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摘要摘要摘要摘要 

 

在此論文中，首先我們研究了背景適應性可變長度編解碼之特性根據霍夫曼

編解碼。因此，根據霍夫曼編解碼的特性，我們提出了一個利用前綴零之個數表

格分割法以及藉由算術方式之表格實現，應用於兩種標準的可變長度解碼器，此

兩種標準分別為 MPEG-2以及 H.264/AVC。此一被提出之設計減少了功率消耗以

及硬體花費。 

再者，考量系統觀點及需求的生產率，我們使用了改良式的以群組為基礎之

可變長度編解碼器演算法來實現所提出的可變長度編解碼器系統。除了以群組為

基礎的演算法外，我們提出了層次有效率之編解碼、前置零有效率之編解碼、符

號構成法以及省略前置零等使用於我們所提出的可變長度編解碼設計之方法。藉

由平行化的輸入位元流，我們所提出的可變長度編解碼系統能夠執行即時的編碼

及解碼依據所發表的方法。因此，此一被提出的設計能夠滿足訂於 H.264/AVC

主要輪廓中之生產率的需求。 
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Abstract 

 

In this dissertation, first we will research the features of CAVLC which is based 

on Huffman coding. Therefore, based on the features of Huffman coding, we present a 

VLC decoder for dual standards, MPEG-2 and H.264/AVC, with the PZTP and tables 

realization with arithmetic method. The proposed design reduces the power 

consumption and the hardware cost.  

Again, from the system view and the requirement of the throughput, we use the 

improved group-based VLC codec algorithm to realize the proposed VLC codec 

system. In addition to group-based algorithm, we present other approaches which are 

level efficient coding, run_before efficient coding, symbols construction and 

run_before zero-skipping used in the proposed VLC codec design. With the parallel 

input bitstream, the proposed VLC codec system can execute the real time encoding 

and decoding based on the proposed approaches. Therefore, the presented design can 

satisfy the requirement of the throughput specified in H.264/AVC main profile.  
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Chapter 1.  
Introduction 

 

 

1.1.1.1.1.1.1.1. Overview of H.264/AVC System 

 

Figure 1-1 : The block diagram of H.264/AVC encoder 

Figure 1-1 shows the block diagram of H.264/AVC encoder. When one frame is 

inputted, first the encoder will do prediction and choose intra or inter prediction 

according to the input frame type. After the prediction, the original input will subtract 

the predicted result to get residual data and the residual data will experience 

discrete-time cosine transform (DCT) and quantization to compress the data 

transmitted. Finally, entropy encoder will encode the DCT coefficients to bitstream 

and send the bitstream. Another step to produce F’n is to make the reference for 

motion estimation (ME), because in the H.264/AVC decoder this step is to generate 

the encoded frame. If we want to get the same result in the decoder, we have to use 
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the same reference both in the encoder and decoder. Therefore, we use F’n-1 as the 

reference for ME not Fn-1.  

 

Figure 1-2 : The block diagram of H.264/AVC decoder 

Figure 1-2 shows the block diagram of H.264/AVC decoder. As we can see, the 

architecture of H.264/AVC decoder is much simpler than encoder, because 

H.264/AVC encoder also has to do decoding process. In H.264/AVC decoder, the 

input bitstream first is decoded by entropy decoder and the outputs of the entropy 

decoder is DCT coefficients. Through de-quantization and inverse DCT (IDCT), we 

can fetch the residual data and finally we add the residual data and the result of MC or 

intra prediction to get one frame.  

Table 1-1 shows the profiles of H.264/AVC standard. These three profiles are 

basic profiles of H.264/AVC standard. Applications of H.264/AVC cover digital 

storage media, television broadcasting, and real-time communications. For example, 

baseline profile targets applications of low bit rates such as multimedia 

communication and applies portable multimedia players because of its low 

computation complexity; main profile meets the demand of HDTV due to backup of 

interlaced content; extended profile contains error resilient tools for the IPTV or 

multimedia on demand (MOD). However, in those profiles small size of blocks and 

fixed quantization matrix can’t totally hold the image information in high frequency, 

so H.264/AVC adds Fidelity Range Extensions which contains high profile, high 10 

profile, high 4:2:2 profile, and high 4:4:4 profile based on main profile for high 
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definition multimedia applications. 

Profiles Coding 

Tools Baseline Main Extended 

I slice ○ ○ ○ 

P slice ○ ○ ○ 

CAVLC ○ ○ ○ 

Slice Group 

and Adaptive 

Slice Ordering 

○  ○ 

Redundant Slice ○  ○ 

Weighted Prediction  ○ ○ 

Interlace  ○  

CABAC  ○  

SI and SP slice   ○ 

Data Partition   ○ 

B slice  ○ ○ 

Table 1-1 : The basic profiles of H.264/AVC standard 

From Table 1-1, we can see there are two coding approaches for entropy coding, 

one is context adaptive variable length coding and the other is context adaptive binary 

arithmetical coding. Although CABAC has better compression rate than CAVLC, 

CABAC has extremely more complex structure witch limits the throughput of 

CABAC than CAVLC. Besides, CAVLC is suitable for all profiles in H.264/AVC 

system and it has more flexibility for different applications. Therefore, we will further 

discuss CAVLC in the following sections.  
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1.2.1.2.1.2.1.2. CAVLC Algorithm 

1.2.1.1.2.1.1.2.1.1.2.1. Huffman Coding 

Huffman coding uses a specific method for choosing the representations for each 

symbol, resulting in a prefix-free code (that is, no bit string of any symbol is a prefix 

of the bit string of any other symbol) that expresses the most common characters in 

the shortest way possible. It has been proven that Huffman coding is the most 

effective compression method of this type; i.e. no other mapping of source symbols to 

strings of bits will produce a smaller output when the actual symbol frequencies agree 

with those used to create the code. However, for a set of symbols whose cardinality is 

a power of two and a uniform probability distribution, Huffman coding is equivalent 

to simple binary block encoding. A Huffman code can be built in the following 

manner:  

� Rank all symbols in order of probability of occurrence. 

� Successively combine the two symbols of the lowest probability to form a 

new composite symbol; eventually we will build a binary tree where each 

node is the probability of all nodes beneath it. 

� Trace a path to each leaf, noticing the direction at each node and define the 

code for each tracing direction. For example, a ’0’ represents following the 

left child and a ‘1’ represents following the right child.  

An example of building a Huffman tree using binary code is shown in Figure 1-3. 

We can see that there are 5 symbols, namely SA, SB, SC, SD, and SE. Occurring 

probability for each symbol is 0.5, 0.25, 0.125, 0.0625, and 0.0625. From the 

probability of the source symbols, the two smallest probabilities are grouped together 

and their sum is the substituted probability representing for the original smallest two. 
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If the branch traces up, it is given the binary code 0. Otherwise, it is given the binary 

code 1. According to the label (0 or 1) of each branch, we can obtain the variable 

length codeword of every symbol. 

Symbol Probability Codeword

SA

SB

SC

SD

SE

0.5

0.25

0.125

0.0625

0.0625

1

01

001

0001

0000

SD,SE

SC,SD

SE

SB.SC

SD,SE

All
Symbols

SE
0.0625

SD
0.0625

SC

0.125

SB

0.25

SA
0.5

Up-tracing is defined as 0.

Down-tracing is defined as 1.1

0.5

0.25

0.125

Average bits = 0.5x1 + 0.25x2 + 0.125x3 + 

                        0.0625x4 + 0.0625x4

                     = 1.875

 

Figure 1-3 : An example of VLC code construction 

For a given frequency distribution, there are many possible Huffman codes, but 

the total compressed length will be the same. We can see Figure 1-4 for this situation. 

The example in Figure 1-3 can also be represented by several alternative binary trees. 

It is possible to define a ‘canonical’ Huffman tree, and that is, pick one of these 

alternative trees. Such a canonical tree can then be represented very compactly, by 

transmitting only the bit length of each code. This technique is used in most archives 

such as PKZIP, LHA, ZOO, ARJ, etc. Huffman coding is optimal when the 

probability of each input symbol is a power of two. Prefix-free codes tend to have 

slight inefficiency on small alphabets, where probabilities often fall between powers 

of two. Expanding the alphabet size by coalescing multiple symbols into “words” 

before Huffman coding can help a bit. 
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1

0

0

1

1

0

1 1

00

0

1
0

1

1

0

 

Figure 1-4 : An example of equivalent Huffman trees for Figure 1-3 

Encoding symbols into bitstream is very simple. We just concatenate the 

codewords associated with the symbols. For example, if we want to encode 

SA.SB.SE.SD using the lookup table in Figure 1-3, we just pick the codewords of SA, 

SB, SD, and SE, which are 1, 01, 0001, and 0000; then concatenate them into 

10100000001. If we want to decode 10100000001 back to symbols, we just gave to 

traverse the binary tree in Figure 1-3 bit by bit through branches to leaf nodes. If a 

node is encountered, then use the rest of bitstream to traverse from the root of the tree. 

Keep traversing until there’s no bit left in the bitstream. Traversing the tree, we can 

decode 10100000001 to be SA, SB, SE, and SD. 

1.2.2.1.2.2.1.2.2.1.2.2. Context Adaptive Variable Length Coding 

Huffman coding is generally used in various multimedia standards such as MPEG 

series and JPEG series. CAVLC also adopts Huffman coding as a coding approach but 

it adds one skill on Huffman coding base. This skill is called “context adaptive” which 

can bring higher compression ratio than traditional VLC. In above section, the way to 

calculate the occurring probability of all symbols is under all cases. However, some 

symbols usually appear under some conditions and seldom appear under other 

conditions. Therefore, we will build different Huffman codes of one symbol by the 
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occurring probabilities under different conditions. A CAVLC can be built in the 

following steps:  

� Separate different conditions and get the occurring probabilities of all 

symbols under all conditions. 

� Rank all symbols in order of probability of occurrence in each condition. 

� Successively combine the two symbols of the lowest probability to form a 

new composite symbol; eventually we will build a binary tree where each 

node is the probability of all nodes beneath it. 

� Trace a path to each leaf, noticing the direction at each node and define the 

code for each tracing direction. For example, a ’0’ represents following the 

left child and a ‘1’ represents following the right child.  

In addition to the first step, the other steps are the same as Huffman code. The 

purpose of CAVLC is to divide the occurring probability of one symbol in different 

condition and we can get better compression ratio than traditional VLC. It is sure that 

more particular description of probability can bring higher code efficiency. 

condition 1 condition 2

1

SB,SC

All

Symbols

0

0

1

SB

0.4

SA

0.5

SC

0.1

0.5

1

symbol probability codeword

SA

SB

SC

SD

SE

0.5

0.4

0.1

0

0

1

01

00

N.A

N.A

All

Symbols

1

SA

0.5

1

0

SB,SC

SD,SE

0

SB

0.1

1

SB,SD

0.5

0.225

0

SC

0.15

1

SD,SE

0.275 1

SD

0.125

0

SE

0.125

symbol probability codeword

SA

SB

SC

SD

SE

0.5

0.1

0.15

0.125

0.125

1

000

010

001

011

Average bits = 0.5 x (1x0.5 + 2x0.4 + 2x0.1)

                     + 0.5 x (1x0.5 + 3x0.1 + 3x0.15

                     + 3x0.125 + 3x0.125)

                     = 1.75

 

Figure 1-5 : An example of CAVLC code construction 
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Figure 1-5 shows an example of CAVLC code construction. The total occurring 

probabilities of all symbols are the same as the example of Figure 1-3, so the 

occurring probability of condition 1 and condition 2 is both 50%. Under these two 

conditions, all symbols have two occurring probabilities, so we will get two code 

tables to map each symbol. As we mentioned, the only distinction between CAVLC 

and traditional VLC is the step to divide the conditions, and in each condition there is 

still Huffman code process. Generally, the way to compare the performance of 

different coding approaches is to compare the average number of bits. The example of 

Figure 1-3 gets that the average number of bits is 1.875 and here the average number 

of bits is 1.75. Although CAVLC has more complex code construction and more VLC 

tables than traditional VLC, we will achieve the significant improvement of 

compression rate.  

1.3.1.3.1.3.1.3. Designs of CAVLC Encoders and Decoders 

1.3.1.1.3.1.1.3.1.1.3.1. Designs of CAVLC Encoders 

CAVLC is a lossless coding so the design of CAVLC encoder can’t change the 

quality of one frame. Therefore, the target of CAVLC encoder design focuses on the 

performance such as throughput and hardware cost. Table 1-2 shows the maximum 

throughput requirement of H.264/AVC main profile. Level means the layer of each 

profile and the range of level in H.264/AVC main profile is 4 to 5.1. Level 4 is the 

basic demand of main profile and this level can support HD1080i when the frame rate 

is 30 frames per second. From Figure 1-1 we can observe that the encoding speed of 

entropy encoder affects the throughput of the entire system greatly. For this reason, 

the present papers about CAVLC encoder solve the problem of throughput. 
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Level 4 4.1 4.2/Lo 4.2/Hi 5 5.1 

MB/sec 245760 245760 491520 522240 589824 983040 

Table 1-2 : Maximum throughput requirement of H.264/AVC main profile 

The major two parts of CAVLC encoder are coefficients scanning and symbols 

encoding. The direct approach to design a CAVLC encoder is to input a set of 

coefficients and to do the encoding steps serially. Repeating the mentioned steps can 

easily get the wanted results. However, the maximum number of input coefficients is 

16 and encoding symbols has five steps and needs one cycle at least. If we do it 

serially, the throughput of this simple CAVLC encoder should not meet the 

requirement.  

One way to solve this problem is to deal with scanning coefficients and encoding 

symbols parallel [1], because there is no dependency between encoding symbols of 

one block and scanning coefficients of the following block. Therefore, we can execute 

these two steps parallel and we can improve the encoding throughput.  

Another way is to reduce the cycles of encoding symbols because each step of 

encoding symbols often has multiple cycles. If we send multiple inputs to one step 

and this step encodes these inputs in one cycle [2]. This method gets better 

performance than the above one. 

1.3.2.1.3.2.1.3.2.1.3.2. Designs of CAVLC Decoders 

The discussion about CAVLC decoder is more than encoder because CAVLC 

decoder has to handle all the bitstream transmitted from H.264/AVC encoder. Great 

data variation must result much power consumption so power saving of CAVLC 

decoder is an important issue. Another major issue is the throughput of CAVLC 

decoder and Table 1-2 shows the throughput requirement of H.264/AVC main profile. 

Because the input bitstream of CAVLC decoder has dependency on the decoded 
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information, we need some efforts to accelerate the decoding speed of CAVLC 

decoder. 

The major part of CAVLC decoder is also VLC tables and most papers realize 

those tables by finite state machine (FSM). Build the FSM according to the codeword 

in the VLC tables and looking up these tables will get the symbols decoded [3]. But 

directly using the codeword of VLC tables to build the FSM is not efficient in 

hardware cost and throughput. Furthermore, we have to improve the size of FSM. 

Separate the VLC tables according the length of the codeword and look up the 

dividing tables serially and we can build the FSM with the same entries as the VLC 

tables [4]. This approach achieves lower hardware cost and improves the throughput 

to support level 4.1. However, if we use some skills such as zero-skipping and 

multi-symbol, we can get better performance about the throughput [5]. Above papers 

do not discuss the problem of power consumption. If we make good table partition to 

control the table switch, we can save the power consumption significantly. In fact 

many papers proposed many approaches to realize VLC like RAM-based methods [6], 

[7], but present papers about CAVLC decoder only use ROM-based methods. In fact, 

we can try more approaches to design CAVLC encoder and decoder. 

1.4.1.4.1.4.1.4. Motivation 
Recently, human life has been changed greatly by various multimedia applications 

such as cellular phones, digital cameras, DVD and digital television. But some new 

technologies like high-definition television (HDTV), blue-ray (BD), and 

high-definition DVD (HD DVD) appear and will be popular in the future. Therefore, 

a novel video compression standard, H.264/AVC, can be invoked for these uses 

because of its high compression rate. 

For different demands we have to generate different devices. Therefore when we 
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design a decoder for mobile devices the most important thing is power reduction. The 

advent of H.264/AVC provides high compression ratio, but there is no backward 

compatibility to the prevalent MPEG-x and H.264x video coding standards. MPEG-2 

and H.264/AVC processors have been reported at ISSCC. However, these solutions 

used separate modules and only processed a single type of video content in each 

module. To support different system requirements such as DVB-H or HD-DVD, a 

scalable pipeline is exploited to efficiently integrate both MPEG-2 and H.264/AVC in 

a single chip. Besides, we think we can do different table partition from that 

mentioned above and add other approaches to get more power reduction. Therefore, 

we propose a VLD with new table partition and realize some tables with arithmetic 

method.  

Furthermore, when our entire system [8], [9] want to provide higher throughput 

for some applications such as HD 1080, we suffer the entropy decoder can’t meet the 

throughput requirements of H.264/AVC main profile. We have to generate a VLD 

which can support MPEG-2 and H.264/AVC with enough throughput, and if this VLD 

can be integrated with context adaptive binary arithmetic decoder (CABAD), that is 

all we need. We find that CABAD has to use much SRAM for context model and this 

is a direction to integrate these two entropy decoders. These three decoders, CAVLD, 

MPEG-2 VLD, and CABAD, in our system should not work at the same time, so we 

have to make the SRAM with programmability. This approach has been proposed [6], 

[7], but the approach to divide the groups is not efficient about memory usage and 

group mapping. From Figure 1-1 and Figure 1-2, we can see that the H.264/AVC 

encoder also has most parts of H.264/AVC decoder. If we add entropy decoder to the 

decoding part of the encoder, that is complete H.264/AVC decoder. Therefore, we 

propose a new group-based VLC codec system adding efficient-coding and 

zero-skipping to improve the throughput and memory usage. 
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1.5.1.5.1.5.1.5. Organization of This Thesis 
In this thesis, we propose a new low power, table partition VLD for dual standards, 

a new group-based, high throughput VLC codec system with full programmability for 

dual standards, and a new soft VLD to handle the error resilient problem. The 

organization of this thesis is as follows. The overview of CAVLC and the new low 

power, table partition VLD for dual standards is presented in Chapter 2. The 

algorithm and architectures of the proposed group-based, high throughput VLC codec 

system with full programmability for dual standards are described in Chapter 3. The 

proposed error resilient CAVLD is introduced in Chapter 4. Finally, conclusions and 

future works are made in Chapter 5. 
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Chapter 2.  
A Low Power VLC 

decoder design 
 

 

2.1.2.1.2.1.2.1. Overview of CAVLC Encoder and Decoder 

2.1.1.2.1.1.2.1.1.2.1.1. Encoding Process Flow 

 

Figure 2-1 : The encoding process flow of CAVLC 

Figure 2-8 shows the encoding process flow and the detailed steps are as follows. 

� When receiving a 2x2 or 4x4 block, the procedure of scanning coefficients 

will record the symbols to be encoded. There are six symbols which are TotalCoeff, 

TrailingOnes, trailing_ones_sign_flag, level, total_zeros, and run_before. TotalCoeff 

is the total number of non-zero coefficients; TrailingOnes is the number of trailing +/- 

1 and its value should be smaller than four, level is the value of non-zero coefficient; 

total_zeros is the number of all zeros before the last non-zero coefficient in 

zigzag-scan order; run_before is the number of zeros before last one non-zero 

coefficient in zigzag-scan order. Figure 2-2 shows the results derived in 

coefficients-scanning procedure.  
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Figure 2-2 : An example of CAVLC coefficients scanning 

� Encode TotalCoeff and TrailingOnes (coeff_token). There are 5 choice of 

look-up table to use for encoding coeff_token. The choice of table depends on a 

variable named nC and Figure 2-3 shows how to calculate the value of nC. 

 

Figure 2-3 : How to calculate the value of nC 

� Encode the sign of each trailing one in reverse order. 

� Encode level in reverse order and there are 7 VLC tables to choose from, 

Level_VLC0 to Level_VLC6. 

� Encode total_zeros. 

� Encode run_before. 

Table 2-1 lists the result of encoding the example in Figure 2-2 and the transmitted 

bitstream for this block is 000010001110010111101101. 
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Element Value Code 

coeff_token TotalCoeff = 5, TrailingOnes = 3 0000100 

T1 sign (4) + 0 

T1 sign (3) - 1 

T1 sign (2) - 1 

Level (1) +1 1 

Level (0) +3 0010 

total_zeros 3 111 

run_before (4) zerosLeft = 3; run_before = 1 10 

run_before (3) zerosLeft = 2; run_before = 0 1 

run_before (2) zerosLeft = 2; run_before = 0 1 

run_before (1) zerosLeft = 2; run_before = 1 01 

run_before (0) zerosLeft = 1; run_before = 1 No code required; last coefficient 

Table 2-1 : The result of encoding the example in Figure 2-2 

2.1.2.2.1.2.2.1.2.2.1.2. Decoding Process Flow 

 

Figure 2-4 : The decoding process of CAVLC 

Figure 2-4 shows the decoding process flow of CAVLC and we can see that the 

decoding procedures are similar to the encoding steps. The only difference is 

decoding process does not do coefficients scanning and the other steps do decoding 

bitstream instead of encoding symbols. Table 2-2 shows an example of CAVLC 

decoding and the final output array is 0, 3, 0, 1, -1, -1, 0, 1. 
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Code Element Value Output array 

0000100 coeff_token TotalCoeff = 5, TrailingOnes = 3 Empty 

0 T1 sign + 1 

1 T1 sign - -1,1 

1 T1 sign - -1,-1,1 

1 level +1 1,-1,-1,1 

0010 level +3 3,1,-1,-1,1 

111 total_zeros 3 3,1,-1,-1,1 

10 run_before 1 3,1,-1,-1,0,1 

1 run_before 0 3,1,-1,-1,0,1 

1 run_before 0 3,1,-1,-1,0,1 

01 run_before 1 3,0,1,-1,-1,0,1 

Table 2-2 : An example of CAVLC decoding from the result of Table 2-1 

2.2.2.2.2.2.2.2. Overview of the Proposed Architecture 
Figure 2-5 shows the functional diagram of the proposed architecture of the 

CAVLC decoder. As introduced in section 2.1.2, there are five major parts to decode 

the symbols. In order to support MPEG-2 VLC decoding, we construct the MPEG-2 

VLC tables in coeff_token part, because the two decoding procedures have similar 

decoding manner. This part will be described in later section. The prefix-zero buffer 

and the bitstream buffer are used for the table partition and table realization with 

arithmetic method. The coeffNum is to calculate the right position in the coefficient 

buffer of the present level in level buffer. For power reduction issue, all function units 

are controlled by enable signals, because they must not work at the same time. There 

is also a hold signal for prefix-zero buffer to avoid counting the zeros not belong to 
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prefix zeros. If there is no enable signal or hold signal to control the function unit, it 

should result the power dissipation. 
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Figure 2-5 : Overview of the proposed low power architecture 
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2.3.2.3.2.3.2.3. Table Partition 
In VLSI design, the efficient method to reduce dynamic power consumption is to 

decrease the data switching. However, most designs of the CAVLC decoder use FSM 

to look up the VLC tables. As long as the input bitstream to access the look-up table 

changes frequently, that must cause much power dissipation. Besides, the alteration in 

large look-up table must dissipate more power than the same one in small look-up 

table. Therefore, good table partition will reduce the size of look-up table and the data 

switching to decrease power consumption. 

 

Figure 2-6 : An example of proposed table partition 

Figure 2-6 shows an example of the proposed table partition. Although the 

original codeword table has only 10 entries, the longest length of the codeword is 6, 

so we have to build a look-up table with 32 entries for this codeword table by FSM 

method. That is, the longest length of the codeword dominates the entries of the 

codeword table not the real entries. However, if we adopt the proposed table partition 

method to build the look-up table, the entries of the first time to access the table are 4, 

and other entries are equal to the relative suffix entries. Because this approach divide 

the tables according to the prefix zeros, we call it prefix-zero table partition (PZTP). 
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When we access the look-up table with PZTP every cycle, the searching entries are 

much smaller than the original entries. If the longest length of the codeword is larger, 

the difference between the searching entries with PZTP and the original entries is 

greater.  

The way to build the look-up table is as follows:  

� According to the leading zeros we call prefix, build the first layer of look-up 

table like prefix item in Figure 2-6. 

� Build the second layer of look-up table by suffix which is the codeword 

except the leading zeros and the first 1. 

The steps to look up the VLC tables are as follows: 

� We count the leading zeros until the first 1 appears, and choose the relative 

suffix table by prefix. 

� We look up the suffix table by the input bitstream, and find symbols needed. 
T
o
ta
lC
o
e
ff D

e
c
o
d
e
r

&

T
a
b
le
 B
1
4
 o
r B

1
5
 S
e
le
c
to
r

is
_
c
a
v
lc

M
P
E
G
-2

P
re
fix
 z
e
ro
s
 d
e
c
o
d
e
r

 

Figure 2-7 : The PZTP VLC decoder architecture of coeff_token 
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Figure 2-7 shows the PZTP VLC decoder (VLD) architecture of coeff_token. 

There are five tables of CAVLD, NUM_VLC0, NUM_VLC1, NUM_VLC2, 

NUM_VLC3, and NUM_FLC and the other two tables, Table B14 and Table B15, 

belong to MPEG-2 VLD. The implementation of NUM_FLC will be introduced in the 

next section. First, if both the two enable signals, is_cavlc and MPEG-2, are not active, 

the entire PZTP VLD will be shut down to avoid the dynamic power dissipation due 

to the data switching. If either of them is active, the controller (TotalCoeff Decoder & 

Table B14 or B15) will open only one of those tables for power issue. Of course, the 

two signals should not be active at the same time. 

Assume that we are executing H.264/AVC decoding. Even if the present decoding 

procedure is coeff_token, the enable signal, is_cavlc, will not be active at the 

beginning. To avoid unnecessary power consumption, we set the enable signal to be 

active, only when we receive the first one of the codeword or the boundary of prefix. 

Therefore, when receiving prefix, only accumulator consumes power. When executing 

MPEG-2 VLD, we do the same thing.  

From Figure 2-5, we put the value of prefix in prefix-zero buffer. When we begin 

receiving suffix of codeword and looking up the suffix table, the value of prefix is 

fixed. Therefore, we can consider the output of prefix zeros decoder in Figure 2-7 as 

an enable signal of the relative suffix table in the process of looking up the suffix 

table. At this time, the searching entries of the entire codeword table are equal to the 

entries of the suffix table. The most entries of coeff_token are 8 and those of MPEG-2 

VLD are 16. 

PZTP takes advantage of the feature of Huffman coding to decrease the data 

switching when accessing the look-up table, and the hardware cost of the VLC tables. 

Besides, another advantage is easy to implement, so total_zeros and run_before also 

adopt this method to implement in the proposed CAVLD.  
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2.4.2.4.2.4.2.4. Table Realization with Arithmetic Method 

2.4.1.2.4.1.2.4.1.2.4.1. NUM_FLC of coeff_token 

The length of all the codeword in this look-up table is 6, and the total entries of 

this table are 62. If we build the table by FSM method, this idea seems good. However, 

if we analyze the relationship between the codeword and the symbols, we will find 

some arithmetic rules.  

 

Figure 2-8 : An example of NUM_FLC 

Figure 2-8 shows an example of NUM_FLC. The left table is the original table of 

NUM_FLC and we can derive the right table after we separate the codeword. We can 

find the following arithmetic relationship except the first row, and this formula exists 

in NUM_FLC distinctly. Although the first row of NUM_FLC doesn’t fit this rule, 

only prefix of the codeword map to the symbols is 4. 

5:2 1

1:0

TotalCoeff codeword

TrailingOnes codeword

 
 

 
 

= +
=

 

Figure 2-9 shows the proposed architecture of NUM_FLC. Due to the power 

consideration, we only access this part when we receive the sixth bit of the codeword. 

Based on this method, we can easily change the look-up table into and reduce much 

hardware cost and power consumption.  
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Figure 2-9 : The architecture of proposed NUM_FLC 

2.4.2.2.4.2.2.4.2.2.4.2. Level Decoding 

Basically, level coding is constructed by seven VLC tables which are VLC0 to 

VLC6. However, if we implement the level decoder with VLC tables, it costs much 

hardware and power. The reason is the longest length of codeword is 28, prefix is 16 

and suffix is 12. Even if we use PZTP to construction the VLC tables of level decoder, 

they are still huge VLC tables. For the low power demand, we have to use another 

method to realize the level decoder, and here we implement it by arithmetic approach 

which algorithm is specified in [10].  

Figure 2-10 shows the algorithm of level decoding. In fact, suffixLength is to 

decide the VLC tables to choose from. According to this algorithm, if we pipeline the 

level decoding and suffixLength well, we can use the minimum number of function 

units to decode level. However, we can get good performance about the power and 

hardware cost. 
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level_prefix

levelCode = (level_prefix << suffixLength)

if (suffixLength > 0 || level_prefix >= 14)

{

level_suffix

levelCode += level_suffix

}

if (level_prefix == 15 && suffixLength == 0)

levelCode += 15

if (first_level && TrailingOnes < 3)

levelCode += 2

if (levelCode % 2 == 0)

level = (levelCode + 2) >> 1

else

level = (-levelCode - 1) >> 1 level decoding

if (TotalCoeff > 10 && TrailingOnes < 3)

suffixLength = 1

else

suffixLength = 0

Decoding level

if (suffixLength == 0)

suffixLength = 1;

if (|level| > (3 << (suffixLength - 1)) && suffixLength < 6)

suffixLength++

suffixLength

level_prefix = leading 0s

level_suffix = bitstream [levelSuffixSize-1 : 0]

if (level_prefix == 15)

levelSuffixSize = 12

else if (level_prefix == 14 && suffixLength == 0)

levelSuffixSize = 4

else

levelSuffixSize = suffixLength
 

Figure 2-10 : Algorithm of level decoding 
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Figure 2-11 : The proposed architecture of level decoding 
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Figure 2-11 shows the proposed architecture of level decoding. There are two 

major parts, the left part is to calculate the suffixLength and the right part is to decode 

the codeword of level. The gray rectangles represent the registers. The size of 

level_prefix buffer is 10 bits, bitstream buffer uses 12 bits which is shared by all 

modules, and suffixLength needs 3 bits to save the value. The level_prefix is the 

number of leading zeros derived by the leading zeros counter shown in Figure 2-5 

which is shared by four decoding modules, coeff_token, level, total_zeros, and 

run_before. The barrel shifter to rearrange the level_prefix works, only when we 

receive the first one of the codeword of level. Besides, it also handles the special case 

when level_prefix is 15 and suffixLength is 0. That helps us not to add additional 15 

to levelCode, so it shortens the critical path of level decoding and reduces the 

hardware cost. The whole architecture of level decoding is also controlled by an 

enable signal which turns off level decoding when we execute another procedure. 

That inverter is to do the step, (-levelCode - 1), and according to 2’s complement 

-levelCode is equal to (~ levelCode + 1), so the formula, -levelCode – 1, is equal to (~ 

levelCode + 1 - 1), that is ~levelCode.  

The part to calculate suffixLength is also needed even if we implement level 

decoding with look-up table. As we mentioned above, the method of table searching 

depends on suffixLength to choose the correct VLC table, so this part is not omissible 

in any approach of level decoding. Therefore, our contribution is to simplify the VLC 

tables with arithmetic method, and the effect is pretty good.  
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2.5.2.5.2.5.2.5. Summary 

 

Figure 2-12 : The throughput of foreman.yuv with the proposed VLD 

 

Figure 2-13 : The throughput of mobile.yuv with the proposed VLD 
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Figure 2-12 and Figure 2-13 show the throughput of two pictures with the 

proposed VLD. The simulation environment is JM 9.2 which C code of H.264/AVC 

system. We set nine different values of QP to get the simulation results. In the two 

figures, the blue line is the throughput requirement of baseline@3.1 specified in 

H.264/AVC standard when the clock frequency is 100MHz and the black one is for 

baseline@3.2. In Figure 2-12, the throughput of foreman meets the requirement of 

baseline@3.2 when QP is 20 and that of I-frame in the same picture also meets that 

standard when QP is 28. In Figure 2-13, the throughput of mobile meets the demand 

when QP is 28. Therefore, the proposed design can support H.264/AVC baseline.  

 [3] [4] Proposed Design 

Tech. 0.25 um 0.18 um 0.18 um 

Gate-count 6100 4720 
CAVLC : 3267 

MPEG2 : 945 

Target Spec. Baseline Profile Main Profile @4.1 

Main Profile @4.2 

& 

MPEG-2  

Buffer N.A. 696 bits RAM 3471 gate-count 

Clock Constraint 125 MHz 125 MHz 125 MHz 

Table 2-3 : Hardware cost evaluation of proposed low power design 

Table 2-3 shows the comparison of the hardware cost. Although we show the 

throughput of two pictures in Figure 2-12 and Figure 2-13 when the clock frequency 

is 100MHz, the maximum speed of the proposed design is 180MHz under a 0.18um 

CMOS technology. The performance is fast enough for meeting the real-time 

processing requirement of CAVLC decoding on main profile @4.2. Compared to the 

design proposed by [4], The CAVLC part of the proposed design reduce 30% 

hardware cost, and the total design still has less hardware cost. The proposed design 

doesn’t use RAM as storage due to the power saving. 
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Spec. MPEG-2 I-frame H.264 I-frame H.264 P-frame 

power (mW) 1.719 1.302 1.376 

Table 2-4 : The post layout power consumption under 0.18um CMOS Tech. 

Table 2-4 shows the post layout power consumption under 0.18um CMOS 

technology. The proposed design can provide extremely low power, and it is used in 

our dual-standard system [8], [9].  
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Chapter 3.  
A VLC Codec System 

for dual standards 
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Figure 3-1 : The architecture of our proposed system 

Figure 3-1 shows the architecture of our proposed system for H.264/AVC main 

profile. The entropy decoder contains CABAD, UVLD, and CAVLD. UVLD and 

CAVLD are the same choice for entropy decoder, and UVLD is used to decode the 

syntax parser, and CAVLD is for residual data. Therefore, the output of UVLD is to 

control the decoding mode of H.264/AVC decoder, and the results of CAVLD are the 

DCT coefficients of residual data. After IDCT, the data will be added with the 

predicted data to complete a unit block.  

In Figure 3-1, CABAD has to use slice memory to store the context model and 

row-storage. Figure 3-2 shows the usage of memory of CABAD in our proposed 

H.264/AVC decoder system. The context model of CABAD uses 349.1 bytes memory 

of the slice memory. 
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Figure 3-2 : The usage of memory of CABAD in our proposed H.264/AVC decoder 

The context model of CABAD uses much memory, so that is an idea to integrate 

CABAD and CAVLD. The used memory can provide a space to store the VLC tables 

of CAVLD, and our proposed H.264/AVC decoder receive parallel input of bitstream, 

so we have to try another approach to implement CAVLD. Besides, as mentioned in 

my motivation, if we add the CAVLC encoder into the entropy decoder, that can be 

integrated with H.264/AVC encoder to a H.264/AVC codec system. Therefore, we try 

to find a method to implement a VLC codec system based on memory. and finally we 

proposed a new group-based VLC codec system reference to [6] and [7].  

3.1.3.1.3.1.3.1. The Architecture of the Proposed VLC 

Codec System 

Here, we will describe the architecture of the proposed VLC codec system. We 

will focus on the design of CAVLC encoder/decoder, and not to express the MPEG-2 

VLC codec in detail. That is because the major difference of the proposed MPEG-2 
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VLC codec is the group-based algorithm and hardware implementation, and other 

parts basically are similar to the conventional VLC codec design. Therefore, about the 

MPEG-2 VLC codec system, we only discuss the proposed group-based alteration, 

and we will pay attention to the CALVC encoder/decoder.  
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Figure 3-3 : Block diagram of the proposed VLC codec design 

The block diagram of the proposed VLC codec design is shown in Figure 3-3. To 

fit specification of our proposed H.264/AVC decoder system, the input bitstream is 

parallel input and its length is 8 bits. The decoder is controlled by the enable signal, 

is_decoding, so is the encoder. The maxNum is to decide the block type which is 

being decoded or encoded, and nC is introduced in 2.1 to choose the correct VLC 

table for coeff_token. The serial input data, coefficients, is the DCT coefficient for the 

encoder in reverse order. The codeword boundary detector has a FIFO to store the 

input bitstream, and the output signal, FIFO_full, represents whether the bitstream 

FIFO is full or not. The symbols constructor will send out the results of DCT 

coefficients arranged and the bitstream concatenater handles the link of the encoded 
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codeword. The illumination of the components is as follows.  

� The major functions of the codeword boundary detector are counting the 

leading ones and zeros, and fetching the demanded suffix for the each decoding 

function unit by the recorded bitstream boundary. Besides, it is also a controller to 

decide the activity of each decoding component, and it has to calculate the number of 

skipped run_before and then send the information to symbols constructor. For 

MPEG-2 VLC, it has to detect the special case such as escape mode and end of block. 

� After coefficients scanner receive the serial input data, DCT coefficients, it 

calculates and sends the necessary data for each encoding component. When doing 

MPEG-2 VLC encoding, it only counts the levels and runs. After sending the 

MPEG-2 level and run, it can receive the following coefficients. The more 

information is needed for CAVLC encoding, and this unit should calculate TotalCoeff, 

TrailingOnes, T1s flags, levels, and run_befores. Different from MPEG-2 process, 

coefficients scanner has to receive all coefficients of one block, and then it can begin 

requesting the coefficients of the next encoding block.  

� Group-based VLC codec system uses the proposed group-based VLC codec 

algorithm to implement MPEG-2 and CAVLC coeff_token encoder/decoder. Besides, 

it contains the NUM_FLC of CALVC coeff_token and MPEG-2 escape case. The 

detailed design contribution will be described in the following section.  

� Trailing_ones_sign_flag encodes and decodes the signs of all trailing ones.  

� Level codec with efficient coding handles the information about levels. The 

detail of efficient coding will be expressed in the next chapter.  

� Total_zeros codec with efficient coding deals with the coding process of 

total_zeros.  

� Run_before codec with efficient coding encodes and decodes the run_befores 

to get the wanted results.  



 33

� The symbols constructor is used for decoding process. It arranges the decoded 

levels by the decoded runs. In CAVLC decoding process, it works at the same time 

when decoding run_before to increase the decoding throughput.  

� The bitstream concatenater collects the encoded bit streams and links them. 

The first step it receives the codeword value and length to assemble the bitstream 

belonging to each encoding process. Then, it concatenates the separate bit streams to 

transmitted bitstream.  

The decoding procedure of CAVLC decoder has to decode the bitstream step by 

step, because the bit streams have data dependency. If we don’t get some decoded 

information, we can’t do the next step. Therefore, the important thing to increase the 

decoding throughput is to reduce the decoding cycles for each component. The 

CAVLC decoding steps are as follows:  

� Counting the leading zeros until detecting the first one of the input bitstream, 

and then sends the leading zeros and suffix to group-based VLC codec system. If nC 

is the value of NUM_FLC, we only send suffix.  

� Decoding the coeff_token according to group-based VLC algorithm. The 

component outputs the suffix length to calculate the used bitstream boundary.  

� After decoding the coeff_token, we will get TrailingOnes that can help us 

decide suffix length transmitted to Trailing_ones_sign_flag. When decoding 

Trailing_ones_sign_flag, we also count the leading zeros belong to level decoding 

process.  

� At the same time to decode levels, we count the leading zeros of level 

decoding or total_zeros. When the number of decoded level is equal to TotalCoeff, we 

have to quit decoding level.  

� When decoding total_zeros, we count the leading zeros used for some 

run_before symbol and the leading ones for zero skipping.  
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� When decoding run_before, we still count the leading zeros used for the next 

run_before symbol and the leading ones for zero skipping. Then, according the 

previous decoded run_before, we can begin arranging the DCT coefficients into the 

correct position in the decoded block. When the zerosLeft is equal to 0 or the last 

run_before is decoded, the run_before process has to end.  

The encoding process of CAVLC encoder doesn’t have so many steps, although 

we can design the encoding process like the way of decoding procedure. However, we 

consider the throughput of the CAVLC encoder is worse, if we execute the encoding 

process with the serial steps. We observe that there is no data dependency between the 

encoded symbols for different encoding component, so we can do the encoding steps 

parallel. For example, even if coeff_token step doesn’t finish, we can still execute 

level encoding step, because the data for level encoding step doesn’t depend on the 

results of coeff_token encoding step. Therefore, when executing encoding process, all 

components of our proposed design will work together. The design idea is to increase 

the encoding throughput, because the throughput of the proposed CAVLC encoder 

design depends on the most cycles of encoding step instead of the sum of cycles cost 

by all encoding components.  

In order to support the proposed encoder design, how to design a bitstream 

concatenater is important. The bitstream concatenater has to link the encoded 

codewords as fast as possible. We don’t hope we save the cycles of encoding process, 

but we take more efforts to concatenate the encoded codewords. Therefore, this 

design will be described in Chapter 4, and here we first introduce the proposed VLC 

group-based codec system.  

 

 



 35

3.2.3.2.3.2.3.2. Conventional Group-based VLC Codec 

System 

This work is previously developed and verified by Bai-Jue Hsieh in [6], [7]. The 

intention of this section is to quickly give us a sense of what a conventional 

group-based VLC Codec system is and how it works.  

3.2.1.3.2.1.3.2.1.3.2.1. Definition of Codeword Groups 

An example of Huffman code and codeword grouping is illustrated in Figure 3-4. 

Based on this result, the conventional codeword group is a set of codewords whose 

source symbols are combined to perform the Huffman procedure and receive the same 

codeword length. According to this definition, the codeword groups have the 

following properties:  

� In a group, the codeword can be treated as a binary number which is 

codeword length-bit long, called VLC_codenum, since the codeword length 

is the same.  

� The codeword that has the smallest VLC_codenum in a group is denoted 

VLC_mincode.  

� A VLC_codeoffset is the offset value between the VLC_mincode and the 

VLC_codenum. 
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Figure 3-4 : Example of VLC table and codeword groups 

In Figure 3-4, the symbols C4, C5, and C6 belong to the codeword group G3. In 

this group, the codewords have the same codeword length, 4-bit, and the prefix 112. 

The word length of the suffixes is 2-bit. Therefore, the 4-bit VLC_codenums are13, 

14, and 15; the VLC_mincode is 4’b1101; and the 2-bit VLC_codeoffsets are 0, 1, and 

2. Source symbols that are not combined will belong to different groups, such as C7, 

C8, and C9 in G0, and C4, C5, and C6 in G3, although codeword lengths are identical. 

Moreover, there is only one symbol in group G1 since C1 is the only VLC having 

length of 2 bits.  

3.2.2.3.2.2.3.2.2.3.2.2. Intra-Group Decoding Procedure 

Besides grouping codewords, mapping symbols onto memories and extraction 

codeword group information are necessary for VLC decoding. The memory address 

of a symbol in a group is calculated by the VLC_codeoffset of the symbol and the 

base address of the VLC_mincode in that group; i.e. the symbol address is the sum of 

the VLC_codeoffset and the base address of the group. After applying this arithmetic 

relationship, decoded symbol address can be found by numerical calculation rather 

than by pattern matching. Thus, the group information to be stored is composed of 
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codeword length, VLC_mincode, and base address. Based on the group information in 

Figure 3-5, intra-group decoding/encoding procedure is performed as follows. 

Assuming we are decoding codeword 100112. 

� VLC_codeoffset = VLC_codenum(100112) – VLC_mincode(100002) = 

000112 =3; 

� symbol_address = VLC_codeoffset(3) + base_address(50) = 53; 

� the decoded symbol C4 is retrieved from memory address 53; 

Assuming the encoded symbol address is 103. 

� VLC_codeoffset = symbol_address (103) – base_addresss (100) = 3; 

� VLC_codenum = VLC_codeoffset (3) + VLC_mincode (32) = 35; 

� The encoded 8-bit codeword is 001000112 = 35. 

symbol prefix suffix
VLC

_codenum

VLC

_codeoffset

Symbol

address

C7

C1

C2

C3

C4

C5

C6

10

10

000 0

1

2

3

4

5

6

16 50

53

54

56

51

52

55

10

10

10

10

10

001

010

011

100

101

110

17

18

19

20

21

22

Group Information : codeword length = 5

                                VLC_mincode = 100002
                                base address = 50  

Figure 3-5 : Example of intra-group symbol memory mapping and group information 
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3.2.3.3.2.3.3.2.3.3.2.3. Group-searching Scheme 

An economical group-searching scheme with high operation rate and low 

complexity determines the performance of a group-based VLC decoder because the 

decoding procedure is performed after the group information is obtained. We use 

inter-group symbol memory mapping and Pseudo-Constant-Length-Code (PCLC) in 

order to achieve such a group-searching scheme. If all codeword lengths are the same , 

the numerical properties of codewords in a group can be applied to the whole coding 

table. We apply a procedure, namely PCLC procedure, to equalize codeword lengths 

by adding redundant binary digits, 00…0, behind VLC codewords. Therefore, PCLC 

codewords, which have the same length as the longest VLC codeword, can be treated 

as binary numbers, PCLC_codenums. 

 

group symbol 
PCLC 

_codeword 

PCLC 

_codenum 

symbol 

address 

PCLC 

_codeoffset 

is PCLC 

_mincode 

G0 S00 00100100 36 0 0 o 

G0 S01 00100101 37 1 1  

G0 S02 00100110 38 2 2  

G0 S03 00100111 39 3 3  

G1 S10 00110000 48 4 0 o 

G2 S20 01100000  5 0 o 

G2 S21 01110000  6 1  

G1 S11 01111100 56 7 3  

.. .. …….. …. .. …. .. 

.. .. …….. …. .. …. .. 

Table 3-1 : Example of inter-group symbol memory mapping 

Group Valid codelength PCLC_mincode base address 

G0 1 8 00100100 0 

G1 1 6 00110000 4 

G2 1 4 01100000 5 

Table 3-2 : Group information for Table 3-1 
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It is easily to distinguish PCLC codewords and PCLC_codenums from each other 

because the VLC code is a prefix code. As a result, a PCLC table is established with 

PCLC_codenums placed in ascending order, i.e. codenum0 < codenum1 < … < 

codenumn. This results in ascending PCLC_mincodes as well, i.e. mincode0 < 

mincode1 < … < mincoden. Based on the PCLC table, the base addresses have to be 

assigned in PCLC_mincode order, i.e. base_addr0 < base_addr1 < … < base_addrn, for 

inter-group symbol memory mapping. An example of the PCLC table and its 

intra/inter-group symbol memory mapping is shown in Table 3-1, and the group 

information of this PCLC table is given in Table 3-2, where the valid bit indicates 

whether the group information is used. We can see in Table 3-1 that G2 is inserted in 

the middle of G1. This placement is specialized for decoding to save memory space of 

symbol memory.  

According to PCLC tables and symbol memory maps, the conventional decoding 

group searching scheme is realized by applying numerical properties to bitstream and 

symbol addresses. Similar to PCLC codewords, a decoded bitstream that has the same 

length as the PCLC codewords is treated as a binary number, bitstream_num. Because 

the bitstream is a sequence of concatenated codewords, such as codewordi – 

codewordj – etc, a relation between the bitstream and the PCLC table can be 

expressed by PCLC_codenumi ≦ bitstream_num < numerical comparisons. The 

decoded codeword belongs to group Gx when the hit condition, PCLC_mincodex ≦ 

bitstream_num < PCLC_mincodex+1, is encountered. Let’s see the process of decoding 

one symbol from bitstream “001111010110…”  
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Figure 3-6 : Process of decoding a symbol 

 

Figure 3-7 : Process of encoding a symbol address 

According to the relation between PCLC tables and the symbol address, the 

conventional encoding group searching scheme is realized by applying numerical 

properties to codewords and symbol addresses. Based on the encoded symbol, the 

relative symbol address can be fetched. A relation between the symbol address and the 

PCLC table can be expressed by base_addri ≦  symbol address < numerical 

comparisons. The decoded codeword belongs to group Gy when the hit condition, 

base_addry ≦ bitstream_num < base_addry+1, is encountered. Let’s see the process 
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of encoding one symbol from the symbol address “19 (5’b10011)”  

 

Figure 3-8 : Block diagram of conventional group-based VLC decoder architecture 

The conventional VLC codec system is designed for MPEG applications with 

coding tables up to 256-entry 12-bit symbols and 16-bit codewords. This system 

performs concurrent encoding and decoding procedures by accessing the same group 

information and achieves table programmability by loading data into on-chip 

memories. To complete the VLC codec processes of MPEG videos, this design 

includes the operations of sign bits and escaped run-levels (escRL) following VLC 

codewords. By the efficient symbol conversion, the memory requirement is reduced 

to (25x8 + 28x8 + 28x12 + 32x29) bits for a CBS-LUT, a symbol address memory, a 

symbol memory, and 32-entry group-information. Block diagram of the conventional 

VLC codec system is shown in Figure 3-8. It mainly consists of the following 

components.  

� The group-based VLC encoder/decoder is composed of group detectors and 

combinational logic circuits to realize the VLC codec processes. 

� The input FIFO stores the input bitstream. According to previous decoded 
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results, the Dec_bitstream selector transmits codewords bitstream to the VLC decoder. 

Besides, this selector detects sign bits and escRLs when VLC codewords are decoded.  

� The Enc_bitstream concatenater adds sign bits or escRL’s behind VLC 

codewords and concatenates encoded results into a single bitstream. Then, every 32 

bits of the encoded bitstream in the concatenater is shifted into the Output FIFO.  

� The special code detector recognizes special codes, such as escape and EOB, 

by checking decoded symbol addresses instead of decoded symbols. Without waiting 

for symbol fetching, this detector can determine the length of the additional bits 

following a VLC codeword. Hence, the next codeword bitstream can be found by the 

Dec_bitstream selector immediately and the decoding throughput can be increased.  

� The Enc_en and Dec_en Ctrls determine the operations of the VLC_encoder 

and decoder according to the condition of input data and FIFOs. 

� Both symbol address and symbol memories are the on-chip memory modules 

for storing symbol information. 

� The symbol converter performs symbol conversion and detects escaped RLP’s 

and EOB symbols. On the other hand, the symbol recoverer finds correct runs and 

signed levels based on decoded results. 
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3.3.3.3.3.3.3.3. The Proposed Group-Based VLC Encoding 

and Decoding 

3.3.1.3.3.1.3.3.1.3.3.1. The Definition of Decoding Codeword Groups 

group symbol prefix suffix suffix_num 
suffix 

_offset 
attribute 

G2 S3 001 N.A. N.A. 0 suffix_min 

S4 0001 00 0 0 suffix_min 

S5 0001 01 1 1  G3 

S6 0001 1 2 2  

S7 00001 00 0 0 suffix_min 

S8 00001 01 1 1  G4 

S9 00001 1 2 2  

S10 000001 00 0 0 suffix_min 

S11 000001 01 1 1  

S12 000001 10 2 2  
G5 

S13 000001 11 3 3  

Table 3-3 : An example of CAVLC code and codeword grouping 

An example of CAVLC code and codeword grouping is illustrated in Table 3-3. 

CAVLC code is also constructed based on Huffman code, and as we introduce it in 

Chapter 1, Huffman code is a prefix code, that is any codeword is not the prefix code 

of other codewords. For example, the symbol, S3, listed in Table 3-3 is relative to the 

codeword, 001, and in the entire VLC codeword table there is no codeword which 

starts as 001 except the codeword of S3. Based on the result, the proposed codeword 

group is a set of codewords whose source symbols are combined to receive the same 

number of leading zeros. Besides, the number of the group is equal to the relative the 

number of leading zeros. For example, when the number of leading zeros is 5, the 

relative group number is also 5. This is very useful to simplify the process of group 

searching. According to this definition, the codeword groups have the following 
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properties.  

� In a group, the suffix of the codeword can be treated as a codeword length-bit 

binary number, called suffix_num, since the prefix length is the same regardless to the 

suffix length.  

� The codeword that has the smallest suffix_num in a group is denoted 

suffix_min.  

� A suffix_offset is the offset value between the suffix_min and the 

suffix_num.  

Difference from the conventional codeword groups, we set the codeword groups 

only based on prefix, because the prefix of codewords is unique. We don’t have to use 

the entire codeword to set the groups, so we can save some cost in the process of 

calculating the group information and building the tables in memories. In Table 3-3, 

the symbols S10, S11, S12, and S13 belong to the codeword group G5. In this group, 

the codewords have the same prefix length, 6-bit. The suffix length is 2-bit. Therefore, 

the 2-bit suffix_nums are 0, 1, 2, and 3, the suffix_min is 2’b00 which is the same as 

1’b0, and the 2-bit suffix_offsets are 0, 1, 2, and 3. Symbols which are not combined 

belong to different groups, such as S7, S8, and S9 in G4, and S4, S5, and S6 in G3. 

Besides, there is only one symbol in group G3 since symbol S3 completes the 

Huffman procedure alone.  

In CAVLC coeff_token decoding/encoding process, there are four tables used. The 

number of total groups with the proposed codeword groups is 46, and we have to use 

64-entry memories to build the whole CAVLC coeff_token table. Therefore, under the 

reasonable usage of memory, we can set the first group of NUM_VLC0 is G0, that of 

NUM_VLC1 is G16, that of NUM_VLC2 is G32, and G48 is for NUM_VLC3. From 

the distribution of the codeword groups, we can easily get the address of group 

memory based on the NUM_VLCx and the codeword group.  



 45

In MPEG-2 table B15, some codewords also have the leading ones as the prefix. 

Based on the rule of the proposed grouping method, we only set the codeword groups 

according to the leading ones, and then set the leading zeros codeword groups along 

the leading ones codeword groups. The number of the groups constructed by leading 

ones is 8, so the beginning group by leading zeros is 8. An example of the Huffman 

code and codeword grouping is shown in Table 3-4. The number of total groups in 

MPEG-2 VLC tables with the proposed grouping method is 30. However, we locate 

the groups of MPEG-2 table B14 from G0 to G31, and we put the groups of MPEG-2 

table B15 from G32 to G63, when we combine CAVLC coeff_token tables and 

MPEG-2 VLC tables. The reason is to get the group number easily under reasonable 

memory usage, because CAVLC coeff_token has to use 64-entry memories. In order 

to complete the proposed grouping method, we have to get the information of the 

number of leading ones and the leading-one prefix or leading-zero one.  

group symbol prefix suffix suffix_num 
suffix 

_offset 
attribute 

S3 110 0 0 0 suffix_min 
G3 

S4 110 1 1 1  

S5 1110 00 0 0 suffix_min 

S6 1110 01 1 1  

S7 1110 10 2 2  
G4 

S8 1110 11 3 3  

S21 001 01 1 1 suffix_min 

S22 001 10 2 2  G9 

S23 001 11 3 3  

S24 0001 00 0 0 suffix_min 

S25 0001 01 1 1  

S26 0001 10 2 2  
G10 

S27 0001 11 3 3  

Table 3-4 : An example of Huffman code and codeword grouping in MPEG-2 table B15 
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3.3.2.3.3.2.3.3.2.3.3.2. The Definition of the Encoding Symbol Groups 

In the conventional group-based VLC codec system, there was no special 

definition of the encoding symbol groups. It used CBS-LUT for the encoding process 

to look up the base address of the symbol address memory. However, if we can define 

the encoding symbol groups, we will get some benefits about the usage of memories.  

group run level encoding_num encoding_offset attribute 

0 1 1 0 encoding_min 

0 2 2 1  

0 … … …  
G0 

0 31 31 30  

0 32 0 0 encoding_min 

0 33 1 1  

0 … … …  
G1 

0 40 8 8  

4 1 4 0 encoding_min 

5 1 5 1  

… 1 … …  
G5 

31 1 31 27  

Table 3-5 : An example of MPEG-2 encoding symbol groups 

An example of MPEG-2 encoded symbols and symbol grouping is shown in Table 

3-5. According to conventional CBS-LUT method, when run is equal to 0, the number 

of mapping levels is 40, but when run is greater than 7, the number of mapping levels 

is less than 3. Finally, one run will map to one memory address. Therefore, we 

consider that we can also define the encoding symbol groups like decoding codeword 

groups to save the usage of memories. In the symbol grouping procedure, we count 

the number of the mapping symbols for one symbol. For example, when the value of 

run is equal to 0, the number of mapping levels is 40. Perhaps, when the value of level 

is equal to 1, the number of mapping runs is 28. Based on the result of this procedure, 

the proposed symbol groups are a set of the most symbols mapping to one symbol. 
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According to this definition, the symbol groups have the following properties. 

� In a group, the value of the changed symbol is called encoding_num, since the 

other symbol is fixed.  

� The value of the changed symbol has the smallest encoding_num in a group is 

denoted encoding_min.  

� An encoding_offset is the offset value between the encoding_min and the 

encoding_num.  

In Table 3-5, the levels from 1 to 31 belong to the symbol groups G0. In this group, 

the runs have the same value, 0. Therefore, the encoding_nums are from 1 to 31, the 

encoding_min is 1 and the encoding_offsets are from 0 to 30. Source symbols which 

are not combined will belong to different groups. When the value of the level is equal 

to 1, the runs from 4 to 31 belong to G5. In symbol groups for MPEG-2 VLC tables, 

the group, G1, is particular to other groups. The value of the fixed symbol, run, is the 

same as G0, but we still separate it to another group. The reason is if we combine G0 

and G1 as a symbol group, we will use more memories.   

group run level 

G0 0 1~31 

G1 0 32~40 

G2 1 1~18 

G3 2 1~5 

G4 3 1~4 

G5 4~31 1 

G6 4~16 2 

G7 4~6 3 

Table 3-6 : The symbol groups for MPEG-2 VLC tables 

The total symbol groups for MPEG-2 VLC tables are shown in Table 3-6, and 

both table B14 and B15 use the symbol groups, because the symbols of them are the 

same.  
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The similar approach is also used in CAVLC coeff_token encoding process. 

However, the procedure of symbol grouping in CAVLC is much easier than that in 

MPEG-2. TrailingOnes is the only choice to be the reference of group number, 

because each TrailingOnes can map most number of TotalCoeffs. The symbol groups 

of CAVLC coeff_token are shown in  

group TrailingOnes TotalCoeff 

G0 0 0 ~ 16 or 0 ~ 4 

G1 1 1 ~ 16 or 1 ~ 4 

G2 2 2 ~ 16 or 2 ~ 4 

G3 3 3 ~ 16 or 3 ~ 4 

Table 3-7 : The symbol groups of CAVLC coeff_token 

3.3.3.3.3.3.3.3.3.3.3.3. Intra-Group Decoding Procedure 

In addition to grouping codewords, it is necessary for decoding procedures to map 

symbols onto memories and extract codeword group information. During intra-group 

symbol memory mapping, the memory address of a symbol in a group is calculated by 

the suffix_offset of this symbol and the base address which denotes the symbol 

address of the suffix_min of the group. In other words, the symbol address is the sum 

of the suffix_offset and the base address. After applying this arithmetic relation, 

suffix_offsets, decoded symbol addresses, and encoded codewords can be found by 

numerical calculations rather than pattern matching. Therefore, the group information 

to be stored is suffix_min, and base addresses.  

Based on the memory map and the group information in Figure 3-9, intra-group 

decoding procedures can be described as follows.  

Decoding procedure – assume the decoded codeword is (0000_0110)2: 

� suffix_offset = suffix_num (10)2 – suffix_min (0) = 102 = 2; 

� symbol_address = suffix_offset (2) + base_address (9) = 11; 
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� The decoded symbol, S2, is accessed by the symbol_address, 9; 

 

Figure 3-9 : An example of intra-group memory map and group information 

However, when calculating the suffix_offset, we have to get the value of 

suffix_num. That means we have to know the real suffix length of the relative suffix. 

Therefore, the group information also has suffix length to fetch the correct suffix. 

Besides, the suffix length has to be sent back to codeword boundary detector, and the 

codeword boundary detector can truncate the codewords which are decoded without 

any error.  

 

Figure 3-10 : An example of the special case of suffix length 

Some special cases will happen in VLC tables and Figure 3-10 shows an example 

of the special case of suffix length. The relative codeword of the symbol, S2, is 

“00011” and the other codewords in this group are “00010x”. We can find the suffix 

length is different. Therefore, we have to handle the condition to avoid fetching the 

incorrect suffix; otherwise we will get the wrong suffix_offset to access the wrong 

location of the symbol memory. Even sending the incorrect suffix length to codeword 

boundary detector will result the current decoded block fails. To solve this problem, 
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we add an item called suffix_adjust to group information. When we get the group 

information and the suffix_adjust is set to 1, we have to examine the received suffix to 

see if we have to adjust the suffix length. The judgment of the suffix length adjusting 

is to examine if the first bit of the received suffix is 1. If the first bit of the received 

suffix is 1, the true suffix length is the suffix length of the group information minus 1. 

Other the other hand, the true suffix length is equal to suffix length. 

 

Figure 3-11 : An example of the complete group information 

Based on the memory map and the group information in Figure 3-11, the complete 

intra-group decoding procedures can be described as follows. 

Decoding procedure – assume the decoded codeword is (00011)2: 

� The suffix_adjust is equal to 1, so we have to examine the first bit of the 

received suffix (1) 2. The first bit of the received suffix is also equal to 1, so 

suffix_num is set to (10) 2. 

� suffix_offset = suffix_num (10)2 – suffix_min (0) = 102 = 2; 

� symbol_address = suffix_offset (2) + base_address (3) = 5; 

� The decoded symbol, S2, is accessed by the symbol_address, 5; 

In order to save the usage of memories, we don’t save the whole base addresses to 

the group information, and we only save the least significant 7 bits. Therefore, when 

executing the CAVLC coeff_token decoding, the true base addresses have to be added 

64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_VLC3. On the other 

hand, the true address has to be added 128 for MPEG-2 table B15. 
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group suffix_adjust leading_0s base_address suffix_length suffix_min 

0 0 1 0 0 1 

1 1 1 1 2 0 

2 0 1 4 2 1 

3 0 1 7 2 0 

4 0 1 11 2 0 

5 0 1 15 2 0 

6 0 1 23 3 0 

7 0 1 31 4 0 

8 0 1 47 4 0 

9 0 1 63 4 0 

10 0 1 79 4 0 

11 0 1 95 4 0 

16 0 0 0 0 0 

17 0 0 1 0 0 

18 0 0 2 1 0 

19 0 0 4 2 0 

20 1 0 8 2 0 

21 0 0 12 1 0 

22 0 0 14 0 0 

23 0 0 15 N.A. N.A. 

24 1 1 16 2 0 

25 0 1 20 2 1 

26 0 1 23 2 0 

27 0 1 27 2 0 

28 0 1 31 2 0 

29 1 1 39 3 0 

30 0 1 47 4 1 

31 0 1 63 4 0 

32 0 1 79 4 0 

33 0 1 95 4 0 

34 0 1 111 4 0 

Table 3-8 : The codeword groups of MPEG-2 
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group suffix_adjust leading_0s base_address suffix_length suffix_min 

0 0 1 0 0 1 

1 0 1 1 0 1 

2 0 1 2 0 1 

3 1 1 3 2 0 

4 1 1 6 2 0 

5 0 1 9 2 0 

6 0 1 13 2 0 

7 0 1 17 2 0 

8 0 1 21 2 0 

9 0 1 25 3 0 

10 0 1 33 3 0 

11 0 1 41 3 0 

12 0 1 49 3 0 

13 0 1 57 2 0 

14 0 1 61 0 1 

16 0 1 0 1 0 

17 1 1 2 2 0 

18 1 1 5 3 0 

19 0 1 12 2 0 

20 0 1 16 2 0 

21 0 1 20 2 0 

22 0 1 24 2 0 

23 0 1 28 3 0 

24 0 1 36 3 0 

25 0 1 44 3 0 

26 1 1 52 3 0 

27 0 1 59 2 0 

28 0 1 63 0 1 

32 0 1 0 3 0 

33 0 1 8 3 0 

34 0 1 16 3 0 

35 0 1 24 3 0 

36 0 1 32 3 0 

37 0 1 40 3 0 

38 1 1 48 3 0 

39 0 1 55 2 0 
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40 0 1 59 1 0 

41 0 1 61 0 1 

48 0 1 0 0 1 

49 0 1 1 0 1 

50 0 1 2 0 1 

51 0 1 3 2 0 

52 0 1 7 1 0 

53 0 1 9 1 0 

54 0 1 11 1 0 

55 0 1 13 0 0 

Table 3-9 : The codeword groups of CAVLC coeff_token 

3.3.4.3.3.4.3.3.4.3.3.4. Intra-Group Encoding Procedure 

In addition to grouping symbols, it is necessary for encoding procedures to map 

codewords onto memories and extract symbol group information. During intra-group 

codeword memory mapping, the memory address of a codeword in a group is 

calculated by the encoding_offset of this codeword and the base address which 

denotes the codeword address of the encoding_min of the group. In other words, the 

codeword address is the sum of the encoding_offset and the base address. After 

applying this arithmetic relation, encoding_offsets, decoded codeword addresses, and 

decoded symbols can be found by numerical calculations rather than pattern matching. 

Therefore, the group information to be stored is encoding_min, and base addresses. 

Based on the memory map and the group information in Figure 3-12, intra-group 

encoding procedures can be described as follows.  

Encoding procedure – assume the decoded symbols are TotalCoeff is 8 and 

TrailingOnes is 0: 

� encoding_offset = encoding _num (8) –encoding _min (0) = 8; 

� codeword_address = encoding _offset (8) + base_address (0) = 8; 

� The encoded codeword, 0000_0000_0100_0, is accessed by the 
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codeword_address, 8; 

group information: suffix_min = 0

                              base_address = 0

codeword TrailingOnes TotalCoeff encoding_num encoding_offset symbol address

1

000101

00000111

000000111

0000000111

00000000111

0000000001111

0000000001011

0000000001000

00000000001111

00000000001011

000000000001111

000000000001011

0000000000001111

0000000000001011

0000000000000111
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0

0

0

0
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0
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Figure 3-12 : An example of intra-group codeword memory map and group information 

In order to save the usage of memories, we don’t save the whole base addresses to 

the group information, and we only save the least significant 7 bits. Therefore, when 

executing the CAVLC coeff_token decoding, the true base addresses have to be added 

64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_VLC3. On the other 

hand, the true address has to be added 128 for MPEG-2 table B15. 
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3.3.5.3.3.5.3.3.5.3.3.5. Decoding Group-Searching Scheme and overall 

group-based decoding processes 

Because the decoding procedures are performed after the group information is 

acquired, and efficient group-searching scheme with low complexity and high 

operation rate determines the performance of a group-based VLC decoding system. To 

realize such a group searching scheme, we abandon the conventional group-searching 

scheme which is to calculate the range of PCLC_codenum to fetch the decoding 

group. If the number of decoding group is large, we have to iterate the 

group-searching scheme until the correct range is found. Besides, if we use 

PCLC_codenum group-searching scheme, we have to save the PCLC_mincode with 

the longest codeword length. Therefore, the conventional group-searching scheme is 

not efficient enough about group-searching time and memory usage. We use the 

proposed group-searching scheme called prefix-zero-group-searching (PZGS) and 

inter-group symbol memory mapping to realize the decoding group searching.  

A PZGS scheme is to count the leading zeros of the received codeword and the 

value of the leading zeros is the base of the group number. Then, we have to fetch the 

additional group number according to the value of NUM_VLC in CAVLC or the table 

which is used in MPEG-2. The relative additional group numbers are 0, 16, 32, and 48 

for NUM_VLC0, NUM_VLC1, NUM_VLC2, and NUM_VLC3 in CAVLC, and 

those are 0 and 32 for MPEG-2 table B14 and B15. The sum of the base group 

number and additional group number is the group number we have to access. Based 

on the codeword group table, the base addresses have to be assigned in group number 

order, i.e. base_addr0 < base_addr1 < … < base_addrn for inter-group symbol memory 

mapping. An example of the PZGS table and the intra-/inter-group symbol memory 

map is shown in Table 3-10. The group information of the PZGS table is given in 
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Table 3-11.  

group symbol prefix NUM_VLC 
symbol 

address 
suffix_offset 

G0 S000 0 0 0 N.A. 

G1 S010 1 0 1 N.A. 

G2 S020 2 0 2 N.A. 

S030 3 0 3 0 

S031 3 0 4 1 G3 

S032 3 0 5 2 

S160 0 1 64 0 
G16 

S161 0 1 65 1 

S170 1 1 66 0 

S171 1 1 67 1 G17 

S172 1 1 68 2 

S180 2 1 69 0 

S181 2 1 70 1 

S182 2 1 71 2 

S183 2 1 72 3 

S184 2 1 73 4 

G18 

S185 2 1 74 5 

S190 3 1 75 0 

S191 3 1 76 1 

S192 3 1 77 2 
G19 

S193 3 1 78 3 

Table 3-10 : CAVLC PZGS table and intra-/inter-group symbol memory map 

 

group suffix_adjust leading_0s base_address suffix_length suffix_min 

0 0 1 0 0 1 

1 0 1 1 0 1 

2 0 1 2 0 1 

3 1 1 3 2 0 

16 0 1 0 1 0 

17 1 1 2 2 0 

18 1 1 5 3 0 

19 0 1 12 2 0 

Table 3-11 : CAVLC group information of the coding table shown in Table 3-10 
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Before realizing the decoding processes, the word lengths of both suffix_offset 

and suffix_num operands have to be determined, since it is difficult to implement 

arithmetic units with variable length inputs. To perform memory mapping, the 

supported symbol memory must satisfy the requirement of coding tables. 

Consequently, the value of suffix_offsets and suffix_num will not exceed the address 

space of the symbol memory. For this reason, it is reasonable that the word length of 

the suffix_offset and suffix_num operands equal that of the base address.  

Based on the word lengths of the operands discussed above, the VLC decoding 

algorithm is completed by the group searching scheme and the intra-group decoding 

procedures. Detailed descriptions of the VLC decoding processes and corresponding 

example based the coding table in Table 3-11, Table 3-12, and Figure 3-13. 

 

Figure 3-13 : CAVLC decoding processes and corresponding examples 

 

Figure 3-14 : The memory usage for conventional symbol memory 
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In the conventional symbol memory, two symbols, run and level, are directly 

stored into the symbol memory, and the length of binary number for run is 5-bit, and 

the length of binary number of level is 7-bit including the sign bit. Besides, the 

memory is 256-entry. If we decrease 4 bits of the symbol memory, we can reduce 

1024-bit memories. In order to memory reduction, we add one step for MPEG-2 

decoding processes, but under will pipelined scheme it doesn’t make great influence 

on the decoding throughput. We take advantage of the feature of symbol groups, that 

is, when we fetch the group number, the group number can be translated into one 

symbol. We only save the value of the other symbol, and finally we can get all 

decoded symbols. Therefore, the symbols groups have to provide the group 

information about which decoded symbol derived from symbol groups and its value. 

The group information of MPEG-2 symbol groups is shown in Table 3-12. 

Symbol_adjust also helps reduce the memory usage. When we put the entire value of 

levels into symbol memories, we have to use 6-bit memory width. Therefore, we 

separate the levels, 1 ~ 31, and the level, 32 ~ 40, into two groups in Table 3-6. In 

symbol memories, we only save the least 5-bit binary number of levels, and when 

symbol_adjust is equal to 1, we get the result of decoded level by adding the level 

derived from symbol memories and 32. The variable, run_or_level, means the value 

stored in the mapping symbol group is run or level, and 1 is to store run. Of course, 

symbol means the value of decoded symbol stored in symbol groups.  

group symbol_adjust run_or_level base_address symbol 

G0 0 1 0 00 

G1 1 1 31 00 

G2 0 1 40 01 

G3 0 1 58 10 

G4 0 1 63 11 

G5 0 0 67 01 

Table 3-12 : An example of MPEG-2 symbol group information 
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group symbol prefix Table 
symbol 

address 
suffix_offset 

S030 2 B14 7 0 

S031 3 B14 8 1 

S032 3 B14 9 2 
G3 

S033 3 B14 10 3 

Table 3-13 : MPEG-2 PZGS table and intra-/inter-group symbol memory map 

group suffix_adjust leading_0s base_address suffix_length suffix_min 

0 0 1 0 0 1 

1 1 1 1 2 0 

2 0 1 4 2 1 

3 0 1 7 2 0 

Table 3-14 : An example of MPEG-2 group information of the coding table 

 

Figure 3-15 : MPEG-2 decoding processes and corresponding examples 
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3.3.6.3.3.6.3.3.6.3.3.6. Encoding Group-Searching Scheme and overall 

group-based decoding processes 

Due to the encoding efficiency, we don’t consider the conventional encoding 

group-searching scheme which has the same disadvantage as the conventional 

decoding group-searching scheme. When we build the symbol groups, we already 

take the efficiency of encoding group-searching scheme into consideration. The 

symbol groups and their group information are shown in Table 3-15 and Table 3-16.  

The proposed encoding group-searching scheme is similar to the proposed decoding 

one. When executing the CAVLC coeff_token encoding processes, we search the 

symbol groups according to the value of TrailingOnes, and based on the value of run 

or level, we can do the same thing in MPEG-2. In CAVLC, the value of TrailingOnes 

directly maps to the symbol groups. In MPEG-2, the symbol groups only map to run 

or level whose value is less than 4. When receiving the value of run equals 0, if the 

value of level is less than 32, the matching group is G0. Besides, when the value of 

run is less than 4, the matching group is the result of adding 1 and the value of level. 

On the other hand, when the value of run is greater than 3, the matching group is the 

result of adding 4 and the value of level. We can see this relationship in Table 3-15. 

group run  level symbol_adjust run_or_level base_address symbol 

G0 0 1~31 0 1 0 2’b00 

G1 0 32~40 1 1 31 2’b00 

G2 1 1~18 0 1 40 2’b01 

G3 2 1~5 0 1 58 2’b10 

G4 3 1~4 0 1 63 2’b11 

G5 4~31 1 0 0 67 2’b01 

G6 4~16 2 0 0 95 2’b10 

G7 4~6 3 0 0 110 2’b11 

Table 3-15 : MPEG-2 symbol groups and group information 
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group T1s  TC symbol_adjust run_or_level base_address symbol 

G0 0 0~16 0 1 0 2’b00 

G1 1 1~16 0 1 17 2’b00 

G2 2 2~16 0 1 33 2’b01 

G3 3 3~16 0 1 48 2’b10 

Table 3-16 : CAVLC coeff_token symbol groups and group information 

Before realizing the encoding processes, we have to check encoding_min and 

encoding_num, and the word lengths of both encoding_offset and encoding_num 

operands have to be determined, since it is difficult to implement arithmetic units with 

variable length inputs. For the purpose of memory reduction, we don’t save 

encoding_min into group information, but from symbol_adjust and run_or_level we 

can get the information. When run_or_level is 1, we can know the fixed symbol for 

this group is run, and the minimum value of level is 0 or 1 which can determined by 

symbol_adjust. On the other hand, the fixed symbol of this group is level, so 

encoding_min is equal to 4. Besides, according to run_or_level, we can decide 

encoding_num is run or level. In CAVLC coeff_token encoding symbol groups, we 

also don’t store encoding_min in the group information, but we can get it from the 

group number.  

To perform memory mapping, the supported codeword memory must satisfy the 

requirement of coding tables. Consequently, the value of encoding_offsets and 

encoding_num will not exceed the address space of the codeword memory. For this 

reason, it is reasonable that the word length of the encoding_offset and encoding_num 

operands equal that of the base address.  

Based on the word lengths of the operands discussed above, the VLC encoding 

algorithm is completed by the group searching scheme and the intra-group encoding 

procedures. Detailed descriptions of the VLC decoding processes and corresponding 

example based the coding table in Figure 3-16 and Figure 3-17.  
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Figure 3-16 : CAVLC encoding processes and corresponding examples 
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Assume the encoded symbols are run is 0 and level is 34 and table B14.

1) Do group searching.

table B14 => Table_Info = 1'b0;

run = 0 and level > 32;

The matching group: G1;

2) Send group information.

symbol_adjust = 1, run_or_level = 1, base_addr = 7'b0011_111;

3) First, find the encoding_min according to symbol_adjust and run_or_level or the encoding_num according. The valid

    encoding_offset is the result of subtracting the encoding_num and the encoding_min.

if (run_or_level == 1)

encoding_num = level[4:0];

else

encoding_num = run;

if (run_or_level == 1)

{

if (symbol_adjust == 1)

encoding_min = 5'b00000;

else

encoding_min = 5'b00001;

}

encoding_num = 5'b00010;

encoding_min = 5'b00000;

valid encoding_offset = encoding_num (5'b00010) – encoding_min (5'b00000) = 5'b00010 = 2;

4) Extract the encoding_offset operand, which has the same word length as the base address.

encoding_offset = 7'b0000_010;

5) Calculate the encoded codeword address.

temp_address = base_address (7'b0011_111) + encoding_offset (7'b0000_010) = 7'b0100_001;

codeword_address = {Table_Info,temp_address} = 8'b0010_0001 = 33;

6) Fetch the valid encoded suffix and the codeword group.

encoded codeword group = 4'b1010 = 10;

suffix = 5'b00010;

7) According the codeword group, we can get the leading zeros length and suffix_length;

encoded codeword group = {Table_Info,1'b0,encoded codeword group} = 6'b001010 = 10;

prefix = codeword group = 10 + 1 = 11;

suffix_length = 4;

codeword length = prefix + suffix_length = 11 + 4 = 15;

codeword = 15'b0000_0000_0011_0;

 

Figure 3-17 : MPEG-2 encoding processes and corresponding examples 
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3.3.7.3.3.7.3.3.7.3.3.7. Group-Based VLC Coded System Architecture 
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Figure 3-18 : Block diagram of the proposed VLC codec system for MPEG applications 

The proposed VLC codec system is designed for MPEG applications with coding 

tables up to 256-entry 12-bit symbols and 16-bit codewords, and H.264/AVC CAVLC 

coeff_token with coding tables up to 256-entry 6-bit symbols and 16-bit codewords. 

This system performs concurrent encoding and decoding procedures by accessing the 

group information and achieves table programmability by loading data into on-chip 

memories. Block diagram of the proposed VLC codec system is shown in Figure 3-18. 

It mainly consists of the following components.  

� The codeword group address generator calculates the codeword group address 

according to the information of leading_xs, Table_B15, leading_one, and 

codeword_group. The whole function unit is controlled by two signals, 

encoding_active and decoding_active. The variable, leading_xs, is the number of 
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leading zeros or ones, and leading_one determines leading_xs is leading zeros or 

leading ones. Table_B15 means the codewords table is table B15 in MPEG-2. The 

detailed architecture of codeword group address generator is shown in Figure 3-19.  

 

 

Figure 3-19 : Architecture of codeword group address generator 

� The symbol address generator calculates the symbol address according to the 

information of suffix_min, suffix_adjust, and base address which is derived from the 

codeword group information. The whole function unit is controlled by two signals, 

encoding_active and decoding_active. When we get the correct suffix_length for the 

decoded symbol, we can fetch the correct suffix according to the barrel shifter to get 

the suffix_num. The detailed architecture of codeword group address generator is 

shown in Figure 3-20. 
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Figure 3-20 : Architecture of symbol address generator 

� The symbol group address generator calculates the symbol group address 

according to the information of symbol1 and symbol2. In we execute MPEG-2 

decoding/encoding, symbol1 is run and symbol2 is level. On the other hand, symbol1 

is TrailingOnes and symbol2 is TotalCoeff. The whole function unit is controlled by 

two signals, encoding_active and decoding_active. The detailed architecture of 

codeword group address generator is shown in Figure 3-21.  

 

Figure 3-21 : Architecture of symbol group address generator 
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� The codeword address generator calculates the codeword address according to 

the information of symbol_adjust, run_or_level, symbol, and base address which are 

derived from the symbol group information. The whole function unit is controlled by 

two signals, encoding_active and decoding_active. The detailed architecture of 

codeword group address generator is shown in Figure 3-22.  
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Figure 3-22 : Architecture of codeword address generator 

3.4.3.4.3.4.3.4. Summary 
suffix_adjust

1 bit

leading_0s

1 bit

base address

7 bits

suffix_length

3 bits

suffix_min

1 bit

codeword group

symbol_group

3 bits

symbol_offset

5 bits

symbol memory

symbol_adjust

1 bit

run_or_level

1 bit

base address

7 bits

symbol

2 bits

symbol group

suffix

4 bits

codeword_group

5 bits

codeword memory  

Figure 3-23 : Formats of all kinds of memories 
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Figure 3-23 shows the formats of codeword group memory, symbol memory, 

symbol group memory, and codeword memory. After the result of memory reduction 

of the proposed VLC codec system, the total memories are 5272 bits, and the memory 

usage for each memory is shown in Figure 3-24. Compared to the memory usage of 

CABAD shown in Figure 3-2, the memory usage of the proposed VLC codec system 

is much smaller than that of CABAD. Therefore, the proposed VLC codec system can 

easily share the memory with CABAD.  

Besides, the conventional VLC codec system use 6304-bit memory, and our 

proposed VLC codec system save 16% memory usage. However, the conventional 

VLC codec system can’t support CAVLC, so under the same environment, that is, we 

compare the memory usage without considering the CAVLC encoding/decoding, we 

use 4856-bit memory and save 23% memory usage. The proposed VLC codec system 

has almost the same throughput as the conventional one.  
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Figure 3-24 : The memory usage of each memory 
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Chapter 4.  
Optimization of the 

Proposed VLC Codec 

System 
From Figure 3-3, we can see other decoding/encoding procedures in addition to 

coeff_token in CAVLC. Even if they are VLC encoding/decoding procedures based 

on Huffman coding except trailing_ones_sign_flag, for the purpose of the 

performance, we don’t use the proposed group-based VLC encoding/decoding 

approaches to realize other parts. Besides, the components, symbols constructor and 

bitstream concatenater, also have great influence on the encoding/decoding 

procedures. In this chapter, we will introduce the other optimization of the proposed 

VLC codec system.  

4.1.4.1.4.1.4.1. Efficient Coding 
Efficient coding means we can use simple arithmetic approaches to realize the 

VLC tables, because we would find the same numerical rules among different tables. 

From these numerical rules, we can cluster the original tables into a few groups. In the 

same group, the symbols or the codewords have the same numerical calculations to 

get the relative codewords or symbols. By this way, we can implement these 

decoding/encoding procedures without memory usage, and we can get the encoded 

codewords or decoded symbols quickly to provide the better throughput for the entire 

codec system.  
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4.1.1.4.1.1.4.1.1.4.1.1. Level Efficient Coding 

 

Figure 4-1 : Algorithm of level encoding and decoding 

Figure 4-1 shows the algorithm of level encoding and decoding. According to the 

value of suffix_length, we can choose the decoded table from NUM_VLC0 ~ 

NUM_VLC6. When suffix_length is 0, there are two escape cases (level_prefix = 14 

or 15) which have to fetch level_suffix to decode. On the other hand, the suffix length 

is equal to the variable, suffix_length. The variable, sign, means the level is positive 

or negative.  

In the encoding procedures, length is the codeword length and code represents the 

codeword value. The variable, escape, is defined as the following equation. 

15 _escape suffix length= <<  

The variable, escape, determines the threshold of escape case, and if the value of level 

is greater than or equal to escape, the encoding procedure enters the escape case. In 

escape case, level_prefix is given 15 and the level_suffix length is 12. This is for the 

large value of encoding levels. The two cases, |level| < 16 and |level| ≧ 16, are the 

mapping to the two escape cases in the decoding process. According to the encoding 

and decoding algorithm shown in Figure 4-1, we can formulates the calculations of 

level encoding/decoding shown in Figure 4-2. 
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If (level_encoding)

escape0_0 = |level|;

escape0_1 = 8;

escape1_0 = |level|;

escape1_1 = 16;

escape2_0 = |level|;

escape2_1 = escape;

If (level_decoding)

escape0_0 = level_prefix;

escape0_1 = 14;

escape1_0 = level_prefix;

escape1_1 = 15;

escape2_0 = level_prefix;

escape2_1 = 15;

escape0 = escape0_0 >= escape0_1;

escape1 = escape1_0 >= escape1_1;

escape2 = escape2_0 >= escape2_1;

if (suffix_length == 0)

{

if (encoding)

case ({escape0, escape1})

 2'b00 : level_out0 = 1<< 12;

level_out1 = {|level|-16,sign};

 2'b01 : level_out0 = 1 << 4;

level_out1 = {|level|-8,sign};

 2'b10 : level_out0 = 0;

level_out1 = 0;

 2'b11 : level_out0 = 0;

level_out1 = 1;

if (decoding)

case ({escape0, escape1})

 2'b00 : level_out0 = 30;

level_out1 = level_suffix (12 bits);

 2'b01 : level_out0 = 14;

level_out1 = level_suffix (4 bits);

 2'b10 : level_out0 = 0;

level_out1 = 0;

 2'b11 : level_out0 = 0;

level_out1 = level_prefix;

}

else

{

if (encoding)

if (escape2)

level_out0 = 1 << 12;

level_out1 = {|level|-escape, sign};

else

level_out0 = 1 << suffix_length;

level_out1 = {suffix, sign};

if (decoding)

level_out0 = level_prefix << suffix_length;

level_out1 = level_suffix;

}

level_out = level_out0 + level_out1;

escaping cases

Result of level 

encoding/decoding

if (suffix_length == 0)

case ({escape0, escape1})

 2'b00 : length = encoding ? 28 : 12;

 2'b01 : length = encoding ? 19 : 4;

 default : length = encoding ? {|level|, ~sign} : 0;

else

if (encoding)

  if (escape2)

    length = 28;

  else

    length = (|level| - 1) >> shift + suffix_length + 1;

if (decoding)

  if (escape2)

    length = 12;

  else

    length = suffix_length;

shift = suffix_length – 1; length  

Figure 4-2 : Calculations of level encoding and decoding 

The escape cases for level encoding procedures are |level| < 8, |level| < 16, and 

|level| < escape, and those for level decoding procedures are level_prefix < 14, 14 ≤ 

level_prefix < 15, and level_prefix = 15. The lengths for level encoding procedures 

are the length of the encoded codeword, and those for level decoding procedures is 

the suffix length of decoding codeword which is transmitted to codeword boundary 

detector to calculate the codeword boundary. The level_out is the codeword value for 

level encoding and that is the value of level_code for level decoding. According to 

level_code, we can get the value of the decoded level shown in Figure 2-10. Based on 

these calculations, we can simplify the complexity of level encoding and decoding, 

and this architecture can help us handle the parallel input bitstream for level decoding 

and integrate level encoding/decoding to an area-efficient level codec system. The 

level decoding/encoding procedures and the corresponding examples are shown in 

Figure 4-3 and Figure 4-4.  
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Decoding procedures – assume the decoding codewords “00001101000…” and  suffix_length is 3.

1) Count leading zeros and fetch level_prefix.

leading zeros = 4 => level_prefix = 4;

2) Evaluate the escape case and fetch level_suffix according to suffix_length.

level_prefix < 14 => escape0 = 0;

level_prefix < 15 => escape1 = 0 & escape2 = 0;

suffix_length = 3 => suffix = 3'b101;

3) According to suffix_length, escape cases, level_prefix, and level_suffix, we can get the decoded suffix_length, level_out0, level_out1, and sign.

suffix_length != 0 && escape2 = 0 => length = suffix_length = 3;

suffix_length != 0 => level_out0 = level_prefix << suffix_length = 4'b0100 << 3 = 7'b0100_000 = 32;

                                  leve_out1 = level_suffix = 3'b101 = 5;

sign = level_suffix[0] = 1'b1;

4) Extract the lengths of level_out0 and level_out1 the same as the word length of levels which is 16-bit.

level_out0' = 16'b0000_0000_0010_0000 = 32;

level_out1' = 16'b0000_0000_0000_0101 = 5;

5) Calculate level_code by adding level_out0' and level_out1' and derive level according to sign and level_code.

level_code = level_out0' + level_out1' = 16'b0000_0000_0010_0101 = 37;

sign = 1 => level = ~level_code >> 1= 16'b1111_1111_1110_1101 = -19;

 

Figure 4-3 : Level decoding procedures and the corresponding examples 

Encoding procedure – assume the encoding level is 14 and suffix_length is 1.

1) Calculate the absolute value of level, the escape value according to suffix_length, and sign.

level = 14 => |level| = 14;

escape = 15 << suffix_length = 15 << 1 = 30;

level >= 0 => sign = 0;

2) Evaluate the escape cases according to the absolute value of level.

|level| = 14 => escape0 = 1, escape1 = 0, escape2 = 0;

3) According to suffix_length, escape cases, and the absolute value of level, we can get the encoded codeword length and level_out0 and level_out1.

suffix_length == 0 && escape2 == 0 => codeword length = (|level| - 1) >> shift + suffix_length + 1 = (14 - 1) >> 0 + 1 + 1 = 16.

suffix = (|level| - 1) & (~((0xffffffff)<<shift)) = (4'b1101) & (0x0000_0000) = 0;

escape2 == 0 => level_out0 = 1 << suffix_length = 1 << 1 = 2;

                            level_out1 = {suffix,sign} = 0;

4) Extract the lengths of level_out0 and level_out1 the same as the codeword length.

level_out0' = 16'b0000_0000_0000_0010 = 2;

level_out1' = 16'b0000_0000_0000_0000 = 0;

5) Calculate codeword by adding level_out0' and level_out1'.

codeword = level_out0' + level_out1' = 16'b0000_0000_0000_0010;

 

Figure 4-4 : Level encoding procedures and the corresponding examples 

The architecture of the proposed level codec system is shown in Figure 4-5. The 

level decoding and encoding procedures can work on this codec system. When 

executing level encoding, the valid outputs are codeword and length; on the other 

hand, the valid outputs are level and length. The results of |level| - 8, |level| - 16, and 

|level| - escape can be derived from the calculations of escape cases. The codeword 

boundary detector always sends 12-bit bitstream for level decoding, and according to 

level_prefix and suffix_length the system will fetch the wanted level_suffix with 

correct length. The information of suffix_length is given from the suffix_length 



 73

generator, and the architecture is the same as that in Figure 2-11. Therefore, we don’t 

describe it here. The three components, decoder for length, decoder for level_out0, 

and decoder for level_out1 implement the calculations shown in Figure 4-2 with PLA 

architectures. The three adders in the left part in Figure 4-5 calculate the escape cases 

of level encoding and decoding. The two input signals, level_encoding and 

level_decoding, are not only the selecting signal, but also enable signals to open or 

close the level codec system. The component to get the absolute value of the input is 

to do 2’s complement or pass the original input according to the most significant bit 

(msb) of the input which can judge the input value is positive or negative. That is the 

approximate introduction of the proposed level encoding and decoding architecture.  
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Figure 4-5 : Architecture of level decoding/encoding 
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4.1.2.4.1.2.4.1.2.4.1.2. Run_before Efficient Coding 

zerosLeft run_before 

 
1 2 3 4 5 6 >6 

0 1 1 11 11 11 11 111 

1 0 01 10 10 10 000 110 

2 - 00 01 01 011 001 101 

3 - - 00 001 010 011 100 

4 - - - 000 001 010 011 

5 - - - - 000 101 010 

6 - - - - - 100 001 

7 - - - - - - 0001 

8  - - - - - 00001 

9 - - - - - - 000001 

10 - - - - - - 0000001 

11 - - - - - - 00000001 

12 - - - - - - 000000001 

13 - - - - - - 0000000001 

14 - - - - - - 00000000001 

Table 4-1 : Table for run_before 

The run_before table is shown in Table 4-1. Even if we can get good performance 

with PZTP to realize run_before table, we hope to find the easier and more efficient 

method to implement run_before codec system with parallel input bitstream and 

combine the encoding part. After observing the run_before table, we can find the 

numerical relation for run_before decoding and encoding shown in Figure 4-6. No 

matter the decoding or encoding procedures, we can divide the run_before table into 

three groups, which are zerosLeft < 6, zerosLeft = 6, and zerosLeft > 6. Besides, the 

calculations in each group are similar. For example, when zerosLeft is equal to 6, 

run_before is the result of adding codeword and one in decoding processes, and 

codeword is the difference of run_before and one. Such relation helps us to complete 

the efficient coding for run_before table.  
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Figure 4-6 : The numerical calculations of run_before encoding and decoding 

The architecture of the proposed run_before codec system is shown in Figure 4-7. 

We can use the architecture of run_before efficient coding instead of look-up table 

method. The advantage of the proposed architecture is the major function units can be 

shared for the encoding and decoding procedures. However, if we implement the 

run_before codec system with look-up table, we have to build two tables for both 

procedures.  
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Figure 4-7 : Architecture of run_before codec system 
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4.2.4.2.4.2.4.2. Zero skipping and proposed symbols 

constructor 

Code Element Value Output array 

0000100 coeff_token TotalCoeff = 5, TrailingOnes = 3 Empty 

0 T1 sign + 1 

1 T1 sign - -1,1 

1 T1 sign - -1,-1,1 

1 level +1 1,-1,-1,1 

0010 level +3 3,1,-1,-1,1 

111 total_zeros 3 3,1,-1,-1,1 

10 run_before 1 3,1,-1,-1,0,1 

1 run_before 0 3,1,-1,-1,0,1 

1 run_before 0 3,1,-1,-1,0,1 

01 run_before 1 3,0,1,-1,-1,0,1 

Figure 4-8 : An example of decoding procedures of CAVLC 

Figure 4-8 shows an example of decoding procedures of CAVLC. We can see the 

processes of constructing the DCT coefficients in zigzag order. Generally, we will 

arrange the DCT coefficients after decoding all run_befores. Such method will take 

additional cycles whose value is the same as the value of TotalCoeff to arrange the 

DCT coefficients. If the decoded run_before is derived, we arrange the coefficients in 

the next cycle, and we can save a few cycles to arrange the DCT coefficients. Before 

executing the proposed symbols construction, we have to know the location of last 

non-zero coefficient in the coefficients storage. According to TotalCoeff and 

total_zeros, we can calculate the location of the last DCT coefficient. The procedures 

of proposed symbols construction and the corresponding example are shown in Figure 
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4-9. In Figure 4-9, cycle means the cycle of symbols construction and run_before is 

being decoded in cycle 1 ~ 4, run_before is the value of decoded run_before in the 

present cycle, level_count represents the pointer to the levels buffer, coeff_count 

means the pointer to the coefficients buffer, and coeff_buffer records the values of 

coefficients buffer in the next cycle. The default value of coeff_count is the sum of 

TotalCoeff and total_zeros minus one. The sum of TotalCoeff and total_zeros means 

the total number of decoded symbols including non-zero and zero coefficients, so 

according the sum of TotalCoeff and total_zeros we can know the location of last 

non-zero coefficient in coeff_buffer. In the first cycle, level_count equal to 4 maps the 

level is 1. Therefore, we put 1 to coeff_buffer at the location coeff_buffer 7, and the 

next coeff_count is the result of subtracting current coeff_count and 1. At the same 

time, the decoded run_before is 1, and the next coeff_count also has to subtract the 

value of run_before, so the next coeff_count is 5. Repeating the above steps, finally 

we can get the DCT coefficients in zigzag order.  

cycle run_before level_count coeff_count coeff_buffer 0 ~ 15 

1 1 4 7 0000_0001_0000_0000 

2 0 3 6 - 1 0000_0-101_0000_0000 

3 0 2 4 0000_-1-101_0000_0000 

4 1 1 3 0001_-1-101_0000_0000 

5 N.A. 0 2 - 1 0301_-1-101_0000_0000 

Figure 4-9 : The proposed symbols construction for example in Figure 4-8. 

However, the proposed symbols construction is not the optimal solution. When the 

decoded run_before is equal to 0, the next coefficient location can be predicted, even 

if we don’t decode the run_before. That is, if we skip the zero run_before and decode 

the next run_before, we can still store the levels into correct locations in coefficients 
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buffer. That is not difficult, and when calculating the results of level_count and 

coeff_count, we take the number of zero-skipping run_befores into consideration. The 

example of the proposed symbols construction with zero-skipping is shown in Figure 

4-10.  

cycle run_before level_count coeff_count coeff_buffer 0 ~ 15 

1 1 4 7 0000_0001_0000_0000 

4 (0), (0), 1 3 - 2 6 – 1 - 2 0001_-1-101_0000_0000 

5 N.A. 0 2 - 1 0301_-1-101_0000_0000 

Figure 4-10 : An example of the proposed symbols construction with zero-skipping 

The final problem is how to realize the function unit to detect the condition of 

zero-skipping. Figure 4-11 shows the run_before table mapping to zero run_before 

under different zerosLefts. We can find that the codewords of zero run_before are “1”, 

“11”, and “111”. Therefore, the realization of zero-skipping detector is quite easy, 

because we already design a leading-one counter in the codeword boundary detector 

for MPEG-2 codewords. Here, we only use that leading-one counter and add another 

decoder whose inputs are leading ones and zerosLeft, and we can get the information 

about the number of zero-skipping run_befores.  

zerosLeft run_before 

 
1 2 3 4 5 6 >6 

0 1 1 11 11 11 11 111 

Figure 4-11 : The run_before table mapping to zero run_before 
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4.3.4.3.4.3.4.3. Summary 
proposed method I-frame P-frame frame 

level efficient coding 40% 17% 29% 

run_before efficient coding 4% 12% 8% 

symbols construction 14% 12% 13% 

zero skipping 4% 5% 4% 

Table 4-2 : Throughput improvement of each proposed method, foreman QP = 10 

Table 4-2 shows the improvement of throughput for each proposed approach, 

when we decode the picture, foreman, and the QP is equal to 10. We can see the effect 

is the best when applying level efficient coding, and the method can save about 40% 

throughput when decoding an I-frame. Besides, run_before efficient coding has more 

performance for P-frame than I-frame, because the blocks of P-frame have more zero 

coefficients than those in I-frame. Symbols construction also has good improvement 

both for I-frame and P-frame. However, the effect of zero skipping is not so 

significant. We consider that the number of zero run_befores is not so much in this 

picture. Therefore, we decode another picture, mobile, and set QP is 28. The 

improvement of throughput is shown in Table 4-3. 

proposed method I-frame P-frame frame 

level efficient coding 27% 5% 22% 

run_before efficient coding 6% 12% 7.5% 

symbols construction 14% 5% 12% 

zero skipping 4% 3% 4% 

Table 4-3 : Throughput improvement of each proposed method, mobile QP = 28 

Table 4-3 shows the improvement of throughput for each proposed approach, 

when we decode the picture, foreman, and the QP is equal to 10. The proposed 

approach, level efficient coding, still has excellent performance for I-frame, but the 

performance for P-frame is not so good. The proposed approach, run_before efficient 

coding, also has good performance in P-frame, and symbols construction provides 
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much improvement in I-frame. However, zero-skipping approach still has not good 

performance. Blessedly, the hardware cost of zero-skipping is acceptable, although 

the improvement of throughput is not good enough.  
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Chapter 5.  
Implementation 

Results and 

Conclusion 
5.1.5.1.5.1.5.1. Implementation Results 

Figure 5-1 and Figure 5-2 show the encoding throughput of the proposed VLC 

group-based codec system with the H.264/AVC standard C code, JM 9.2, and in 

Figure 5-1 we encode the picture, mobile.yuv; on the other hand, the picture is 

foreman.yuv. The proposed VLC group-based codec system can support H.264/AVC 

main profile @5.1, when QP is equal to 28 in Figure 5-1, and Figure 5-2. Table 5-1 

shows the average encoding cycles per MB in the proposed design. 

QP mobile foreman 

10 368 329 

12 353 292 

16 320 226 

20 278 156 

24 227 102 

28 165 69 

32 114 50 

36 86 35 

40 68 23 

average 220 142 

Table 5-1 : The average encoding cycles per MB in the proposed design 
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Figure 5-1 : The encoding throughput of proposed design running mobile.yuv 

 

Figure 5-2 : The encoding throughput of proposed design running foreman.yuv 
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Figure 5-3 : The decoding throughput of proposed design running mobile.yuv 

 

Figure 5-4 : The decoding throughput of proposed design running foreman.yuv 
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Figure 5-3 and Figure 5-4 show the encoding throughput of the proposed VLC 

group-based codec system, and in Figure 5-3 we decode mobile.yuv, and foreman.yuv 

in Figure 5-4. Usually, compared to the decoding throughput, we often consider 

I-frame of a decoded picture. In Figure 5-3, the decoding throughput of I-frame can 

reach the standard of H.264/AVC main profile @5.0 when QP is 32 and in Figure 5-4 

the proposed VLC codec system can meet that when QP is 28. Therefore, the 

proposed VLC codec system can support H.264/AVC main profile @5.0.  

 Chien[2] Chen [1]  Yu[5] Proposed 

Technology 0.18um 0.18um 0.18um 0.13um 

Gate Count 9724 17635 13192 20357 

Clock Frequency 125 MHz 100 MHz 125 MHz 125 MHz 

Encoding/Decoding Encoding Encoding Decoding 

Decoding : 8554 

Encoding : 5519 

Shared 6284 

Target Format 
HD1080 

30fps 

HD 1080 

30fps 

Main Profile 

@5.0 

Main Profile 

@5.0 

Table 5-2 : Comparison of the proposed design with others 

In implementing the proposed CAVLC codec system, we performed logic 

synthesis on the proposed design according to a 0.13um CMOS technology. The 

comparison of the proposed design with other is shown in Table 5-1. Design [1] 

contains a bitstream packer which packs the codewords produced by symbol encoders, 

the packing of bitstream headers and Exp-Golomb.  

In MPEG-2, the only difference of the throughput from the conventional 

group-based VLC codec design is the decoding procedure, because we have to access 

the symbol group memory when decoding a MPEG-2 symbol in our proposed design. 

However, under well pipelined architecture, such difference is not obvious. Besides, 

the encoding procedures in the proposed design have the same steps as the 

conventional group-based VLC codec design, so of course the throughput is the same 
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as the conventional one. The simulation results are shown in Table 5-3. We can see the 

average symbol rate of encoding process is 99.98 Msps at 100 MHz-clock rate and the 

average symbol rate of decoding process is 99.8 Msps at the same clock rate. Some 

overheads are introduced due to stalls of the bitstream FIFOs.  

    image: (4:2:2) @ 

         1920 X 1080 

 

 

 

simulation 

results   
# of bitstream (bit) 3439392 1912640 

# of symbols 590302 252817 

Encoding cycle 590348 252864 

Decoding cycle 591484 253323 

Table 5-3 : Simulation results based on HDTV systems (I-frame) in MPEG-2 

5.2.5.2.5.2.5.2. Conclusion 
In this thesis, we propose one low power and hardware cost VLC decoder for dual 

standards, MPEG-2 and H.264/AVC. Compared to [4], we reduce 30% hardware cost 

in H.264/AVC CAVLD. The hardware cost of the proposed dual-standard VLD is 

7683 gate-count and the power is 1.719 mW for MPEG-2, 1.302 mW for H.264/AVC 

baseline@3.0 I-frame, and 1.376 mW for H.264/AVC baseline@3.0 P-frame at 100 

MHz.  

Besides, we proposed another group-based VLC codec system for dual standards, 

MPEG-2 and H.264/AVC. According the group-based, level efficient coding, 

run_before efficient coding, the proposed symbols construction, and zero-skipping, 

we design a VLC codec system which can support H.264/AVC main profile @5.0 

with 20357 gate counts at 100 MHz. Each proposed method can improve the 

percentage of throughput shown in Table 5-4 and Table 5-5. Compared to the 
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conventional VLC group-based VLC codec system, the proposed design reduce 16% 

memory usage.  

proposed method I-frame P-frame frame 

level efficient coding 40% 17% 29% 

run_before efficient coding 4% 12% 8% 

symbols construction 14% 12% 13% 

zero skipping 4% 5% 4% 

Table 5-4 : Throughput improvement of each proposed method, foreman QP = 10 

proposed method I-frame P-frame frame 

level efficient coding 27% 5% 22% 

run_before efficient coding 6% 12% 7.5% 

symbols construction 14% 5% 12% 

zero skipping 4% 3% 4% 

Table 5-5 : Throughput improvement of each proposed method, mobile QP = 28 

5.3.5.3.5.3.5.3. Future Work 
The hardware cost is a problem for the proposed group-based VLC codec design, 

because under such performance in throughput the hardware cost is not efficient 

enough. Therefore, hardware cost reduction can be a target to make effort. Besides, 

the power issue is always the problem of the group-based design. How to reduce the 

power consumption of the proposed group-based VLC codec design is another point. 

Perhaps, we can solve this problem with memory hierarchy, because the codewords of 

VLC tables are the representation of the occurring probabilities.  

On the other hand, the mobile devices are used generally. In the process of the 

wireless communication, the problem of receiving error bitstream due to the noise is 

serious. It will result in the error blocks decoded, and the picture decoded maybe has 

mosaics. Therefore, to develop the error resilience approaches very important.  
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