
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

IEEE802.16e OFDM 與 OFDMA 通道編

碼技術與數位訊號處理器實現之研究

Research in Channel Coding Techniques and

DSP Implementation for IEEE 802.16e

OFDM and OFDMA

研 究 生：陳勇竹

指導教授：林大衛 博士

中 華 民 國 九 十 五 年 六 月

IEEE 802.16e OFDM 與 OFDMA 通道編

碼技術與數位訊號處理器實現之研究

Research in Channel Coding Techniques and DSP

Implementation for IEEE 802.16e OFDM and OFDMA

研究生: 陳勇竹 Student: Yung-Chu Chen

指導教授: 林大衛 博士 Advisor: Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering
National Chiao Tung University

in Partial Fulfillment of Requirements
for the Degree of
Master of Science

in
Electronics Engineering

June 2006
Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

i

IEEE 802.16e OFDM 與 OFDMA 通道編

碼技術與數位訊號處理器實現之研究

研究生：陳勇竹 指導教授：林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

IEEE802.16 無線通訊標準中，於系統的傳送端訂定了前向誤差改正編碼的機

制，藉此減低通訊頻道中雜訊失真的影響。通道編碼是本論文的重點。

本篇論文的前半部份重點在於，實現 IEEE 802.16e OFDM 所訂定的前向誤差改正

編碼系統於數位訊號處理器(DSP)上，並且針對 DSP 平台的特性以及前向誤差改正編

碼的演算法進行程式的改進。在此篇論文中，我們將標準中制訂的四個必備的前向誤

差改正編碼系統，實現在以德州儀器公司所發展的 DSP 為核心的平台上。由於我們

關注的重點在於程式的執行效率，因此簡短地介紹過我們使用的前向誤差改正編碼的

演算法以及 DSP 平台的架構與軟體最佳化技巧後，我們將逐步地闡述如何在 DSP 平

台上最佳化我們的程式。最後，前向誤差改正編碼的編碼器部份，經過改進後，於

DSP 模擬器上，可以到每秒 8013K 位元的處理速度，而解碼器的部份可以達到每秒

769K 位元的處理速度。

本論文後半部份強調 IEEE 802.16e OFDMA 中低密度奇偶校驗碼複雜度的降低。

我們介紹一些分析低密度奇偶校驗碼的工具後，逐步地闡述低密度奇偶校驗碼傳統的

解碼演算法，並且介紹一些降低解碼複雜度的演算法。最後我們在加成性白色高斯通

道下模擬了各種調變與各種解碼演算法，並把模擬之結果與一些數學分析的結果做比

較。模擬的結果顯示這幾個降低複雜度的演算法和傳統的解碼表現相當接近，甚至更

好。若從性能，延遲時間，運算複雜度，延遲時間，及需要的記憶體的角度來看，我

們可以彈性的挑選適當的解碼演算法來使用，以取得之間的平衡。

ii

Research in Channel Coding Techniques and DSP

Implementation for IEEE 802.16e OFDM and OFDMA

Student: Yung-Chu Chen Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Institute of Electronics

National Chiao Tung University

Abstract

In the IEEE 802.16e wireless communication standard, a Forward Error Correction
(FEC) mechanism is presented at the transmitter side to reduce the noisy channel effect.
The focus is on the channel coding.

The focus of the fist part of this thesis is DSP implementation of the FEC schemes
defined in IEEE 802.16e OFDM standard and modifying FEC algorithms to match the
architecture of DSP platform. We have implemented four required FEC schemes defined in
the standard on the Texas Instruments (TI) TMS320C6416 digital signal processor (DSP).
After a brief review of the algorithms, we describe the DSP hardware architecture and its
software optimization techniques. We then explain how we optimize the FEC programs on
the DSP platform step by step since the speed performance is our major concern. At the end,
the improved FEC encoder can achieve a data processing rate of 8013 kbits/sec and the
improved FEC decoder can achieve a processing rate of 769 kbits/sec on the TI C64xx DSP
simulator.

The focus of second part is the complexity-reduction for low-density parity-check
(LDPC) codes defined in IEEE 802.16e OFDMA. We describe some tools to analyze the
LDPC codes. We then explain the conventional decoding algorithm, and some
reduced-complexity decoding algorithms. Finally, we simulate the LDPC codes for all
kinds of modulation and decoding algorithms in AWGN and compare the simulation results
with analytical results. Simulation results show that these reduced-complexity decoding
algorithms for LDPC codes achieve a performance very close to that of conventional
algorithm, or even better. We can flexibility select the appropriate decoding scheme from
performance, computational-complexity, latency, and memory-requirement perspectives.

iii

誌謝

這篇論文能夠順利完成，最要感謝的人是我的指導教授 林大衛 博士。在這

二年的研究生涯中，不論是學業上或生活上，處處感受到老師的用心，尤其是修

改論文時相當的用心。除了豐富的學識和研究，老師親切、認真的待人處事態度，

也是我景仰、學習的目標。

另外要感謝的，是實驗室的吳俊榮學長和洪崑健學長。謝謝你們熱心地幫我

解決了許多通訊方面相關的疑問。

感謝通訊電子與訊號處理實驗室(commlab)，提供了充足的軟硬體資源，讓

我在研究中不虞匱乏。感謝 91 級 eras(子瀚)、 hclin(筱晴)、長毛(建統)，92 級

klinsman(昱升)、andlight(漢光)、ching(汝芩)、u8811021(思浩)、osban (承毅)、

Richard Tung(景中)、gem(盈閔)、buggy(志楹)、enz(瑛姿)，93 級 Gauss(鴻志、pay3)、

odom(旻弘)、allenlai(阿蛋)、ssdai(世炘)、stan(崇文少爺、林金龍)、lotus(國偉)、

shiryu(治傑)、蔡蟲(崇諺)、jackyboss(國洋)、Jerome(建志)、jerry(宜寬)等實驗室

成員，平日和我一起唸書，一起討論，也一起打混，讓我的研究生涯充滿歡樂又

有所成長。期待大家畢業之後都能有不錯的發展。

最後，要感謝的是我的家人，他們的支持讓我能夠心無旁騖的從事研究工作。

謝謝所有幫助過我、陪我走過這一段歲月的師長、同儕與家人。謝謝！

誌於 2006.7 風城交大

勇竹

Contents

1 Introduction 1

1.1 Scope of the Work . 1

1.2 Organization of This Thesis . 2

2 Overview of IEEE 802.16e FEC Specifications 4

2.1 FEC Specifications for WirelessMAN-OFDM [1] 4

2.1.1 Reed-Solomon Code Specification . 5

2.1.2 Encoding of the Reed-Solomon Code [5] 6

2.1.3 Convolutional Code Specification . 7

2.1.4 Encoding of Punctured Convolutional Code 9

2.1.5 Interleaver . 9

2.1.6 Modulation . 11

2.2 FEC Specifications for WirelessMAN-OFDMA [7] 11

2.2.1 Overview of LDPC Codes . 13

2.2.2 LDPC Codes Specification in IEEE 802.16e OFDMA 15

2.2.3 Interleaver . 19

i

2.2.4 Modulation . 20

2.3 Analysis of LDPC Codes in IEEE 802.16e OFDMA 20

2.3.1 Girth Analysis . 20

2.3.2 Density Evolution . 23

3 DSP Implementation Environment 25

3.1 The TMS320C6416 DSP Chip . 25

3.1.1 TMS320C6416 Features . 25

3.1.2 Central Processing Unit Features [18] 27

3.1.3 Cache Memory Architecture Overview [19] 31

3.2 The Quixote Baseboard [20] . 34

3.3 TI’s Code Development Environment [21], [22] 35

3.4 Code Development Flow [23] . 38

3.4.1 Compiler Optimization Options [23] 40

4 Implementation and Optimization of IEEE 802.16e OFDM Channel Codec

on DSP 43

4.1 Decoding of RS Code [5] . 43

4.2 Viterbi Decoding of Punctured Convolutional Code 44

4.3 Decoding of Bit-Interleaved Coded Modulation 45

4.4 Profile of the DSP Code . 47

4.5 Appendix . 49

ii

5 Decoding Algorithms of LDPC Codes in IEEE 802.16e OFDMA 60

5.1 The Belief Propagation Algorithm [30] . 60

5.2 Some Reduced-Complexity Decoding Algorithms [30] 62

5.2.1 BP-Based Algorithm . 62

5.2.2 Balanced Belief Propagation Algorithm [31] 63

5.2.3 Normalized BP-Based Algorithm . 63

5.2.4 Offset BP-Based Algorithm . 64

5.3 Early Termination [33] . 65

5.4 Simulation Results and Analysis . 66

5.4.1 Determine the Number of Iterations 66

5.4.2 Use of All-Zero Codewords in Simulation 66

5.4.3 Performance of the IEEE 802.16e LDPC Codes under the BP Algorithm 67

5.4.4 Performance of Balanced BP Decoding Algorithm 70

5.4.5 Choose Appropriate Early Termination Parameters 72

5.4.6 Compare Early Termination and Parity Check Termination 75

5.4.7 Performance of Some Reduced-Complexity Decoding Algorithms [30] 76

6 Conclusion and Future Work 83

Bibliography 85

iii

List of Figures

2.1 Channel coding structure in transmitter (top path) and decoding in receiver

(bottom path). 4

2.2 Shortened and punctured Reed-Solomon encoder (from [5]). 8

2.3 Convolutional encoder of rate 1/2 (from [1]). 8

2.4 BPSK, QPSK, 16-QAM, and 64-QAM constellations (from [1]). 12

2.5 Tanner graph of a parity check matrix (from [7]). 15

2.6 Base model of the rate-1/2code (from [2]). 16

2.7 Base model of the rate-2/3, type A code(from [2]). 17

2.8 Base model of the rate-2/3, type B code(from [2]). 17

2.9 Base model of the rate-3/4, type A code(from [2]). 17

2.10 Base model of the rate-3/4, type B code(from [2]). 18

2.11 Base model of the rate-5/6 code(from [2]). 18

2.12 QPSK, 16-QAM, and 64-QAM constellations (from [2]). 21

3.1 Block diagram of TMS320C6416 DSP (from [18]). 28

3.2 Pipeline phases of TMS320C6416 DSP (from [18]). 29

3.3 TMS320C64x CPU data paths (from [18]). 33

iv

3.4 C64x cache memory architecture (from [19]). 34

3.5 Picture of the Quixote board [20]. 35

3.6 Block diagram of the Quixote board (from [16]). 36

3.7 Code development flow for TI C6000 DSP (from [23]). 39

4.1 Trellis diagram example of Viterbi decoder (from [24]). 45

4.2 The assembly codes of RS encoding (1/7). 49

4.3 The assembly codes of RS encoding (2/7). 50

4.4 The assembly codes of RS encoding (3/7). 51

4.5 The assembly codes of RS encoding (4/7). 52

4.6 The assembly codes of RS encoding (5/7). 53

4.7 The assembly codes of RS encoding (6/7). 54

4.8 The assembly codes of RS encoding (7/7). 55

4.9 The assembly codes of Chien search in RS decoding (1/4). 56

4.10 The assembly codes of Chien search in RS decoding (2/4). 57

4.11 The assembly codes of Chien search in RS decoding (3/4). 58

4.12 The assembly codes of Chien search in RS decoding (4/4). 59

5.1 Decoding performance at different iteration numbers. 67

5.2 Performance of random data versus all-zero codeword. 68

5.3 Performance of the rate-1/2 code, length 576 code. 69

5.4 Performance of the rate-1/2 code at different codeword lengths, under QPSK

modulation and BP decoding. 70

v

5.5 Performance of different code rates at codeword length 576, under QPSK

modulation and BP decoding. 71

5.6 Conventional BP and balanced BP decoding with length 576, rate 1/2 code,

and QPSK modulation. 72

5.7 Effects of differenct ways of early termination. 73

5.8 Distribution of iteration numbers for codes of different lengths. 74

5.9 Distribution of iteration numbers at different SNR values. 75

5.10 Comparison of the performance of parity check termination and early termi-

nation. 77

5.11 Comparison of the iteration numbers of parity check termination and early

termination. 78

5.12 Performance of different decoding algorithms with rate 1
2

and 2
3
A, length 576. 79

5.13 Performance of different decoding algorithms with rate 2
3
B and 3

4
A, length 576. 80

5.14 Performance of different decoding algorithms with rate 3
4
B and 5

6
, length 576. 81

5.15 Performance of different decoding algorithms with rate 1
2
, 2

3
A, and 3

4
B. . . . 82

vi

List of Tables

2.1 Mandatory Channel Coding Schemes for each Modulation Method 5

2.2 The Inner Convolutional Code with Puncturing Configuration 9

2.3 Bit Interleaved Block Sizes and Modulos . 10

2.4 Bit Interleaved Block Sizes and Modulos . 19

2.5 Girths of LDPC Codes in IEEE 802.16e OFDMA 22

2.6 Degree Distribution and Threshold for Each Code Rate under BPSK Modu-

lation, AWGN Channel, and BP Decoding 24

3.1 Execution Stage Length Description for Each Instruction Type (from [18]). . 30

3.2 Functional Units and Operations Performed (from [18]) 32

4.1 Profile of Channel Encoder under Different Coding and Modulation Modes . 48

4.2 Profile of Channel Decoder under Different Coding and Modulation Modes . 48

5.1 Operation Comparison for all Decoding Algorithms 65

5.2 Relation between Eb
No

, Girth, and Threshold 71

vii

Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission with multimedia contents is a trend in the next generation of

consumer electronics field. Due to this demand high data transmission rate and mobility

are needed. Thus the OFDM modulation technique for wireless communication has been

the main stream in the recent years. IEEE has completed several standards such as IEEE

802.11 series for LANs (local area networks) and IEEE 802.16 series for MANs (metropolitan

area networks) based on OFDM technique. Our study is based on the IEEE 802.16e stan-

dard, which specifies the air interface of mobile broadband wireless access systems providing

multiple access.

One major problem with wireless communication is that the transmission channel is not

noiseless. The transmitted signals are easily interfered and distorted by different types of

noise sources such as the crowd traffic, bad weather, the obstacle of buildings, etc. Mul-

timedia service contains broad range of contents such as audio, video, still image, and the

traditional speech. These services would exhibit untolerable quality if they cannot detect

and recover the errors introduced from the noisy channel. To improve the robustness of

the wireless communication against the noisy channel condition, the FEC (forward-error-

1

correcting coding) mechanism is usually a must to overcome the channel errors for almost

every commercial communication standard, including the IEEE 802.16e.

This work studies two parts of IEEE802.16e. One is the implementation of the FEC

schemes under OFDM on a digital signal processor (DSP). And the other part is mainly

the complexity-reduced decoding algorithms for the FEC schemes under OFDMA for future

implementation on DSP.

The second part of work is part of a group project that gears at studying and construction

(using DSPs) of IEEE802.16e-based transmission system prototype for mobile broadband

communication. The intended span of the group project is from August 2005 to July 2008.

Our study constitutes part of the first year’s work.

The channel coding scheme in IEEE802.16e for OFDM employs concatenated coding

with shortened punctured Reed-Solomon code as outer code and punctured convolutional

code as inner code. In addition, bit interleaver and M -ary QAM modulation are used after

the concatenated code, whereas the channel coding scheme in IEEE802.16e for OFDMA, we

consider the LDPC codes, bit interleaver and M -ary QAM modulation.

1.2 Organization of This Thesis

This thesis is organized as follows.

• Chapter 2 introduces the FEC schemes of IEEE 802.16e and introduces some tools to

analyze the LDPC codes.

• Chapter 3 describes the DSP implementation environment.

• Chapter 4 introduces the DSP implementation and optimization of the OFDM FEC

schemes.

2

• Chapter 5 presents some decoding algorithms and simulation results and compares

different decoding algorithms from simulation.

• Chapter 6 contains the conclusion and point out some future work.

3

Chapter 2

Overview of IEEE 802.16e FEC
Specifications

2.1 FEC Specifications for WirelessMAN-OFDM [1]

The channel coding scheme used in IEEE 802.16e OFDM, as shown in Fig. 2.1, is a con-

catenated code employing the Reed-Solomon (RS) code as the outer code and convolutional

code (CC) as the inner code. Input data streams are divided into RS blocks, and then each

RS block is encoded by convolutional code. The block-by-block coding makes the whole

concatenated code a block-based coding scheme.

The convolutional code is used to “clean up” the channel for the RS code, which in turn

corrects the burst errors emerging from the convolutional decoder. In this way, the bit error

Reed−Solomon Encoder Convolutional Encoder

Convolutional DecoderReed−Solomon Decoder

Interleaver Modulation

De−interleaver Demodulation

Figure 2.1: Channel coding structure in transmitter (top path) and decoding in receiver
(bottom path).

4

Table 2.1: Mandatory Channel Coding Schemes for each Modulation Method

Modulation

Uncoded
Block Size
(Bytes)

Overall Code
Rate

Coded Block
Size (Bytes) RS Code

CC Code
Rate

BPSK 12 1/2 24 (12, 12, 0) 1/2
QPSK 24 1/2 48 (32, 24, 4) 2/3
QPSK 36 3/4 48 (40, 36, 2) 5/6
16QAM 48 1/2 96 (64, 48, 8) 2/3
16QAM 72 3/4 96 (80, 72, 4) 5/6
64QAM 96 2/3 144 (108, 96, 6) 3/4
64QAM 108 3/4 144 (120, 108, 6) 5/6

rate (BER) can decrease exponentially [3]. In addition, between the convolutional coder and

the modulator is a bit interleaver, which protects the convolutional code from severe impact

of burst errors and increases overall coding performance. This approach has been termed

“bit-interleaver coded modulation (BICM)” in the literature [4].

To make the system more flexibly adaptable to the channel condition, there are seven

coding-modulation schemes defined in IEEE 802.16e, as shown in Table 2.1. The different

coding rates are made by shortening and puncturing the native RS code and with puncturing

of the native convolutional code. The shortening and puncturing mechanisms in RS coding

create different block sizes and different error-correction capability RS codes through one

RS coder. The puncturing mechanism in CC coding can provide variable code rates through

one CC coder.

2.1.1 Reed-Solomon Code Specification

The Reed-Solomon code in IEEE802.16e is derived from a systematic RS (N = 255, K = 239,

T = 8) code on GF(28), where N is number of overall bytes after encoding, K is number

5

of data bytes before encoding, and T is number of data bytes which can be corrected. The

following polynomials are used for the systematic code:

Field generator polynomial: p(x) = x8 + x4 + x3 + x2 + 1. (2.1)

Code generator polynomial: g(x) = (x + λ0)(x + λ1) · · · (x + λ2T−1), λ = 0x2,

= g15x
15 + g14x

14 + · · ·+ g1x + g0. (2.2)

This code is then shortened and punctured to enable variable block sizes and variable error-

correction capability. The modified RS code is denoted as (N ′, K ′, T ′) and the generator

polynomial for RS code is given by

g(x) = (x + λ0)(x + λ1) · · · (x + λ2T−1). (2.3)

When a block is shortened to K ′ data bytes, the first 239−K ′ bytes of the encoder block

are filled with 0s. When a codeword is punctured to permit T ′ bytes to be corrected, only

the first 2T ′ of the total 16 parity bytes are employed.

2.1.2 Encoding of the Reed-Solomon Code [5]

We use the (64,48,8) RS code to explain the encoding process. Let the information data to

the (255,239,8) systematic RS be represented as:

I(x) = I238x
238 + I237x

237 + · · ·+ I37x
37 + I36x

36 + I35x
35 + I34x

34 + · · ·+ I1x + I0

= (I238, I237, · · · , I37, I36, I35, I34, · · · , I1, I0). (2.4)

Then the resulting codeword is given by

C(x) = I(x) · x16 + R(x)

= (I238, I237, · · · , I37, I36, I35, I34, · · · , I1, I0, R15, · · · , R5, R4, · · · , R1, R0) (2.5)

6

where

R(x) = I(x) · x16 mod g(x)

= R15x
15 + · · ·+ R5x

5 + R4x
4 + · · ·+ R1x + R0

= (R15, · · · , R5, R4, · · · , R1, R0). (2.6)

When shortened and punctured to (64,48,8), the first 191= (239− 48) information bytes are

assigned 0, i.e., I238 = I237 = · · · = I48 = 0, and the first 16= (2 · 8) bytes of R(x) will be

employed in the codeword. Now the information data of (64,48,8) will be

I ′(x) = I47x
47 + I46x

46 + · · ·+ I1x + I0

= (I47, I46, · · · , I1, I0), (2.7)

and the codeword will be

C ′(x) = I ′(x) · x16 + R′(x)

= (I47, I46, · · · , I1, I0, R15, · · · , R1, R0) (2.8)

where

R′(x) = first 16 bytes of (I ′(x) · x16 mod g(x))

= R15x
15 + · · ·+ R1x

1 + R0x
0

= (R15, · · · , R1, R0). (2.9)

A systematic RS encoder is depicted in Fig. 2.2.

2.1.3 Convolutional Code Specification

Each RS block is encoded by a binary convolutional encoder, which has native rate of 1/2,

a constraint length equal to 7, and the generator polynomials for the two output bits are

171OCT and 133OCT . The generator is depicted in Fig. 2.3.

7

first K’ ticks closed
last 2T’ ticks open

first K’ ticks down
last 2T’ ticks up

14g 15g

15R14R
Output

g0 g1 g2

R2

I’(x) following by 2T’ zero

R0 R1

Figure 2.2: Shortened and punctured Reed-Solomon encoder (from [5]).

Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).

8

This convolutional code is then punctured to allow different rates, which is known as rate-

compatible punctured convolutional coding (RCPC). A single 0x00 tail byte is appended to

the end of each RS output data block to initialize the CC encoder’s memory.

2.1.4 Encoding of Punctured Convolutional Code

The convolutional code encoding structure is shown in Fig. 2.3. It consist of one input bit,

six memory elements (shift registers), and two output bits generated by first performing the

AND operations on the generator polynomial coefficients and the contents of the memory

elements padded with the input bit, then performing the operation of XOR on each bits

generated by the previous AND operation. Then we do the puncturing. The puncturing

patterns and serialization order of the convolutional code in IEEE802.16e are defined in

Table 2.2. In this table, “1” means a transmitted bit and “0” denotes a removed bit, whereas

X and Y are in reference to Fig. 2.3. Note that the Dfree has been changed from that of the

native convolutional code with rate 1/2, which is equal to 10 [6, Chapter 8].

2.1.5 Interleaver

The encoded data bits are interleaved by a block interleaver with a block size corresponding

to the number of coded bits per the specified allocation, Ncbps (see Table 2.3). The inter-

leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are

Table 2.2: The Inner Convolutional Code with Puncturing Configuration

Code Rates
Rate 1/2 2/3 3/4 5/6
Dfree 10 6 5 4
X 1 10 101 10101
Y 1 11 110 11010

XY X1Y1 X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5

9

Table 2.3: Bit Interleaved Block Sizes and Modulos

Modulation
Coded Bits per Bit

Interleaved Block (Ncbps)
Coded Bits per
Carrier (Ncpc)

Modulo Used
(d)

BPSK 192 1 12
QPSK 384 2 12
16QAM 768 4 12
64QAM 1152 6 12

mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped

alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Let s = ceil(Ncpc/2), k be the index of the coded bit before the first permutation, m

the index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

m = (
Ncbps

d
) · kmod(d) + floor(

k

d
), k = 0, 1, · · · , Ncbps − 1, (2.10)

and the second permutation by

j = s · floor(
m

s
) + (m + Ncbps − floor(

d ·m
Ncbps

))mod(s), m = 0, 1, · · · , Ncbps − 1. (2.11)

The de-interleaver, which performs the inverse operation, is also defined by two per-

mutations. Let j be the index of the received bit before the first permutation, m be the

index after the first and before the second permutation, and k be the index after the second

permutation, just prior to delivering the coded bits to the convolutional decoder. The first

permutation is defined by

m = s · floor(
j

s
) + (j + floor(

d · j
Ncbps

))mod(s), j = 0, 1, · · · , Ncbps − 1, (2.12)

10

and the second permutation by

k = d ·m− (Ncbps − 1) · floor(
d ·m
Ncbps

), m = 0, 1, · · · , Ncbps − 1. (2.13)

2.1.6 Modulation

After bit interleaving, the data bits are entered serially to the constellation mapper. BPSK,

QPSK and Gray-mapped 16-QAM are supported, whereas the support of Gray-mapped 64-

QAM is optional. The constellations as shown in Fig. 2.4 shall be normalized by multiplying

the constellation points with the indicated factor c to achieve equal average power. The

constellation-mapped data shall be subsequently modulated onto the allocated data carriers.

2.2 FEC Specifications for WirelessMAN-OFDMA [7]

One of the channel coding scheme used in IEEE802.16e OFDMA is using low-density parity-

check (LDPC) code. The input data are first encoded by the LDPC encoder. The encoder

output is then interleaved by the bit interleaver described in Section 2.2.3. To make the

system more flexibly adaptable to the channel condition, there are three different modulation

types which would be depicted in Section 2.2.4.

LDPC codes are a special case of error correcting codes that have recently been receiving

a lot of attention because of their very high throughput and very good decoding performance.

Inherent parallelism of the message passing decoding algorithm for LDPC codes makes them

very suitable for hardware implementation. The LDPC codes can be used in any digital

environment that high data rate and good error correction are important.

Gallager [8] proposed LDPC codes in the early 1960s, but his work received no attention

until after the invention of turbo codes in 1993, which used the same concept of iterative

decoding. In 1996, MacKay and Neal [9], [10] re-discovered LDPC codes. Chung et al. [11]

11

Figure 2.4: BPSK, QPSK, 16-QAM, and 64-QAM constellations (from [1]).

12

showed that a rate-1/2 LDPC code with block length of 107 in binary input additive white

Gaussian noise (AWGN) can achieve a threshold of just 0.0045 dB away from Shannon limit.

LDPC codes have several advantages over turbo codes: First, the sum-product decoding

algorithm for these codes has inherent parallelism which can be harvested to achieve a greater

speed of decoding. Second, unlike turbo codes, decoding error is a detectable event which

results in a more reliable system. Third, very low complexity decoders, such as the modified

minimum-sum algorithm that closely approximate the sum-product in performance, can be

designed for these codes.

Since our focus is on wireless communications, we would like to have low-power architec-

tures and speed of decoding as it is needed for the IEEE 802.16e standard.

Complexity in iterative decoding has two parts. First, complexity of the computations

in each iteration. Second, the number iterations. Both of these are manageable in prac-

tice. There is a trade-off between the performance of the decoder, complexity and speed of

decoding.

2.2.1 Overview of LDPC Codes

LDPC codes are a class of linear block codes corresponding to a sparse parity check matrix

H. The term “low-density” means that the number of 1s in each row or column of H is

small compared to the block length n. In other words, the density of 1s in the parity check

matrix which consists of only 0s and 1s is very low and sparse. Given k information bits, the

set of LDPC codewords c in the code space C of length n spans the null space of the parity

check matrix H in which cHT = 0.

For a (Wc,Wr) LDPC code, each column of the parity check matrix H has Wc ones and

each row has Wr ones; this is called regular. If degrees per row or column are not constant,

then the code is irregular. Some of the irregular codes have shown better performance than

13

regular ones. But irregularity results in more complex hardware and inefficiency in terms

of re-usability of functional units. In the IEEE 802.16e standard irregular codes have been

considered to achieve better performance. Code rate R is equal to k/n, which means that

n− k redundant bits have been added to the message so as to correct the errors.

LDPC codes can be represented effectively by a bipartite graph called a Tanner graph

[12], [13]. A bi-partite graph is a graph (nodes or vertices are connected by undirected edges)

whose nodes may be separated into two classes, and where edges may only be connecting

two nodes not residing in the same class. The two classes of nodes in a Tanner graph are

bit nodes and check nodes. The Tanner graph of a code is drawn according to the following

rule: Check node fj , j = 1, · · · , n − k, is connected to bit node xi, i = 1, · · · , n, whenever

element hji in H (parity check matrix) is a one. Figure. 2.5 shows a Tanner graph made for

a simple parity check matrix H. In this graph each bit node is connected to two check nodes

(bit degree = 2) and each check node has a degree of four.

Let dvmax and dcmax denote the maximum variable node and check node degree respec-

tively, and let λi and ρi represent the fraction of edges emanating from variable and check

nodes of degree and d(v) = i and d(c) = i respectively. Then we can define

λ(x) =

dvmax∑
i=2

λix
i−1 (2.14)

as the variable node degree distribution, and

ρ(x) =

dcmax∑
i=2

ρix
i−1 (2.15)

as the check node degree distribution.

Definition: Degree of a node is the number of branches that is connected to that node.

Definition: A cycle of length l in a Tanner graph is a path comprised of l edges which

closes back on itself. The Tanner graph in Fig. 2.5 has a cycle of length four which has been

shown by dashed lines.

14

Figure 2.5: Tanner graph of a parity check matrix (from [7]).

Definition: The girth of a Tanner graph is the minimum cycle length of the graph. The

shortest possible cycle in a bi-partite graph is clearly a length-4 cycle.

Short cycles have negative impact on the decoding performance of LDPC codes. Hence

we would like to have large girths.

2.2.2 LDPC Codes Specification in IEEE 802.16e OFDMA

The LDPC codes in IEEE802.16e are a systematic linear block code, where k systematic

information bits are encoded to n coded bits by adding m = n − k parity bits. The code

rate is k/n.

The LDPC codes in IEEE802.16e are defined based on a parity check matrix H of size

m×n that is expanded from a binary base matrix Hb of size mb×nb, where m = z·mb and

n = z·nb. In this standard there are six different base matrices, one for the rate 1/2 code

depicted in Fig. 2.6, two different ones for two rate 2/3 codes, type A in Fig. 2.7 and type B

in Fig. 2.8, two different ones for two rate 3/4 codes, type A in Fig. 2.9 and type B in Fig.

15

Figure 2.6: Base model of the rate-1/2code (from [2]).

2.10, one for the rate 5/6 code depicted in Fig. 2.11. In these base matrices, size nb is an

integer equal to 24 and the expansion factor z is an integer between 24 and 96 . Therefore

we can compute the minimal code length as nmin = 24×24 = 576 bits and the maximum

code length as nmax = 24×96 = 2304 bits.

For codes 1
2
, 2

3
B, 3

4
A, 3

4
B, and 5

6
, the shift sizes p(f, i, j) for a code size corresponding

to expansion factor zf are derived from p(i, j), which is the element at the i-th row, j-th

column in the base matrices, by scaling p(i, j) proportionally as

p(f, i, j) =

{
p(i, j), p(i, j) ≤ 0,

bp(i,j)zf

zo
c, p(i, j) > 0.

(2.16)

For code 2
3
A, the shift sizes p(f, i, j) are derived by using a modulo function as

p(f, i, j) =

{
p(i, j), p(i, j) ≤ 0,

mod(p(i, j), zf), p(i, j) > 0.
(2.17)

A base matrix entry p(f, i, j) = −1 indicates a replacement with a z × z all-zero matrix

and an entry p(f, i, j) ≥ 0 indicates a replacement with a z×z permutation matrix. The

permutation matrix represents a circular right shift of p(f, i, j) positions. This entry p(f, i, j)

= 0 indicates a z×z identity matrix.

16

Figure 2.7: Base model of the rate-2/3, type A code(from [2]).

Figure 2.8: Base model of the rate-2/3, type B code(from [2]).

Figure 2.9: Base model of the rate-3/4, type A code(from [2]).

17

Figure 2.10: Base model of the rate-3/4, type B code(from [2]).

Figure 2.11: Base model of the rate-5/6 code(from [2]).

18

Table 2.4: Bit Interleaved Block Sizes and Modulos

Modulation
Coded Bits per
Carrier (Ncpc)

Modulo Used
(d)

QPSK 2 16
16QAM 4 16
64QAM 6 16

2.2.3 Interleaver

The encoded data bits are interleaved by a block interleaver with a block size corresponding

to the number of coded bits per the encoded block size, Ncbps (see Table 2.3). The inter-

leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are

mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped

alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Let s = Ncpc/2, k be the index of the coded bit before the first permutation, m the

index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

m = (
Ncbps

d
) · kmod(d) + floor(

k

d
), k = 0, 1, · · · , Ncbps − 1, (2.18)

and the second permutation by

j = s · floor(
m

s
) + (m + Ncbps − floor(

d ·m
Ncbps

))mod(s), m = 0, 1, · · · , Ncbps − 1. (2.19)

The de-interleaver, which performs the inverse operation, is also defined by two per-

mutations. Let j be the index of the received bit before the first permutation, m be the

index after the first and before the second permutation, and k be the index after the second

19

permutation, just prior to delivering the coded bits to the convolutional decoder. The first

permutation is defined by

m = s · floor(
j

s
) + (j + floor(

d · j
Ncbps

))mod(s), j = 0, 1, · · · , Ncbps − 1, (2.20)

and the second permutation by

k = d ·m− (Ncbps − 1) · floor(
d ·m
Ncbps

), m = 0, 1, · · · , Ncbps − 1. (2.21)

2.2.4 Modulation

After bit interleaving, the data bits are entered serially to the constellation mapper. QPSK

and Gray-mapped 16-QAM are supported, whereas the support of Gray-mapped 64-QAM

is optional. The constellations as shown in Fig. 2.12 shall be normalized by multiplying

the constellation points with the indicated factor c to achieve equal average power. The

constellation-mapped data shall be subsequently modulated onto the allocated data carriers.

2.3 Analysis of LDPC Codes in IEEE 802.16e OFDMA

2.3.1 Girth Analysis

In this section, we compute the girth of LDPC in IEEE 802.16e for all kinds of code rate.

Hence we can broadbrush estimate the specific code performance. The result is listed in

Table 2.5.

From Table 2.5, we can roughly estimate the performance of code rate 2
3
A is a little better

than 2
3
B under the same condition of codeword length, modulation, channel, and decoding

algorithm, because of the longer average girth. While code rate 3
4
B would perform slightly

better than rate 3
4
A by the same reason described above.

20

Figure 2.12: QPSK, 16-QAM, and 64-QAM constellations (from [2]).

21

Table 2.5: Girths of LDPC Codes in IEEE 802.16e OFDMA

Codeword
Length
(Bits)

1
2

2
3
A 2

3
B 3

4
A 3

4
B 5

6

576 6 6 6 4 6 6
672 4 6 4 4 4 4
768 6 6 4 4 4 4
864 6 6 4 4 4 4
960 6 6 4 4 4 4
1056 6 6 4 4 4 4
1152 6 6 4 4 4 4
1248 6 6 4 4 4 4
1344 6 6 4 4 4 4
1440 6 6 4 4 4 4
1536 6 6 4 4 4 4
1632 6 6 4 4 4 4
1728 6 6 4 4 4 4
1824 6 6 4 4 4 4
1920 6 6 4 4 4 4
2016 6 6 4 4 4 4
2112 6 6 4 4 4 4
2208 6 6 4 4 4 4
2304 6 6 4 4 4 4

22

2.3.2 Density Evolution

For many channels and iterative decoders of interest, LDPC codes exhibit a threshold phe-

nomenon [14]: as the block length tends to infinity, an arbitrarily small bit error probability

can be achieved if the noise level is smaller than a certain threshold. For a noise level

above this threshold, on the other hand, the probability of bit error is larger than a positive

constant.

Density evolution provides an efficient way to determine the thresholds of LDPC codes

ensemble by tracking the probability density functions (pdf’s) of the message in the Tanner

graph of an LDPC code. Since there is no theoretical guideline. for the design of LDPC

codes, it is meaningful to optimize the code by density evolution [15].

Without loss of generality, assume that the all-0 codeword is transmitted. Firstly, choose

a value for the threshold parameter δ to start density evolution. If the pdf of all bit messages

tend to infinity after enough iterations, such a value of δ is within the threshold. Then,

increase the value δ until the density evolution cannot succeed, that is, the pdf cannot tend

to infinity after enough iterations. The maximum value of δ found is the threshold of the

irregular LDPC codes with degree distribution pair (λ, ρ).

In Table 2.6, we list the degree distribution pairs(λ, ρ) and the thresholds of the LDPC

codes in IEEE 802.16e OFDMA. Here we assume BPSK modulation, belief propagation (BP)

decoding which will be introduced in Chapter 5, and AWGN channel.

From these threshold values, not only 2
3
A is larger than 2

3
B but 3

4
B is larger than 3

4
A,

this result is the same as what we broadbrush estimate the specific code performance by

using the girth analysis.

23

Table 2.6: Degree Distribution and Threshold for Each Code Rate under BPSK Modulation,
AWGN Channel, and BP Decoding

Code Rate
Bit Node
Degree

Distribution

Check Node
Degree

Distribution
Threshold

1/2 0.2895x + 0.3158x2 + 0.3947x3 0.6315x5 + 0.3685x6 0.9273
2/3A 0.175x + 0.45x2 + 0.375x5 x9 0.7282
2/3B 0.1729x + 0.037x2 + 0.7901x3 0.8642x9 + 0.1358x10 0.7163
3/4A 0.1176x + 0.0353x2 + 0.8471x3 0.8235x13 + 0.1765x14 0.6358
3/4B 0.1137x + 0.409x2 + 0.4773x5 0.3182x13 + 0.6818x14 0.6446
5/6 0.075x + 0.375x2 + 0.55x3 x19 0.5607

24

Chapter 3

DSP Implementation Environment

We conduct a DSP (digital signal processor) implementation for the channel coding scheme

of OFDM in our work. In this we employ the Quixote DSP-FPGA baseboard made by

Innovative Integration (II), on which the DSP is Texas Instruments’s (TI) TMS320C6416.

Because of our purely software implementation on the DSP, discussion in this chapter will

mainly focus on the DSP chip and the associated system development environment.

3.1 The TMS320C6416 DSP Chip

The following text is mainly taken from references [16] and [17].

3.1.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on the

TMS320C6000 DSP platform. The TMS320C64x device is based on the second-generation

high-performance, very-long-instruction-word (VLIW) architecture developed by TI. The

C6416 device has two high-performance embedded coprocessors, Viterbi Decoder Coproces-

sor (VCP) and Turbo Decoder Coprocessor (TCP) that can significantly speed up channel-

decoding operations on-chip, but we do not make use of these coprocessors in the present

25

work.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

• The eight functional units include two multipliers and six arithmetic units:

– Execute up to eight instructions per cycle.

– Allow designers to develop highly effective RISC-like code for fast development

time.

• Instruction packing:

– Gives code size equivalence for eight instructions executed serially or in parallel.

– Reduces code size, program fetches, and power consumption.

• Conditional execution of all instructions:

– Reduces costly branching.

– Increases parallelism for higher sustained performance.

• Efficient code execution on independent functional units:

– Efficient C compiler on DSP benchmark suite.

– Assembly optimizer for fast development and improved parallelization.

• 8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

• 40-bit arithmetic options add extra precision for applications requiring it.

• Saturation and normalization provide support for key arithmetic operations.

26

• Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The C64x additional features include:

• Each multiplier can perform two 16×16 bits or four 8×8 bits multiplies every clock

cycle.

• Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

• Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

• Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

• Bit count and rotate hardware extends support for bit-level algorithms.

3.1.2 Central Processing Unit Features [18]

The block diagram of C6416 DSP is shown in Fig. 3.1. The DSP contains: program fetch

unit, instruction dispatch unit, instruction decode unit, two data paths which each has

four functional units, 64 32-bit registers, control registers, control logic, and logic for test,

emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve

performance. The pipeline can dispatch eight parallel instructions every cycle. The follow-

ing two factors provide this flexibility: Control of the pipeline is simplified by eliminating

pipeline interlocks, and the other is increasing pipelining to eliminate traditional architec-

tural bottlenecks in program fetch, data access, and multiply operations. This provides

single cycle throughput.

27

Figure 3.1: Block diagram of TMS320C6416 DSP (from [18]).

28

Figure 3.2: Pipeline phases of TMS320C6416 DSP (from [18]).

The pipeline phases are divided into three stages: fetch, decode, and execute. All in-

structions in the C62x/C64x instruction set flow through the fetch, decode, and execute

stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions,

and the decode stage has two phases for all instructions. The execute stage of the pipeline

requires a varying number of phases, depending on the type of instruction. The stages of

the C62x/C64x pipeline are shown in Fig. 3.2.

Reference [18] contains detailed information regarding the fetch and decode phases. The

pipeline operation of the C62x/C64x instructions can be categorized into seven instruction

types. Six of these are shown in Table 3.1, which gives a mapping of operations occurring

in each execution phase for the different instruction types. The delay slots associated with

each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is

a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results

from instructions with delay slots are not available until the end of the last delay slot. For

example, a multiply instruction has one delay slot, which means that one CPU cycle elapses

before the results of the multiply are available for use by a subsequent instruction. However,

results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

The eight functional units in the C6000 data paths can be divided into two groups of

29

Table 3.1: Execution Stage Length Description for Each Instruction Type (from [18]).

30

four; each functional unit in one data path is almost identical to the corresponding unit in

the other data path. The functional units are described in Table 3.2.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and

16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four

8×8 unsigned multiplies with a single instruction on a .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on a .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-

bit) operands. Each functional unit has its own 32-bit write port into a general-purpose

register file (see Fig. 3.3). All units ending in 1 (for example, .L1) write to register file A,

and all units ending in 2 write to register file B. Each functional unit has two 32-bit read

ports for source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra

8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Because

each unit has its own 32-bit write port, when performing 32-bit operations all eight units

can be used in parallel every cycle.

3.1.3 Cache Memory Architecture Overview [19]

The C64x memory architecture consists of a two-level internal cache-based memory archi-

tecture plus external memory. Level 1 cache is split into program (L1P) and data (L1D)

caches. The C64x memory architecture is shown in Fig. 3.4. On C64x devices, each L1 cache

is 16 kB. All caches and data paths are automatically managed by cache controller. Level 1

cache is accessed by the CPU without stalls. Level 2 cache is configurable and can be split

into L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory

locations. On a C6416 DSP, the size of L2 cache is 1 MB, and the external memory on

Quixote baseboard is 32 MB. More detailed introduction to the cache system can be found

in [19].

31

Table 3.2: Functional Units and Operations Performed (from [18])
Function Unit Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation
Bit expansion
Bit interleaving/de-interleaving
Variable shift operations and rotation
Galois Field Multiply

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant
Load and store non-aligned words and double words
5-bit constant generation
32-bit logical operations

32

Figure 3.3: TMS320C64x CPU data paths (from [18]).

33

Figure 3.4: C64x cache memory architecture (from [19]).

3.2 The Quixote Baseboard [20]

The DSP-FPGA embedded card used in our implementation is Innovative Integration’s (II)

Quixote baseboard, which is illustrated in Fig. 3.5. Quixote is one of II’s Velocia-family

baseboards for various applications requiring high-speed computation. Figure. 3.6 shows a

block diagram of the Quixote board. It combines a 600 MHz C6416 32-bit fixed-point DSP

with a Virtex-II FPGA, and some system-level peripherals. The FPGAs on our boards are

the six-million-gate version. The TI C6416 DSP operating at 600 MHz offers a processing

power of 4800 MIPS. Some detailed features of the board are as follows:

• TMS320C6416 processor running at frequency up to 600 MHz.

• Onboard 32 MB SDRAM for the DSP chip.

• A 32/64 bits PCI bus host interface with direct host memory access capability for

busmastering data between the card and the memory.

34

Figure 3.5: Picture of the Quixote board [20].

3.3 TI’s Code Development Environment [21], [22]

TI provides a useful GUI development interface to DSP users for developing and debug-

ging their projects: Code Composer Studio (CCS). The CCS development tools are a key

element of the DSP software and development tools from Texas Instruments. The fully

integrated development environment includes real-time analysis capabilities, easy to use

debugger, C/C++ compiler, assembler, linker, editor, visual project manager, simulators,

XDS560 and XDS510 emulation drivers and DSP/BIOS support.

Some of CCS’s fully integrated host tools include:

• Simulators for full devices, CPU only and CPU plus memory for optimal performance.

• Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.

• Source code debugger common interface for both simulator and emulator targets:

– C/C++/assembly language support.

– Simple breakpoints.

35

Figure 3.6: Block diagram of the Quixote board (from [16]).

36

– Advanced watch window.

– Symbol browser.

• DSP/BIOS host tooling support (configure, real-time analysis and debug).

• Data transfer for real time data exchange between host and target.

• Profiler to understand code performance.

CCS also delivers foundation software consisting of:

• DSP/BIOS kernel for the TMS320C6000 DSPs:

– Pre-emptive multi-threading.

– Interthread communication.

– Interupt Handling.

• TMS320 DSP Algorithm Standard to enable software reuse.

• Chip Support Libraries (CSL) to simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

• DSP libraries for optimum DSP functionality. The libraries include many C-callable,

assembly-optimized, general-purpose signal-processing and image/video processing rou-

tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

The DSP Library (DSPLIB) for TMS320C64x includes routines that are organized into

seven groups:

• Adaptive filtering.

37

• Correlation.

• FFT.

• Filtering and convolution.

• Math.

• Matrix functions.

• Miscellaneous.

3.4 Code Development Flow [23]

The recommended code development flow involves utilizing the C6000 code generation tools

to aid in optimization rather than forcing the programmer to code by hand in assembly.

These advantages allow the compiler to do all the laborious work of instruction selection,

parallelizing, pipelining, and register allocation. These features simplify the maintenance of

the code, as everything resides in a C framework that is simple to maintain, support, and

upgrade.

The recommended code development flow for the C6000 involves the phases described in

Fig. 3.7. The tutorial section of the Programmers Guide [23] focuses on phases 1–2 and the

Guide also instructs the programmer when to go to the tuning stage of phase 3. What is

learned is the importance of giving the compiler enough information to fully maximize its

potential. An added advantage is that this compiler provides direct feedback on the entire

program’s high MIPS areas (loops). Based on this feedback, there are some very simple steps

the programmer can take to pass complete and better information to the compiler allowing

the programmer a quicker start in maximizing compiler performance. The following items

list the goal for each phase in the 3-phase software development flow shown in Fig. 3.7.

38

Figure 3.7: Code development flow for TI C6000 DSP (from [23]).

39

• Developing C code (phase 1) without any knowledge of the C6000. Use the C6000

profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

• Use techniques described in [23] to improve the C code. Use the C6000 profiling tools

to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

• Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TI provides high performance C program optimization tools, and they do not suggest the

programmer to code by hand in assembly. In this thesis, the development flow is stopped at

phase 2. We do not optimize the code by writing linear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

3.4.1 Compiler Optimization Options [23]

The compiler supports several options to optimize the code. The compiler options can be

used to optimize code size or execution performance. Our primary concern in this work is

the execution performance. The easiest way to invoke optimization is to use the cl6x shell

program, specifying the -on option on the cl6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which controls the type and degree of optimization:

• -o0:

– Performs control-flow-graph simplification.

– Allocates variables to registers.

– Performs loop rotation.

40

– Eliminates unused code.

– Simplifies expressions and statements.

– Expands calls to functions declared inline.

• -o1. Performs all -o0 optimization, and:

– Performs local copy/constant propagation.

– Removes unused assignments.

– Eliminates local common expressions.

• -o2. Performs all -o1 optimizations, and:

– Performs software pipelining.

– Performs loop optimizations.

– Eliminates global common subexpressions.

– Eliminates global unused assignments.

– Converts array references in loops to incremented pointer form.

– Performs loop unrolling.

• -o3. Performs all -o2 optimizations, and:

– Removes all functions that are never called.

– Simplifies functions with return values that are never used.

– Inline calls to small functions.

– Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.

41

– Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

– Identifies file-level variable characteristics.

42

Chapter 4

Implementation and Optimization of
IEEE 802.16e OFDM Channel Codec
on DSP

In this chapter, we discuss the decoding algorithms of the IEEE 8021.16e OFDM channel

codec on DSP. Our DSP is a TI TMS320C6416 chip, housed on II’s Quixote baseboard. We

base our implementation on modification of the code of Lee [24] for IEEE 802.16a OFDMA

to the specifications of IEEE 802.16e OFDM. We present the performance results obtained

from the profiler generated by the built-in profiler in TI’s Code Composer Studio (CCS) tool

set.

4.1 Decoding of RS Code [5]

The Berlekamp-Massey (BM) algorithm is a common decoding algorithm for RS codes [25].

It includes four steps:

1. Compute the syndrome value.

2. Compute the error location polynomial.

3. Compute the error location.

43

4. Compute the error value.

Under the unable-to-correct condition (e.g., errors number greater than T ′), the received

word will not be dealt with.

The shortening does not affect the RS decoder because the RS code in IEEE802.16e is

a systematic code and the initial zero bytes will not affect each step of the decoder. As for

the puncturing, the punctured bytes can be viewed as erasures. Thus the decoder we adopt

should be able to correct erasures [25].

4.2 Viterbi Decoding of Punctured Convolutional Code

Viterbi algorithm is the most well-known technique for the convolutional decoding process.

The operation of Viterbi algorithm can be explained by the trellis diagram, which is provided

by the CC encoder structure. The concept of the trellis diagram is based on the state

transition diagram. Hence, we can expand the state transition diagram to a trellis diagram.

The trellis diagram is consistent with all the features of finite state machine and can be

regarded as the time axis expansion of the finite state machine. A simple trellis diagram

is shown in Fig. 4.1 as an example. In this trellis diagram, the upper outgoing branch for

each state corresponds to an input of 0, whereas the lower outgoing branch corresponds to

an input of 1. Each state has two incoming and two outgoing branches. Each information

sequence, uniquely encoded into an encoded sequence, corresponds to a unique path in the

trellis. Therefore, for a given path through the trellis, we can obtain the corresponding

information sequence by reading off the input labels on all the branches that make up the

path. The procedure is called “traceback”.

Viterbi algorithm operates by computing the branch metric for each path at each stage

of the trellis. The metric is calculated and stored as a partial metric for each branch as the

44

Figure 4.1: Trellis diagram example of Viterbi decoder (from [24]).

trellis is traversed. Since there are two paths merging at each node, the path with a smaller

metric is selected while the other is discarded. This is based on the assumption that the

optimum path must contain the sub-optimum survivor path. The survivor path for a given

state at time instance n is the sequence of symbols closest to the received sequence up to time

n. For the case of punctured convolutional code, the metrics associated with the punctured

bits are simply disregarded in the metric calculation stage. The overall operation discussed

above is the computational core of Viterbi algorithm and is the so-called add-compare-select

(ACS) operation.

4.3 Decoding of Bit-Interleaved Coded Modulation

Similar techniques as that discussed in [5] and [27] can be used to demodulate and decode

the received signal. The following gives a very brief introduction.

For Viterbi decoding, there are two decision types: hard-decision and soft-decision. If

45

hard-decision is adopted, the metric used in decoding is the Hamming distance, which counts

the bit errors, between each trellis path and the hard-limited output of the demodulator to

find the path with least errors. The coding gain is worse by 2 to 3 dB compared to soft-

decision decoding. Hence, soft-decision is considered in this work.

For optimal soft-decision Viterbi decoding in AWGN channel, the metric should be the

Euclidean distance between each trellis path and the soft-output of the demodulator. The

problem now is that there is a bit interleaver between the convolutional encoder and the

modulator in the transmitter. Therefore, the optimal decoder should be based on the super-

trellis combining the convolutional code, the interleaver, and the QAM modulator, but this

is too complex to be practical. Moreover, the puncturing mechanism adds further complexity

to the super-trellis structure. Thus, we consider a suboptimal decoder based on bit-by-bit

metric computation.

Consider 16QAM first. We denote the in-phase bits by bI,1 and bI,2, and the quadrature

bits by bQ,1 and bQ,2, which are the four bits corresponding to the transmitted 16QAM

symbol s. The soft-decision metric for bI,k is evaluated simply from yI [i] as

DI,1 =




−yI(i), |yI(i)| ≤ 2
−2(yI(i)− 1), yI(i) > 2
−2(yI(i) + 1), yI(i) < 2





∼= −yI(i), (4.1)

DI,2 = |yI(i)| − 2. (4.2)

where yI(i) is the real part of the received signal after channel compensation. The

evaluation of DQ,k for the two quadrature bits are the same as the evaluation of DI,1 and

DI,2 with yI(i) replaced by yQ(i), where yQ(i) is the imaginary part of the received signal

after channel compensation.

We also compute the log-likelihood ratio (LLR) of each received LDPC codeword bit by

the above method [28].

46

Similar observations hold for QPSK and 64-QAM constellations. For QPSK,

DI = −yI [i], (4.3)

DQ = −yQ[i]. (4.4)

For 64-QAM,

DI,1 =





−yI [i], |yI [i]| ≤ 2
−2(yI [i]− 1), 2 < yI [i] ≤ 4
−3(yI [i]− 2), 4 < yI [i] ≤ 6
−4(yI [i]− 3), yI [i] > 6
−2(yI [i] + 1), −4 ≤ yI [i] < −2
−3(yI [i] + 2), −6 ≤ yI [i] < −4
−4(yI [i] + 3), yI [i] < −6





∼= −yI [i], (4.5)

DI,2 =





2(|yI [i]| − 3), |yI [i]| ≤ 2
−4 + |yI [i]|, 2 < |yI [i]| ≤ 6
2(|yI [i]| − 5), |yI [i]| > 6





∼= −4 + |yI [i]|, (4.6)

DI,3 =

{ −|yI [i]|+ 2, |yI [i]| ≤ 4
|yI [i]| − 6, |yI [i]| > 4

}
= ||yI [i]| − 4| − 2. (4.7)

4.4 Profile of the DSP Code

We mention again that our implementation is based on modification of the code of Lee [24]

for IEEE 802.16a OFDMA to the specifications of IEEE 802.16e OFDM. If more detailed

steps of optimization and implementation are needed, [24] is the reference.

In this section, we show the optimized profile of our FEC encoder, which concatenates the

RS encoder and the convolutional encoder. Table 4.1 shows the code size and the execution

speed of the final concatenated encoding program for processing 144 data bytes (which

includes data input and output) on DSP, for four of the mandatory coding and modulation

modes of IEEE 802.16e OFDM. Here “data input and output included” means the execution

time spent on input and output operations using fread() and fwrite() are included. Table 4.2

shows the corresponding information for the concatenated program of decoding 144 data

bytes.

47

Table 4.1: Profile of Channel Encoder under Different Coding and Modulation Modes

Modulation RS Code
CC

Code
Rate

Code Size
(% RS, %

CC)

Cycles
(% RS, %

CC)

Processing
Rate (kbps)

QPSK (32,24,4) 2/3 2208 (30,70) 107592 (50,50) 6424
QPSK (40,36,2) 5/6 2544 (33,67) 70851 (25,75) 9755
16QAM (64,48,8) 2/3 2524 (33,67) 80821 (18,82) 8552
16QAM (80,72,4) 5/6 2908 (27,73) 94394 (9,91) 7322
Average 2546 (31,69) 88414 (26,74) 8013

Table 4.2: Profile of Channel Decoder under Different Coding and Modulation Modes

Modulation RS Code
CC

Code
Rate

Code Size
(% RS, %

CC)

Cycles
(% RS, %

CC)

Processing
Rate (kbps)

QPSK (32,24,4) 2/3 8608 (68,32) 1063148 (13,87) 650
QPSK (40,36,2) 5/6 8864 (67,33) 889147 (14,86) 777
16QAM (64,48,8) 2/3 8148 (65,35) 903422 (4,96) 765
16QAM (80,72,4) 5/6 8876 (60,40) 782811 (8,92) 883
Average 8624 (65,35) 909532 (8,92) 769

As they stand now, the programs will require multiple DSPs to run in parallel to handle

the data rate under a 10 MHz transmission bandwidth. Acknowledgeably, further optimiza-

tion of the programs may be possible. In addition, the C64x is equipped with a Viterbi

decoder co-processor [29]. Using this co-processor may be helpful in raising the decod-

ing speed. But its use requires study and testing of the “enhanced direct memory access

(EDMA)” mechanism of the C64x chips, which is bypassed in the present study.

48

Figure 4.2: The assembly codes of RS encoding (1/7).

4.5 Appendix

This section shows some figures that the assembly codes in RS encoding and the Chien search

in RS decoding. In Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8, we show the assembly codes

of RS encoding.

In Figs. 4.9, 4.10, 4.11, and 4.12, we show the assembly codes of Chien search in RS

encoding.

49

Figure 4.3: The assembly codes of RS encoding (2/7).

50

Figure 4.4: The assembly codes of RS encoding (3/7).

51

Figure 4.5: The assembly codes of RS encoding (4/7).

52

Figure 4.6: The assembly codes of RS encoding (5/7).

53

Figure 4.7: The assembly codes of RS encoding (6/7).

54

Figure 4.8: The assembly codes of RS encoding (7/7).

55

Figure 4.9: The assembly codes of Chien search in RS decoding (1/4).

56

Figure 4.10: The assembly codes of Chien search in RS decoding (2/4).

57

Figure 4.11: The assembly codes of Chien search in RS decoding (3/4).

58

Figure 4.12: The assembly codes of Chien search in RS decoding (4/4).

59

Chapter 5

Decoding Algorithms of LDPC Codes
in IEEE 802.16e OFDMA

In this chapter, we describe some decoding algorithms for LDPC codes and some simulation

results in AWGN channel. The simulation results provide us the information to select ap-

propriate decoding scheme, code rate, codeword length, and modulation type according to

the system performance requirement, computational complexity, and latency. The material

in Section 5.1 and 5.2 is mainly from [30].

5.1 The Belief Propagation Algorithm [30]

Using Tanner graph representation of LDPC codes is attractive, because it not only helps

understand their parity-check structure, but, more importantly, also facilitates a powerful

decoding approach. The key decoding steps are the local application of Bayes rule at each

node and the exchange of the results (messages) with neighboring nodes. At any given

iteration, two types of messages are passed: probabilities or beliefs from bit nodes to check

nodes, and probabilities or beliefs from check nodes to bit nodes.

Let M(n) denote the set of check nodes connected to bit node n, i.e., the positions of ones

in the nth column of H, and let N(m) denote the set of bit nodes that participate in the mth

60

parity-check equation, i.e., the positions of ones in the mth row of H. Let N(m)\n represent

the exclusion of n from the set N(m), and M(n)\m represent the exclusion of m from the set

M(n). In addition, qn→m(0) and qn→m(1) denote the message from bit node n to check node

m indicating the probability of bit n being zero or one, respectively, based on all the checks

involving n except m. Similarly, rm→n(0) and rm→n(1) denote the message from check node

m to bit node n indicating the probability of bit n being zero or one, respectively, based on

all the bit checked by m except n. Let x = [x1, x2,· · · , xN] and y = [y1, y2,· · · , yN] denote

the transmitted codeword and the received codeword respectively. Finally, L
(0)
n denotes

log(P (xn = 0|yn)/P (xn = 1|yn)) at iteration 0, and L
(i)
mn denotes log (rm→n(0)/rm→n(1)) at

iteration i. Z
(i)
mn denotes log (qn→m(0)/qn→m(1)) at iteration i.

The belief propagation (BP) algorithm is summarized as follows. This algorithm is also

known as the sum-product (SP) algorithm.

Step 1 (check-node update): For each m and for each n ∈ N(m), compute

L(i)
mn = 2 tanh−1





∏

n′∈N(m)\n
tanh

Z
(i−1)
mn′

2



 . (5.1)

Step 2 (bit-node update): For each n, and for each m ∈ M(n) compute

Z(i)
mn = L(0)

n +
∑

m′∈M(n)\m
L

(i)
m′n. (5.2)

Step 3 (decision):

Z(i)
n = L(0)

n +
∑

m∈M(n)

L(i)
mn. (5.3)

The decoder output vector follows the rule: x̂n = 0 if Z
(i)
n ≥ 0, and x̂n = 1 if Z

(i)
n < 0.

The decoded bit vector is checked with the parity check matrix H. The iterative decoding

decoding procedure stops when either H.X=0 or as the maximum decoding iteration number

has been reached, where X = [X1, X2,· · · , XN] is the decoded codeword.

61

5.2 Some Reduced-Complexity Decoding Algorithms

[30]

In this section, we focus on simplifying the check node updates to obtain reduced-complexity

BP algorithms and also achieve good enough performance.

5.2.1 BP-Based Algorithm

Implementing the calculation in Eq. (5.1) in a hardware circuit is very difficult and complex.

Hence, we can simplify this equation in the check nodes process as

L(i)
mn = 2 tanh−1





∏

n′∈N(m)\n
tanh

Z
(i−1)
mn′

2





=
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′)f


 ∑

n′∈N(m)\n
f

(
|Z(i−1)

mn′ |
)



≈
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′)f

(
f

(
min

n′∈N(m)\n
|Z(i−1)

mn′ |
))

=
∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′) min

n′∈N(m)\n
|Z(i−1)

mn′ |, (5.4)

where f(x) = log ex+1
ex−1

= −log(tanh x
2
) is an exponential decay function. Therefore the 2nd

row in Eq. (5.4) can be approximated as the 3rd row in Eq. (5.4). Because the f function

has the property, f(x) = f−1(x), we can simplify the 3rd row Eq. (5.4) to the 4th row in Eq.

(5.4).

This is a famous approximation called min-sum algorithm or BP-based algorithm which

only uses the signum and the minimum functions for the check nodes process. The process

procedure in bit nodes is identical to that of BP decoding. But coming with the approxi-

mation in check nodes is a performance degradation. We will discuss the degradation effect

later in the simulation results.

62

5.2.2 Balanced Belief Propagation Algorithm [31]

It can be observed that the conventional BP algorithm has unbalanced computation com-

plexity between check nodes operation (5.1) and bit nodes operation (5.2).

A modified version based on algorithmic transformation has been proposed in order to

balance the computation load between the two decoding phases. The new algorithm can be

expressed as

L(i)
mn =

∏

n′∈N(m)\n
sgn(Z

(i−1)
mn′)

∑

n′∈N(m)\n
f

(
|Z(i−1)

mn′ |
)

, (5.5)

Z(i)
mn = L(0)

n +
∑

m′∈M(n)\m
sgn(L

(i)
m′n)f

(
L

(i)
m′n

)
. (5.6)

We note that L
(i)
mn computed here is different from what is obtained with the BP algo-

rithm. The main benefit with the modified algorithm is the balance of computation com-

plexity between two decoding phases.

5.2.3 Normalized BP-Based Algorithm

Let L1 and L2 represent the values L
(i)
mn computed by the BP algorithm and the BP-based

algorithm with (5.1) and (5.4), respectively. It can be shown that L1 and L2 have the same

sign, i.e., sgn(L1) = sgn(L2) and L2 has larger magnitude than L1, i.e., |L2| > |L1| [32].

According by [32], we can further modify (5.4) to let the BP-based algorithm obtain a

BER vs. Eb
No

performance curve as close as the conventional BP algorithm.

Because sgn(L1) = sgn(L2), the BP-based decoding can be improved by employing a

check-node update L
(i)
mn that uses a normalization constant α greater than one, that is,

L̂
(i)
mn ←− L

(i)
mn

α
. (5.7)

63

Here L̂
(i)
mn is the value computed from the check node operation for normalized BP-based

algorithm, and the bit node operation for normalized BP-based algorithm is the same as BP

algorithm.

Although α should vary with different signal-to-noise ratios (SNRs) and different itera-

tions to achieve the optimum performance, it is kept a constant for the sake of simplicity.

5.2.4 Offset BP-Based Algorithm

For offset BP-based decoding, we modify L
(i)
mn in BP-based decoding by subtracting a positive

constant β as

L̂
(i)
mn ←− sgn(L(i)

mn) max(|L(i)
mn| − β, 0) (5.8)

where L̂
(i)
mn is the value computed from the check node operation for offset BP-based algo-

rithm, and the bit node operation for offset BP-based algorithm is the same as BP algorithm.

Although β should vary with different signal-to-noise ratios (SNRs) and different itera-

tions to achieve the optimum performance, it is kept a constant for the sake of simplicity.

As we describe above, the BP decoding needs tanh−1 and tanh operations, the min-

sum algorithm needs minimal operation, the normalized BP-based algorithm needs minimal

and division operations, and the offset BP-based algorithm needs minimal, maximum and

substraction operations. These operations for all different algorithm are listed in Table 5.1.

Obviously, the BP decoding needs the most complex operation, and the min-sum decoding

needs the lowest complex operation. The two improved decoding methods are between the

BP decoding and min-sum decoding.

64

Table 5.1: Operation Comparison for all Decoding Algorithms

Decoding Algorithms
Main

Operations

BP Decoding tanh and tanh−1

Min-Sum Decoding Minimal
Normalized BP-Based Decoding Minimal and Division

Offset BP-Based Decoding Minimal, Maximum and Substraction

5.3 Early Termination [33]

The LDPC decoding is based on iterative convergence of a bit probability towards zero or

one. A particular property is the convergence pattern.

After a set of initial iterations, the convergence patterns start to separate either towards 0

or towards 1. We can exploit this particular property and produce the decoding result sooner

than it would have. In other words, we can reduce the iteration numbers as we expect.

We do that by counting the number of incoming LLR values which fall under (over) a

certain threshold LLR. In our simulation, when two consecutive incoming LLR values are

under −2 or over 2, then we can set the convergence outcome immediately without the need

to further iterate.

Reducing the number of iterations (and hence computations) results in both savings in

power consumption and increased throughput, with the only drawback being a slight increase

in the BER.

Actually, we got some advice of modifying the original (or above) early termination

technique by private communication of Professor S. G. Chen. That is, after a specified

iteration number if the difference of LLR values between this and next iteration is small

enough, we also can stop the iterating. This is because of the LLR value is no more changed

65

a lot if we still iterate further.

5.4 Simulation Results and Analysis

5.4.1 Determine the Number of Iterations

One of the most important factors of concern when decoding the received codewords is the

iteration number. As the number becomes larger, the correct codewords are more likely to

be exactly decoded. But using more iterations, the cost is that the latency is increased.

Therefore we need to choose a proper iteration number in decoding. In Fig. 5.1, we show

the simulation results with different iteration numbers, for the LDPC codes at rate 1/2 and

length 576 with QPSK modulation and and BP decoding.

In Fig. 5.1, the BER curve of iteration 10 is obviously degenerated by the reason of less

iterations. The BER curves are almost the same when the iteration numbers are 20, 30, 50,

and 70. To avoid the degradation associated with low iteration numbers, we adopt 50 as the

iteration number in the other simulations.

5.4.2 Use of All-Zero Codewords in Simulation

We have described the LDPC code encoder specified in IEEE 802.16e in Section 2.2.2. In

Fig. 5.2, we show the simulation results of LDPC code with random data which would be

encoded by the LDPC encoder and all zero codeword respectively when code rate 1/2, length

576, QPSK, and BP decoding are adopted. This result depicts that the BER curves almost

have no difference when the random data and all zero codeword are transmitted. From the

theoretical view, this result can also be expected. This is due to that the LDPC codes are in

the class of linear codes. For the sake of simplicity (or faster simulation speed) and without

loss of generality, we will take the all zero codeword as the transmitted codeword in the

66

1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
Different Iterations with Rate 1/2, Length 576, QPSK, BP

Iteration 10
Iteration 20
Iteration 30
Iteration 50
Iteration 70

Figure 5.1: Decoding performance at different iteration numbers.

other simulations.

5.4.3 Performance of the IEEE 802.16e LDPC Codes under the
BP Algorithm

In this section, we simulate different modulation types, codeword lengths, and code rates

specified in IEEE 802.16e standard respectively.

Figure 5.3 depicts the performance of the code at rate 1/2 and length 576, under different

modulation schemes with BP decoding with iteration 50. As we expect in advance, the

performance of QPSK is better than that of 16QAM and the performance of 16QAM is

67

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Comparison of Random Data and All Zero Codeword with Rate 1/2, Length 576, QPSK, BP

Random Data
All Zero Codeword

Figure 5.2: Performance of random data versus all-zero codeword.

also better than that of 64QAM. From Fig. 5.3, the coding gain values of QPSK, 16QAM,

and 64QAM modulation are 6.6589 dB, 6.6511 dB, and 8.4999 dB respectively when the bit

error rate is 10−5. The coding gain values of QPSK and 16QAM modulation are almost the

same, but the coding gain of 64QAM modulation is larger than the coding gain of other two

modulation types about 1.8 dB.

Figure 5.4 depicts four different codeword lengths, that are 576, 1152, 1728, and 2304

when code rate 1/2, QPSK, and BP decoding with iteration 50 are adopted. We have some

observations from Fig. 5.4. First, as the codeword is longer, the improved performance is

obtained. Second, for the codeword length 2304, the bit error rate reaches about 10−9 and

only Eb/N0 2.5 dB is needed. The coding gain between length 2304 curve and uncoded curve

is about 8 dB when the bit error rate is 10−6. This coding gain value somehow depicts the

68

2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Modulation with Rate 1/2, Length 576, and BP

Uncoded QPSK
Uncoded 16QAM
Uncoded 64QAM
QPSK
16QAM
64QAM

Figure 5.3: Performance of the rate-1/2 code, length 576 code.

error correcting ability of LDPC codes is really amazing.

Figure 5.5 depicts six different code rate types, that are 1
2
, 2

3
A, 2

3
B, 3

4
A, 3

4
B, and 5

6

when length 576, QPSK, and BP decoding with iteration 50 are adopted. There are some

observations can be obtained from Fig. 5.5. As the code rate is higher, the performance is

worse. Besides, we notice that the two BER curves of 2
3
A and 2

3
B are very close, but still have

some difference. We can explain why this little difference exists from the view of threshold

previously obtained by density evolution method. We have obtained some threshold results

in Table 2.6. From Table 2.6, the threshold of 2
3
A is larger than that of 2

3
B. Moreover, the

difference of threshold for code rate 2
3
A and 2

3
B is only about 0.012 dB. Thus we reasonably

anticipate the BER curves are very close, and the curve for 2
3
A is a little better than that of

2
3
B. In our simulation, these two curves really follow the threshold analysis. By the similar

69

1 2 3 4 5 6 7 8 9 10 11 12

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Length with Rate 1/2, QPSK, and BP

Uncoded QPSK
Length 576
Length 1152
Length 1728
Length 2304

Figure 5.4: Performance of the rate-1/2 code at different codeword lengths, under QPSK
modulation and BP decoding.

method, we also easily explain the relationship between the two BER curves of 3
4
A and 3

4
B

from Table 2.6.

Table 5.2 shows the relation between the Eb
No

value when BER is 10−5, girth when length

is 576, and the threshold for all code rate. As the threshold is larger, we need less channel

Eb
No

to reach BER 10−5.

5.4.4 Performance of Balanced BP Decoding Algorithm

We have described the concept of balanced BP decoding algorithm in Section 5.2.2. We

depict the performance of conventional BP decoding and balanced BP decoding in Fig. 5.6

70

Table 5.2: Relation between Eb
No

, Girth, and Threshold

Code Rate
1
2

2
3
A 2

3
B 3

4
A 3

4
B 5

6

Eb
No

under BER 10−5(dB) 2.9691 4.9506 5.1603 5.9819 5.9730 6.9898
Girth under Length 576 6 6 6 4 6 6

Threshold 0.9273 0.7282 0.7163 0.6358 0.6446 0.5607

1 2 3 4 5 6 7 8 9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Code Rate with Length 576, QPSK, and BP

Rate 1/2
Rate 2/3A
Rate 2/3B
Rate 3/4A
Rate 3/4B
Rate 5/6

Figure 5.5: Performance of different code rates at codeword length 576, under QPSK mod-
ulation and BP decoding.

when length 576, rate 1
2
, and QPSK are applied. We observe that these two curves with

different decoding algorithms are almost the same. Therefore, in our future fixed-point DSP

implementation, we can consider balanced BP decoding to reduce the clock cycles.

71

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Comparison of Conventional BP and Balanced BP decoding with Rate 1/2, Length 576, QPSK

Conventional
Balanced

Figure 5.6: Conventional BP and balanced BP decoding with length 576, rate 1/2 code, and
QPSK modulation.

5.4.5 Choose Appropriate Early Termination Parameters

In Section 5.5, we described the concept of early termination. Here we consider the appro-

priate parameters for early termination. First we define some parameters. Type 1 early

termination means when two consecutive incoming LLR values are over 2 or under −2, then

we set the convergence outcome immediately without further iteration. Type 2 early termi-

nation means when all incoming LLR values are over 2 or under −2 one time or when two

consecutive incoming LLR values are over 1 or under −1, we set the convergence outcome

immediately without further iteration. From the complexity view, type 2 early termination is

simpler than type 1, but the performance may be an issue. Fig. 5.7 shows some performance

72

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
Early Termination with Rate 1/2, Length 576, QPSK, BP

BP
BP with Early Type1
BP with Early Type2

Figure 5.7: Effects of differenct ways of early termination.

results for conventional BP decoding, BP decoding with type 1 early termination, and BP

decoding with type 2 early termination. The code rate 1
2
, length 576, and QPSK are applied.

From Fig. 5.7, BP decoding with type 1 early termination has a better performance than the

one with type 2 early termination at high SNR values. Conventional BP decoding still has

the best performance of all three methods. Considering the trade-off between complexity

and performance, we adopt the type 1 early termination as the early termination scheme in

our next simulation.

We are also interested in the pdf of reduced iteration number for type 1 early termination

besides the performance. Fig. 5.8 shows the pdf with lengths 576 and 2304. When Eb/N0 is

73

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration Numbers

PDF for Different Length and with Early Termination and rate 1/2, QPSK, AWGN, BP

Length 576 when Eb/No 2dB
Length 2304 when Eb/No 2dB

Figure 5.8: Distribution of iteration numbers for codes of different lengths.

2 dB, code rate 1
2

and QPSK are applied. It shows the probability of iteration number 50 is

about 0.075 for the pdf of length 576, but the one is almost zero for the pdf of length 2304.

This is perhaps because the performance of length 2304 is better than the one of length 576,

it does not need so many iterations to converge. Another effect is that the pdf of length 576

is more concentrated toward left than the one of length 2304. This is perhaps because when

doing the early termination technique, we need to conform all 576 bits to the termination

criteria for length 576, but for length 2304, we must conform all 2304 bits to the termination

criteria. Hence, it is reasonable to do more iterations for length 2304.

Figure 5.9 shows the pdf of code rate 1
2
, length 576, and QPSK under different Eb/N0

values. It shows almost all iteration number is 50 for length 576 when Eb/N0 is 1 dB. But

74

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration Numbers

P
ro

ba
bi

lit
y

PDF for Different Eb/No with Early Termination and Length 576 rate 1/2, QPSK, and BP

Length 576 for Eb/No=1dB
Length 576 for Eb/No=2dB
Length 576 for Eb/No=3dB

Figure 5.9: Distribution of iteration numbers at different SNR values.

after increasing the Eb/N0 value, the pdf is toward to the left side, this means we need less

iterations for larger Eb/N0 values under the same length condition.

5.4.6 Compare Early Termination and Parity Check Termination

Generally, in the decoding iteration step, the decoded codeword checks with the parity check

matrix to insure the decoded codeword is correct when the maximum iteration is not reached.

If the syndrome is a zero vector, we stop the iteration to reduce the iteration number. If

not, the decoding iteration continues until the maximum iteration is reached. Therefore, we

can view the parity check step as a kind of early termination, so we name it “parity check

termination”.

In Figure 5.10, we compare the performance difference of early termination and parity

75

check termination when code rate 1
2
, length 576, QPSK, and BP decoding are applied.

Obviously, from Fig. 5.10 there is almost no difference. But we just want to choose one

kind of “early termination” technique to avoid the waste. Then we compare the iteration

numbers in Fig. 5.11. As the Eb/N0 is larger, “early termination” needs a slightly higher

iteration number than the “parity check termination,” but the early termination technique

only needs “compare” operations and some space to store the temporary comparison results

unlike parity check termination technique needs XOR operations and “compare” operations.

Therefore, under the consideration of iteration number and computational complexity, we

choose the early termination, not the parity check termination to early stop the decoding

step.

5.4.7 Performance of Some Reduced-Complexity Decoding Algo-
rithms [30]

Figures 5.15, 5.13, and 5.14 show the BER performance of different decoding algorithms

for length 576, six code rates and three modulation types. The maximum iteration is 50

and early termination technique is used. Besides, the α parameter in normalized BP-based

decoding is 1.25, and the β parameter in offset BP-based decoding is 0.25.

In some sub-figures, the BP-based decoding algorithm suffers a 0.3 or 0.4 dB degradation

in performance, compared with BP decoding. When QPSK is applied, the two reduced-

complexity algorithms have even a slightly better performance than the BP algorithm. These

results are not surprising, because at medium or short code lengths, the BP algorithm is not

optimum. This is because the number of short cycles in their Tanner graphs influences the BP

decoding performance depended on the amount of correlation between messages, and the two

reduced-complexity BP-based algorithms seem to outperform the BP algorithm by reducing

the negative effect of correlations. The normalized BP-based algorithm slightly outperforms

76

1 1.5 2 2.5 3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R
Comparison of Parity Check and Early Termination with Rate 1/2, Length 576, QPSK, BP

Only Parity Check When Decoding
Only Early Termination When Decoding

Figure 5.10: Comparison of the performance of parity check termination and early termina-
tion.

the offset BP-based algorithm, but may also be slightly more complex to implement. When

16QAM and 64QAM are applied, the BP approach has slightly better performance than the

two improved approaches, but the performance of these three decoding approaches are very

close.

Figure 5.15 shows the BER performance of different decoding algorithms for code types of

1
2
, 2

3
A, and 3

4
B. Each sub-figure has two different lengths, 576 and 2304, and one modulation

type, 16QAM.

For rate 1
2

and 2
3
A, their girth is 6 for both length 576 and 2304. For rate 3

4
B, its girth

77

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

40

45

50

Eb/No (dB)

Ite
ra

tio
n

Using Different Methods to Stop Iterate

Parity Check Termination
Early Termination

Figure 5.11: Comparison of the iteration numbers of parity check termination and early
termination.

is 6 and 4 for length 576 and 2304 respectively. From Fig. 5.15, the performance of these

two improved decoding does not always have better performance than BP decoding by the

reason of girth 4 or 6 for length 576 and 2304. But their performance is still very close.

78

1 1.5 2 2.5 3 3.5 4 4.5 5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Decoding Algorithms with Rate 1/2, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

4 5 6 7 8 9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 1/2, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

6 7 8 9 10 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 1/2, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

1 2 3 4 5 6 7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3A, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

6 7 8 9 10 11

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3A, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

9 9.5 10 10.5 11 11.5 12 12.5 13
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3A, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

Figure 5.12: Performance of different decoding algorithms with rate 1
2

and 2
3
A, length 576.

79

1 2 3 4 5 6 7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3B, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

6 7 8 9 10 11

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3B, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

9 9.5 10 10.5 11 11.5 12 12.5 13
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 2/3B, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

1 2 3 4 5 6 7 8 9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4A, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

6 7 8 9 10 11 12 13
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4A, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

9 10 11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4A, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

Figure 5.13: Performance of different decoding algorithms with rate 2
3
B and 3

4
A, length 576.

80

1 2 3 4 5 6 7 8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4B, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

6 7 8 9 10 11 12 13

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4B, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

9 10 11 12 13 14 15 16

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 3/4B, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

4 5 6 7 8 9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 5/6, Length 576, QPSK

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

7 8 9 10 11 12 13 14

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 5/6, Length 576, 16QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
E

R

Different Decoding Algorithms with Rate 5/6, Length 576, 64QAM

BP Decoding
Min−Sum Decoding
Normalized BP−Based Decoding with α 1.125
Offset BP−Based Decoding with β 0.125

Figure 5.14: Performance of different decoding algorithms with rate 3
4
B and 5

6
, length 576.

81

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Decoding Algorithms with Rate 1/2, Length 576 and 2304, 16QAM

BP Decoding, Length 576
Min−Sum Decoding, Length 576
Normalized BP−Based Decoding, Length 576 with α 1.125
Offset BP−Based Decoding, Length 576 with β 0.125
BP Decoding, Length 2304
Min−Sum Decoding, Length 2304
Normalized BP−Based Decoding, Length 2304 with α 1.125
Offset BP−Based Decoding, Length 2304 with β 0.125

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Decoding Algorithms with Rate 2/3A, Length 576 and 2304, 16QAM

BP Decoding, Length 576
Min−Sum Decoding, Length 576
Normalized BP−Based Decoding, Length 576 with α 1.125
Offset BP−Based Decoding, Length 576 with β 0.125
BP Decoding, Length 2304
Min−Sum Decoding, Length 2304
Normalized BP−Based Decoding, Length 2304 with α 1.125
Offset BP−Based Decoding, Length 2304 with β 0.125

4 6 8 10 12 14 16

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

Different Decoding Algorithms with Rate 3/4B, Length 576 and 2304, 16QAM

BP Decoding, Length 576
Min−Sum Decoding, Length 576
Normalized BP−Based Decoding, Length 576 with α 1.125
Offset BP−Based Decoding, Length 576 with β 0.125
BP Decoding, Length 2304
Min−Sum Decoding, Length 2304
Normalized BP−Based Decoding, Length 2304 with α 1.125
Offset BP−Based Decoding, Length 2304 with β 0.125

Figure 5.15: Performance of different decoding algorithms with rate 1
2
, 2

3
A, and 3

4
B.

82

Chapter 6

Conclusion and Future Work

This work studied two parts of IEEE802.16e: one was the implementation and optimization

of 802.16e FEC scheme on DSP platform for WirelessMAN-OFDM and the other investigated

the reduced-complexity decoding of the LDPC codes for WirelessMAN-OFDMA.

In the first part’s work, the programs will require multiple DSPs to run in parallel to

handle the data rate under a 10 MHz transmission bandwidth. Acknowledgeably, further

optimization of the programs may be possible. In addition, the C64x is equipped with a

Viterbi decoder co-processor [29]. Using this co-processor may be helpful in raising the

decoding speed. But its use requires study and testing of the “enhanced direct memory

access (EDMA)” mechanism of the C64x chips, we skipped this study in my thesis.

In the second part’s work, first we analyzed the girth and threshold values in AWGN

channel. Then, we evaluated the performance of LDPC codes and compared the results

with the numerical results. Then we proposed a modified version BP algorithm based on

algorithmic transformation to balance the computation load. Another topic is about the

complexity reducing. We focused on two directions to reduce the complexity. One was

to reduce the iteration numbers by using early termination technique. Another was to

evaluate the performance by three kinds of approximate algorithms. The approximation

83

approaches used can lead to performance degradation but, interestingly, there appeared

to be a dependence on the properties of the LDPC codes selected, such as the choice of

modulation types. Our LDPC codes in IEEE 802.16e have a girth 6 at most, this is not a

large enough number to make the conventional BP decoding approach optimal ([34] gives

examples to derive a rate 1
2

code with girth 14, which is large enough). Therefore, these

simplified reduced-complexity decoding schemes sometimes can outperform the BP decoding

algorithm and offer significant advantages for hardware implementation.

In the future work, we need to revise the coding algorithms to be fixed-point to reduce

the complexity for actual DSP implementation. But the two improved decoding algorithms

may not have as good performance as our simulation results. Besides, we need more realistic

simulations in multipath channel to show how the LDPC codes are performed. In our before

analysis, the performance of code rate type 2
3
A was better than 2

3
B, and code rate type 3

4
B

was better than 3
4
A. But why did these two code rate types both exist? We guess that if in

multipath channel simulation, not in AWGN channel, the performance of code rate type 2
3
B

is better than that of 2
3
A, and the performance of code rate type 3

4
A is better than that of

3
4
B. But the exact answer should be done by more research.

About subsequent algorithm modifications, we had find some references. If we need

further reducing complexity by other decoding algorithms, [35] is one of the references. If we

need to remove the effects of cycles in the factor graph to make the BP decoding algorithm

optimal or improve the decoding performance, [36] is one of the references.

84

Bibliography

[1] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks —

Part 16: Air Interface for Fixed Broadband Wireless Access Systems. New York: IEEE,

June 2004.

[2] IEEE Std 802.16e, IEEE Standard for Local and Metropolitan Area Networks — Part

16: Air Interface for Fixed Broadband Wireless Access Systems. New York: IEEE, Feb.

2006.

[3] I. S. Reed and X. Chen, Error-Control Coding for Data Network. Boston: Kluwer Aca-

demic Publishers, 1999.

[4] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol.

40, pp. 873–884, May 1992.

[5] Yu-Ping Ho, “Study on OFDM signal description and channel coding in the IEEE

802.16a TDD OFDMA wireless communication standard,” M.S. thesis, Department of

Electronics Engineering National Chiao Tung University, June 2003.

[6] J. G. Proakis, Digital Communication, 4th ed. New York: McGraw-Hill, 2001.

[7] Marjan Karkooti, “Semi-parallel architectures for real-time LDPC coding,” M.S. thesis,

Rice Unversity, Houston, Texas, May 2004.

85

[8] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Information Theory, vol.

8, pp. 21–28, Jan. 1962.

[9] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performace of low density parity

check codes,” Electronics Letters, vol. 32, no. 18, pp. 1645–1646, Aug. 1996.

[10] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Information Theory, vol. 45, pp. 399–431, Mar. 1999.

[11] S. Chung, Jr. G. D. Forney, T. Richardson, and R. Urbanke, “On the design of low-

density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Communica-

tions Letters., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[12] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Informa-

tion Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[13] B. J. Frey F. R. Kschischang and H. A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Information Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[14] S.Y. Chung, T.J. Richardson, and R. L. Urbanke, “Analysis of sum-product decod-

ing of low-density parity-check codes using a Gaussian approximation,” IEEE Trans.

Information Theory, vol. 47, no. 2, pp. 657–670, Feb. 2001.

[15] W. Lin, X. Juan, and G. Chen, “Density evolution method and threshold decision for

irregular LDPC codes,” Int. Conf. Commun. Circuits Systems, vol. 1, June 2004, pp.

25–28.

[16] Innovative Integration, Quixote Data Sheet. http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

86

[17] T.-S. Chiang, “Study and DSP implementation of IEEE 802.16a TDD OFDM downlink

synchronization,” M.S. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., July 2004.

[18] Texas Instruments, TMS320C6000 CPU and Instruction Set. Literature number

SPRU189F, Oct. 2000.

[19] Texas Instruments, TMS320C6000 DSP Cache User’s Guide. Literature number

SPRU656A, May 2003.

[20] Innovative Integration, Quixote User’s Manual. June 2004.

[21] Texas Instruments, Code Composer Studio User’s Guide. Literature number SPRU328B,

Feb. 2000.

[22] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide. Lit-

erature number SPRU509D, Aug. 2003.

[23] Texas Instruments, TMS320C6000 Programmer’s Guide. Literature number

SPRU198G, Oct. 2002.

[24] Y.-T. Lee, “DSP implementation and optimization of the forward error correction

scheme in IEEE 802.16a standard,” M.S. thesis, National Chiao Tung University, Dep.

of Electronics Eng., Hsinchu, Taiwan, R.O.C., June 2004.

[25] S. Lin and D. J. Costello, Jr., Error Control Coding — Fundamentals and Applications.

New Jersey: Prentice-Hall, 1983.

[26] J. H. Jeng and T. K. Truong,“On decoding of both errors and erasures of a reed-solomon

code using an inverse-free Berlekamp-Massey algorithm,” IEEE Trans. Commun., vol.

47, pp. 1488–1494, Oct. 1999.

87

[27] Y.-P. Ho and D. W. Lin, “Study on channel coding in the IEEE 802.16a OFDMA

wireless communication standard,” Int. J. Elec. Eng., vol. 11, no. 4, pp. 347–354, Nov.

2004.

[28] M. Lei and H. Harada, “Low-density parity-check coded ultra high-data-rate OFDM

system in frequency-selective fading,”IEEE Vehicular Technology Conference, vol. 3,

June 2005, pp. 1590–1594.

[29] Texas Instruments, TMS320C64x DSP Viterbi-Decoder Coprocessor (VCP) Reference

Guide. Literature no. SPRU533D, Sep. 2004.

[30] J. Chen, A. Dholakia, E. Eleftheriou, and M. P. C. Fossorier, and X.Y. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Trans. Commun. , vol. 53, pp. 1288–1299,

July 2005.

[31] Z. Wang, Y. Chen, and K. K. Parhi, “Area efficient decoding of quasi-cyclic low density

parity check codes,” IEEE Int. Conf. Acoustics Speech Signal Processing, vol. 5, May

2004, pp. 49–52.

[32] J. Chen, and M. Fossorier, “Near optimum universal belief propagation based decoding

of low-density parity check codes,” IEEE Trans. Commun. , vol. 50, no. 3, pp. 406–414,

March 2002.

[33] T. Theocharides, G. Link, N. Vijaykrishnan, and M. J. Irwin, “Implementing LDPC

decoding on network-on-chip,” 18th Int. Conf. VLSI Design, Jan. 2005, pp. 134–137.

[34] M. E. O’Sullivan, “Algebraic construction of sparse matrices with large girth,” IEEE

Trans. Information Theory, vol. 52, no. 2, pp. 718–727, Feb. 2006.

88

[35] J. Zhang, M. Fossorier, and D. Gu, “Two-dimensional correction for min-sum decoding

of irregular LDPC codes,” IEEE Communications Letters., vol. 10, no. 3, pp. 180–182,

Mar. 2006.

[36] D. Yongqiang, Z. Guangxi, L. Wenming, and M. Yijun, “An improved decoding algo-

rithm of low-density parity-check codes,” IEEE Int. Conf. Wireless Commun. Network-

ing Mobile Computing, vol. 1, Sep. 2005, pp. 449–452.

89

作者簡歷

姓名：陳勇竹 (Yung-Chu Chen)

生日：1982 年 8 月 3 日

出生地：台南縣

學歷：交通大學管理科學系學士(2000.9~2004.6)

交通大學電信工程系學士(2000.9~2004.6)

交通大學電子研究所碩士(2004.9~2006.6)

研究領域：通訊系統、通道編碼及數位訊號處理

論文題目：IEEE 802.16e OFDM 與 OFDMA 通道

編碼技術與數位訊號處理器實現之研究

(Research in Channel Coding Techniques and DSP

Implementation for IEEE 802.16e OFDM and

OFDMA)

