

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

碩 士 論 文

電子系統層級上的設計方法 － 以正交多頻多工

系統為例

Design Methodology at Electronic System Level:
A Case Study of OFDM System

 研 究 生：陳冠豪

 指導教授：周景揚 博士

中華民國 九十五 年 八 月

研 究 生：陳冠豪 Student: Guan-Hao Chen

指導教授：周景揚 博士 Advisor: Dr. Jing-Yang Jou

國立交通大學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

In

Electronics Engineering

August 2006

Hsinchu, Taiwan, Republic of China

中華民國 九十五 年 八 月

 i

電子系統層級上的設計方法 － 以正交多頻多工

系統為例

研究生：陳冠豪 指導教授：周景揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘要

電子系統層級上的設計方法提供一種新風格的設計方法。這種設

計方法的特性是可以在模擬時間和在模擬中所獲得的資訊間取得平

衡。在這篇論文裡，我們以一個正交多頻多工系統為例，提出一種在

電子系統層級上的設計方法，做有關設計的模型和設計空間勘查方面

的工作，對系統效能作評估，並對實驗結果加以討論。我們依該方法

在循序可執行程式碼和暫存器傳輸層級間建立抽象模型。它讓我們可

以在短時間之內評估系統的效能並且萃取重要的資訊以及在能在設計

流程中比較直覺的完成設計。

Design Methodology at Electronic System Level:

A Case Study of OFDM System

Student: Guan-Hao Chen Advisor: Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

Design methodology at electronic system level (ESL) offers a new style design

methodology. It features high degree of balance between simulation time and

information got from simulation. In this thesis, we use an orthogonal frequency

division multiplexing (OFDM) system as a case study, apply a design methodology at

ESL to do design modeling, design space exploration and performance evaluation and

discuss these experiments. We base on it to establish abstract model between the

sequential executable codes and the register transfer level (RTL) description. We are

able to evaluate performance in relatively short time, obtain important information

and complete the design more instinctively.

 ii

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my advisor

Professor Jing-Yang Jou for his suggestions and guidance throughout the years. As my

advisor, he not only helped me on my work, but also gave me a lot of valuable advice

on my life. I was such a lucky guy to have worked with him. Also, I would like to

thank Cheng-Yeh Wang, Liang-Yu Lin; they were the first people I would go to

whenever I needed support or to share my happiness and sorrow. Without their help, I

wouldn’t have finished my work and learned so much. Special thanks to EDA lab and

VSP lab members, for their company and friendship; it has been a great time to be

together with them. Finally, I would like to express my sincere gratitude to my family

and all my friends, who have always helped and encouraged me a lot.

 iii

Contents

摘要...i

Acknowledgment ... iii

Contents ..iv

List of Tables...vi

List of Figure..vii

Chapter 1 Introduction ...1

1.1 Technology Tread...1

1.2 The focus of our work..1

1.3 Related Works ..2

1.4 Thesis Organization ...2

Chapter 2 Preliminary ..3

2.1 Refinement...3

2.2 SystemC Features...4

2.3 Process Network ..5

2.4 The OFDM System ..6

Chapter 3 Our Platform..8

3.1 Coding Guideline of Sequential Executable Code...8

3.2 A Process Network Model ...12

3.3 Timed Functional Model..17

3.4 Resource Management and Scheduling ...20

Chapter 4 Experimental Results...32

4.1 Experimental Information..32

 iv

4.2 Experimental Results ...34

4.2.1 Experiment..34

4.2.2 Performance Analysis ...40

Chapter 5 Conclusion and Future Work...42

Reference ...43

VITA..44

 v

List of Tables

Table 1 Experimental fundamental assumptions of timing..32

Table 2 Experimental assumptions of architecture in experiment I.............................34

Table 3 Experimental assumptions of architecture in experiment II35

Table 4 Experimental assumptions of architecture in experiment III36

Table 5 Experimental assumptions of architecture in experiment IV..........................37

Table 6 Experimental assumptions of architecture in experiment V39

Table 7 Performance analysis ..40

 vi

 List of Figure

Figure 1 Refinement ..3

Figure 2 A directed graph representing a process network ..5

Figure 3 Transmitter architecture...6

Figure 4 Receiver architecture ...7

Figure 5 Channel estimation block ..7

Figure 6 An example of coding guidelines ..9

Figure 7 The data exchange of the code example..11

Figure 8 SystemC code of a node of the process network...13

Figure 9 The system top-view written in SystemC..14

Figure 10 Receiver architecture divided into processes ..15

Figure 11 Receiver architecture divided into processes...16

Figure 11 Process network model of the OFDM system...16

Figure 12 Process network model of the OFDM system (with two delay element)....17

Figure 13 SystemC code of timed functional model ...19

Figure 14 Motions of resource scheduler I ..21

Figure 15 Motions of resource scheduler II...21

Figure 16 Motions of resource scheduler III..22

Figure 17 Motions of resource scheduler IV ...22

Figure 18 Motions of resource scheduler V...23

Figure 19 The model of resource scheduling...24

Figure 20 The pseudo-code of resource scheduler ..25

Figure 21 SystemC code of timed functional model with resource scheduling27

 vii

Figure 22 OFDM memory scheduling...29

Figure 23 OFDM FFT scheduling ...30

Figure 24 OFDM memory static scheduling ...31

Figure 25 OFDM execution time of experiment I (ms)...34

Figure 26 OFDM execution time of experiment II (ms)..36

Figure 27 OFDM execution time of experiment III (ms) ..37

Figure 28 OFDM execution time of experiment IV (ms) ..38

Figure 29 OFDM execution time of experiment V (ms) ...39

 viii

Chapter 1

Introduction

1.1 Technology Tread

As predicted by International Technology Roadmap of Semiconductors (ITRS),

people are able to integrate billions of transistors on a chip within ten years. Current

mainstream system-on-chip (SoC) designs do not yet fully exploit the 100 million

transistors per chip possible with today’s mainstream silicon technology [1]. We see

that design gap is a big problem nowadays. The increasing gap between silicon

technology and actual SoC design complexities tell us that we need design

methodology at electronic system level (ESL) to combine with intense use of

off-the-shelf components [1]. Besides, more and more simulation time at register

transfer level is just another big problem of these problems. Developing design

methodology to balance simulation time and information got from simulation is

helpful to design a modern system efficiently [2].

1.2 The focus of our work

At this work, a real case study of design methodology at electronic system level

is conducted. An OFDM system will be used for this case study. We will establish

 1

design methodology at ESL, and apply it to this OFDM system. We specially focus on

the difference between our design methodology and classic design methodology.

1.3 Related Works

The most well known related work is Metropolis [3], which is designed to

provide an infrastructure based on a model with precise semantics that remain general

enough to support existing computation models and accommodate new ones.

In our work, we apply our design methodology at ESL to do design modeling,

design space exploration and performance evaluation and discuss these experiments

on a communication system. We thus offer a flexible and affable solution to reduce

design gap.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the languages

we use at different levels and the OFDM system we use at this case study. In Chapter

3, our platform is presented in detail. Experiment flow and experimental results are

given and discussed in Chapter 4. Finally, the conclusion is made in Chapter 5.

 2

Chapter 2

Preliminary

2.1 Refinement

As shown in Figure 1, there are five steps in our design flow of refinement: spec,

sequential executable code, Process network, timed functional model, cycle-accurate

model, and RTL design. The design flow is provided for engineers to systematically

find a good solution of designing a system. Following the design flow to design a

complicated system saves engineer’s time.

Figure 1 Refinement

 3

In spec step, nature language is used for hardware description. The step is the

starting point of our design flow. Engineers write the need, the inputs and the outputs

of the system. Next, engineers use C/C++ language to write the sequential executable

code to verify the algorithm in sequential executable code step. After algorithm is

verified, the sequential executable code is refined to a process network for parallel

computation. Then, the process network is added timing information for estimating

time. Finally, engineers write the cycle-accurate model and RTL design of the system.

2.2 SystemC Features

In our design flow, the process network and the timed functional model of a

system are both written by SystemC. In other words, we used SystemC to complete

our main work. The reason we use SystemC is that SystemC has many features which

are convenient for us to write these.

SystemC provides a model of time which is not only easy-to-use but also with

high readability [6]. It is convenient for us to use the model of time to add timing

information to a model of system.

SystemC provides libraries for parallel computation [6]. It is convenient for us to

use these libraries to model a system with multi concurrent block.

SystemC provides some H/W data types [6]. Instead of spending time to design

H/W data types, we use these data types to model hardware’s behavior in the system.

SystemC provides mechanism for synchronization [6] [7]. We can use the

mechanism to model arbiter’s behavior. Thus, we can study how the system with

limited resources works better.

 4

2.3 Process Network

Process network is a model of computation and a collection of processes which

are connected and communicated over FIFO. Multiple parallel processes can execute

simultaneously while using the process network to model a system [5].

We usually use a directed graph notation to represent a process network. In a

directed graph notation which is used to represent a process network, nodes are used

to represent processes, and edges are used to represent one-way FIFO queues of data.

Figure 2 is the typical directed graph notation representing a network with four nodes

and three FIFOs. The four nodes are node A, node B, node C and node D. The three

FIFOs are FIFO p, FIFO q, and FIFO r. FIFO q connects node A and node B, FIFO r

connect node A and node D, and FIFO p connects node B and node C. Node C has an

input to the another process network. Node D has an input to another process network,

too. Node A has an output to another process network.

Figure 2 A directed graph representing a process network

The set of firing rules be sequential when we use process networks to model a

system. Thus, we set our firing rule below. In a directed graph notation which is used

to represent a process network, a node is fired just after all its input edges are filled

 5

data. It means that a process executes when all its input data arrived.

2.4 The OFDM System

The OFDM system used by this case study is provided by Meng-Lin Ku and

Chia-Chi Huang. Figure 3, Figure 4, and Figure 5 depict the OFDM system blocks.

Figure 3 depicts the transmitter architecture part of the system. Figure 4 depicts the

receiver architecture part of the system. Figure 5 deeply depicts the Channel

Estimation block of the receiver architecture [4].

Figure 3 Transmitter architecture

 6

Figure 4 Receiver architecture

Figure 5 Channel estimation block

 7

Chapter 3

Our Platform

In this work, we apply our design flow we mentioned in 2.1 to the OFDM system

we mentioned in 2.4. Accordingly, we refine the model of the OFDM system step by

step. We add more information and get more practical result when refining every time.

What must be noted is that we focus on how to estimate the execution time of the

whole system at this work. Thus, the timing information plays an important role there.

3.1 Coding Guideline of Sequential

Executable Code

We bring up five coding guidelines which algorithm designers should follow

when they writing their C/C++ program. A C/C++ program wrote by these coding

guidelines will be easy to be refined into the process network. The detailed

description is what follows and the code in Figure 6 illustrates the rules we bring up in

this sub-section.

 8

//Constant data

typedef std::complex<double> comp; (3)

comp pilot[256];

void func (comp in1[256] ,

comp in2[256],comp out[256])

{

 comp dat1[256];

 {

 //block1 data path

 for(int i=0;i<256;i++)

 {

 comp a=in1[i];

 comp b=pilot[i];

 comp c=a+b;

 dat1[i]=c;

 }

 }

 comp dat2[256];

 {

 //block2 data path

 comp four[256];

 FFTW(dat1,four);

 for(int i=0;i<256;i++)

 dat2[i]=four[i]*rand(1);

 }

 {

 //block3 data path

 comp ifour[256];

 IFFTW(dat2,ifour);

 for(int i=0;i<256;i++)

 {

 out[i]=ifour[i]*rand(2);

 out[i]+=dat1[i];

 }

 }

}

Figure 6 An example of coding guidelines

We defined that communication variables are variables which are used to

exchange data and local variables are variables which are only used in a module there.

The first rule we bring up is that the people writing sequential executable code to

 9

verify the algorithm of the system should separate communication variables and local

variables. It also implies them should not use global variables. The reason to follow

that rule is that it is helpful to find the range, inputs, and outputs of processes. Finding

the range, inputs, and outputs of processes in a general C/C++ program is hard. If the

communication variables and local variables are separated, the inputs and outputs in a

function block are clear. Thus, we can find them easily. Then, we can also infer the

code range of the module. The code shown in Figure 6 gives an example of the rule.

In the code shown in Figure 6, the local variables are only used for computation in a

block, like a, b, and c and the communication variables are used for communication

between blocks, like the array “dat1” and the array “dat2”. Take block 1 in the code,

the inputs of block 1 are the array “in1” and the array “pilot” and the output of block 1

is the array “dat1” are clear. Finding the inputs and outputs of other blocks is also

easy.

When refining the sequential code to the process network, verifying the

behaviors of sequential code and the process network are the same or not is necessary.

If all random functions in the program use the same random sequence, the order of

getting random number is changed because the processes in the code may execute

parallelly while refining the sequential code to the process network. Therefore, we

bring up our second rule, all random functions in the program use different random

sequence. If it is followed, we can get the same random number in sequential code

and the process network easily. Thus, we could verify the behaviors of sequential code

and the process network easily. The statement (1) and statement (2) in the code shown

in Figure 6 are the instance of this rule.

Complex data is often used in a communication system. Using different data type

in a program to model it is trouble to modify the problem. Therefore, we bring up our

third rule, using complex data type in C/C++ standard library. Complex data type in
 10

C/C++ standard library should be used to compute complex number because of

readability and facilitating modeling data. If we used it, modeling data exchange in

different block in the process network may be not annoying and the problem may be

easily understand. Otherwise, we may see that different data type used in different

module and modeling data exchange spends much time. The statement (3) and these

declarations of “comp” in the code instantiate how to follow this rule.

The fourth rule we bring up is to consider data grain size which is used in

hardware block. While refining the sequential code to the process network, we hope

the behavior of the process network is similar to the real system. Thus, we use real

data grain size to exchange data. If it is considered when writing sequential code,

refining is easier and less time is wasted to complete whole work. In the code shown

in Figure 6, the functions compute a symbol of data instead of a packet of data. It

accords with the common condition of hardware and sets the example of this rule.

The fifth rule we bring up is to keep block operation sequence by topological

order. It facilitates modeling inputs and outputs of the whole system. It is important

when modeling a system with many blocks. Take the code in Figure 6; the data

exchange in the code could use the directed graph to model in Figure 7. Obviously we

keep block operation sequence by topological order in the code.

Figure 7 The data exchange of the code example

 11

3.2 A Process Network Model

We establish a process network we mention in 2.3 to model the OFDM system

with parallel computation. In this section, we introduce how to establish the process

network model. It should be noticed that we use TLM library which is described in [8]

to model the system because of convenience.

First, we should design how to model a node in a process network by SystemC.

The code in Figure 8 is the pattern of the node of the system written in SystemC. In

the example of modeling a node, we model the node A in the process network which

is mentioned in 3.1. In the object declaration of SystemC in the code, we see the three

parts of it the declarations of ports, the body function “proc”, and the object

constructor of SystemC. In the function “proc”, the statement (1) is not executed until

the input_1, using the get-interface function of TLM library, has data. The statement

(2) has same condition, too. That is, they work with blocking read. Thus, our firing

rule of process network model is guaranteed. In other words, we guarantee that the

process does not execute until all its input queues has data. The part of the object

constructor of SystemC puts the function “proc” to an individual thread. And so forth,

we can write the SystemC code of other nodes.

 12

SC_MODULE(NODE_A)

{

 port<tlm_get_if<packet> > input_1;

 port<tlm_get_if<packet> > input_2;

 port<tlm_put_if<packet> > output;

 void proc() {

 while(1) {

 packet in1=input_1->read();//(1)

 packet in2=input_2->read();//(2)

 packet out=a_func(in1,in2);//(3)

 output->write(out);//(4)

 }

 }

 SC_CTOR(NODE_A)

 {SC_THREAD(proc);}

};

Figure 8 SystemC code of a node of the process network

The code in Figure 9 is the pattern of the top-view of the system written in

SystemC. It illustrates how the connection between nodes and FIFOs are implemented.

The process network described by the code in Figure 9 is the same as the process

network described by the directed graph in Figure 2. There are the declarations of

nodes and FIFOs and an object constructor of SystemC in the object declaration of

SystemC in the code. The statements in the object constructor of SystemC describe

 13

how to connect the FIFOs and the node. For example, the statement “C.output(p)”

means the connection of the output pin of node C and the FIFO p.

SC_MODULE(platform)

{

 NODE_A A;NODE_B B;NODE_C C;NODE_D D;

 tlm_fifo<packet> p;tlm_fifo<packet> q;tlm_fifo<packet> r;

 SC_CTOR(platform):NODE_A("NODE_A"),NODE_B("NODE_B"),

NODE_C("NODE_C"),NODE_D("NODE_D")

 {

 C.output(p); B.input(p);

 B.output(q); A.input_1(q);

 D.output(r); A.input_2(r);

 }

};

Figure 9 The system top-view written in SystemC

Therefore, we use a process network to model the OFDM system in this work.

We describe our procedure of making process network model here. First, we divide

whole system to processes, according to the original data flow of the system. Then,

we use FIFOs to connect these processes. Specially, while modeling the OFDM

system using process network, we avoid self-loop when establish process network

 14

model of a system for being ease to observe the data flow of the system.

In this work, we use process network to model an OFDM system. Because we

want to observe the operation of the receiver, we divide the receiver to small

processes. Figure 10 and Figure 11 depicts how the receiver part of the OFDM system

blocks are divided into processes. We will use four processes, “Guard”, “Fine signal

Detection” “Estimation”, “Coarse Signal Dectection”, and a delay element and some

FIFOs connecting these nodes to model the receiver in the OFDM system. The block

“Down Converter” and the block “A/D LPF” are combined to the channel model and

the block “Signal Demapper” and the block “P/S” are ignored in the original C code.

Thus we ignore these block in our receiver model. We use the method we mentioned

in this section to establish the process network in this work.

Figure 10 Receiver architecture divided into processes

 15

Figure 11 Receiver architecture divided into processes

According to the above-mentioned method, we divide the OFDM system into the

process network in Figure 12. We also divide the receiver process into the four

smaller processes and one delay element to reflect the detail operation of the receiver.

Figure 12 depicts our process network model of the OFDM system

Figure 12 Process network model of the OFDM system

When using the process network to model the OFDM system, the loop including

the delay element comes into our notice. The OFDM system uses the channel

 16

estimation value of the last iteration to estimate the channel at this iteration.

Estimation and Coarse-signal detection all need the result of Estimation at last

iteration. Thus, “Coarse-signal detection” and “Estimation” can not run at the same

time because Coarse-signal detection must wait the result Estimation at the same

iteration.

In consequence, we try to add a delay element after the original delay element as

shown in Figure 13 shows. That means the OFDM system uses the channel estimation

value of the penultimate iteration. Thus, “Coarse-signal detection” and “Estimation”

can run at the same time. It may increase the bit error rate of the OFDM system.

However, it also increases the parallelization efficiency. We use the example to prove

that changing architecture in the process network level of our design flow is useful.

Figure 13 Process network model of the OFDM system (with two delay element)

3.3 Timed Functional Model

After establishing process network of a system, we add timing information to it
 17

to establish timed functional model of the OFDM system. Hence, we must get timing

information for establishing timed functional model. While getting timing information,

using hardware or software to implement certain function is must be considered. We

get software timing information for modeling a block which is implemented in

software and get hardware timing information for modeling a block which is

implemented in hardware.

Before we get software timing information, we must make the code realistic.

Hence, some things must be done before running sequential executable code on

instruction set simulator (ISS). For example, two things must be done when

establishing timed functional model of the OFDM system. First, fixed-point

modification should be considered. If we want to estimate a function which executes

on an environment without floating point unit, we should modify the function to a

fixed-point function. Second, we should use table-lookup acceleration to accelerate a

function which is frequently used because we want to get realistic timing information.

Then we run sequential executable code which is modified on ISS and get software

timing information.

Moreover, we get hardware timing information according to information from

the bottom layer or reasonable assumption.

Therefore, we add timing information to the process network model of the

system. Thus, we get a timed functional model of the system.

 18

SC_MODULE(NODE_A)

{

 port<tlm_get_if<packet> > input_1;

 port<tlm_get_if<packet> > input_2;

 port<tlm_put_if<packet> > output;

 void proc() {

 while(1) {

 packet in1=input_1->read();

 packet in2=input_2->read();

 wait(10,SC_US);

 packet out=a_func(in1,in2);

 output->write(out);

 }

 }

 SC_CTOR(NODE_A)

 {SC_THREAD(proc);}

};

Figure 14 SystemC code of timed functional model

The code in Figure 14 is the form of a timed functional process model written by

SystemC. The difference between the process network model and the timed functional

process model is that time timed functional process model is added timing

information. The boldface statement in the figure is just the difference in this example.

It is a “wait” statement. When the simulator counts the execution time, it waits at the

statement for 10 micro-second in this example. Thus, we establish the timed

 19

functional model doesn’t work until all input pins have data, counts its computation

time and put its result to their output pins.

3.4 Resource Management and Scheduling

When the issues of real design are discussed, the problem of limited resource

must be paid attention to. Thus, a resource scheduler must exist. In this case study, we

must concern memory scheduling and FFT scheduling. When modeling a system

without infinite resource, we get the more realistic result from simulation after

constructing the mechanism.

First of all, we establish a model of resource scheduler to handle resource request

in the system model. In the model of resource scheduler, we use mutexes to decide

which process gets the resource. A mutex represents a resource available in our

scheduler model. When a process requests a resource, the scheduler decides that the

process gets resource or not. If there is any resource, the process gets resource;

otherwise, the process gets no resource. While the process completes its work about

the resource, it usually releases the resource. However, if we would like to transfer the

resource and some things sticking the resource to another process, we transfer the

resource to the budgeted process. For example, a process may want to transfer the

memory and the data in the memory to another process. The transformation is

budgeted when designing the system. We will give an example below.

In Figure 15, a mutex represent a resource and a man in the figure represents a

process. We will use figures of this style to illustrate our mechanism of memory

scheduling.

 20

Figure 15 Motions of resource scheduler I

As shown in Figure 16, when a process requests a memory, the scheduler checks

whether there is memory available or not. If there is memory available, the scheduler

gives the process a grant to use a memory.

Figure 16 Motions of resource scheduler II

After the process which gets resource in last step completes its work about the

resource, it transfers the resource to the budgeted process. This movement transfers
 21

not only the memory but also the data in the memory. Figure 17 depicts it.

Figure 17 Motions of resource scheduler III

As shown in Figure 18, the process with a grant requests another and the

scheduler gives a grant to it. Whether a process owns any memory or not, it can

always request memory. The scheduler gives it a grant when there is a memory

available.

Figure 18 Motions of resource scheduler IV

 22

As shown in Figure 19, the scheduler can handle the requests of two processes at

the same time. Besides, if any process requests a memory now, the scheduler does not

reply until there is a memory released. While the process gets no response, it stops its

work.

Figure 19 Motions of resource scheduler V

 23

The example in Figure 20 depicts the model of scheduler. The other resources

scheduling can completely imitate this form. In the figure, the F1 block and the F2

block are general processes and the FFT1 block and the FFT2 block represent the

processes with FFT functions. We assume there is only a FFT block in hardware in

the example. First, FFT1 request the FFT block in hardware and get grant. Second,

FFT2 request the FFT block in hardware, gets no grant, and wait that until there is a

FFT block in hardware available in the system. Third, the FFT1 complete its work

about FFT function and release the FFT block in hardware and FFT2 gets the grant

and starts their work.

Figure 20 The model of resource scheduling

 24

SC_MODULE(sched)

{

 void Request()

 {

 push job to queue;

 wait grant event;}

 void Release(){

 signal release event;

 }

 void Proc(){

 while(1){

 wait job;

 find next job;

 signal grant event;

 wait release event;

 }

 }

 SC_CTOR(sched)

 {SC_THREAD(proc);}

}

Figure 21 The pseudo-code of resource scheduler

Figure 21 shows the code pattern of a scheduler written in SystemC. The

SC_MODULE in Figure 21 has three sub-functions Request, Release, and Proc. The

 25

object constructor of SystemC describes that Proc is put in an independent thread.

Then, the Proc finds next job to execute, signal grant event and wait release event.

When a process wants to request a resource, it calls the request function. The

request function pushes a job to queue and wait for grant event. Then, when it

completes its work about the resource, it calls the release function.

Therefore, we use the mechanism above-mentioned to model our scheduler.

 26

The code in Figure 22 is the pattern of a process connecting to a scheduler

written in SystemC. The process requests the hardware resource, waits the grant,

computes its function, and releases the hardware resource.

SC_MODULE(estimation)

{

 port<tlm_get_if<packet> > input;

 port<tlm_put_if<packet> > output;

 port<sched> fft_sched;

 void proc() {

 while(1) {

 packet in=input->read();

 fft_sched->request();//(1)

 wait(10,SC_US);

 packet out=fft_func(in);

 fft_sched->release();//(2)

 output->write(out); }

 }

SC_CTOR(estimation)

 {SC_THREAD(proc);}

};

Figure 22 SystemC code of timed functional model with resource scheduling

About the OFDM system used at this case study, there are two aspects we

concern about scheduling: FFT scheduling and memory scheduling. We will make a

 27

detailed description with two figures, Figure 23 and Figure 24, below.

Figure 23 depicts the mechanism’s operation of memory scheduling at our case study.

We describe how it works in an iteration below. There are several steps in an iteration.

At first, we always give the delay element a grant of one unit memory, and the first

arrow points out the transaction. When the whole system starts, the process “Guard”

request one unit memory. The second arrow points out this transaction. It starts to

computer its result when getting the grant of one unit memory. After finishing its

work, it transfers its result and the grant of the memory which it got to “Coarse-signal

detection”, “Estimation”, and “Fine signal detection”. Then, the process

“Coarse-signal detection” starts to work and request another unit memory to store data,

and the third arrow points out the transaction. There the process “Coarse signal

detection” can not use the memory which the process “Guard” to store its output

because the result of the process “Guard” is used by the two other processes, the

process “Estimation” and the process “Fine signal detection”. Then, the result of

“Coarse signal detection” and that memory are transferred to the process “Estimation”

after “Coarse signal detection” finishes its work. Thus the process “Estimation” uses

the memory got by “Guard” and “Coarse-signal detection” to finish its work. “Fine

signal detection” does too. “Estimation” transfer its data and the memory got from

“Coarse signal detection” to “Fine signal detection”. Finally, the fourth arrow points

out that the process “Fine signal detection” finish its work and release the two

memories got form the process “Estimation”.

 28

Figure 23 OFDM memory scheduling

Figure 24 depicts the mechanism’s operation of FFT scheduling at our case study. We

connect the process having FFT function to FFT scheduler. While these processes

need a FFT block in hardware, they send a request to FFT scheduler. If they get grants,

they compute their FFT function. If they get no grants, they wait until the scheduler

gives them grants. After they finish their work about FFT function, they release the

FFT block in hardware to the FFT scheduler. Because the FFT block in hardware does

not need transfer data, the mechanism of FFT scheduling is simpler than memory

scheduling.

 29

Figure 24 OFDM FFT scheduling

When observing the operation of the timed functional model with a scheduler,

we see that the process “Guard” gets memory too often. It makes the system work

inefficiently. We think that setting the order of memory grant at this case study may

make the system more efficient. We will see the effect at this case study in Chapter 4.

We describe how to set the order below. As shown in Figure 25, the delay

element always gets a unit of memory; the process “Guard” and the process “Coarse

signal detection” get one unit of memory and another unit of memory in an iteration

respectively. In the same iteration, the process “Guard” sends a request to the memory

scheduler before the process “Coarse signal detection” sends a request to the memory

scheduler. Thus, we set that the process “Guard” does not gets grant before the

process “Coarse signal detection” gets in the last iteration. We will see the effect at

this case study in Chapter 4.

 30

Figure 25 OFDM memory static scheduling

 31

Chapter 4

Experimental Results

4.1 Experimental Information

In this chapter, we introduce some experiments with different hardware

architecture and different scheduling strategy on our platform. These experiments

confirm practicability of our platform.

As we said earlier, we must get hardware timing or make reasonable assumptions

make timed functional model. At this case study, FFT architecture and the latency of

matrix operation are the factors. Table 1 shows that how we make the assumption

about the two factors. Besides, all of our experiments compute 30000 symbols.

Item Clock

Complex number adder timing 100MHz

Complex number multiplier timing 100MHz

Butterfly processing element timing 100MHz

Table 1 Experimental fundamental assumptions of timing

 32

We base on these assumptions to decide the timing of modules in the system.

Then we make simulation of systems with different scheduling strategy and different

hardware architecture to verify the effect of static scheduling, adding delay element to

increase parallelism and different FFT architectures. These experiments also verify

that platform based design is helpful for design space exploration. The experimental

results are introduced in 4.2.

 33

4.2 Experimental Results

4.2.1 Experiment

Experiment I is our general case. In other words, the result is our standard to let

us understand the effect of different scheduling strategy and different hardware

architecture. The hardware architecture of system in experiment I is shown in Table 2.

Item Architecture

Memory 2048 bytes, unlimited memory bandwidth

FFT Memory based, radix-4

Delay element One

Static scheduling none

Table 2 Experimental assumptions of architecture in experiment I

Figure 26 shows the result of experiment I.

FFT

0

50

100

150

200

250

300

350

4 5 6 7

Memory

O
F

D
M

 e
xe

cu
ti

on
 t

im
e

(m
s)

1

2

3

Figure 26 OFDM execution time of experiment I (ms)

 34

 In the figure, we see that using more than two units of FFTs hardware or more

than six units of memories does not help decrease the execution time and the system

in the condition gets no result with less than four units of memories.

In 3.2, we supposed that if a delay element is added to the system, the system

may be more efficient than the original system. In experiment II, we verify whether

the strategy is valid or not. The hardware architecture of system in experiment II is

shown in Table 3.

Item Architecture

Memory 2048 bytes, unlimited memory bandwidth

FFT Memory based, radix-4

Delay element Two

Static scheduling none

Table 3 Experimental assumptions of architecture in experiment II

Figure 27 shows the result of experiment II.

 35

FFT

0

50

100

150

200

250

300

350

5 6 7 8

Memory

O
F

D
M

 e
xe

cu
ti

on
 t

im
e

(m
s)

1

2

3

Figure 27 OFDM execution time of experiment II (ms)

 In the figure, we see that using more than two units of FFTs hardware or more

than seven units of memories does not help decrease the execution time and the

system in the condition gets no result with less than five units of memories.

Experiment III

We supposed that our mechanism of static scheduling decreases the need of

resource in 3.4. In experiment III, we verify the mechanism we suggested is efferent

or not. The hardware architecture of system in experiment III is shown in Table 4.

Item Architecture

Memory 2048 bytes, unlimited memory bandwidth

FFT Memory based, radix-4

Delay element One

Static scheduling Set the order of memory grant

Table 4 Experimental assumptions of architecture in experiment III

 36

Figure 27 shows the result of experiment III.

FFT

0

50

100

150

200

250

300

350

3 4 5 6

Memory

O
F

D
M

 e
xe

cu
ti

on
 t

im
e

(m
s)

1

2

3

Figure 28 OFDM execution time of experiment III (ms)

 In the figure, we see that using more than two units of FFTs hardware or more

than five units of memories does not help decrease the execution time and the system

in the condition gets no result with less than three units of memories.

We use the strategy suggested in 3.2 and our mechanism of static scheduling

suggested in 3.4 in Experiment IV at the same time. Table 5 depicts the hardware

architecture of system in experiment IV.

Item Architecture

Memory 2048 bytes, unlimited memory bandwidth

FFT Memory based, radix-4

Delay element Two

Static scheduling Set the order of memory grant

Table 5 Experimental assumptions of architecture in experiment IV

 37

Figure 28 shows the result of experiment IV

FFT

0

50

100

150

200

250

300

350

4 5 6 7

Memory

O
F

D
M

 e
xe

cu
ti

on
 t

im
e

(m
s)

1

2

3

Figure 29 OFDM execution time of experiment IV (ms)

 In the figure, we see that using more than two units of FFTs hardware or more

than six units of memories does not help decrease the execution time and the system

in the condition gets no result with less than four units of memories.

The convenience of changing architecture in a system model is one main

advantage of platform design. It allows us try different architectures in a system to

find the best configuration of hardware. Experiment V just exhibits the convenience.

Table 6 depicts the hardware architecture of system in experiment V. We change the

FFT architecture in the system.

 38

Item Architecture

Memory 2048 bytes, unlimited memory bandwidth

FFT Memory based, radix-4

Delay element One

Static scheduling None

Table 6 Experimental assumptions of architecture in experiment V

Figure 30 shows the result of experiment V.

FFT

0

50

100

150

200

250

300

350

400

450

4 5 6 7

Memory

O
F
D

M
 e

xe
cu

ti
on

 t
im

e
(m

s)

1

2

3

Figure 30 OFDM execution time of experiment V (ms)

 In the figure, we see that using more than two units of FFTs hardware or more

than six units of memories does not help decrease the execution time and the system

in the condition gets no result with less than four units of memories. It also shows the

effect of FFT architecture the system in the condition gets no result with less than four

units of memories.

 39

4.2.2 Performance Analysis

OFDM execution time (ms)

of memories # of FFTs Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

1 x x 322 X X 3

2 x x 300 x X

1 292 x 292 322 384 4

2 276 x 276 299 322

1 292 292 230 292 384 5

2 276 276 215 277 322

1 230 290 230 172 323 6

2 215 274 215 156 261

1 230 172 230 172 323 7

2 215 156 215 156 261

1 230 172 230 172 323 8

2 215 156 215 156 261

Table 7 Performance analysis

 Table 7 shows all of our experimental result expect cases using three units FFT

architecture. We ignore cases using three units of FFT hardware there because the

results of these cases are the same as cases using two units of FFT hardware and we

show these things above. In the table we see some interesting thins we mention below.

In experiment II, we add a delay element to increase parallelism. The strategy

spends more memory. However, it decreases the execution time when the system has

 40

sufficient memory. Thus, it gets good performance with these cases using seven and

eight units of memories.

In experiment III, we use static scheduling to make good use of memories. Thus,

it gets good performance with these cases using five and three units of memories.

In experiment IV, we use static scheduling and add a delay element at the same

time. It gets good performance with these cases using six units of memories.

Therefore, we see that design space exploration at electric system level is useful.

It helps us choice different architectures at different condition. For example, at this

case study, we can decide which architecture should be used basing on these

experimental results, like deciding to use static scheduling and add no delay element

when having only three units of memories to use etc.

Besides, we also can see the effect of FFT architecture in experimental results. It

should notice that the process may transfers memories to another process instead of

releasing every condition. Thus, some cases without enough can not get results.

 41

Chapter 5

Conclusion and Future Work

In this work, we apply a top-down design methodology to an OFDM design. By

incorporating the process network model, the timed functional model, systems with

different configurations can be simulated in a short time. Some important parameters

are then extracted from the simulation result and the performance of the system can be

assessed before the system is implemented.

Concretely speaking, we establish a framework with process network model,

timed functional model, and resource scheduling for design space exploration and

design modeling. Performances of systems with different configurations can be

examined.

Also, we try to use our framework to verify our static scheduling mechanism and

our idea to increase parallelism. The experimental results show that our platform is

practical.

 42

Reference

[1] A. Sangiovanni-Vincentelli, “Defining platform-based design,” in EEDesign of

EETimes, 2002

[2] J. Henkel, “Closing the SoC design gap,” in Computer, Sept. 2003, Volume 36,

Issue 9, pages 119 – 121

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A.

Sangiovanni-Vincentelli, “Metropolis: An Integrated Electronic System Design

Environment,” in IEEE Computer, April 2003, p 45-52.

[4] M.-L. Ku and C.-C. Huang, “A complementary code pilot-based transmitter

diversity technique for OFDM systems,” in IEEE Transactions on Wireless

Communications, March 2006, Volume 5, Issue 3, pages 504 – 508

[5] G. Kahn, “The semantics of a simple language for parallel programming," in

Proceedings of the IFIP Congress, 1974.

[6] SystemC 2.0.1 Language Reference Manual, 2003. Available from the Open

SystemC Initiative (OSCI) http://www.systemc.org.

[7] Sudeep Pasricha, "Transaction level modelling of soc with SystemC 2.0,” In

Synopsys User Group Conference, 2002.

[8] A. Rose, S. Swan, J. Pierce, and J. Fernandez. “Transaction Level Modeling in

SystemC,” OSCI TLM Working Group, 2005.

 43

VITA

Guan-Hao Chen was born in Hualien, Taiwan on April 6, 1982. He received the

B.S. degree in Electronics Engineering from National Chiao Tung University in June

2004 and entered the Institute of Electronics, National Chiao Tung University in

September 2004. His research interests include electronic design automation (EDA)

and VLSI design. He received the M.S. degree from National Chiao Tung University

in August 2006.

 44

	摘要
	
	Acknowledgment
	Contents
	List of Tables
	 List of Figure
	Chapter 1 Introduction
	1.1 Technology Tread
	1.2 The focus of our work
	1.3 Related Works
	1.4 Thesis Organization

	Chapter 2 Preliminary
	2.1 Refinement
	2.2 SystemC Features
	2.3 Process Network
	2.4 The OFDM System

	Chapter 3 Our Platform
	3.1 Coding Guideline of Sequential Executable Code
	3.2 A Process Network Model
	3.3 Timed Functional Model
	3.4 Resource Management and Scheduling

	Chapter 4 Experimental Results
	4.1 Experimental Information
	1.1
	4.2 Experimental Results
	4.2.1 Experiment
	1.1.1
	4.2.2 Performance Analysis

	Chapter 5 Conclusion and Future Work
	Reference
	VITA

