ot B DAL B BT RE B 2 %[5

Context Adaptive Variable Length Coding of Dual
Standards for Digital TV

Bt NEETRERT R ERET RE R MG

FERE Ty Ry 2HE gL

&

G me ! FAAPFT IR R ERET RERRFBLFERBELL
SnfRrg o FIt o IR A & SfRmihirit o AP - BT BB R 2 Bk
fom B 2 Fd BT SN2 RIRGIRS A BRI T R AR fREE
B RIS B 5 MPEG-211 25H.264IAVC: yU— 3% 11 2 33 0 1 5) 42
MG -

£F TR ASEEE F A 5o SR T s A e 5 A A 2
FREBRGABEFE AT AATRN DT RERGIEBE f g HERES
ABAFEZ N APEN TR TG RT L SfEB TR E T L SR P
PSRN R FRR YA PR OT RERBEBR L E B
d LAl A SRR T R R R SR fRAS kAL S LT PR g
EOfRAS R TR A 0D i o IRt 0 - LR AR 578 5T H.264/AVC

SR IR L LN

Context Adaptive Variable Length Coding of Dual

Sandardsfor Digital TV Applications.

Student : Jiun-Yan Yang Advis@r: Chen-Yi Lee

College of Electric & Computer Engineering

National Chiao Tung University

Abstract

In this dissertation, first we will research, thetieres of CAVLC which is based
on Huffman coding. Therefore, based .on the. featofétuffman coding, we present a
VLC decoder for dual standards, MPEG-2 and H.26@8AWith the PZTP and tables
realization with arithmetic method. The proposedsigie reduces the power
consumption and the hardware cost.

Again, from the system view and the requirementhef throughput, we use the
improved group-based VLC codec algorithm to realize proposed VLC codec
system. In addition to group-based algorithm, wesent other approaches which are
level efficient coding, run_before efficient codjngymbols construction and
run_before zero-skipping used in the proposed Vb@ec design. With the parallel
input bitstream, the proposed VLC codec systemesaatute the real time encoding
and decoding based on the proposed approachesfdieerthe presented design can

satisfy the requirement of the throughput specifieel.264/AVC main profile.

Acknowledgments

This dissertation could not have been written withBrof. Chen-Yi Lee who not
only served as my supervisor-but-also encouragddchallenged me throughout my
academic program. He and the group leader, Mr.Mgr Liu patiently guided me
through the dissertation process, never accepésg than my best efforts. Besides,
Yi-Hong Huang and Kang-Cheng Hou gave me precialvicas through this work,

and | thank them all.

Contents

Chapter 1. IntroducCtionccccceveveeiiiirieiiiieeeece e 1
1.1. Overview of H.264/AVC SYSIEMccooiiiiiiiceeeeieee e 1
1.2. CAVLC AIGOItRM ..o 4
1.2.1. HUFfMAN COING ..oeviiiiiiiiiiieee e 4
1.2.2. Context Adaptive Variable Length Coding.....ccceevviiiiiiiinnninnnnn. 6

1.3. Designs of CAVLC Encoders and Decoders.....mmmccveeviiiiieeeeiiiiiineennn 8

1.3.1. Designs of CAVLC ENCOUEISuuuuuiiiiiiiieeeeeeiiiiiienee e 8
1.3.2. Designs of CAVLE DECOURIS L. ..uuuuuiiiiiiieeeeeeiiiiiiiene e 9
1.4, MOUIVALION ... it s Tttt e e e e 10
1.5. Organization of This ThESIS i 2.1
Chapter 2. A Low Power VL C decoder design............... 13
2.1. Overview of CAVLC Encoder and Decodercccccuvvrviiiiiiiiiiiiieneeeeenn. 13
2.1.1. ENcoding ProCess FIOW...........coooiiiiiitmmmmmmn oot 13
2.1.2. Decoding ProCess FIOWcccoooiiiiiiis e 15
2.2. Overview of the Proposed ArchiteCture ... eeeeeeiiiiiiiiiiiiinnieeeeeeeeenn, 16
2.3. Table Partitioncccoiiiiiiiiiie e ieeeeee et e e e e e 18
2.4. Table Realization with Arithmetic Method ... 21
2.4.1. NUM_FLC of coeff_tOKeNcoooiiiiiiiiiii e 21

2.4.2. LeVel DECOAINGuuuuuuiiiiie ettt e e e e 22

2.5, SUMMAIY ..ot mmmmmm e e e e e e e e e e e e et e et e e et b e e b b eeneee s 25

Chapter 3. A VLC Codec System for dual standards...... 29
3.1. The Architecture of the Proposed VLC Codec System..........cccceeeeeeennnn. 30
3.2. Conventional Group-based VLC Codec System.....cc......ccooevvvviiiiiinnnns 35
3.2.1. Definition of Codeword GrouUpsccoooeviccceeeeeeeeiiiiiieaneee e 35
3.2.2. Intra-Group Decoding Procedure.............ccceeeeveviiiiiiiiiiiineeeeeennn 36
3.2.3. Group-searching SChemeoooiiiimmmmmmeeii e 38
3.3. The Proposed Group-Based VLC Encoding and Decoding................. 43
3.3.1. The Definition of Decoding Codeword Groups...........cccceeeeeerne 43
3.3.2. The Definition of the"Encoding Symbol Groupsccc.eeeeeee... 46
3.3.3. Intra-Group Decoding Procedure.............ccceeeeeeiiiiiiiiiiiiinieeeeennn 48
3.3.4. Intra-Group Encoding Procedure............ocoeeeeiviiiiiiieiiiinieee e 53

3.3.5. Decoding Group-Searching Scheme and overall ghaged

0ECOUING PrOCESSES.....civiiiiiieeieeeite s cmmmmmmr e e e e e e et e e e e e e eaaaa e e e e e eessanan 55

3.3.6. Encoding Group-Searching Scheme and overall ghaged

JECOAING PrOCESSES.....cciiieeeeeieieeeeees o s e s e e e e e e e eeaaeeeeeeeasennnsnnnnnaaan 60

3.3.7. Group-Based VLC Coded System Architecture64

3.4, SUMMAIY ..ottt mmmmmm e e e e e e e e e e e et e e e e eaeeeeb e eeneee s 67

Chapter 4. Optimization of the Proposed VL C Codec

\Y

4.1, EffiCient COOING ..c.euvieiiiiiiiiiie e e e e e e e e e e eeeeeeeeeeennnnnaas 69
4.1.1. Level Efficient COAING..........uuuuuumm e e e e e e e e eeeeeeeeeeneens 70
4.1.2. Run_before Efficient CodiNg...........cooiiiemmmeeeeiiiiiiicieeee e 74
4.2. Zero skipping and proposed symbols constructor.................cccceevvvvvnnnns 76
4.3, SUMIMAIY .eiiiiiiiiiiiiiiiae e e e e e e e e e e e e e e e e e et e eeetaessbbn e e s e e e e e aaeaaaeaaaaaees 79
Chapter 5. | mplementation Results and Conclusion 81
5.1. Implementation RESUILS..........cooiiiiiiiiiiieeee e 81
5.2. CONCIUSION.....cooiiii Bttt ettt e e e e e e e e 85
5.3. FULUIE WOTK.........o e it ssfaiemmmm s el eeeee e 86
REFEIENCE. ... i e e 87

\Y

List of Figures

Figure 1-1 : The block diagram of H.264/AVC encader.............ccoovvvevviiiviiinnnnnnnnn 1
Figure 1-2 : The block diagram of H.264/AVC decader.............ccevvvvveevvvvrnnnninnnnn. 2
Figure 1-3 : An example of VLC code CONStruCtiQN............ccevveeeiieeeeiiiiiiiiiieiinns 5.
Figure 1-4 : An example of equivalent Huffman tréasFigure 1-3........ccccceeeveeeeenn. 6
Figure 1-5 : An example of CAVLC code CONStruCtiQn...........cooevvvvvveeeiiiviinnnnnnnnnn. 7
Figure 2-1 : The encoding process flow of CAVLC...........vviiiiiiiiiiiiieeeeeeeeeeeeiiiiens 13
Figure 2-2 : An example of CAVLC coefficients SCaMN..............coevvvvviviivinnninnnnnnn. 14
Figure 2-3 : How to calculate the value of NCooooo.oooorriiieii e, 14
Figure 2-4 : The decoding process Of CAVLC .. eiiiiiiiiiiiiiiiicciee e 15.
Figure 2-5 : Overview of the proposed low poweh#sctureovvvvviiieennnnnn. 17
Figure 2-6 : An example of proposed. tablepartition...............ccccceeiiiiiiiinennnnnn. 18.
Figure 2-7 : The PZTP VLC decoder architectureasft tokencccoeevveenns 19
Figure 2-8 : An example of NUM_FLC i i 21
Figure 2-9 : The architecture of proposed NUM_FLC............cccovrviriiiiiiiiciinneenn. 22
Figure 2-10 : Algorithm of level decodinguuveeeiiiiiiiiiiiieeeeees 23
Figure 2-11 : The proposed architecture of levebd@gcccoevvvvrririiiininnnns 23
Figure 2-12 : The throughput of foreman.yuv witk ffroposed VLD 25
Figure 2-13 : The throughput of mobile.yuv with gv®posed VLD......................... 25
Figure 3-1 : The architecture of our proposed SPSIE............uuevriiiiiiiiieeeeiieeeeeeee. 9.2

Figure 3-2 : The usage of memory of CABAD in ounpmosed H.264/AVC decoder 30
Figure 3-3 : Block diagram of the proposed VLC andesigncceeevvvveveeveiinnnnns 31
Figure 3-4 : Example of VLC table and codeword @®u...........cccoeeeeeeeeeeeiiieeeninnnns 36

Figure 3-5 : Example of intra-group symbol memorgpping and group information

Vii

Figure 3-6 : Process of decoding a Symbol.. .o eeeeeeieieiiiieeeiiiiiieeeeeiiiiiiinnnnn. 40
Figure 3-7 : Process of encoding a symbol address.............vveiiiiiiiiiieeeeeenn. 40.
Figure 3-8 : Block diagram of conventional grouséead VLC decoder architecture.41
Figure 3-9 : An example of intra-group memory mag group information............ 49
Figure 3-10 : An example of the special case dbslgngth...............oooeeiiiiiiiiiiinn, 49
Figure 3-11 : An example of the complete groupimfationcccceeeeeeeennene. 50
Figure 3-12 : An example of intra-group codewordnmey map and group
INFOMMALION ... e 54
Figure 3-13 : CAVLC decoding processes and cornedipg examples.................... 57
Figure 3-14 : The memory usage for conventionall®imemory.............ccccceeeennnn. 57
Figure 3-15 : MPEG-2 decoding processes and caynepg examples 59
Figure 3-16 : CAVLC encoding processes and.corneding examples.................... 62
Figure 3-17 : MPEG-2 encoding.processes and careipg examples 63
Figure 3-18 : Block diagram of the-proposed VLC eodsystem for MPEG
r=10] o [032 11 0] o 1 J N e SRR UURPPPRP 64
Figure 3-19 : Architecture of codeword group addm@sneratorccceeeeeeeeeeeee. 65
Figure 3-20 : Architecture of symbol address getoera.............ccooveeeeeeeiiiiiiieeeiiinnn, 66
Figure 3-21 : Architecture of symbol group addrgsseratorccccvvvvveeennnnn. 66
Figure 3-22 : Architecture of codeword address gEIDE............ccooeeeeeeeeeiiiiiiiiiiiiinns 67
Figure 3-23 : Formats of all Kinds of MEeMONES.ccccevvvviieiiieie e, 67
Figure 3-24 : The memory usage of each memory............cccceeiiiiiiiiiii, 68
Figure 4-1 : Algorithm of level encoding and decaagli...................oevvviciiiieiieeenennnn. 70
Figure 4-2 : Calculations of level encoding andaBiegccoeeeeieiiiiiiiiiiiiiinnns 71
Figure 4-3 : Level decoding procedures and theesponding examples.................. 72
Figure 4-4 : Level encoding procedures and theesponding examples.................. 72
Figure 4-5 : Architecture of level decoding/enc@in............ccccceeeiiiieeiieeeeeenenennee. 3.7

viii

Figure 4-6 : The numerical calculations of run_Ilbefencoding and decoding 75

Figure 4-7 : Architecture of run_before codec Syste...........ccccceeiiiiiieiiiieeeeeeeee, 5.7
Figure 4-8 : An example of decoding proceduresAVICCooovvvvvvvieiiinnnnnnn. 76
Figure 4-9 : The proposed symbols constructiorekample in Figure 4-8............... 77

Figure 4-10 : An example of the proposed symboistaction with zero-skipping 78

Figure 4-11 : The run_before table mapping to zero before............cccevvvvvvvvnnnnnnnn 78

List of Tables

Table 1-1:

Table 1-2 :

Table 2-1

Table 2-2

Table 2-3 :

Table 2-4

Table 3-1:

Table 3-2:

Table 3-3

Table 3-4 :

Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 3-9

Table 3-10:

Table 3-11 :

Table 3-12

Table 3-13:

Table 3-14

Table 3-15:

Table 3-16:

Table 4-1 :

The basic profiles of H.264/AVC startfar...............ccccoeeeieieeeeiinenn, 3...
Maximum throughput requirement of H/284Z main profile................. 9
: The result of encoding the exampleiguie 2-2..............ooovvivviiviiiinnnnn. 15
: An example of CAVLC decoding from tlesult of Table 2-1................. 16
Hardware cost evaluation of proposedpgower design.............ccccceeunn. 26
: The post layout power consumption ul@deéBum CMOS Tech.............. 27
Example of inter-group symbol memonpmiag.........cccccceeeeeeenieeeeeeeeenn. 38
Group information for Table 3-1 .. eevvveeiiiiiiiiei e 38

: An example of CAVLC code and codewam@b@ingeeeveianeennnn. 43

An example of Huffman code and codewgnalping in MPEG-2 table
... 45

: An example of MPEG-2 encoding Ssymbougssccccoeeeeeeeeeeennn. 46

: The symbol groups forMPEG=2 VLC tables..............cccvviiiiiiiiiinnnnnns 47

: The symbol groups of CAVLC coeff_token............ovvvvviiiiiiiiiiieneennnn, 48

: The codeword groups of MPEG-2.........ccoiiiiiiiiiiiiiiien 51.

: The codeword groups of CAVLC coeff_toke...........ccceevvvviveivveiiiiinnnns 53
CAVLC PZGS table and intra-/inter-gsg@ymbol memory map........... 56
CAVLC group information of the coditakle shown in Table 3-10......56

: An example of MPEG-2 symbol group ifationcccceeeeeeeeeeee. 58
MPEG-2 PZGS table and intra-/interagreaymbol memory map......... 59

: An example of MPEG-2 group informatadrthe coding table.............. 59
MPEG-2 symbol groups and group infaroma...............cccceeeeeeeeeeeeeee. 60
CAVLC coeff_token symbol groups anduyr information................... 61

Table for run_beforeceieei 74

Table 4-2 : Throughput improvement of each propasethod, foreman QP = 10...79

Table 4-3 : Throughput improvement of each propasethod, mobile QP =2879

xi

Chapter 1.
Introduction

1.1. Overview of H.264/AVC System

+ D x
Fi 4 r-/)—n» T Q T Reorder » Enmcggg—h MAL

F

{curmanty J
4 1T ME
. [J Mo Inter
{referancs)
(1 2r2 previously e P
encociad 1
snceded framas) cm?:—e | ,| Intra Intra
| prediction prediction
'
+
Fy e Filter T i)

=
3
'\n\
+ 7o

(reconstctsd)

Figure 1-1 : The block diagram of H.264/AVC encoder
Figure 1-1 shows the block diagram of H.264/AVC ader. When one frame is
inputted, first the encoder will do prediction andoose intra or inter prediction
according to the input frame type. After the prédrt, the original input will subtract
the predicted result to get residual data and #mdual data will experience
discrete-time cosine transform (DCT) and quantiratito compress the data
transmitted. Finally, entropy encoder will encotte DCT coefficients to bitstream
and send the bitstream. Another step to produgeisFto make the reference for
motion estimation (ME), because in the H.264/AVCaler this step is to generate

the encoded frame. If we want to get the same tr@suhe decoder, we have to use
1

the same reference both in the encoder and decblderefore, we use f1 as the

reference for ME not .

o » MG

{rafarsnos)

{1 ar 2 previously

eneodext framee) Intra
prediction
)
X
immn';% | Filter 4 T Q| Reorcler |e Egggg’g

Figure 1-2 : The block diagram of H.264/AVC decoder

Figure 1-2 shows the block diagram of H.264/AVC atéer. As we can see, the
architecture of H.264/AVC decoder is much simpldérart encoder, because
H.264/AVC encoder also has to do decoding prockss$1.264/AVC decoder, the
input bitstream first is decoded oy entropy decoaled the outputs of the entropy
decoder is DCT coefficients.:Through de-quantizatmd inverse DCT (IDCT), we
can fetch the residual data and finallywe adddsedual data and the result of MC or
intra prediction to get one frame.

Table 1-1 shows the profiles of H.264/AVC standartiese three profiles are
basic profiles of H.264/AVC standard. Application$ H.264/AVC cover digital
storage media, television broadcasting, and res-ttommunications. For example,
baseline profile targets applications of low bittea such as multimedia
communication and applies portable multimedia playdecause of its low
computation complexity; main profile meets the dathaf HDTV due to backup of
interlaced content; extended profile contains enesilient tools for the IPTV or
multimedia on demand (MOD). However, in those pesfismall size of blocks and
fixed quantization matrix can’t totally hold the age information in high frequency,
so H.264/AVC adds Fidelity Range Extensions whiohtains high profile, high 10
profile, high 4:2:2 profile, and high 4:4:4 profilkased on main profile for high

2

«—— NAL

definition multimedia applications.

Coding Profiles
Tools Baseline Main Extended
| slice O O O
P slice O O O
CAVLC O O O
Slice Group
and Adaptive O O
Slice Ordering
Redundant Slice O O
Weighted Prediction O O
Interlace O
CABAC O
Sl and SP slice O
Data Partition O
B slice O O

Table 1-1 : The basic profiles, of H.264/AVC startar
From Table 1-1, we can see there are two codingoaphes for entropy coding,
one is context adaptive variahle length'coding #fwedother is context adaptive binary
arithmetical coding. Although CABAC has better coegsion rate than CAVLC,
CABAC has extremely more complex structure witchmits the throughput of
CABAC than CAVLC. Besides, CAVLC is suitable forl gdrofiles in H.264/AVC
system and it has more flexibility for differentpdjsations. Therefore, we will further

discuss CAVLC in the following sections.

1.2. CAVLC Algorithm

1.2.1. Huffman Coding

Huffman coding uses a specific method for choosimgrepresentations for each
symbol, resulting in a prefix-free code (that is, it string of any symbol is a prefix
of the bit string of any other symbol) that expessghe most common characters in
the shortest way possible. It has been proven lthdfman coding is the most
effective compression method of this type; i.eottter mapping of source symbols to
strings of bits will produce a smaller output whba actual symbol frequencies agree
with those used to create the code. However, &etaf symbols whose cardinality is
a power of two and a uniform probability distribarti Huffman coding is equivalent
to simple binary block encoding. ArHuffman'code dam built in the following
manner:

» Rank all symbols in order:of probability of occurce.

» Successively combine the two symbols of the lovpesbability to form a
new composite symbol; eventually we will build axdy tree where each
node is the probability of all nodes beneath it.

» Trace a path to each leaf, noticing the directibeaeh node and define the
code for each tracing direction. For example, arépresents following the
left child and a ‘1’ represents following the rigtttild.

An example of building a Huffman tree using binaoge is shown in Figure 1-3.
We can see that there are 5 symbols, namely SA,S&B,SD, and SE. Occurring
probability for each symbol is 0.5, 0.25, 0.12506825, and 0.0625. From the
probability of the source symbols, the two smalf@stbabilities are grouped together

and their sum is the substituted probability repnéieg for the original smallest two.

If the branch traces up, it is given the binarye@d Otherwise, it is given the binary

code 1. According to the label (0 or 1) of eachnbla we can obtain the variable

length codeword of every symbol.

SE Symbol Probability | Codeword
0.0625
sD SA 0.5 1
0.0625
SB 0.25 01
SC 0.125 001
SD 0.0625 0001
SE 0.0625 0000

Average bits = 0.5x1 + 0.25x2 + 0.125x3 +
0.0625x4 + 0.0625x4
=1.875

N Up-tracing is defined as 0.

\Down-tracing is defined as 1.

Figure 1-3 + An example-of \V\L. C code construction

For a given frequency distribution, thereare mangsible Huffman codes, but
the total compressed length will be the same. Wesea Figure 1-4 for this situation.
The example in Figure 1-3 can also be representesgt\eral alternative binary trees.
It is possible to define a ‘canonical’ Huffman tresnd that is, pick one of these
alternative trees. Such a canonical tree can tleerepresented very compactly, by
transmitting only the bit length of each code. Tt@ishnique is used in most archives
such as PKZIP, LHA, ZOO, ARJ, etc. Huffman coding optimal when the
probability of each input symbol is a power of twRrefix-free codes tend to have
slight inefficiency on small alphabets, where ptabges often fall between powers
of two. Expanding the alphabet size by coalescingtipie symbols into “words”

before Huffman coding can help a bit.

Al
Symbols

Figure 1-4 : An example of equivalent Huffman trémsFigure 1-3

Encoding symbols into bitstream is very simple. \|Wst concatenate the
codewords associated with the symbols. For examipleye want to encode
SA.SB.SE.SD using the lookup table in Figure 1-8,just pick the codewords of SA,
SB, SD, and SE, which are 1,:01,0001;, and 000&n tboncatenate them into
10100000001. If we want to decode 10100000001 badymbols, we just gave to
traverse the binary tree in Figure 1-3 bit by bitoigh branches to leaf nodes. If a
node is encountered, then use‘the rest of bitsttedaraverse from the root of the tree.
Keep traversing until there’s no bit left in thédbieam. Traversing the tree, we can

decode 10100000001 to be SA, SB, SE, and SD.

1.2.2. Context Adaptive Variable Length Coding

Huffman coding is generally used in various multiliaestandards such as MPEG
series and JPEG series. CAVLC also adopts Huffreding as a coding approach but
it adds one skill on Huffman coding base. Thislsgitalled “context adaptive” which
can bring higher compression ratio than traditiolaC. In above section, the way to
calculate the occurring probability of all symbadsunder all cases. However, some
symbols usually appear under some conditions andorse appear under other
conditions. Therefore, we will build different Hafin codes of one symbol by the

6

occurring probabilities under different conditions. CAVLC can be built in the
following steps:

» Separate different conditions and get the occurqmgbabilities of all
symbols under all conditions.

» Rank all symbols in order of probability of occurce in each condition.

» Successively combine the two symbols of the lovpesbability to form a
new composite symbol; eventually we will build axdy tree where each
node is the probability of all nodes beneath it.

» Trace a path to each leaf, noticing the directibeaeh node and define the
code for each tracing direction. For example, arépresents following the
left child and a ‘1’ represents following the rigtttild.

In addition to the first step,.the other steps thee same as Huffman code. The

purpose of CAVLC is to divide the occurring preldapiof one symbol in different
condition and we can get better compression raaa traditional VLC. It is sure that

more particular description of probability.can foyinigher code efficiency.

symbol probability | codeword symbol probability | codeword
SA 0.5 1 SA 0.5 1
SB 0.4 01 SC 0.15 010
SC 0.1 00 SE 0.125 011
SD 0 N.A SD 0.125 001
SE 0 N.A SB 0.1 000

sC

01 Average bits = 0.5 x (1x0.5 + 2x0.4 + 2x0.1)

+ 0.5 x (1x0.5 + 3x0.1 + 3x0.15
+ 3x0.125 + 3x0.125)
=1.75

SB
0.4

All
Symbols

All

Symbols

condition 1 condition 2

Figure 1-5 : An example of CAVLC code construction

Figure 1-5 shows an example of CAVLC code consimactThe total occurring
probabilities of all symbols are the same as thamgte of Figure 1-3, so the
occurring probability of condition 1 and conditi@nis both 50%. Under these two
conditions, all symbols have two occurring probiéibd, so we will get two code
tables to map each symbol. As we mentioned, thg distinction between CAVLC
and traditional VLC is the step to divide the cdimlis, and in each condition there is
still Huffman code process. Generally, the way tompare the performance of
different coding approaches is to compare the geenamber of bits. The example of
Figure 1-3 gets that the average number of bils8%5 and here the average number
of bits is 1.75. Although CAVLC has more complexdeaonstruction and more VLC
tables than traditional VLC, we will achieve thegrsficant improvement of

compression rate.

1.3. Designs of CAVLC Encoders and Decoders

1.3.1. Designs of CAVLC Encoders

CAVLC is a lossless coding so the design of CAVL@ader can’t change the
quality of one frame. Therefore, the target of CA/encoder design focuses on the
performance such as throughput and hardware cabte TL.-2 shows the maximum
throughput requirement of H.264/AVC main profileeMel means the layer of each
profile and the range of level in H.264/AVC mairofile is 4 to 5.1. Level 4 is the
basic demand of main profile and this level carpsupHD1080i when the frame rate
is 30 frames per second. From Figure 1-1 we carrebghat the encoding speed of
entropy encoder affects the throughput of the ergystem greatly. For this reason,

the present papers about CAVLC encoder solve thieiggm of throughput.

Level 4 4.1 4.2/Lo 4.2/Hi 5 5.1

MB/sec 245760 245760 491520 522240 58984 983040

Table 1-2 : Maximum throughput requirement of H./284C main profile

The major two parts of CAVLC encoder are coeffiteescanning and symbols
encoding. The direct approach to design a CAVLCodec is to input a set of
coefficients and to do the encoding steps serilBpeating the mentioned steps can
easily get the wanted results. However, the maximumber of input coefficients is
16 and encoding symbols has five steps and neeelscynie at least. If we do it
serially, the throughput of this simple CAVLC eneodshould not meet the
requirement.

One way to solve this problem is to deal with s@agroefficients and encoding
symbols parallel [1], because there is no dependbéertveen encoding symbols of
one block and scanning coefficients of thefollogvbiock. Therefore, we can execute
these two steps parallel and we can impreve thedng throughput.

Another way is to reduce the cycles of encoding sy because each step of
encoding symbols often has multiple cycles. If vad multiple inputs to one step
and this step encodes these inputs in one cycle TBijs method gets better

performance than the above one.

1.3.2. Designs of CAVLC Decoders

The discussion about CAVLC decoder is more tharmoeec because CAVLC
decoder has to handle all the bitstream transmftted H.264/AVC encoder. Great
data variation must result much power consumptionpswer saving of CAVLC
decoder is an important issue. Another major issuéhe throughput of CAVLC
decoder and Table 1-2 shows the throughput reqeméf H.264/AVC main profile.

Because the input bitstream of CAVLC decoder hgseddency on the decoded
9

information, we need some efforts to accelerate dbeoding speed of CAVLC
decoder.

The major part of CAVLC decoder is also VLC tablsd most papers realize
those tables by finite state machine (FSM). Buile ESM according to the codeword
in the VLC tables and looking up these tables gdt the symbols decoded [3]. But
directly using the codeword of VLC tables to buille FSM is not efficient in
hardware cost and throughput. Furthermore, we havenprove the size of FSM.
Separate the VLC tables according the length of dbeéeword and look up the
dividing tables serially and we can build the FSMhwhe same entries as the VLC
tables [4]. This approach achieves lower hardwart and improves the throughput
to support level 4.1. However, if we use some skduch as zero-skipping and
multi-symbol, we can get better'performance:abbetthroughput [5]. Above papers
do not discuss the problem of power consumptionefmake good table partition to
control the table switch, we-canisave-the powersgoption significantly. In fact
many papers proposed many approaches to realizelike RAM-based methods [6],
[7], but present papers about CAVLC decoder on B®M-based methods. In fact,

we can try more approaches to design CAVLC encaddrdecoder.

1.4. Motivation

Recently, human life has been changed greatly bpws multimedia applications
such as cellular phones, digital cameras, DVD agdatl television. But some new
technologies like high-definition television (HDTYV) blue-ray (BD), and
high-definition DVD (HD DVD) appear and will be polar in the future. Therefore,
a novel video compression standard, H.264/AVC, baninvoked for these uses
because of its high compression rate.

For different demands we have to generate diffedenices. Therefore when we

10

design a decoder for mobile devices the most inapoithing is power reduction. The
advent of H.264/AVC provides high compression ratat there is no backward
compatibility to the prevalent MPEG-x and H.264”eo coding standards. MPEG-2
and H.264/AVC processors have been reported at CS$HoOwever, these solutions
used separate modules and only processed a sypgeof video content in each
module. To support different system requirementshsas DVB-H or HD-DVD, a
scalable pipeline is exploited to efficiently intate both MPEG-2 and H.264/AVC in
a single chip. Besides, we think we can do differeable partition from that
mentioned above and add other approaches to get pmver reduction. Therefore,
we propose a VLD with new table partition and malsome tables with arithmetic
method.

Furthermore, when our entire system [8],.[9] wamiptovide higher throughput
for some applications such as HD 1080, we sufierafitropy decoder can’'t meet the
throughput requirements of H.264/AVC_-main profil®e have to generate a VLD
which can support MPEG-2 and H.264/AVC with enotiytoughput, and if this VLD
can be integrated with context adaptive binaryhardtic decoder (CABAD), that is
all we need. We find that CABAD has to use much $Rfar context model and this
is a direction to integrate these two entropy decedThese three decoders, CAVLD,
MPEG-2 VLD, and CABAD, in our system should not Wat the same time, so we
have to make the SRAM with programmability. Thigpagach has been proposed [6],
[7], but the approach to divide the groups is rf@itient about memory usage and
group mapping. From Figure 1-1 and Figure 1-2, \wm see that the H.264/AVC
encoder also has most parts of H.264/AVC decotiereladd entropy decoder to the
decoding part of the encoder, that is complete ##IR&6C decoder. Therefore, we
propose a new group-based VLC codec system addifigieet-coding and

zero-skipping to improve the throughput and memusage.
11

1.5. Organization of This Thesis

In this thesis, we propose a new low power, tahitifpon VLD for dual standards,
a new group-based, high throughput VLC codec systémfull programmability for
dual standards, and a new soft VLD to handle thereresilient problem. The
organization of this thesis is as follows. The @w@v of CAVLC and the new low
power, table partition VLD for dual standards iseggnted in Chapter 2. The
algorithm and architectures of the proposed groaget, high throughput VLC codec
system with full programmability for dual standa@® described in Chapter 3. The
proposed error resilient CAVLD is introduced in @tex 4. Finally, conclusions and

future works are made in Chapter 5.

12

Chapter 2.
A Low Power VLC
decoder design

2.1. Overview of CAVLC Encoder and Decoder

2.1.1. Encoding Process Flow

‘ J\ Coefficients J\ Coefi_Toker J\ Ellingionee Level J\ Total zeros J\ Run before Bit streams
V] 2 w4 i)

Scanning sign flag

Figure 2-1 : The encading process flow of CAVLC

Figure 2-8 shows the encoding process flow andi¢tailed steps are as follows.

» When receiving a 2x2 or 4x4 block, the proceduresadnning coefficients
will record the symbols to be encoded. There axesginbols which are TotalCoeff,
TrailingOnes, trailing_ones_sign_flag, level, totaros, and run_before. TotalCoeff
is the total number of non-zero coefficients; TirgOnes is the number of trailing +/-
1 and its value should be smaller than four, lés¢he value of non-zero coefficient;
total_zeros is the number of all zeros before tast Inon-zero coefficient in
zigzag-scan order; run_before is the number of ¢zdyefore last one non-zero
coefficient in zigzag-scan order. Figure 2-2 showse results derived in

coefficients-scanning procedure.

13

o(0|0]|O -0
Original block Zigzag scar Arrange the coefficients in zigzag order Encode the coefficients in reverse order
TotalCoeff TrailingOnes tralllng_:;\?s_&gn level total_zeros run_before
5 3 +. . °3 3 c00°

Figure 2-2 : An example of CAVLC coefficients scamn
» Encode TotalCoeff and TrailingOnes (coeff_tokenhefie are 5 choice of
look-up table to use for encoding coeff token. Tmeice of table depends on a

variable named nC and Figure 2-3 shows how to tkethe value of nC.

The default value of nC is 0
If the CAVLC parsing process is invoked for.ChormaDCLevel* nC is set equal tc -1

If both mbAddrA and mbAddrB are available | the variable nC isiset to (nA +nB + 1)/ 2

If mbAddrA or mbAddrB is not available the variable nC is set equal to nB or nA

definition of nC

N

Block
A / The current block definition of mbAddrA and mbAddrE
)

Block
B mbAddrA is the address of block A; nA is the number of non-zero coefficients.

mbAddrB is the address of block B; nB is the number of non-zero coefficients.

Figure 2-3 : How to calculate the value of nC
» Encode the sign of each trailing one in reverseiord
» Encode level in reverse order and there are 7 Véldles to choose from,
Level VLCO to Level VLC6.
» Encode total_zeros.
» Encode run_before.
Table 2-1 lists the result of encoding the exampléigure 2-2 and the transmitted

bitstream for this block is 00001000111001011110110

14

Element Value Code

coeff_token TotalCoeff = 5, TrailingOnes =3 000010
T1 sign (4) + 0

T1 sign (3) - 1

T1 sign (2) - 1

Level (1) +1 1

Level (0) +3 0010
total_zeros 3 111
run_before (4) zerosLeft = 3; run_before = 1 10
run_before (3) zerosLeft = 2; run_before = 0 1
run_before (2) zerosLeft = 2; run before =0 1
run_before (1) zeroslLeft = 2; run_before.= 1 01
run_before (0) zerosLeft = 1; run_before=1 Noeoghuired; last coefficient

Table 2-1 : The result of encoding the exampleigufe 2-2

2.1.2. Decoding Process Flow

Bit streams |:‘l> Coefi_Token f‘\/ Tr::gggﬂgges f‘\/ Level f‘\/ Total zeros f‘\/ Run before

Figure 2-4 : The decoding process of CAVLC
Figure 2-4 shows the decoding process flow of CAVAi@el we can see that the
decoding procedures are similar to the encodingsst@he only difference is
decoding process does not do coefficients scanamgthe other steps do decoding
bitstream instead of encoding symbols. Table 2-@wshan example of CAVLC

decoding and the final output array is300, 1, -1, -1, 0, 1.

15

Code Element Value Output array

0000100 coeff_token TotalCoeff = 5, TrailingOne8 = Empty

0 T1 sign + 1

1 T1 sign - -1,1

1 T1 sign - -1-1,1

1 level +1 1-1,-1,1
0010 level +3 A,-1,-11
111 total_zeros 3 3,1,-1,-1,1

10 run_before 1 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1
01 run_before 1 3,0,1,-1,-1,0,1

Table 2-2 : An example.of CAVEC decoding-from tlesult of Table 2-1

2.2. Overview of the Proposed Architecture

Figure 2-5 shows the functional diagram of the psmual architecture of the
CAVLC decoder. As introduced in section 2.1.2, ¢hare five major parts to decode
the symbols. In order to support MPEG-2 VLC decgdmwe construct the MPEG-2
VLC tables in coeff_token part, because the twoodewy procedures have similar
decoding manner. This part will be described ieraection. The prefix-zero buffer
and the bitstream buffer are used for the tableitipsr and table realization with
arithmetic method. The coeffNum is to calculate tight position in the coefficient
buffer of the present level in level buffer. Fomgr reduction issue, all function units
are controlled by enable signals, because they matsvork at the same time. There

is also a hold signal for prefix-zero buffer to a/aounting the zeros not belong to

16

prefix zeros. If there is no enable signal or hsilghal to control the function unit, it

should result the power dissipation.

39

o : ﬁ
= +
bitstream buffer [11:0] *
| prefix-zero buffer |l«p—
! [
| 3
=3 o
I Sl |2 | = |= |X
| lo. |(‘: 3@ |2 E
, 2l |8 |22 |3
—_—] — — ___J__ _— — —_ — — g a II\) -h m Q
— - . x
| O N N Enable o 2
_______ T - p— \.__r__.4 —_—- = _— =N N -
v v v i ! | ! | N |
| |
coeff_token | I | I ! I !
| | | | |
& | | ! ! | ! |
MPEG-2 | | | | | : |
VLC tabls | | Lo L P
v v | | | | | controller
| | | | |
| |
trailing_one | ! | I |
s_sign_flag i | i ! i
|]
+ Y + i : | A A A A
I | 4 4
4= o
level | I | ! : i
| ! | | ! |
| i ! Lo
| v vl vy : I ! |
| | | ! N i
i total_zeros | | : ! : i
i | | I - |
N | | !
: | v Vv v i i :
i i ! !
E i N
i i run_before I ! |
. . |
| | ! : i
[! : : |
| | T : : |
i i ! ! Lo
| [! : : |
: 1 | —_——— .
A4 Y
level buffers run buffers _\l
' Y vy
+
v
coefficients buffers 4—| *
8 coeffNum |«
1 coefficients

Figure 2-5 : Overview of the proposed low powelhéecture

17

2.3. Table Partition

In VLSI design, the efficient method to reduce dyi@power consumption is to
decrease the data switching. However, most desifjtitee CAVLC decoder use FSM
to look up the VLC tables. As long as the inpustréam to access the look-up table
changes frequently, that must cause much poweipdigsn. Besides, the alteration in
large look-up table must dissipate more power tti@nsame one in small look-up
table. Therefore, good table partition will redube size of look-up table and the data

switching to decrease power consumption.

symbol | codeword prefix | suffix
SO 1 0 N.A
S10 |0 10 1 0
S11 0] 11 1
S20 00100 0d
S21 00 101 E> : 0f
S22 00 | 110 10
S23 |00 111 11
S30 000 | 100 0d
S31 000 | 101 . 01
S32 000 11 1

Original codeword table table partition
real table entries = 2° table entries = 2° (first access)

= suffix entries (others)

Figure 2-6 : An example of proposed table partition
Figure 2-6 shows an example of the proposed tablgitipn. Although the
original codeword table has only 10 entries, thegést length of the codeword is 6,
so we have to build a look-up table with 32 entf@sthis codeword table by FSM
method. That is, the longest length of the codewdwchinates the entries of the
codeword table not the real entries. However, ifadept the proposed table partition
method to build the look-up table, the entrieshef tirst time to access the table are 4,
and other entries are equal to the relative swfitties. Because this approach divide

the tables according to the prefix zeros, we d¢gbrefix-zero table partition (PZTP).
18

When we access the look-up table with PZTP evegjecyhe searching entries are
much smaller than the original entries. If the lesiglength of the codeword is larger,
the difference between the searching entries wifiHPand the original entries is
greater.
The way to build the look-up table is as follows:
» According to the leading zeros we call prefix, Qutihe first layer of look-up
table like prefix item in Figure 2-6.
> Build the second layer of look-up table by suffpbhieh is the codeword
except the leading zeros and the first 1.
The steps to look up the VLC tables are as follows:
» We count the leading zeros until the first 1 appeand choose the relative
suffix table by prefix.

» We look up the suffix-table by the.input bitstreaand find symbols needed.

@ = » NUN_VLCO
3 m
29 ‘
o N
» NUN_VLC1
. NUN_VLCO
TotalCoeff 4 (,J—» suffix table 0
S -
5 o |_—» NUM_VLC2 -
W g 1—» suffix table 1
4 N § - |
S T
— " o S S [2—» suffix table 2
is_b14 o g » NUM_VLC3 prefix_zero | X
Q N
2 g 3
s g i g
. e a
is_b15 8 —1—» NUN_FLC 4 o
|| a
ol
» Table B14
14
L—» suffix table 14
» Table B15

Figure 2-7 : The PZTP VLC decoder architectureasft token

19

Figure 2-7 shows the PZTP VLC decoder (VLD) arattitee of coeff token.
There are five tables of CAVLD, NUM_VLCO, NUM_VLCINUM VLC2,
NUM_VLC3, and NUM_FLC and the other two tables, [EaB14 and Table B15,
belong to MPEG-2 VLD. The implementation of NUM_F@ll be introduced in the
next section. First, if both the two enable sign@scavic and MPEG-2, are not active,
the entire PZTP VLD will be shut down to avoid tiiynamic power dissipation due
to the data switching. If either of them is actitieg controller (TotalCoeff Decoder &
Table B14 or B15) will open only one of those tabler power issue. Of course, the
two signals should not be active at the same time.

Assume that we are executing H.264/AVC decodingr&Y the present decoding
procedure is coeff token, the enable signal, isccawill not be active at the
beginning. To avoid unnecessary power consumptienset the enable signal to be
active, only when we receive-the first one-of tbeeword or the boundary of prefix.
Therefore, when receiving prefix, enly-accumulaionsumes power. When executing
MPEG-2 VLD, we do the same thing.

From Figure 2-5, we put the value of prefix in prefero buffer. When we begin
receiving suffix of codeword and looking up thefsutable, the value of prefix is
fixed. Therefore, we can consider the output ofipreeros decoder in Figure 2-7 as
an enable signal of the relative suffix table ie fhrocess of looking up the suffix
table. At this time, the searching entries of thére codeword table are equal to the
entries of the suffix table. The most entries c#f€aoken are 8 and those of MPEG-2
VLD are 16.

PZTP takes advantage of the feature of Huffmanrgpdo decrease the data
switching when accessing the look-up table, anchdrdware cost of the VLC tables.
Besides, another advantage is easy to implemengtab zeros and run_before also

adopt this method to implement in the proposed CBYVL
20

2.4. Table Realization with Arithmetic Method

2.4.1. NUM_FLC of coeff_token

The length of all the codeword in this look-up &l 6, and the total entries of
this table are 62. If we build the table by FSM Inet, this idea seems good. However,
if we analyze the relationship between the codevard the symbols, we will find

some arithmetic rules.

TotalCoeff | TrailingOnes codeword TotalCoefi codeword[5 2] | TrailingOnes | codeword[1 0]
[o} [o} 0000 1- 0 000¢ [o} 11
o} 1 0000 0C 0 000C 1 00
1 1 0000 0* 1 000C 1 01
[o} 2 0001 0OC 0 0001 2 0¢
1 2 0001 0° |::> 1 0001 2 01
2 2 0001 1C 2 000 2 10
o} 3 0010 0C 0 0010 3 00
1 3 0010 0° g 001C 3 01
2 3 0010 1C 2 001C 3 10
3 3 0010 1- 3 0010 3 11

Figure 2-8 : An example of NUM_FLC
Figure 2-8 shows an example of NUM_FLC. The Idfi¢as the original table of
NUM_FLC and we can derive the right table aftersgparate the codeword. We can
find the following arithmetic relationship excepietfirst row, and this formula exists
in NUM_FLC distinctly. Although the first row of NM_FLC doesn't fit this rule,

only prefix of the codeword map to the symboils.is 4

Total Coeff =codeword|5:2)+1
TrailingOnes=codeword|1:0]

Figure 2-9 shows the proposed architecture of NUMC.FDue to the power
consideration, we only access this part when weivedhe sixth bit of the codeword.
Based on this method, we can easily change theupdiable into and reduce much

hardware cost and power consumption.
21

codeword[£ 2] codeword[1 (]
enable enable
MUX MUX

S

Jc
4 A A A
—_—>
MUX \, MUX
prefix
—_—>
4

TotalCoeft TrailingOnes

MUX

Figure 2-9 : The architecturerof proposed NUM_FLC

2.4.2. Level Decoding

Basically, level coding is constructed by seven Viables which are VLCO to
VLC6. However, if we implement the level decodethw/LC tables, it costs much
hardware and power. The reason is the longestHesfgtodeword is 28, prefix is 16
and suffix is 12. Even if we use PZTP to constautthe VLC tables of level decoder,
they are still huge VLC tables. For the low powentind, we have to use another
method to realize the level decoder, and here veiment it by arithmetic approach
which algorithm is specified in [10].

Figure 2-10 shows the algorithm of level decodihgfact, suffixLength is to
decide the VLC tables to choose from. Accordinghis algorithm, if we pipeline the
level decoding and suffixLength well, we can use thinimum number of function
units to decode level. However, we can get goodopeance about the power and

hardware cost.

22

level_prefix
levelCode = (level_prefix << suffixLength)
if (suffixLength > 0 || level_prefix >= 14) if (TotalCoeff > 10 && TrailingOnes < 3)
suffixLength = 1
level_suffix else
levelCode += level_suffix suffixLength = 0
}
if (level_prefix == 15 && suffixLength == 0) Decoding level
levelCode += 15
if (first_level && TrailingOnes < 3) if (suffixLength == 0)
levelCode +=2 suffixLength = 1;
if (levelCode % 2 == 0) if (Jlevel| > (3 << (suffixLength - 1)) && suffixLength < 6)
level = (levelCode + 2) >> 1 suffixLength++
else level = (-levelCode - 1) >> 1 level decoding suffixLength
level_prefix = leading Os if (level_prefix == 15)
levelSuffixSize = 12
level_suffix = bitstream [levelSuffixSize-1 : 0] else if (level_prefix == 14 && suffixLength == 0)
levelSuffixSize = 4
else

levelSuffixSize = suffixLength

Figure 2-10 : Algorithm of level decoding

leve _prefix

bitstrean _buffer

0
+ MUX enable
+
. v Te<3
is_level E MU . I
First_level
irsi_level 2
+ e S
Barrel shifter
MUX
+ L

RN
comparator
suffixLength w

‘ J comparator ‘

level_buffer
6

Figure 2-11 : The proposed architecture of levebdéng

23

Figure 2-11 shows the proposed architecture ofl ldeeoding. There are two
major parts, the left part is to calculate theigu#ngth and the right part is to decode
the codeword of level. The gray rectangles repitesiea registers. The size of
level _prefix buffer is 10 bits, bitstream bufferegs12 bits which is shared by all
modules, and suffixLength needs 3 bits to savevtdae. The level_prefix is the
number of leading zeros derived by the leading s@munter shown in Figure 2-5
which is shared by four decoding modules, coeffemklevel, total zeros, and
run_before. The barrel shifter to rearrange thesllgwefix works, only when we
receive the first one of the codeword of level. iBes, it also handles the special case
when level_prefix is 15 and suffixLength is 0. Th&ips us not to add additional 15
to levelCode, so it shortens the critical path e¥el decoding and reduces the
hardware cost. The whole architecture of level dewp is also controlled by an
enable signal which turns off level decoding whea @xecute another procedure.
That inverter is to do the step, (-levelCode - dnd according to 2's complement
-levelCode is equal to (~ levelCode +.1), so thenida, -levelCode — 1, is equal to (~
levelCode + 1 - 1), that is ~levelCode.

The part to calculate suffixLength is also neededneif we implement level
decoding with look-up table. As we mentioned abdkie, method of table searching
depends on suffixLength to choose the correct Vallet, so this part is not omissible
in any approach of level decoding. Therefore, mntgbution is to simplify the VLC

tables with arithmetic method, and the effect mstiyrgood.

24

2.5. Summary

cycleMB at 100MHz

cycleMB at 1000Hz

Theoughput of fareman yuv

1"‘1']:' T T T T T
—=— foreman lrame
4 foreman frame
1200 F —&— level 3.1 .
—& level 3.2
1000 - .
P = o = = = = o
= .
B0 .
b = = = = = = o
400 F .
200 \\\:
i
l:l 1 1 — 1 1 1
10 15 20 # _Nge 30 35 400
Figure 2-12 : The tbrbtjghmq-tﬂ;.éftf‘ore;_r:ﬁ:a{n.yq:v with froposed VLD
Thrai gh put of mohi }é'_{._-f?jv
?5[[1 T T —- e - T T
== mobile -frame
rmobile frarme
4 —= level 3.1
SO0 - —& level 3.2 i
15[.] - —
[SN o o o o = o &
W—e = = = = = = D
\}
10 15 20 25 a0 3 40
QP
Figure 2-13 : The throughput of mobile.yuv with fm®posed VLD

25

Figure 2-12 and Figure 2-13 show the throughputtvad pictures with the
proposed VLD. The simulation environment is JM @ldich C code of H.264/AVC
system. We set nine different values of QP to betdimulation results. In the two
figures, the blue line is the throughput requiretneh baseline@3.1 specified in
H.264/AVC standard when the clock frequency is 16favand the black one is for
baseline@3.2. In Figure 2-12, the throughput o&riean meets the requirement of
baseline@3.2 when QP is 20 and that of I-framéhendame picture also meets that
standard when QP is 28. In Figure 2-13, the thrpuglof mobile meets the demand

when QP is 28. Therefore, the proposed design uapost H.264/AVC baseline.

[3] [4] Proposed Design
Tech. 0.25 um 0.18 um 0.18 um
CAVLC : 3267
Gate-count 6100 4720
MPEG2 : 945
Main Profile @4.2
Target Spec. Baseline Rrofile Main'Profile @4.1 &
MPEG-2
Buffer N.A. 696 bits RAM 3471 gate-count
Clock Constraint 125 MHz 125 MHz 125 MHz

Table 2-3 : Hardware cost evaluation of proposedgower design

Table 2-3 shows the comparison of the hardware. @&#tough we show the
throughput of two pictures in Figure 2-12 and Feg@r1l3 when the clock frequency
is 100MHz, the maximum speed of the proposed dasig80MHz under a 0.18um
CMOS technology. The performance is fast enough rfeeting the real-time
processing requirement of CAVLC decoding on maiofifg @4.2. Compared to the
design proposed by [4], The CAVLC part of the prega design reduce 30%
hardware cost, and the total design still has hesdware cost. The proposed design

doesn't use RAM as storage due to the power saving.

26

Spec. MPEG-2 I-frame

H.264 |-frame

H.264 P-fram

[1°)

power (mW) 1.719

1.302

1.376

Table 2-4 : The post layout power consumption uidé8um CMOS Tech.

Table 2-4 shows the post layout power consumptiodeu 0.18um CMOS

technology. The proposed design can provide exisetow power, and it is used in

our dual-standard system [8], [9].

27

Chapter 3.
A VLC Codec System

for dual standards

Syntax Memory — !
Parser o Controller
——J Entropy Decoder $)
W I e Predicted Datz " Display
=AY s . \ Emm 1 Controller
L] CABAD "] | Prediction [L> * o
T [H Memory || De- blocking Yoy
uvLp nte | LI Filter
| : Prediction | __; :
> cavip | = ¥~ Residual Dats :
Rescaling]—»[IDCT/TH
Ly ——¥- \i
Slice Memory

Figure 3-1 #The architecture of our'proposed syste

Figure 3-1 shows the architecture of our proposedesn for H.264/AVC main
profile. The entropy decoder contains CABAD, uVvLBnd CAVLD. UVLD and
CAVLD are the same choice for entropy decoder, @iWd.D is used to decode the
syntax parser, and CAVLD is for residual data. Efeme, the output of UVLD is to
control the decoding mode of H.264/AVC decoder, tredresults of CAVLD are the
DCT coefficients of residual data. After IDCT, thiata will be added with the
predicted data to complete a unit block.

In Figure 3-1, CABAD has to use slice memory toretthe context model and
row-storage. Figure 3-2 shows the usage of memér@ ABAD in our proposed
H.264/AVC decoder system. The context model of CABdses 349.1 bytes memory

of the slice memory.

29

frame type
1080HD

31200

16CIF
T20p HD
4CIF
VGA

CIF

QCIF

0 500 1000 1500 2000 2500 3000 3500

memory size(byte)

E context model B ks sram

Figure 3-2 : The usage of memary -of CABAD in ouoposed H.264/AVC decoder
The context model of CABAD uses much memory, so ithan idea to integrate
CABAD and CAVLD. The used memory can proVide a sptacstore the VLC tables
of CAVLD, and our proposed H.264/AVC ‘decoder reegparallel input of bitstream,
so we have to try another approach to implement IAVBesides, as mentioned in
my motivation, if we add the CAVLC encoder into teetropy decoder, that can be
integrated with H.264/AVC encoder to a H.264/AVQleo system. Therefore, we try
to find a method to implement a VLC codec systeseldaon memory. and finally we

proposed a new group-based VLC codec system refeter{6] and [7].

3.1. The Architecture of the Proposed VLC
Codec System

Here, we will describe the architecture of the jmsgul VLC codec system. We
will focus on the design of CAVLC encoder/decoderd not to express the MPEG-2

VLC codec in detail. That is because the majoreddhce of the proposed MPEG-2

30

VLC codec is the group-based algorithm and hardwamgementation, and other
parts basically are similar to the conventional Vidtiec design. Therefore, about the
MPEG-2 VLC codec system, we only discuss the pregagoup-based alteration,

and we will pay attention to the CALVC encoder/dde0

coefficients is_encoding
bitstream$ s maxNu% 4 n0$ 4 is_decpding 16
A A,
TC&T1s
codeword boundary detector 47 coefficients scanner
Total
Leading Ps s11fﬁx engble Run] skip olalzeros leviels Ruanefore
|
TC|& T1 Total
s T1s sién flags ° ageros
Y Vv Y YyYv N Y Vv ‘ YyYv N Y Vv Y
Group-based - . . Total_zeros codec Run_before codec
Trailing_ones_sign Level codec with . N
VLC codec - X with with
system flag efficient coding efficient codin efficient codin
i MPEG-2 9 g
sign
| | |
suffixLength
L Run_before
MPEG-2
levels and Tieson ovel
runs s sign flags evels
Jre s E 4= I i I Y
symbols constructor bitstream concatenater
v

FIFO_full

Figure 3-3 : Block diagram of the proposed VLC aodesign

The block diagram of the proposed VLC codec desghown in Figure 3-3. To
fit specification of our proposed H.264/AVC decodsstem, the input bitstream is
parallel input and its length is 8 bits. The decadecontrolled by the enable signal,
is_decoding, so is the encoder. The maxNum is tddethe block type which is
being decoded or encoded, and nC is introducedlind@ choose the correct VLC
table for coeff_token. The serial input data, ceedhts, is the DCT coefficient for the
encoder in reverse order. The codeword boundargcttet has a FIFO to store the
input bitstream, and the output signal, FIFO_fullpresents whether the bitstream
FIFO is full or not. The symbols constructor wikkrel out the results of DCT
coefficients arranged and the bitstream concatermatedles the link of the encoded

31

codeword. The illumination of the components iscsws.

» The major functions of the codeword boundary deteetre counting the
leading ones and zeros, and fetching the demanaffid $or the each decoding
function unit by the recorded bitstream boundargsiBes, it is also a controller to
decide the activity of each decoding component,ifhds to calculate the number of
skipped run_before and then send the informationsymbols constructor. For
MPEG-2 VLC, it has to detect the special case sischscape mode and end of block.

> After coefficients scanner receive the serial indata, DCT coefficients, it
calculates and sends the necessary data for eaddieg component. When doing
MPEG-2 VLC encoding, it only counts the levels andhs. After sending the
MPEG-2 level and run, it can receive the followirmgefficients. The more
information is needed for CAVLC encoding, and tinst should calculate TotalCoeff,
TrailingOnes, T1s flags, levels,.and run-beforedgteiznt from MPEG-2 process,
coefficients scanner has to receive all-coeffigasftone block, and then it can begin
requesting the coefficients of the‘next encodiragkl

» Group-based VLC codec system uses the proposeg-tpased VLC codec
algorithm to implement MPEG-2 and CAVLC coeff_tokencoder/decoder. Besides,
it contains the NUM_FLC of CALVC coeff_token and ®MB8-2 escape case. The
detailed design contribution will be describedhe following section.

> Trailing_ones_sign_flag encodes and decodes tims sifyall trailing ones.

» Level codec with efficient coding handles the imfation about levels. The
detail of efficient coding will be expressed in thext chapter.

» Total_zeros codec with efficient coding deals witie coding process of
total_zeros.

» Run_before codec with efficient coding encodes @acbdes the run_befores

to get the wanted results.
32

» The symbols constructor is used for decoding pdésirranges the decoded
levels by the decoded runs. In CAVLC decoding psscét works at the same time
when decoding run_before to increase the decotimogighput.

> The bitstream concatenater collects the encodedtigams and links them.
The first step it receives the codeword value amjth to assemble the bitstream
belonging to each encoding process. Then, it cenaea¢s the separate bit streams to
transmitted bitstream.

The decoding procedure of CAVLC decoder has to dedbe bitstream step by
step, because the bit streams have data dependémay.don’t get some decoded
information, we can’t do the next step. Therefdhe, important thing to increase the
decoding throughput is to reduce the decoding sydéte each component. The
CAVLC decoding steps are as follows:

» Counting the leading zeros until detecting thet finse of the input bitstream,
and then sends the leading zeros.and-suffix topgbased VLC codec system. If nC
is the value of NUM_FLC, we only send.suffix.

» Decoding the coeff token according to group-basedC \algorithm. The
component outputs the suffix length to calculateubed bitstream boundary.

> After decoding the coeff_token, we will get Tragi@nes that can help us
decide suffix length transmitted to Trailing_onagnsflag. When decoding
Trailing_ones_sign_flag, we also count the leadiegos belong to level decoding
process.

> At the same time to decode levels, we count thelingazeros of level
decoding or total_zeros. When the number of dectslesl is equal to TotalCoeff, we
have to quit decoding level.

» When decoding total_zeros, we count the leadingpszarsed for some

run_before symbol and the leading ones for zenopskg.
33

» When decoding run_before, we still count the legdiaros used for the next
run_before symbol and the leading ones for zer@pskg. Then, according the
previous decoded run_before, we can begin arranp@dCT coefficients into the
correct position in the decoded block. When theogieeft is equal to O or the last
run_before is decoded, the run_before processoharsc

The encoding process of CAVLC encoder doesn’t lewvenany steps, although
we can design the encoding process like the waleobding procedure. However, we
consider the throughput of the CAVLC encoder is sggiif we execute the encoding
process with the serial steps. We observe tha¢ tisaro data dependency between the
encoded symbols for different encoding componemtys can do the encoding steps
parallel. For example, even if coeff_token stepsudefinish, we can still execute
level encoding step, because the data for levebading step doesn’t depend on the
results of coeff_token encoding.step. Thereforeemiaxecuting encoding process, all
components of our proposed-design-will.work togethbe design idea is to increase
the encoding throughput, because: the throaughpuhefproposed CAVLC encoder
design depends on the most cycles of encodingissépad of the sum of cycles cost
by all encoding components.

In order to support the proposed encoder desigw tw design a bitstream
concatenater is important. The bitstream concatenhgs to link the encoded
codewords as fast as possible. We don’t hope we tbeevcycles of encoding process,
but we take more efforts to concatenate the encaettwords. Therefore, this
design will be described in Chapter 4, and herdirgeintroduce the proposed VLC

group-based codec system.

34

3.2. Conventional Group-based VLC Codec
System

This work is previously developed and verified bgi-Bue Hsieh in [6], [7]. The
intention of this section is to quickly give us anse of what a conventional

group-based VLC Codec system is and how it works.

3.2.1. Definition of Codeword Groups

An example of Huffman code and codeword groupinigjustrated in Figure 3-4.
Based on this result, the conventional codewordigrs a set of codewords whose
source symbols are combined to perform the Huffprasedure and receive the same
codeword length. According to.-this definition, tlewdeword groups have the
following properties:

» In a group, the codeword can be ‘treated as a binargber which is
codeword length-bit long, called VLC_ :codenum, sitloe codeword length
is the same.

» The codeword that has the smallest VLC_codenum groap is denoted
VLC_mincode.

» A VLC codeoffset is the offset value between theCVimincode and the

VLC_codenum.

35

VLC table Groug symbo prefix suffix _co\élt_aium _cozi/(le_gffsei _nL?n\c/:IE\ge?
C1 0’ c7 oc oc o o yes
C2 10C GO c8 oc 0 1 1
C3 107 C¢ oc 10 2 2
C4 110 G1 C1 0 NA 1 o yes
C5 111C c2 10 o 4 o yes

G2
Ce 11 C3 10 1 5 1
C7 0000 CA4 11 0 13 Q yes
C8 0001 G3 C5 11 10 14 1
C9 0010 Cé 11 11 15 2

Figure 3-4 : Example of VLC table and codeword gou

In Figure 3-4, the symbols C4, C5, and C6 belonthéocodeword group G3. In
this group, the codewords have the same codewaogthe4-bit, and the prefix 11
The word length of the suffixes is 2-bit. Therefottee 4-bit VLC_codenums arel3,
14, and 15; the VLC_mincode.is 4'b1101;-and thet2/hC_codeoffsets are 0, 1, and
2. Source symbols that are not'combined will beltmdifferent groups, such as C7,
C8, and C9 in GO, and C4, C5, and.C6.in-G3, althaagleword lengths are identical.
Moreover, there is only one symbolin‘group G1 sil@l is the only VLC having

length of 2 bits.

3.2.2. Intra-Group Decoding Procedure

Besides grouping codewords, mapping symbols ontmanes and extraction
codeword group information are necessary for VLCodéng. The memory address
of a symbol in a group is calculated by the VLC ewitset of the symbol and the
base address of the VLC_mincode in that groupthesymbol address is the sum of
the VLC_codeoffset and the base address of thepgwitler applying this arithmetic
relationship, decoded symbol address can be foyndumerical calculation rather

than by pattern matching. Thus, the group infororatio be stored is composed of

36

codeword length, VLC_mincode, and base addres&das the group information in
Figure 3-5, intra-group decoding/encoding procedsigerformed as follows.

Assuming we are decoding codeword 1G011

» VLC_ codeoffset = VLC_codenum(100)1—- VLC_mincode(1000) =

0001%=3;

» symbol_address = VLC_codeoffset(3) + base_addr@ss(53;

» the decoded symbol C4 is retrieved from memory eskib3;

Assuming the encoded symbol address is 103.

» VLC_codeoffset = symbol_address (103) — base_assl(@90) = 3;

» VLC_codenum =VLC_codeoffset (3) + VLC_mincode (3235;

> The encoded 8-bit codeword is 001000£135.

symbol prefix suffix VLC VLC Symbol

. codenum | _codeoffset| address
C1 10 000 16 0 50
C2 10 001 17 1 51
C3 10 010 18 2 52
C4 10 011 19 3 53
C5 10 100 20 4 54
Cé 10 101 21 5 55
C7 10 110 22 6 56

Group Information : codeword length = 5
VLC_mincode = 10000,
base address = 50

Figure 3-5 : Example of intra-group symbol memorgpming and group information

37

3.2.3. Group-searching Scheme

An economical group-searching scheme with high afjpmm rate and low
complexity determines the performance of a grougetaVLC decoder because the
decoding procedure is performed after the grouprmétion is obtained. We use
inter-group symbol memory mapping and Pseudo-Catitength-Code (PCLC) in
order to achieve such a group-searching schena#.dbdeword lengths are the same ,
the numerical properties of codewords in a group lwa applied to the whole coding
table. We apply a procedure, namely PCLC procedarequalize codeword lengths
by adding redundant binary digits, 00...0, behind Vtéd&lewords. Therefore, PCLC
codewords, which have the same length as the l[bMi&€3 codeword, can be treated

as binary numbers, PCLC_codenumes.

group symbol PCLC PCLC symbol PCLC is ECLC
_codeword _codenum address| codeoffsef mincode
GO S00 00100100 36 0 0 o]
GO S01 00100101 37 1
GO S02 00100110 38 2 2
GO S03 00100111 39 3 3
Gl S10 00110000 48 4 0
G2 S20 01100000 5 0
G2 S21 01110000 6 1
Gl S11 01111100 56 7 3

Table 3-1 : Example of inter-group symbol memoryppiag

Group Valid codelength | PCLC_mincodg base address
GO 1 8 00100100 0
Gl 1 6 00110000 4
G2 1 4 01100000 5

Table 3-2 : Group information for Table 3-1
38

It is easily to distinguish PCLC codewords and PCt&@lenums from each other
because the VLC code is a prefix code. As a reatRCLC table is established with
PCLC codenums placed in ascending order, i.e. aepder< codenum < ... <
codenum. This results in ascending PCLC_mincodes as wadl, mincode <
mincode < ... < mincodg. Based on the PCLC table, the base addressestddnee
assigned in PCLC_mincode order, i.e. base gadthase addr< ... < base_addrfor
inter-group symbol memory mapping. An example oé tARCLC table and its
intra/inter-group symbol memory mapping is shownTable 3-1, and the group
information of this PCLC table is given in Table23where the valid bit indicates
whether the group information is used. We can seRable 3-1 that G2 is inserted in
the middle of G1. This placement is specializedd®coding to save memory space of
symbol memory.

According to PCLC tables and symbol memery maps,cibnventional decoding
group searching scheme is realized by-applying micaleoroperties to bitstream and
symbol addresses. Similar to PCLC codewords, ad#etbitstream that has the same
length as the PCLC codewords is treated as a bmanper, bitstream_num. Because
the bitstream is a sequence of concatenated codsw@uch as codewqgrd-
codeworgl — etc, a relation between the bitstream and théP@ble can be
expressed by PCLC_codenumt bitstream_num < numerical comparisons. The
decoded codeword belongs to groupv@en the hit condition, PCLC_mincgdes
bitstream_num < PCLC_mincaodeg is encountered. Let’s see the process of decoding

one symbol from bitstream “001111010110...”

39

Assume the decoded bitstream is 00111101011C--

1) Do group searching
PCLC_mincode1 (€ £00110000) = bitstrear _nurr (€ £00111101) < PCLC_mincodez (€ t01100000)
The matching group G1

2) Send group information
codelengtt =6 PCLC_mincode = € k00110000 base_addr = £ £00100

Z) Find the valid VLC_codeoffsel which is the codelength most significant bits of the result of subtracting the
PCLC_mincode from the bitstream_num
bitstream_nurr (€ t00111101) - PCLC_mincode (€ £00110000) = € k00001101
The valid VLC_codeoffset =6 £00001° =2

4) Extract the VLC_codeoffset operand which has the same wordlength as the symbol address
VLC_codeoffsel = £ 00011

£) Calculate the decoded symbol address
symbol_address = base_address (£ £00100) + VLC_codeoffsel (£ t00011) = ££00111 =7

6) Fetch the decoded symbol
symbol_memory[7] = €1°

Figure 3-6 : Process of decoding a symbol

Assume the encoded symbol address is 1€ (£ b10011):

1) Do group searching
base_addr7 (Eb01111) = symbo _address s base_addré (€ t10100)
The matching group G7

2) Send group information
codelengtt = 7 PCLC_mincode = §b1111000C base_ addr = £b0111~

2) Find the valid VLC_mincode which is the'codelength most significant bits of the PCLC_mincode The wordlength
of the VLC_mincode operand is the max codelength'bits
The valid VLC_mincode = 7 k1111000
The VLC_mincode operand = 7 k1111000 = 120 = 8 k01111000

4) Extract the VLC_codeoffset operand which is the result/of subtracting the base_address from the symbo _address
VLC_codeoffsel = symbo _address (££10011) - base_address (Eb01111) = £b0010C

£) Calculate the encoded VLC_codenum operand
VLC_codenum = VLC_mincode (& b01111000) + VLC_codeoffsef (£ b0010C) = € 01111100

€) Fetch the valid encoded codeword which is the codelength less significant bits of the VLC_codenum operand
codeword = 7b1111100

Figure 3-7 : Process of encoding a symbol address

According to the relation between PCLC tables amel $ymbol address, the

conventional encoding group searching scheme ikzegaby applying numerical

properties to codewords and symbol addresses. Baisdtle encoded symbol, the

relative symbol address can be fetched. A reldietween the symbol address and the

PCLC table can be expressed by basejaddr symbol address < numerical

comparisons. The decoded codeword belongs to g&uwhen the hit condition,

base_adgr = bitstream_num < base_addr is encountered. Let's see the process

40

of encoding one symbol from the symbol address(51910011)”

L enc_escRL/sign
enc_valid L (output_FIFQ_full
VT {enc_esc, enc_EOB}
enc_ready Y)
enc_codeword Enc_bitstream
enc_R/L Concatenator
_i Symbol |— enc_CL &
Address Output FIFO
Symbol Memory Enc_en enc-en
Converter (256°8) Ctrl
{32°8 CBS-LUT) received
L J L Group-based out-valid
enc_sym enc_symaddr——————» vLc L8, output-bitstream
dec_sym dec_symaddr UL UL —18_ Input-bitstream
r _I ,r ST In-valid
{32°29)
Symbol Doc_on] + request
Recoverer Symbol cirl e
J Memory I_ Input FIFO
(256"12) &
Special dec_CL
dec_RIL Code Dec_bitstream
Detector dec_bitstream Selector
dec_finish A {dec_esc, dec_EOB}—
dec_receive r input_FIFO_empty

dec_escRL/sig

Figure 3-8 : Block diagram of conventional groupséad VLC decoder architecture

The conventional VLC codec systemis designed fé*H@ applications with
coding tables up to 256-entry 12-bit symbols andbitécodewords. This system
performs concurrent encoding and decoding. procedoyeaccessing the same group
information and achieves table “programmability ading data into on-chip
memories. To complete the VLC codec processes oE®IRideos, this design
includes the operations of sign bits and escapadenels (escRL) following VLC
codewords. By the efficient symbol conversion, themory requirement is reduced
to (25x8 + 28x8 + 28x12 + 32x29) bits for a CBS-LWIsymbol address memory, a
symbol memory, and 32-entry group-information. Blatagram of the conventional
VLC codec system is shown in Figure 3-8. It maiglynsists of the following
components.

» The group-based VLC encoder/decoder is composeagtafp detectors and
combinational logic circuits to realize the VLC eadprocesses.

» The input FIFO stores the input bitstream. Accagdio previous decoded

41

results, the Dec_bitstream selector transmits codds\bitstream to the VLC decoder.
Besides, this selector detects sign bits and eseREes VLC codewords are decoded.

» The Enc_bitstream concatenater adds sign bits oRLlés behind VLC
codewords and concatenates encoded results intgyle ditstream. Then, every 32
bits of the encoded bitstream in the concatenatehifted into the Output FIFO.

» The special code detector recognizes special cadeh, as escape and EOB,
by checking decoded symbol addresses instead oflddcsymbols. Without waiting
for symbol fetching, this detector can determine tength of the additional bits
following a VLC codeword. Hence, the next codewbitdtream can be found by the
Dec_bitstream selector immediately and the decotfir@ughput can be increased.

» The Enc_en and Dec_en Ctrls determine the operabbithe VLC_encoder
and decoder according to the condition of inpuaaatd FIFOs.

» Both symbol address -and.symbol memaries are thehgmmemory modules
for storing symbol information.

» The symbol converter performs _symbol conversion @eteécts escaped RLP’s
and EOB symbols. On the other hand, the symbolveeo finds correct runs and

signed levels based on decoded results.

42

3.3. The Proposed Group-Based VLC Encoding

and Decoding

3.3.1. The Definition of Decoding Codeword Groups

group symbol prefix suffix | suffix_num suffix attribute
_offset
G2 S3 001 N.A. N.A. 0 suffix_min
S4 0001 00 0 0 suffix_min
G3 S5 0001 01 1
S6 0001 1 2 2
S7 00001 00 0 0 suffix_min
G4 S8 00001 01 1 1
S9 00001 1 2 2
S10 000001 00 0 0 suffix_min
G5 S11 00000k o1 1 1
S12 000001 10 2 2
S13 000001 11 3 3

Table 3-3 : An example of CAVLC code and codewamauging

An example of CAVLC code and codeword groupingllisstrated in Table 3-3.
CAVLC code is also constructed based on Huffmarecashd as we introduce it in
Chapter 1, Huffman code is a prefix code, thainig @deword is not the prefix code
of other codewords. For example, the symbol, S&di in Table 3-3 is relative to the
codeword, 001, and in the entire VLC codeword teéhkre is no codeword which
starts as 001 except the codeword of S3. Baseteoresult, the proposed codeword
group is a set of codewords whose source symbels@nbined to receive the same
number of leading zeros. Besides, the number ofjtbep is equal to the relative the
number of leading zeros. For example, when the murob leading zeros is 5, the
relative group number is also 5. This is very us&dusimplify the process of group
searching. According to this definition, the codesvaroups have the following

43

properties.

> In a group, the suffix of the codeword can be tdats a codeword length-bit
binary number, called suffix_num, since the préémgth is the same regardless to the
suffix length.

» The codeword that has the smallest suffix_num imgreup is denoted
suffix_min.

» A suffix_offset is the offset value between the fisuimin and the
suffix_num.

Difference from the conventional codeword groups, set the codeword groups
only based on prefix, because the prefix of code®&@s unique. We don’t have to use
the entire codeword to set the groups, so we cae same cost in the process of
calculating the group information and building tiables in memories. In Table 3-3,
the symbols S10, S11, S12,-and.S13 belong to #ewsard group G5. In this group,
the codewords have the same prefixlength,. 6-bie. Juffix length is 2-bit. Therefore,
the 2-bit suffix_nums are 0, 1, 2; and.3,.the guffiin is 2’b00 which is the same as
1'b0, and the 2-bit suffix_offsets are 0, 1, 2, &xdymbols which are not combined
belong to different groups, such as S7, S8, anth®4, and S4, S5, and S6 in G3.
Besides, there is only one symbol in group G3 sisgmbol S3 completes the
Huffman procedure alone.

In CAVLC coeff_token decoding/encoding processrdhaae four tables used. The
number of total groups with the proposed codewaadigs is 46, and we have to use
64-entry memories to build the whole CAVLC coefikeéa table. Therefore, under the
reasonable usage of memory, we can set the fiosipgof NUM_VLCO is GO, that of
NUM_VLCL1 is G16, that of NUM_VLC2 is G32, and G48for NUM_VLC3. From
the distribution of the codeword groups, we canilgaget the address of group

memory based on the NUM_VI@nd the codeword group.
44

In MPEG-2 table B15, some codewords also havedhadihg ones as the prefix.
Based on the rule of the proposed grouping metvedpnly set the codeword groups
according to the leading ones, and then set thiinigazeros codeword groups along
the leading ones codeword groups. The number oftbeps constructed by leading
ones is 8, so the beginning group by leading zex@& An example of the Huffman
code and codeword grouping is shown in Table 3k mumber of total groups in
MPEG-2 VLC tables with the proposed grouping metile80. However, we locate
the groups of MPEG-2 table B14 from GO to G31, aedput the groups of MPEG-2
table B15 from G32 to G63, when we combine CAVLCG:ftaoken tables and
MPEG-2 VLC tables. The reason is to get the groumlmer easily under reasonable
memory usage, because CAVLC coeff_token has t®Gdsentry memories. In order
to complete the proposed grouping method,.we havget the information of the

number of leading ones and the. leading-one preflrading-zero one.

suffix
group symbol prefix suffix suffix_num attribute
_offset
¥H
G3 S3 110 0 0 suffix_mimn
S4 110 1 1 1
S5 1110 00 0 0 suffix_min
S6 1110 01 1 1
G4
S7 1110 10 2 2
S8 1110 11 3 3
S21 001 01 1 1 suffix_min
G9 S22 001 10 2 2
S23 001 11 3 3
S24 0001 00 0 0 suffix_min
S25 0001 01 1 1
G10
S26 0001 10 2 2
S27 0001 11 3 3

Table 3-4 : An example of Huffman code and codevggiping in MPEG-2 table B15

45

3.3.2. The Definition of the Encoding Symbol Groups

In the conventional group-based VLC codec systeneret was no special
definition of the encoding symbol groups. It uséBS=LUT for the encoding process
to look up the base address of the symbol addressany. However, if we can define

the encoding symbol groups, we will get some bémafout the usage of memories.

group run level encoding_nuni encoding_offse] attribute

0 1 1 0 encoding_mir
0 2 2 1

GO
0 31 31 30
0 32 0 0 encoding_mirn
0 33 1 1

G1
0
0 40 8 8
4 1 4 0 encoding_mir
5 1 B 1

G5
31 1 5k 27

Table 3-5 : An example of MPEG-2 encoding symbolugs

An example of MPEG-2 encoded symbols and symbalging is shown in Table
3-5. According to conventional CBS-LUT method, wiran is equal to 0, the number
of mapping levels is 40, but when run is greatantf, the number of mapping levels
is less than 3. Finally, one run will map to onenmoey address. Therefore, we
consider that we can also define the encoding sygroaips like decoding codeword
groups to save the usage of memories. In the sygnoolping procedure, we count
the number of the mapping symbols for one symbaot.dxample, when the value of
run is equal to 0, the number of mapping level¥lisPerhaps, when the value of level
is equal to 1, the number of mapping runs is 2&eBaon the result of this procedure,

the proposed symbol groups are a set of the mosbayg mapping to one symbol.

46

According to this definition, the symbol groups baftie following properties.

> In a group, the value of the changed symbol issda#incoding_num, since the
other symbol is fixed.

» The value of the changed symbol has the smallestdamg_num in a group is
denoted encoding_min.

» An encoding_offset is the offset value between ¢heoding_min and the
encoding_num.

In Table 3-5, the levels from 1 to 31 belong to sggbol groups GO. In this group,
the runs have the same value, 0. Therefore, thedarg nums are from 1 to 31, the
encoding_min is 1 and the encoding_offsets are fooim 30. Source symbols which
are not combined will belong to different groupsh&i the value of the level is equal
to 1, the runs from 4 to 31 belong to G5. In symipolups for MPEG-2 VLC tables,
the group, G1, is particular te other groups. Thei® of the fixed symbol, run, is the
same as GO, but we still separate.it'to-anothanmréhe reason is if we combine GO

and G1 as a symbol group, we will use more memaories

group run level
GO 0 1~31
Gl 0 32~40
G2 1 1~18
G3 2 1~5
G4 3 1~4
G5 4~31 1
G6 4~16 2
G7 4~6 3

Table 3-6 : The symbol groups for MPEG-2 VLC tables
The total symbol groups for MPEG-2 VLC tables anewn in Table 3-6, and
both table B14 and B15 use the symbol groups, lsecthe symbols of them are the

same.

47

The similar approach is also used in CAVLC coefketo encoding process.
However, the procedure of symbol grouping in CAVICmuch easier than that in
MPEG-2. TrailingOnes is the only choice to be tleéerence of group number,
because each TrailingOnes can map most numbertalCeffs. The symbol groups

of CAVLC coeff_token are shown in

group TrailingOnes TotalCoeff
GO 0 0~160r0~4
Gl 1 1~16o0rl1~4
G2 2 2~160r2~4
G3 3 3~160r3~4

Table 3-7 : The symbol groups of CAVLC coeff_token

3.3.3. Intra-Group Decoding Procedure

In addition to grouping codewords, it IS hecessarydecoding procedures to map
symbols onto memories and:extract codeword grofgurimation. During intra-group
symbol memory mapping, the‘memeory address of a e{ymka group is calculated by
the suffix_offset of this symbol and"the base aslslravhich denotes the symbol
address of the suffix_min of the group. In otherds) the symbol address is the sum
of the suffix_offset and the base address. Afteplyapg this arithmetic relation,
suffix_offsets, decoded symbol addresses, and edcoddewords can be found by
numerical calculations rather than pattern matchimgerefore, the group information
to be stored is suffix_min, and base addresses.

Based on the memory map and the group informatoRigure 3-9, intra-group
decoding procedures can be described as follows.

Decoding procedure — assume the decoded codew(3@08 0110y}

> suffix_offset = suffix_num (1Q)— suffix_min (0) = 19= 2;

» symbol_address = suffix_offset (2) + base_addr@ss (1;

48

» The decoded symbol, S2, is accessed by the syndubkss, 9;

symbol

prefix

suffix

suffix_num

suffix_offset

symbol address

SC

00000*

0c

o

o

8

00000*

1

1

10

00000°

)
Z

"
Z

11

00000°

3

3

12

group information suffix_min = 0
base address = ¢

Figure 3-9 : An example of intra-group memory mag group information
However, when calculating the suffix_offset, we @ato get the value of
suffix_num. That means we have to know the redixsigngth of the relative suffix.
Therefore, the group information also has suffirgln to fetch the correct suffix.
Besides, the suffix length has to be_ sent.bacloteword boundary detector, and the
codeword boundary detector ¢an truncate the codismohich are decoded without

any error.

symbol

prefix

suffix

suffix_num

suffix_offset

symbol address

SC

0001

0c

e

o

3

S1

0001

4

S2

0001

NY

NY

5

group information suffix_min = 0
base address = ¢
suffix lengtr = 2

Figure 3-10 : An example of the special case dbsléngth
Some special cases will happen in VLC tables agdrgi3-10 shows an example
of the special case of suffix length. The relatoaeword of the symbol, S2, is
“00011” and the other codewords in this group @@010x”. We can find the suffix
length is different. Therefore, we have to handile ¢tondition to avoid fetching the
incorrect suffix; otherwise we will get the wrongfféx_offset to access the wrong
location of the symbol memory. Even sending theirect suffix length to codeword

boundary detector will result the current decodkxtlofails. To solve this problem,

49

we add an item called suffix_adjust to group infation. When we get the group
information and the suffix_adjust is set to 1, veednto examine the received suffix to
see if we have to adjust the suffix length. Theguent of the suffix length adjusting
is to examine if the first bit of the received sufis 1. If the first bit of the received

suffix is 1, the true suffix length is the suffigrigth of the group information minus 1.

Other the other hand, the true suffix length isaddqo suffix length.

symbol

prefix suffix

suffix_num

suffix_offset

symbol address

SC

0001

0c

(o

o

i)
ol

S1

0001

0

1

1

4

S2

0001

1

-
Z

z

5

group information suffix_min = 0
base address = ¢
suffix lengtr = 2
suffix_adjust = 1

Figure 3-11 : An example of the‘complete grouprinfation

Based on the memory map and the group informatidrigure 3-11, the complete
intra-group decoding procedures can-be describéollaw/s.

Decoding procedure — assume the decoded codew(Bt041):

» The suffix_adjust is equal to 1, so we have to aranthe first bit of the
received suffix (1). The first bit of the received suffix is also eft@a1, so
suffix_num is set to (10)

> suffix_offset = suffix_num (1Q)— suffix_min (0) = 19= 2;

» symbol_address = suffix_offset (2) + base_addr@ss b;

» The decoded symbol, S2, is accessed by the syndubkss, 5;

In order to save the usage of memories, we don& Hae whole base addresses to
the group information, and we only save the leagtiicant 7 bits. Therefore, when
executing the CAVLC coeff_token decoding, the toase addresses have to be added
64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_ 3. On the other
hand, the true address has to be added 128 for MP&EGIe B15.

50

N.A.

N.A.

11

15
23
31

a7

63

79
95

12
14
15
16
20
23
27

31

39
47

63
79
95
111

just| leading_0s| base_addreg suffix_length| suffix_min

suffix_ad

group

10
11
16
17
18
19
20
21

22
23

24
25
26
27

28
29

30
31

32

33

34

Table 3-8 : The codeword groups of MPEG-2

51

13
17
21

25
33
41

49

57

61

12
16
20

24
28
36

44
52

59

63

16
24
32
40

48

55

just| leading_0s| base_addreg suffix_length| suffix_min

suffix_ad

group

10
11
12
13

14
16
17
18
19
20
21

22
23

24
25
26
27

28
32

33

34
35
36

37

38

39

52

40 0 1 59 1 0
41 0 1 61 0 1
48 0 1 0 0 1
49 0 1 1 0 1
50 0 1 2 0 1
51 0 1 3 2 0
52 0 1 7 1 0
53 0 1 9 1 0
54 0 1 11 1 0
55 0 1 13 0 0

Table 3-9 : The codeword groups of CAVLC coeff_toke

3.3.4. Intra-Group Encoding Procedure

In addition to grouping symbols, it is necessany dacoding procedures to map
codewords onto memories and-extract symbol grofgsrmation. During intra-group
codeword memory mapping; the memory address of deword in a group is
calculated by the encodingzoffset-of this codewardl the base address which
denotes the codeword address-ofithe encoeding_mimeofroup. In other words, the
codeword address is the sum of the encoding ofiset the base address. After
applying this arithmetic relation, encoding_offsetscoded codeword addresses, and
decoded symbols can be found by numerical calauatrather than pattern matching.
Therefore, the group information to be stored isoelng_min, and base addresses.

Based on the memory map and the group informahdfigure 3-12, intra-group
encoding procedures can be described as follows.

Encoding procedure — assume the decoded symboldaatCoeff is 8 and
TrailingOnes is 0O:

» encoding_offset = encoding _num (8) —encoding _(@)r= 8;

» codeword_address = encoding _offset (8) + baseeadd) = 8;

» The encoded codeword, 0000 0000 0100 O, is accedsed the

53

codeword_address, 8;

codeword TrailingOnes TotalCoeff encoding_num encoding_offset symbol address
1 0 0 0 0 0
000101 0 1 1 1 1
00000111 0 2 2 2 2
000000111 0 3 3 3 3
0000000111 0 4 4 4 4
00000000111 0 5 5 5 5
0000000001111 0 6 6 6 6
0000000001011 0 7 7 7 7
0000000001000 0 8 8 8 8
00000000001111 0 9 9 9 9
00000000001011 0 10 10 10 10
000000000001111 0 11 11 11 11
000000000001011 0 12 12 12 12
0000000000001111 0 13 13 13 13
0000000000001011 0 14 14 14 14
0000000000000111 0 15 15 15 15
0000000000000100 0 16 16 16 16

group information: suffix_min = 0
base_address =0

Figure 3-12 : An example of intra-group codeworchmoey map and group information

In order to save the usage of memories, we don& Hae whole base addresses to
the group information, and we only save the leagtiicant 7 bits. Therefore, when
executing the CAVLC coeff_token decoding, the tibase addresses have to be added

64, 128, and 192 for NUM_VLC1, NUM_VLC2, and NUM_ 3. On the other

hand, the true address has to be added 128 for ViPaGle B15.

54

3.3.5. Decoding Group-Searching Scheme and overall
group-based decoding processes

Because the decoding procedures are performed tattegroup information is
acquired, and efficient group-searching scheme Jaw complexity and high
operation rate determines the performance of apgbased VLC decoding system. To
realize such a group searching scheme, we abahdarohventional group-searching
scheme which is to calculate the range of PCLC moateto fetch the decoding
group. If the number of decoding group is large, Wwave to iterate the
group-searching scheme until the correct range oisnd. Besides, if we use
PCLC_codenum group-searching scheme, we have tothavPCLC_mincode with
the longest codeword length. Therefore, the coneeal group-searching scheme is
not efficient enough about group-searching time amemory usage. We use the
proposed group-searching scheme called prefix-gevap-searching (PZGS) and
inter-group symbol memory mapping to-realize theodiéing group searching.

A PZGS scheme is to count the'leading zeros ofrébeived codeword and the
value of the leading zeros is the base of the graupber. Then, we have to fetch the
additional group number according to the value BiMN VLC in CAVLC or the table
which is used in MPEG-2. The relative additionalugy numbers are 0, 16, 32, and 48
for NUM_VLCO, NUM_VLC1, NUM_VLC2, and NUM_VLC3 in @GVLC, and
those are 0 and 32 for MPEG-2 table B14 and Bl%® 3ilm of the base group
number and additional group number is the groupbermve have to access. Based
on the codeword group table, the base addressesthde assigned in group number
order, i.e. base_adgk base_addr< ... < base_addffor inter-group symbol memory
mapping. An example of the PZGS table and the -mitar-group symbol memory

map is shown in Table 3-10. The group informatidrthe PZGS table is given in

55

Table 3-11.

_ symbol)
group symbol prefix NUM_VLC suffix_offset
address
GO S000 0 0 0 N.A.
G1 S010 1 0 1 N.A.
G2 S020 2 0 2 N.A.
S030 3 0 3 0
G3 S031 3 0 4 1
S032 3 0 5 2
S160 0 1 64 0
G16
S161 0 1 65 1
S170 1 1 66 0
G17 S171 1 1 67 1
S172 1 1 68 2
S180 2 1 69 0
S181 2 1 70 1
S182 2 1 71 2
G18
S183 2 . 72 3
S184 _ 1 73 4
S185 2 1 74 5
S190 3 1 75 0
S191 3 1 76 1
G19
S192 3 1 77 2
S193 3 1 78 3

Table 3-10 : CAVLC PZGS table and intra-/inter-ggaymbol memory map

suffix

adjust

leading_0s

base addres

suffix_length

suffix_min

1

16

17

18

RPlRr|Rr(PP|P

1
2
3
0
2
5

19

O|rRr|rR|O|P|O|O|O

12

NwIN RNV Oo|lo|loll

OO0 0| O|FRr|FL|F

Table 3-11 : CAVLC group information of the coditaple shown in Table 3-10

56

Before realizing the decoding processes, the wengiths of both suffix_offset
and suffix_num operands have to be determinedgsiine difficult to implement
arithmetic units with variable length inputs. Torfeem memory mapping, the
supported symbol memory must satisfy the requirédmeh coding tables.
Consequently, the value of suffix_offsets and sufium will not exceed the address
space of the symbol memory. For this reason, ié@sonable that the word length of
the suffix_offset and suffix_num operands equal tfidhe base address.

Based on the word lengths of the operands discusisede, the VLC decoding
algorithm is completed by the group searching séand the intra-group decoding
procedures. Detailed descriptions of the VLC deegdirocesses and corresponding

example based the coding table in Table 3-11, Ta&{dl2, and Figure 3-13.

Assume the decoded bitstream is 000101007+ ‘and nC.=.C

1) Do group searching
nC =C=>NUM_VLC =200
base group number = leading zeros = 2
additional group number = C because table.-NUN_VLCC_is used
The matching group G2

2) Send group information
suffix_length = Z suffix_adjust = 1 suffix_min=1tC"base_addr =7 £000C_011

2) First find the valid suffix_num according to suffix_adjust and suffix The valid suffix_offset is the result of
subtracting the suffix_min from the suffix_num
it (suffix_adjust && suffix|msk])
suffix_numr = {suffixjmsk-1 1. 1kC};
else
suffix_numr = suffix
Here suffix_nunm =2 k01
suffix_offsel = suffix_num (Z £01) - suffix_min (1kC) = suffix_offsel = Z k01

4) Extract the suffix_offset operand which has the same wordlength as the base address
suffix_offsel = 7 t000C_001

£) Calculate the decoded symbol address
temp_address = base_address (7 k000C_01") + suffix_offset (7 t000C_001) = 7 t000C_100
symbol_address = {NUNM_VLC temp_address|£ C]}; = € LO00C_010C = 4

6) Fetch the decoded symbol
symbo/_memory[4] = S031

Figure 3-13 : CAVLC decoding processes and corneding examples

Run (5 bits) Level (7 bits)

Figure 3-14 : The memory usage for conventionaltsyirmemory

57

In the conventional symbol memory, two symbols, amd level, are directly
stored into the symbol memory, and the length adbi number for run is 5-bit, and
the length of binary number of level is 7-bit inding the sign bit. Besides, the
memory is 256-entry. If we decrease 4 bits of thealsol memory, we can reduce
1024-bit memories. In order to memory reduction, adel one step for MPEG-2
decoding processes, but under will pipelined schiérdeesn’t make great influence
on the decoding throughput. We take advantageeofdhture of symbol groups, that
is, when we fetch the group number, the group nunche be translated into one
symbol. We only save the value of the other symhbaoll finally we can get all
decoded symbols. Therefore, the symbols groups Hhaveprovide the group
information about which decoded symbol derived freymbol groups and its value.
The group information of MPEG-2 symbel groups isowh in Table 3-12.
Symbol_adjust also helps reduce the memory usagpenWre put the entire value of
levels into symbol memories, we. have-1o-use 6-t@imory width. Therefore, we
separate the levels, 1 ~ 31, and the. level;, 32,~M0 two groups in Table 3-6. In
symbol memories, we only save the least 5-bit lpimarmber of levels, and when
symbol_adjust is equal to 1, we get the result efodled level by adding the level
derived from symbol memories and 32. The variahla, or_level, means the value
stored in the mapping symbol group is run or leaell 1 is to store run. Of course,

symbol means the value of decoded symbol storegiritbol groups.

group symbol_adjust| run_or_level | base addressg symbol
GO 0 1 0 00
Gl 1 1 31 00
G2 0 1 40 01
G3 0 1 58 10
G4 0 1 63 11
G5 0 0 67 01

Table 3-12 : An example of MPEG-2 symbol group infation

58

, symbol i
group symbol prefix Table suffix_offset
address
S030 2 B14 7 0
S031 3 B14 8 1
G3
S032 3 B14 9 2
S033 3 B14 10 3
Table 3-13 : MPEG-2 PZGS table and intra-/interugreymbol memory map
group suffix_adjust| leading_0s| base addres suffix_length| suffix_min
0 1 0 0 1
1 1 1 1 2 0
2 0 1 4 2 1
3 0 1 7 2 0

Table 3-14 : An example of MPEG-2 group informatadrthe coding table

Assume the decoded bitstream is 00010100 -+

1) Do group searching

table B14 => Table_Infc = 1 kC

and tab

base group number = leading zeros = 3
additional group number = C because table B14iisused

The matching group G2

2) Send codeword group information

le B14

suffix_length = 2 suffix_adjust = C_suffix_min =1£C base_addr’=7 £t000C_111

3) First find the valid suffix_num according to suffix_adjust-and-suffix . The valid suffix_offset is the result of

subtracting the suffix_min from the suffix_num

if (suffix_adjust && suffix|mskt])

suffix_nurr = {suffixmsk-1 1" 1£C}:

else
suffix_nunr = suffix
Here suffix_num =2 k01

suffix_offsel = suffix_nurr (2 £01) - suffix_min (1 kC) = suffix_offsel = Z k01

4) Extract the suffix_offset operand which has the same wordlength as the base address

suffix_offset = 7 £000C_001

£) Calculate the decoded symbol address

temp_address = base_address (7 t000C_111) + suffix_offset (7 t0000_001) = 7 000" _000

symbol_address = {Table_Infc temp_address}; = € t000C_1000 = &

6) Fetch the decoded symbols

symbol_memory[€] : sym_group = £
sym_offsel = ££00110

7) Send symbol group informatior

symbol_adjust = C rur_or_level =C symbol = 01

&) Fetch the true decoded symbols

level = {symbol_adjusi 3 k000 symbol} =6£000C_01 = 1

rur =££00110=6

Figure 3-15 : MPEG-2 decoding processes and carnepg examples

59

3.3.6. Encoding Group-Searching Scheme and overall
group-based decoding processes

Due to the encoding efficiency, we don’t considee ttonventional encoding
group-searching scheme which has the same disady@amas the conventional
decoding group-searching scheme. When we buildsyimebol groups, we already
take the efficiency of encoding group-searchingesoh into consideration. The
symbol groups and their group information are shawhable 3-15 and Table 3-16.
The proposed encoding group-searching scheme ifasito the proposed decoding
one. When executing the CAVLC coeff_token encodgngcesses, we search the
symbol groups according to the value of Trailing®rend based on the value of run
or level, we can do the same thing in MPEG-2. IN/C@, the value of TrailingOnes
directly maps to the symbol groups.. IniMPEG-2, shimbol groups only map to run
or level whose value is less:than 4. When receittregvalue of run equals 0, if the
value of level is less than 32; the matching grau®0. Besides, when the value of
run is less than 4, the matching group'isithe tefuhdding 1 and the value of level.
On the other hand, when the value of run is gre&gan 3, the matching group is the

result of adding 4 and the value of level. We cam this relationship in Table 3-15.

group run level | symbol _adjusl run_or_level base addres symbol
GO 0 1~-31 0 1 0 2'b00
Gl 0 32~40 1 1 31 2'b00
G2 1 1~18 0 1 40 2'b01
G3 2 1~-5 0 1 58 2'b10
G4 3 1~4 0 1 63 2'bll
G5 4~31 1 0 0 67 2'b01
G6 4~16 2 0 0 95 2'b10
G7 4~6 3 0 0 110 2'bll

Table 3-15 : MPEG-2 symbol groups and group infdroma

60

group T1s TC symbol_adjusl run_or_levell base _addres symbol
GO 0 0~16 0 1 0 2'b00
Gl 1 1~16 0 1 17 2'b00
G2 2 2~16 0 1 33 2'b01
G3 3 3~16 0 1 48 2'b10

Table 3-16 : CAVLC coeff_token symbol groups andugr information

Before realizing the encoding processes, we havehexk encoding_min and
encoding_num, and the word lengths of both encodifiget and encoding_num
operands have to be determined, since it is dlfftcuimplement arithmetic units with
variable length inputs. For the purpose of memoeguction, we don't save
encoding_min into group information, but from syrlawjust and run_or_level we
can get the information. When run_or_level is 1,ca@ know the fixed symbol for
this group is run, and the minimum,value,of lexeDior 1 which can determined by
symbol_adjust. On the other hand, the fixed symdiolthis group is level, so
encoding_min is equal to 4. Besides, according uo_or_level, we can decide
encoding_num is run or level. In"CAVLC coeff' tokencoding symbol groups, we
also don't store encoding_min in the group infonorat but we can get it from the
group number.

To perform memory mapping, the supported codewoethory must satisfy the
requirement of coding tables. Consequently, theuevabf encoding_offsets and
encoding_num will not exceed the address spacbeotdodeword memory. For this
reason, it is reasonable that the word length @ftincoding_offset and encoding_num
operands equal that of the base address.

Based on the word lengths of the operands discusisede, the VLC encoding
algorithm is completed by the group searching séand the intra-group encoding
procedures. Detailed descriptions of the VLC dewgdirocesses and corresponding

example based the coding table in Figure 3-16 aguaké& 3-17.

61

Assume the encoded symbols are TrailingOnes is 2 and TotalCoeff is 4 and nC = C

1) Do group searching
nC = C=>NUM_VLC = 2 b00
TrailingOnes = 2
The matching group G2

2) Send group information
symbo _adjust = C rur_or_level = 1 base_addr =7 £0100_00"

2) First find the encodinc_min according to the symbol group number The valid suffix_offset is the result of
subtracting the encoding_num and the encoding_min
encoding_nurr = TotalCoeff = 4b0100 = 4
encoding_min = group number = 2 £1C = 2
valid encoding_offset = encoding_numr (4) - encoding_numr (2) = 40010 = 2

4) Extract the encoding_offset operanc which has the same word length as the base address
encoding_offset = 7 t0000_01C

£) Calculate the encoded codeword address
temp_address = base_address (7 b0100_00") + encoding_offset (7 k0000_01C) = 7k£0100_01
codeword_address = {NUM_VLC temp_address|£ C]} = 8k0010_0011 = 35

€) Fetch the valid encoded suffix and the codeword group
encoded codeword groug = 400101 = £
suffix = £ b0000”

7) According the codeword group we can get the leading zeros length and suffix_length
encoded codeword group = {NUM_VLC encoded codeword grour} = € 000101 = £
prefix = codeword group = £+ 1= €
suffix_length = 2
codeword length = prefix + suffix_length = € 4275 8
codeword = & b0000_0101

Figure 3-16 : CAVLE encoding processes'and cornmeding examples

62

Assume the encoded symbols are run is 0 and level is 34 and table B14.

1) Do group searching.
table B14 => Table_Info = 1'b0;
run = 0 and level > 32;
The matching group: G1;

2) Send group information.
symbol_adjust = 1, run_or_level = 1, base_addr = 7'b0011_111;

3) First, find the encoding_min according to symbol_adjust and run_or_level or the encoding_num according. The valid
encoding_offset is the result of subtracting the encoding_num and the encoding_min.
if (run_or_level == 1)
encoding_num = level[4:0];

else
encoding_num = run;
if (run_or_level == 1)
{
if (symbol_adjust == 1)
encoding_min = 5'b00000;
else
encoding_min = 5'b00001;
}

encoding_num = 5'b00010;
encoding_min = 5'b00000;
valid encoding_offset = encoding_num (5'b00010) - encoding_min (5'b00000) = 5'b00010 = 2;

4) Extract the encoding_offset operand, which has the same word length as the base address.
encoding_offset = 7'b0000_010;

5) Calculate the encoded codeword address.
temp_address = base_address (7'b0011.111) + encoding_offset (7'b0000_010) = 7'00100_001;
codeword_address = {Table_Info,temp. address}y=;8'b0010-0001 = 33;

6) Fetch the valid encoded suffix and the codeword group:
encoded codeword group = 4'b1010 = 10;
suffix = 5'b00010;
7) According the codeword group, we can get the leading-zeros-length and suffix_length;
encoded codeword group = {Table_Info;1'b0,encoded-codeword:group} = 6'b001010 = 10;
prefix = codeword group = 10 + 1 = 11;
suffix_length = 4;
codeword length = prefix + suffix_length = 11 '+'4'=15;
codeword = 15'b0000_0000_0011_0;

Figure 3-17 : MPEG-2 encoding processes and carnepg examples

63

3.3.7. Group-Based VLC Coded System Architecture

symbo _group_active
—

Buipoous
"~ Buipooap

Ipes|
uIpoous

pes|
u
6

CloquiAs

o
BAIOE
BA0E

J |
Symbol group
address generator

\—l

symbol group
address

Symbol Groug

AVO
Bul
B

3

o)
¢-O3dN
aAnoe Buipoosp

Slg aqeL

i

Codeword groug
address generator

J

SX
BuUo
aA)oe

f address

codeword group

aAnoe” dnosb piomapod

Codeword Group

Memory Memory
12} (2] (]
=4 c f=
run_or_leve | ‘3- |>5§ |§n
base address | aseladdress suffix_lengtr
> 2| gh T uft Jonott
J symbo i v Sv v
leve g Symbo | adjust v v symbol address leadine Cs
X [codeword address generator 0T
concatanetor generator
bo _memory_active
dd symbol address lsym - -
iJ *_1 codeword |address Y|
run | £
c
X
> Codeword Memory Symbol Memory
CAVLC
symbo_gro{up > é TrailingOnes
—
codeword_memory_lactive — =

[} Q

g a

2 2

S S symbo _offset C

o o

la o CAVL

g E
v * x| TotalCoeff
v v 3 4

=

—>
symbo _offsel C
buffer

Figure 3-18 : Block diagram’of the proposed-VLC eodystem for MPEG applications

The proposed VLC codec systemiis designed for MRp@ications with coding
tables up to 256-entry 12-bit symbols and 16-bttemeords, and H.264/AVC CAVLC
coeff_token with coding tables up to 256-entry 6dyimbols and 16-bit codewords.
This system performs concurrent encoding and degopliocedures by accessing the
group information and achieves table programmabbi loading data into on-chip
memories. Block diagram of the proposed VLC codestesn is shown in Figure 3-18.
It mainly consists of the following components.

» The codeword group address generator calculatesottewvord group address
information of Tablé5B leading_one, and

according to the leading_xs,

codeword _group. The whole function unit is conedll by two signals,

encoding_active and decoding_active. The varialdading_xs, is the number of

64

leading zeros or ones, and leading_one determesding xs is leading zeros or
leading ones. Table_B15 means the codewords tabigbie B15 in MPEG-2. The

detailed architecture of codeword group addressmg¢or is shown in Figure 3-19.

=4 8

@ Q

=2 5

] Q

x c

- =2

(6] @
z &) 5
[
C 3 =2 ©
(S e ® 2
> >
< @ X @
[y (&} x
(@) ﬁ 7

A4

concatanetor concatanetor

{B1& B1E_L1s|leading_xs]}

{NUM_VLC leading_xs}
codeword groug

decoding_active

encoding_active

codeword group address

Figure 3-19 : Architecture of codeword group addrgsnerator
» The symbol address generator calculates the syadibkss according to the
information of suffix_min, suffix_adjust, and baaddress which is derived from the
codeword group information. The whole function uisitcontrolled by two signals,
encoding_active and decoding_active. When we getthrect suffix_length for the
decoded symbol, we can fetch the correct suffboading to the barrel shifter to get

the suffix_num. The detailed architecture of codelvgroup address generator is

shown in Figure 3-20.

65

jsnipe”xiyns
1snlpe ybus)

suffix_length
=

MUX

NUM_VLC

suffix_length
— Table_B15
-

>
symbol address

ssalppe aseq
|SS®4ppeE &

ujw Xiyns
e 2

MUX

suffix_offsel

10}2US)BOU0D

1
+

temp address

JoYys |alieg

Figure 3-20 : Architecture of symbol address getoera
» The symbol group address generator calculates yhdba group address
according to the information of symboll and symbdi2 we execute MPEG-2
decoding/encoding, symbol1 is run and symbol2\vslleOn the other hand, symboll
is TrailingOnes and symbol2 is'TotalCoeff. The wh@inction unit is controlled by
two signals, encoding_active -and. decoding_activee Tetailed architecture of

codeword group address generatorisishown in Fighae.

LIoquwiAs
ZI0quwiAs

symbo 1 -
g - A 4 Y
decoding_active
encoding _active
symbo 1
’ <4 symbol group|address

Figure 3-21 : Architecture of symbol group addrgsserator

66

» The codeword address generator calculates the arvdemddress according to
the information of symbol_adjust, run_or_level, $ph and base address which are
derived from the symbol group information. The whélnction unit is controlled by
two signals, encoding_active and decoding_activee Tetailed architecture of
codeword group address generator is shown in Figna2.

|

concatenator ‘

E

/ CAVLC

symbo * 3 rur_or_level
—> MUX MPEG-2

NUN_VLC [

=

Table_E15

. RN

oquwiAs

(o5
jsnipe |

LloqwiAs
0a.b

' ‘

A
N

wnu~dnoib

OIAVO

MUX
O7TAVO

symbo 2[4 0]
—

ppe aseq

Ul | Buipooua

SSal

wnu~ Buipoous

codeword address

¢-O3dN
J10JEUS)EOUOD

1
+

temp address

encoding _ offset

Figure 3-22 : Architecture of codeword address goe

3.4. Summary

suffix_adjust leading_Os base address suffix_length suffix_min
1 bit 1 bit 7 bits 3 bits 1 bit

codeword group

symbol_group symbol_offset
3 bits 5 bits

symbol memory

symbol_adjust run_or_level base address symbol
1 bit 1 bit 7 bits 2 bits

symbol group

suffix codeword_group
4 bits 5 bits

codeword memory

Figure 3-23 : Formats of all kinds of memories

67

Figure 3-23 shows the formats of codeword group orgmsymbol memory,
symbol group memory, and codeword memory. Afterrdslt of memory reduction
of the proposed VLC codec system, the total memaa@ie 5272 bits, and the memory
usage for each memory is shown in Figure 3-24. Goetpto the memory usage of
CABAD shown in Figure 3-2, the memory usage of pheposed VLC codec system
is much smaller than that of CABAD. Therefore, gneposed VLC codec system can
easily share the memory with CABAD.

Besides, the conventional VLC codec system use -8&8#emory, and our
proposed VLC codec system save 16% memory usageeVwds, the conventional
VLC codec system can’t support CAVLC, so underghme environment, that is, we
compare the memory usage without considering th&LlCAencoding/decoding, we
use 4856-bit memory and save.23% memory usagepipmsed VLC codec system

has almost the same throughput.as the convenioral

. 256x9
25007 256x8 .

2000
1500

1000

[J memory usage

500
0

codeword symbol symbol codeword
group group

Figure 3-24 : The memory usage of each memory

68

Chapter 4.
Optimization of the

Proposed VLC Codec
System

From Figure 3-3, we can see other decoding/encogiingedures in addition to
coeff_token in CAVLC. Even if they are VLC encodidgcoding procedures based
on Huffman coding except trailing ones._sign_flagyr fthe purpose of the
performance, we don’'t use: the proposed group-basge@ encoding/decoding
approaches to realize other :parts. Besides, thg@ooemts, symbols constructor and
bitstream concatenater, also: have great ‘influence tlee encoding/decoding
procedures. In this chapter, we will introduce titleer optimization of the proposed

VLC codec system.

4.1. Efficient Coding

Efficient coding means we can use simple arithmapproaches to realize the
VLC tables, because we would find the same numlemnitas among different tables.
From these numerical rules, we can cluster thar@igables into a few groups. In the
same group, the symbols or the codewords haveatme siumerical calculations to
get the relative codewords or symbols. By this wasg can implement these
decoding/encoding procedures without memory usagd,we can get the encoded
codewords or decoded symbols quickly to providelbier throughput for the entire

codec system.
69

4.1.1. Level Efficient Coding

il (suffix_length == () il (suffix_length == ()

{

. § it (leve|<§€)
it (leve _prefix < 14) _ . .
sigr = leve _prefix[(] Iceondget\r/]vordle:? 2+ sigr

leve =sigr % (~leve _prefix) >> : (leve _prefix +2) >> -
else if (leve _prefix == 1¢)

leve _code = 14 + leve _suffix (4 bits)

sigr = leve _suffix[(]

leve =sigr 7 (~leve _code) >> - : (leve _code +Z) >> -
else if (leve _prefix == 1£)

leve _code = 30 + leve _suffix (12 bits)

sigr = leve _suffix[(]

leve =sigr % (~leve _code) >> * : (leve _code +2) >> -

else if (leve | < 16)

length=14+" +4

code =(” << 4) +(leve -)<< - +sigr
else

length=14+" + 12

code = (" << 1Z) + (leve - 16) <<~ + sigr

J
else

it (leve| < escape)
length = leve - | >> (suffix_length - *) + suffix_length + -
codeword = (- << suffix_length) + suffix << * + sigr

leve _code = (leve _prefix << suffix_length) + leve _suffix else

sigr = leve _suffix[(]

= siar % (~ S .- yss - length = 2¢
. leve =sigr 7 (~leve _code) > I (leve_code +2) > codeword = << 12) + (leve - escape) << * + sigr

Decoding Encoding

Figure 4-1 : Algorithm of level encoding and decuyli

Figure 4-1 shows the algorithm of level encoding decoding. According to the
value of suffix_length, we can.«choose the decodsalet from NUM_VLCO ~
NUM_VLC6. When suffix_length is 0,-there are:twacage cases (level_prefix = 14
or 15) which have to fetch level suffix to deco@a the other hand, the suffix length
is equal to the variable, suffix“length. The valealsign, means the level is positive
or negative.

In the encoding procedures, length is the codewanrgth and code represents the
codeword value. The variable, escape, is defingbdeafllowing equation.
escape=15<<suffix _length
The variable, escape, determines the thresholdaaipe case, and if the value of level
is greater than or equal to escape, the encodimgedure enters the escape case. In
escape case, level prefix is given 15 and the lewufix length is 12. This is for the
large value of encoding levels. The two casesegllev 16 and |leveli 16, are the
mapping to the two escape cases in the decodirgegsoAccording to the encoding
and decoding algorithm shown in Figure 4-1, we framulates the calculations of
level encoding/decoding shown in Figure 4-2.

70

If (level_encoding) escaping cases if (suffix_length == 0)
escape0_0 = |level|; -

escape0_1=8; if (encoding)
escape1_0 = |levell; case ({escape0, escape1})
escapel_1=16; 2'b00 : level_out0 = 1<< 12;
escape2_0 = [level|; level_out1 = {|level|-16,sign};
escape2_1 = escape; 2'b01 : level_out0 = 1 << 4;
. level_out1 = {|levell|-8,sign};
If (level_decoding) 2'b10 : level_out0 = 0;
escape0_0 = level_prefix; level out! = 0:
escape0_1=14;) 2'b11 : level_out0 = 0;
escapel1_0 = level_prefix; level out1 = 1:
escapel_1=15;] if (decoding)
escape2_0 = level_prefix; case ({escape0, escape1})
escape2_1=15; 2'b00 : level_out0 = 30;
level_out1 = level_suffix (12 bits);
escape0 = escape0_0 >= escape0_1; 2'b01 : level_out0 = 14;
escapel = escapel_0 >= escapel_1; level_out1 = level_suffix (4 bits);
escape? = escape2_0 >= escape2_1; 2'610 : level_out0 = 0:
level_out1 = 0;
2'b11 : level_out0 = 0;
if (suffix_length == 0) level_out1 = level_prefix;
case ({escape0, escape1})
2'b00 : length = encoding ? 28 : 12; }
2'b01 : length = encoding ? 19 : 4; else
default : length = encoding ? {|level|, ~sign} : 0; {
else if (encoding)
if (encoding) if (escape2)
if (escape2) level_out0 = 1 << 12;
length = 28; level_out1 = {|level|-escape, sign};
else else
length = (|level| - 1) >> shift + suffix_length + 1; level_out0 = 1 << suffix_length;
if (decoding) level_out1 = {suffix, sign};
if (escape2) if (decoding)
length = 12; level_out0 = level_prefix << suffix_length;
else level_out1 = level_suffix;
length = suffix_length; }
shift = suffix_length - 1; length level_out = levelout0 + level_out1; Result of level

encoding/decoding

Figure 4-2 : Calculations of level enceding andatkiaeg
The escape cases for level encoding-procedurefieasd| < 8, |level| < 16, and

[level| < escape, and those for level decodingguhoes are level prefix < 14, ¥
level_prefix < 15, and level_prefix = 15. The ldmgtfor level encoding procedures
are the length of the encoded codeword, and thastevel decoding procedures is
the suffix length of decoding codeword which isnsmitted to codeword boundary
detector to calculate the codeword boundary. Thel l®ut is the codeword value for
level encoding and that is the value of level ctmtelevel decoding. According to
level _code, we can get the value of the decodeal Ehown in Figure 2-10. Based on
these calculations, we can simplify the complexitylevel encoding and decoding,
and this architecture can help us handle the ghiajput bitstream for level decoding
and integrate level encoding/decoding to an arkeaft level codec system. The
level decoding/encoding procedures and the correBpg examples are shown in

Figure 4-3 and Figure 4-4.
71

Decoding procedures - assume the decoding codewords “00001101000---” and suffix_length is 3.

1) Count leading zeros and fetch level_prefix.
leading zeros = 4 => level_prefix = 4;

2) Evaluate the escape case and fetch level_suffix according to suffix_length.
level_prefix < 14 => escape0 = 0;
level_prefix < 15 => escape1 = 0 & escape2 = 0;
suffix_length = 3 => suffix = 3'b101;

3) According to suffix_length, escape cases, level_prefix, and level_suffix, we can get the decoded suffix_length, level_out0, level_out1, and sign.
suffix_length = 0 && escape2 = 0 => length = suffix_length = 3;
suffix_length = 0 => level_out0 = level_prefix << suffix_length = 4'b0100 << 3 = 7'b0100_000 = 32;
leve_out1 = level_suffix = 3'b101 = 5;
sign = level_suffix[0] = 1'b1;

4) Extract the lengths of level_out0 and level_out1 the same as the word length of levels which is 16-bit.
level_out0' = 16'b0000_0000_0010_0000 = 32;
level_out1' = 16'b0000_0000_0000_0101 = 5;

5) Calculate level_code by adding level_out0' and level_out1' and derive level according to sign and level_code.
level_code = level_out0' + level_out1' = 16'b0000_0000_0010_0101 = 37;
sign = 1 => level = ~level_code >> 1= 16'b1111_1111_1110_1101 = -19;

Figure 4-3 : Level decoding procedures and theesponding examples

Encoding procedure - assume the encoding level is 14 and suffix_length is 1.

1) Calculate the absolute value of level, the escape value according to suffix_length, and sign.
level = 14 => |level| = 14;
escape = 15 << suffix_length = 15 << 1 = 30;
level >= 0 => sign = 0;

2) Evaluate the escape cases according to the absolute yalue of level.
|level| = 14 => escape0 = 1, escape1 = 0, escape2 = 0;

3) According to suffix_length, escape cases, and the absolute value of level,,we can get the encoded codeword length and level_out0 and level_out1.
suffix_length == 0 && escape2 == 0 => codeword length = (|level|--1) >> shift + suffixslength + 1= (14-1)>>0+1+1=16.
suffix = (|level| - 1) & (~((Oxffffffff)<<shift)) = (4'01101) & (0x0000-0000) = 0;
escape2 == 0 => level_out0 = 1 << suffix_length.= 1 << 1.=2;
level_out1 = {suffix,sign} = 0;

4) Extract the lengths of level_out0 and level_out1 the same as thercodeword length.
level_out0' = 16'b0000_0000_0000_0010 = 2;
level_out1' = 16'b0000_0000_0000_0000 = 0;

5) Calculate codeword by adding level_out0' and level_out1'.
codeword = level_out0' + level_out1' = 16'b0000_0000_0000_0010;

Figure 4-4 : Level encoding procedures and theesponding examples

The architecture of the proposed level codec syssesmown in Figure 4-5. The

level decoding and encoding procedures can workihis codec system. When

executing level encoding, the valid outputs areeeaatd and length; on the other

hand, the valid outputs are level and length. Hsailts of |level| - 8, |level| - 16, and

[level| - escape can be derived from the calculatiof escape cases. The codeword

boundary detector always sends 12-bit bitstreantefcgl decoding, and according to

level_prefix and suffix_length the system will fetthe wanted level suffix with

correct length. The information of suffix_length gsven from the suffix_length

72

generator, and the architecture is the same asntfragure 2-11. Therefore, we don'’t
describe it here. The three components, decodelefmth, decoder for level _outO,
and decoder for level _outl implement the calcutetishown in Figure 4-2 with PLA
architectures. The three adders in the left paRiguire 4-5 calculate the escape cases
of level encoding and decoding. The two input signdevel encoding and
level _decoding, are not only the selecting sighat, also enable signals to open or
close the level codec system. The component tohgeabsolute value of the input is
to do 2's complement or pass the original inpuading to the most significant bit
(msb) of the input which can judge the input vakipositive or negative. That is the

approximate introduction of the proposed level eliveg and decoding architecture.

ybus| xiyns

—

o [oAd]

J8Ylys [oueg

suffix_length
—»

absolute

xya1d”|ans|

pooap [oAs]

{uBis‘adeosa - |jona)|}

f——

pulpodap[ans|

{ubis‘g - [l9rall}

f——

{ubis‘g| - |19Aa][}

f——

.7
XIYNs” [9As]
|XHNS_19A

Bulpoo|s
{ubis‘xiyns}
xyaud ™ |ans|

—

—»
leve _prefix

=

8|k-_0000_0000_0000 C

suffix_lengtt
—»

l

Buy
J9YIYs [o1leg

- £k’_0000
leve _encoding —

Decoder for leve _oulC e

C
—
3C
—

14

1IN0 |2A8] 10} 10p00a(

leve - *

ubis‘lianall}

leve _code[C]

suffix_length - -

<7

y1Bus xyns
-
7

18l1ys jeseg

L + WBus[Xyns

12 4

l

codeworc

Decoder for length

J lengtr

Figure 4-5 : Architecture of level decoding/encadin

JayIys [oueg

suffix_lengtt .
== leve _decoding ——»

leve _encoding ———»

Buipooap |9As|

73

4.1.2. Run_before Efficient Coding

run_before

zeroslLeft

1

2

3

>6

1

1

11

11

11

11

111

0

01

10

10

10

000

110

00

01

01

011

001

101

00

001

010

011

100

000

001

010

011

000

101

010

100

001

0001

00001

000001

10

0000001

11

00000001

12

000000001

13

0000000001

14

00000000001

The run_before table is shown in Table 4-1. Evemdfcan get good performance
with PZTP to realize run_before table, we hopeiid the easier and more efficient
method to implement run_before codec system witraljgh input bitstream and
combine the encoding part. After observing the hafore table, we can find the
numerical relation for run_before decoding and eirogp shown in Figure 4-6. No
matter the decoding or encoding procedures, wedsade the run_before table into
three groups, which are zerosLeft < 6, zerosLedt and zerosLeft > 6. Besides, the
calculations in each group are similar. For exampleen zerosLeft is equal to 6,
run_before is the result of adding codeword and wnelecoding processes, and

codeword is the difference of run_before and onehSelation helps us to complete

the efficient coding for run_before table.

74

Table’4-1.: Table for run_before

decoding

zerosLeft > 6
if (leading zeros > 2,
run_before = leading zeros + 4
else
run_before = ~codeworc (3 bits,
zerosLefi = 6
codeworc >= 6 run_before = 0
codeworc <= * run_before = codeworc + *
codeworc == 3 5 run_before = codeworc
codeworc == 2 4 run_before = codeworc + 2
zerosLeft < 6
if (leading zeros == Q;
run_before = ~codeworc
else
run_before = zerosLefl - codeworc

encoding

zerosLefl > 6
if (run_before < 7,
codeworc = ~run_before
else
codeworc = *
zerosLefl = 6
rur_before == 0 codeworc = 3
rur_before <= 2 codeworc = run_before - -
rur_before == 3 5§ codeworc = run_before
rur_before == 4 6 codeworc = run_before - 2
zerosLefl < 6
if (run_before < 2
codeworc = ~run_before
else
codeworc = zerosLefl - run_before

Figure 4-6 : The numerical calculations of run_befencoding and decoding

The architecture of the proposed run_before cogstes is shown in Figure 4-7.
We can use the architecture of run_before efficamding instead of look-up table
method. The advantage of the proposed architetguhe major function units can be
shared for the encoding and decoding proceduresiekfer, if we implement the

run_before codec system with look-up-table, we havéuild two tables for both

procedures.
S| 8
Ic‘ %
. = (_D" s - A
E o 8 % g_ 3 3
> o
- 5 5 8 |3 ¢ o
S Q o = o 3 8 MUX MUX MUX
| S Q e o a Q
g 8| B = 2 g
= o
s + 2t |a ! !
+ +
<7] & <7
8 8 [
=3 =3
> >
« «
@ Q
=] @
Q Q
ol 31 a a
A 3 3
«Q «Q
o
NUX Decoder
=
C
X
‘j zerosLeft
+ [—
zerosLeft
—>
Decoder

Figure 4-7 : Architecture of run_before codec syste

75

4.2. Zero skipping and proposed symbols

constructor

Code Element Value Output array

0000100 coeff_token TotalCoeff = 5, TrailingOne8 = Empty

0 T1 sign + 1

1 T1 sign - -11

1 T1 sign - 1-1,1

1 level +1 1111
0010 level +3 A,-1,-11
111 total_zeros 3 31,-1,-1,1

10 run_before 1 3,1,-1,-1,0,1

1 run_before 0] 3,1,-1,-1,0,1

1 run_before 0 3,1,-1,-1,0,1
01 run_before 1 3,0,1,-1,-1,0,1

Figure 4-8 : An example of decoding procedures A¥ICC

Figure 4-8 shows an example of decoding procedofr€AVLC. We can see the
processes of constructing the DCT coefficients igeag order. Generally, we will
arrange the DCT coefficients after decoding all_hefores. Such method will take
additional cycles whose value is the same as theevaf TotalCoeff to arrange the
DCT coefficients. If the decoded run_before is ded we arrange the coefficients in
the next cycle, and we can save a few cycles ange the DCT coefficients. Before
executing the proposed symbols construction, wee havknow the location of last
non-zero coefficient in the coefficients storageccérding to TotalCoeff and
total_zeros, we can calculate the location of #s DCT coefficient. The procedures

of proposed symbols construction and the correspgrekample are shown in Figure

76

4-9. In Figure 4-9, cycle means the cycle of symhminstruction and run_before is
being decoded in cycle 1 ~ 4, run_before is theievalf decoded run_before in the
present cycle, level_count represents the poirdethé levels buffer, coeff_count
means the pointer to the coefficients buffer, andffc buffer records the values of
coefficients buffer in the next cycle. The defawdlue of coeff_count is the sum of
TotalCoeff and total _zeros minus one. The sum ¢&lCweff and total zeros means
the total number of decoded symbols including nermezand zero coefficients, so
according the sum of TotalCoeff and total zerosoae know the location of last
non-zero coefficient in coeff_buffer. In the fistcle, level_count equal to 4 maps the
level is 1. Therefore, we put 1 to coeff_buffertla location coeff _buffer 7, and the
next coeff_count is the result of subtracting cotrreoeff count and 1. At the same
time, the decoded run_before is 1, and the nexf aamint also has to subtract the
value of run_before, so the next coeff_count.iR&peating the above steps, finally

we can get the DCT coefficients in.zigzag-order.

cycle run_before level count.+ ‘coeff_count coeff bufl ~ 15
1 1 4 7 0000_0001_0000_0000
2 0 3 6-1 0000_0-101_0000_0000
3 0 2 4 0000_-1-101_0000_0000
4 1 1 3 0001_-1-101_0000_0000
5 N.A. 0 2-1 0301_-1-101_0000_0000

Figure 4-9 : The proposed symbols constructioref@mple in Figure 4-8.
However, the proposed symbols construction is m®biptimal solution. When the
decoded run_before is equal to 0, the next coefficiocation can be predicted, even
if we don’t decode the run_before. That is, if ii@2he zero run_before and decode

the next run_before, we can still store the lewais correct locations in coefficients

77

buffer. That is not difficult, and when calculatinige results of level count and
coeff_count, we take the number of zero-skipping_hefores into consideration. The

example of the proposed symbols construction watto-skipping is shown in Figure

4-10.
cycle run_before level count coeff _count coeff bufl ~ 15
1 1 4 7 0000_0001_0000_0000
4 (0), (0), 1 3-2 6—1-2 0001 -1-101_0000_ 0000
5 N.A. 0 2-1 0301_-1-101_0000_0000

Figure 4-10 : An example of the proposed symbotstroction with zero-skipping
The final problem is how to realize the functionitulw detect the condition of
zero-skipping. Figure 4-11 shows the run_befordetabapping to zero run_before
under different zerosLefts. We.can find. that thdeswords of zero run_before are “1”,
“11”, and “111". Therefore, the realization of zeskipping detector is quite easy,
because we already design a leading-one countéeicodeword boundary detector
for MPEG-2 codewords. Here, we only-use‘that legaine counter and add another
decoder whose inputs are leading ones and zerosireftwe can get the information

about the number of zero-skipping run_befores.

run_before| zerosLeft

1123 |4 |5 |6 |>6

0 111111111 |11| 111

Figure 4-11 : The run_before table mapping to zero before

78

4.3. Summary

proposed method I-frame P-frame frame
level efficient coding 40% 17% 29%
run_before efficient coding 4% 12% 8%
symbols construction 14% 12% 13%
zero skipping 4% 5% 4%

Table 4-2 : Throughput improvement of each propasethod, foreman QP = 10

Table 4-2 shows the improvement of throughput fache proposed approach,
when we decode the picture, foreman, and the @Rual to 10. We can see the effect
is the best when applying level efficient codingddhe method can save about 40%
throughput when decoding an I-frame. Besides, raforb efficient coding has more
performance for P-frame than I-frame, because khekb of P-frame have more zero
coefficients than those in I-frame: - Symbols' corgtan also has good improvement
both for I-frame and P-frame. However, the - effeft zero skipping is not so
significant. We consider that-the number of zen@ _hefores is not so much in this
picture. Therefore, we decode another picture, hapland set QP is 28. The

improvement of throughput is shown in Table 4-3.

proposed method I-frame P-frame frame
level efficient coding 27% 5% 22%
run_before efficient coding 6% 12% 7.5%
symbols construction 14% 5% 12%
zero skipping 4% 3% 4%

Table 4-3 : Throughput improvement of each propasethod, mobile QP = 28
Table 4-3 shows the improvement of throughput fache proposed approach,
when we decode the picture, foreman, and the Q&gisl to 10. The proposed
approach, level efficient coding, still has excallperformance for I-frame, but the
performance for P-frame is not so good. The propp@gmroach, run_before efficient

coding, also has good performance in P-frame, gntbsls construction provides

79

much improvement in I-frame. However, zero-skippaypproach still has not good
performance. Blessedly, the hardware cost of zkipsg is acceptable, although

the improvement of throughput is not good enough.

80

Chapter 5.
Implementation
Results and
Conclusion

5.1. Implementation Results

Figure 5-1 and Figure 5-2 show the encoding thrpuglof the proposed VLC
group-based codec system with the H.264/AVC stahdarcode, JM 9.2, and in
Figure 5-1 we encode the -picture, mobile.yuv; oa tther hand, the picture is
foreman.yuv. The proposed VLC igroup-based codeesysan support H.264/AVC
main profile @5.1, when QP is‘equal to.28 in Fightg, and Figure 5-2. Table 5-1

shows the average encoding cycles per MB in thpqeed design.

QP mobile foreman
10 368 329
12 353 292
16 320 226
20 278 156
24 227 102
28 165 69
32 114 50
36 86 35
40 68 23
average 220 142

Table 5-1 : The average encoding cycles per MBiénproposed design

81

Encoding throughpot of rmobile. oy

350 ¢
A00F
—= frame
level 4.1
—= level 4 2o
g —& level 4.2/hi
T - level 5.0
= level 5.1
=]
=
n]
=
A T I s
° S— S— —
= ~
150 F
100 +
50
10
Figure 5-1
450 -
ADDE
—&~ frame
4 —& level 4.2/
—& level 4.2/hi
g0 ~- level 5.0
= level 5.1
2 250 |
o
ﬁ o = \\ = e = £)
S 180 F
100 + T
50+
¥
n 1 i i i I j
10 15 20 25 30 35 40
n]=]

Figure 5-2 : The encoding throughput of proposegigierunning foreman.yuv
82

cyecleMB at 100MHz

cycle/miB at 100kHz

Decoding throughpot of rmobile. yoy

450
A0+
—= |-frame
4 —=- P-frame
350 level 4.1
—=— level 4.2/10
300 - level 4. 2¢hi
—=— level 5.0
2504 level 5.1
200
150 |
100 +
S0
o
10
HIHW e
: #j,@wpfpdﬁgeﬂgierunnmg mobile.yuv
== e i
- L*’;ta-_kﬁ N]
Dec@mga@‘;m*ﬁf gfeman yur
450
400+
—&- |-frame
250 - —— P-frame
level 4.1
—= leval 4. 2o
300+ - level 4.2/hi
{ —= level 5.0
280 level 5.1
004§ = & g g & £
4 = “‘x__ = = =
150+
100 -
a0k
¥
1] L) L s <t
10 15 20 25 30 35 40

LR

Figure 5-4 : The decoding throughput of proposezigierunning foreman.yuv
83

Figure 5-3 and Figure 5-4 show the encoding thrpuglof the proposed VLC
group-based codec system, and in Figure 5-3 weddetmbile.yuv, and foreman.yuv
in Figure 5-4. Usually, compared to the decodingulghput, we often consider
I-frame of a decoded picture. In Figure 5-3, theading throughput of I-frame can
reach the standard of H.264/AVC main profile @5Hew QP is 32 and in Figure 5-4
the proposed VLC codec system can meet that whenisQE8. Therefore, the

proposed VLC codec system can support H.264/AVCGhmeofile @5.0.

Chien[2] Chen [1] Yu[5] Proposed
Technology 0.18um 0.18um 0.18um 0.13um
Gate Count 9724 17635 13192 20357
Clock Frequency 125 MHz 100 MHz 125 MHz 125 MHz
Decoding : 8554
Encoding/Decoding Encoding Encoding Decoding| Encoding : 5519
Shared 6284
HD1080 HD 1080 Main Profile Main Profile
Target Format
30fps 30fps @5.0 @5.0

Table 5-2 : Comparison ofitherpropesed design atitlers

In implementing the proposed+CAVLC codec system, pexformed logic
synthesis on the proposed design according to authh1CMOS technology. The
comparison of the proposed design with other ismghan Table 5-1. Design [1]
contains a bitstream packer which packs the codésyeroduced by symbol encoders,
the packing of bitstream headers and Exp-Golomb.

In MPEG-2, the only difference of the throughpubnfr the conventional
group-based VLC codec design is the decoding proeethecause we have to access
the symbol group memory when decoding a MPEG-2 synmbour proposed design.
However, under well pipelined architecture, sucifiedence is not obvious. Besides,
the encoding procedures in the proposed design hheesame steps as the

conventional group-based VLC codec design, so ofssthe throughput is the same

84

as the conventional one. The simulation resultshosvn in Table 5-3. We can see the
average symbol rate of encoding process is 99.98Mt100 MHz-clock rate and the
average symbol rate of decoding process is 99.8sMsphe same clock rate. Some

overheads are introduced due to stalls of therb#st FIFOs.

image: (4:2:2) @
1920 X 1080
simulation
results % ,
of bitstream (bit) 3439392 1912640
of symbols 590302 252817
Encoding cycle 590348 252864
Decoding cycle _+1591484 ., 253323

Table 5-3 : Simulation results baéquo'ri"HDf‘V_ syst¢rirame) in MPEG-2
= F=HAEI\A &

i
e
. 1

5.2. Conclusion = . =

L N 1-1

In this thesis, we propose 6h9 _.'I_('j"wrpowe.r‘ .a‘ﬁd harelwast VLC decoder for dual

| &

standards, MPEG-2 and H.264/AVC~:; Cbmpared to [4],reduce 30% hardware cost
in H.264/AVC CAVLD. The hardware cost of the propdsdual-standard VLD is
7683 gate-count and the power is 1.719 mW for MBEG-302 mW for H.264/AVC
baseline@3.0 I-frame, and 1.376 mW for H.264/AVGdime @3.0 P-frame at 100
MHz.

Besides, we proposed another group-based VLC cegigem for dual standards,
MPEG-2 and H.264/AVC. According the group-basedyeleefficient coding,
run_before efficient coding, the proposed symbasstruction, and zero-skipping,
we design a VLC codec system which can support 486C main profile @5.0
with 20357 gate counts at 100 MHz. Each proposedhade can improve the

percentage of throughput shown in Table 5-4 andleT&bk5. Compared to the

85

conventional VLC group-based VLC codec system,ptoposed design reduce 16%

memory usage.

proposed method I-frame P-frame frame
level efficient coding 40% 17% 29%
run_before efficient coding 4% 12% 8%
symbols construction 14% 12% 13%
zero skipping 4% 5% 4%

Table 5-4 : Throughput improvement of each propasethod, foreman QP = 10

proposed method I-frame P-frame frame
level efficient coding 27% 5% 22%
run_before efficient coding 6% 12% 7.5%
symbols construction 14% 5% 12%
zero skipping 4% 3% 4%

Table 5-5 : Throughput improvement of each propasethod, mobile QP = 28

5.3. Future Work

The hardware cost is a problem for the propesedmhbased VLC codec design,
because under such performance in‘throughput thdwhee cost is not efficient
enough. Therefore, hardware cost reduction can taeget to make effort. Besides,
the power issue is always the problem of the grioaged design. How to reduce the
power consumption of the proposed group-based Vihdgizc design is another point.
Perhaps, we can solve this problem with memoryahikry, because the codewords of
VLC tables are the representation of the occurpirgdpabilities.

On the other hand, the mobile devices are usedraigndn the process of the
wireless communication, the problem of receivingebitstream due to the noise is
serious. It will result in the error blocks decodadd the picture decoded maybe has

mosaics. Therefore, to develop the error resilieap@oaches very important.

86

Reference

[1] T. C. Chen, Y. W. Huang, C. Y. Tsai, B. Y. HsiehndaL. G. Chen,

“Dual-block-pipelined VLSI architecture of entroppding for H.264/AVC baseline
profile®, Proc. International Symposium on VLS| Dggg Automation and Test
(VLSI-DAT), pp. 271-274, 2005.

[2] C. D. Chien, K. P. Lu, Y. H. Shih, and J. I. Guo FAgh Performance CAVLC
Encoder Design for MPEG-4 AVC/H.264 Video Coding pfipations”, in Proc.

ISCAS, 2006.

[3] Wu Di, Gao Wen, Hu Mingzeng, and Ji Zhenzhou, “ASIlArchitecture Design
of CAVLC Decoder” Proc. 8 Internatiohal'Conference on ASIC, Vol. 2 pp. 9659

21-24 Oct. 2003..

[4] H. C. Chang, C. C. Lin, J. |. Guo;“A Novel Low-Gdsigh-Performance VLSI

Architecture for MPEG AVC/H:264 CAVLC Decoding”, iRroc, ISCAS, pp. 6110 —
6113, 2005.

[5] K. S. Yu and T. S. Chang “A Zero-Skipping Multi-soi CAVLC Decoder for

MPEG-4 AVC/H.264" in Proc. , ISCAS, 2006

[6] B. J. Shieh, Y. S. Lee, C. Y. Lee, “A New ApproafhGroup-Based VLC Codec
System”, in Proc. , ISCAS, Vol. 4, pp. 609 - 618,321 May 2000.

[7] B. J. Shieh, Y. S. Lee, C. Y. Lee, “A New ApproadtGroup-Based VLC Codec
System with Full Table Programmability”, in ProclSCAS, Vol. 2, pp. 210 — 221,
Feb 2001.

[8] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, K. Blou, J. Y. Yang and C. Y. Lee,
“An 865-uW H.264/AVC Video Decoder for Mobile Apphtions”, in Proc. ASSCC,
2005.

87

[9] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, K. Blou, J. Y. Yang and C. Y. Lee,
“A 125-uW, Fully Scalable MPEG-2 and H.264/AVC Valédecoder for Mobile
Applications”, in Proc. ISSCC, 2006.

[10] Joint Video Team, Draft ITU-T Recommendation andaFiDraft International
Standard of Joint Video Specification, ITU-T Rec26#4 and ISO/IEC 14496-10 AVC,

May 2003.

88

2 LR
h El PRI o A
o4 p AR L-ET P-4

FH
> 2004 & 9% ~2006F 70 WA

g
> 2000 # 97 -~2004 % 7% RzIEAFFTF1RE

> 1997 & 9 7 ~2000 & 6 ¥ A%s =B nd &

