RD curves of [10] and proposed fast algorithm for sequence “Coastguard” . 57 

Fig. 42 Proposed architecture of encoder with fast algorithm.................................... 58 

Fig. 43 Pipelined schedule for fast encoder when best luma mode is selected to 16x16

........................................................................................................................ 60 

Fig. 44 Pipelined schedule for fast encoder when best luma mode is selected to 4x4 60 



 

 x

Fig. 45 Eight-pixel parallel intra prediction generator................................................ 61 

Fig. 46 Eight-input eight-output 4x4 transform unit................................................... 62 

Fig. 47 Memory organization in fast encoder............................................................. 63 

Fig. 48 Layout of the fast encoder chip ...................................................................... 66 



 

 xi

List of Tables 

Table 1 Average bitrate saving for video streaming...................................................... 3 

Table 2 Quantization factors in H.264/AVC................................................................ 15 

Table 3 De-quantization factors in H.264/AVC .......................................................... 15 

Table 4 Probability distribution of 16x16 modes in different sequence with 300 

I-frames at QP=28 .......................................................................................... 22 

Table 5 Comparison among original code [10], SAITD algorithm in [14], and the two 

proposed algorithm for coding of 300 Intra frames........................................ 23 

Table 6 Data throughput for different video size......................................................... 27 

Table 7 Frequency for N-pixel parallel encoder.......................................................... 28 

Table 8 Frequency for N-pixel parallel decoder.......................................................... 28 

Table 9 List of gate count for proposed design ........................................................... 44 

Table 10 Information for the chip.................................................................................. 45 

Table 11 Comparison among [13], [21], and this work................................................. 46 

Table 12 Comparison among original [10], modified algorithm, and proposed fast 

algorithm combined of three techniques for 300 Intra frames ....................... 53 

Table 13 List of gate count for fast encoder .................................................................. 65 

Table 14 Information for the encoder chip .................................................................... 66 

Table 15 Comparison among previous codec in Chapter 3 , [13], and this work ......... 67 



 

 

1 

Chapter 1   

Introduction 

With the demand of higher video quality and lower bitrate, and feasibility of fast 

growing semiconductor processing, a new video coding standard is developed by the 

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG as the next generation 

video compression standard, which is known as H.264 or MPEG-4 Part 10 Advanced 

Video Coding (AVC) [1]. In comparison with existing video standards such as MPEG-2 

[2] and MPEG-4 [3], the latest standard can improve the coding efficiency by up to 50% 

while still keep the video quality [4] with various newly introduced coding tools. 

1.1. Motivation 

Earlier video coding standard MPEG-2, also known as H.262, was developed in the 

last decade as the extension of prior MPEG-1 [5]. This standard is still popularly used in 

many applications of our daily life, such as transmission of TV signals, satellite 

communication, cable, and storage of high-quality video signal on DVDs. However, 

with the popularity of high definition TV and flexibility of multimedia services, present 

standard cannot afford the requirement of video quality and real-life applications. In 

addition, transmission capacity in some transmission media such as cable modem and 

DSL is much lower than in broadcast channels, which also limits the utilization of 

MPEG-2.  

For videoconference and multimedia streaming service, H.263 [6] and its later 

enhancement H.263+ [7] were evolved by ITU-T to deal with the low-bitrate video 

coding in telecommunication application. The other standard MPEG-4 was also 



 

 

2 

launched in the recent years to address the future multimedia applications like 

interactive TV and internet video. The MPEG-4 standard consists of more parts besides 

traditional video and audio system. Its video standard allows coding, scalability, and 

access to an individual object, and can achieve better coding efficiency relative to prior 

standards. Since MPEG-4 video standard is built on the same coding structure of 

MPEG-2 and added with new coding tools, it offers modest coding gain at the expense 

of a modest increase in complexity [4]. As a result, the increase of complexity should be 

only justified for object-based video coding but not for nature rectangular video 

applications. 

 To formulate a new standard of next generation video coding, the joint team of 

ITU-T VCEG and ISO MPEG was established to co-develop it for natural video. The 

newest international video coding standard, well-known as H.264/AVC, is approved by 

ITU-T as Recommendation H.264 and by ISO/IEC as International Standard 14496-10 

MPEG4 Part 10 Advanced Video Coding. The H.264/AVC is designed for technical 

solution of various application areas, for example, broadcast system over cable or 

satellite, internet video, interactive storage on optical devices, wireless and mobile 

network, and multimedia streaming service. To satisfy the flexibility of multiple 

applications, H.264/AVC can adjust the coding complexity depending on the different 

profiles defined in the standard.  

The coding architecture of H.264/AVC standard is different with that of existing 

MPEG-2 standard and has noticeable improvement in both bitrate decrease and 

preservation of decoded video quality [8]. Table 1 presents the average bitrate saving of 

four popular video standards, where the bitrate decrease in H.264/AVC relative to 

MPEG-4, H.263, and MPEG-2 are 39%, 49%, and 64% respectively. 



 

 

3 

Table 1  Average bitrate saving for video streaming  

 

 

The significant improvement in H.264/AVC is caused by various enhanced and new 

coding techniques, which can achieve higher video quality and better compression rate 

than any other standard. These techniques include variable block size and multiple 

reference pictures motion estimation/compensation, simplified small block size integer 

transform, quarter-sample accuracy in motion vectors, in-loop deblocking filter, 

directional spatial-domain intra prediction, context adaptive entropy coding, and 

arithmetic entropy coding.  

In the above mentioned techniques, spatial-domain intra prediction is a new feature in 

H.264/AVC. Previous standard, MPEG-4, uses the Intra-DC and Intra-AC technique to 

encode an I-frame with just encoding the difference between neighboring transformed 

blocks. The newly introduced intra coding method in H.264/AVC takes advantage of the 

relationship of correlation among adjacent blocks to reduce data correlation of the 

encoding picture. It predicts the currently coded block with pixel values from 

neighboring blocks with various directions and only encodes the residues. The use of 

spatial-domain prediction is able to achieve higher coding efficiency in the single frame 

coding than that in the previous standards, and even competitive with the latest still 

image coding standard, JPEG2000 [9].  

As a result, the intra frame only coding and decoding is very suitable for applications 

that do not need or cannot afford the inter prediction capability. The hardware of intra 

frame codec can be used in portable consumer products like digital video recorder or 



 

 

4 

digital still camera. For this application, a design with low power consumption and low 

memory cost are also necessary to fit the demand of practicability.  

1.2. Thesis Organization 

This paper is organized with five parts. Chapter 1 gives the introduction and 

motivation of this work. Then in Chapter 2 , a brief overview of H.264/AVC standard 

and its intra coding is given. Chapter 3 presents an architecture design of H.264/AVC 

intra frame codec and the hardware oriented algorithm. In Chapter 4 a proposed intra 

frame encoder with fast prediction technique and lower working frequency is 

implemented. Finally a conclusion remark is given in Chapter 5 . 



 

 

5 

Chapter 2   

Overview of H.264/AVC Standard 

Earlier standards like MPEG-1 and MPEG-2 have enabled many popular consumer 

products such as video CDs and DVDs. As their successor, H.264/AVC is created more 

powerful in coding performance and more flexible in all kinds of applications. With the 

highly developed signal processing and semiconductor technology, many complicated 

and computationally intensive coding tools can be supported efficiently in H.264/AVC 

standard. These progressive tools have ability to improve the coding efficiency 

obviously but still maintain the decoded video quality.  

2.1. Fundamental of H.264/AVC  

2.1.1. Coding Structure 

The coding structure of H.264/AVC is similar to those of previous standards and built 

on the commonly used motion estimation and transform coding structure. This standard 

supports the 4:2:0 format with 8-bit sample precision for pixel values and encodes the 

video by picture order. A picture, as well as an interlaced field or a non-interlaced frame, 

can be partitioned into several slices, and each slice consists of a series of macroblocks. 

A macroblock is a primary unit for video coding and includes one 16x16 luminance 

(luma) and two 8x8 chrominance (chroma) components. The macroblock can further be 

separated into 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 sub-macroblocks for motion 

estimation/compensation, where the 4x4 one is called a block. The hierarchy of data 

organization in H.264/AVC is shown in Fig. 1. 



 

 

6 

 

Fig. 1 Hierarchy of video data components 

Fig. 2 shows the basic structure diagram of H.264/AVC encoder, and Fig. 3 shows the 

decoder. The encoding flow first performs the intra prediction in I-slice or motion 

estimation in P-slice from some reference pictures. Residual values, the difference 

between predicted values and original ones, are then sent to forward transform unit and 

quantized after inter or intra prediction. The quantized coefficients, syntax, motion 

vectors, and other coding information are further coded by entropy coding. In addition, 

the quantized coefficients are also reconstructed through de-quantization, scaling, 

inverse transform, and motion compensation as the reference for next slice processing. 

To decode a slice, residual values are recovered through entropy decoding, 

de-quantization, and inverse transform in proper order. Decoded slices can be 

reconstructed by adding residual values to established data from motion compensation 

for P-slice or intra mode prediction for I-slice. Detailed coding flow can refer to [1] or 

[4]. 



 

 

7 

Entropy
Coding

Scaling & Inv. 
Transform

Control
Data

Quant.
Transf. coeffs

Motion
Data

Intra/Inter

Coder
Control

Motion
Estimation

Transform/
Scal./Quant.-

Input
Video
Signal

Split into
Macroblocks
16x16 pixels

Intra frame 
Prediction

De-blocking
Filter

Motion 
Compensation

 

Fig. 2 Basic structure diagram of H.264/AVC encoder 

Scaling & Inv. 
Transform

Motion-
Compensation

Decoded 
coeffs

Motion Data

Intra/Inter

Intra-frame 
Prediction

De-blocking
Filter

Output
Video
Signal

Entropy
Decoding

 

Fig. 3 Basic structure diagram of H.264/AVC decoder 

2.1.2. Features of Standard 

The H.264/AVC standard adopts many new coding tools which are never introduced 

in the earlier standards, and it also enhances previous techniques to obtain better coding 



 

 

8 

efficiency. These features significantly improve the coding performance and make the 

standard satisfy every technical application such as broadcast system and internet video. 

Some of the important features in H.264/AVC are introduced in the following. 

1. Variable block-size motion estimation and compensation 

The standard has more flexibility in selection of block sizes and shapes for motion 

estimation and compensation than any previous standard. Seven kinds of block sizes are 

introduced, including 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4. This helps to enhance 

the efficiency of coding of irregularly shaped objects or background behind moving 

objects.  

2. Quarter-sample-accurate motion vector 

Most of the previous standards enable half-sample motion vector accuracy, but 

H.264/AVC improves it by adding quarter-sample motion vector accuracy, which is first 

found in the advanced profile of the MPEG-4 Visual (Part 2) standard. However, this 

standard further reduces the complexity of the interpolation processing to simplify the 

computation.  

3. Multiple reference picture motion estimation and compensation 

In MPEG-2 and its following standards, only one previous picture can be used to 

predict the values in the incoming picture. The H.264/AVC standard enlarges the 

selection range of reference pictures from one to more for better coding efficiency. Thus, 

motion vectors across multiple reference pictures are allowed. In addition, the standard 

also allows the bi-direction prediction coding which uses both previous and next 

pictures as reference ones.  



 

 

9 

4. Spatial-based directional intra prediction coding 

In previous standards, such as MPEG-1 and MPEG-2, I-pictures are directly coded. 

MPEG-4 Visual standard [3] adopts the Intra-AC and Intra-DC prediction for coding of 

I-pictures, which utilizes neighboring transformed blocks to perform the prediction and 

residual coding. However, these coding methods do not take advantage of the 

correlation among adjacent neighboring blocks. Thus, a spatial-based prediction 

technique with directional pixel mapping is presented in H.264/AVC for I-picture 

coding before transform, which uses the reconstructed neighboring pixels to perform the 

prediction with modes from different directions. With this technique, the coding 

efficiency for I-pictures can be improved effectively. 

5. Small block size integer transform 

All of the prior video standards use a transform block size of 8x8, while the new 

H.264/AVC uses a smaller transform size of 4x4. This allows the encoder to represent 

signals in a more locally-adaptive fashion and reduces the artifacts caused by the edges 

of different pixels.  

6. In-loop deblocking filter 

Block-based video coding may raise the blocking artifacts due to both prediction and 

residual difference coding of the decoding process. The solution to this problem is to 

use an adaptive deblocking filter which can improve the resulting video quality well. 

Instead of building as an optical feature in H.263+, in H.264/AVC the deblocking filter 

is positioned in the motion compensation loop as an in-loop filter so that quality 

improvement in a single picture can be extended to the inter-picture prediction as well. 

7. Context-adaptive entropy coding 



 

 

10 

For compression of quantized transform coefficients, an efficient variable-length 

coding (VLC) method is used in H.264/AVC. The VLC coding is previously used in the 

existing standards but enhanced in this standard with context adaptivity to increase the 

coding performance. 

8. Arithmetic entropy coding 

Another coding method known as context-adaptive binary arithmetic coding 

(CABAC) is also included in H.264/AVC as the advanced entropy coding. This 

arithmetic coding can achieve higher efficiency than VLC coding due to the effective 

probability model of symbol occurrence.  

2.1.3. Profiles 

 

Fig. 4 Three profiles of H.264/AVC 

There are three profiles defined in H.264/AVC as shown in Fig. 4, which are baseline, 

main, and extended profiles. Baseline profile includes basic coding tools and features, 



 

 

11

such as I-slice, P-slice, quarter-sample accurate motion vector, deblocking filter, and 

CAVLC, and is primarily used for lower-cost applications with demand of less 

computing resources. Thus, this profile is widely used in videoconferencing, internet 

multimedia, and mobile applications. Main profile is used as the mainstream consumer 

profile for applications of broadcast system and storage devices. It contains most of the 

features in baseline profile and other advanced techniques, like adaptive frame/field 

coding, interlaced coding, weighted prediction, B-slice, and CABAC. The main profile 

can achieve better performance in both bitrate saving and video quality while needs 

much more computation effort. Finally the extended profile, which includes all the 

features in baseline profile and main profile except CABAC, is intended as the 

streaming video profile and has relatively high compression capability with extra tricks 

for robustness to data losses and server stream switching.  

2.2. Components of Baseline Intra Coding 

2.2.1. Intra Prediction 

Spatial-domain prediction is the main feature of H.264/AVC intra coding. There are 

two kinds of intra prediction for luma components, nine 4x4 prediction modes or four 

16x16 prediction modes, which are shown in Fig. 5 and Fig. 6 respectively. The 4x4 

prediction modes use the neighboring thirteen reconstructed samples denoted from A to 

M in Fig. 5 to predict the block pixels with eight different directions and one average 

value. For 16x16 prediction modes, the values are predicted from the 32 adjacent 

boundary pixels of upper and left macroblocks. Similar procedures are also applied to 

the chroma components where four 8x8 prediction modes are used with 16 neighboring 

pixels. 



 

 

12 

 

Fig. 5 Nine modes for intra 4x4 prediction 

 

Fig. 6 Four modes for Intra 16x16 or 8x8 prediction 

2.2.2. Cost Generation and Mode Decision  

The best mode decision for intra prediction in [10] can be either the time consuming 

rate distortion optimization (RDO) or just much simpler cost accumulation. RDO uses 

the weighted sum of actual encoded bitrate and the reconstructed samples to produce 

distortion. Though it can achieve better performance, it is computationally intensive. 

An alternative way is using cost accumulation. Two generally used mode decision 

methods for cost generation are available in [10], sum of absolute difference (SAD) and 

sum of absolute transform difference (SATD). The formulas are defined as follows. 

)(41 pQmSADC λ+=  (1) 

)(42 pQmSATDC λ+=  (2) 



 

 

13 

∑∑
= =

−=
4

1

4

1i j
ijij psSAD  (3) 

∑∑
= =

−=
4

1

4

1

)(
i j

ijij psTSATD  (4) 

In (1) and (2), symbol λ(Qp) stands for the lambda values which are from the 

approximated exponential function depending on the quantization parameters, and the 

variable m indicate whether the current mode is the most probable mode. If the most 

probable mode is detected, m is equal to 0, otherwise it sets to 1. The decision flow of 

most probable is illustrated in Fig. 7. In (3) and (4), sij and pij are the (i, j)th elements of 

source block and predicted block respectively. The function T(x) in (4) represents the 

4x4 discrete Hadamard transform (DHT), as shown in (5), where symbol X indicates the 

residual block. 

Find upper and left 
block modes

Boundary block?

Most probable  
= DC mode

Up mode < Left 
mode?

Most probable 
= Up mode

Most probable 
= Left mode

Yes No

Yes No

 

Fig. 7 Flow diagram of most probable mode selection 



 

 

14 

2/

1111

1111

1111

1111

1111

1111

1111

1111

)(

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

X
XT  (5) 

For every four blocks in Z-scan order of a macroblock, another lambda value, 6λ

(Qp)+0.5, is added to cost value for adjusting the weight. The best mode is finally 

decided by comparing the summarized cost value of sixteen blocks in the 4x4 prediction 

to the best mode of the 16x16 prediction.  

2.2.3. Transform 

In H.264/AVC, a traditional 8x8 floating-point discrete cosine transform (DCT) in 

previous standards is replaced by an approximated 4x4 DCT. The transform can be 

divided into two parts, 4x4 integer transform and fractional scalar multiplication factors 

that are further merged into the quantization stage. The forward 4x4 integer transform 

with quantization is illustrated in (6), and the inverse one with de-quantization is 

illustrated in (7). In which, the matrices with factors a and b denote the scalar 

multiplication. Notice that matrix X in (6) is post-scaled by quantization and matrix Y in 

(7) is pre-scaled by de-quantization. For a macroblock predicted by the 16x16 or 8x8 

modes, the DC value of each transformed block is further processed by 4x4 DHT or 2x2 

DHT respectively, as shown in (5) or (8) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

4/2/4/2/

2/2/

4/2/4/2/

2/2/

1121

2111

2111

1121

1221

1111

2112

1111

22

22

22

22

babbab

abaaba

babbab

abaaba

X
Y  (6) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

2/1111

1111

12/12/11

1111

2/1111

112/11

112/11

2/1111

22

22

22

22

babbab

abaaba

babbab

abaaba

Y
X R  (7) 



 

 

15 

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11

11

11
)(

X
XTC  (8) 

2.2.4. Quantization 

In the quantization stage, there are 52 values of quantization parameters (QPs) and 

corresponding quantization steps supplied in H.264/AVC standard. The steps are 

doubled for increase of every six numbers in QPs. The scaling factors mentioned in 

Subsection 2.2.3 are incorporated into these quantization factors to avoid the 

computational complexity in 4x4 transform stage. These factors for quantization and 

de-quantization are implemented in [10] as a multiplication factors and shown in Table 

2 and Table 3 respectively.  

Table 2  Quantization factors in H.264/AVC 

 

Table 3  De-quantization factors in H.264/AVC 

 

2.2.5. Entropy Coding 

There are two entropy coding methods supported in H.264/AVC baseline profile. 

1. Exp-Golomb coding 



 

 

16 

The standard uses the exponential Golomb coding (Exp-Golomb) to encode the 

syntax elements of coding information, such as mode and type. Exp-Golomb codes 

consist of a prefix part and a suffix part with a string of bits as shown in Fig. 8. The 

signed values of syntax elements are assigned to the unsigned code number for code 

mapping. 

Bitstring Code Num Code Num Syntax Value

1 0 0 0

Bitstring Form Range 0 1 0 1 1 1

1 0 0 1 1 2 2 -1

0 1 x1 1 - 2 0 0 1 0 0 3 3 2

0 0 1 x1 x0 3 - 6 0 0 1 0 1 4 4 -2

0 0 0 1 x2 x1 x0 7 - 14 0 0 1 1 0 5 5 3

0 0 0 0 1 x3 x2 x1 x0 15 - 30 0 0 1 1 1 6 6 -3

0 0 0 0 0 1 x4 x3 x2 x1 x0 31 - 62 0 0 0 1 0 0 0 7 7 4

… … … … … …

(a) (b) (c)  

Fig. 8 (a) Prefix and suffix bitstrings, (b) exp-Golomb bitstrings, (c) mapping for 

signed bitstrings 

2. Context adaptive variable length coding (CAVLC) 

In baseline profile, the standard uses CAVLC for coding the quantized samples to 

bitstream. Fig. 9 illustrates an example of CAVLC coding in flow diagram. The 

following items are coded in a proper order: number of nonzero coefficients, sign marks 

of trailing ones, levels of remaining nonzero coefficients, number of total zeros, runs of 

zeros between nonzero coefficients. The coefficients should be scanned in the reversed 

zigzag order for CAVLC coding, but for decoding, the process is the reverse of the 

encoding one. If all coefficients within an 8x8-size block are zero, the coding process 

will skip them and assign a special flag, coded block pattern (CBP), to denote such case. 



 

 

17 

 

 

Fig. 9 Example of CAVLC Coding 



 

 

18 

Chapter 3   

H.264/AVC Intra Frame Codec 

H.264/AVC is popularly regarded as the video standard in the next generation to 

replace the existing MPEG-2 standards. The spatial-domain intra coding is a newly 

supported technique which is not only suitable for moving video coding but also still 

image compression. However, the common digital signal processors are hard to afford 

its high computational complexity and large data throughput. 

In this chapter, a parallel H.264/MPEG-4 AVC baseline profile intra frame codec 

supporting both processes of encoder and decoder is proposed for digital camera and 

video application. This work is mainly based on the previous architecture [11] and 

modified to fit the decoding procedure. The proposed chip has ability to support high 

definition (HD) size 720p (1280x720 4:2:0) at 30 fps real-time video encoding at 

117MHz and 1080p (1920x1080 4:2:0) at 30 fps video decoding at 58MHz. When 

clocked at the height frequency 125MHz, this design can process encoding of 29.62M 

pixels still image per second or decoding of 135.60M pixels. The research result of this 

work is also published in [12]. 

3.1. Hardware Oriented Algorithm 

3.1.1. Enhanced SATD Function for Mode Decision 

In determining the coding performance of intra-only H.264/AVC, the cost function 

for mode decision is the most important part. To find a best matched prediction mode is 

to use RDO. Though RDO can provide the best performance, its complexity hinders its 

use in the hardware design. Thus, the SATD method is adopted to calculate the costs. 



 

 

19 

However, how to determine the transform for SATD computation will become the main 

issue now. The transform choice used in SATD should be computationally simple but 

also effective to estimate the energy of the signals. In [10], a pure transform of 4x4 

DHT is adopted for mode decision, but it is far from the real transform used in the 

whole encoding process. A better transform choice for SATD shall approximate the 

effect of transform and quantization used in the H.264/AVC encoding process to 

estimate the real bitrate. Therefore, previous works [13][14] use the 4x4 integer 

transform as the choice. Although their approaches can achieve better performance than 

DHT does, it’s still not good enough. That is because that the fractional multiplication 

factors do not be taken into consideration. A complete transform function in H.264/AVC 

shall include both the integer transform and multiplication factors in the quantization 

formula as shown in (6) and (7). However, to incorporate these factors into the cost 

function directly will cost a lot of computation because they are not simple integer 

numbers. Besides, these factors cannot be directly derived from the formula since the 

quantization parameters shall also be included. 

To solve these problems, this work adopts the cost function proposed in [11] that 

combines the integer transform and simplified multiplication factors. The simplified 

multiplication factors are derived from quantization coefficients shown in Table 2 and 

Table 3 . Derivation from the quantization coefficients enables the consideration of both 

effects of transform and quantization. From these tables, we can obtain the required 

scalar factors by approximating the relationship among the reciprocal of de-quantization 

coefficients and simplifying them to integers for reduction of computational complexity 

as shown in (9) and (10). 

1/quant_coef:  p(0,0)-1 : p(0,1)-1 : p(1,1)-1 ~= 30:19:12    (9) 



 

 

20 

1/dequant_coef:    p(0,0)-1 : p(0,1)-1 : p(1,1)-1 ~= 30:25:20    (10) 

In (9) and (10) the symbol p(x,y) represents the quantization and de-quantization 

coefficients of different positions in Table 2 and Table 3 respectively. The scaling 

factors derived from the de-quantization table are adopted by considering the final 

performance and implementation cost, as shown in (11). In this formula, division by 32 

is added to avoid enlargement of cost values, which can be carried out with simpler 

low-cost wiring in the hardware design. As a result, the cost generation function is able 

to estimate the energy of residuals after the transform and quantization function more 

accurate than other methods while still keep computation simple and suitability for 

hardware implementation. It can provide better quality than that in [10] and can be used 

to compensate the quality loss of the plane mode removal discussed in Subsection 3.1.2. 

32/

20252025

25322532

20252025

25322532

1121

2111

2111

1121

1221

1111

2112

1111

)(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

X
XC  (11) 

3.1.2. Intra Plane Mode Removal 

The various intra prediction modes can further be organized systematically into four 

types according to their prediction properties and computational complexity. These 

types are illustrated in Fig. 10. The bypass type is easy to be implemented since the 

prediction samples are the same as boundary pixels. In the average type, neighboring 

eight pixels (for 4x4 prediction) or 32 pixels (for 16x16 prediction) are summarized and 

divided into an average value for all prediction samples. The linear type contains most 

of the 4x4 prediction modes with directional approach, and the samples are linearly 

interpolated by boundary pixels. Finally in the bilinear type, also known as plane 

prediction, samples are derived by the approximation of bilinear transform. Though 



 

 

21 

being simplified to be only integer arithmetic operations, the plane mode is still much 

more computational complex than other modes. Besides, it is also hard to reuse its 

results for other prediction, and occupies almost half of the area in the intra prediction 

unit. The detail computation of plane prediction can refer to Fig. 11. 

 

Bypass

Linear

Average
Bilinear

 

Fig. 10 Four categorized types of intra prediction modes 

A solution to this problem is to eliminate the plane mode from intra prediction and 

replace it with other modes. This may raise the issue of performance loss. Table 4  

shows the probability distribution of the 16x16 prediction modes in different sequences. 

Macroblocks predicted in plane mode is only 4.2% in average and not larger than 5.7% 

except the sequence “Akiyo” which contains much smoother texture. However, after 

simulation we found that prediction with plane mode only reduces about 1% of bitrate 

than that without plane mode for these video sequences. This 1% bitrate loss can be 

easily compensated by the enhanced cost function proposed in Subsection 3.1.1. With 

the modification, we can achieve almost the same result as [10] but save a lot of 



 

 

22 

computation and hardware cost. 

Luma 16x16

h= Σx[ p(7+i,-1) - p(7-i,-1) ] i=1~8

v= Σy[ p(-1,7+i) - p(-1,7-i) ] i=1~8

a= 16*[ p(-1,15) + p(15,-1) ]

b= ( 5h+32 )>>6

c= ( 5v+32 )>>6

Pred= [ a + b(x-7) + c(y-7) + 16 ]>>5

Chroma 8x8
h= Σx[ p(4+i,-1) - p(4-i,-1) ] i=1~4
v= Σy[ p(-1,4+i) - p(-1,4-i) ] i=1~4
a= 16*[ p(-1,7) + p(7,-1) ]
b= ( 17h+16 )>>5
c= ( 17v+16 )>>5
Pred= [ a + b(x-3) + c(y-3) + 16 ]>>5

 

Fig. 11 Intra plane mode for (a) 16x16 (b) 8x8 predictions 

Table 4  Probability distribution of 16x16 modes in different sequence with 300 

I-frames at QP=28 

Total ratio Veritical Horizontal DC Plane

Mobile 3.3% 0.8% 1.0% 1.3% 0.2%

Coastguard 10.7% 0.8% 3.8% 4.6% 1.6%

Stefan 20.7% 3.4% 12.8% 2.0% 2.5%

Paris 15.5% 3.2% 4.6% 4.4% 3.4%

Foreman 23.1% 5.1% 4.3% 8.0% 5.7%

Akiyo 47.5% 5.3% 4.8% 25.7% 11.8%

Sequence
16x16 modes

 

3.1.3. Simulation Results 

Table 5 illustrates the comparison results for encoding of six CIF-size sequences with 

all intra frames in different QPs among four algorithms: the original SATD function in 

[10], SAITD algorithm in [14], enhanced SATD cost function, and the proposed method 



 

 

23 

combining enhanced function and plane mode removal. In most cases of the simulation, 

it is obvious that the proposed SATD cost function is able to achieve better coding 

efficiency than [10] and [14], with almost the same or even better PSNR quality. We can 

also observe that the enhanced algorithm can reduce average 0.08% bitrate for all 

sequences. After combining with technique of plane mode removal, the bitrate increase 

is compensated and not larger than 0.06% in average. 

Table 5  Comparison among original code [10], SAITD algorithm in [14], and the two 

proposed algorithm for coding of 300 Intra frames 

SNR Y SNR U SNR V Bit-rate SNR Y SNR U SNR V Bit-rate SNR Y SNR U SNR V Bit-rate SNR Y SNR U SNR V Bit-rate

16 46.38 47.27 47.43 10537.41 +0.10 +0.00 +0.00 +0.11% +0.06 +0.00 -0.01 -0.16% +0.06 +0.00 +0.00 -0.11%

20 42.96 44.43 44.51 8143.18 +0.05 -0.03 -0.03 +0.07% +0.02 -0.03 -0.03 -0.18% +0.02 -0.03 -0.03 -0.12%

24 39.63 41.63 41.65 6189.86 -0.02 -0.14 -0.13 +0.15% -0.04 -0.14 -0.13 -0.22% -0.04 -0.14 -0.12 -0.14%

28 36.41 38.95 38.96 4585.29 -0.02 -0.23 -0.24 +0.15% -0.05 -0.23 -0.24 -0.24% -0.05 -0.23 -0.25 -0.16%

32 33.05 37.12 37.08 3246.41 -0.05 -0.41 -0.43 +0.34% -0.08 -0.41 -0.43 -0.21% -0.08 -0.42 -0.45 -0.15%

36 29.96 35.15 35.07 2218.46 -0.06 -0.48 -0.52 +0.95% -0.10 -0.49 -0.52 -0.09% -0.11 -0.53 -0.55 -0.06%

16 45.93 46.25 46.29 15361.27 +0.04 +0.01 +0.01 +0.05% +0.04 +0.01 +0.01 -0.10% +0.04 +0.01 +0.01 -0.08%

20 42.14 42.87 42.89 12233.46 +0.05 -0.03 -0.04 +0.07% +0.03 -0.03 -0.04 -0.12% +0.03 -0.03 -0.03 -0.09%

24 38.49 39.72 39.68 9487.00 +0.01 -0.11 -0.10 +0.17% -0.01 -0.11 -0.10 -0.14% -0.01 -0.11 -0.10 -0.10%

28 35.04 36.88 36.76 7179.38 +0.03 -0.17 -0.18 +0.26% +0.01 -0.17 -0.18 -0.16% +0.01 -0.16 -0.18 -0.12%

32 31.50 34.89 34.67 5200.07 +0.02 -0.24 -0.24 +0.52% -0.01 -0.24 -0.24 -0.14% -0.01 -0.24 -0.23 -0.09%

36 28.28 32.87 32.60 3572.40 +0.01 -0.31 -0.32 +1.08% -0.05 -0.31 -0.22 -0.05% -0.05 -0.31 -0.22 +0.01%

16 46.16 47.35 47.63 10114.93 +0.08 -0.05 -0.05 +0.12% +0.06 -0.05 -0.05 -0.09% +0.06 -0.05 -0.04 -0.00%

20 42.81 44.69 44.88 7662.99 +0.02 -0.21 -0.16 +0.25% -0.01 -0.21 -0.16 -0.08% -0.01 -0.20 -0.15 -0.01%

24 39.59 41.97 42.12 5742.80 -0.05 -0.35 -0.28 +0.49% -0.09 -0.36 -0.28 -0.06% -0.09 -0.36 -0.28 +0.05%

28 36.49 39.40 39.54 4235.43 -0.05 -0.50 -0.34 +0.70% -0.20 -0.50 -0.34 -0.06% -0.10 -0.52 -0.36 +0.09%

32 33.33 37.51 37.73 3005.78 -0.14 -0.61 -0.52 +0.82% -0.20 -0.61 -0.52 -0.11% -0.20 -0.65 -0.52 +0.08%

36 30.36 35.58 35.78 2055.30 -0.18 -0.64 -0.54 +1.00% -0.25 -0.64 -0.55 -0.13% -0.25 -0.67 -0.56 +0.08%

16 47.34 48.46 49.40 4159.54 +0.16 -0.06 -0.11 +0.95% +0.09 -0.05 -0.12 -0.10% +0.10 -0.06 -0.12 +0.42%

20 44.89 46.88 47.95 2777.52 +0.04 -0.26 -0.33 +0.83% -0.05 -0.26 -0.34 -0.16% -0.05 -0.30 -0.38 +0.18%

24 42.65 44.62 46.03 1941.72 -0.14 -0.35 -0.58 +1.03% -0.23 -0.35 -0.58 +0.18% -0.25 -0.37 -0.64 +0.56%

28 40.33 42.52 43.93 1370.30 -0.18 -0.53 -0.77 +1.49% -0.33 -0.54 -0.76 +0.27% -0.35 -0.63 -0.85 +0.62%

32 37.77 40.82 42.54 963.42 -0.32 -0.53 -0.89 +1.71% -0.53 -0.52 -0.86 -0.66% -0.58 -0.69 -1.09 +0.30%

36 35.28 38.80 40.69 672.96 -0.38 -0.45 -0.78 +2.80% -0.65 -0.50 -0.75 +0.17% -0.70 -0.64 -0.98 +0.28%

16 46.26 47.56 48.57 7665.68 +0.10 +0.03 -0.01 +0.28% +0.08 +0.03 -0.01 -0.14% +0.08 +0.03 +0.00 -0.04%

20 42.90 45.17 46.83 5394.72 +0.13 -0.08 -0.21 +0.59% +0.09 -0.08 -0.21 -0.13% +0.09 -0.08 -0.21 -0.00%

24 39.95 42.87 44.78 3678.28 +0.04 -0.25 -0.33 +1.20% -0.03 -0.24 -0.33 -0.08% -0.03 -0.25 -0.35 +0.07%

28 37.26 40.91 42.79 2467.35 +0.03 -0.32 -0.42 +1.80% -0.06 -0.32 -0.42 -0.08% -0.06 -0.34 -0.46 +0.10%

32 34.61 39.80 41.32 1598.24 -0.05 -0.41 -0.54 +2.62% -0.19 -0.41 -0.54 +0.03% -0.20 -0.46 -0.60 +0.30%

36 32.24 38.61 39.81 1022.62 -0.08 -0.39 -0.49 +4.19% -0.31 -0.39 -0.49 -0.00% -0.32 -0.45 -0.57 +0.53%

16 45.88 48.20 49.05 9454.85 +0.04 +0.06 +0.05 +0.15% +0.04 +0.06 +0.05 -0.20% +0.04 +0.06 +0.05 -0.18%

20 42.13 46.38 47.64 6969.04 +0.10 -0.04 -0.10 +0.30% +0.09 -0.04 -0.10 -0.21% +0.09 -0.05 -0.11 -0.20%

24 38.74 44.64 46.13 4959.03 +0.08 -0.21 -0.12 +0.74% +0.06 -0.21 -0.11 -0.16% +0.06 -0.24 -0.13 -0.15%

28 35.63 43.08 44.72 3437.66 +0.15 -0.27 -0.15 +1.33% +0.12 -0.27 -0.15 -0.11% +0.12 -0.35 -0.18 -0.14%

32 32.74 41.96 43.72 2236.41 +0.06 -0.31 -0.17 +1.99% +0.00 -0.31 -0.16 -0.13% +0.00 -0.44 -0.23 -0.17%

36 30.24 40.82 42.72 1418.33 -0.04 -0.28 -0.11 +2.68% -0.15 -0.27 -0.11 -0.17% -0.14 -0.39 -0.14 -0.03%

Coastguard

Akiyo

Foreman

JM 8.6 [9] Enhanced SATD Cost Function
Enhanced SATD Cost Function + Plane

Mode RemovalSequence QP
SAITD Algorithm

Stefan

Mobile

Paris

 

 



 

 

24 

Stefan CIF

32

34

36

38

40

42

44

100 130 160 190 220 250 280
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 12 RD curves of [10] and proposed algorithm for sequence “Stefan” 

Mobile CIF

31

33

35

37

39

41

43

170 210 250 290 330 370 410
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 13 RD curves of [10] and proposed algorithm for sequence “Mobile” 



 

 

25 

Paris CIF

33

35

37

39

41

43

90 120 150 180 210 240
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 14 RD curves of [10] and proposed algorithm for sequence “Paris” 

Akiyo CIF

38

40

42

44

46

48

40 60 80 100 120 140
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 15 RD curves of [10] and proposed algorithm for sequence “Akiyo” 



 

 

26 

Foreman CIF

34

36

38

40

42

44

50 70 90 110 130 150 170 190
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 16 RD curves of [10] and proposed algorithm for sequence “Foreman” 

Coastguard CIF

32

34

36

38

40

42

44

60 90 120 150 180 210 240
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 17 RD curves of [10] and proposed algorithm for sequence “Coastguard” 



 

 

27 

The RD curve diagrams of [10] and our proposed combined algorithm for these six 

sequences are shown from Fig. 12 to Fig. 17. The QP range for these diagrams is from 

20 to 32 except that for “Akiyo” whose range is located from 16 to 28 to clearly show 

the characteristic of its curve. The curves of our algorithm are very close to the original 

ones. Especially in the high bitrate coding with lower QPs, the performance is even 

better. This algorithm-level optimization actually makes the final hardware design not 

only simpler but also with good video quality. 

3.2. System Level Scheme 

3.2.1. Analysis of Hardware Complexity 

To achieve the throughput for our target of video size, the complexity of hardware 

shall be first analyzed before design. For H.264/AVC codec, the computational 

complexity in encoder is much more extensive than that in decoder since encoder 

computes all prediction modes instead of decoding exactly one. Table 6 shows the data 

throughput in different video sizes at 30 fps. Thus, for our target HD 720p, it needs data 

throughput of at least 108,000 macroblocks per second, which is identical to 27.65M 

pixels.  

Table 6  Data throughput for different video size 

Mega pixs/sec kilo mbs/sec
QCIF 176 x 144 0.76 2.97
CIF 352 x 288 3.04 11.88
ITU-R 720 x 576 12.44 48.60
SDTV 720 x 480 10.37 40.50

1280 x 720 27.65 108.00
1920 x 1080 62.21 243.00

HDTV

Video Size
Data Throughput

 

To estimate the operating frequency for hardware design, we explore the cycles for 



 

 

28 

intra coding. Simplifying the estimation by neglecting the cycles of data transfer 

between on-chip and off-chip memory, we only consider prediction cycles. With such 

assumption, total cycle count in encoding process to predict a macroblock, including 

one luma and two chroma components, is 3456 (16x16x9+16x16x3+2x16x4x3), where 

plane modes are removed and other operations are excluded. The necessary frequency is 

373.25 MHz for HD 720p size and 839.81 MHz for HD 1080p size in response to the 

estimated cycles in encoder. This speed requirement is far beyond the generally 

acceptable range of common processor and hard to be implemented. 

Table 7  Frequency for N-pixel parallel encoder 

N=1 N=2 N=4 N=16
QCIF 176 x 144 10.26 5.13 2.57 0.64
CIF 352 x 288 41.06 20.53 10.26 2.57
ITU-R 720 x 576 167.96 83.98 41.99 10.50
SDTV 720 x 480 139.97 69.98 34.99 8.75

1280 x 720 373.25 186.62 93.31 23.33
1920 x 1080 839.81 419.90 209.95 52.49

Frequency at N-Parallel (MHz)
Video Size

HDTV

 

Table 8  Frequency for N-pixel parallel decoder 

N=1 N=2 N=4 N=16
QCIF 176 x 144 1.14 0.57 0.29 0.07
CIF 352 x 288 4.56 2.28 1.14 0.29
ITU-R 720 x 576 18.66 9.33 4.67 1.17
SDTV 720 x 480 15.55 7.78 3.89 0.97

1280 x 720 41.47 20.74 10.37 2.59
1920 x 1080 93.31 46.66 23.33 5.83

HDTV

Video Size
Frequency at N-Parallel (MHz)

 

As a consequence, we apply parallelism technique to reduce the required frequency. 

Table 7 and Table 8 show the estimation results of encoder and decoder respectively for 

such pixel parallelism. For encoder design, the suitable choice is to use the four-pixel 

parallel architecture for HD 720p that runs at frequency of 93.31MHz and needs 864 



 

 

29 

cycles for one macroblock. With the same condition, the four-pixel parallel decoder 

only needs 96 cycles at 10.37MHz to decode a macroblock for 720p size. Thus, our 

decoder can support larger size like HD 1080p at 23.33MHz. Such design target can 

achieve the real-time requirement while is easy to be implemented as well.   

3.2.2. Macroblock Level Pipelining 

Previous approach in Subsection 3.2.1 only assumes the cycles for intra prediction. 

However, more cycles will be required when considering other functions like data 

transfer between memories and entropy coding. These operations will increase the 

necessity of extra cycle count for a macroblock and result in higher operating frequency. 

For example, the CAVLC circuit in [15] takes about 500 cycles to encode a high-quality 

application video. This will increase the encoder latency to around 1,400 cycles with the 

frequency of 150MHz. In addition, the zigzag scan in CAVLC unit will also increase the 

operation cycles since its scan order is quite different than the raster scan used in the 

prediction engine.  

 

Fig. 18 Ping-pong architecture with macroblock level pipelining for encoder 

To solve above problems, the macroblock level pipelining is used as shown in Fig. 18 

This pipeline partition enables the overlapped execution of intra prediction and entropy 

coding without large cycle increases. The cycle count of a macroblock depends on the 

longest latency of each processing unit in pipeline. Besides, this design adopts the 



 

 

30 

ping-pong architecture with a two-bank memory located between the prediction loop 

and entropy coding to resolve the ordering problem. In the architecture, currently 

predicted coefficients after quantization are sent to one memory bank of ping-pong 

buffer, and coefficients of previously predicted macroblock are stored in the other 

memory bank and ready for CAVLC coding. These ping-pong buffers are also beneficial 

for decoding process in the inverse data flow direction for data reordering and 

processing rate smoothing. 

3.3. Architecture Design of Intra Codec 

3.3.1. Overall Architecture 

Boundary Reg 
for Intra 4x4

Pixels 
Selection

DCT
DHT

Pred. DC 
Reg

Cost Generation
and

 Mode Decision

Q

IQ

Boundary Reg 
for Intra 16x16

Cur/Best 
Block Reg

Source 
Input

IDCT
IDHTRec. FIFO Reg

Rec. DC 
Reg

Source Buffer
96x32

Single Port

External Upper Line Buffer

Ping-pong 
Coefficient 

Buffer
104x64x2

Single Port

CAVLC Codec

Decoded 
Output

Intra Prediction 
Generator

Upper Buffer 
Controller

Bitstream 
Output

Bitstream 
Input

Rec. 
Shifter

Prediction Phase

Reconstruction Phase

Bitstream Phase

4 pixels/cycle 1 coef./cycle

Most 
Pb. 
Reg

 

Fig. 19 Proposed architecture of baseline intra frame codec 

Fig. 19 shows the architecture of the proposed codec derived from previous work [11], 

which is based on algorithm-level optimization and system-level pipelining mentioned 



 

 

31 

in Section 3.1 and 3.2. This design is directly corresponding to both the encoding flow 

in Fig. 2 and the decoding flow in Fig. 3. It can work as an intra frame encoder or a 

decoder with the alternative of three switch multiplexers shown in Fig. 19. The entire 

architecture consists of three operation phases: prediction phase, reconstruction phase, 

and bitstream phase.  

The prediction phase is the most important part in this design. It mainly contains intra 

prediction generator, forward transform, cost generation and mode decision unit, 

quantization, and some buffers and registers. The reconstruction phase, which is used to 

reconstruct the decoded data, is composed of inverse transform, de-quantization, and 

reconstruction FIFO registers. Four-pixel parallelism is used in these two phases to 

achieve the required throughput. The bitstream phase is separated form previous two 

phases by the ping-pong buffer and uses the CAVLC codec to perform coding or 

decoding of bitstream with throughput of at least one coefficient per cycle. In this 

design, the plane prediction buffer and dual port memory are saved due to the algorithm 

optimizations in comparison with previous encoder-only design [13]. 

Boundary Reg 
for Intra 4x4

Pixels 
Selection

D
iff

DCT
DHT

Pred. DC 
Reg

Q

IQ

Boundary Reg 
for Intra 16x16

Cur/Best 
Block Reg

Source 
Input

IDCT
IDHTA

dd

Rec. DC 
Reg

Source Buffer
96x32

Single Port

Ping-pong 
Coefficient 

Buffer
104x64x2

Single Port

CAVLC Codec

Decoded 
Output

Intra Prediction 
Generator

Upper Buffer 
Controller

Bitstream 
Output

Bitstream 
Input

Rec. 
Shifter

Most 
Pb. 
Reg

Cost Generation
and

 Mode Decision

Rec. FIFO Reg

 

Fig. 20 Encoder dataflow of the design 



 

 

32 

Fig. 20 shows the encoder dataflow of this design, where the unused datapath is 

concealed with light tint. First, the intra prediction unit generates prediction values of 

various modes for predicted block according to schedule control unit. Residuals derived 

from difference of prediction samples and original data are then transformed by 4x4 

integer transform unit. Transformed coefficients are further used to compute cost for 

decision of the best mode, and block with minimum cost is preserved in the block buffer. 

The coefficients, which are quantized after chosen as the best mode, are then stored in 

the ping-pong memory for entropy coding and sent to reconstruction phase to be 

decoded as boundary samples for next block prediction at the same time.  
D

iff

A
dd

 

Fig. 21 Decoder dataflow of the design 

The decoder flow is shown in Fig. 21. Unlike the encoding loop in Fig. 20, the 

decoder is only a direct-through datapath without loop. The coefficients decoded by the 

CAVLC decoder in last macroblock-level pipeline stage are passed through 

de-quantization and inverse 4x4 transform to be recovered to residuals. Prediction 

values according to the mode information decoded from UVLC decoder are acquired 

from the intra prediction generator and added to the residuals for reconstruction. All the 



 

 

33 

decoded blocks are further sent to source memory for output and the boundary registers 

for next prediction. Unused components in decoder such as mode decision, forward 

transform, quantization, and predictor FIFO buffer are shut down to save power. Detail 

information for each component is discussed in the following subsections. 

3.3.2. Schedule of Codec 

Because of variety of prediction modes, the number of process cycles for encoder is 

much greater than that for decoder and limits the major performance of codec. Another 

performance bottleneck in encoder is the reconstruction feedback loop since the next 

4x4 block cannot start its computation until its boundary samples are reconstructed from 

previous blocks. This may result in low hardware utilization and longer latency in the 

prediction phase. In addition to the 4x4 block prediction, when performing 16x16 intra 

predictions, a macroblock-size buffer could be needed to store the processed 4x4 

residual data for later mode decision, which raises the hardware cost. 

To solve these issues, we propose three scheduling techniques adopted in the 

scheduling control unit to solve these data dependency problems and eliminate the 

requirement of large buffer. These three techniques are as follows: 

1. Insertion of the 16x16 and 8x8 predictions 

During the empty cycles waiting for reconstructed samples between two intra 4x4 

blocks, the 16x16 or 8x8 intra prediction process is inserted into these bubble cycles to 

pre-compute their costs. Unlike the technique used in [13], the prediction generator 

predicts four blocks in one 16x16 mode successively instead of one block for four 

modes in each bubble. This helps to decrease the registers used in accumulating costs 

for the 16x16 prediction. After processing four blocks, it continues to process the next 



 

 

34 

4x4 prediction. Thus, utilization of components in the prediction phase is improved. 

2. Early start of next block prediction 

Since the 4x4 blocks are processed in the Z-scan order, upper and left boundary 

samples might not be available at the same time for prediction purpose. To avoid this 

problem and pull the next block processing earlier, we rearrange the processing order of 

prediction modes such that prediction modes can be started as early as possible if the 

required data is available. For example, the vertical mode is processed before the 

horizontal mode since the left boundary pixels are not available. This approach can 

reduce the idle cycles and thus improve the throughput. 

3. Recomputation of 16x16 and 8x8 best modes  

For the 4x4 block prediction, we use a small buffer to save the residuals of the best 

mode. However, when such a strategy applies to 16x16 or 8x8 predictions, a large 

macroblock-size buffer will be required. To solve this problem, we neglect the data 

generated in the prediction process and recompute them again for the best mode of 

16x16 and 8x8 macroblocks after the prediction process if it is selected as the best mode. 

This approach may increase the total encoding cycles, but it is still in an acceptable 

range and can reduce the buffer cost as well. 

Fig. 22 shows the pipelined schedule of this codec for processing a macroblock. 

Based on the above techniques, it takes at most 1,080 cycles to perform an encoding 

procedure for a macroblock while the best mode of luma components is selected as the 

16x16 prediction. However, if the 4x4 prediction is chosen, the optional recomputation 

cycles between 956 and 1,024 in Fig. 22 can be eliminated, and the total cycles decrease 

to 1,012. Compared with the previous design [13], this work is able to save 16% of 



 

 

35 

cycle count. For decoding a macroblock, it takes 236 cycles in the average case. 

 

Fig. 22 Pipelined schedule for codec design 

3.3.3. Intra Prediction Generation Unit 

 

Fig. 23 Reconfigurable datapath of intra prediction generation unit 



 

 

36 

Fig. 23 shows the proposed intra prediction generation unit with the removal of plane 

prediction. The whole thirteen intra prediction modes are organized into four types as 

described in Fig. 10. Without the complex plane modes, the other modes in these types 

can easily share and reuse the partial sum of adjacent pixels to compute different values. 

To support such computation sharing, the datapath of the generator can be reconfigured 

to handle different modes for 4x4, 16x16, and 8x8 predictions. 

 

Fig. 24 Examples of operations for four intra prediction modes 

The operations of this unit for four examples of prediction modes are illustrated in 

Fig. 24. First, the input pixels are selected from boundary register buffers that store the 



 

 

37 

neighboring pixels of previously reconstructed blocks. Then, for the bypass type, such 

as vertical and horizontal modes, the predictor does nothing but directly outputs the 

input value. For the linear type, from mode three to mode eight, desired values are 

obtained by reusing its partial sums. In which, the first-level adders generate values like 

(A+B+1), and then the second-level adders sum up the adjacent partial sums to compute 

the result of (A+2B+C+2). As to the average type, so called DC prediction, needs to 

sum up total eight pixels of neighboring blocks, four from upper block and four from 

left one, to figure out the average value each cycle. For luma 4x4 or chroma 8x8 DC 

modes, it takes one cycle to calculate the predicted DC value. However, four cycles are 

required for luma 16x16 DC prediction since up to 32 boundary pixels have to be 

accumulated. We use extra adders and a register to simplify the accumulation operations 

in the reconfigurable datapath instead of using existing adders, which saves more 

control and wiring circuits. After prediction, these values are handled through the 

difference unit to produce the residuals, which will be sent to the transform unit for 

further processing. 

3.3.4. Transform Unit 

The coefficients in transform matrices (5), (6), and (7) are even or odd symmetry at 

each row or column and can be easily implemented with addition and shift. The 2-D 

transform can also be separated into two 1-D transform with fast algorithm and butterfly 

architecture [16]. Since forward DCT and DHT have the same butterfly structures and 

will not operate at the same time in the codec, they can be merged together for area 

consideration. Similar architecture is applied to inverse transform. Though several 

transform designs have been proposed [17][18][19], this work adopts the same 

architecture as [20], as shown in Fig. 25, to execute integer DCT and DHT since it is 



 

 

38 

also four-pixel parallel and with lower hardware cost. In addition, two 4x4 block-size 

registers are located in both forward and inverse transform units to gather the DC 

coefficients after integer DCT and IDCT for further DHT computation of DC blocks.  

 

Fig. 25 Hardware architecture of transform unit [20] 

3.3.5. Quantization and De-quantization  

The quantization and de-quantization units are shown in Fig. 26, where only one of 

the four-parallel datapath is displayed. Constant values of quantization coefficients are 

all implemented by look-up tables depending on QPs from Table 2 and Table 3 , as 

denoted by “quant_coef,” “dequant_coef,” “qp_const,” “qp_shift,” and “qp_per” in Fig. 

26. A quantized value for entropy coding is obtained through a multiplication, an 

addition, and a shift operation. To recover the quantized data, a multiplication followed 

by rounding and shift is performed. These forward and inverse processes of quantization 

and transform are directly matched to (6) and (7). The design also uses skill of data 

guarding to reduce power consumption by skipping the zero input. 



 

 

39 

 

Fig. 26 Quantization and de-quantization unit 

3.3.6. Cost Generation and Mode Decision Unit 

After transform, the coefficients are sent to both cost generation unit for cost 

calculation and current block registers to temporarily be stored avoiding recomputation. 

Fig. 27 illustrates the cost generation and mode decision unit. The cost generation unit is 

implemented according to the enhanced SATD function in (11) that is divided in two 

stages: the integer transform that replaces the DHT and the extra scalar multiplication 

factor stage. The above replacement can eliminate the recomputation issue of transform 

in hardware design and also improve coding performance. The scaling integer factors 

are realized with a two-stage adder tree and simple shifters instead of multipliers to 

reduce hardware cost and critical paths.  

The current cost registers are used to temporarily store the cost value for current 

mode. If the current mode belongs to the most probable modes, the non-zero initial cost 

value is given according to lambda value table instead of zero cost. The cost is than 

compared to the minimum cost value for 4x4 prediction or accumulated for 16x16 

prediction. If a smaller cost value is detected, the minimum cost in 4x4 prediction is 



 

 

40 

replaced by the new one and coefficients in the current block registers in Fig. 19 are 

moved to the best block registers. This comparing and replacement procedure will be 

continued recursively until the best mode with minimum cost is obtained. Eventually, 

SATD costs of all 4x4 predictions and best one of 16x16 prediction are compared again 

to determine which prediction type is used in this macroblock. Similar operations are 

also applied to chroma components. 

 

Fig. 27 Cost generation and mode decision unit 

3.3.7. Reconstruction Path 

The quantized residual values are stored in the coefficient buffer for entropy coding 

and also need to be reconstructed immediately since intra prediction unit requires its 

boundary pixels to predict successive blocks. Besides, this reconstruction process in the 

encoder can also be used for decoding as well. The reconstruction phase as shown in Fig. 



 

 

41 

19 consists of two paths, one for residual reconstruction and one for generation of intra 

prediction values. In decoder process, residuals are recovered by de-quantization, 

inverse transform, and shift scaling in the proper order. At the same time, the 

corresponding prediction modes are also obtained and added to the residuals for 

decoding of pixels. These intra prediction samples are immediately generated and 

obtained by the prediction unit in decoder but queued in the prediction FIFO in encoder 

due to the long latency of transform, quantization, and mode decision process. After 

reconstruction, some of these data are stored in the boundary buffers as the reference 

samples for next macroblock. 

3.3.8. Memory Organization 

 

Fig. 28 Memory organization in intra codec 

Only two on-chip memories are used in the proposed codec architecture, a source 

buffer and a coefficient buffer. The source buffer, a 96-entry 32-bit single-port SRAM, 



 

 

42 

stores four pixels per row, where 64 entries for a luma components and 32 for two 

chroma ones. In encoding process, this buffer stores the input source data of currently 

encoded macroblocks while in the decoding process, it can be used to save decoded 

pixels after reconstruction and then output them to the external memory at the end of 

decoding. The coefficient buffer adopts the ping-pong buffer architecture such that the 

coding loop and entropy coding stage can be pipelined to improve hardware 

performance. Each bank in the buffer has 104 entries with 64-bit bandwidth for 96 

entries of AC coefficients and 8 entries of DC coefficients. Fig. 28 illustrates the usage 

of the two memory architecture. Moreover, a line buffer with frame width wide is 

located in the off-chip memory to store the boundary reference pixels above the current 

macroblock. 

3.3.9. CAVLC Codec 

 

Fig. 29 Architecture for CAVLC encoder 

Fig. 29 shows the hardware architecture of CAVLC encoder. The encoder can be 



 

 

43 

divided into two parts, scanning process and encoding process, which work in parallel. 

During encoding, the transform coefficients are first reordered in the zigzag scan order 

and then detected and marked as zero if it is zero. The zero coefficients coding is 

skipped by the leading-one detection unit and only the nonzero ones will be sent to the 

encoding process. Thus, the corresponding coding data is generated in parallel and sent 

to tables for parallel coding. This efficient zero skipped coding can speedup the process 

significantly, with seven cycles for one block coding in average. 

 

Fig. 30 Architecture for CAVLC decoder 

Fig. 30 shows the hardware architecture for CAVLC decoder. This design first 

decodes the coefficient token and sign mark in the same cycle, and thus the level 

decoding can be started immediately in the next cycle. During the level decoding 

process, the 4x4 zero block information is recorded in the zero-block index units, and 

the remaining decoding circuitry is turned off for such a block. After it, the zero run 

decoding can be two symbols in one cycle if it is less or equal than six, a common case 

that is worth to be speedup. Once every run is decoded, the decoded level will be put 

into their corresponding position in the coefficient buffer, and no extra reordering cycle 



 

 

44 

is required to merge level and zero runs. The cycle count for one macroblock decoding 

is 90 in average of all sequences when QP is fixed to 28. 

3.4. Implementation Results 

3.4.1. Gate-count and Layout 

Table 9  List of gate count for proposed design 

Component Gate Count 

Intra prediction generation 3,254 

DCT/DHT with DC registers 9,657 

IDCT/IDHT with DC registers 9,113 

Quantization 16,493 

De-quantization 4,671 

Cost generation and mode decision 15,992 

Reconstruction 3,804 

Boundary prediction buffer 11,659 

Schedule controller 1,362 

CAVLC encoder 9,845 

CAVLC decoder 16,421 

Total 103,057 

The proposed codec architecture is designed by Verilog HDL and implemented using 

UMC 0.18µm 1P6M CMOS technology. Table 9 lists the gate count for each component, 

where the total gate count is 103.06K. In this list, we can observe that the quantization 

unit occupies the largest area since it uses four multipliers in the four-pixel parallelism 

to perform the quantization. The four-pixel parallel design can provide smooth flow 

without waiting. Besides, the cost generation and mode decision unit has the second 

largest area due to the two block-size registers and critical timing in summery. The 

reconfigurable datapath and elimination of plane prediction makes our intra prediction 

generator only needs 3.3K gate count. 



 

 

45 

 

Fig. 31 Layout of the codec chip 

Table 10  Information for the chip 

Technology UMC 0.18 µm 1P6M CMOS 

Core Voltage 1.8V 

I/O Voltage 3.3V 

Core Size 1.28x1.28 mm2 

Package 144 pin CQFP 

Single-port 104 x 64-bit x 2 banks On-chip Memory 

Single-port 96 x 32-bit x 1 bank 

The chip layout is shown in Fig. 31 with a core size of 1.28x1.28 mm2. In this layout, 

one 96x32-bit SRAM is placed at the top and a pair of dual-bank 104x64-bit SRAM is 

implemented at the bottom of the chip. The limitation of this chip is 125MHz at the 

worst-case, which is larger than the required frequency, 117MHz. Thus, it can easily 

support 27.65M pixels/sec still image encoding and real-time video intra frame coding 

of high definition 720p (1280x720 4:2:0 at 30fps) video application when clocked at 



 

 

46 

117MHz. Besides, it can also support the same decoding throughput with only 

frequency of 25.5MHz, and larger size for high definition 1080p with frequency of 

58MHz. Table 10 lists the chip information.  

3.4.2. Comparison 

Since no intra codec has been published, we compare our design with other encoder 

and decoder design as shown in Table 11 . Previous encoder design [13] can only 

support SD size (720x480 4:2:0 at 30 fps) at frequency of 54MHz and has a total gate 

count of 84K implemented in TSMC 0.25µm 1P5M CMOS technology. However, it 

uses two single-port and one dual-port memories in their architecture and results in a 

larger core size. In addition, it cannot support the decoding process and needs extra area 

cost for plane mode prediction. The proposed design can support both codec and HD 

size processing with slightly larger area and lower operating frequency. The extra area 

cost is roughly the area cost of CAVLC decoder. The other design [21] is a pure baseline 

decoder implementation that supports HD 1080p size decoding with frequency of 

100MHz. In comparison, our design needs lower operating frequency for the same 

decoding capability. 

Table 11  Comparison among [13], [21], and this work  

Design Feature This Work [13] [21] 

Max operation freq. 125MHz 55MHz 100MHz 

System pipeline MB-based MB-based Block-based 

Pixel parallelism 4 pixels 4 pixels 4 pixels 

CMOS technology UMC 0.18µm TSMC0.25µm UMC 0.18µm 

Gate count 103K 85K 450K 

Chip core size 1.28x1.28 mm2 1.86x1.86 mm2 N/A 

Single 96x32(x1) Single 96x32(x2) Single 96x32(x2)  On-chip memory usage 

(for 720p) Single104x64(x2) Single 64x32(x1) Single 80x32(x1) 



 

 

47 

 Dual 96x16 (x4)  

Off-chip memory usage 

(for 720p) 

Single 80x32 

SDRAM 

Single 80x32 

SDRAM 

N/A 

Encoder Supported Supported Unsupported 

Max target size HD 1280x720 HD 720x480 N/A 

Freq. for HD 720p  117MHz N/A N/A 

Freq. for SD  43MHz 54MHz N/A 

Cost function Enhanced 

DCT-based SATD 

DCT-based SATD N/A 

Plane prediction buffer No Yes N/A 

Plane mode prediction No Yes N/A 

DC values forwarding Yes No N/A 

Coefficient reg. size 4x4 block 16x16 MB N/A 

Processing cycles/MB < 1080 cycles < 1300 cycles N/A 

Decoder Supported Unsupported Supported 

Max target size HD 1920x1080 N/A HD 1920x1080 

Freq. for HD 1080p 58MHz N/A 100MHz 

Freq. for HD 720p 25MHz N/A 50MHz 

Freq. for SD 10MHz N/A 20MHz 

Inter prediction No N/A Yes 

Processing cycles/MB = 236 cycles N/A Unknown 



 

 

48 

Chapter 4   

Fast H.264/AVC Intra Frame Encoder 

In Chapter 3 an H.264/AVC baseline profile intra frame codec is proposed for high 

definition video application. This codec design can support both encoder process for 

HD size 720p and decoder process for HD size 1080p at the working frequency lower 

than the previous designs. Though this design is quite suitable for video application 

products such as digital camera or digital video recorder, it still lacks the consideration 

for power consumption. With the popularity and demand of the portable products, the 

power issue plays an important role in the current SOC design. 

To solve this problem and focus on the power-saving techniques, a new H.264/AVC 

baseline profile intra encoder with variable-pixel parallel architecture and modified 

three-step fast prediction algorithm is presented in this chapter. The variable-pixel 

parallel datapath can save almost half of the prediction cycles efficiently, and the fast 

algorithm is able to speedup the prediction flow of 4x4 modes with only negligible 

quality degradation. In comparison with previous codec design, this work has the same 

ability to support HD size 720p encoding process but with nearly half of frequency 

requirement, only 61MHz. With the modified three-step fast prediction algorithm, 

eight-pixel parallel prediction engine, and enhanced designs, both cycle latency and 

hardware area can be reduced for lower power consumption.  

4.1. Fast Algorithm for Intra Prediction 

4.1.1. Survey of Fast Algorithm 



 

 

49 

In the intra coding of H.264/AVC, intra prediction and SATD cost function for mode 

decision take almost 77% of computation in all functions [13]. This result is reasonable 

since for a 4x4 block, there are thirteen modes for luma prediction and four for chroma 

prediction. Thus, the SATD function has to be applied to a luma block for thirteen times 

but to its best mode only once. If some unnecessary prediction modes can be eliminated 

by a fast algorithm, we can reduce the computation of intra prediction and its related 

SATD transform. 

Various fast algorithms for intra predictions are published to decrease prediction 

modes efficiently with acceptable performance loss. For example, some algorithms 

define thresholds for RDO cost [22] or for SAD cost [23] to select the modes to be 

skipped. If the cost of currently predicted mode is smaller than the pre-defined threshold, 

the other modes are skipped. The other algorithms use special methods to predict the 

appropriate modes such as macroblock properties prediction [24], edge map and local 

edge direction histogram [25], and feature-based mode filtering [26]. They take 

advantage of the correlation of intra-block or inter-block pixels to speedup the decision 

process. Further solution to reduce computation by combining intra prediction with 

transform [27] is also proposed. However, these researches are mostly developed in 

only algorithm level with software optimization but not for hardware design purpose. As 

a result, most of the algorithms are quite computationally intensive, hard to be 

implemented in hardware, and memory-demanding. 

A suitable choice for both simple hardware addition and lowly extra computation is 

using the fast three step intra prediction algorithm [28] as shown in Fig. 32. This 

algorithm uses the existing SATD results to predict a best mode for a 4x4 block through 

a three-step flow, which statically decreases the prediction modes from nine to six. Such 



 

 

50 

fast algorithm focusing on reduction of 4x4 prediction modes benefits to effectively 

decrease total computation cycles since number of operations for the 4x4 prediction is 

significantly more than those for 16x16 prediction according to the complexity analysis 

[29]. The simulation results in [28] show that it can save about 33% of computation for 

the intra prediction and related transform with a bitrate loss of 1%. Besides, this 

algorithm is suitable for the hardware implementation with little comparison circuit. 

 

Fig. 32 Decision flow of fast three-step algorithm for intra prediction 

4.1.2. Modified Fast Algorithm for Intra Prediction 

Through the three-step algorithm is more suitable for hardware design than the other 

software-based ones, it still have much room for improvement in practice. To fit the 

pipeline architecture and schedule in our encoder design, the order of the decision flow 

should be properly modified.  



 

 

51 

Step 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Mode 0 St P D T1 T2 C B

St P D T1 T2 C B

Mode 1 St P D T1 T2 C B

St P D T1 T2 C B

Mode 2 St P D T1 T2 C B

St P D T1 T2 C B

Step 2

Mode 5 1 2 3 4 St P D T1 T2 C B

St P D T1 T2 C B

Mode 7 St P D T1 T2 C B

St P D T1 T2 C B

Step 3

Mode 3 1 2 3 4 5 6 St P D T1 T2 C B

St P D T1 T2 C B  

Fig. 33 Fast three-step algorithm in pipeline structure 

Fig. 33 illustrates an example to directly apply the three-step algorithm used in the 

eight-pixel parallel pipeline architecture modified from previous work of codec. In the 

pipeline stage diagram, each block takes 8 cycles latency to complete a prediction 

process including intra prediction, SATD function, and mode decision, and the first step 

in Fig. 32 will take 12 cycles for three modes. The second step can be immediately 

executed after the 10th cycle in the first step since the comparison results of mode 0 and 

mode 1 is obtained. However, this scheduling leads to four cycle bubbles. The same 

situation also exists at the transition between the second step and the third step that 

generates  six cycles latency. Therefore, total 28 cycles are required to predict a block 

with the original fast algorithm. 

A solution to conceal the bubble cycles is to adjust the order of prediction modes in 

the scheduling. Since the third step in Fig. 32 has to predict either mode 3 or mode 4 no 

matter which branch is chosen, we can move these two modes to the second step and fill 

the transition bubbles. Fig. 34 illustrates a new decision flow for the modified fast 

algorithm with only one decision. Though the prediction modes increase from six to 

seven, the total cycles to predict a block are reduced to 20 and no bubble cycle exists. 



 

 

52 

Thus, pipeline operations can be executed successively without cycle waste. Fig. 35 

shows the modified algorithm in the eight-pixel parallel pipeline architecture. 

 

Fig. 34 Decision flow of modified three-step algorithm for intra prediction 

Step 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Mode 0 St P D T1 T2 C B

St P D T1 T2 C B

Mode 1 St P D T1 T2 C B

St P D T1 T2 C B

Mode 2 St P D T1 T2 C B

St P D T1 T2 C B

Step 2

Mode 3 St P D T1 T2 C B

St P D T1 T2 C B

Mode 4 St P D T1 T2 C B

St P D T1 T2 C B

Step 3

Mode 5 St P D T1 T2 C B

St P D T1 T2 C B

Mode 7 St P D T1 T2 C B

St P D T1 T2 C B  

Fig. 35 Modified fast three-step algorithm in pipeline structure 



 

 

53 

4.1.3. Simulation Results 

Table 12  Comparison among original [10], modified algorithm, and proposed fast 

algorithm combined of three techniques for 300 Intra frames 

SNR Y SNR U SNR V Bit-rate SNR Y SNR U SNR V Bit-rate SNR Y SNR U SNR V Bit-rate

16 46.38 47.27 47.43 10537.41 +0.00 +0.00 +0.00 +0.26% +0.05 +0.00 +0.00 +0.19%

20 42.96 44.43 44.51 8143.18 +0.01 +0.00 +0.00 +0.33% +0.02 -0.03 -0.03 +0.24%

24 39.63 41.63 41.65 6189.86 +0.00 +0.00 +0.00 +0.42% -0.04 -0.14 -0.12 +0.32%

28 36.41 38.95 38.96 4585.29 +0.00 +0.00 +0.00 +0.55% -0.05 -0.23 -0.25 +0.43%

32 33.05 37.12 37.08 3246.41 -0.01 +0.00 +0.00 +0.67% -0.09 -0.42 -0.45 +0.56%

36 29.96 35.15 35.07 2218.46 -0.01 +0.00 +0.00 +0.79% -0.12 -0.53 -0.55 +0.74%

16 45.93 46.25 46.29 15361.27 +0.00 +0.00 +0.00 +0.32% +0.04 +0.01 +0.01 +0.28%

20 42.14 42.87 42.89 12233.46 +0.00 +0.00 +0.00 +0.38% +0.03 -0.03 -0.03 +0.33%

24 38.49 39.72 39.68 9487.00 -0.01 +0.00 +0.00 +0.46% -0.01 -0.11 -0.10 +0.42%

28 35.04 36.88 36.76 7179.38 +0.00 +0.00 +0.00 +0.59% +0.00 -0.16 -0.18 +0.54%

32 31.50 34.89 34.67 5200.07 +0.00 +0.00 +0.00 +0.75% -0.02 -0.24 -0.23 +0.75%

36 28.28 32.87 32.60 3572.40 -0.01 +0.00 +0.00 +0.89% -0.06 -0.31 -0.22 +0.96%

16 46.16 47.35 47.63 10114.93 +0.00 +0.00 +0.00 +0.38% +0.06 -0.05 -0.04 +0.42%

20 42.81 44.69 44.88 7662.99 +0.00 +0.00 +0.00 +0.50% -0.01 -0.20 -0.15 +0.55%

24 39.59 41.97 42.12 5742.80 +0.00 +0.00 +0.00 +0.59% -0.10 -0.36 -0.28 +0.71%

28 36.49 39.40 39.54 4235.43 +0.00 +0.00 +0.00 +0.71% -0.11 -0.52 -0.36 +0.89%

32 33.33 37.51 37.73 3005.78 -0.01 +0.00 +0.00 +0.94% -0.21 -0.65 -0.52 +1.12%

36 30.36 35.58 35.78 2055.30 +0.00 +0.00 +0.00 +0.99% -0.27 -0.67 -0.56 +1.19%

16 47.34 48.46 49.40 4159.54 +0.00 +0.00 +0.00 +0.74% +0.09 -0.06 -0.12 +1.13%

20 44.89 46.88 47.95 2777.52 -0.01 +0.00 +0.00 +0.80% -0.05 -0.30 -0.38 +1.10%

24 42.65 44.62 46.03 1941.72 +0.00 +0.00 +0.00 +1.49% -0.25 -0.37 -0.64 +2.16%

28 40.33 42.52 43.93 1370.30 -0.02 +0.00 +0.00 +1.51% -0.37 -0.63 -0.85 +2.11%

32 37.77 40.82 42.54 963.42 -0.03 +0.00 +0.00 +1.30% -0.62 -0.69 -1.09 +1.98%

36 35.28 38.80 40.69 672.96 -0.04 +0.00 +0.00 +1.32% -0.75 -0.64 -0.98 +1.56%

16 46.26 47.56 48.57 7665.68 +0.00 +0.00 +0.00 +0.40% +0.07 +0.03 +0.00 +0.41%

20 42.90 45.17 46.83 5394.72 +0.00 +0.00 +0.00 +0.55% +0.08 -0.08 -0.21 +0.60%

24 39.95 42.87 44.78 3678.28 -0.01 +0.00 +0.00 +0.69% -0.04 -0.25 -0.35 +0.82%

28 37.26 40.91 42.79 2467.35 -0.01 +0.00 +0.00 +0.80% -0.09 -0.34 -0.46 +0.95%

32 34.61 39.80 41.32 1598.24 -0.01 +0.00 +0.00 +0.83% -0.23 -0.46 -0.60 +1.20%

36 32.24 38.61 39.81 1022.62 -0.01 +0.00 +0.00 +0.74% -0.35 -0.45 -0.57 +1.26%

16 45.88 48.20 49.05 9454.85 +0.00 +0.00 +0.00 +0.21% +0.04 +0.06 +0.05 +0.06%

20 42.13 46.38 47.64 6969.04 +0.00 +0.00 +0.00 +0.29% +0.09 -0.05 -0.11 +0.12%

24 38.74 44.64 46.13 4959.03 +0.00 +0.00 +0.00 +0.41% +0.06 -0.24 -0.13 +0.28%

28 35.63 43.08 44.72 3437.66 -0.01 +0.00 +0.00 +0.52% +0.11 -0.35 -0.18 +0.41%

32 32.74 41.96 43.72 2236.41 +0.00 +0.00 +0.00 +0.58% -0.01 -0.44 -0.23 +0.49%

36 30.24 40.82 42.72 1418.33 -0.01 +0.00 +0.00 +0.59% -0.16 -0.39 -0.14 +0.59%

Coastguard

Akiyo

Foreman

JM 8.6 Modified 3-step Algorithm Combined Algorithm
Sequence QP

Stefan

Mobile

Paris

 

Table 12 shows the comparison results between the original mode decision method 

and the modified ones for six common sequences. It can be observed that the usage of 

the modified three-step algorithm only increases 0.68% of bitrate in average, compared 

to the results from [10]. Though the bitrate is increased, the 4x4 prediction modes can 



 

 

54 

be reduced from nine to seven with 23% of computation saving and the quality of PSNR 

is almost unchanged. After we combine the modified fast three-step algorithm with 

previously mentioned enhanced SATD cost function and plane mode removal in Section 

3.1, the average bitrate increase for six sequences is slightly changed to 0.77%, which is 

still better than the original algorithm [28] and other fast algorithms.  

The RD curve diagrams of simulation results for [10] and the combined fast 

algorithm are shown from Fig. 36 to Fig. 41. Except “Akiyo”, the QP range is restricted 

from 20 to 32 for these diagrams. Though there is tiny performance loss in some 

sequences like “Akiyo” and “Paris” due to their low bitrate when QPs are large, 

however in most cases, the combined algorithm still makes the coding performance 

much similar or even better in low QP range. 

Stefan CIF

32

34

36

38

40

42

44

100 130 160 190 220 250 280
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 36 RD curves of [10] and proposed fast algorithm for sequence “Stefan” 



 

 

55 

Mobile CIF

31

33

35

37

39

41

43

170 210 250 290 330 370 410
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 37 RD curves of [10] and proposed fast algorithm for sequence “Mobile” 

Paris CIF

33

35

37

39

41

43

90 120 150 180 210 240
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 38 RD curves of [10] and proposed fast algorithm for sequence “Paris” 



 

 

56 

Akiyo CIF

38

40

42

44

46

48

40 60 80 100 120 140
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 39 RD curves of [10] and proposed fast algorithm for sequence “Akiyo” 

Foreman CIF

34

36

38

40

42

44

50 70 90 110 130 150 170 190
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 40 RD curves of [10] and proposed fast algorithm for sequence “Foreman” 



 

 

57 

Coastguard CIF

32

34

36

38

40

42

44

60 90 120 150 180 210 240
Kbits/frame

S
N

R
 Y

 (
dB

)

JM 8.6

Proposed

 

Fig. 41 RD curves of [10] and proposed fast algorithm for sequence “Coastguard” 

4.2. Architecture Design of Fast Intra Encoder 

4.2.1. Overall Architecture 

The proposed intra frame encoder design with the modified fast algorithm and 

variable-pixel parallel architecture is shown in Fig. 42. This design is extensively 

modified from previous work in Chapter 3 and mainly partitioned into four phases, 

prediction phase, reconstruction phase, quantization phase, and bitstream phase. The 

major changes from previous design are eight-pixel instead of four-pixel parallelism in 

the prediction phase. The quantization and reconstruction phase are kept unchanged, 

four-pixel parallelism, and thus partitioned from the prediction phase. 

The eight-pixel parallel prediction phase significantly improves the throughput and 

reduces the cycles for the computationally critical intra prediction generator by half. 



 

 

58 

This decision will not increase the area cost by one time since we only add one more 

intra prediction engine, two 1-D four-point transform, and a few small buffers. The total 

architecture includes a pair of boundary buffer, two intra prediction engines, an 

eight-input 4x4 transform, a cost generator with feedback signals for fast mode decision, 

and some registers. Since only blocks with best modes are allowed to pass through the 

quantization phase and reconstruction phase, these two phases adopt four-pixel parallel 

architecture to save area. To allow smooth data flow between different data parallelism, 

we use the current block and best block registers in the quantization phase and the FIFO 

registers to buffer the data. The bitstream phase, including CAVLC encoder, is similar to 

[11] and slightly modified to fit the coding bitstream with at least one coefficient per 

cycle. 

D
iff

A
dd

D
iff

 

Fig. 42 Proposed architecture of encoder with fast algorithm 

 



 

 

59 

4.2.2. Scheduling of Encoder 

In addition to the feedback loop in the encoder, the newly adopted variable-pixel 

parallel architecture also restricts the performance in the design. For example, though a 

block-size buffer is placed at the interface between four-pixel parallel quantization 

phase and eight-pixel parallel prediction phase, the recomputed coefficients for best 

luma 16x16 and chroma modes cannot be passed through successively because of the 

bottleneck of different parallelism and thus will be blocked. This situation will result in 

a larger buffer to store temporarily blocked data or low utilization with empty cycles in 

the prediction phase. 

An efficient solution to this problem without utilization loss is to use the interlaced 

pipelined schedule for best mode as shown in Fig. 43 and Fig. 44. We interleave and 

insert the successively recomputed best modes for luma 16x16 and chroma components 

into the normal prediction modes that do not need the four-pixel parallel datapath. This 

can improve the high utilization in the prediction phase without wasted cycles and 

maintain the data continuity in the quantization phase as well. However, a few empty 

cycles are still needed for best chroma mode only scheduling as shown in Fig. 43. 

Besides, to solve the frequent transient states caused by interlaced schedule and simplify 

the control unit, a counter-based controller is used instead of the traditional finite state 

machine controller. With the interlaced method and the previous three techniques: 

insertion of 16x16 and 8x8 prediction, early start of next prediction, and recomputation 

for best mode, the total cycle count for encoding a macroblock can be reduced to 522 or 

560, about only 52% relative to that in previous design [11].  



 

 

60 

 

Fig. 43 Pipelined schedule for fast encoder when best luma mode is selected to 16x16 

 

Fig. 44 Pipelined schedule for fast encoder when best luma mode is selected to 4x4 

4.2.3. Eight-pixel Parallel Datapath 

, With the eight-pixel parallelism in the prediction phase, the components in this 

phase have to be modified for eight inputs and eight outputs. To simplify the design and 

reuse previous components, our modification strategy is to use two four-pixel parallel 

units for eight-pixel parallelism. Fig. 45 shows the eight-pixel parallel intra prediction 

generator which is duplicated and optimized with removal of redundant datapath. To 

simplify the circuit, it only uses odd-row datapath to generate average DC values for 

eight outputs. The same optimization is also applied to the circuits of neighboring 



 

 

61 

reference pixel selection before the prediction engine. 

 

Fig. 45 Eight-pixel parallel intra prediction generator 

Another primarily modified component is the 4x4 integer transform unit composed of 

a row-transform, a column-transform, and a 4x4 transpose array as shown in Fig. 25. 

First, eight inputs for two separate rows imply two separate 1-D row-transform units 

and two column-transform units. Then the transpose array should temporarily store the 

eight coefficients for two cycle latency to gather a whole block and transpose it to the 

right direction. Based on the previous architecture, a modified 4x4 transform unit for 

eight-pixel parallel architecture is shown in Fig. 46, with a 2x2x2x2 transpose array. 

This array delays the coefficients for two cycles and changes their propagation direction 

automatically. Final output data is selected by the multiplexers. The white and dark 

components in Fig. 46 represent different rows, and the solid and dotted arrow line 

means two propagation directions.  

The other components in the prediction phase such as mode decision unit, cost 

generator, and reconstruction FIFO registers are slightly modified. Though doubling the 

datapath of these components may raise the area cost, some critical paths are relaxed 



 

 

62 

due to short cycle count and longer cycle delay time and thus some pipeline stages can 

be eliminated.  

 

Fig. 46 Eight-input eight-output 4x4 transform unit 

4.2.4. Memory Organization 

Fig. 47 shows the organization of two memories in this work for storage of a 

macroblock. Unlike the previous design, a 48-entry 64-bit single-port SRAM is used as 

source buffer memory to satisfy the access of eight-pixel parallel architecture instead of 

the 96-entry 32-bit one. The source buffer can store eight pixels per entry, as well as two 

rows in a block, and has 32 entries for luma and 16 for chroma components. However, 

the input interface of this buffer is set to four pixels, 32 bits, to reduce the bandwidth of 

the entire design. Thus, the cycle count to move data from external memory to the 

source buffer is 96, and each entry needs two cycles to be stored. The coefficient buffer 

is similar to previous design but decreases 25% of bandwidth to save area cost. It adopts 



 

 

63 

104-entry 48-bit ping-pong architecture to save four 12-bit quantized coefficients 

derived from quantization phase.  

 

Fig. 47 Memory organization in fast encoder 

4.2.5. Strategies for Low Power Design 

The usage of the fast prediction algorithm and variable-pixel parallel datapath not 

only decreases the operation cycles and frequency but saves power consumption. To 

achieve requirement of low power issues in portable video application, some techniques 

are used in both algorithm level and structure level in this design. 

1. Local registers for source buffer 

In the schedule mentioned in Subsection 4.2.2, a block is predicted by 4x4 prediction 

successively for seven modes. To generate seven residual blocks, the source buffer with 

bandwidth of eight pixels will be read iteratively for seven times and consume 



 

 

64 

unnecessary power. To solve this problem, a local eight-pixel registers is placed 

between the buffer output and residual generator. The registers can hold previous output 

data temporarily when the buffer outputs data of the next rows, which can avoid the 

iterative state transient in source memory. For example, in the first mode of the 4x4 

prediction, the source memory outputs two eight-pixel data. Then in the following six 

modes, the local register statically holds the first eight-pixel data while the memory is 

fixed to send last eight-pixel data. Thus, only one memory output transient is needed for 

seven prediction modes. 

2. Early termination for 16x16 prediction 

There are three luma 16x16 modes inserted in the prediction schedule. However not 

all of them are useful for final decision. When the cost of the first-predicted 16x16 

mode is obtained, the early termination for second-predicted and third-predicted modes 

is asserted. If the currently accumulated cost in the prediction is larger than the previous 

one, the following operations of this mode will be canceled and the other prediction will 

begin. This strategy can help to reduce redundant prediction cycles and extra power 

consumption. 

3. Data guarding pipeline 

Some intra prediction modes are not allowed due to their unavailable boundary 

samples, such as vertical mode in the upper-most macroblock. Thus, the pipeline 

registers are locked for these modes and the control signals are disabled to make sure 

the values behind this stage are unchanged. This technique can save the unnecessary 

power consumption in prediction engine, transform unit, and cost generator for the 

invalid modes.  



 

 

65 

4.3. Implementation Results 

4.3.1. Gate-count and Layout 

Table 13  List of gate count for fast encoder 

Component Gate Count 

Intra prediction generation 3,691 

DCT/DHT with DC registers 10,008 

IDCT/IDHT with DC registers 7,581 

Quantization 8,832 

De-quantization 2,886 

Cost generation and mode decision 9,285 

Reconstruction 3,840 

Boundary prediction buffer 11,674 

Schedule controller 1,486 

CAVLC encoder 9,664 

Memory controller 1,401 

Total 72,062 

The proposed variable-pixel parallel intra frame encoder with fast algorithm is 

designed by Verilog HDL and implemented using UMC 0.18µm 1P6M CMOS 

technology. When synthesizing at 62.5MHz, the total gate count is about 72K excluding 

the memory area. Table 13 lists the final results of gate count for each components. 

Though the usage of eight-pixel parallelism increases number of necessary functional 

units, the final gate count does not increase but decrease with the reduction of pipeline 

stage and relaxed critical path when compared to Table 9 . For example, the cost 

generator is reduced from 15.3K to 9.3K, and the quantization unit is reduced from 

16.5K to 8.8K as well. Moreover, the datapath of intra prediction unit is duplicated but 

only has 13% of gate count increase. Most of the area is spent on boundary prediction 

buffer, forward transform, CAVLC encoder, and cost generator for mode decision as 



 

 

66 

shown in Table 13  

 

Fig. 48 Layout of the fast encoder chip 

Table 14  Information for the encoder chip 

Technology UMC 0.18 µm 1P6M CMOS 

Core Voltage 1.8V 

I/O Voltage 3.3V 

Core Size 1.20x1.20 mm2 

Package 144 pin CQFP 

Single-port 104 x 48-bit x 2 banks On-chip Memory 

Single-port 48 x 64-bit x 1 bank 

The chip layout is shown in Fig. 48 with a core size of 1.20x1.20 mm2, which is 13% 

smaller than the presented codec chip. Though the 48x64-bit SRAM is larger than the 

96x32-bit one used in previous work, the total area of three SRAMs is only about 0.27 

mm2 instead of original 0.30 mm2 and has 10% of reduction. The chip has highest 



 

 

67 

frequency at 62.5MHz and exceeds the requiring 61MHz for HD 720p encoding. Table 

14 lists the chip information. 

4.3.2. Comparison 

With 30% of gate count reduction and 48% of frequency decrease compared to 

previous work, the proposed fast intra frame encoder can support the same size of HD 

720p encoding at only 61MHz. For SD size, the required working frequency of 23MHz 

is also much lower than that of previous 43MHz and 54MHz in [13]. Some techniques 

are used to shorten the prediction cycles such as modified three-step algorithm and 

interlaced scheduling. The reduction of coefficient memory bandwidth helps diminish 

the chip area as well. Detail results of comparison are listed in Table 15  

Table 15  Comparison among previous codec in Chapter 3 , [13], and this work  

Design Feature This Work Previous Codec [13] 

Max operation freq. 62.5MHz 125MHz 55MHz 

System pipeline MB-based MB-based MB-based 

Pixel parallelism 8 pixels/4 pixels 4 pixels 4 pixels 

CMOS technology UMC 0.18µm UMC 0.18µm TSMC0.25µm 

Gate count 72K 103K 85K 

Chip core size 1.20x1.20 mm2 1.28x1.28 mm2 1.86x1.86 mm2 

Single 48x64(x1) Single 96x32(x1) Single 96x32(x2) 

Single104x48(x2) Single104x64(x2) Single 64x32(x1) 

On-chip memory usage  

  Dual 96x16(x4) 

Max target size HD 1280x720 HD 1280x720 HD 720x480 

Freq. for HD 720p  61MHz 117MHz N/A 

Freq. for SD  23MHz 43MHz 54MHz 

Freq. for CIF 6.7MHz 12.8MHz 15.8MHz 

Processing cycles/MB < 560 cycles < 1080 cycles < 1300 cycles 

Cost Function Enhanced 

DCT-based SATD 

Enhanced 

DCT-based SATD 

DCT-based SATD 

Mode decision method Modified 3-step Full search Full search 



 

 

68 

fast algorithm 

Plane buffer removal Yes Yes No 

DC values forwarding Yes Yes No 

Early termination  Yes No No 

Interlaced scheduling Yes No No 

Local source register Yes No No 

Data guarding pipeline Yes No No 

DCT transpose array 2x2x2x2 12-bit 4x4 16-bit 4x4 16-bit 

Schedule controller Counter-based FSM FSM 

Bit-width for quantized 

coefficients 

12 bits 16 bits 16 bits 

Reconstruction buffer 8-4 FIFO register FIFO register 96x32 SRAM 

Coefficient register size 4x4 block 4x4 block 16x16 MB 

 



 

 

69 

Chapter 5   

Conclusion 

The contribution of this thesis can be divided in two parts. In Chapter 3 an MPEG-4 

H.264/AVC baseline profile intra frame codec design is presented to support high 

definition size of 1280x720 encoding and 1920x1080 decoding at 30 frames per second. 

To optimize the coding process but still maintain the coding performance, this codec 

design adopts various techniques in both algorithm and architecture level, such as 

enhanced cost function, plane mode removal, and macroblock pipelining, which leads to 

the reduction of on-chip memories and operation cycles. In comparison with other 

existing design, the proposed codec has ability to save about 20% of frequency 

requirement for encoder and 40% for decoder with almost the same PSNR and little 

bitrate increase. 

In Chapter 4 another H.264/AVC intra frame encoder with modified fast prediction 

algorithm and variable-pixel parallel architecture is proposed. Compared to previous 

design, this work has improvements in 48% of frequency saving, 30% of gate count 

decrease, 13% of chip area reduction, and 10% of memory area saving. Besides, the 

power consumption of this work can also be reduced by the usage of low-power 

techniques and less operation frequency. This design is very suitable for the products 

with demand of low power and portable issues, such as digital video recorder or digital 

still camera. 

In the future work, the proposed designs can be further integrated into the baseline 

encoder or codec for both intra-frame and inter-frame encoding. Moreover, the CABAC 



 

 

70 

entropy coding in main profile or recently proposed intra 8x8 predictions in high profile 

can be added to the presented works to enhance the coding performance and image 

quality. We hope that this research results can promote the improvement of video 

application and convenience of human life as well. 



 

 

71 

Reference 

[1] Draft ITU-T Recommendation and Final Draft International Standard of Joint 

Video Specification, ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, 

in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, Mar. 

2003 

[2] Generic Coding of Moving Picture and Associated Audio Information – Part 2: 

Video, ITU-T Recommendation H.262 and ISO/IEC 13818-2, Draft International 

Standard, Nov. 1994  

[3] Coding of Audio-Visual Objects - Part 2: Visual, ISO/IEC 14496-2, International 

Standard:1999/Amd1:2000, Jan. 2000 

[4] A. Puri, X. Chen, A. Luthra, “Video Coding Using the H.264/MPEG-4 AVC 

Compression Standard,” Signal Proc. Image Communication, vol. 19, 

pp.793-849, 2004 

[5] Coding of Moving Pictures and Associated Audio for Digital Storage Media up 

to about 1.5Mbits/s, ISO/IEC 11172-2, International Standard, Nov. 1992 

[6] Video Coding for Low Bit Rate Communication, ITU-T Recommendation H.263 

version 1, Mar. 1996 

[7] Draft Text of Recommendation H.263 version 2 (“H.263+”) for Decision, ITU-T 

Recommendation H.263 version 2, Jan. 1998 

[8] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan, 

“Performance comparison of video coding standards using Lagrangian coder 



 

 

72 

control,” Proceedings of IEEE International Conference on Image Processing 

2002, vol. 2, pp.501-504 

[9] T. Halbach, “Performance comparison: H.26L intra coding vs. JPEG2000”, 

JVT-D039, July, 2002 

[10] H.264/MPEG-4 AVC reference software, JM8.6 

[11] C.-C. Cheng, C.-W. Ku, and T.-S. Chang, “A 1280x720 pixels 30 frames/s 

H.264/MPEG-4 AVC intra encoder,” Proc. IEEE International Symposium on 

Circuits and Systems, May. 2006 

[12] C.-W. Ku, C.-C. Cheng, G.-S. Yu, M.-C. Tsai, and T.-S. Chang, “A high 

definition H.264/AVC intra frame codec IP for digital video and still camera 

applications (Accepted for publication),” IEEE Transactions on Circuits and 

System for Video Technology, to be published 

[13] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen, “Analysis, fast algorithm, 

and VLSI architecture design for H.264/AVC intra frame coder,” IEEE 

Transactions on Circuits and Systems for Video Technology, pp. 378-401, vol. 15, 

no. 3, 2005 

[14] H.-M. Wang, C.-H. Tseng, and J.-F. Yang, “Improved and fast algorithm for intra 

4x4 mode decision in H.264/AVC,” Proc. IEEE International Symposium on 

Circuits and Systems, May. 2005 

[15] T.-C. Wang, Y.-W. Huang, C.-Y. Tsai, B.-Y. Hsieh, and L.-G. Chen, 

“Dual-block-pipelined VLSI architecture of entropy coding for H.264/AVC 

baseline profile,” IEEE VLSI-TSA International Symposium, Apr. 2005 



 

 

73 

[16] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity 

transform and quantization with 16-bit arithmetic for H.26L,” Proc. 

International Conference on Image Processing 2002, vol. 2, pp.489-492, Sep. 

2002 

[17] H.-Y. Lin, Y.-C. Chao, C.-H. Chen, B.-D. Liua, and J.-F. Yang, “Combined 2-D 

transform and quantization architecture for H.264 video coders,” Proc. IEEE 

International Symposium on Circuits and Systems, pp. 1802-1805, May. 2005 

[18] K.-H. Chen, J.-I. Guo, K.-C. Chao, J.-S. Wang, and Y.-S. Chu, “A 

high-performance low power direct 2-D transform coding IP design for MPEG-4 

AVC/H.264 with a switching power suppression technique,” Proc. 2005 IEEE 

VLSI-TSA, International Symposium on VLSI Design, Automation & Test, Apr. 

2005 

[19] K.-H. Chen, J.-I. Guo, and J.-S. Wang, “High-performance direct 2-D transform 

coding IP design for MPEG-4 AVC/H.264,” Proc. IEEE International 

Symposium on Circuits and Systems, May. 2005 

[20] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen, “Parallel 4x4 2D 

transform and inverse transform architecture for MPEG-4 AVC/H.264,” Proc. 

IEEE International Symposium on Circuits and Systems, pp. 800-803, May. 2003 

[21] T.-A. Lin, S.-Z. Wang, T.-M. Liu, and C.-Y. Lee, “An H.264/AVC decoder with 

4x4-block level pipeline,” Proc. IEEE International Symposium on Circuits and 

Systems, pp. 1810-1813, May. 2005 

[22] F. Fu, X. Lin, and L. Xu, “Fast intra prediction algorithm in H.264/AVC,” Proc. 

IEEE International Conference on Signal Processing, vol. 2, pp. 1191-1194, Aug. 



 

 

74 

2004. 

[23] B. Meng, O. C. Au, C.-W. Wong, H.-K. Lam, “Efficient intra-prediction 

algorithm in H.264,” Proc. IEEE International Conference on Image Processing, 

vol. 3, pp. 837-840, Sep. 2003 

[24] C.-L. Yang, L.-M. Po, W.-H. Lam, “A fast H.264 intra prediction algorithm using 

macroblock properties,” Proc. IEEE International Conference on Image 

Processing, vol. 1, pp. 461-464, Sep. 2004 

[25] F. Pan, X. Lin, S. Rahardja, K.-P. Lim, Z.-G. Li, D. Wu, and S. Wu, “Fast intra 

mode decision algorithm for H.264/AVC video coding,” Proc. IEEE 

International Conference on Image Processing, vol. 2, pp. 781-784, Oct. 2004 

[26] C. Kim, H.-H. Shih, C.-C. J. Kuo, “Feature-based intra-prediction mode decision 

for H.264,” Proc. IEEE International Conference on Image Processing, vol. 2, 

pp. 769-772, Oct. 2004 

[27] C. Chen, P.-H. Wu, H. Chen, “Transform-domain intra prediction for H.264,” 

Proc. IEEE International Symposium on Circuits and Systems, vol.2, pp. 

1497-1500, May. 2005 

[28] C.-C. Cheng, T.-S. Chang, “Fast three step intra prediction algorithm for 4x4 

blocks in H.264,” Proc. IEEE International Symposium on Circuits and Systems, 

vol.2, pp. 1509-1512, May. 2005 

[29] W. Zouch, A. Samet, M. A. Ben Ayed, F. Kossentini, N. Masmoudi, “Complexity 

analysis of intra prediction in H.264/AVC,” Proc. IEEE International Conference 

on Microelectronics, pp. 713-717, Dec. 2004 



 作者簡歷 

姓名：古君偉 

籍貫：台北市 

學歷：台北市立建國高級中學       （1997 年 9 月～2000 年 6 月） 

   國立交通大學電子工程學系 學士  （2000 年 9 月～2004 年 6 月） 

   國立交通大學電子研究所  碩士  （2004 年 9 月～2006 年 6 月） 

 

得獎經歷： 

 九十三學年度 大專院校積體電路設計競賽 

研究所／大學部 標準單元式設計組（Cell-based Design） 佳作 

 九十四學年度 大專院校積體電路設計競賽 

研究所／大學部 標準單元式設計組（Cell-based Design） 特優 

 

論文著作： 

Chao-Chung Cheng, Chun-Wei Ku, and Tian-Sheuan Chang, “A 1280x720 pixels 30 

frames/s H.264/MPEG-4 AVC intra encoder,” Proc. IEEE International Symposium on 

Circuits and Systems, May. 2006 

 

Chun-Wei Ku, Chao-Chung Cheng, Guo-Shiuan Yu, Min-Chi Tsai, and Tian-Sheuan 

Chang, “A high definition H.264/AVC intra frame codec IP for digital video and still 

camera applications (Accepted for publication),” IEEE Transactions on Circuits and 

System for Video Technology, to be published 


