|EEE802.16e OFDM £ OFDMA ii ig %

b il ) LU - B TR ey

Resear ch in Channel Coding Techniquesand
DSP I mplementation for |EEE 802.16e
OFDM and OFDMA

Moy oA imy s

R R L

Ar

L

}‘3

3

=4

-h_‘\
|

,L L



|EEE 802.16e OFDM & OFDMA i :g %
B e B AT B R 2 AT
Research in Channel Coding Techniques and DSP

|mplementation for IEEE 802.16e OFDM and OFDMA

Frirmg s Student: Yung-Chu Chen

R R FE L Advisor: Dr. David W. Lin

T AT TSy AL

AThesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science
in
Electronics Engineering
June 2006
Hsinchu, Taiwan, Republic of China



|EEE 802.16e OFDM ¥ OFDMA i i %
BERERCALRIEZTRTRLIFY

Pt imisn R R FE L

|IEEES02.16 & i 2RI P » 3t % seen(B i =437 31 % 9 24 2 I S dB il
#10 F IR A SURGE ¢ SRR A BB i i Al A AT cnE gL o

A Eth e dhm X300 F 2 430 F 3 IEFE 802.16e OFDM #737 #_ihwh o 354 22 1t
ok h ETE S T B(DSP)F o #8233 DSP T L e b 2 m o AL T
B AF B2 R AR i L R e P o AR e B F e iR
A kg i FIRANMHRBETERE B DSP 2w L1 o d 3
B2 e d BE BN AR SN chgd (7R S0 B B A BB PR P e iR A i T S eh
FE AR DSP T L oenZE gt AR B VIS 5 AP RR g e i e e B DSP T
o b B AP RN o Bl o e A T Yk B B o KB ts o 3
DSP ## &+ » 7 3|5 §) 8013K =~ ihfe @i & 0 @ [ Bt (> v 10 5|5 )
769K i R g B o

K2 i L 3ni> 5 IEEE 802.16e OFDMA ¥ 14 % B F 18 5 A5 4F 32 & e107% 1 o
AP AE- A HBRP BREMBOLEL BB BT R PGSBS
JREBFE 2 B AR B R AT R i E o RS AP R S § § AT
FTHRER PAARELAMAAFEZ TR R B FE - ERF S R Rt
Fo BN SEET e BE MgRAEDFE R AaEE AR F R 21
W FUEA O WBER EEARA > GBER 2 R aeRWNER LG R
PF R e E R R R R > B E L BT e



Research in Channel Coding Techniques and DSP
| mplementation for |EEE 802.16e OFDM and OFDMA

Student: Yung-Chu Chen Advisor: Dr. David W. Lin

Department of Electronics Engineering
& Ingtitute of Electronics
National Chiao Tung University

Abstract

In the IEEE 802.16e wireless communication standard, a Forward Error Correction
(FEC) mechanism is presented at'the transmitter Side to reduce the noisy channel effect.
The focus is on the channel coding.

The focus of the fist part of this thesis is DSP-implementation of the FEC schemes
defined in IEEE 802.16e OFDM. standard and modifying FEC algorithms to match the
architecture of DSP platform. We have implemented four required FEC schemes defined in
the standard on the Texas Instruments (T1) TMS320C6416 digital signal processor (DSP).
After a brief review of the agorithms, we describe the DSP hardware architecture and its
software optimization techniques. We then explain how we optimize the FEC programs on
the DSP platform step by step since the speed performance is our maor concern. At the end,
the improved FEC encoder can achieve a data processing rate of 8013 kbits/sec and the
improved FEC decoder can achieve a processing rate of 769 kbits/sec on the TI C64xx DSP
simulator.

The focus of second part is the complexity-reduction for low-density parity-check
(LDPC) codes defined in IEEE 802.16e OFDMA. We describe some tools to analyze the
LDPC codes. We then explain the conventional decoding algorithm, and some
reduced-complexity decoding agorithms. Finally, we simulate the LDPC codes for all
kinds of modulation and decoding algorithms in AWGN and compare the simulation results
with analytical results. Simulation results show that these reduced-complexity decoding
algorithms for LDPC codes achieve a performance very close to that of conventiona
algorithm, or even better. We can flexibility select the appropriate decoding scheme from
performance, computational -complexity, latency, and memory-requirement perspectives.
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Chapter 1

Introduction

1.1 Scope of the Work

Digital wireless transmission with multimedia contents is a trend in the next generation of
consumer electronics field. Due to this demandrshigh data transmission rate and mobility
are needed. Thus the OFDM modulation technique for wireless communication has been
the main stream in the recent years.' TEEE has completed several standards such as IEEE
802.11 series for LANs (local area networks) and IEEE 802.16 series for MANs (metropolitan
area networks) based on OFDM technique:. Qur stidy is based on the IEEE 802.16¢ stan-
dard, which specifies the air interface of mobile broadband wireless access systems providing

multiple access.

One major problem with wireless communication is that the transmission channel is not
noiseless. The transmitted signals are easily interfered and distorted by different types of
noise sources such as the crowd traffic, bad weather, the obstacle of buildings, etc. Mul-
timedia service contains broad range of contents such as audio, video, still image, and the
traditional speech. These services would exhibit untolerable quality if they cannot detect
and recover the errors introduced from the noisy channel. To improve the robustness of

the wireless communication against the noisy channel condition, the FEC (forward-error-



correcting coding) mechanism is usually a must to overcome the channel errors for almost

every commercial communication standard, including the IEEE 802.16e.

This work studies two parts of IEEE802.16e. One is the implementation of the FEC
schemes under OFDM on a digital signal processor (DSP). And the other part is mainly
the complexity-reduced decoding algorithms for the FEC schemes under OFDMA for future

implementation on DSP.

The second part of work is part of a group project that gears at studying and construction
(using DSPs) of IEEES802.16e-based transmission system prototype for mobile broadband
communication. The intended span of the group project is from August 2005 to July 2008.

Our study constitutes part of the first year’s work.

The channel coding scheme in IEEE802.16e for OFDM employs concatenated coding
with shortened punctured Reed-Solomefi code as outer code and punctured convolutional
code as inner code. In addition, bit/Anterleaver:and:M-ary QAM modulation are used after
the concatenated code, whereas the-channel coding scheme in IEEE802.16e for OFDMA, we

consider the LDPC codes, bit interleaver and M-ary. QAM modulation.

1.2 Organization of This Thesis

This thesis is organized as follows.

e Chapter 2 introduces the FEC schemes of IEEE 802.16e and introduces some tools to

analyze the LDPC codes.
e Chapter 3 describes the DSP implementation environment.

e Chapter 4 introduces the DSP implementation and optimization of the OFDM FEC

schemes.



e Chapter 5 presents some decoding algorithms and simulation results and compares

different decoding algorithms from simulation.

e Chapter 6 contains the conclusion and point out some future work.




Chapter 2

Overview of IEEE 802.16e FEC
Specifications

2.1 FEC Specifications for WirelessMAN-OFDM [1]

The channel coding scheme used in IEEE 802.16e:OFDM, as shown in Fig. 2.1, is a con-
catenated code employing the Reed-Selomon-RS) eode as the outer code and convolutional
code (CC) as the inner code. Input:data streams are divided into RS blocks, and then each
RS block is encoded by convolutional:code.The block-by-block coding makes the whole

concatenated code a block-based coding scheme.

The convolutional code is used to “clean up” the channel for the RS code, which in turn

corrects the burst errors emerging from the convolutional decoder. In this way, the bit error

—> Reed-Solomon Encoden— Convolutional Encoder Interleaver Modulation [—>

—~— Reed-Solomon Decode—~<—1 Convolutional Decodel De-interleaver Demodulatiop<—

Figure 2.1: Channel coding structure in transmitter (top path) and decoding in receiver
(bottom path).



Table 2.1: Mandatory Channel Coding Schemes for each Modulation Method

Uncoded ) all Code | Coded Block CC Code
Modulation Block Size Size (Bytes) RS Code R

(Bytes) Rate 1ze (by ate
BPSK 12 1/2 24 (12,12,0) 1/2
QPSK 24 1/2 18 (32,24, 4) 2/3
QPSK 36 3/4 48 (40, 36, 2) 5/6
16QAM 48 1/2 96 (64,48, 8) 2/3
16QAM 72 3/4 96 (80,72,4) 5/6
64QAM 96 2/3 144 (108,96, 6) 3/4
64QAM 108 3/4 144 (120,108, 6) 5/6

rate (BER) can decrease exponentially [3]. In addition, between the convolutional coder and
the modulator is a bit interleaver, which protects the convolutional code from severe impact
of burst errors and increases overall doding performance. This approach has been termed

“bit-interleaver coded modulation (BICM)” in the literature [4].

To make the system more flexibly adaptablerto the channel condition, there are seven
coding-modulation schemes defined inTEEE 802:16e, as shown in Table 2.1. The different
coding rates are made by shortening and puncturing the native RS code and with puncturing
of the native convolutional code. The shortening and puncturing mechanisms in RS coding
create different block sizes and different error-correction capability RS codes through one
RS coder. The puncturing mechanism in CC coding can provide variable code rates through

one CC coder.

2.1.1 Reed-Solomon Code Specification

The Reed-Solomon code in IEEE802.16e is derived from a systematic RS (N = 255, K = 239,

T = 8) code on GF(28), where N is number of overall bytes after encoding, K is number



of data bytes before encoding, and 7" is number of data bytes which can be corrected. The

following polynomials are used for the systematic code:

Field generator polynomial: p(z) =2+ 2" +2° + 2% + 1. (2.1)
Code generator polynomial: g(z) = (z+ \%)(x +A') -+ (z + X171, X = 0x2,

= g157"° + gz + -+ g7 + go. (2.2)

This code is then shortened and punctured to enable variable block sizes and variable error-
correction capability. The modified RS code is denoted as (N’, K',T") and the generator

polynomial for RS code is given by
g@) = (2 + A2 (@ + A - (2 + AT, (2.3)

When a block is shortened to K’ data.bytes, the first 239 — K’ bytes of the encoder block
are filled with 0s. When a codeword is punctured to permit 7" bytes to be corrected, only

the first 27" of the total 16 parity bytes are employed.

2.1.2 Encoding of the Reed-Solomon*Code [5]

We use the (64,48,8) RS code to explain the encoding process. Let the information data to

the (255,239,8) systematic RS be represented as:

I(JT) = 1238513238 + [2371‘237 —+ -+ [37.’1737 + 136.%36 + 135.’13'35 + 134.’13'34 + - —|— 11.27 —|— IO

= <1—2387[2377'“ 7[377[3671357[347"' 7[17[0)' (24)
Then the resulting codeword is given by

C(z) = I(x)-2'" + R(z)

= (lass, Losr, -+ Is7, I36, I35, L34, - -+ , 11, Lo, Ris,- -+ , Rs, Ra, -+ , R1, Ry) (2.5)



where

R(z) = I(x)-2'" mod g(z)
= Ryzz" + -+ Rs2® + Ryx* + - + Riz + Ry
= (R15a"' 7R57R47"' 7R17R0)- (26)
When shortened and punctured to (64,48,8), the first 191= (239 — 48) information bytes are
assigned 0, i.e., Iog3s = lo37 = -+ = I35 = 0, and the first 16= (2 - 8) bytes of R(z) will be
employed in the codeword. Now the information data of (64,48,8) will be
I/(ZE) = 1471'47 + 1461'46 +--+ [11? + [0

= (L7, Lss, -, 11, 1p), (2.7)
and the codeword will be
C'(z) = I'(z) 2° R (®)
= (L7, Ly, ;413 1o, Ris, - - - , R1, Ro) (2.8)
where
R'(z) = first 16 bytes of (I'(x) - '° mod g(z))

= R155E15 + -+ Rll'l + Rol’o

= (Ris,-+, B1, Ro). (2.9)
A systematic RS encoder is depicted in Fig. 2.2.

2.1.3 Convolutional Code Specification

Each RS block is encoded by a binary convolutional encoder, which has native rate of 1/2,
a constraint length equal to 7, and the generator polynomials for the two output bits are

171pcr and 133pcr. The generator is depicted in Fig. 2.3.

7



first K’ ticks closed

last 2T ticks open

A
9 V9 V92 | Y915 uut
o—~[r}-o—+{r}~  —O-[rfrO{r]+0
A ? first K ticks down
last 2T ticks up

I’(x) following by 2T" zero

Figure 2.2: Shortened and punctured Reed-Solomon encoder (from [5]).

X output

Data in

Y output

Figure 2.3: Convolutional encoder of rate 1/2 (from [1]).



This convolutional code is then punctured to allow different rates, which is known as rate-
compatible punctured convolutional coding (RCPC). A single 0x00 tail byte is appended to

the end of each RS output data block to initialize the CC encoder’s memory.

2.1.4 Encoding of Punctured Convolutional Code

The convolutional code encoding structure is shown in Fig. 2.3. It consist of one input bit,
six memory elements (shift registers), and two output bits generated by first performing the
AND operations on the generator polynomial coefficients and the contents of the memory
elements padded with the input bit, then performing the operation of XOR on each bits
generated by the previous AND operation. Then we do the puncturing. The puncturing
patterns and serialization order of the convolutional code in IEEE802.16e are defined in
Table 2.2. In this table, “1” means a transmitted bit and “0” denotes a removed bit, whereas
X and Y are in reference to Fig. 2.3./Note thatsthe Dge. has been changed from that of the

native convolutional code with rate-1/2; which is equal to 10 [6, Chapter 8|.

2.1.5 Interleaver

The encoded data bits are interleaved by a block interleaver with a block size corresponding
to the number of coded bits per the specified allocation, N, (see Table 2.3). The inter-

leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are

Table 2.2: The Inner Convolutional Code with Puncturing Configuration

Code Rates
Rate 1/2 2/3 3/4 5/6
Dtree 10 6 5 4
X 1 10 101 10101
Y 1 11 110 11010
XY XlYl X1Y1Y2 X1Y1Y2X3 X1Y1Y2X3Y4X5




Table 2.3: Bit Interleaved Block Sizes and Modulos

) Coded Bits per Bit Coded Bits per Modulo Used
Modulation | 1 to1eaved Block (Nebps) Carrier (Nepe) (d)
BPSK 192 1 12
QPSK 384 2 12
16QAM 768 4 12
64QAM 1152 6 12

mapped onto non-adjacent carriers. The second insures that adjacent coded bits are mapped
alternately onto less or more significant bits of the constellation, thus avoiding long runs of

lowly reliable bits.

Let s = ceil(Ngpe/2), k be the index of the coded bit before the first permutation, m
the index after the first and before the,seeond permutation and j the index after the second

permutation, just prior to modulation mapping: The fitst permutation is defined by

N, cbps

k
d ) : kmod(d) + flOOT(—), [ =] 0, 1, cee 7Ncbps - 1, (210)

d

m = (
and the second permutation by

d
j=s- floor(%) + (m + Nepps — floor(N m))mod(5)7 m=0,1,-- Ngps — 1. (2.11)
cbps

The de-interleaver, which performs the inverse operation, is also defined by two per-
mutations. Let j be the index of the received bit before the first permutation, m be the
index after the first and before the second permutation, and k£ be the index after the second
permutation, just prior to delivering the coded bits to the convolutional decoder. The first

permutation is defined by

J .
))mod(s), J = 07 17 T 7Ncbps - 1, (212)

cbps

m=s- flom“(%) + (7 + floor(

10



and the second permutation by

d-m
Ncbps

k=d-m— (Neups — 1) - floor( ), m=0,1,--- Ngps — L. (2.13)

2.1.6 Modulation

After bit interleaving, the data bits are entered serially to the constellation mapper. BPSK,
QPSK and Gray-mapped 16-QAM are supported, whereas the support of Gray-mapped 64-
QAM is optional. The constellations as shown in Fig. 2.4 shall be normalized by multiplying
the constellation points with the indicated factor ¢ to achieve equal average power. The

constellation-mapped data shall be subsequently modulated onto the allocated data carriers.

2.2 FEC Specifications for WirelessMAN-OFDMA [7]

One of the channel coding scheme uséd in TEEFE802:16e° OFDMA is using low-density parity-
check (LDPC) code. The input data are first.encoded by the LDPC encoder. The encoder
output is then interleaved by the bit.interleaver:described in Section 2.2.3. To make the
system more flexibly adaptable to the channeleondition, there are three different modulation

types which would be depicted in Section 2.2.4.

LDPC codes are a special case of error correcting codes that have recently been receiving
a lot of attention because of their very high throughput and very good decoding performance.
Inherent parallelism of the message passing decoding algorithm for LDPC codes makes them
very suitable for hardware implementation. The LDPC codes can be used in any digital

environment that high data rate and good error correction are important.

Gallager [8] proposed LDPC codes in the early 1960s, but his work received no attention
until after the invention of turbo codes in 1993, which used the same concept of iterative

decoding. In 1996, MacKay and Neal [9], [10] re-discovered LDPC codes. Chung et al. [11]
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Figure 2.4: BPSK, QPSK, 16-QAM, and 64-QAM constellations (from [1]).
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showed that a rate-1/2 LDPC code with block length of 107 in binary input additive white

Gaussian noise (AWGN) can achieve a threshold of just 0.0045 dB away from Shannon limit.

LDPC codes have several advantages over turbo codes: First, the sum-product decoding
algorithm for these codes has inherent parallelism which can be harvested to achieve a greater
speed of decoding. Second, unlike turbo codes, decoding error is a detectable event which
results in a more reliable system. Third, very low complexity decoders, such as the modified
minimum-sum algorithm that closely approximate the sum-product in performance, can be

designed for these codes.

Since our focus is on wireless communications, we would like to have low-power architec-

tures and speed of decoding as it is needed for the IEEE 802.16e standard.

Complexity in iterative decoding has two parts. First, complexity of the computations
in each iteration. Second, the numbersiterations.’sBoth of these are manageable in prac-
tice. There is a trade-off between tlie performance of the decoder, complexity and speed of

decoding.

2.2.1 Overview of LDPC Codes

LDPC codes are a class of linear block codes corresponding to a sparse parity check matrix
H. The term “low-density” means that the number of 1s in each row or column of H is
small compared to the block length n. In other words, the density of 1s in the parity check
matrix which consists of only Os and 1s is very low and sparse. Given k information bits, the
set of LDPC codewords ¢ in the code space C' of length n spans the null space of the parity

check matrix H in which cHT = 0.

For a (W., W,) LDPC code, each column of the parity check matrix H has W, ones and
each row has W, ones; this is called regular. If degrees per row or column are not constant,

then the code is irregular. Some of the irregular codes have shown better performance than
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regular ones. But irregularity results in more complex hardware and inefficiency in terms
of re-usability of functional units. In the IEEE 802.16e standard irregular codes have been
considered to achieve better performance. Code rate R is equal to k/n, which means that

n — k redundant bits have been added to the message so as to correct the errors.

LDPC codes can be represented effectively by a bipartite graph called a Tanner graph
[12], [13]. A bi-partite graph is a graph (nodes or vertices are connected by undirected edges)
whose nodes may be separated into two classes, and where edges may only be connecting
two nodes not residing in the same class. The two classes of nodes in a Tanner graph are
bit nodes and check nodes. The Tanner graph of a code is drawn according to the following
rule: Check node f; , 7 =1,--- ,n — k, is connected to bit node x;, 7 = 1,--- ,n, whenever
element hj; in H (parity check matrix) is a one. Figure. 2.5 shows a Tanner graph made for
a simple parity check matrix H. In this grapheach bit node is connected to two check nodes

(bit degree = 2) and each check nodgrhas a degree. of four.

Let d and d denote the -maximum variable node and check node degree respec-

Umazx Cmax

tively, and let \; and p; represent the fraction -of-edges' emanating from variable and check

nodes of degree and d(v) = i and d(c) =i respectively. Then we can define

d’”maz

Az)= > xa'™ (2.14)

as the variable node degree distribution, and

dcmaz

ORI (215)
i=2
as the check node degree distribution.
Definition: Degree of a node is the number of branches that is connected to that node.

Definition: A cycle of length [ in a Tanner graph is a path comprised of [ edges which
closes back on itself. The Tanner graph in Fig. 2.5 has a cycle of length four which has been

shown by dashed lines.
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01011001

Figure 2.5: Tanner graph of a parity check matrix (from [7]).

Definition: The girth of a Tanner graph,is the minimum cycle length of the graph. The

shortest possible cycle in a bi-partitesgraph isjelearly a length-4 cycle.

Short cycles have negative impact on the decoding performance of LDPC codes. Hence

we would like to have large girths.

2.2.2 LDPC Codes Specification in IEEE 802.16e OFDMA

The LDPC codes in IEEE802.16e are a systematic linear block code, where k systematic
information bits are encoded to n coded bits by adding m = n — k parity bits. The code

rate is k/n.

The LDPC codes in IEEE802.16e are defined based on a parity check matrix H of size
mxn that is expanded from a binary base matrix H, of size myxn;, where m = z-my and
n = z-n. In this standard there are six different base matrices, one for the rate 1/2 code
depicted in Fig. 2.6, two different ones for two rate 2/3 codes, type A in Fig. 2.7 and type B

in Fig. 2.8, two different ones for two rate 3/4 codes, type A in Fig. 2.9 and type B in Fig.
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Rate 1/2:

-1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1 7 Qo -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 27 -1 -1 -1 2279 9 -1 -1 -1 12 -1 o o -1 -1 -1 -1 -1 -1 -1 -1 -1
=1 =1 =1 24 22 81 =1 33 -1 =1 =1 0 -1 =1 o 0 -1 =1 =1 =1 =1 =1 =1 =1
el -1 47 -1 -1 -1 -1 -1 65 25 -1 =-1 -1 -1 =1 o o -1 -1 -1 -1 -1 =1 -1
-1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1 O g -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79 O -1 -1 -1 -1 (4] o -1 -1 -1 -1 -1
-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 =1 =1 =1 o 0O -1 -1 -1 -1
-1 11 73 -1 -1 -1 z2 -1 -1 47 -1 -1 -1 -1 -1 =1 -1 =~1 -1 o 0 -1 -1 -1
12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1 0O 0 -1 -1
-1 -1 -1 -1 -1 94 -159 -1 -1 7072 -1 -1 -1 -1 -1 -1 -1 -1 -1 o 0 -1
=1 -1 7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 o 0
43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 O

Figure 2.6: Base model of the rate-1/2code (from [2]).

2.10, one for the rate 5/6 code depicted in Fig. 2.11. In these base matrices, size n; is an
integer equal to 24 and the expansion factor z is an integer between 24 and 96 . Therefore
we can compute the minimal code length as n,,;, = 24x24 = 576 bits and the maximum
code length as n,,., = 24x96 = 2304 bits.

For codes %, %B, %A, %B, and =, the shift:sizes. p(f,,j) for a code size corresponding

(SN &1}

to expansion factor z; are derived #from p(%sj), which is the element at the i-th row, j-th

column in the base matrices, by scaling p(%, j) proportionally as

T i <o,
p”’“”‘{t”’%fJ, p(i.s) > 0 0

For code %A, the shift sizes p(f,1, ) are derived by using a modulo function as

- p(i, ), p(i,j) <0,
p(f,i,7) = . A (2.17)
mod(p(i, j), zs), p(i,j) > 0.
A base matrix entry p(f,4,j) = —1 indicates a replacement with a z x z all-zero matrix

and an entry p(f,7,7) > 0 indicates a replacement with a zxz permutation matrix. The
permutation matrix represents a circular right shift of p(f, 4, j) positions. This entry p(f,,7)

= 0 indicates a zx z identity matrix.

16



Rate 2/3 A code:

30 -1 -1 2
-1 -1 1 -1 36
-1 -1 12 2 -1
-1 -1 19 24 -]
20 -1 6 -1 -1
-1 -1 10 -1 28
3525 -1 37 -1
-1 6 6 -1 -1

Figure 2.7:

Rate 2/3 B code:

2 -1 19 -1 47
-1 69 -1 88 -]
10 -1 86 -1 62
-1 28 -1 32 -1l
23 -1 29 -1 15
-1 30 -1 65 -1
32 -1 0 -1 15
-1 0 -1 47 -1

Figure 2.8:

Rate 3/4 A code:

6 38 393 -1
62 94 19 84 -1
71 -1 55 -1 12
38 61 -1 66 9
-1 -1 -1 -1 32
-1 63 31 88 20

Figure 2.9:

o-1 3 71 1 1--1-1-11 0-1-1-1-1-1-1
-1 -1 34 10 -1 -1 18 2 -1 3 0 -1 0 0-1 -1-1-1-1
5 -1 490 -1 3 -115 -1 213 -1 -1 -1 0 0 -1 -1-1 -1
30 -1 6 -1 17 -1 -1 -1 839 -1 -1 -1 0O 0O -1 -1 -1
029 -1 -1 28 -1 14 -1 38 -1 -1 0 -1 -1 -1 0 0-1 -1
20 -1 -1 8 -1 36 -1 9 -1 21 45 -1 -1 -1 -1 -1 0 O -1
21 -1 -1 5 -1 -1 O -1 4 20 -1 -1 -1 -1 -1 -1 -1 0 0O
-1 4 -1 14 30 -1 3 36 -1 14 -1 1 -1 -1 -1 -1 -1 -1 O
Base model of the rate-2/3, type A code(from [2]).

-1 48 -1 36 -1 82 -1 47 -1 15 -1 95 0O -1 -1 -1 -1 -1 -1
33 -1 3 -1 16 -1 37 -1 40 -1 48 -1 O 0O -1 -1 -1 -1 -l
-1 28 -1 8 -1 16 -1 34 -1 73 -1 -1 -1 O O -1 -1 -1 -l
81 -1 27 -1 88 -1 5 -1 56 -1 37 -1 -1 -1 O O -1 -1 -l
-1 30 -1 66 -1 24 -1 50 -1 62 -1 -1 -1 -1 -1 O O -1 -1
54 -1 14 -1 0 -1 30 -1 74 -1 0O -1 -1 -1 -1 -1 O 0O -]
-1 5% -1 8 -1 5 -1 6 -1 52 -1 0 -1 -1 -1 -1 -1 O O
13 -1 6k -l -84|- -_] 55_ -1 __?8 -1 41 95 -1 -1 -1 -1 -1 -1 O
Base model of the rate-2 /3, type B code(from [2]).

-1 13070 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -l
92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1 -1 0 0 -1 -1 -I
66 4579 -1 78 -1 -1 10 -1 22 55 70 8 -1 -1 0 0O -1 -I
73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32 0O -1-1 0 O -l
52558095 22 651 24 90 44 20 -1 -1 -1 -1-1-1 0 0
-1 -1 -1 640 56 16 71 53 -1 -1 27 26 48 -1 -1 -1 -1 O
Base model of the rate-3/4, type A code(from [2]).
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Rate 3/4 B code:

-1 81 -1 28 -1 -1 142517 -1 -1 8 2952 78 952292 0 0 -
42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 O 0 -1 -
-1 -120 -1 -163 39 -1 70 67 -1 38 47247 29 60 5 80 -l

64 2 -1 -1 63 -1 -1 351 -1 81 1594 985 36 14 19 -1 -I

-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77 1 3 72 60 25 -1 -l

77 -1 -1 -1 1528 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -l

=
l 1 1
—_ S = = —
[ I I A |
SO = = = =

Figure 2.10: Base model of the rate-3/4, type B code(from [2]).

Rate 5/6 code;

-l 6 -136404712 7947 -1 412112711472 04449 0 -
51 81 83 4 67 -1 21 -1 31 24 91 61 81 9 86 78 60 88 67 15 -

50 -1 50 15 -1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80

1 2555 -147 4 -1918 8852833 5 036 2 4778 0 -1 -
00 -l
-1 00
-1-100

Figure 2.11: Base model of the rate-5/6 code(from [2]).
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Table 2.4: Bit Interleaved Block Sizes and Modulos

) Coded Bits per Modulo Used
Modulation Carrier (N, (d)
QPSK 2 16
16QAM 4 16
64QAM 6 16

2.2.3 Interleaver

The encoded data bits are interleaved by a block interleaver with a block size corresponding
to the number of coded bits per the encoded block size, Ngps (see Table 2.3). The inter-
leaver is defined by a two-step permutation. The first ensures that adjacent coded bits are
mapped onto non-adjacent carriers. The se¢ond insures that adjacent coded bits are mapped
alternately onto less or more significant bits of the,constellation, thus avoiding long runs of

lowly reliable bits.

Let s = Ngpe/2, k be the indexof the eoded bit before the first permutation, m the
index after the first and before the second permutation and j the index after the second

permutation, just prior to modulation mapping. The first permutation is defined by

N, cbps

m = ( 7

k
)+ Kmod(a) + floor(g), k=0,1,--, Naps — 1, (2.18)
and the second permutation by

. m d-m
j=s-" floor(?) + (m + Nepps — floor(N—))mod(s), m=0,1,--+, Napps — 1. (2.19)
cbps

The de-interleaver, which performs the inverse operation, is also defined by two per-
mutations. Let 7 be the index of the received bit before the first permutation, m be the

index after the first and before the second permutation, and k be the index after the second
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permutation, just prior to delivering the coded bits to the convolutional decoder. The first

permutation is defined by

) g
m=s- floor(‘é) +(j+ floor(N—]))mod@L J=0,1,--+, Ngps — 1, (2.20)
chps

and the second permutation by

d-m

k=d-m— (Naups — 1) - floor(N
cbps

)7 szaL'" 7Ncbps_1- (221)

2.2.4 Modulation

After bit interleaving, the data bits are entered serially to the constellation mapper. QPSK
and Gray-mapped 16-QAM are supported, whereas the support of Gray-mapped 64-QAM
is optional. The constellations as shown in Fig. 2.12 shall be normalized by multiplying
the constellation points with the indi¢ated factor e¢'to achieve equal average power. The

constellation-mapped data shall be subsequeiitly modulated onto the allocated data carriers.

2.3 Analysis of LDPC Codesin IEEE 802.16e OFDMA

2.3.1 Girth Analysis

In this section, we compute the girth of LDPC in IEEE 802.16e for all kinds of code rate.
Hence we can broadbrush estimate the specific code performance. The result is listed in

Table 2.5.

From Table 2.5, we can roughly estimate the performance of code rate %A is a little better
than %B under the same condition of codeword length, modulation, channel, and decoding
algorithm, because of the longer average girth. While code rate %B would perform slightly

better than rate %A by the same reason described above.
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Figure 2.12: QPSK, 16-QAM, and 64-QAM constellations (from [2]).
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Table 2.5: Girths of LDPC Codes in I

EEE 802.16e OFDMA

Codeword
Length
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2.3.2 Density Evolution

For many channels and iterative decoders of interest, LDPC codes exhibit a threshold phe-
nomenon [14]: as the block length tends to infinity, an arbitrarily small bit error probability
can be achieved if the noise level is smaller than a certain threshold. For a noise level
above this threshold, on the other hand, the probability of bit error is larger than a positive

constant.

Density evolution provides an efficient way to determine the thresholds of LDPC codes
ensemble by tracking the probability density functions (pdf’s) of the message in the Tanner
graph of an LDPC code. Since there is no theoretical guideline. for the design of LDPC

codes, it is meaningful to optimize the code by density evolution [15].

Without loss of generality, assume that the all-0 codeword is transmitted. Firstly, choose
a value for the threshold parameter § o start density evolution. If the pdf of all bit messages
tend to infinity after enough iterations, such a value of ¢ is within the threshold. Then,
increase the value ¢ until the density evolutien eannot sncceed, that is, the pdf cannot tend
to infinity after enough iterations. The maximum value of § found is the threshold of the

irregular LDPC codes with degree distribution pair (A, p).

In Table 2.6, we list the degree distribution pairs(A, p) and the thresholds of the LDPC
codes in IEEE 802.16e OFDMA. Here we assume BPSK modulation, belief propagation (BP)
decoding which will be introduced in Chapter 5, and AWGN channel.

From these threshold values, not only 2A is larger than 2B but 2B is larger than 24,
this result is the same as what we broadbrush estimate the specific code performance by

using the girth analysis.
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Table 2.6: Degree Distribution and Threshold for Each Code Rate under BPSK Modulation,
AWGN Channel, and BP Decoding

Bit Node Check Node
Code Rate Degree Degree Threshold
Distribution Distribution
1/2 0.2895z + 0.3158%% +0-39470° | +0.63152° + 0.36852° 0.9273
2/3A 0.175z + 0.4522 4-0.3752° xd 0.7282
2/3B 0.17292 + 0.037z2 + 0.79012% | 0.86422° + 0.1358z1° 0.7163
3/4A 0.1176x + 0.03532% + 0.847Fz*{ 0.8235x"% + 0.1765x 0.6358
3/4B 0.1137x + 0.40922 +.0:47732°40.31822" + 0.6818z1* 0.6446
5/6 0.075z + 0.3752% + 0.552° rt? 0.5607
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Chapter 3

DSP Implementation Environment

We conduct a DSP (digital signal processor) implementation for the channel coding scheme
of OFDM in our work. In this we employ the Quixote DSP-FPGA baseboard made by
Innovative Integration (II), on which the DSP is Texas Instruments’s (TT) TMS320C6416.
Because of our purely software implemeéntation on the DSP, discussion in this chapter will

mainly focus on the DSP chip and the associated systein development environment.

3.1 The TMS320C6416 DSP-Chip
The following text is mainly taken from references [16] and [17].

3.1.1 TMS320C6416 Features

The TMS320C64x DSPs are the highest-performance fixed-point DSP generation on the
TMS320C6000 DSP platform. The TMS320C64x device is based on the second-generation
high-performance, very-long-instruction-word (VLIW) architecture developed by TI. The
C6416 device has two high-performance embedded coprocessors, Viterbi Decoder Coproces-
sor (VCP) and Turbo Decoder Coprocessor (TCP) that can significantly speed up channel-

decoding operations on-chip, but we do not make use of these coprocessors in the present
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work.

The C64x core CPU consists of 64 general-purpose 32-bits registers and 8 function units.

Features of C6000 devices include:

e The eight functional units include two multipliers and six arithmetic units:

— Execute up to eight instructions per cycle.

— Allow designers to develop highly effective RISC-like code for fast development

time.

Instruction packing:

— Gives code size equivalence for eight instructions executed serially or in parallel.

— Reduces code size, program fetches, and:power consumption.

Conditional execution of all instructions:

— Reduces costly branching:

— Increases parallelism for higher sustained performance.

Efficient code execution on independent functional units:

— Efficient C compiler on DSP benchmark suite.

— Assembly optimizer for fast development and improved parallelization.

8/16/32-bit data support, providing efficient memory support for a variety of applica-

tions.

40-bit arithmetic options add extra precision for applications requiring it.

Saturation and normalization provide support for key arithmetic operations.
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e Field manipulation and instruction extract, set, clear, and bit counting support com-

mon operation found in control and data manipulation applications.

The C64x additional features include:

Each multiplier can perform two 16x16 bits or four 8x8 bits multiplies every clock

cycle.

Quad 8-bit and dual 16-bit instruction set extensions with data flow support.

Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses.

Special communication-specific instructions have been added to address common op-

erations in error-correcting codes.

Bit count and rotate hardware extends support-for bit-level algorithms.

3.1.2 Central Processing Unit Features: [18]

The block diagram of C6416 DSP is shown iniFig. 3.1. The DSP contains: program fetch
unit, instruction dispatch unit, instruction decode unit, two data paths which each has
four functional units, 64 32-bit registers, control registers, control logic, and logic for test,

emulation, and interrupt logic.

The TMS320C64x DSP pipeline provides flexibility to simplify programming and improve
performance. The pipeline can dispatch eight parallel instructions every cycle. The follow-
ing two factors provide this flexibility: Control of the pipeline is simplified by eliminating
pipeline interlocks, and the other is increasing pipelining to eliminate traditional architec-
tural bottlenecks in program fetch, data access, and multiply operations. This provides

single cycle throughput.
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CE2x/CB4x/CETx device

Program cache/program memaory
32-bit address

256-bit data
CE2x/CB4x/CET7x CPU
Power Program fetch
down Instruction dispatch (See Note) CO_"?D'
registers
Instruction decode 9
Data path A Data path B
f— DMA, EMIF L : ontrol
Reqister file A Reqgister file B logic
[ 1 1 Je>] T 1] ™

Emulation
Interrupts

Data cache/data memory
32-bit address

8-, 16-, 32-bit data (64-bit data, CB4x only)

Additional
peripherals:
Timers,
seral ports,
elc.

Figure 3.1: Block diagram of TMS320C6416 DSP (from [18]).
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4— Fetch ——— 4 Decode w4———— Execute —p

PG PS | PW | PR DF | DC E1 E2 E3 E4 ES

Figure 3.2: Pipeline phases of TMS320C6416 DSP (from [18]).

The pipeline phases are divided into three stages: fetch, decode, and execute. All in-
structions in the C62x/C64x instruction set flow through the fetch, decode, and execute
stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions,
and the decode stage has two phases for all instructions. The execute stage of the pipeline
requires a varying number of phases, depending on the type of instruction. The stages of

the C62x/C64x pipeline are shown in Fig. 3.2.

Reference [18] contains detailed inférmation regarding the fetch and decode phases. The
pipeline operation of the C62x/C64x instructions ¢an be categorized into seven instruction
types. Six of these are shown in Table 3.1,which-gives a mapping of operations occurring
in each execution phase for the different. instruction types. The delay slots associated with

each instruction type are listed in the bottom row.

The execution of instructions can be defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results
from instructions with delay slots are not available until the end of the last delay slot. For
example, a multiply instruction has one delay slot, which means that one CPU cycle elapses
before the results of the multiply are available for use by a subsequent instruction. However,
results are available from other instructions finishing execution during the same CPU cycle

in which the multiply is in a delay slot.

The eight functional units in the C6000 data paths can be divided into two groups of
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Table 3.1: Execution Stage Length Description for Each Instruction Type (from [18]).

Instruction Type

16 X 16 Single Co4dx
. Multiply/ Multiply
Single Cycl St Load B h
ingle bycle C64x .M Unit ore Extensions oa rane
Non-Multiply
Execution E1 Compute Read operands Compute  Reads oper- Compute Target-
phases result and start address ands and address code
and write to  computations start com- in PGT
register putations
E2 Compute result  Send ad- Send ad-
and write to dress and dress to
register data to memaory
memaory
E3 Access Access
memory memory
E4 Write results ~ Send data
to register back to CFU
E5 Write data
into register
Delay 0 1 ot 3 41 51
slots
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four; each functional unit in one data path is almost identical to the corresponding unit in

the other data path. The functional units are described in Table 3.2.

Besides being able to perform 32-bit operations, the C64x also contains many 8-bit and
16-bit extensions to the instruction set. For example, the MPYU4 instruction performs four
8x8 unsigned multiplies with a single instruction on a .M unit. The ADD4 instruction

performs four 8-bit additions with a single instruction on a .L unit.

The data line in the CPU supports 32-bit operands, long (40-bit) and double word (64-
bit) operands. Each functional unit has its own 32-bit write port into a general-purpose
register file (see Fig. 3.3). All units ending in 1 (for example, .LL1) write to register file A,
and all units ending in 2 write to register file B. Each functional unit has two 32-bit read
ports for source operands srcl and src2. Four units (.L1, .L2, .S1, and .S2) have an extra
8-bit-wide port for 40-bit long writes, as wéll-as afr8-bit input for 40-bit long reads. Because
each unit has its own 32-bit write port; when performiing 32-bit operations all eight units

can be used in parallel every cycle.

3.1.3 Cache Memory Architecture Qverview [19]

The C64x memory architecture consists of a two-level internal cache-based memory archi-
tecture plus external memory. Level 1 cache is split into program (L1P) and data (L1D)
caches. The C64x memory architecture is shown in Fig. 3.4. On C64x devices, each L1 cache
is 16 kB. All caches and data paths are automatically managed by cache controller. Level 1
cache is accessed by the CPU without stalls. Level 2 cache is configurable and can be split
into L2 SRAM (addressable on-chip memory) and L2 cache for caching external memory
locations. On a C6416 DSP, the size of L2 cache is 1 MB, and the external memory on
Quixote baseboard is 32 MB. More detailed introduction to the cache system can be found

in [19].
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Table 3.2: Functional Units and Operations Performed (from [18])

Function Unit

\ Operations

L unit (.L1, .L2)

32/40-bit arithmetic and compare operations
32-bit logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations

Dual 16-bit min/max operations

Quad 8-bit min/max operations

.S unit (.S1, .52)

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfersitio/from control register file (.52 only)
Byte shifts

Data pacKingj/unpacking

Dual 16-bityeompare eperations

Quad 8-bit compare operations

Dual 16-bit shiftoperations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

M unit (.M1, .M2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operation

Bit expansion

Bit interleaving/de-interleaving

Variable shift operations and rotation

Galois Field Multiply

.D unit (.D1, .D2)

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant

Load and store non-aligned words and double words

5-bit constant generation

32-bit logical operations
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Figure 3.4: C64x cache memory architecture (from [19]).

3.2 The Quixote Baseboard [20]

The DSP-FPGA embedded card uséd in our iniplementation is Innovative Integration’s (II)
Quixote baseboard, which is illustrated n Fig. 3.5 Quixote is one of II's Velocia-family
baseboards for various applications fequiring high-speed computation. Figure. 3.6 shows a
block diagram of the Quixote board. It combines a 600 MHz C6416 32-bit fixed-point DSP
with a Virtex-II FPGA, and some system-level peripherals. The FPGAs on our boards are
the six-million-gate version. The TI C6416 DSP operating at 600 MHz offers a processing

power of 4800 MIPS. Some detailed features of the board are as follows:

e TMS320C6416 processor running at frequency up to 600 MHz.

e Onboard 32 MB SDRAM for the DSP chip.

e A 32/64 bits PCI bus host interface with direct host memory access capability for

busmastering data between the card and the memory.
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 Quixote

Figure 3.5: Picture of the Quixote board [20].

3.3 TDI’s Code Development Environment [21], [22]

TT provides a useful GUI development interface to DSP users for developing and debug-

ging their projects: Code Composer Studio (CCS)idhe CCS development tools are a key
element of the DSP software and c_l.evelopmen-t tools .f_rom Texas Instruments. The fully
integrated development environment includes real—time; analysis capabilities, easy to use
debugger, C/C++ compiler, assemBler, linker, -e-ditor_, visual project manager, simulators,

XDS560 and XDS510 emulation drivers and DSP/BIOS support.
Some of CCS’s fully integrated host tools include:
e Simulators for full devices, CPU only and CPU plus memory for optimal performance.

e Integrated visual project manager with source control interface, multi-project support

and the ability to handle thousands of project files.
e Source code debugger common interface for both simulator and emulator targets:

— C/C++/assembly language support.

— Simple breakpoints.
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— Advanced watch window.

— Symbol browser.
e DSP/BIOS host tooling support (configure, real-time analysis and debug).
e Data transfer for real time data exchange between host and target.

e Profiler to understand code performance.

CCS also delivers foundation software consisting of:

e DSP/BIOS kernel for the TMS320C6000 DSPs:

— Pre-emptive multi-threading.
— Interthread communication.

— Interupt Handling.
e TMS320 DSP Algorithm Standard, to‘enable-software reuse.

e Chip Support Libraries (CSL) to’simplify device configuration. CSL provides C-

program functions to configure and control on-chip peripherals.

e DSP libraries for optimum DSP functionality. The libraries include many C-callable,
assembly-optimized, general-purpose signal-processing and image /video processing rou-
tines. These routines are typically used in computationally intensive real-time appli-

cations where optimal execution speed is critical.

The DSP Library (DSPLIB) for TMS320C64x includes routines that are organized into

seven groups:

e Adaptive filtering.
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Correlation.

o FFT.

Filtering and convolution.

e Math.

Matrix functions.

Miscellaneous.

3.4 Code Development Flow [23]

The recommended code development flow involves utilizing the C6000 code generation tools
to aid in optimization rather than forcing the programmer to code by hand in assembly.
These advantages allow the compilér to do allthe:laborious work of instruction selection,
parallelizing, pipelining, and register allocatien. These features simplify the maintenance of
the code, as everything resides in a ‘€ framework that'is simple to maintain, support, and

upgrade.

The recommended code development flow for the C6000 involves the phases described in
Fig. 3.7. The tutorial section of the Programmers Guide [23] focuses on phases 1-2 and the
Guide also instructs the programmer when to go to the tuning stage of phase 3. What is
learned is the importance of giving the compiler enough information to fully maximize its
potential. An added advantage is that this compiler provides direct feedback on the entire
program’s high MIPS areas (loops). Based on this feedback, there are some very simple steps
the programmer can take to pass complete and better information to the compiler allowing
the programmer a quicker start in maximizing compiler performance. The following items

list the goal for each phase in the 3-phase software development flow shown in Fig. 3.7.
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Figure 3.7: Code development flow for TI C6000 DSP (from [23]).
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e Developing C code (phase 1) without any knowledge of the C6000. Use the C6000
profiling tools to identify any inefficient areas that we might have in the C code. To

improve the performance of the code, proceed to phase 2.

e Use techniques described in [23] to improve the C code. Use the C6000 profiling tools
to check its performance. If the code is still not as efficient as we would like it to be,

proceed to phase 3.

e Extract the time-critical areas from the C code and rewrite the code in linear assembly.

We can use the assembly optimizer to optimize this code.

TT provides high performance C program optimization tools, and they do not suggest the
programmer to code by hand in assembly. In this thesis, the development flow is stopped at
phase 2. We do not optimize the code by writing inear assembly. Coding the program in

high level language keeps the flexibility of porting to other platforms.

3.4.1 Compiler Optimization Options ([23]

The compiler supports several options to optimize the code. The compiler options can be
used to optimize code size or execution performance. Our primary concern in this work is
the execution performance. The easiest way to invoke optimization is to use the cl6x shell
program, specifying the -on option on the cl6x command line, where n denotes the level of

optimization (0, 1, 2, 3) which controls the type and degree of optimization:

e -00:

— Performs control-flow-graph simplification.
— Allocates variables to registers.
— Performs loop rotation.
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— Eliminates unused code.
— Simplifies expressions and statements.

— Expands calls to functions declared inline.
e —0l. Performs all -00 optimization, and:

— Performs local copy/constant propagation.
— Removes unused assignments.

— Eliminates local common expressions.

e -02. Performs all -0l optimizations, and:

Performs software pipelining.

— Performs loop optimizations:.

Eliminates global common subexpressions.

Eliminates global unused-assignmentss
— Converts array references in loops-to-incremented pointer form.

— Performs loop unrolling.

e -03. Performs all -02 optimizations, and:

— Removes all functions that are never called.
— Simplifies functions with return values that are never used.
— Inline calls to small functions.

— Reorders function declarations so that the attributes of called functions are known

when the caller is optimized.
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— Propagates arguments into function bodies when all calls pass the same value in

the same argument position.

— Identifies file-level variable characteristics.
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Chapter 4

Implementation and Optimization of
IEEE 802.16e OFDM Channel Codec
on DSP

In this chapter, we discuss the decoding algorithms of the IEEE 8021.16e OFDM channel
codec on DSP. Our DSP is a TT TM$320C6416-chip, housed on II’s Quixote baseboard. We
base our implementation on modifieation of the-code of L.ee [24] for IEEE 802.16a OFDMA
to the specifications of IEEE 802.16e OEDM:=We-present the performance results obtained
from the profiler generated by the built-inprofiler-in ‘TT's Code Composer Studio (CCS) tool

set.

4.1 Decoding of RS Code [5]

The Berlekamp-Massey (BM) algorithm is a common decoding algorithm for RS codes [25].

It includes four steps:

1. Compute the syndrome value.
2. Compute the error location polynomial.

3. Compute the error location.
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4. Compute the error value.

Under the unable-to-correct condition (e.g., errors number greater than 7”), the received

word will not be dealt with.

The shortening does not affect the RS decoder because the RS code in IEEE802.16e is
a systematic code and the initial zero bytes will not affect each step of the decoder. As for
the puncturing, the punctured bytes can be viewed as erasures. Thus the decoder we adopt

should be able to correct erasures [25].

4.2 Viterbi Decoding of Punctured Convolutional Code

Viterbi algorithm is the most well-known technique for the convolutional decoding process.
The operation of Viterbi algorithm can beexplained by the trellis diagram, which is provided
by the CC encoder structure. Thesconcept of the ttellis diagram is based on the state
transition diagram. Hence, we can expand the state transition diagram to a trellis diagram.
The trellis diagram is consistent with. all the features of finite state machine and can be
regarded as the time axis expansion of the finite state machine. A simple trellis diagram
is shown in Fig. 4.1 as an example. In this trellis diagram, the upper outgoing branch for
each state corresponds to an input of 0, whereas the lower outgoing branch corresponds to
an input of 1. Each state has two incoming and two outgoing branches. Each information
sequence, uniquely encoded into an encoded sequence, corresponds to a unique path in the
trellis. Therefore, for a given path through the trellis, we can obtain the corresponding
information sequence by reading off the input labels on all the branches that make up the

path. The procedure is called “traceback”.

Viterbi algorithm operates by computing the branch metric for each path at each stage

of the trellis. The metric is calculated and stored as a partial metric for each branch as the
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Figure 4.1: Trellis diagram example of Viterbi decoder (from [24]).

trellis is traversed. Since there are twospaths merging at each node, the path with a smaller
metric is selected while the other is discarded:’ This'is based on the assumption that the
optimum path must contain the sub-optimum survivor path. The survivor path for a given
state at time instance n is the sequence of symbols clesest to the received sequence up to time
n. For the case of punctured convolutional code, the metrics associated with the punctured
bits are simply disregarded in the metric calculation stage. The overall operation discussed
above is the computational core of Viterbi algorithm and is the so-called add-compare-select

(ACS) operation.

4.3 Decoding of Bit-Interleaved Coded Modulation

Similar techniques as that discussed in [5] and [27] can be used to demodulate and decode

the received signal. The following gives a very brief introduction.

For Viterbi decoding, there are two decision types: hard-decision and soft-decision. If

45



hard-decision is adopted, the metric used in decoding is the Hamming distance, which counts
the bit errors, between each trellis path and the hard-limited output of the demodulator to
find the path with least errors. The coding gain is worse by 2 to 3 dB compared to soft-

decision decoding. Hence, soft-decision is considered in this work.

For optimal soft-decision Viterbi decoding in AWGN channel, the metric should be the
Euclidean distance between each trellis path and the soft-output of the demodulator. The
problem now is that there is a bit interleaver between the convolutional encoder and the
modulator in the transmitter. Therefore, the optimal decoder should be based on the super-
trellis combining the convolutional code, the interleaver, and the QAM modulator, but this
is too complex to be practical. Moreover, the puncturing mechanism adds further complexity
to the super-trellis structure. Thus, we consider a suboptimal decoder based on bit-by-bit

metric computation.

Consider 16QAM first. We denote the in-phase,bits.by b;; and b2, and the quadrature
bits by bg1 and bg 2, which are the four bits corresponding to the transmitted 16QAM

symbol s. The soft-decision metric for by-is evaluated.simply from y;[i] as

—y1(i), lyr(i)] <2
Drp = ¢ —2(y(i) = 1), yr(i) >2 = —y; (1), (4.1)
Dry = l|yi(i)] — 2. (4.2)

where y;(i) is the real part of the received signal after channel compensation. The
evaluation of D, for the two quadrature bits are the same as the evaluation of D;; and
Dy with y;(7) replaced by yg(i), where yo(i) is the imaginary part of the received signal

after channel compensation.

We also compute the log-likelihood ratio (LLR) of each received LDPC codeword bit by

the above method [28].
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Similar observations hold for QPSK and 64-QAM constellations. For QPSK,

Dy
Dq
For 64-QAM,
( _ylma
—Q(y[[Z] - 1)a
—3(yrli] — 2),
Dp, = —4(yrli] = 3),
—=3(yrli] +2),
\ —4(y1[2] + 3)7
2(lyrd]| — 3),
Dy, = —4 + |yr[i]],
2(lyrld]| = 5),
=yl + 2,
Prs = { ualil — 6.

[yrfel]

= —ylil,

lyrli]] < 2 ‘

= _yfma

2 < |yili]] <6 = =4+ |yi[d]],

4.4 Profile of the DSP - Code

(4.3)

(4.4)

(4.5)

We mention again that our implemeritation is based on modification of the code of Lee [24]

for IEEE 802.16a OFDMA to the specifications of IEEE 802.16e OFDM. If more detailed

steps of optimization and implementation are needed, [24] is the reference.

In this section, we show the optimized profile of our FEC encoder, which concatenates the

RS encoder and the convolutional encoder. Table 4.1 shows the code size and the execution

speed of the final concatenated encoding program for processing 144 data bytes (which

includes data input and output) on DSP, for four of the mandatory coding and modulation

modes of IEEE 802.16e OFDM. Here “data input and output included” means the execution

time spent on input and output operations using fread() and fwrite() are included. Table 4.2

shows the corresponding information for the concatenated program of decoding 144 data

bytes.
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Table 4.1: Profile of Channel Encoder under Different Coding and Modulation Modes

CC Code Size Cycles Processing
Modulation | RS Code | Code (% RS, % (% RS, % Rate (kbps)
Rate CC) CC) p
QPSK | (32.24.4) | 2/3 | 2208 | (30,70) | 107592 | (50,50) | 6424
QPSK | (40,36,2) | 5/6 | 2544 | (33,67) | 70851 | (25,75) | 9755
16QAM (64,48,8) | 2/3 | 2524 | (33,67) | 80821 | (18,82) 8552
16QAM (80,72,4) | 5/6 | 2908 | (27,73) | 94394 | (9,91) 7322
Average 2546 | (31,69) | 88414 | (26,74) 8013

Table 4.2: Profile of Channel Decoder under Different Coding and Modulation Modes

CcC Code Size Cycles Processin
Modulation | RS Code | Code (% RS, % (% RS, % Rate (kbpf)
Rate CC) CC)
QPSK | (32,24.4) | 2/3 | 8608 | (68.32).] 1063143 | (13,87) 650
QPSK | (40,36,2) | 5/6 |18864 [7(67,33) (889147 | (14,80) 7T
16QAM | (64,48,8) | 2/3 2| 8148 [ (63,35) | 903422 | (4,96) 765
16QAM | (80,72,4) | 5/6-| 876 | (60,40) | 7s2811 | (3,92) 833
Average 8624 | (65,35) 1909532 | (8,92) 769

As they stand now, the programs will require multiple DSPs to run in parallel to handle
the data rate under a 10 MHz transmission bandwidth. Acknowledgeably, further optimiza-
tion of the programs may be possible. In addition, the C64x is equipped with a Viterbi
decoder co-processor [29]. Using this co-processor may be helpful in raising the decod-

ing speed. But its use requires study and testing of the “enhanced direct memory access

(EDMA)” mechanism of the C64x chips, which is bypassed in the present study.
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VM FUNCTION NAME: _ps encode smpyunsigned char *, unsigned char *, int, inf, uwnsigned char *)*

" *
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¥ RegsUsed (AR AN S A6 AT AR AY BIB3 B4 BSBE.ET.BEBO.DPSF, ¥

i A18,41T AL ALY AZDAZL AT ADS AL AL ATEAZT, ¥

3 A28,429, 816,817 B18. B9, B20.B21 BA2.B43 *
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]

_ts_encode gmpy  FPUTIT3ETI:

L *

line 2

sym _datad, 28, 17, 32
sym _bbZ0, 28, 17, 32
sym C$3.21, 29, 4, 32
sym C$4,53, 12,4, 8
sym s$57,3, 12, 4, 8
sym s559.3,12, 4, 8

Figure 4.2: The assembly codes of RS encoding (1/7).

4.5 Appendix

This section shows some figures that the assembly codes in RS encoding and the Chien search
in RS decoding. In Figs. 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8, we show the assembly codes

of RS encoding.

In Figs. 4.9, 4.10, 4.11, and 4.12, we show the assembly codes of Chien search in RS

encoding.
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sy 53613, 12, 4, 8
sym s$63,3, 12, 4, 8
sym s365.3, 12, 4 8
sym s967.3, 12, 4, 8
sy s$71,3, 12, 4, 8
sym 83733, 12, 4, 8
sym 23753, 12, 4, 8
sym $877,3, 12, 4, 9
sym s§T93, 12, 4,8
sym s331.3, 12, 4, 8
sym 2$383,3, 12, 4, 8
sy s$85.3, 12, 4, 8
Sym_f%dbac}ﬂﬂrdlﬂ .............................................................................................................................

sym data S, 28, 4, 52
sym _bb35, 28, 4, 32
sym L$1,53, 4, 4,32
sym 514249, 12, 4, 8
sym UF133.41, 12,4, 8
sym UF130,20, 12, 4, 8
sym UF1239, 12,4 8
sym U$120,24, 13, 4, 2
sym UF113,5, 12,4, 8
aym UF110,23, 12, 4, 8
sym UE97,37, 12, 4, 8
sym U$94,32, 12, 4, 3

Figure 4.3: The assembly codes of RS encoding (2/7).
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sym UFETE 12,4, 8
sym UFE4,43, 12, 4,8
sym UF77,5, 12,4, 8
sym UFT4,44, 12, 4, 8
sym UFE7,39, 12, 4, 8
sym U64,21, 12, 4, 8
sym U574, 28, 4, 32
JFEIRE A bb[14] = C$4 = funsigned chani,
SR 26 e bh[15] = CH4;
SRR AR e bh[12] = C§4,
JR* 263 e bh[13] = Cf4;
SR 26 e bh[10] = C§4,
e bh[11] = C$4,
B 11 R o 2
e bh[3] = C4;
e bh[E] = Cd;
e bh[7]= CH4;
e bh[4] = CH4;
e bh[5] = C§4;
e bh[2] = 4,
e bh[3]= 054,
e *hh = C§4;
e bh[l]= 04,
U457 = data;
SEE e C$3 = &((unsigned short Gz _palyn ],

Figure 4.4: The assembly codes of RS encoding (3/7).
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- U467 = ((unsigned char *IC$3[15];
e U474 = ((unsigned char *ICEH[12];
e U477 = ((unsigned char *ICE3[13];
e — U84 = (funsigned char *)CE3[10];
e — U$27 = (funsigned char *)CEH[117];
G U$84 = ((unsigned char *IC$N[E];
HE o TI$9T = ((unsigned char *IC3H[0];
e U$110 = (funsigned char *JC3[6];
L S U$113 = ((unsigned char “IC$3[7];
L R — U$120 = ((unsigned char *ICH3[4];
e 7123 = ({unsigned char *C$3[5];
HE . TT$130 = ({unsigned char *JC$3)[2];
o U$133 = (funsigned char *C$3[3];
e U142 = (funsigned char MC$3[1];
WD s L1 = 295

HF e #pragma MUST_ITERATE(239, 239, 230)
L #pragima LOOP_FLAGE(40961)

ey 5 K — s§57 = bb[2];

37 S 5329 = bh[3];

ke 5 I shdl =th[4];

5 K s}as = bh[5];

5 K s}a s = bh[d];

S 7] R — s}a7 = bh[7];

Rl . feedback = *U$3T+H+"*bb;

R e *hbi= empyd(U$ET, feedhack)i™hb[1],  # [6]

Figure 4.5: The assembly codes of RS encoding (4/7).
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ok g7 e B[] = gmpyd(UE64, feadhack)®sF 5T, 6]
e g7 e bB[2] = _gmpyd(U$T7, feedback)te 50, 6]
ek g7 e B[] = _gmpyUET4, feedback)nebal;, 6]
kg7 e bb[4] = _gmpydU$E7, feedback)tsba3;, 6]
Sk 5T e WB[8] = _gmpyd(U$24, feedhack)itsbas;, 6]
ok g7 e BB[E] = _gmpyAU$97, feedback)s5ET, I [5]
Sk 5T s§71 =wh[9]; A [4]
Sk g7 S s§73=1vb[10]; [6]
Sk g7 S — s§75=1vb[l11], & [8]
Sk 5T S §77 =vb[12]; /i [6]

]

]
Sk g7 S s§23 =1vb[15]; /[6]
ke g7 crmmmmmereeeeeeeee WB[T] = _gmpyd U094, feedhack)bh[8], 4 [6]
e g e WB[E] = _gmpyH(US113, feedbacky s 71, 4 [6]
kn g7 e BB[P] = _gmpyA(U$110, feedbackrts$ 73, [6]
T s BB[10] = _gmpyd(U$123, feedback)ts$T 5, S [6]
Sk g7 s BB[11] = gy (U120, feedback) s$ 77, 4 [6]
ke g7 crmmmmmeeeeeeeee BB[12] = _empyd(U$133, feedback)®s$79, 5 [6]
e g e BB[13] = _pmpyd(U$130, feedback)®s$81, K [6]
g7 - 5385 = Gg_paly[0], 48]
ok g7 e B[] = _g@mpyd(US142, feedbacki®s$83,  H[4]
o g7 crmmmmmeeeeeeee BB[15] = _gmpyd(s$ES, feedback), 4 [6]
SERQTS if (-L$1 ) goto g2;
AT - retum,

Figure 4.6: The assembly codes of RS encoding (5/7).
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ZERD D2 B3 ; |26%]

I MV 52 E4,E7 261
STE DIT2  B3,*+E9(1) . |268]
STE D2T2  E5,*B9 . |26
STE D2T2  B35,*+E9(14) . |268]
STE D2T2  B35,*+EB9(13) . |268]
STE D2T2  B35,*+E9(15) . |268]
STE D2T2  B5,*+EB9(12) . |268]
STE D2T2  B35,*+E9(10) . |268]
STE DIT2  B3,*+E9(9) . |268]
STE DIT2Z  EB3,*+E9l1) 1269
STE D2T2  B3,*+B9(3) . |268]
STE D2T2  B3,*+B9(6) . |268]
STE D2T2  B3,*+B9(5) . |268]
STE DIT2Z  EB3,*+E9(T) . |268]
STE D2T2  B3,*+B9(d) . |268]
STE D2T2  B3,*+B9(2) . |268]
STE DIT2  B3,*+E9(3) . |268]
MVE 32 (_Gg_poly-$hss) B3
I LDEU  D2T2 *+Bu®,EB12 . 57| (B) <0,3>
............................ L

I LDBU  DIT1 *+DP(_Gg_poly),A25; [37|(F) <0,0=

Figure 4.7: The assembly codes of RS encoding (6/7).
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LDEU  DIT1  *+BIHTLA3
LDEU  DIT1  *+B1g(10),422
LDBU  DIT1  *+B1§(9).416
MY DIX  B4AZL 261

LDBU  DIT2 *+Big2.B4
LDBU  D2T1  *+B1§(1),428
LDBU  DIT1  *+B15(3).420
LDEU  D2T1  *+BigCl13,48
LDBU  D2IT2  *+B1%(4),B3
LDBU  D2IT2  *+B1§(6),B7
LDEU  DIT1  *+Big(15.423
LDEU  DIT2  *+B1§E.B6

MV Dl P Y]
LDEBU  DIT1  *+B1g(15.418
LDEU  DITZ *B9.BlA 271 (P 0,55 A
LDEU  DIT1 *Af++Ad . |271| (F) <0, 5>
MYC 32 C3RE23

LDEU  DIT1  *+B18[5).40

AND a2 -2,B23.E17
LDEU  D2T2 *+B13(14),B5

MVC a2 BIT,CaE , itterrupts off
LDET DIT1  *+BIE(1DAS

Figure 4.8: The assembly codes of RS encoding (7/7).
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]

2+ FUNCTION MAME: _ghien *

-k *

=

¥ Regs Modified cADALAD AT AL AS S AT AR A0 B0 BL B2 B3 BB B, *
* E7.B8.416.53L *

¥ BReggUsed A0ALAZAT AL AS AS AT AR ADBNE] B2 B3 B4B5 BA,
J» B7.58.DESEAL6EIL *
;¥ Local Frame Jize 0 Args +0 Auto +0 3ave =0 byte S

EEERER IS EEEE RS SRR RSP E R RIS EEE RS SRR E RIS ERE RIS EEEE RS IS E RS S EE ST 2T ]
=

BE R Rk Rk e e i e i e i R e ek
]

- *

V¥ Using - g (debuag) with optimization (-0 may disable key optirdzations! *

-k *

=

ckskkok sk k ok ke sk bk ok k ks sk bk ok ok ok bk sk ok bk ok sk kb b ok b sk b ok ok bk bk sk ok bk b sk ksl bk ok bk bk sk kb ok ok bk sk ok ok ok kb
]

_chisny

ek #*

line 2

sym Af44 44,32
sym 052,21,20, 4,32
sym CF3,20,20, 4,32
sym U$9.8, 20, 4, 32
sym K$13,21, 4, 4,32
sym U123, 4, 4,32

Figure 4.9: The assembly codes of Chien search in RS decoding (1/4).
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sym U$29.20, 4, 4, 32
aym US0,7, 4, 4,32
sym U$37,5, 28, 4, 32
sym U$90.3, 20, 4, 32
sym K$88,5, 4,4, 32
sym 1$1,0, 4, 4,32
sym 1$2.22,4, 4,32
sym 193,16, 4, 4,32
sym 134,16, 4, 4,32
sym _i8 4,432
aym V2,0, 4, 4,32
sym VLG, 4, 4,32
sym V09, 4, 4,32
aym 5303, 4, 4,32
sym K$16,37, 22, 4, 32
sym U$229, 20, 4, 32
aym US2220, 20, 4, 32
sym U$28,23, 4, 4,32
sym U$28,16, 4, 4, 32
sym _j20,4, 4 32

Rkl = deg Jambda,

il 1T —— ifIH0 = <07 gotn g4
R U$8 = Elamb da[U$0],
L U2 = _lof_mpslic202, U500,

Figure 4.10: The assembly codes of Chien search in RS decoding (2/4).

27



R — K13 =255,

O — U$22 = &reg[UT40];
L —— L$1 = U§0+,
e EB16 = &Alpha, to[0];
B — Hppagma MUST _ITERATE(], 1099511627775, 1)
A S #ipragma LOOP_FLAGS4096)
LDW  D2T2  *+DP(_deg lambda)B4 ; [116]
HOF 1

YR A1 202,43
BVE a2 O:AEBS

MV L2 B3B3l 1113
MV D1 B4AT 2 |116]
CMPLT 12 B4,0.B0 2 [116]

I MPYLI M1 AZATASAL
[E0] ENOF &1 Ligd |116]

MVE 51 (_tegfhss),A3
I ADD  DIX  1B4AD 117

MVE 81 ( lambda$hss), A3
I ADD  DIX  DFRA3ZAS

Figure 4.11: The assembly codes of Chien search in RS decoding (3/4).
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MVE 81 (Alpha todbss.as
I ADDAYW I A5 AT A0

I ADD  LIX  DPRA3ZAZ
[B0] LDW  D2T2 *+DPF( gf nn mad.Bd (115

I MV Bl A4A3

I ADDAW Dl A3 ATAS

I 20D LIX  DERASALG

; BRANCH OCCUERS [116)]

Figure 4.12: The assembly codes of Chien search in RS decoding (4/4).
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Chapter 5

Decoding Algorithms of LDPC Codes
in IEEE 802.16e OFDMA

In this chapter, we describe some decoding algorithms for LDPC codes and some simulation
results in AWGN channel. The simulation results provide us the information to select ap-
propriate decoding scheme, code rateseodeword length, and modulation type according to
the system performance requirement, computational complexity, and latency. The material

in Section 5.1 and 5.2 is mainly from [30]!

5.1 The Belief Propagation 'Algorithm [30]

Using Tanner graph representation of LDPC codes is attractive, because it not only helps
understand their parity-check structure, but, more importantly, also facilitates a powerful
decoding approach. The key decoding steps are the local application of Bayes rule at each
node and the exchange of the results (messages) with neighboring nodes. At any given
iteration, two types of messages are passed: probabilities or beliefs from bit nodes to check

nodes, and probabilities or beliefs from check nodes to bit nodes.

Let M (n) denote the set of check nodes connected to bit node n, i.e., the positions of ones

in the nth column of H, and let N(m) denote the set of bit nodes that participate in the mth
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parity-check equation, i.e., the positions of ones in the mth row of H. Let N(m)\n represent
the exclusion of n from the set N(m), and M (n)\m represent the exclusion of m from the set
M (n). In addition, ¢,—,(0) and ¢, (1) denote the message from bit node n to check node
m indicating the probability of bit n being zero or one, respectively, based on all the checks
involving n except m. Similarly, 7,—.,(0) and r,,_,(1) denote the message from check node
m to bit node n indicating the probability of bit n being zero or one, respectively, based on
all the bit checked by m except n. Let x = [xq, x9,---,xy] and y = [y1, Yo, - -, yn] denote
the transmitted codeword and the received codeword respectively. Finally, L denotes
log(P (2 = Olyn)/P(xn = 1|y,)) at iteration 0, and L' denotes 10g (Fm—n(0)/Fm_n(1)) at

iteration i. Z\, denotes log (¢n—m(0)/Gn—m(1)) at iteration 1.

The belief propagation (BP) algorithm is summarized as follows. This algorithm is also
known as the sum-product (SP) algorithin,

Step 1 (check-node update): For,each m and for each n € N(m), compute
LY = 2tanh ™} H tanhﬁ . (5.1)
2

n’eN(m)\n

Step 2 (bit-node update): For each n, and for each m € M (n) compute

z0 =L+ > Ll (5.2)
m/eM (n)\m
Step 3 (decision):
Z0 =L+ > LY. (5.3)
meM(n)

The decoder output vector follows the rule: z, = 0 if fo) >0, and z,, = 1 if Z,(f) < 0.

The decoded bit vector is checked with the parity check matrix H. The iterative decoding
decoding procedure stops when either H.X =0 or as the maximum decoding iteration number

has been reached, where X = [X7, Xy, -+, Xy] is the decoded codeword.
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5.2 Some Reduced-Complexity Decoding Algorithms
[30]

In this section, we focus on simplifying the check node updates to obtain reduced-complexity

BP algorithms and also achieve good enough performance.

5.2.1 BP-Based Algorithm

Implementing the calculation in Eq. (5.1) in a hardware circuit is very difficult and complex.

Hence, we can simplify this equation in the check nodes process as

(i—1)

: Z
LY = 2tanh™' tanh =2
0, = 2tanh{ ] tann 2
n’€N(m)\n
= I son@iide, > r(125.7)
n’eN(m)\n n’€N(m)\n
el . i—
~ T1 @l 1250))
, n'€N(m)\n
n’€N(m)\n
= I st m |20, (5.4)
n/ e Ni(m) \n
n’€N(m)\n

where f(x) =

= —log(tanh 7) is an exponential decay function. Therefore the 2nd
row in Eq. (5.4) can be approximated as the 3rd row in Eq. (5.4). Because the f function
has the property, f(x) = f~!(x), we can simplify the 3rd row Eq. (5.4) to the 4th row in Eq.
(5.4).

This is a famous approximation called min-sum algorithm or BP-based algorithm which
only uses the signum and the minimum functions for the check nodes process. The process
procedure in bit nodes is identical to that of BP decoding. But coming with the approxi-
mation in check nodes is a performance degradation. We will discuss the degradation effect

later in the simulation results.
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5.2.2 Balanced Belief Propagation Algorithm [31]

It can be observed that the conventional BP algorithm has unbalanced computation com-

plexity between check nodes operation (5.1) and bit nodes operation (5.2).

A modified version based on algorithmic transformation has been proposed in order to
balance the computation load between the two decoding phases. The new algorithm can be

expressed as

to.= TI s S r(125.71). (5.5)

n’eN(m)\n n’€N(m)\n

20, =10+ 3 sgn(Li)f (L), (5.6)

m/eM(n)\m

We note that L, computed here is different from what is obtained with the BP algo-
rithm. The main benefit with the modified algorithm is the balance of computation com-

plexity between two decoding phases.

5.2.3 Normalized BP-Based"Algorithm

Let Ly and Ly represent the values Lﬁfl)n computed by the BP algorithm and the BP-based
algorithm with (5.1) and (5.4), respectively. It can be shown that L; and L, have the same

sign, i.e., sgn(L1) = sgn(L2) and Lo has larger magnitude than Ly, i.e., |Lo| > |L1] [32].
According by [32], we can further modify (5.4) to let the BP-based algorithm obtain a
BER vs. 22 performance curve as close as the conventional BP algorithm.

Because sgn(L1) = sgn(L2), the BP-based decoding can be improved by employing a

check-node update L', that uses a normalization constant o greater than one, that is,

— L.
LY, — = (5.7)
(@
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—

Here LY, is the value computed from the check node operation for normalized BP-based
algorithm, and the bit node operation for normalized BP-based algorithm is the same as BP

algorithm.

Although « should vary with different signal-to-noise ratios (SNRs) and different itera-

tions to achieve the optimum performance, it is kept a constant for the sake of simplicity.

5.2.4 Offset BP-Based Algorithm

For offset BP-based decoding, we modify LY. in BP-based decoding by subtracting a positive
constant (3 as

Lion — sqn(L3,) max(| L] ~ 5.0) %)

where LY, is the value computed from the check node operation for offset BP-based algo-

rithm, and the bit node operation for offset BP-basedralgorithm is the same as BP algorithm.

Although /3 should vary with different signal-to-noise ratios (SNRs) and different itera-

tions to achieve the optimum performangée; it is kept a c¢onstant for the sake of simplicity.

As we describe above, the BP decoding needs. tanh™' and tanh operations, the min-
sum algorithm needs minimal operation, the normalized BP-based algorithm needs minimal
and division operations, and the offset BP-based algorithm needs minimal, maximum and
substraction operations. These operations for all different algorithm are listed in Table 5.1.
Obviously, the BP decoding needs the most complex operation, and the min-sum decoding
needs the lowest complex operation. The two improved decoding methods are between the

BP decoding and min-sum decoding.
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Table 5.1: Operation Comparison for all Decoding Algorithms

. . Main
Decoding Algorithms Operations
BP Decoding tanh and tanh™*
Min-Sum Decoding Minimal
Normalized BP-Based Decoding Minimal and Division
Offset BP-Based Decoding Minimal, Maximum and Substraction

5.3 Early Termination [33]

The LDPC decoding is based on iterative convergence of a bit probability towards zero or

one. A particular property is the convergence pattern.

After a set of initial iterations, the convergence patterns start to separate either towards 0
or towards 1. We can exploit this particular property and produce the decoding result sooner

than it would have. In other wordsswe.can reduee the iteration numbers as we expect.

We do that by counting the numbertof-ineeming LLR values which fall under (over) a
certain threshold LLR. In our simulations. when two" consecutive incoming LLR values are
under —2 or over 2, then we can set the convergence outcome immediately without the need

to further iterate.

Reducing the number of iterations (and hence computations) results in both savings in
power consumption and increased throughput, with the only drawback being a slight increase

in the BER.

Actually, we got some advice of modifying the original (or above) early termination
technique by private communication of Professor S. G. Chen. That is, after a specified
iteration number if the difference of LLR values between this and next iteration is small

enough, we also can stop the iterating. This is because of the LLR value is no more changed
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a lot if we still iterate further.

5.4 Simulation Results and Analysis

5.4.1 Determine the Number of Iterations

One of the most important factors of concern when decoding the received codewords is the
iteration number. As the number becomes larger, the correct codewords are more likely to
be exactly decoded. But using more iterations, the cost is that the latency is increased.
Therefore we need to choose a proper iteration number in decoding. In Fig. 5.1, we show
the simulation results with different iteration numbers, for the LDPC codes at rate 1/2 and

length 576 with QPSK modulation and and BP decoding.

In Fig. 5.1, the BER curve of iteration 10 is obviously degenerated by the reason of less
iterations. The BER curves are almost the same wheti the iteration numbers are 20, 30, 50,
and 70. To avoid the degradation agsociated with:lowiteration numbers, we adopt 50 as the

iteration number in the other simulations.

5.4.2 Use of All-Zero Codewords 1in Simulation

We have described the LDPC code encoder specified in IEEE 802.16e in Section 2.2.2. In
Fig. 5.2, we show the simulation results of LDPC code with random data which would be
encoded by the LDPC encoder and all zero codeword respectively when code rate 1/2, length
576, QPSK, and BP decoding are adopted. This result depicts that the BER curves almost
have no difference when the random data and all zero codeword are transmitted. From the
theoretical view, this result can also be expected. This is due to that the LDPC codes are in
the class of linear codes. For the sake of simplicity (or faster simulation speed) and without

loss of generality, we will take the all zero codeword as the transmitted codeword in the
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Different Iterations with Rate 1/2, Length 576, QPSK, BP
—©— lteration 10 |
——b— lteration 20| ]
—<— lIteration 30| |
—&A— Iteration 50 |
—+&— lteration 70|

BER

1 1.5 2 2.5 3 3.5 4
Eb/No (dB)

Figure 5.1: Decoding performance at different iteration numbers.

other simulations.

5.4.3 Performance of the IEEE 802.16e LDPC Codes under the
BP Algorithm

In this section, we simulate different modulation types, codeword lengths, and code rates

specified in IEEE 802.16e standard respectively.

Figure 5.3 depicts the performance of the code at rate 1/2 and length 576, under different
modulation schemes with BP decoding with iteration 50. As we expect in advance, the

performance of QPSK is better than that of 16QAM and the performance of 16QAM is
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o Comparison of Random Data and All Zero Codeword with Rate 1/2, Length 576, QPSK, BP
10 E T T T T T T 3
F ——H— Random Data q
r : . —<+— All Zero Codeword |

Eb/No (dB)

Figure 5.2: Performance of random data versus all-zero codeword.

also better than that of 64QAM. From Fig: 5.3 fhe ¢oding gain values of QPSK, 16QAM,
and 64QAM modulation are 6.6589 dB,"6.6511.dB,and 8.4999 dB respectively when the bit
error rate is 107°. The coding gain values of QPSK and 16QAM modulation are almost the
same, but the coding gain of 64QAM modulation is larger than the coding gain of other two

modulation types about 1.8 dB.

Figure 5.4 depicts four different codeword lengths, that are 576, 1152, 1728, and 2304
when code rate 1/2, QPSK, and BP decoding with iteration 50 are adopted. We have some
observations from Fig. 5.4. First, as the codeword is longer, the improved performance is
obtained. Second, for the codeword length 2304, the bit error rate reaches about 10~ and
only Ej,/Ny 2.5 dB is needed. The coding gain between length 2304 curve and uncoded curve

is about 8 dB when the bit error rate is 107%. This coding gain value somehow depicts the
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Different Modulation with Rate 1/2, Length 576, and BP

I 3

—B— Uncoded QPSK |4
—x— - Uncoded 16QAM |
—0O— - Uncoded 64QAM |
—b>— QPSK E!
—<— 16QAM
—A— 64QAM

0% I I ] I " I I | J
2 4 6 8 10 12 14 16 18 20
Eb/No (dB)

Figure 5.3: Performance of the rate-1/2 code, length 576 code.

error correcting ability of LDPC codes. is really amazing.

Figure 5.5 depicts six different code Trate: types, that are %, %A, %B, %A, %B, and %
when length 576, QPSK, and BP decoding with iteration 50 are adopted. There are some
observations can be obtained from Fig. 5.5. As the code rate is higher, the performance is
worse. Besides, we notice that the two BER curves of %A and %B are very close, but still have
some difference. We can explain why this little difference exists from the view of threshold
previously obtained by density evolution method. We have obtained some threshold results
in Table 2.6. From Table 2.6, the threshold of %A is larger than that of %B. Moreover, the
difference of threshold for code rate %A and %B is only about 0.012 dB. Thus we reasonably
anticipate the BER curves are very close, and the curve for %A is a little better than that of

%B . In our simulation, these two curves really follow the threshold analysis. By the similar
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Different Length with Rate 1/2, QPSK, and BP
Y E T T T T T I

I 3
—B— - Uncoded QPSK [
—p— Length 576 B
—<+— Length 1152
—=A— Length 1728 |
—&— Length 2304 |1

1 1 1 1 1 1 1 1

6 7
Eb/No (dB)

Figure 5.4: Performance of the rate-1/2 code at different codeword lengths, under QPSK
modulation and BP decoding.

method, we also easily explain the relationship between the two BER curves of %A and %B

from Table 2.6.

Table 5.2 shows the relation between the f,—’; value when BER is 107°, girth when length
is 576, and the threshold for all code rate. As the threshold is larger, we need less channel

% to reach BER 1075,

5.4.4 Performance of Balanced BP Decoding Algorithm

We have described the concept of balanced BP decoding algorithm in Section 5.2.2. We

depict the performance of conventional BP decoding and balanced BP decoding in Fig. 5.6
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Table 5.2: Relation between ff—b Girth, and Threshold

o’

Code Rate % %A %B %A %B %
% under BER 107°(dB) | 2.9691 | 4.9506 | 5.1603 | 5.9819 | 5.9730 | 6.9898
Girth under Length 576 6 6 6 4 6 6

Threshold 0.9273 | 0.7282 | 0.7163 | 0.6358 | 0.6446 | 0.5607

Different Code Rate with Length 576, QPSK, and BP

r 3
—b>—Rate 1/2 ]
—<+— Rate 2/3A ]
—4A— Rate 2/3B |
—&— Rate 3/4A ||
—#*— Rate 3/4B |3
—<=— Rate 5/6 |]

Eb/No (dB)

Figure 5.5: Performance of different code rates at codeword length 576, under QPSK mod-
ulation and BP decoding.

when length 576, rate %, and QPSK are applied. We observe that these two curves with

different decoding algorithms are almost the same. Therefore, in our future fixed-point DSP

implementation, we can consider balanced BP decoding to reduce the clock cycles.
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Comparison of Conventional BP and Balanced BP decoding with Rate 1/2, Length 576, QPSK

100 ¢ T T T I T T T 3
i ——#— Conventional[]
—<+— Balanced

10’6 1 1 | (LY, 1 1 1

Eb/No'(dB)

Figure 5.6: Conventional BP and balanced:BP-decoding with length 576, rate 1/2 code, and
QPSK modulation.

5.4.5 Choose Appropriate Early Termination Parameters

In Section 5.5, we described the concept of early termination. Here we consider the appro-
priate parameters for early termination. First we define some parameters. Type 1 early
termination means when two consecutive incoming LLR values are over 2 or under —2, then
we set the convergence outcome immediately without further iteration. Type 2 early termi-
nation means when all incoming LLR values are over 2 or under —2 one time or when two
consecutive incoming LLR values are over 1 or under —1, we set the convergence outcome
immediately without further iteration. From the complexity view, type 2 early termination is

simpler than type 1, but the performance may be an issue. Fig. 5.7 shows some performance
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Early Termination with Rate 1/2, Length 576, QPSK, BP
10 ————— . e — . . e e :

| —>—BP ]
—<— BP with Early Typel|]
—&— BP with Early Type2|

BER

Eb/No (dB)

Figure 5.7: Effects of'differenct ways of early termination.

results for conventional BP decoding, BP decoding with type 1 early termination, and BP
decoding with type 2 early termination. The code rate %, length 576, and QPSK are applied.
From Fig. 5.7, BP decoding with type 1 early termination has a better performance than the
one with type 2 early termination at high SNR values. Conventional BP decoding still has
the best performance of all three methods. Considering the trade-off between complexity
and performance, we adopt the type 1 early termination as the early termination scheme in

our next simulation.

We are also interested in the pdf of reduced iteration number for type 1 early termination

besides the performance. Fig. 5.8 shows the pdf with lengths 576 and 2304. When E,/Nj is
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PDF for Different Length and with Early Termination and rate 1/2, QPSK, AWGN, BP
16 T T T T

T T T
—* Length 576 when Eb/No 2dB
——© Length 2304 when Eb/No 2dB

14 .

12~ -

08+ : . : : -

*
06— ¥ -

OmmmMMI ﬁ%%%MMIMMM*MMMM

R

0 5 10 15 20 25, 30 35 40 45 50
Iteration Numbers

Figure 5.8: Distribution of4teration iumbers for codes of different lengths.

2 dB, code rate % and QPSK are applied. It shows the probability of iteration number 50 is
about 0.075 for the pdf of length 576, but the one is almost zero for the pdf of length 2304.
This is perhaps because the performance of length 2304 is better than the one of length 576,
it does not need so many iterations to converge. Another effect is that the pdf of length 576
is more concentrated toward left than the one of length 2304. This is perhaps because when
doing the early termination technique, we need to conform all 576 bits to the termination
criteria for length 576, but for length 2304, we must conform all 2304 bits to the termination

criteria. Hence, it is reasonable to do more iterations for length 2304.

Figure 5.9 shows the pdf of code rate %, length 576, and QPSK under different Ej,/N,

27

values. It shows almost all iteration number is 50 for length 576 when Ej/N; is 1 dB. But
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PDF for Different Eb/No with Early Termination and Length 576 rate 1/2, QPSK, and BP
0.9 T T T T T T I I
—=@ Length 576 for Eb/No=1dB
—=H8 Length 576 for Eb/No=2dB
—=x  Length 576 for Eb/No=3dB | |

0.8
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0.6 : . -
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04r- 1

0.3 i

0.2 1

. ----AI HHHTTffﬂww..a..........._.-..‘....

2555550500060 504200 2588588088000 0000
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Iteration Numbers

Figure 5.9: Distribution of iteration numbers at different SNR values.

after increasing the E,/Ny value, the pdfis toward to the left side, this means we need less

iterations for larger Ej, /Ny values under the-same length condition.

5.4.6 Compare Early Termination and Parity Check Termination

Generally, in the decoding iteration step, the decoded codeword checks with the parity check
matrix to insure the decoded codeword is correct when the maximum iteration is not reached.
If the syndrome is a zero vector, we stop the iteration to reduce the iteration number. If
not, the decoding iteration continues until the maximum iteration is reached. Therefore, we
can view the parity check step as a kind of early termination, so we name it “parity check

termination”.

In Figure 5.10, we compare the performance difference of early termination and parity
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check termination when code rate %, length 576, QPSK, and BP decoding are applied.
Obviously, from Fig. 5.10 there is almost no difference. But we just want to choose one
kind of “early termination” technique to avoid the waste. Then we compare the iteration
numbers in Fig. 5.11. As the E,/N, is larger, “early termination” needs a slightly higher
iteration number than the “parity check termination,” but the early termination technique
only needs “compare” operations and some space to store the temporary comparison results
unlike parity check termination technique needs XOR operations and “compare” operations.
Therefore, under the consideration of iteration number and computational complexity, we
choose the early termination, not the parity check termination to early stop the decoding

step.

5.4.7 Performance of Some Reduced-Complexity Decoding Algo-
rithms [30]

Figures 5.15, 5.13, and 5.14 show the BER performance of different decoding algorithms
for length 576, six code rates and three moédulation types. The maximum iteration is 50
and early termination technique is used.. Besides, the*a parameter in normalized BP-based

decoding is 1.25, and the § parameter in offset BP-based decoding is 0.25.

In some sub-figures, the BP-based decoding algorithm suffers a 0.3 or 0.4 dB degradation
in performance, compared with BP decoding. When QPSK is applied, the two reduced-
complexity algorithms have even a slightly better performance than the BP algorithm. These
results are not surprising, because at medium or short code lengths, the BP algorithm is not
optimum. This is because the number of short cycles in their Tanner graphs influences the BP
decoding performance depended on the amount of correlation between messages, and the two
reduced-complexity BP-based algorithms seem to outperform the BP algorithm by reducing

the negative effect of correlations. The normalized BP-based algorithm slightly outperforms
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Compoarison of Parity Check and Early Termination with Rate 1/2, Length 576, QPSK, BP
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Figure 5.10: Comparison of the performnance of parity check termination and early termina-
tion.

the offset BP-based algorithm, but may also be slightly more complex to implement. When
16QAM and 64QAM are applied, the BP approach has slightly better performance than the
two improved approaches, but the performance of these three decoding approaches are very

close.

Figure 5.15 shows the BER performance of different decoding algorithms for code types of
%, %A, and %B . Each sub-figure has two different lengths, 576 and 2304, and one modulation
type, 16QAM.

For rate % and %A, their girth is 6 for both length 576 and 2304. For rate %B, its girth
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Using Different Methods to Stop Iterate
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Figure 5.11: Comparison of the iteration mumbers of parity check termination and early
termination.

is 6 and 4 for length 576 and 2304 respectively. Erom Fig. 5.15, the performance of these
two improved decoding does not always have better performance than BP decoding by the

reason of girth 4 or 6 for length 576 and 2304. But their performance is still very close.

78



Different Decoding Algorithms with Rate 1/2, Length 576, 16QAM
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Figure 5.12: Performance of different decoding algorithms with rate % and %A, length 576.
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Different Decoding Algorithms with Rate 2/3B, Length 576, QPSK B Different Decoding Algorithms with Rate 2/3B, Length 576, 16QAM
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Figure 5.13: Performance of different decoding algorithms with rate %B and %A, length 576.
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Figure 5.14: Performance of different decoding algorithms with rate %B and %, length 576.
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Different Decoding Algorithms with Rate 1/2, Length 576 and 2304, 16QAM
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Figure 5.15: Performance of different decoding algorithms with rate 3, %A, and %B.
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Chapter 6

Conclusion and Future Work

This work studied two parts of IEEE802.16e: one was the implementation and optimization
of 802.16e FEC scheme on DSP platform for WirelessMAN-OFDM and the other investigated
the reduced-complexity decoding of the LDPC codes for WirelessMAN-OFDMA.

In the first part’s work, the programs will requite multiple DSPs to run in parallel to
handle the data rate under a 10 MHz transmission bandwidth. Acknowledgeably, further
optimization of the programs may-be possible. In addition, the C64x is equipped with a
Viterbi decoder co-processor [29]. Using this co-processor may be helpful in raising the
decoding speed. But its use requires study and testing of the “enhanced direct memory

access (EDMA)” mechanism of the C64x chips, we skipped this study in my thesis.

In the second part’s work, first we analyzed the girth and threshold values in AWGN
channel. Then, we evaluated the performance of LDPC codes and compared the results
with the numerical results. Then we proposed a modified version BP algorithm based on
algorithmic transformation to balance the computation load. Another topic is about the
complexity reducing. We focused on two directions to reduce the complexity. One was
to reduce the iteration numbers by using early termination technique. Another was to

evaluate the performance by three kinds of approximate algorithms. The approximation
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approaches used can lead to performance degradation but, interestingly, there appeared
to be a dependence on the properties of the LDPC codes selected, such as the choice of
modulation types. Our LDPC codes in IEEE 802.16e have a girth 6 at most, this is not a
large enough number to make the conventional BP decoding approach optimal ([34] gives
examples to derive a rate % code with girth 14, which is large enough). Therefore, these

simplified reduced-complexity decoding schemes sometimes can outperform the BP decoding

algorithm and offer significant advantages for hardware implementation.

In the future work, we need to revise the coding algorithms to be fixed-point to reduce
the complexity for actual DSP implementation. But the two improved decoding algorithms
may not have as good performance as our simulation results. Besides, we need more realistic
simulations in multipath channel to show how the LDPC codes are performed. In our before
analysis, the performance of code rate type %A was better than %B , and code rate type %B
was better than %A. But why did these tworcodezatetypes both exist? We guess that if in
multipath channel simulation, not in AWGN channel; the performance of code rate type %B
is better than that of %A, and the performancerof-code rate type %A is better than that of

%B . But the exact answer should be done:by more research.

About subsequent algorithm modifications, we had find some references. If we need
further reducing complexity by other decoding algorithms;, [35] is one of the references. If we
need to remove the effects of cycles in the factor graph to make the BP decoding algorithm

optimal or improve the decoding performance, [36] is one of the references.
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