
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

應用於數位電視雙模背景適應性可變長度之編解碼

Context Adaptive Variable Length Coding of Dual

Standards for Digital TV

研究生：楊俊彥

指導教授：李鎮宜 博士

中華民國九十五年七月

 i

應用於數位電視雙模背景適應性可變長度之編解碼應用於數位電視雙模背景適應性可變長度之編解碼應用於數位電視雙模背景適應性可變長度之編解碼應用於數位電視雙模背景適應性可變長度之編解碼

研究生：楊俊彥 指導教授：李鎮宜博士

國立交通大學電子工程學系電子研究所

摘要摘要摘要摘要

在此論文中，首先我們研究了背景適應性可變長度編解碼之特性根據霍夫曼

編解碼。因此，根據霍夫曼編解碼的特性，我們提出了一個利用前綴零之個數表

格分割法以及藉由算術方式之表格實現，應用於兩種標準的可變長度解碼器，此

兩種標準分別為 MPEG-2以及 H.264/AVC。此一被提出之設計減少了功率消耗以

及硬體花費。

再者，考量系統觀點及需求的生產率，我們使用了改良式的以群組為基礎之

可變長度編解碼器演算法來實現所提出的可變長度編解碼器系統。除了以群組為

基礎的演算法外，我們提出了層次有效率之編解碼、前置零有效率之編解碼、符

號構成法以及省略前置零等使用於我們所提出的可變長度編解碼設計之方法。藉

由平行化的輸入位元流，我們所提出的可變長度編解碼系統能夠執行即時的編碼

及解碼依據所發表的方法。因此，此一被提出的設計能夠滿足訂於 H.264/AVC

主要輪廓中之生產率的需求。

 ii

Context Adaptive Variable Length Coding of Dual

Standards for Digital TV Applications.

Student : Jiun-Yan Yang Advisor : Dr. Chen-Yi Lee

College of Electric & Computer Engineering

National Chiao Tung University

Abstract

In this dissertation, first we will research the features of CAVLC which is based

on Huffman coding. Therefore, based on the features of Huffman coding, we present a

VLC decoder for dual standards, MPEG-2 and H.264/AVC, with the PZTP and tables

realization with arithmetic method. The proposed design reduces the power

consumption and the hardware cost.

Again, from the system view and the requirement of the throughput, we use the

improved group-based VLC codec algorithm to realize the proposed VLC codec

system. In addition to group-based algorithm, we present other approaches which are

level efficient coding, run_before efficient coding, symbols construction and

run_before zero-skipping used in the proposed VLC codec design. With the parallel

input bitstream, the proposed VLC codec system can execute the real time encoding

and decoding based on the proposed approaches. Therefore, the presented design can

satisfy the requirement of the throughput specified in H.264/AVC main profile.

 iii

Acknowledgments

This dissertation could not have been written without Prof. Chen-Yi Lee who not

only served as my supervisor but also encouraged and challenged me throughout my

academic program. He and the group leader, Mr. Tsu-Ming Liu patiently guided me

through the dissertation process, never accepting less than my best efforts. Besides,

Yi-Hong Huang and Kang-Cheng Hou gave me precious advices through this work,

and I thank them all.

 iv

ContentsContentsContentsContents

Chapter 1. Introduction .. 1111

1.1. Overview of H.264/AVC System ...1

1.2. CAVLC Algorithm ...4

1.2.1. Huffman Coding ...4

1.2.2. Context Adaptive Variable Length Coding ...6

1.3. Designs of CAVLC Encoders and Decoders..8

1.3.1. Designs of CAVLC Encoders ...8

1.3.2. Designs of CAVLC Decoders ...9

1.4. Motivation ..10

1.5. Organization of This Thesis ...12

Chapter 2. A Low Power VLC decoder design .. 13131313

2.1. Overview of CAVLC Encoder and Decoder ..13

2.1.1. Encoding Process Flow...13

2.1.2. Decoding Process Flow ..15

2.2. Overview of the Proposed Architecture ...16

2.3. Table Partition ..18

2.4. Table Realization with Arithmetic Method ..21

2.4.1. NUM_FLC of coeff_token ...21

 v

2.4.2. Level Decoding...22

2.5. Summary ..25

Chapter 3. A VLC Codec System for dual standards........................ 29292929

3.1. The Architecture of the Proposed VLC Codec System................................30

3.2. Conventional Group-based VLC Codec System..35

3.2.1. Definition of Codeword Groups ...35

3.2.2. Intra-Group Decoding Procedure..36

3.2.3. Group-searching Scheme..38

3.3. The Proposed Group-Based VLC Encoding and Decoding.........................43

3.3.1. The Definition of Decoding Codeword Groups................................43

3.3.2. The Definition of the Encoding Symbol Groups46

3.3.3. Intra-Group Decoding Procedure..48

3.3.4. Intra-Group Encoding Procedure..53

3.3.5. Decoding Group-Searching Scheme and overall group-based

decoding processes...55

3.3.6. Encoding Group-Searching Scheme and overall group-based

decoding processes...60

3.3.7. Group-Based VLC Coded System Architecture64

3.4. Summary ..67

Chapter 4. Optimization of the Proposed VLC Codec

 vi

System .. 69696969

4.1. Efficient Coding ...69

4.1.1. Level Efficient Coding..70

4.1.2. Run_before Efficient Coding..74

4.2. Zero skipping and proposed symbols constructor..76

4.3. Summary ..79

Chapter 5. Implementation Results and Conclusion 81818181

5.1. Implementation Results..81

5.2. Conclusion..85

5.3. Future Work..86

Reference .. 87878787

 vii

List of Figures

Figure 1-1 : The block diagram of H.264/AVC encoder..1

Figure 1-2 : The block diagram of H.264/AVC decoder..2

Figure 1-3 : An example of VLC code construction..5

Figure 1-4 : An example of equivalent Huffman trees for Figure 1-36

Figure 1-5 : An example of CAVLC code construction...7

Figure 2-1 : The encoding process flow of CAVLC ..13

Figure 2-2 : An example of CAVLC coefficients scanning ...14

Figure 2-3 : How to calculate the value of nC ...14

Figure 2-4 : The decoding process of CAVLC ..15

Figure 2-5 : Overview of the proposed low power architecture17

Figure 2-6 : An example of proposed table partition...18

Figure 2-7 : The PZTP VLC decoder architecture of coeff_token19

Figure 2-8 : An example of NUM_FLC ..21

Figure 2-9 : The architecture of proposed NUM_FLC..22

Figure 2-10 : Algorithm of level decoding ..23

Figure 2-11 : The proposed architecture of level decoding ...23

Figure 2-12 : The throughput of foreman.yuv with the proposed VLD25

Figure 2-13 : The throughput of mobile.yuv with the proposed VLD.........................25

Figure 3-1 : The architecture of our proposed system ...29

Figure 3-2 : The usage of memory of CABAD in our proposed H.264/AVC decoder30

Figure 3-3 : Block diagram of the proposed VLC codec design31

Figure 3-4 : Example of VLC table and codeword groups ..36

Figure 3-5 : Example of intra-group symbol memory mapping and group information

...37

 viii

Figure 3-6 : Process of decoding a symbol..40

Figure 3-7 : Process of encoding a symbol address...40

Figure 3-8 : Block diagram of conventional group-based VLC decoder architecture.41

Figure 3-9 : An example of intra-group memory map and group information............49

Figure 3-10 : An example of the special case of suffix length.....................................49

Figure 3-11 : An example of the complete group information50

Figure 3-12 : An example of intra-group codeword memory map and group

information..54

Figure 3-13 : CAVLC decoding processes and corresponding examples....................57

Figure 3-14 : The memory usage for conventional symbol memory...........................57

Figure 3-15 : MPEG-2 decoding processes and corresponding examples59

Figure 3-16 : CAVLC encoding processes and corresponding examples....................62

Figure 3-17 : MPEG-2 encoding processes and corresponding examples63

Figure 3-18 : Block diagram of the proposed VLC codec system for MPEG

applications..64

Figure 3-19 : Architecture of codeword group address generator65

Figure 3-20 : Architecture of symbol address generator..66

Figure 3-21 : Architecture of symbol group address generator66

Figure 3-22 : Architecture of codeword address generator..67

Figure 3-23 : Formats of all kinds of memories ..67

Figure 3-24 : The memory usage of each memory ..68

Figure 4-1 : Algorithm of level encoding and decoding..70

Figure 4-2 : Calculations of level encoding and decoding ..71

Figure 4-3 : Level decoding procedures and the corresponding examples..................72

Figure 4-4 : Level encoding procedures and the corresponding examples..................72

Figure 4-5 : Architecture of level decoding/encoding ...73

 ix

Figure 4-6 : The numerical calculations of run_before encoding and decoding75

Figure 4-7 : Architecture of run_before codec system...75

Figure 4-8 : An example of decoding procedures of CAVLC76

Figure 4-9 : The proposed symbols construction for example in Figure 4-8...............77

Figure 4-10 : An example of the proposed symbols construction with zero-skipping 78

Figure 4-11 : The run_before table mapping to zero run_before.................................78

 x

List of Tables

Table 1-1 : The basic profiles of H.264/AVC standard..3

Table 1-2 : Maximum throughput requirement of H.264/AVC main profile.................9

Table 2-1 : The result of encoding the example in Figure 2-2.....................................15

Table 2-2 : An example of CAVLC decoding from the result of Table 2-116

Table 2-3 : Hardware cost evaluation of proposed low power design26

Table 2-4 : The post layout power consumption under 0.18um CMOS Tech..............27

Table 3-1 : Example of inter-group symbol memory mapping....................................38

Table 3-2 : Group information for Table 3-1 ...38

Table 3-3 : An example of CAVLC code and codeword grouping43

Table 3-4 : An example of Huffman code and codeword grouping in MPEG-2 table

B15 ..45

Table 3-5 : An example of MPEG-2 encoding symbol groups....................................46

Table 3-6 : The symbol groups for MPEG-2 VLC tables..47

Table 3-7 : The symbol groups of CAVLC coeff_token ..48

Table 3-8 : The codeword groups of MPEG-2...51

Table 3-9 : The codeword groups of CAVLC coeff_token ..53

Table 3-10 : CAVLC PZGS table and intra-/inter-group symbol memory map56

Table 3-11 : CAVLC group information of the coding table shown in Table 3-10......56

Table 3-12 : An example of MPEG-2 symbol group information58

Table 3-13 : MPEG-2 PZGS table and intra-/inter-group symbol memory map.........59

Table 3-14 : An example of MPEG-2 group information of the coding table59

Table 3-15 : MPEG-2 symbol groups and group information60

Table 3-16 : CAVLC coeff_token symbol groups and group information...................61

Table 4-1 : Table for run_before ..74

 xi

Table 4-2 : Throughput improvement of each proposed method, foreman QP = 10 ...79

Table 4-3 : Throughput improvement of each proposed method, mobile QP = 2879

 1

Chapter 1.
Introduction

1.1.1.1.1.1.1.1. Overview of H.264/AVC System

Figure 1-1 : The block diagram of H.264/AVC encoder

Figure 1-1 shows the block diagram of H.264/AVC encoder. When one frame is

inputted, first the encoder will do prediction and choose intra or inter prediction

according to the input frame type. After the prediction, the original input will subtract

the predicted result to get residual data and the residual data will experience

discrete-time cosine transform (DCT) and quantization to compress the data

transmitted. Finally, entropy encoder will encode the DCT coefficients to bitstream

and send the bitstream. Another step to produce F’n is to make the reference for

motion estimation (ME), because in the H.264/AVC decoder this step is to generate

the encoded frame. If we want to get the same result in the decoder, we have to use

 2

the same reference both in the encoder and decoder. Therefore, we use F’n-1 as the

reference for ME not Fn-1.

Figure 1-2 : The block diagram of H.264/AVC decoder

Figure 1-2 shows the block diagram of H.264/AVC decoder. As we can see, the

architecture of H.264/AVC decoder is much simpler than encoder, because

H.264/AVC encoder also has to do decoding process. In H.264/AVC decoder, the

input bitstream first is decoded by entropy decoder and the outputs of the entropy

decoder is DCT coefficients. Through de-quantization and inverse DCT (IDCT), we

can fetch the residual data and finally we add the residual data and the result of MC or

intra prediction to get one frame.

Table 1-1 shows the profiles of H.264/AVC standard. These three profiles are

basic profiles of H.264/AVC standard. Applications of H.264/AVC cover digital

storage media, television broadcasting, and real-time communications. For example,

baseline profile targets applications of low bit rates such as multimedia

communication and applies portable multimedia players because of its low

computation complexity; main profile meets the demand of HDTV due to backup of

interlaced content; extended profile contains error resilient tools for the IPTV or

multimedia on demand (MOD). However, in those profiles small size of blocks and

fixed quantization matrix can’t totally hold the image information in high frequency,

so H.264/AVC adds Fidelity Range Extensions which contains high profile, high 10

profile, high 4:2:2 profile, and high 4:4:4 profile based on main profile for high

 3

definition multimedia applications.

Profiles Coding

Tools Baseline Main Extended

I slice ○ ○ ○

P slice ○ ○ ○

CAVLC ○ ○ ○

Slice Group

and Adaptive

Slice Ordering

○ ○

Redundant Slice ○ ○

Weighted Prediction ○ ○

Interlace ○

CABAC ○

SI and SP slice ○

Data Partition ○

B slice ○ ○

Table 1-1 : The basic profiles of H.264/AVC standard

From Table 1-1, we can see there are two coding approaches for entropy coding,

one is context adaptive variable length coding and the other is context adaptive binary

arithmetical coding. Although CABAC has better compression rate than CAVLC,

CABAC has extremely more complex structure witch limits the throughput of

CABAC than CAVLC. Besides, CAVLC is suitable for all profiles in H.264/AVC

system and it has more flexibility for different applications. Therefore, we will further

discuss CAVLC in the following sections.

 4

1.2.1.2.1.2.1.2. CAVLC Algorithm

1.2.1.1.2.1.1.2.1.1.2.1. Huffman Coding

Huffman coding uses a specific method for choosing the representations for each

symbol, resulting in a prefix-free code (that is, no bit string of any symbol is a prefix

of the bit string of any other symbol) that expresses the most common characters in

the shortest way possible. It has been proven that Huffman coding is the most

effective compression method of this type; i.e. no other mapping of source symbols to

strings of bits will produce a smaller output when the actual symbol frequencies agree

with those used to create the code. However, for a set of symbols whose cardinality is

a power of two and a uniform probability distribution, Huffman coding is equivalent

to simple binary block encoding. A Huffman code can be built in the following

manner:

� Rank all symbols in order of probability of occurrence.

� Successively combine the two symbols of the lowest probability to form a

new composite symbol; eventually we will build a binary tree where each

node is the probability of all nodes beneath it.

� Trace a path to each leaf, noticing the direction at each node and define the

code for each tracing direction. For example, a ’0’ represents following the

left child and a ‘1’ represents following the right child.

An example of building a Huffman tree using binary code is shown in Figure 1-3.

We can see that there are 5 symbols, namely SA, SB, SC, SD, and SE. Occurring

probability for each symbol is 0.5, 0.25, 0.125, 0.0625, and 0.0625. From the

probability of the source symbols, the two smallest probabilities are grouped together

and their sum is the substituted probability representing for the original smallest two.

 5

If the branch traces up, it is given the binary code 0. Otherwise, it is given the binary

code 1. According to the label (0 or 1) of each branch, we can obtain the variable

length codeword of every symbol.

Symbol Probability Codeword

SA

SB

SC

SD

SE

0.5

0.25

0.125

0.0625

0.0625

1

01

001

0001

0000

SD,SE

SC,SD

SE

SB.SC

SD,SE

All
Symbols

SE
0.0625

SD
0.0625

SC

0.125

SB

0.25

SA
0.5

Up-tracing is defined as 0.

Down-tracing is defined as 1.1

0.5

0.25

0.125

Average bits = 0.5x1 + 0.25x2 + 0.125x3 +

 0.0625x4 + 0.0625x4

 = 1.875

Figure 1-3 : An example of VLC code construction

For a given frequency distribution, there are many possible Huffman codes, but

the total compressed length will be the same. We can see Figure 1-4 for this situation.

The example in Figure 1-3 can also be represented by several alternative binary trees.

It is possible to define a ‘canonical’ Huffman tree, and that is, pick one of these

alternative trees. Such a canonical tree can then be represented very compactly, by

transmitting only the bit length of each code. This technique is used in most archives

such as PKZIP, LHA, ZOO, ARJ, etc. Huffman coding is optimal when the

probability of each input symbol is a power of two. Prefix-free codes tend to have

slight inefficiency on small alphabets, where probabilities often fall between powers

of two. Expanding the alphabet size by coalescing multiple symbols into “words”

before Huffman coding can help a bit.

 6

1

0

0

1

1

0

1 1

00

0

1
0

1

1

0

Figure 1-4 : An example of equivalent Huffman trees for Figure 1-3

Encoding symbols into bitstream is very simple. We just concatenate the

codewords associated with the symbols. For example, if we want to encode

SA.SB.SE.SD using the lookup table in Figure 1-3, we just pick the codewords of SA,

SB, SD, and SE, which are 1, 01, 0001, and 0000; then concatenate them into

10100000001. If we want to decode 10100000001 back to symbols, we just gave to

traverse the binary tree in Figure 1-3 bit by bit through branches to leaf nodes. If a

node is encountered, then use the rest of bitstream to traverse from the root of the tree.

Keep traversing until there’s no bit left in the bitstream. Traversing the tree, we can

decode 10100000001 to be SA, SB, SE, and SD.

1.2.2.1.2.2.1.2.2.1.2.2. Context Adaptive Variable Length Coding

Huffman coding is generally used in various multimedia standards such as MPEG

series and JPEG series. CAVLC also adopts Huffman coding as a coding approach but

it adds one skill on Huffman coding base. This skill is called “context adaptive” which

can bring higher compression ratio than traditional VLC. In above section, the way to

calculate the occurring probability of all symbols is under all cases. However, some

symbols usually appear under some conditions and seldom appear under other

conditions. Therefore, we will build different Huffman codes of one symbol by the

 7

occurring probabilities under different conditions. A CAVLC can be built in the

following steps:

� Separate different conditions and get the occurring probabilities of all

symbols under all conditions.

� Rank all symbols in order of probability of occurrence in each condition.

� Successively combine the two symbols of the lowest probability to form a

new composite symbol; eventually we will build a binary tree where each

node is the probability of all nodes beneath it.

� Trace a path to each leaf, noticing the direction at each node and define the

code for each tracing direction. For example, a ’0’ represents following the

left child and a ‘1’ represents following the right child.

In addition to the first step, the other steps are the same as Huffman code. The

purpose of CAVLC is to divide the occurring probability of one symbol in different

condition and we can get better compression ratio than traditional VLC. It is sure that

more particular description of probability can bring higher code efficiency.

condition 1 condition 2

1

SB,SC

All

Symbols

0

0

1

SB

0.4

SA

0.5

SC

0.1

0.5

1

symbol probability codeword

SA

SB

SC

SD

SE

0.5

0.4

0.1

0

0

1

01

00

N.A

N.A

All

Symbols

1

SA

0.5

1

0

SB,SC

SD,SE

0

SB

0.1

1

SB,SD

0.5

0.225

0

SC

0.15

1

SD,SE

0.275 1

SD

0.125

0

SE

0.125

symbol probability codeword

SA

SB

SC

SD

SE

0.5

0.1

0.15

0.125

0.125

1

000

010

001

011

Average bits = 0.5 x (1x0.5 + 2x0.4 + 2x0.1)

 + 0.5 x (1x0.5 + 3x0.1 + 3x0.15

 + 3x0.125 + 3x0.125)

 = 1.75

Figure 1-5 : An example of CAVLC code construction

 8

Figure 1-5 shows an example of CAVLC code construction. The total occurring

probabilities of all symbols are the same as the example of Figure 1-3, so the

occurring probability of condition 1 and condition 2 is both 50%. Under these two

conditions, all symbols have two occurring probabilities, so we will get two code

tables to map each symbol. As we mentioned, the only distinction between CAVLC

and traditional VLC is the step to divide the conditions, and in each condition there is

still Huffman code process. Generally, the way to compare the performance of

different coding approaches is to compare the average number of bits. The example of

Figure 1-3 gets that the average number of bits is 1.875 and here the average number

of bits is 1.75. Although CAVLC has more complex code construction and more VLC

tables than traditional VLC, we will achieve the significant improvement of

compression rate.

1.3.1.3.1.3.1.3. Designs of CAVLC Encoders and Decoders

1.3.1.1.3.1.1.3.1.1.3.1. Designs of CAVLC Encoders

CAVLC is a lossless coding so the design of CAVLC encoder can’t change the

quality of one frame. Therefore, the target of CAVLC encoder design focuses on the

performance such as throughput and hardware cost. Table 1-2 shows the maximum

throughput requirement of H.264/AVC main profile. Level means the layer of each

profile and the range of level in H.264/AVC main profile is 4 to 5.1. Level 4 is the

basic demand of main profile and this level can support HD1080i when the frame rate

is 30 frames per second. From Figure 1-1 we can observe that the encoding speed of

entropy encoder affects the throughput of the entire system greatly. For this reason,

the present papers about CAVLC encoder solve the problem of throughput.

 9

Level 4 4.1 4.2/Lo 4.2/Hi 5 5.1

MB/sec 245760 245760 491520 522240 589824 983040

Table 1-2 : Maximum throughput requirement of H.264/AVC main profile

The major two parts of CAVLC encoder are coefficients scanning and symbols

encoding. The direct approach to design a CAVLC encoder is to input a set of

coefficients and to do the encoding steps serially. Repeating the mentioned steps can

easily get the wanted results. However, the maximum number of input coefficients is

16 and encoding symbols has five steps and needs one cycle at least. If we do it

serially, the throughput of this simple CAVLC encoder should not meet the

requirement.

One way to solve this problem is to deal with scanning coefficients and encoding

symbols parallel [1], because there is no dependency between encoding symbols of

one block and scanning coefficients of the following block. Therefore, we can execute

these two steps parallel and we can improve the encoding throughput.

Another way is to reduce the cycles of encoding symbols because each step of

encoding symbols often has multiple cycles. If we send multiple inputs to one step

and this step encodes these inputs in one cycle [2]. This method gets better

performance than the above one.

1.3.2.1.3.2.1.3.2.1.3.2. Designs of CAVLC Decoders

The discussion about CAVLC decoder is more than encoder because CAVLC

decoder has to handle all the bitstream transmitted from H.264/AVC encoder. Great

data variation must result much power consumption so power saving of CAVLC

decoder is an important issue. Another major issue is the throughput of CAVLC

decoder and Table 1-2 shows the throughput requirement of H.264/AVC main profile.

Because the input bitstream of CAVLC decoder has dependency on the decoded

 10

information, we need some efforts to accelerate the decoding speed of CAVLC

decoder.

The major part of CAVLC decoder is also VLC tables and most papers realize

those tables by finite state machine (FSM). Build the FSM according to the codeword

in the VLC tables and looking up these tables will get the symbols decoded [3]. But

directly using the codeword of VLC tables to build the FSM is not efficient in

hardware cost and throughput. Furthermore, we have to improve the size of FSM.

Separate the VLC tables according the length of the codeword and look up the

dividing tables serially and we can build the FSM with the same entries as the VLC

tables [4]. This approach achieves lower hardware cost and improves the throughput

to support level 4.1. However, if we use some skills such as zero-skipping and

multi-symbol, we can get better performance about the throughput [5]. Above papers

do not discuss the problem of power consumption. If we make good table partition to

control the table switch, we can save the power consumption significantly. In fact

many papers proposed many approaches to realize VLC like RAM-based methods [6],

[7], but present papers about CAVLC decoder only use ROM-based methods. In fact,

we can try more approaches to design CAVLC encoder and decoder.

1.4.1.4.1.4.1.4. Motivation
Recently, human life has been changed greatly by various multimedia applications

such as cellular phones, digital cameras, DVD and digital television. But some new

technologies like high-definition television (HDTV), blue-ray (BD), and

high-definition DVD (HD DVD) appear and will be popular in the future. Therefore,

a novel video compression standard, H.264/AVC, can be invoked for these uses

because of its high compression rate.

For different demands we have to generate different devices. Therefore when we

 11

design a decoder for mobile devices the most important thing is power reduction. The

advent of H.264/AVC provides high compression ratio, but there is no backward

compatibility to the prevalent MPEG-x and H.264x video coding standards. MPEG-2

and H.264/AVC processors have been reported at ISSCC. However, these solutions

used separate modules and only processed a single type of video content in each

module. To support different system requirements such as DVB-H or HD-DVD, a

scalable pipeline is exploited to efficiently integrate both MPEG-2 and H.264/AVC in

a single chip. Besides, we think we can do different table partition from that

mentioned above and add other approaches to get more power reduction. Therefore,

we propose a VLD with new table partition and realize some tables with arithmetic

method.

Furthermore, when our entire system [8], [9] want to provide higher throughput

for some applications such as HD 1080, we suffer the entropy decoder can’t meet the

throughput requirements of H.264/AVC main profile. We have to generate a VLD

which can support MPEG-2 and H.264/AVC with enough throughput, and if this VLD

can be integrated with context adaptive binary arithmetic decoder (CABAD), that is

all we need. We find that CABAD has to use much SRAM for context model and this

is a direction to integrate these two entropy decoders. These three decoders, CAVLD,

MPEG-2 VLD, and CABAD, in our system should not work at the same time, so we

have to make the SRAM with programmability. This approach has been proposed [6],

[7], but the approach to divide the groups is not efficient about memory usage and

group mapping. From Figure 1-1 and Figure 1-2, we can see that the H.264/AVC

encoder also has most parts of H.264/AVC decoder. If we add entropy decoder to the

decoding part of the encoder, that is complete H.264/AVC decoder. Therefore, we

propose a new group-based VLC codec system adding efficient-coding and

zero-skipping to improve the throughput and memory usage.

 12

1.5.1.5.1.5.1.5. Organization of This Thesis
In this thesis, we propose a new low power, table partition VLD for dual standards,

a new group-based, high throughput VLC codec system with full programmability for

dual standards, and a new soft VLD to handle the error resilient problem. The

organization of this thesis is as follows. The overview of CAVLC and the new low

power, table partition VLD for dual standards is presented in Chapter 2. The

algorithm and architectures of the proposed group-based, high throughput VLC codec

system with full programmability for dual standards are described in Chapter 3. The

proposed error resilient CAVLD is introduced in Chapter 4. Finally, conclusions and

future works are made in Chapter 5.

 13

Chapter 2.
A Low Power VLC

decoder design

2.1.2.1.2.1.2.1. Overview of CAVLC Encoder and Decoder

2.1.1.2.1.1.2.1.1.2.1.1. Encoding Process Flow

Figure 2-1 : The encoding process flow of CAVLC

Figure 2-8 shows the encoding process flow and the detailed steps are as follows.

� When receiving a 2x2 or 4x4 block, the procedure of scanning coefficients

will record the symbols to be encoded. There are six symbols which are TotalCoeff,

TrailingOnes, trailing_ones_sign_flag, level, total_zeros, and run_before. TotalCoeff

is the total number of non-zero coefficients; TrailingOnes is the number of trailing +/-

1 and its value should be smaller than four, level is the value of non-zero coefficient;

total_zeros is the number of all zeros before the last non-zero coefficient in

zigzag-scan order; run_before is the number of zeros before last one non-zero

coefficient in zigzag-scan order. Figure 2-2 shows the results derived in

coefficients-scanning procedure.

 14

Figure 2-2 : An example of CAVLC coefficients scanning

� Encode TotalCoeff and TrailingOnes (coeff_token). There are 5 choice of

look-up table to use for encoding coeff_token. The choice of table depends on a

variable named nC and Figure 2-3 shows how to calculate the value of nC.

Figure 2-3 : How to calculate the value of nC

� Encode the sign of each trailing one in reverse order.

� Encode level in reverse order and there are 7 VLC tables to choose from,

Level_VLC0 to Level_VLC6.

� Encode total_zeros.

� Encode run_before.

Table 2-1 lists the result of encoding the example in Figure 2-2 and the transmitted

bitstream for this block is 000010001110010111101101.

 15

Element Value Code

coeff_token TotalCoeff = 5, TrailingOnes = 3 0000100

T1 sign (4) + 0

T1 sign (3) - 1

T1 sign (2) - 1

Level (1) +1 1

Level (0) +3 0010

total_zeros 3 111

run_before (4) zerosLeft = 3; run_before = 1 10

run_before (3) zerosLeft = 2; run_before = 0 1

run_before (2) zerosLeft = 2; run_before = 0 1

run_before (1) zerosLeft = 2; run_before = 1 01

run_before (0) zerosLeft = 1; run_before = 1 No code required; last coefficient

Table 2-1 : The result of encoding the example in Figure 2-2

2.1.2.2.1.2.2.1.2.2.1.2. Decoding Process Flow

Figure 2-4 : The decoding process of CAVLC

Figure 2-4 shows the decoding process flow of CAVLC and we can see that the

decoding procedures are similar to the encoding steps. The only difference is

decoding process does not do coefficients scanning and the other steps do decoding

bitstream instead of encoding symbols. Table 2-2 shows an example of CAVLC

decoding and the final output array is 0, 3, 0, 1, -1, -1, 0, 1.

 16

Code Element Value Output array

0000100 coeff_token TotalCoeff = 5, TrailingOnes = 3 Empty

0 T1 sign + 1

1 T1 sign - -1,1

1 T1 sign - -1,-1,1

1 level +1 1,-1,-1,1

0010 level +3 3,1,-1,-1,1

111 total_zeros 3 3,1,-1,-1,1

10 run_before 1 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1

01 run_before 1 3,0,1,-1,-1,0,1

Table 2-2 : An example of CAVLC decoding from the result of Table 2-1

2.2.2.2.2.2.2.2. Overview of the Proposed Architecture
Figure 2-5 shows the functional diagram of the proposed architecture of the

CAVLC decoder. As introduced in section 2.1.2, there are five major parts to decode

the symbols. In order to support MPEG-2 VLC decoding, we construct the MPEG-2

VLC tables in coeff_token part, because the two decoding procedures have similar

decoding manner. This part will be described in later section. The prefix-zero buffer

and the bitstream buffer are used for the table partition and table realization with

arithmetic method. The coeffNum is to calculate the right position in the coefficient

buffer of the present level in level buffer. For power reduction issue, all function units

are controlled by enable signals, because they must not work at the same time. There

is also a hold signal for prefix-zero buffer to avoid counting the zeros not belong to

 17

prefix zeros. If there is no enable signal or hold signal to control the function unit, it

should result the power dissipation.

bitstream buffer [11:0]

coeff_token

&

MPEG-2

VLC tabls

trailing_one

s_sign_flag

level

total_zeros

run_before

prefix-zero buffer

+

b
it’

b
it

controller

is
_
c
a
v
lc

M
P
E
G
-2

is
_
b
1
4

is
_
b
1
5

m
a
x
N
u
m
C
o
e
ff

h
o
ld
_
p
re
fix
0

level buffers run buffers

coefficients buffers

+

coeffNum

1

Enable

coefficients

Figure 2-5 : Overview of the proposed low power architecture

 18

2.3.2.3.2.3.2.3. Table Partition
In VLSI design, the efficient method to reduce dynamic power consumption is to

decrease the data switching. However, most designs of the CAVLC decoder use FSM

to look up the VLC tables. As long as the input bitstream to access the look-up table

changes frequently, that must cause much power dissipation. Besides, the alteration in

large look-up table must dissipate more power than the same one in small look-up

table. Therefore, good table partition will reduce the size of look-up table and the data

switching to decrease power consumption.

Figure 2-6 : An example of proposed table partition

Figure 2-6 shows an example of the proposed table partition. Although the

original codeword table has only 10 entries, the longest length of the codeword is 6,

so we have to build a look-up table with 32 entries for this codeword table by FSM

method. That is, the longest length of the codeword dominates the entries of the

codeword table not the real entries. However, if we adopt the proposed table partition

method to build the look-up table, the entries of the first time to access the table are 4,

and other entries are equal to the relative suffix entries. Because this approach divide

the tables according to the prefix zeros, we call it prefix-zero table partition (PZTP).

 19

When we access the look-up table with PZTP every cycle, the searching entries are

much smaller than the original entries. If the longest length of the codeword is larger,

the difference between the searching entries with PZTP and the original entries is

greater.

The way to build the look-up table is as follows:

� According to the leading zeros we call prefix, build the first layer of look-up

table like prefix item in Figure 2-6.

� Build the second layer of look-up table by suffix which is the codeword

except the leading zeros and the first 1.

The steps to look up the VLC tables are as follows:

� We count the leading zeros until the first 1 appears, and choose the relative

suffix table by prefix.

� We look up the suffix table by the input bitstream, and find symbols needed.
T
o
ta
lC
o
e
ff D

e
c
o
d
e
r

&

T
a
b
le
 B
1
4
 o
r B

1
5
 S
e
le
c
to
r

is
_
c
a
v
lc

M
P
E
G
-2

P
re
fix
 z
e
ro
s
 d
e
c
o
d
e
r

Figure 2-7 : The PZTP VLC decoder architecture of coeff_token

 20

Figure 2-7 shows the PZTP VLC decoder (VLD) architecture of coeff_token.

There are five tables of CAVLD, NUM_VLC0, NUM_VLC1, NUM_VLC2,

NUM_VLC3, and NUM_FLC and the other two tables, Table B14 and Table B15,

belong to MPEG-2 VLD. The implementation of NUM_FLC will be introduced in the

next section. First, if both the two enable signals, is_cavlc and MPEG-2, are not active,

the entire PZTP VLD will be shut down to avoid the dynamic power dissipation due

to the data switching. If either of them is active, the controller (TotalCoeff Decoder &

Table B14 or B15) will open only one of those tables for power issue. Of course, the

two signals should not be active at the same time.

Assume that we are executing H.264/AVC decoding. Even if the present decoding

procedure is coeff_token, the enable signal, is_cavlc, will not be active at the

beginning. To avoid unnecessary power consumption, we set the enable signal to be

active, only when we receive the first one of the codeword or the boundary of prefix.

Therefore, when receiving prefix, only accumulator consumes power. When executing

MPEG-2 VLD, we do the same thing.

From Figure 2-5, we put the value of prefix in prefix-zero buffer. When we begin

receiving suffix of codeword and looking up the suffix table, the value of prefix is

fixed. Therefore, we can consider the output of prefix zeros decoder in Figure 2-7 as

an enable signal of the relative suffix table in the process of looking up the suffix

table. At this time, the searching entries of the entire codeword table are equal to the

entries of the suffix table. The most entries of coeff_token are 8 and those of MPEG-2

VLD are 16.

PZTP takes advantage of the feature of Huffman coding to decrease the data

switching when accessing the look-up table, and the hardware cost of the VLC tables.

Besides, another advantage is easy to implement, so total_zeros and run_before also

adopt this method to implement in the proposed CAVLD.

 21

2.4.2.4.2.4.2.4. Table Realization with Arithmetic Method

2.4.1.2.4.1.2.4.1.2.4.1. NUM_FLC of coeff_token

The length of all the codeword in this look-up table is 6, and the total entries of

this table are 62. If we build the table by FSM method, this idea seems good. However,

if we analyze the relationship between the codeword and the symbols, we will find

some arithmetic rules.

Figure 2-8 : An example of NUM_FLC

Figure 2-8 shows an example of NUM_FLC. The left table is the original table of

NUM_FLC and we can derive the right table after we separate the codeword. We can

find the following arithmetic relationship except the first row, and this formula exists

in NUM_FLC distinctly. Although the first row of NUM_FLC doesn’t fit this rule,

only prefix of the codeword map to the symbols is 4.

5:2 1

1:0

TotalCoeff codeword

TrailingOnes codeword

 
 

 
 

= +
=

Figure 2-9 shows the proposed architecture of NUM_FLC. Due to the power

consideration, we only access this part when we receive the sixth bit of the codeword.

Based on this method, we can easily change the look-up table into and reduce much

hardware cost and power consumption.

 22

M
U
X

Figure 2-9 : The architecture of proposed NUM_FLC

2.4.2.2.4.2.2.4.2.2.4.2. Level Decoding

Basically, level coding is constructed by seven VLC tables which are VLC0 to

VLC6. However, if we implement the level decoder with VLC tables, it costs much

hardware and power. The reason is the longest length of codeword is 28, prefix is 16

and suffix is 12. Even if we use PZTP to construction the VLC tables of level decoder,

they are still huge VLC tables. For the low power demand, we have to use another

method to realize the level decoder, and here we implement it by arithmetic approach

which algorithm is specified in [10].

Figure 2-10 shows the algorithm of level decoding. In fact, suffixLength is to

decide the VLC tables to choose from. According to this algorithm, if we pipeline the

level decoding and suffixLength well, we can use the minimum number of function

units to decode level. However, we can get good performance about the power and

hardware cost.

 23

level_prefix

levelCode = (level_prefix << suffixLength)

if (suffixLength > 0 || level_prefix >= 14)

{

level_suffix

levelCode += level_suffix

}

if (level_prefix == 15 && suffixLength == 0)

levelCode += 15

if (first_level && TrailingOnes < 3)

levelCode += 2

if (levelCode % 2 == 0)

level = (levelCode + 2) >> 1

else

level = (-levelCode - 1) >> 1 level decoding

if (TotalCoeff > 10 && TrailingOnes < 3)

suffixLength = 1

else

suffixLength = 0

Decoding level

if (suffixLength == 0)

suffixLength = 1;

if (|level| > (3 << (suffixLength - 1)) && suffixLength < 6)

suffixLength++

suffixLength

level_prefix = leading 0s

level_suffix = bitstream [levelSuffixSize-1 : 0]

if (level_prefix == 15)

levelSuffixSize = 12

else if (level_prefix == 14 && suffixLength == 0)

levelSuffixSize = 4

else

levelSuffixSize = suffixLength

Figure 2-10 : Algorithm of level decoding

M
U
X

M
U
X M

U
X

Figure 2-11 : The proposed architecture of level decoding

 24

Figure 2-11 shows the proposed architecture of level decoding. There are two

major parts, the left part is to calculate the suffixLength and the right part is to decode

the codeword of level. The gray rectangles represent the registers. The size of

level_prefix buffer is 10 bits, bitstream buffer uses 12 bits which is shared by all

modules, and suffixLength needs 3 bits to save the value. The level_prefix is the

number of leading zeros derived by the leading zeros counter shown in Figure 2-5

which is shared by four decoding modules, coeff_token, level, total_zeros, and

run_before. The barrel shifter to rearrange the level_prefix works, only when we

receive the first one of the codeword of level. Besides, it also handles the special case

when level_prefix is 15 and suffixLength is 0. That helps us not to add additional 15

to levelCode, so it shortens the critical path of level decoding and reduces the

hardware cost. The whole architecture of level decoding is also controlled by an

enable signal which turns off level decoding when we execute another procedure.

That inverter is to do the step, (-levelCode - 1), and according to 2’s complement

-levelCode is equal to (~ levelCode + 1), so the formula, -levelCode – 1, is equal to (~

levelCode + 1 - 1), that is ~levelCode.

The part to calculate suffixLength is also needed even if we implement level

decoding with look-up table. As we mentioned above, the method of table searching

depends on suffixLength to choose the correct VLC table, so this part is not omissible

in any approach of level decoding. Therefore, our contribution is to simplify the VLC

tables with arithmetic method, and the effect is pretty good.

 25

2.5.2.5.2.5.2.5. Summary

Figure 2-12 : The throughput of foreman.yuv with the proposed VLD

Figure 2-13 : The throughput of mobile.yuv with the proposed VLD

 26

Figure 2-12 and Figure 2-13 show the throughput of two pictures with the

proposed VLD. The simulation environment is JM 9.2 which C code of H.264/AVC

system. We set nine different values of QP to get the simulation results. In the two

figures, the blue line is the throughput requirement of baseline@3.1 specified in

H.264/AVC standard when the clock frequency is 100MHz and the black one is for

baseline@3.2. In Figure 2-12, the throughput of foreman meets the requirement of

baseline@3.2 when QP is 20 and that of I-frame in the same picture also meets that

standard when QP is 28. In Figure 2-13, the throughput of mobile meets the demand

when QP is 28. Therefore, the proposed design can support H.264/AVC baseline.

 [3] [4] Proposed Design

Tech. 0.25 um 0.18 um 0.18 um

Gate-count 6100 4720
CAVLC : 3267

MPEG2 : 945

Target Spec. Baseline Profile Main Profile @4.1

Main Profile @4.2

&

MPEG-2

Buffer N.A. 696 bits RAM 3471 gate-count

Clock Constraint 125 MHz 125 MHz 125 MHz

Table 2-3 : Hardware cost evaluation of proposed low power design

Table 2-3 shows the comparison of the hardware cost. Although we show the

throughput of two pictures in Figure 2-12 and Figure 2-13 when the clock frequency

is 100MHz, the maximum speed of the proposed design is 180MHz under a 0.18um

CMOS technology. The performance is fast enough for meeting the real-time

processing requirement of CAVLC decoding on main profile @4.2. Compared to the

design proposed by [4], The CAVLC part of the proposed design reduce 30%

hardware cost, and the total design still has less hardware cost. The proposed design

doesn’t use RAM as storage due to the power saving.

 27

Spec. MPEG-2 I-frame H.264 I-frame H.264 P-frame

power (mW) 1.719 1.302 1.376

Table 2-4 : The post layout power consumption under 0.18um CMOS Tech.

Table 2-4 shows the post layout power consumption under 0.18um CMOS

technology. The proposed design can provide extremely low power, and it is used in

our dual-standard system [8], [9].

 29

Chapter 3.
A VLC Codec System

for dual standards

<
F
u
n
c
ti
o
n
>

Figure 3-1 : The architecture of our proposed system

Figure 3-1 shows the architecture of our proposed system for H.264/AVC main

profile. The entropy decoder contains CABAD, UVLD, and CAVLD. UVLD and

CAVLD are the same choice for entropy decoder, and UVLD is used to decode the

syntax parser, and CAVLD is for residual data. Therefore, the output of UVLD is to

control the decoding mode of H.264/AVC decoder, and the results of CAVLD are the

DCT coefficients of residual data. After IDCT, the data will be added with the

predicted data to complete a unit block.

In Figure 3-1, CABAD has to use slice memory to store the context model and

row-storage. Figure 3-2 shows the usage of memory of CABAD in our proposed

H.264/AVC decoder system. The context model of CABAD uses 349.1 bytes memory

of the slice memory.

 30

Figure 3-2 : The usage of memory of CABAD in our proposed H.264/AVC decoder

The context model of CABAD uses much memory, so that is an idea to integrate

CABAD and CAVLD. The used memory can provide a space to store the VLC tables

of CAVLD, and our proposed H.264/AVC decoder receive parallel input of bitstream,

so we have to try another approach to implement CAVLD. Besides, as mentioned in

my motivation, if we add the CAVLC encoder into the entropy decoder, that can be

integrated with H.264/AVC encoder to a H.264/AVC codec system. Therefore, we try

to find a method to implement a VLC codec system based on memory. and finally we

proposed a new group-based VLC codec system reference to [6] and [7].

3.1.3.1.3.1.3.1. The Architecture of the Proposed VLC

Codec System

Here, we will describe the architecture of the proposed VLC codec system. We

will focus on the design of CAVLC encoder/decoder, and not to express the MPEG-2

VLC codec in detail. That is because the major difference of the proposed MPEG-2

 31

VLC codec is the group-based algorithm and hardware implementation, and other

parts basically are similar to the conventional VLC codec design. Therefore, about the

MPEG-2 VLC codec system, we only discuss the proposed group-based alteration,

and we will pay attention to the CALVC encoder/decoder.

codeword boundary detector coefficients scanner

Group-based

VLC codec

system

Trailing_ones_sign

_flag

Level codec with

efficient coding

Total_zeros codec

with

efficient coding

Run_before codec

with

efficient coding

symbols constructor bitstream concatenater

Leading 0s suffix enable

suffixLength

TC & T1s

Total_zeros

Run_before

T1s sign flags levels

Run_skip

bitstream
8

maxNum 4 nC
4

TC & T1s
T1s sign flags

levels

Total_zeros

Run_before

coefficients

16
is_decoding

is_encoding

FIFO_full

MPEG-2

levels and

runs

MPEG-2

sign

Figure 3-3 : Block diagram of the proposed VLC codec design

The block diagram of the proposed VLC codec design is shown in Figure 3-3. To

fit specification of our proposed H.264/AVC decoder system, the input bitstream is

parallel input and its length is 8 bits. The decoder is controlled by the enable signal,

is_decoding, so is the encoder. The maxNum is to decide the block type which is

being decoded or encoded, and nC is introduced in 2.1 to choose the correct VLC

table for coeff_token. The serial input data, coefficients, is the DCT coefficient for the

encoder in reverse order. The codeword boundary detector has a FIFO to store the

input bitstream, and the output signal, FIFO_full, represents whether the bitstream

FIFO is full or not. The symbols constructor will send out the results of DCT

coefficients arranged and the bitstream concatenater handles the link of the encoded

 32

codeword. The illumination of the components is as follows.

� The major functions of the codeword boundary detector are counting the

leading ones and zeros, and fetching the demanded suffix for the each decoding

function unit by the recorded bitstream boundary. Besides, it is also a controller to

decide the activity of each decoding component, and it has to calculate the number of

skipped run_before and then send the information to symbols constructor. For

MPEG-2 VLC, it has to detect the special case such as escape mode and end of block.

� After coefficients scanner receive the serial input data, DCT coefficients, it

calculates and sends the necessary data for each encoding component. When doing

MPEG-2 VLC encoding, it only counts the levels and runs. After sending the

MPEG-2 level and run, it can receive the following coefficients. The more

information is needed for CAVLC encoding, and this unit should calculate TotalCoeff,

TrailingOnes, T1s flags, levels, and run_befores. Different from MPEG-2 process,

coefficients scanner has to receive all coefficients of one block, and then it can begin

requesting the coefficients of the next encoding block.

� Group-based VLC codec system uses the proposed group-based VLC codec

algorithm to implement MPEG-2 and CAVLC coeff_token encoder/decoder. Besides,

it contains the NUM_FLC of CALVC coeff_token and MPEG-2 escape case. The

detailed design contribution will be described in the following section.

� Trailing_ones_sign_flag encodes and decodes the signs of all trailing ones.

� Level codec with efficient coding handles the information about levels. The

detail of efficient coding will be expressed in the next chapter.

� Total_zeros codec with efficient coding deals with the coding process of

total_zeros.

� Run_before codec with efficient coding encodes and decodes the run_befores

to get the wanted results.

 33

� The symbols constructor is used for decoding process. It arranges the decoded

levels by the decoded runs. In CAVLC decoding process, it works at the same time

when decoding run_before to increase the decoding throughput.

� The bitstream concatenater collects the encoded bit streams and links them.

The first step it receives the codeword value and length to assemble the bitstream

belonging to each encoding process. Then, it concatenates the separate bit streams to

transmitted bitstream.

The decoding procedure of CAVLC decoder has to decode the bitstream step by

step, because the bit streams have data dependency. If we don’t get some decoded

information, we can’t do the next step. Therefore, the important thing to increase the

decoding throughput is to reduce the decoding cycles for each component. The

CAVLC decoding steps are as follows:

� Counting the leading zeros until detecting the first one of the input bitstream,

and then sends the leading zeros and suffix to group-based VLC codec system. If nC

is the value of NUM_FLC, we only send suffix.

� Decoding the coeff_token according to group-based VLC algorithm. The

component outputs the suffix length to calculate the used bitstream boundary.

� After decoding the coeff_token, we will get TrailingOnes that can help us

decide suffix length transmitted to Trailing_ones_sign_flag. When decoding

Trailing_ones_sign_flag, we also count the leading zeros belong to level decoding

process.

� At the same time to decode levels, we count the leading zeros of level

decoding or total_zeros. When the number of decoded level is equal to TotalCoeff, we

have to quit decoding level.

� When decoding total_zeros, we count the leading zeros used for some

run_before symbol and the leading ones for zero skipping.

 34

� When decoding run_before, we still count the leading zeros used for the next

run_before symbol and the leading ones for zero skipping. Then, according the

previous decoded run_before, we can begin arranging the DCT coefficients into the

correct position in the decoded block. When the zerosLeft is equal to 0 or the last

run_before is decoded, the run_before process has to end.

The encoding process of CAVLC encoder doesn’t have so many steps, although

we can design the encoding process like the way of decoding procedure. However, we

consider the throughput of the CAVLC encoder is worse, if we execute the encoding

process with the serial steps. We observe that there is no data dependency between the

encoded symbols for different encoding component, so we can do the encoding steps

parallel. For example, even if coeff_token step doesn’t finish, we can still execute

level encoding step, because the data for level encoding step doesn’t depend on the

results of coeff_token encoding step. Therefore, when executing encoding process, all

components of our proposed design will work together. The design idea is to increase

the encoding throughput, because the throughput of the proposed CAVLC encoder

design depends on the most cycles of encoding step instead of the sum of cycles cost

by all encoding components.

In order to support the proposed encoder design, how to design a bitstream

concatenater is important. The bitstream concatenater has to link the encoded

codewords as fast as possible. We don’t hope we save the cycles of encoding process,

but we take more efforts to concatenate the encoded codewords. Therefore, this

design will be described in Chapter 4, and here we first introduce the proposed VLC

group-based codec system.

 35

3.2.3.2.3.2.3.2. Conventional Group-based VLC Codec

System

This work is previously developed and verified by Bai-Jue Hsieh in [6], [7]. The

intention of this section is to quickly give us a sense of what a conventional

group-based VLC Codec system is and how it works.

3.2.1.3.2.1.3.2.1.3.2.1. Definition of Codeword Groups

An example of Huffman code and codeword grouping is illustrated in Figure 3-4.

Based on this result, the conventional codeword group is a set of codewords whose

source symbols are combined to perform the Huffman procedure and receive the same

codeword length. According to this definition, the codeword groups have the

following properties:

� In a group, the codeword can be treated as a binary number which is

codeword length-bit long, called VLC_codenum, since the codeword length

is the same.

� The codeword that has the smallest VLC_codenum in a group is denoted

VLC_mincode.

� A VLC_codeoffset is the offset value between the VLC_mincode and the

VLC_codenum.

 36

Figure 3-4 : Example of VLC table and codeword groups

In Figure 3-4, the symbols C4, C5, and C6 belong to the codeword group G3. In

this group, the codewords have the same codeword length, 4-bit, and the prefix 112.

The word length of the suffixes is 2-bit. Therefore, the 4-bit VLC_codenums are13,

14, and 15; the VLC_mincode is 4’b1101; and the 2-bit VLC_codeoffsets are 0, 1, and

2. Source symbols that are not combined will belong to different groups, such as C7,

C8, and C9 in G0, and C4, C5, and C6 in G3, although codeword lengths are identical.

Moreover, there is only one symbol in group G1 since C1 is the only VLC having

length of 2 bits.

3.2.2.3.2.2.3.2.2.3.2.2. Intra-Group Decoding Procedure

Besides grouping codewords, mapping symbols onto memories and extraction

codeword group information are necessary for VLC decoding. The memory address

of a symbol in a group is calculated by the VLC_codeoffset of the symbol and the

base address of the VLC_mincode in that group; i.e. the symbol address is the sum of

the VLC_codeoffset and the base address of the group. After applying this arithmetic

relationship, decoded symbol address can be found by numerical calculation rather

than by pattern matching. Thus, the group information to be stored is composed of

 37

codeword length, VLC_mincode, and base address. Based on the group information in

Figure 3-5, intra-group decoding/encoding procedure is performed as follows.

Assuming we are decoding codeword 100112.

� VLC_codeoffset = VLC_codenum(100112) – VLC_mincode(100002) =

000112 =3;

� symbol_address = VLC_codeoffset(3) + base_address(50) = 53;

� the decoded symbol C4 is retrieved from memory address 53;

Assuming the encoded symbol address is 103.

� VLC_codeoffset = symbol_address (103) – base_addresss (100) = 3;

� VLC_codenum = VLC_codeoffset (3) + VLC_mincode (32) = 35;

� The encoded 8-bit codeword is 001000112 = 35.

symbol prefix suffix
VLC

_codenum

VLC

_codeoffset

Symbol

address

C7

C1

C2

C3

C4

C5

C6

10

10

000 0

1

2

3

4

5

6

16 50

53

54

56

51

52

55

10

10

10

10

10

001

010

011

100

101

110

17

18

19

20

21

22

Group Information : codeword length = 5

 VLC_mincode = 100002
 base address = 50

Figure 3-5 : Example of intra-group symbol memory mapping and group information

 38

3.2.3.3.2.3.3.2.3.3.2.3. Group-searching Scheme

An economical group-searching scheme with high operation rate and low

complexity determines the performance of a group-based VLC decoder because the

decoding procedure is performed after the group information is obtained. We use

inter-group symbol memory mapping and Pseudo-Constant-Length-Code (PCLC) in

order to achieve such a group-searching scheme. If all codeword lengths are the same ,

the numerical properties of codewords in a group can be applied to the whole coding

table. We apply a procedure, namely PCLC procedure, to equalize codeword lengths

by adding redundant binary digits, 00…0, behind VLC codewords. Therefore, PCLC

codewords, which have the same length as the longest VLC codeword, can be treated

as binary numbers, PCLC_codenums.

group symbol
PCLC

_codeword

PCLC

_codenum

symbol

address

PCLC

_codeoffset

is PCLC

_mincode

G0 S00 00100100 36 0 0 o

G0 S01 00100101 37 1 1

G0 S02 00100110 38 2 2

G0 S03 00100111 39 3 3

G1 S10 00110000 48 4 0 o

G2 S20 01100000 5 0 o

G2 S21 01110000 6 1

G1 S11 01111100 56 7 3

.. .. …….. …. .. …. ..

.. .. …….. …. .. …. ..

Table 3-1 : Example of inter-group symbol memory mapping

Group Valid codelength PCLC_mincode base address

G0 1 8 00100100 0

G1 1 6 00110000 4

G2 1 4 01100000 5

Table 3-2 : Group information for Table 3-1

 39

It is easily to distinguish PCLC codewords and PCLC_codenums from each other

because the VLC code is a prefix code. As a result, a PCLC table is established with

PCLC_codenums placed in ascending order, i.e. codenum0 < codenum1 < … <

codenumn. This results in ascending PCLC_mincodes as well, i.e. mincode0 <

mincode1 < … < mincoden. Based on the PCLC table, the base addresses have to be

assigned in PCLC_mincode order, i.e. base_addr0 < base_addr1 < … < base_addrn, for

inter-group symbol memory mapping. An example of the PCLC table and its

intra/inter-group symbol memory mapping is shown in Table 3-1, and the group

information of this PCLC table is given in Table 3-2, where the valid bit indicates

whether the group information is used. We can see in Table 3-1 that G2 is inserted in

the middle of G1. This placement is specialized for decoding to save memory space of

symbol memory.

According to PCLC tables and symbol memory maps, the conventional decoding

group searching scheme is realized by applying numerical properties to bitstream and

symbol addresses. Similar to PCLC codewords, a decoded bitstream that has the same

length as the PCLC codewords is treated as a binary number, bitstream_num. Because

the bitstream is a sequence of concatenated codewords, such as codewordi –

codewordj – etc, a relation between the bitstream and the PCLC table can be

expressed by PCLC_codenumi ≦ bitstream_num < numerical comparisons. The

decoded codeword belongs to group Gx when the hit condition, PCLC_mincodex ≦

bitstream_num < PCLC_mincodex+1, is encountered. Let’s see the process of decoding

one symbol from bitstream “001111010110…”

 40

Figure 3-6 : Process of decoding a symbol

Figure 3-7 : Process of encoding a symbol address

According to the relation between PCLC tables and the symbol address, the

conventional encoding group searching scheme is realized by applying numerical

properties to codewords and symbol addresses. Based on the encoded symbol, the

relative symbol address can be fetched. A relation between the symbol address and the

PCLC table can be expressed by base_addri ≦ symbol address < numerical

comparisons. The decoded codeword belongs to group Gy when the hit condition,

base_addry ≦ bitstream_num < base_addry+1, is encountered. Let’s see the process

 41

of encoding one symbol from the symbol address “19 (5’b10011)”

Figure 3-8 : Block diagram of conventional group-based VLC decoder architecture

The conventional VLC codec system is designed for MPEG applications with

coding tables up to 256-entry 12-bit symbols and 16-bit codewords. This system

performs concurrent encoding and decoding procedures by accessing the same group

information and achieves table programmability by loading data into on-chip

memories. To complete the VLC codec processes of MPEG videos, this design

includes the operations of sign bits and escaped run-levels (escRL) following VLC

codewords. By the efficient symbol conversion, the memory requirement is reduced

to (25x8 + 28x8 + 28x12 + 32x29) bits for a CBS-LUT, a symbol address memory, a

symbol memory, and 32-entry group-information. Block diagram of the conventional

VLC codec system is shown in Figure 3-8. It mainly consists of the following

components.

� The group-based VLC encoder/decoder is composed of group detectors and

combinational logic circuits to realize the VLC codec processes.

� The input FIFO stores the input bitstream. According to previous decoded

 42

results, the Dec_bitstream selector transmits codewords bitstream to the VLC decoder.

Besides, this selector detects sign bits and escRLs when VLC codewords are decoded.

� The Enc_bitstream concatenater adds sign bits or escRL’s behind VLC

codewords and concatenates encoded results into a single bitstream. Then, every 32

bits of the encoded bitstream in the concatenater is shifted into the Output FIFO.

� The special code detector recognizes special codes, such as escape and EOB,

by checking decoded symbol addresses instead of decoded symbols. Without waiting

for symbol fetching, this detector can determine the length of the additional bits

following a VLC codeword. Hence, the next codeword bitstream can be found by the

Dec_bitstream selector immediately and the decoding throughput can be increased.

� The Enc_en and Dec_en Ctrls determine the operations of the VLC_encoder

and decoder according to the condition of input data and FIFOs.

� Both symbol address and symbol memories are the on-chip memory modules

for storing symbol information.

� The symbol converter performs symbol conversion and detects escaped RLP’s

and EOB symbols. On the other hand, the symbol recoverer finds correct runs and

signed levels based on decoded results.

 43

3.3.3.3.3.3.3.3. The Proposed Group-Based VLC Encoding

and Decoding

3.3.1.3.3.1.3.3.1.3.3.1. The Definition of Decoding Codeword Groups

group symbol prefix suffix suffix_num
suffix

_offset
attribute

G2 S3 001 N.A. N.A. 0 suffix_min

S4 0001 00 0 0 suffix_min

S5 0001 01 1 1 G3

S6 0001 1 2 2

S7 00001 00 0 0 suffix_min

S8 00001 01 1 1 G4

S9 00001 1 2 2

S10 000001 00 0 0 suffix_min

S11 000001 01 1 1

S12 000001 10 2 2
G5

S13 000001 11 3 3

Table 3-3 : An example of CAVLC code and codeword grouping

An example of CAVLC code and codeword grouping is illustrated in Table 3-3.

CAVLC code is also constructed based on Huffman code, and as we introduce it in

Chapter 1, Huffman code is a prefix code, that is any codeword is not the prefix code

of other codewords. For example, the symbol, S3, listed in Table 3-3 is relative to the

codeword, 001, and in the entire VLC codeword table there is no codeword which

starts as 001 except the codeword of S3. Based on the result, the proposed codeword

group is a set of codewords whose source symbols are combined to receive the same

number of leading zeros. Besides, the number of the group is equal to the relative the

number of leading zeros. For example, when the number of leading zeros is 5, the

relative group number is also 5. This is very useful to simplify the process of group

searching. According to this definition, the codeword groups have the following

 44

properties.

� In a group, the suffix of the codeword can be treated as a codeword length-bit

binary number, called suffix_num, since the prefix length is the same regardless to the

suffix length.

� The codeword that has the smallest suffix_num in a group is denoted

suffix_min.

� A suffix_offset is the offset value between the suffix_min and the

suffix_num.

Difference from the conventional codeword groups, we set the codeword groups

only based on prefix, because the prefix of codewords is unique. We don’t have to use

the entire codeword to set the groups, so we can save some cost in the process of

calculating the group information and building the tables in memories. In Table 3-3,

the symbols S10, S11, S12, and S13 belong to the codeword group G5. In this group,

the codewords have the same prefix length, 6-bit. The suffix length is 2-bit. Therefore,

the 2-bit suffix_nums are 0, 1, 2, and 3, the suffix_min is 2’b00 which is the same as

1’b0, and the 2-bit suffix_offsets are 0, 1, 2, and 3. Symbols which are not combined

belong to different groups, such as S7, S8, and S9 in G4, and S4, S5, and S6 in G3.

Besides, there is only one symbol in group G3 since symbol S3 completes the

Huffman procedure alone.

In CAVLC coeff_token decoding/encoding process, there are four tables used. The

number of total groups with the proposed codeword groups is 46, and we have to use

64-entry memories to build the whole CAVLC coeff_token table. Therefore, under the

reasonable usage of memory, we can set the first group of NUM_VLC0 is G0, that of

NUM_VLC1 is G16, that of NUM_VLC2 is G32, and G48 is for NUM_VLC3. From

the distribution of the codeword groups, we can easily get the address of group

memory based on the NUM_VLCx and the codeword group.

 45

In MPEG-2 table B15, some codewords also have the leading ones as the prefix.

Based on the rule of the proposed grouping method, we only set the codeword groups

according to the leading ones, and then set the leading zeros codeword groups along

the leading ones codeword groups. The number of the groups constructed by leading

ones is 8, so the beginning group by leading zeros is 8. An example of the Huffman

code and codeword grouping is shown in Table 3-4. The number of total groups in

MPEG-2 VLC tables with the proposed grouping method is 30. However, we locate

the groups of MPEG-2 table B14 from G0 to G31, and we put the groups of MPEG-2

table B15 from G32 to G63, when we combine CAVLC coeff_token tables and

MPEG-2 VLC tables. The reason is to get the group number easily under reasonable

memory usage, because CAVLC coeff_token has to use 64-entry memories. In order

to complete the proposed grouping method, we have to get the information of the

number of leading ones and the leading-one prefix or leading-zero one.

group symbol prefix suffix suffix_num
suffix

_offset
attribute

S3 110 0 0 0 suffix_min
G3

S4 110 1 1 1

S5 1110 00 0 0 suffix_min

S6 1110 01 1 1

S7 1110 10 2 2
G4

S8 1110 11 3 3

S21 001 01 1 1 suffix_min

S22 001 10 2 2 G9

S23 001 11 3 3

S24 0001 00 0 0 suffix_min

S25 0001 01 1 1

S26 0001 10 2 2
G10

S27 0001 11 3 3

Table 3-4 : An example of Huffman code and codeword grouping in MPEG-2 table B15

 46

3.3.2.3.3.2.3.3.2.3.3.2. The Definition of the Encoding Symbol Groups

In the conventional group-based VLC codec system, there was no special

definition of the encoding symbol groups. It used CBS-LUT for the encoding process

to look up the base address of the symbol address memory. However, if we can define

the encoding symbol groups, we will get some benefits about the usage of memories.

group run level encoding_num encoding_offset attribute

0 1 1 0 encoding_min

0 2 2 1

0 … … …
G0

0 31 31 30

0 32 0 0 encoding_min

0 33 1 1

0 … … …
G1

0 40 8 8

4 1 4 0 encoding_min

5 1 5 1

… 1 … …
G5

31 1 31 27

Table 3-5 : An example of MPEG-2 encoding symbol groups

An example of MPEG-2 encoded symbols and symbol grouping is shown in Table

3-5. According to conventional CBS-LUT method, when run is equal to 0, the number

of mapping levels is 40, but when run is greater than 7, the number of mapping levels

is less than 3. Finally, one run will map to one memory address. Therefore, we

consider that we can also define the encoding symbol groups like decoding codeword

groups to save the usage of memories. In the symbol grouping procedure, we count

the number of the mapping symbols for one symbol. For example, when the value of

run is equal to 0, the number of mapping levels is 40. Perhaps, when the value of level

is equal to 1, the number of mapping runs is 28. Based on the result of this procedure,

the proposed symbol groups are a set of the most symbols mapping to one symbol.

 47

According to this definition, the symbol groups have the following properties.

� In a group, the value of the changed symbol is called encoding_num, since the

other symbol is fixed.

� The value of the changed symbol has the smallest encoding_num in a group is

denoted encoding_min.

� An encoding_offset is the offset value between the encoding_min and the

encoding_num.

In Table 3-5, the levels from 1 to 31 belong to the symbol groups G0. In this group,

the runs have the same value, 0. Therefore, the encoding_nums are from 1 to 31, the

encoding_min is 1 and the encoding_offsets are from 0 to 30. Source symbols which

are not combined will belong to different groups. When the value of the level is equal

to 1, the runs from 4 to 31 belong to G5. In symbol groups for MPEG-2 VLC tables,

the group, G1, is particular to other groups. The value of the fixed symbol, run, is the

same as G0, but we still separate it to another group. The reason is if we combine G0

and G1 as a symbol group, we will use more memories.

group run level

G0 0 1~31

G1 0 32~40

G2 1 1~18

G3 2 1~5

G4 3 1~4

G5 4~31 1

G6 4~16 2

G7 4~6 3

Table 3-6 : The symbol groups for MPEG-2 VLC tables

The total symbol groups for MPEG-2 VLC tables are shown in Table 3-6, and

both table B14 and B15 use the symbol groups, because the symbols of them are the

same.

 48

The similar approach is also used in CAVLC coeff_token encoding process.

However, the procedure of symbol grouping in CAVLC is much easier than that in

MPEG-2. TrailingOnes is the only choice to be the reference of group number,

because each TrailingOnes can map most number of TotalCoeffs. The symbol groups

of CAVLC coeff_token are shown in

group TrailingOnes TotalCoeff

G0 0 0 ~ 16 or 0 ~ 4

G1 1 1 ~ 16 or 1 ~ 4

G2 2 2 ~ 16 or 2 ~ 4

G3 3 3 ~ 16 or 3 ~ 4

Table 3-7 : The symbol groups of CAVLC coeff_token

3.3.3.3.3.3.3.3.3.3.3.3. Intra-Group Decoding Procedure

In addition to grouping codewords, it is necessary for decoding procedures to map

symbols onto memories and extract codeword group information. During intra-group

symbol memory mapping, the memory address of a symbol in a group is calculated by

the suffix_offset of this symbol and the base address which denotes the symbol

address of the suffix_min of the group. In other words, the symbol address is the sum

of the suffix_offset and the base address. After applying this arithmetic relation,

suffix_offsets, decoded symbol addresses, and encoded codewords can be found by

numerical calculations rather than pattern matching. Therefore, the group information

to be stored is suffix_min, and base addresses.

Based on the memory map and the group information in Figure 3-9, intra-group

decoding procedures can be described as follows.

Decoding procedure – assume the decoded codeword is (0000_0110)2:

� suffix_offset = suffix_num (10)2 – suffix_min (0) = 102 = 2;

� symbol_address = suffix_offset (2) + base_address (9) = 11;

 49

� The decoded symbol, S2, is accessed by the symbol_address, 9;

Figure 3-9 : An example of intra-group memory map and group information

However, when calculating the suffix_offset, we have to get the value of

suffix_num. That means we have to know the real suffix length of the relative suffix.

Therefore, the group information also has suffix length to fetch the correct suffix.

Besides, the suffix length has to be sent back to codeword boundary detector, and the

codeword boundary detector can truncate the codewords which are decoded without

any error.

Figure 3-10 : An example of the special case of suffix length

Some special cases will happen in VLC tables and Figure 3-10 shows an example

of the special case of suffix length. The relative codeword of the symbol, S2, is

“00011” and the other codewords in this group are “00010x”. We can find the suffix

length is different. Therefore, we have to handle the condition to avoid fetching the

incorrect suffix; otherwise we will get the wrong suffix_offset to access the wrong

location of the symbol memory. Even sending the incorrect suffix length to codeword

boundary detector will result the current decoded block fails. To solve this problem,

 50

we add an item called suffix_adjust to group information. When we get the group

information and the suffix_adjust is set to 1, we have to examine the received suffix to

see if we have to adjust the suffix length. The judgment of the suffix length adjusting

is to examine if the first bit of the received suffix is 1. If the first bit of the received

suffix is 1, the true suffix length is the suffix length of the group information minus 1.

Other the other hand, the true suffix length is equal to suffix length.

Figure 3-11 : An example of the complete group information

Based on the memory map and the group information in Figure 3-11, the complete

intra-group decoding procedures can be described as follows.

Decoding procedure – assume the decoded codeword is (00011)2:

� The suffix_adjust is equal to 1, so we have to examine the first bit of the

received suffix (1) 2. The first bit of the received suffix is also equal to 1, so

suffix_num is set to (10) 2.

� suffix_offset = suffix_num (10)2 – suffix_min (0) = 102 = 2;

� symbol_address = suffix_offset (2) + base_address (3) = 5;

� The decoded symbol, S2, is accessed by the symbol_address, 5;

In order to save the usage of memories, we don’t save the whole base addresses to

the group information, and we only save the least significant 7 bits. Therefore, when

executing the CAVLC coeff_token decoding, the true base addresses have to be added

64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_VLC3. On the other

hand, the true address has to be added 128 for MPEG-2 table B15.

 51

group suffix_adjust leading_0s base_address suffix_length suffix_min

0 0 1 0 0 1

1 1 1 1 2 0

2 0 1 4 2 1

3 0 1 7 2 0

4 0 1 11 2 0

5 0 1 15 2 0

6 0 1 23 3 0

7 0 1 31 4 0

8 0 1 47 4 0

9 0 1 63 4 0

10 0 1 79 4 0

11 0 1 95 4 0

16 0 0 0 0 0

17 0 0 1 0 0

18 0 0 2 1 0

19 0 0 4 2 0

20 1 0 8 2 0

21 0 0 12 1 0

22 0 0 14 0 0

23 0 0 15 N.A. N.A.

24 1 1 16 2 0

25 0 1 20 2 1

26 0 1 23 2 0

27 0 1 27 2 0

28 0 1 31 2 0

29 1 1 39 3 0

30 0 1 47 4 1

31 0 1 63 4 0

32 0 1 79 4 0

33 0 1 95 4 0

34 0 1 111 4 0

Table 3-8 : The codeword groups of MPEG-2

 52

group suffix_adjust leading_0s base_address suffix_length suffix_min

0 0 1 0 0 1

1 0 1 1 0 1

2 0 1 2 0 1

3 1 1 3 2 0

4 1 1 6 2 0

5 0 1 9 2 0

6 0 1 13 2 0

7 0 1 17 2 0

8 0 1 21 2 0

9 0 1 25 3 0

10 0 1 33 3 0

11 0 1 41 3 0

12 0 1 49 3 0

13 0 1 57 2 0

14 0 1 61 0 1

16 0 1 0 1 0

17 1 1 2 2 0

18 1 1 5 3 0

19 0 1 12 2 0

20 0 1 16 2 0

21 0 1 20 2 0

22 0 1 24 2 0

23 0 1 28 3 0

24 0 1 36 3 0

25 0 1 44 3 0

26 1 1 52 3 0

27 0 1 59 2 0

28 0 1 63 0 1

32 0 1 0 3 0

33 0 1 8 3 0

34 0 1 16 3 0

35 0 1 24 3 0

36 0 1 32 3 0

37 0 1 40 3 0

38 1 1 48 3 0

39 0 1 55 2 0

 53

40 0 1 59 1 0

41 0 1 61 0 1

48 0 1 0 0 1

49 0 1 1 0 1

50 0 1 2 0 1

51 0 1 3 2 0

52 0 1 7 1 0

53 0 1 9 1 0

54 0 1 11 1 0

55 0 1 13 0 0

Table 3-9 : The codeword groups of CAVLC coeff_token

3.3.4.3.3.4.3.3.4.3.3.4. Intra-Group Encoding Procedure

In addition to grouping symbols, it is necessary for encoding procedures to map

codewords onto memories and extract symbol group information. During intra-group

codeword memory mapping, the memory address of a codeword in a group is

calculated by the encoding_offset of this codeword and the base address which

denotes the codeword address of the encoding_min of the group. In other words, the

codeword address is the sum of the encoding_offset and the base address. After

applying this arithmetic relation, encoding_offsets, decoded codeword addresses, and

decoded symbols can be found by numerical calculations rather than pattern matching.

Therefore, the group information to be stored is encoding_min, and base addresses.

Based on the memory map and the group information in Figure 3-12, intra-group

encoding procedures can be described as follows.

Encoding procedure – assume the decoded symbols are TotalCoeff is 8 and

TrailingOnes is 0:

� encoding_offset = encoding _num (8) –encoding _min (0) = 8;

� codeword_address = encoding _offset (8) + base_address (0) = 8;

� The encoded codeword, 0000_0000_0100_0, is accessed by the

 54

codeword_address, 8;

group information: suffix_min = 0

 base_address = 0

codeword TrailingOnes TotalCoeff encoding_num encoding_offset symbol address

1

000101

00000111

000000111

0000000111

00000000111

0000000001111

0000000001011

0000000001000

00000000001111

00000000001011

000000000001111

000000000001011

0000000000001111

0000000000001011

0000000000000111

0000000000000100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 3-12 : An example of intra-group codeword memory map and group information

In order to save the usage of memories, we don’t save the whole base addresses to

the group information, and we only save the least significant 7 bits. Therefore, when

executing the CAVLC coeff_token decoding, the true base addresses have to be added

64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_VLC3. On the other

hand, the true address has to be added 128 for MPEG-2 table B15.

 55

3.3.5.3.3.5.3.3.5.3.3.5. Decoding Group-Searching Scheme and overall

group-based decoding processes

Because the decoding procedures are performed after the group information is

acquired, and efficient group-searching scheme with low complexity and high

operation rate determines the performance of a group-based VLC decoding system. To

realize such a group searching scheme, we abandon the conventional group-searching

scheme which is to calculate the range of PCLC_codenum to fetch the decoding

group. If the number of decoding group is large, we have to iterate the

group-searching scheme until the correct range is found. Besides, if we use

PCLC_codenum group-searching scheme, we have to save the PCLC_mincode with

the longest codeword length. Therefore, the conventional group-searching scheme is

not efficient enough about group-searching time and memory usage. We use the

proposed group-searching scheme called prefix-zero-group-searching (PZGS) and

inter-group symbol memory mapping to realize the decoding group searching.

A PZGS scheme is to count the leading zeros of the received codeword and the

value of the leading zeros is the base of the group number. Then, we have to fetch the

additional group number according to the value of NUM_VLC in CAVLC or the table

which is used in MPEG-2. The relative additional group numbers are 0, 16, 32, and 48

for NUM_VLC0, NUM_VLC1, NUM_VLC2, and NUM_VLC3 in CAVLC, and

those are 0 and 32 for MPEG-2 table B14 and B15. The sum of the base group

number and additional group number is the group number we have to access. Based

on the codeword group table, the base addresses have to be assigned in group number

order, i.e. base_addr0 < base_addr1 < … < base_addrn for inter-group symbol memory

mapping. An example of the PZGS table and the intra-/inter-group symbol memory

map is shown in Table 3-10. The group information of the PZGS table is given in

 56

Table 3-11.

group symbol prefix NUM_VLC
symbol

address
suffix_offset

G0 S000 0 0 0 N.A.

G1 S010 1 0 1 N.A.

G2 S020 2 0 2 N.A.

S030 3 0 3 0

S031 3 0 4 1 G3

S032 3 0 5 2

S160 0 1 64 0
G16

S161 0 1 65 1

S170 1 1 66 0

S171 1 1 67 1 G17

S172 1 1 68 2

S180 2 1 69 0

S181 2 1 70 1

S182 2 1 71 2

S183 2 1 72 3

S184 2 1 73 4

G18

S185 2 1 74 5

S190 3 1 75 0

S191 3 1 76 1

S192 3 1 77 2
G19

S193 3 1 78 3

Table 3-10 : CAVLC PZGS table and intra-/inter-group symbol memory map

group suffix_adjust leading_0s base_address suffix_length suffix_min

0 0 1 0 0 1

1 0 1 1 0 1

2 0 1 2 0 1

3 1 1 3 2 0

16 0 1 0 1 0

17 1 1 2 2 0

18 1 1 5 3 0

19 0 1 12 2 0

Table 3-11 : CAVLC group information of the coding table shown in Table 3-10

 57

Before realizing the decoding processes, the word lengths of both suffix_offset

and suffix_num operands have to be determined, since it is difficult to implement

arithmetic units with variable length inputs. To perform memory mapping, the

supported symbol memory must satisfy the requirement of coding tables.

Consequently, the value of suffix_offsets and suffix_num will not exceed the address

space of the symbol memory. For this reason, it is reasonable that the word length of

the suffix_offset and suffix_num operands equal that of the base address.

Based on the word lengths of the operands discussed above, the VLC decoding

algorithm is completed by the group searching scheme and the intra-group decoding

procedures. Detailed descriptions of the VLC decoding processes and corresponding

example based the coding table in Table 3-11, Table 3-12, and Figure 3-13.

Figure 3-13 : CAVLC decoding processes and corresponding examples

Figure 3-14 : The memory usage for conventional symbol memory

 58

In the conventional symbol memory, two symbols, run and level, are directly

stored into the symbol memory, and the length of binary number for run is 5-bit, and

the length of binary number of level is 7-bit including the sign bit. Besides, the

memory is 256-entry. If we decrease 4 bits of the symbol memory, we can reduce

1024-bit memories. In order to memory reduction, we add one step for MPEG-2

decoding processes, but under will pipelined scheme it doesn’t make great influence

on the decoding throughput. We take advantage of the feature of symbol groups, that

is, when we fetch the group number, the group number can be translated into one

symbol. We only save the value of the other symbol, and finally we can get all

decoded symbols. Therefore, the symbols groups have to provide the group

information about which decoded symbol derived from symbol groups and its value.

The group information of MPEG-2 symbol groups is shown in Table 3-12.

Symbol_adjust also helps reduce the memory usage. When we put the entire value of

levels into symbol memories, we have to use 6-bit memory width. Therefore, we

separate the levels, 1 ~ 31, and the level, 32 ~ 40, into two groups in Table 3-6. In

symbol memories, we only save the least 5-bit binary number of levels, and when

symbol_adjust is equal to 1, we get the result of decoded level by adding the level

derived from symbol memories and 32. The variable, run_or_level, means the value

stored in the mapping symbol group is run or level, and 1 is to store run. Of course,

symbol means the value of decoded symbol stored in symbol groups.

group symbol_adjust run_or_level base_address symbol

G0 0 1 0 00

G1 1 1 31 00

G2 0 1 40 01

G3 0 1 58 10

G4 0 1 63 11

G5 0 0 67 01

Table 3-12 : An example of MPEG-2 symbol group information

 59

group symbol prefix Table
symbol

address
suffix_offset

S030 2 B14 7 0

S031 3 B14 8 1

S032 3 B14 9 2
G3

S033 3 B14 10 3

Table 3-13 : MPEG-2 PZGS table and intra-/inter-group symbol memory map

group suffix_adjust leading_0s base_address suffix_length suffix_min

0 0 1 0 0 1

1 1 1 1 2 0

2 0 1 4 2 1

3 0 1 7 2 0

Table 3-14 : An example of MPEG-2 group information of the coding table

Figure 3-15 : MPEG-2 decoding processes and corresponding examples

 60

3.3.6.3.3.6.3.3.6.3.3.6. Encoding Group-Searching Scheme and overall

group-based decoding processes

Due to the encoding efficiency, we don’t consider the conventional encoding

group-searching scheme which has the same disadvantage as the conventional

decoding group-searching scheme. When we build the symbol groups, we already

take the efficiency of encoding group-searching scheme into consideration. The

symbol groups and their group information are shown in Table 3-15 and Table 3-16.

The proposed encoding group-searching scheme is similar to the proposed decoding

one. When executing the CAVLC coeff_token encoding processes, we search the

symbol groups according to the value of TrailingOnes, and based on the value of run

or level, we can do the same thing in MPEG-2. In CAVLC, the value of TrailingOnes

directly maps to the symbol groups. In MPEG-2, the symbol groups only map to run

or level whose value is less than 4. When receiving the value of run equals 0, if the

value of level is less than 32, the matching group is G0. Besides, when the value of

run is less than 4, the matching group is the result of adding 1 and the value of level.

On the other hand, when the value of run is greater than 3, the matching group is the

result of adding 4 and the value of level. We can see this relationship in Table 3-15.

group run level symbol_adjust run_or_level base_address symbol

G0 0 1~31 0 1 0 2’b00

G1 0 32~40 1 1 31 2’b00

G2 1 1~18 0 1 40 2’b01

G3 2 1~5 0 1 58 2’b10

G4 3 1~4 0 1 63 2’b11

G5 4~31 1 0 0 67 2’b01

G6 4~16 2 0 0 95 2’b10

G7 4~6 3 0 0 110 2’b11

Table 3-15 : MPEG-2 symbol groups and group information

 61

group T1s TC symbol_adjust run_or_level base_address symbol

G0 0 0~16 0 1 0 2’b00

G1 1 1~16 0 1 17 2’b00

G2 2 2~16 0 1 33 2’b01

G3 3 3~16 0 1 48 2’b10

Table 3-16 : CAVLC coeff_token symbol groups and group information

Before realizing the encoding processes, we have to check encoding_min and

encoding_num, and the word lengths of both encoding_offset and encoding_num

operands have to be determined, since it is difficult to implement arithmetic units with

variable length inputs. For the purpose of memory reduction, we don’t save

encoding_min into group information, but from symbol_adjust and run_or_level we

can get the information. When run_or_level is 1, we can know the fixed symbol for

this group is run, and the minimum value of level is 0 or 1 which can determined by

symbol_adjust. On the other hand, the fixed symbol of this group is level, so

encoding_min is equal to 4. Besides, according to run_or_level, we can decide

encoding_num is run or level. In CAVLC coeff_token encoding symbol groups, we

also don’t store encoding_min in the group information, but we can get it from the

group number.

To perform memory mapping, the supported codeword memory must satisfy the

requirement of coding tables. Consequently, the value of encoding_offsets and

encoding_num will not exceed the address space of the codeword memory. For this

reason, it is reasonable that the word length of the encoding_offset and encoding_num

operands equal that of the base address.

Based on the word lengths of the operands discussed above, the VLC encoding

algorithm is completed by the group searching scheme and the intra-group encoding

procedures. Detailed descriptions of the VLC decoding processes and corresponding

example based the coding table in Figure 3-16 and Figure 3-17.

 62

Figure 3-16 : CAVLC encoding processes and corresponding examples

 63

Assume the encoded symbols are run is 0 and level is 34 and table B14.

1) Do group searching.

table B14 => Table_Info = 1'b0;

run = 0 and level > 32;

The matching group: G1;

2) Send group information.

symbol_adjust = 1, run_or_level = 1, base_addr = 7'b0011_111;

3) First, find the encoding_min according to symbol_adjust and run_or_level or the encoding_num according. The valid

 encoding_offset is the result of subtracting the encoding_num and the encoding_min.

if (run_or_level == 1)

encoding_num = level[4:0];

else

encoding_num = run;

if (run_or_level == 1)

{

if (symbol_adjust == 1)

encoding_min = 5'b00000;

else

encoding_min = 5'b00001;

}

encoding_num = 5'b00010;

encoding_min = 5'b00000;

valid encoding_offset = encoding_num (5'b00010) – encoding_min (5'b00000) = 5'b00010 = 2;

4) Extract the encoding_offset operand, which has the same word length as the base address.

encoding_offset = 7'b0000_010;

5) Calculate the encoded codeword address.

temp_address = base_address (7'b0011_111) + encoding_offset (7'b0000_010) = 7'b0100_001;

codeword_address = {Table_Info,temp_address} = 8'b0010_0001 = 33;

6) Fetch the valid encoded suffix and the codeword group.

encoded codeword group = 4'b1010 = 10;

suffix = 5'b00010;

7) According the codeword group, we can get the leading zeros length and suffix_length;

encoded codeword group = {Table_Info,1'b0,encoded codeword group} = 6'b001010 = 10;

prefix = codeword group = 10 + 1 = 11;

suffix_length = 4;

codeword length = prefix + suffix_length = 11 + 4 = 15;

codeword = 15'b0000_0000_0011_0;

Figure 3-17 : MPEG-2 encoding processes and corresponding examples

 64

3.3.7.3.3.7.3.3.7.3.3.7. Group-Based VLC Coded System Architecture

M
U
X

c
o
d
e
w
o
rd
_
g
ro
u
p

c
o
d
e
w
o
rd
_
s
u
ffix

C
A
V
L
C

M
P
E
G
-2

le
a
d
in
g
_
x
s

T
a
b
le
_
B
1
5

le
a
d
in
g
_
o
n
e

e
n
c
o
d
in
g
_
a
c
tiv
e

d
e
c
o
d
in
g
_
a
c
tiv
e

c
o
d
e
w
o
rd
_
g
ro
u
p
_
a
c
tiv
e

s
u
ffix

_
m
in

s
u
ffix

_
le
n
g
th

s
u
ffix

_
a
d
ju
s
t

M
U
X

C
A
V
L
C

M
P
E
G
-2

s
y
m
b
o
l1

s
y
m
b
o
l2

e
n
c
o
d
in
g
_
a
c
tiv
e

d
e
c
o
d
in
g
_
a
c
tiv
e

M
U
X

M
U
X

Figure 3-18 : Block diagram of the proposed VLC codec system for MPEG applications

The proposed VLC codec system is designed for MPEG applications with coding

tables up to 256-entry 12-bit symbols and 16-bit codewords, and H.264/AVC CAVLC

coeff_token with coding tables up to 256-entry 6-bit symbols and 16-bit codewords.

This system performs concurrent encoding and decoding procedures by accessing the

group information and achieves table programmability by loading data into on-chip

memories. Block diagram of the proposed VLC codec system is shown in Figure 3-18.

It mainly consists of the following components.

� The codeword group address generator calculates the codeword group address

according to the information of leading_xs, Table_B15, leading_one, and

codeword_group. The whole function unit is controlled by two signals,

encoding_active and decoding_active. The variable, leading_xs, is the number of

 65

leading zeros or ones, and leading_one determines leading_xs is leading zeros or

leading ones. Table_B15 means the codewords table is table B15 in MPEG-2. The

detailed architecture of codeword group address generator is shown in Figure 3-19.

Figure 3-19 : Architecture of codeword group address generator

� The symbol address generator calculates the symbol address according to the

information of suffix_min, suffix_adjust, and base address which is derived from the

codeword group information. The whole function unit is controlled by two signals,

encoding_active and decoding_active. When we get the correct suffix_length for the

decoded symbol, we can fetch the correct suffix according to the barrel shifter to get

the suffix_num. The detailed architecture of codeword group address generator is

shown in Figure 3-20.

 66

s
u
ffix

_
m
in

b
a
s
e
 a
d
d
re
s
s

le
n
g
th
_
a
d
ju
s
t

M
U
X

B
a
rre

l s
h
ifte

r

s
u
ffix

_
a
d
ju
s
t

M
U
X

c
o
n
c
a
te
n
a
to
r

Figure 3-20 : Architecture of symbol address generator

� The symbol group address generator calculates the symbol group address

according to the information of symbol1 and symbol2. In we execute MPEG-2

decoding/encoding, symbol1 is run and symbol2 is level. On the other hand, symbol1

is TrailingOnes and symbol2 is TotalCoeff. The whole function unit is controlled by

two signals, encoding_active and decoding_active. The detailed architecture of

codeword group address generator is shown in Figure 3-21.

Figure 3-21 : Architecture of symbol group address generator

 67

� The codeword address generator calculates the codeword address according to

the information of symbol_adjust, run_or_level, symbol, and base address which are

derived from the symbol group information. The whole function unit is controlled by

two signals, encoding_active and decoding_active. The detailed architecture of

codeword group address generator is shown in Figure 3-22.

e
n
c
o
d
in
g
_
m
in

M
U
X

M
U
X

c
o
n
c
a
te
n
a
to
r

C
A
V
L
C

M
P
E
G
-2

b
a
s
e
 a
d
d
re
s
s

1
'b
0

s
y
m
b
o
l_
a
d
ju
s
t

s
y
m
b
o
l1

C
A
V
L
C

M
P
E
G
-2

g
ro
u
p
_
n
u
m

4

e
n
c
o
d
in
g
_
n
u
m

Figure 3-22 : Architecture of codeword address generator

3.4.3.4.3.4.3.4. Summary
suffix_adjust

1 bit

leading_0s

1 bit

base address

7 bits

suffix_length

3 bits

suffix_min

1 bit

codeword group

symbol_group

3 bits

symbol_offset

5 bits

symbol memory

symbol_adjust

1 bit

run_or_level

1 bit

base address

7 bits

symbol

2 bits

symbol group

suffix

4 bits

codeword_group

5 bits

codeword memory

Figure 3-23 : Formats of all kinds of memories

 68

Figure 3-23 shows the formats of codeword group memory, symbol memory,

symbol group memory, and codeword memory. After the result of memory reduction

of the proposed VLC codec system, the total memories are 5272 bits, and the memory

usage for each memory is shown in Figure 3-24. Compared to the memory usage of

CABAD shown in Figure 3-2, the memory usage of the proposed VLC codec system

is much smaller than that of CABAD. Therefore, the proposed VLC codec system can

easily share the memory with CABAD.

Besides, the conventional VLC codec system use 6304-bit memory, and our

proposed VLC codec system save 16% memory usage. However, the conventional

VLC codec system can’t support CAVLC, so under the same environment, that is, we

compare the memory usage without considering the CAVLC encoding/decoding, we

use 4856-bit memory and save 23% memory usage. The proposed VLC codec system

has almost the same throughput as the conventional one.

64x14

256x8

8x11

256x9

0

500

1000

1500

2000

2500

codeword
group

symbol symbol
group

codeword

memory usage

Figure 3-24 : The memory usage of each memory

 69

Chapter 4.
Optimization of the

Proposed VLC Codec

System
From Figure 3-3, we can see other decoding/encoding procedures in addition to

coeff_token in CAVLC. Even if they are VLC encoding/decoding procedures based

on Huffman coding except trailing_ones_sign_flag, for the purpose of the

performance, we don’t use the proposed group-based VLC encoding/decoding

approaches to realize other parts. Besides, the components, symbols constructor and

bitstream concatenater, also have great influence on the encoding/decoding

procedures. In this chapter, we will introduce the other optimization of the proposed

VLC codec system.

4.1.4.1.4.1.4.1. Efficient Coding
Efficient coding means we can use simple arithmetic approaches to realize the

VLC tables, because we would find the same numerical rules among different tables.

From these numerical rules, we can cluster the original tables into a few groups. In the

same group, the symbols or the codewords have the same numerical calculations to

get the relative codewords or symbols. By this way, we can implement these

decoding/encoding procedures without memory usage, and we can get the encoded

codewords or decoded symbols quickly to provide the better throughput for the entire

codec system.

 70

4.1.1.4.1.1.4.1.1.4.1.1. Level Efficient Coding

Figure 4-1 : Algorithm of level encoding and decoding

Figure 4-1 shows the algorithm of level encoding and decoding. According to the

value of suffix_length, we can choose the decoded table from NUM_VLC0 ~

NUM_VLC6. When suffix_length is 0, there are two escape cases (level_prefix = 14

or 15) which have to fetch level_suffix to decode. On the other hand, the suffix length

is equal to the variable, suffix_length. The variable, sign, means the level is positive

or negative.

In the encoding procedures, length is the codeword length and code represents the

codeword value. The variable, escape, is defined as the following equation.

15 _escape suffix length= <<

The variable, escape, determines the threshold of escape case, and if the value of level

is greater than or equal to escape, the encoding procedure enters the escape case. In

escape case, level_prefix is given 15 and the level_suffix length is 12. This is for the

large value of encoding levels. The two cases, |level| < 16 and |level| ≧ 16, are the

mapping to the two escape cases in the decoding process. According to the encoding

and decoding algorithm shown in Figure 4-1, we can formulates the calculations of

level encoding/decoding shown in Figure 4-2.

 71

If (level_encoding)

escape0_0 = |level|;

escape0_1 = 8;

escape1_0 = |level|;

escape1_1 = 16;

escape2_0 = |level|;

escape2_1 = escape;

If (level_decoding)

escape0_0 = level_prefix;

escape0_1 = 14;

escape1_0 = level_prefix;

escape1_1 = 15;

escape2_0 = level_prefix;

escape2_1 = 15;

escape0 = escape0_0 >= escape0_1;

escape1 = escape1_0 >= escape1_1;

escape2 = escape2_0 >= escape2_1;

if (suffix_length == 0)

{

if (encoding)

case ({escape0, escape1})

 2'b00 : level_out0 = 1<< 12;

level_out1 = {|level|-16,sign};

 2'b01 : level_out0 = 1 << 4;

level_out1 = {|level|-8,sign};

 2'b10 : level_out0 = 0;

level_out1 = 0;

 2'b11 : level_out0 = 0;

level_out1 = 1;

if (decoding)

case ({escape0, escape1})

 2'b00 : level_out0 = 30;

level_out1 = level_suffix (12 bits);

 2'b01 : level_out0 = 14;

level_out1 = level_suffix (4 bits);

 2'b10 : level_out0 = 0;

level_out1 = 0;

 2'b11 : level_out0 = 0;

level_out1 = level_prefix;

}

else

{

if (encoding)

if (escape2)

level_out0 = 1 << 12;

level_out1 = {|level|-escape, sign};

else

level_out0 = 1 << suffix_length;

level_out1 = {suffix, sign};

if (decoding)

level_out0 = level_prefix << suffix_length;

level_out1 = level_suffix;

}

level_out = level_out0 + level_out1;

escaping cases

Result of level

encoding/decoding

if (suffix_length == 0)

case ({escape0, escape1})

 2'b00 : length = encoding ? 28 : 12;

 2'b01 : length = encoding ? 19 : 4;

 default : length = encoding ? {|level|, ~sign} : 0;

else

if (encoding)

 if (escape2)

 length = 28;

 else

 length = (|level| - 1) >> shift + suffix_length + 1;

if (decoding)

 if (escape2)

 length = 12;

 else

 length = suffix_length;

shift = suffix_length – 1; length

Figure 4-2 : Calculations of level encoding and decoding

The escape cases for level encoding procedures are |level| < 8, |level| < 16, and

|level| < escape, and those for level decoding procedures are level_prefix < 14, 14 ≤

level_prefix < 15, and level_prefix = 15. The lengths for level encoding procedures

are the length of the encoded codeword, and those for level decoding procedures is

the suffix length of decoding codeword which is transmitted to codeword boundary

detector to calculate the codeword boundary. The level_out is the codeword value for

level encoding and that is the value of level_code for level decoding. According to

level_code, we can get the value of the decoded level shown in Figure 2-10. Based on

these calculations, we can simplify the complexity of level encoding and decoding,

and this architecture can help us handle the parallel input bitstream for level decoding

and integrate level encoding/decoding to an area-efficient level codec system. The

level decoding/encoding procedures and the corresponding examples are shown in

Figure 4-3 and Figure 4-4.

 72

Decoding procedures – assume the decoding codewords “00001101000…” and suffix_length is 3.

1) Count leading zeros and fetch level_prefix.

leading zeros = 4 => level_prefix = 4;

2) Evaluate the escape case and fetch level_suffix according to suffix_length.

level_prefix < 14 => escape0 = 0;

level_prefix < 15 => escape1 = 0 & escape2 = 0;

suffix_length = 3 => suffix = 3'b101;

3) According to suffix_length, escape cases, level_prefix, and level_suffix, we can get the decoded suffix_length, level_out0, level_out1, and sign.

suffix_length != 0 && escape2 = 0 => length = suffix_length = 3;

suffix_length != 0 => level_out0 = level_prefix << suffix_length = 4'b0100 << 3 = 7'b0100_000 = 32;

 leve_out1 = level_suffix = 3'b101 = 5;

sign = level_suffix[0] = 1'b1;

4) Extract the lengths of level_out0 and level_out1 the same as the word length of levels which is 16-bit.

level_out0' = 16'b0000_0000_0010_0000 = 32;

level_out1' = 16'b0000_0000_0000_0101 = 5;

5) Calculate level_code by adding level_out0' and level_out1' and derive level according to sign and level_code.

level_code = level_out0' + level_out1' = 16'b0000_0000_0010_0101 = 37;

sign = 1 => level = ~level_code >> 1= 16'b1111_1111_1110_1101 = -19;

Figure 4-3 : Level decoding procedures and the corresponding examples

Encoding procedure – assume the encoding level is 14 and suffix_length is 1.

1) Calculate the absolute value of level, the escape value according to suffix_length, and sign.

level = 14 => |level| = 14;

escape = 15 << suffix_length = 15 << 1 = 30;

level >= 0 => sign = 0;

2) Evaluate the escape cases according to the absolute value of level.

|level| = 14 => escape0 = 1, escape1 = 0, escape2 = 0;

3) According to suffix_length, escape cases, and the absolute value of level, we can get the encoded codeword length and level_out0 and level_out1.

suffix_length == 0 && escape2 == 0 => codeword length = (|level| - 1) >> shift + suffix_length + 1 = (14 - 1) >> 0 + 1 + 1 = 16.

suffix = (|level| - 1) & (~((0xffffffff)<<shift)) = (4'b1101) & (0x0000_0000) = 0;

escape2 == 0 => level_out0 = 1 << suffix_length = 1 << 1 = 2;

 level_out1 = {suffix,sign} = 0;

4) Extract the lengths of level_out0 and level_out1 the same as the codeword length.

level_out0' = 16'b0000_0000_0000_0010 = 2;

level_out1' = 16'b0000_0000_0000_0000 = 0;

5) Calculate codeword by adding level_out0' and level_out1'.

codeword = level_out0' + level_out1' = 16'b0000_0000_0000_0010;

Figure 4-4 : Level encoding procedures and the corresponding examples

The architecture of the proposed level codec system is shown in Figure 4-5. The

level decoding and encoding procedures can work on this codec system. When

executing level encoding, the valid outputs are codeword and length; on the other

hand, the valid outputs are level and length. The results of |level| - 8, |level| - 16, and

|level| - escape can be derived from the calculations of escape cases. The codeword

boundary detector always sends 12-bit bitstream for level decoding, and according to

level_prefix and suffix_length the system will fetch the wanted level_suffix with

correct length. The information of suffix_length is given from the suffix_length

 73

generator, and the architecture is the same as that in Figure 2-11. Therefore, we don’t

describe it here. The three components, decoder for length, decoder for level_out0,

and decoder for level_out1 implement the calculations shown in Figure 4-2 with PLA

architectures. The three adders in the left part in Figure 4-5 calculate the escape cases

of level encoding and decoding. The two input signals, level_encoding and

level_decoding, are not only the selecting signal, but also enable signals to open or

close the level codec system. The component to get the absolute value of the input is

to do 2’s complement or pass the original input according to the most significant bit

(msb) of the input which can judge the input value is positive or negative. That is the

approximate introduction of the proposed level encoding and decoding architecture.

le
v
e
l

le
v
e
l_
p
re
fix

M
U
X

M
U
X

M
U
X

B
a
rre

l s
h
ifte

r

le
v
e
l_
d
e
c
o
d
in
g

D
e
c
o
d
e
r fo

r le
v
e
l_
o
u
t1

B
a
rre

l s
h
ifte

r
B
a
rre

l s
h
ifte

r

s
u
ffix

_
le
n
g
th

le
v
e
l_
d
e
c
o
d
in
g

le
v
e
l_
e
n
c
o
d
in
g

{|le
v
e
l|,s

ig
n
}

s
u
ffix

_
le
n
g
th

B
a
rre

l s
h
ifte

r
s
u
ffix

_
le
n
g
th
 +
 1

{|le
v
e
l| -

1
6
,s
ig
n
}

{|le
v
e
l| -

8
,s
ig
n
}

{|le
v
e
l| -

e
s
c
a
p
e
,s
ig
n
}

{s
u
ffix

,s
ig
n
}

le
v
e
l_
p
re
fix

le
v
e
l_
s
u
ffix

le
v
e
l_
d
e
c
o
d
in
g

Figure 4-5 : Architecture of level decoding/encoding

 74

4.1.2.4.1.2.4.1.2.4.1.2. Run_before Efficient Coding

zerosLeft run_before

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

Table 4-1 : Table for run_before

The run_before table is shown in Table 4-1. Even if we can get good performance

with PZTP to realize run_before table, we hope to find the easier and more efficient

method to implement run_before codec system with parallel input bitstream and

combine the encoding part. After observing the run_before table, we can find the

numerical relation for run_before decoding and encoding shown in Figure 4-6. No

matter the decoding or encoding procedures, we can divide the run_before table into

three groups, which are zerosLeft < 6, zerosLeft = 6, and zerosLeft > 6. Besides, the

calculations in each group are similar. For example, when zerosLeft is equal to 6,

run_before is the result of adding codeword and one in decoding processes, and

codeword is the difference of run_before and one. Such relation helps us to complete

the efficient coding for run_before table.

 75

Figure 4-6 : The numerical calculations of run_before encoding and decoding

The architecture of the proposed run_before codec system is shown in Figure 4-7.

We can use the architecture of run_before efficient coding instead of look-up table

method. The advantage of the proposed architecture is the major function units can be

shared for the encoding and decoding procedures. However, if we implement the

run_before codec system with look-up table, we have to build two tables for both

procedures.
ru
n
_
b
e
fo
re

c
o
d
e
w
o
rd

e
n
c
o
d
in
g

d
e
c
o
d
in
g

c
o
d
e
w
o
rd

ru
n
_
b
e
fo
re

e
n
c
o
d
in
g

c
o
d
e
w
o
rd

d
e
c
o
d
in
g

ru
n
_
b
e
fo
re

c
o
d
e
w
o
rd

e
n
c
o
d
in
g

d
e
c
o
d
in
g

M
U
X

Figure 4-7 : Architecture of run_before codec system

 76

4.2.4.2.4.2.4.2. Zero skipping and proposed symbols

constructor

Code Element Value Output array

0000100 coeff_token TotalCoeff = 5, TrailingOnes = 3 Empty

0 T1 sign + 1

1 T1 sign - -1,1

1 T1 sign - -1,-1,1

1 level +1 1,-1,-1,1

0010 level +3 3,1,-1,-1,1

111 total_zeros 3 3,1,-1,-1,1

10 run_before 1 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1

01 run_before 1 3,0,1,-1,-1,0,1

Figure 4-8 : An example of decoding procedures of CAVLC

Figure 4-8 shows an example of decoding procedures of CAVLC. We can see the

processes of constructing the DCT coefficients in zigzag order. Generally, we will

arrange the DCT coefficients after decoding all run_befores. Such method will take

additional cycles whose value is the same as the value of TotalCoeff to arrange the

DCT coefficients. If the decoded run_before is derived, we arrange the coefficients in

the next cycle, and we can save a few cycles to arrange the DCT coefficients. Before

executing the proposed symbols construction, we have to know the location of last

non-zero coefficient in the coefficients storage. According to TotalCoeff and

total_zeros, we can calculate the location of the last DCT coefficient. The procedures

of proposed symbols construction and the corresponding example are shown in Figure

 77

4-9. In Figure 4-9, cycle means the cycle of symbols construction and run_before is

being decoded in cycle 1 ~ 4, run_before is the value of decoded run_before in the

present cycle, level_count represents the pointer to the levels buffer, coeff_count

means the pointer to the coefficients buffer, and coeff_buffer records the values of

coefficients buffer in the next cycle. The default value of coeff_count is the sum of

TotalCoeff and total_zeros minus one. The sum of TotalCoeff and total_zeros means

the total number of decoded symbols including non-zero and zero coefficients, so

according the sum of TotalCoeff and total_zeros we can know the location of last

non-zero coefficient in coeff_buffer. In the first cycle, level_count equal to 4 maps the

level is 1. Therefore, we put 1 to coeff_buffer at the location coeff_buffer 7, and the

next coeff_count is the result of subtracting current coeff_count and 1. At the same

time, the decoded run_before is 1, and the next coeff_count also has to subtract the

value of run_before, so the next coeff_count is 5. Repeating the above steps, finally

we can get the DCT coefficients in zigzag order.

cycle run_before level_count coeff_count coeff_buffer 0 ~ 15

1 1 4 7 0000_0001_0000_0000

2 0 3 6 - 1 0000_0-101_0000_0000

3 0 2 4 0000_-1-101_0000_0000

4 1 1 3 0001_-1-101_0000_0000

5 N.A. 0 2 - 1 0301_-1-101_0000_0000

Figure 4-9 : The proposed symbols construction for example in Figure 4-8.

However, the proposed symbols construction is not the optimal solution. When the

decoded run_before is equal to 0, the next coefficient location can be predicted, even

if we don’t decode the run_before. That is, if we skip the zero run_before and decode

the next run_before, we can still store the levels into correct locations in coefficients

 78

buffer. That is not difficult, and when calculating the results of level_count and

coeff_count, we take the number of zero-skipping run_befores into consideration. The

example of the proposed symbols construction with zero-skipping is shown in Figure

4-10.

cycle run_before level_count coeff_count coeff_buffer 0 ~ 15

1 1 4 7 0000_0001_0000_0000

4 (0), (0), 1 3 - 2 6 – 1 - 2 0001_-1-101_0000_0000

5 N.A. 0 2 - 1 0301_-1-101_0000_0000

Figure 4-10 : An example of the proposed symbols construction with zero-skipping

The final problem is how to realize the function unit to detect the condition of

zero-skipping. Figure 4-11 shows the run_before table mapping to zero run_before

under different zerosLefts. We can find that the codewords of zero run_before are “1”,

“11”, and “111”. Therefore, the realization of zero-skipping detector is quite easy,

because we already design a leading-one counter in the codeword boundary detector

for MPEG-2 codewords. Here, we only use that leading-one counter and add another

decoder whose inputs are leading ones and zerosLeft, and we can get the information

about the number of zero-skipping run_befores.

zerosLeft run_before

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

Figure 4-11 : The run_before table mapping to zero run_before

 79

4.3.4.3.4.3.4.3. Summary
proposed method I-frame P-frame frame

level efficient coding 40% 17% 29%

run_before efficient coding 4% 12% 8%

symbols construction 14% 12% 13%

zero skipping 4% 5% 4%

Table 4-2 : Throughput improvement of each proposed method, foreman QP = 10

Table 4-2 shows the improvement of throughput for each proposed approach,

when we decode the picture, foreman, and the QP is equal to 10. We can see the effect

is the best when applying level efficient coding, and the method can save about 40%

throughput when decoding an I-frame. Besides, run_before efficient coding has more

performance for P-frame than I-frame, because the blocks of P-frame have more zero

coefficients than those in I-frame. Symbols construction also has good improvement

both for I-frame and P-frame. However, the effect of zero skipping is not so

significant. We consider that the number of zero run_befores is not so much in this

picture. Therefore, we decode another picture, mobile, and set QP is 28. The

improvement of throughput is shown in Table 4-3.

proposed method I-frame P-frame frame

level efficient coding 27% 5% 22%

run_before efficient coding 6% 12% 7.5%

symbols construction 14% 5% 12%

zero skipping 4% 3% 4%

Table 4-3 : Throughput improvement of each proposed method, mobile QP = 28

Table 4-3 shows the improvement of throughput for each proposed approach,

when we decode the picture, foreman, and the QP is equal to 10. The proposed

approach, level efficient coding, still has excellent performance for I-frame, but the

performance for P-frame is not so good. The proposed approach, run_before efficient

coding, also has good performance in P-frame, and symbols construction provides

 80

much improvement in I-frame. However, zero-skipping approach still has not good

performance. Blessedly, the hardware cost of zero-skipping is acceptable, although

the improvement of throughput is not good enough.

 81

Chapter 5.
Implementation

Results and

Conclusion
5.1.5.1.5.1.5.1. Implementation Results

Figure 5-1 and Figure 5-2 show the encoding throughput of the proposed VLC

group-based codec system with the H.264/AVC standard C code, JM 9.2, and in

Figure 5-1 we encode the picture, mobile.yuv; on the other hand, the picture is

foreman.yuv. The proposed VLC group-based codec system can support H.264/AVC

main profile @5.1, when QP is equal to 28 in Figure 5-1, and Figure 5-2. Table 5-1

shows the average encoding cycles per MB in the proposed design.

QP mobile foreman

10 368 329

12 353 292

16 320 226

20 278 156

24 227 102

28 165 69

32 114 50

36 86 35

40 68 23

average 220 142

Table 5-1 : The average encoding cycles per MB in the proposed design

 82

Figure 5-1 : The encoding throughput of proposed design running mobile.yuv

Figure 5-2 : The encoding throughput of proposed design running foreman.yuv

 83

Figure 5-3 : The decoding throughput of proposed design running mobile.yuv

Figure 5-4 : The decoding throughput of proposed design running foreman.yuv

 84

Figure 5-3 and Figure 5-4 show the encoding throughput of the proposed VLC

group-based codec system, and in Figure 5-3 we decode mobile.yuv, and foreman.yuv

in Figure 5-4. Usually, compared to the decoding throughput, we often consider

I-frame of a decoded picture. In Figure 5-3, the decoding throughput of I-frame can

reach the standard of H.264/AVC main profile @5.0 when QP is 32 and in Figure 5-4

the proposed VLC codec system can meet that when QP is 28. Therefore, the

proposed VLC codec system can support H.264/AVC main profile @5.0.

 Chien[2] Chen [1] Yu[5] Proposed

Technology 0.18um 0.18um 0.18um 0.13um

Gate Count 9724 17635 13192 20357

Clock Frequency 125 MHz 100 MHz 125 MHz 125 MHz

Encoding/Decoding Encoding Encoding Decoding

Decoding : 8554

Encoding : 5519

Shared 6284

Target Format
HD1080

30fps

HD 1080

30fps

Main Profile

@5.0

Main Profile

@5.0

Table 5-2 : Comparison of the proposed design with others

In implementing the proposed CAVLC codec system, we performed logic

synthesis on the proposed design according to a 0.13um CMOS technology. The

comparison of the proposed design with other is shown in Table 5-1. Design [1]

contains a bitstream packer which packs the codewords produced by symbol encoders,

the packing of bitstream headers and Exp-Golomb.

In MPEG-2, the only difference of the throughput from the conventional

group-based VLC codec design is the decoding procedure, because we have to access

the symbol group memory when decoding a MPEG-2 symbol in our proposed design.

However, under well pipelined architecture, such difference is not obvious. Besides,

the encoding procedures in the proposed design have the same steps as the

conventional group-based VLC codec design, so of course the throughput is the same

 85

as the conventional one. The simulation results are shown in Table 5-3. We can see the

average symbol rate of encoding process is 99.98 Msps at 100 MHz-clock rate and the

average symbol rate of decoding process is 99.8 Msps at the same clock rate. Some

overheads are introduced due to stalls of the bitstream FIFOs.

 image: (4:2:2) @

 1920 X 1080

simulation

results
of bitstream (bit) 3439392 1912640

of symbols 590302 252817

Encoding cycle 590348 252864

Decoding cycle 591484 253323

Table 5-3 : Simulation results based on HDTV systems (I-frame) in MPEG-2

5.2.5.2.5.2.5.2. Conclusion
In this thesis, we propose one low power and hardware cost VLC decoder for dual

standards, MPEG-2 and H.264/AVC. Compared to [4], we reduce 30% hardware cost

in H.264/AVC CAVLD. The hardware cost of the proposed dual-standard VLD is

7683 gate-count and the power is 1.719 mW for MPEG-2, 1.302 mW for H.264/AVC

baseline@3.0 I-frame, and 1.376 mW for H.264/AVC baseline@3.0 P-frame at 100

MHz.

Besides, we proposed another group-based VLC codec system for dual standards,

MPEG-2 and H.264/AVC. According the group-based, level efficient coding,

run_before efficient coding, the proposed symbols construction, and zero-skipping,

we design a VLC codec system which can support H.264/AVC main profile @5.0

with 20357 gate counts at 100 MHz. Each proposed method can improve the

percentage of throughput shown in Table 5-4 and Table 5-5. Compared to the

 86

conventional VLC group-based VLC codec system, the proposed design reduce 16%

memory usage.

proposed method I-frame P-frame frame

level efficient coding 40% 17% 29%

run_before efficient coding 4% 12% 8%

symbols construction 14% 12% 13%

zero skipping 4% 5% 4%

Table 5-4 : Throughput improvement of each proposed method, foreman QP = 10

proposed method I-frame P-frame frame

level efficient coding 27% 5% 22%

run_before efficient coding 6% 12% 7.5%

symbols construction 14% 5% 12%

zero skipping 4% 3% 4%

Table 5-5 : Throughput improvement of each proposed method, mobile QP = 28

5.3.5.3.5.3.5.3. Future Work
The hardware cost is a problem for the proposed group-based VLC codec design,

because under such performance in throughput the hardware cost is not efficient

enough. Therefore, hardware cost reduction can be a target to make effort. Besides,

the power issue is always the problem of the group-based design. How to reduce the

power consumption of the proposed group-based VLC codec design is another point.

Perhaps, we can solve this problem with memory hierarchy, because the codewords of

VLC tables are the representation of the occurring probabilities.

On the other hand, the mobile devices are used generally. In the process of the

wireless communication, the problem of receiving error bitstream due to the noise is

serious. It will result in the error blocks decoded, and the picture decoded maybe has

mosaics. Therefore, to develop the error resilience approaches very important.

 87

Reference
[1] T. C. Chen, Y. W. Huang, C. Y. Tsai, B. Y. Hsieh, and L. G. Chen,

“Dual-block-pipelined VLSI architecture of entropy coding for H.264/AVC baseline

profile“, Proc. International Symposium on VLSI Design, Automation and Test

(VLSI-DAT), pp. 271-274, 2005.

[2] C. D. Chien, K. P. Lu, Y. H. Shih, and J. I. Guo “A High Performance CAVLC

Encoder Design for MPEG-4 AVC/H.264 Video Coding Applications”, in Proc.

ISCAS, 2006.

[3] Wu Di, Gao Wen, Hu Mingzeng, and Ji Zhenzhou, “A VLSI Architecture Design

of CAVLC Decoder” Proc. 5th International Conference on ASIC, Vol. 2 pp. 962-965,

21-24 Oct. 2003..

[4] H. C. Chang, C. C. Lin, J. I. Guo, “A Novel Low-Cost High-Performance VLSI

Architecture for MPEG AVC/H.264 CAVLC Decoding”, in Proc, ISCAS, pp. 6110 –

6113, 2005.

[5] K. S. Yu and T. S. Chang “A Zero-Skipping Multi-symbol CAVLC Decoder for

MPEG-4 AVC/H.264” in Proc. , ISCAS, 2006

[6] B. J. Shieh, Y. S. Lee, C. Y. Lee, “A New Approach of Group-Based VLC Codec

System”, in Proc. , ISCAS, Vol. 4, pp. 609 - 612, 28-31 May 2000.

[7] B. J. Shieh, Y. S. Lee, C. Y. Lee, “A New Approach of Group-Based VLC Codec

System with Full Table Programmability”, in Proc. , ISCAS, Vol. 2, pp. 210 – 221,

Feb 2001.

[8] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, K. C. Hou, J. Y. Yang and C. Y. Lee,

“An 865-uW H.264/AVC Video Decoder for Mobile Applications”, in Proc. ASSCC,

2005.

 88

[9] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, K. C. Hou, J. Y. Yang and C. Y. Lee,

“A 125-uW, Fully Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile

Applications”, in Proc. ISSCC, 2006.

[10] Joint Video Team, Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC,

May 2003.

簡 歷

姓 名：楊俊彥

出 生 地：台灣省高雄市

出 生 日 期：民國七十一年五月二十九日

學歷：

� 2004 年 9 月~2006 年 7 月 國立交通大學電子研究所系統組碩士班

� 2000 年 9 月~2004 年 7 月 國立交通大學電子工程學系

� 1997 年 9 月~2000 年 6 月 高雄市立高雄高級中學

