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摘要 

電子系統層級上的設計方法提供一種新風格的設計方法。這種設

計方法的特性是可以在模擬時間和在模擬中所獲得的資訊間取得平

衡。在這篇論文裡，我們以一個正交多頻多工系統為例，提出一種在

電子系統層級上的設計方法，做有關設計的模型和設計空間勘查方面

的工作，對系統效能作評估，並對實驗結果加以討論。我們依該方法

在循序可執行程式碼和暫存器傳輸層級間建立抽象模型。它讓我們可

以在短時間之內評估系統的效能並且萃取重要的資訊以及在能在設計

流程中比較直覺的完成設計。
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Abstract 

Design methodology at electronic system level (ESL) offers a new style design 

methodology. It features high degree of balance between simulation time and 

information got from simulation. In this thesis, we use an orthogonal frequency 

division multiplexing (OFDM) system as a case study, apply a design methodology at 

ESL to do design modeling, design space exploration and performance evaluation and 

discuss these experiments.  We base on it to establish abstract model between the 

sequential executable codes and the register transfer level (RTL) description. We are 

able to evaluate performance in relatively short time, obtain important information 

and complete the design more instinctively. 
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Chapter 1  

Introduction 

 

1.1 Technology Tread 

 

As predicted by International Technology Roadmap of Semiconductors (ITRS), 

people are able to integrate billions of transistors on a chip within ten years. Current 

mainstream system-on-chip (SoC) designs do not yet fully exploit the 100 million 

transistors per chip possible with today’s mainstream silicon technology [1]. We see 

that design gap is a big problem nowadays. The increasing gap between silicon 

technology and actual SoC design complexities tell us that we need design 

methodology at electronic system level (ESL) to combine with intense use of 

off-the-shelf components [1]. Besides, more and more simulation time at register 

transfer level is just another big problem of these problems. Developing design 

methodology to balance simulation time and information got from simulation is 

helpful to design a modern system efficiently [2]. 

 

1.2 The focus of our work 

 

At this work, a real case study of design methodology at electronic system level 

is conducted. An OFDM system will be used for this case study. We will establish 
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design methodology at ESL, and apply it to this OFDM system. We specially focus on 

the difference between our design methodology and classic design methodology. 

 

1.3 Related Works 

 

The most well known related work is Metropolis [3], which is designed to 

provide an infrastructure based on a model with precise semantics that remain general 

enough to support existing computation models and accommodate new ones. 

In our work, we apply our design methodology at ESL to do design modeling, 

design space exploration and performance evaluation and discuss these experiments 

on a communication system. We thus offer a flexible and affable solution to reduce 

design gap. 

1.4 Thesis Organization 

 

The rest of the thesis is organized as follows. Chapter 2 introduces the languages 

we use at different levels and the OFDM system we use at this case study. In Chapter 

3, our platform is presented in detail. Experiment flow and experimental results are 

given and discussed in Chapter 4. Finally, the conclusion is made in Chapter 5. 
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Chapter 2  

Preliminary 

 

2.1 Refinement 

 

As shown in Figure 1, there are five steps in our design flow of refinement: spec, 

sequential executable code, Process network, timed functional model, cycle-accurate 

model, and RTL design. The design flow is provided for engineers to systematically 

find a good solution of designing a system. Following the design flow to design a 

complicated system saves engineer’s time. 

 

 

Figure 1 Refinement 
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In spec step, nature language is used for hardware description. The step is the 

starting point of our design flow. Engineers write the need, the inputs and the outputs 

of the system. Next, engineers use C/C++ language to write the sequential executable 

code to verify the algorithm in sequential executable code step. After algorithm is 

verified, the sequential executable code is refined to a process network for parallel 

computation. Then, the process network is added timing information for estimating 

time. Finally, engineers write the cycle-accurate model and RTL design of the system. 

 

2.2 SystemC Features 

 

In our design flow, the process network and the timed functional model of a 

system are both written by SystemC. In other words, we used SystemC to complete 

our main work. The reason we use SystemC is that SystemC has many features which 

are convenient for us to write these. 

SystemC provides a model of time which is not only easy-to-use but also with 

high readability [6]. It is convenient for us to use the model of time to add timing 

information to a model of system. 

SystemC provides libraries for parallel computation [6]. It is convenient for us to 

use these libraries to model a system with multi concurrent block. 

SystemC provides some H/W data types [6]. Instead of spending time to design 

H/W data types, we use these data types to model hardware’s behavior in the system. 

SystemC provides mechanism for synchronization [6] [7]. We can use the 

mechanism to model arbiter’s behavior. Thus, we can study how the system with 

limited resources works better. 
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2.3 Process Network 

 

Process network is a model of computation and a collection of processes which 

are connected and communicated over FIFO. Multiple parallel processes can execute 

simultaneously while using the process network to model a system [5]. 

We usually use a directed graph notation to represent a process network. In a 

directed graph notation which is used to represent a process network, nodes are used 

to represent processes, and edges are used to represent one-way FIFO queues of data. 

Figure 2 is the typical directed graph notation representing a network with four nodes 

and three FIFOs. The four nodes are node A, node B, node C and node D. The three 

FIFOs are FIFO p, FIFO q, and FIFO r. FIFO q connects node A and node B, FIFO r 

connect node A and node D, and FIFO p connects node B and node C. Node C has an 

input to the another process network. Node D has an input to another process network, 

too. Node A has an output to another process network. 

 

 
Figure 2 A directed graph representing a process network 

 

The set of firing rules be sequential when we use process networks to model a 

system. Thus, we set our firing rule below. In a directed graph notation which is used 

to represent a process network, a node is fired just after all its input edges are filled 
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data. It means that a process executes when all its input data arrived. 

 

2.4 The OFDM System 

 

The OFDM system used by this case study is provided by Meng-Lin Ku and 

Chia-Chi Huang. Figure 3, Figure 4, and Figure 5 depict the OFDM system blocks. 

Figure 3 depicts the transmitter architecture part of the system. Figure 4 depicts the 

receiver architecture part of the system. Figure 5 deeply depicts the Channel 

Estimation block of the receiver architecture [4]. 

 

 

Figure 3 Transmitter architecture 
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Figure 4 Receiver architecture 

 

  

Figure 5 Channel estimation block 
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Chapter 3  

Our Platform 

 

In this work, we apply our design flow we mentioned in 2.1 to the OFDM system 

we mentioned in 2.4. Accordingly, we refine the model of the OFDM system step by 

step. We add more information and get more practical result when refining every time. 

What must be noted is that we focus on how to estimate the execution time of the 

whole system at this work. Thus, the timing information plays an important role there. 

 

3.1 Coding Guideline of Sequential 

Executable Code 

 

We bring up five coding guidelines which algorithm designers should follow 

when they writing their C/C++ program. A C/C++ program wrote by these coding 

guidelines will be easy to be refined into the process network. The detailed 

description is what follows and the code in Figure 6 illustrates the rules we bring up in 

this sub-section. 
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//Constant data 

typedef std::complex<double> comp; (3) 

comp pilot[256]; 

void func ( comp in1[256] , 

comp in2[256],comp out[256] ) 

{ 

    comp dat1[256]; 

    { 

      //block1 data path 

   for(int i=0;i<256;i++) 

      { 

        comp a=in1[i]; 

     comp b=pilot[i]; 

        comp c=a+b; 

        dat1[i]=c; 

      } 

    } 

 

    comp dat2[256]; 

    { 

       //block2 data path 

        comp four[256]; 

        FFTW(dat1,four); 

        for(int i=0;i<256;i++) 

            dat2[i]=four[i]*rand(1); 

    } 

    { 

        //block3 data path 

        comp ifour[256]; 

        IFFTW(dat2,ifour); 

        for(int i=0;i<256;i++) 

        { 

            out[i]=ifour[i]*rand(2); 

            out[i]+=dat1[i]; 

        } 

    } 

} 

Figure 6 An example of coding guidelines 

 

We defined that communication variables are variables which are used to 

exchange data and local variables are variables which are only used in a module there. 

The first rule we bring up is that the people writing sequential executable code to 
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verify the algorithm of the system should separate communication variables and local 

variables. It also implies them should not use global variables. The reason to follow 

that rule is that it is helpful to find the range, inputs, and outputs of processes. Finding 

the range, inputs, and outputs of processes in a general C/C++ program is hard. If the 

communication variables and local variables are separated, the inputs and outputs in a 

function block are clear. Thus, we can find them easily. Then, we can also infer the 

code range of the module. The code shown in Figure 6 gives an example of the rule. 

In the code shown in Figure 6, the local variables are only used for computation in a 

block, like a, b, and c and the communication variables are used for communication 

between blocks, like the array “dat1” and the array “dat2”. Take block 1 in the code, 

the inputs of block 1 are the array “in1” and the array “pilot” and the output of block 1 

is the array “dat1” are clear. Finding the inputs and outputs of other blocks is also 

easy. 

When refining the sequential code to the process network, verifying the 

behaviors of sequential code and the process network are the same or not is necessary. 

If all random functions in the program use the same random sequence, the order of 

getting random number is changed because the processes in the code may execute 

parallelly while refining the sequential code to the process network. Therefore, we 

bring up our second rule, all random functions in the program use different random 

sequence. If it is followed, we can get the same random number in sequential code 

and the process network easily. Thus, we could verify the behaviors of sequential code 

and the process network easily. The statement (1) and statement (2) in the code shown 

in Figure 6 are the instance of this rule. 

Complex data is often used in a communication system. Using different data type 

in a program to model it is trouble to modify the problem. Therefore, we bring up our 

third rule, using complex data type in C/C++ standard library. Complex data type in 
 10



C/C++ standard library should be used to compute complex number because of 

readability and facilitating modeling data. If we used it, modeling data exchange in 

different block in the process network may be not annoying and the problem may be 

easily understand. Otherwise, we may see that different data type used in different 

module and modeling data exchange spends much time. The statement (3) and these 

declarations of “comp” in the code instantiate how to follow this rule. 

The fourth rule we bring up is to consider data grain size which is used in 

hardware block. While refining the sequential code to the process network, we hope 

the behavior of the process network is similar to the real system. Thus, we use real 

data grain size to exchange data. If it is considered when writing sequential code, 

refining is easier and less time is wasted to complete whole work. In the code shown 

in Figure 6, the functions compute a symbol of data instead of a packet of data. It 

accords with the common condition of hardware and sets the example of this rule. 

The fifth rule we bring up is to keep block operation sequence by topological 

order. It facilitates modeling inputs and outputs of the whole system. It is important 

when modeling a system with many blocks. Take the code in Figure 6; the data 

exchange in the code could use the directed graph to model in Figure 7. Obviously we 

keep block operation sequence by topological order in the code. 

 

 

Figure 7 The data exchange of the code example 
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3.2 A Process Network Model 

 

We establish a process network we mention in 2.3 to model the OFDM system 

with parallel computation. In this section, we introduce how to establish the process 

network model. It should be noticed that we use TLM library which is described in [8] 

to model the system because of convenience. 

First, we should design how to model a node in a process network by SystemC. 

The code in Figure 8 is the pattern of the node of the system written in SystemC. In 

the example of modeling a node, we model the node A in the process network which 

is mentioned in 3.1. In the object declaration of SystemC in the code, we see the three 

parts of it the declarations of ports, the body function “proc”, and the object 

constructor of SystemC. In the function “proc”, the statement (1) is not executed until 

the input_1, using the get-interface function of TLM library, has data. The statement 

(2) has same condition, too. That is, they work with blocking read. Thus, our firing 

rule of process network model is guaranteed. In other words, we guarantee that the 

process does not execute until all its input queues has data. The part of the object 

constructor of SystemC puts the function “proc” to an individual thread. And so forth, 

we can write the SystemC code of other nodes. 
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SC_MODULE(NODE_A) 

{ 

     port<tlm_get_if<packet> > input_1; 

     port<tlm_get_if<packet> > input_2; 

     port<tlm_put_if<packet> > output; 

     void proc() { 

         while(1)  { 

                packet in1=input_1->read();//(1) 

                packet in2=input_2->read();//(2) 

                packet out=a_func(in1,in2);//(3) 

                output->write(out);//(4) 

         } 

     } 

     SC_CTOR(NODE_A) 

       {SC_THREAD(proc);} 

}; 

Figure 8 SystemC code of a node of the process network 

 

The code in Figure 9 is the pattern of the top-view of the system written in 

SystemC. It illustrates how the connection between nodes and FIFOs are implemented. 

The process network described by the code in Figure 9 is the same as the process 

network described by the directed graph in Figure 2. There are the declarations of 

nodes and FIFOs and an object constructor of SystemC in the object declaration of 

SystemC in the code. The statements in the object constructor of SystemC describe 
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how to connect the FIFOs and the node. For example, the statement “C.output(p)” 

means the connection of the output pin of node C and the FIFO p. 

 

SC_MODULE(platform) 

{ 

 NODE_A A;NODE_B B;NODE_C C;NODE_D D; 

 

 tlm_fifo<packet> p;tlm_fifo<packet> q;tlm_fifo<packet> r;  

 

 SC_CTOR(platform):NODE_A("NODE_A"),NODE_B("NODE_B"), 

NODE_C("NODE_C"),NODE_D("NODE_D") 

 { 

  C.output(p); B.input(p); 

 

  B.output(q); A.input_1(q); 

   

  D.output(r); A.input_2(r);  

 }  

}; 

Figure 9 The system top-view written in SystemC 

 

Therefore, we use a process network to model the OFDM system in this work. 

We describe our procedure of making process network model here. First, we divide 

whole system to processes, according to the original data flow of the system. Then, 

we use FIFOs to connect these processes. Specially, while modeling the OFDM 

system using process network, we avoid self-loop when establish process network 
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model of a system for being ease to observe the data flow of the system. 

In this work, we use process network to model an OFDM system. Because we 

want to observe the operation of the receiver, we divide the receiver to small 

processes. Figure 10 and Figure 11 depicts how the receiver part of the OFDM system 

blocks are divided into processes. We will use four processes, “Guard”, “Fine signal 

Detection” “Estimation”, “Coarse Signal Dectection”, and a delay element and some 

FIFOs connecting these nodes to model the receiver in the OFDM system. The block 

“Down Converter” and the block “A/D LPF” are combined to the channel model and 

the block “Signal Demapper” and the block “P/S” are ignored in the original C code. 

Thus we ignore these block in our receiver model. We use the method we mentioned 

in this section to establish the process network in this work. 

 

 

Figure 10 Receiver architecture divided into processes 
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Figure 11 Receiver architecture divided into processes 

 

According to the above-mentioned method, we divide the OFDM system into the 

process network in Figure 12. We also divide the receiver process into the four 

smaller processes and one delay element to reflect the detail operation of the receiver. 

Figure 12 depicts our process network model of the OFDM system 

 

 

Figure 12 Process network model of the OFDM system 

 

When using the process network to model the OFDM system, the loop including 

the delay element comes into our notice. The OFDM system uses the channel 
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estimation value of the last iteration to estimate the channel at this iteration. 

Estimation and Coarse-signal detection all need the result of Estimation at last 

iteration. Thus, “Coarse-signal detection” and “Estimation” can not run at the same 

time because Coarse-signal detection must wait the result Estimation at the same 

iteration. 

In consequence, we try to add a delay element after the original delay element as 

shown in Figure 13 shows. That means the OFDM system uses the channel estimation 

value of the penultimate iteration. Thus, “Coarse-signal detection” and “Estimation” 

can run at the same time. It may increase the bit error rate of the OFDM system. 

However, it also increases the parallelization efficiency. We use the example to prove 

that changing architecture in the process network level of our design flow is useful. 

 

 

Figure 13 Process network model of the OFDM system (with two delay element) 

 

3.3 Timed Functional Model 

 

After establishing process network of a system, we add timing information to it 
 17



to establish timed functional model of the OFDM system. Hence, we must get timing 

information for establishing timed functional model. While getting timing information, 

using hardware or software to implement certain function is must be considered. We 

get software timing information for modeling a block which is implemented in 

software and get hardware timing information for modeling a block which is 

implemented in hardware. 

Before we get software timing information, we must make the code realistic. 

Hence, some things must be done before running sequential executable code on 

instruction set simulator (ISS). For example, two things must be done when 

establishing timed functional model of the OFDM system. First, fixed-point 

modification should be considered. If we want to estimate a function which executes 

on an environment without floating point unit, we should modify the function to a 

fixed-point function. Second, we should use table-lookup acceleration to accelerate a 

function which is frequently used because we want to get realistic timing information. 

Then we run sequential executable code which is modified on ISS and get software 

timing information. 

Moreover, we get hardware timing information according to information from 

the bottom layer or reasonable assumption. 

Therefore, we add timing information to the process network model of the 

system. Thus, we get a timed functional model of the system. 
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SC_MODULE(NODE_A) 

{ 

     port<tlm_get_if<packet> > input_1; 

     port<tlm_get_if<packet> > input_2; 

     port<tlm_put_if<packet> > output; 

     void proc() { 

         while(1)  { 

                packet in1=input_1->read(); 

                packet in2=input_2->read(); 

    wait(10,SC_US); 

                packet out=a_func(in1,in2); 

                output->write(out); 

         } 

     } 

     SC_CTOR(NODE_A) 

       {SC_THREAD(proc);} 

}; 

Figure 14 SystemC code of timed functional model 

 

The code in Figure 14 is the form of a timed functional process model written by 

SystemC. The difference between the process network model and the timed functional 

process model is that time timed functional process model is added timing 

information. The boldface statement in the figure is just the difference in this example. 

It is a “wait” statement. When the simulator counts the execution time, it waits at the 

statement for 10 micro-second in this example. Thus, we establish the timed 
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functional model doesn’t work until all input pins have data, counts its computation 

time and put its result to their output pins. 

3.4 Resource Management and Scheduling 

 

When the issues of real design are discussed, the problem of limited resource 

must be paid attention to. Thus, a resource scheduler must exist. In this case study, we 

must concern memory scheduling and FFT scheduling. When modeling a system 

without infinite resource, we get the more realistic result from simulation after 

constructing the mechanism. 

First of all, we establish a model of resource scheduler to handle resource request 

in the system model. In the model of resource scheduler, we use mutexes to decide 

which process gets the resource. A mutex represents a resource available in our 

scheduler model. When a process requests a resource, the scheduler decides that the 

process gets resource or not. If there is any resource, the process gets resource; 

otherwise, the process gets no resource. While the process completes its work about 

the resource, it usually releases the resource. However, if we would like to transfer the 

resource and some things sticking the resource to another process, we transfer the 

resource to the budgeted process. For example, a process may want to transfer the 

memory and the data in the memory to another process. The transformation is 

budgeted when designing the system. We will give an example below. 

In Figure 15, a mutex represent a resource and a man in the figure represents a 

process. We will use figures of this style to illustrate our mechanism of memory 

scheduling. 
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Figure 15 Motions of resource scheduler I 

 

As shown in Figure 16, when a process requests a memory, the scheduler checks 

whether there is memory available or not. If there is memory available, the scheduler 

gives the process a grant to use a memory. 

 

 

Figure 16 Motions of resource scheduler II 

 

After the process which gets resource in last step completes its work about the 

resource, it transfers the resource to the budgeted process. This movement transfers 
 21



not only the memory but also the data in the memory. Figure 17 depicts it. 

 

 

Figure 17 Motions of resource scheduler III 

 

As shown in Figure 18, the process with a grant requests another and the 

scheduler gives a grant to it. Whether a process owns any memory or not, it can 

always request memory. The scheduler gives it a grant when there is a memory 

available. 

 

 

Figure 18 Motions of resource scheduler IV 
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As shown in Figure 19, the scheduler can handle the requests of two processes at 

the same time. Besides, if any process requests a memory now, the scheduler does not 

reply until there is a memory released. While the process gets no response, it stops its 

work. 

 

 

Figure 19 Motions of resource scheduler V 
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The example in Figure 20 depicts the model of scheduler. The other resources 

scheduling can completely imitate this form. In the figure, the F1 block and the F2 

block are general processes and the FFT1 block and the FFT2 block represent the 

processes with FFT functions. We assume there is only a FFT block in hardware in 

the example. First, FFT1 request the FFT block in hardware and get grant. Second, 

FFT2 request the FFT block in hardware, gets no grant, and wait that until there is a 

FFT block in hardware available in the system. Third, the FFT1 complete its work 

about FFT function and release the FFT block in hardware and FFT2 gets the grant 

and starts their work. 

 

 

Figure 20 The model of resource scheduling 
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SC_MODULE(sched) 

{ 

    void Request() 

    { 

        push job to queue; 

        wait grant event;} 

    void Release(){ 

        signal release event; 

    }     

    void Proc(){ 

        while(1){ 

             wait job; 

             find next job; 

             signal grant event; 

             wait release event; 

        } 

    } 

    SC_CTOR(sched) 

         {SC_THREAD(proc);} 

} 

Figure 21 The pseudo-code of resource scheduler 

 

Figure 21 shows the code pattern of a scheduler written in SystemC. The 

SC_MODULE in Figure 21 has three sub-functions Request, Release, and Proc. The 
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object constructor of SystemC describes that Proc is put in an independent thread. 

Then, the Proc finds next job to execute, signal grant event and wait release event. 

When a process wants to request a resource, it calls the request function. The 

request function pushes a job to queue and wait for grant event. Then, when it 

completes its work about the resource, it calls the release function. 

Therefore, we use the mechanism above-mentioned to model our scheduler. 
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The code in Figure 22 is the pattern of a process connecting to a scheduler 

written in SystemC. The process requests the hardware resource, waits the grant, 

computes its function, and releases the hardware resource.  

 

SC_MODULE(estimation) 

{ 

     port<tlm_get_if<packet> > input; 

     port<tlm_put_if<packet> > output; 

     port<sched> fft_sched; 

     void proc() { 

         while(1)  { 

                packet in=input->read(); 

                fft_sched->request();//(1) 

                wait(10,SC_US); 

                packet out=fft_func(in); 

                fft_sched->release();//(2) 

                output->write(out); } 

     } 

SC_CTOR(estimation) 

       {SC_THREAD(proc);} 

}; 

Figure 22 SystemC code of timed functional model with resource scheduling 

 

About the OFDM system used at this case study, there are two aspects we 

concern about scheduling: FFT scheduling and memory scheduling. We will make a 
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detailed description with two figures, Figure 23 and Figure 24, below. 

Figure 23 depicts the mechanism’s operation of memory scheduling at our case study. 

We describe how it works in an iteration below. There are several steps in an iteration. 

At first, we always give the delay element a grant of one unit memory, and the first 

arrow points out the transaction. When the whole system starts, the process “Guard” 

request one unit memory. The second arrow points out this transaction. It starts to 

computer its result when getting the grant of one unit memory. After finishing its 

work, it transfers its result and the grant of the memory which it got to “Coarse-signal 

detection”, “Estimation”, and “Fine signal detection”. Then, the process 

“Coarse-signal detection” starts to work and request another unit memory to store data, 

and the third arrow points out the transaction. There the process “Coarse signal 

detection” can not use the memory which the process “Guard” to store its output 

because the result of the process “Guard” is used by the two other processes, the 

process “Estimation” and the process “Fine signal detection”. Then, the result of 

“Coarse signal detection” and that memory are transferred to the process “Estimation” 

after “Coarse signal detection” finishes its work. Thus the process “Estimation” uses 

the memory got by “Guard” and “Coarse-signal detection” to finish its work. “Fine 

signal detection” does too. “Estimation” transfer its data and the memory got from 

“Coarse signal detection” to “Fine signal detection”. Finally, the fourth arrow points 

out that the process “Fine signal detection” finish its work and release the two 

memories got form the process “Estimation”. 
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Figure 23 OFDM memory scheduling 

 

Figure 24 depicts the mechanism’s operation of FFT scheduling at our case study. We 

connect the process having FFT function to FFT scheduler. While these processes 

need a FFT block in hardware, they send a request to FFT scheduler. If they get grants, 

they compute their FFT function. If they get no grants, they wait until the scheduler 

gives them grants. After they finish their work about FFT function, they release the 

FFT block in hardware to the FFT scheduler. Because the FFT block in hardware does 

not need transfer data, the mechanism of FFT scheduling is simpler than memory 

scheduling. 
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Figure 24 OFDM FFT scheduling 

 

When observing the operation of the timed functional model with a scheduler, 

we see that the process “Guard” gets memory too often. It makes the system work 

inefficiently. We think that setting the order of memory grant at this case study may 

make the system more efficient. We will see the effect at this case study in Chapter 4. 

We describe how to set the order below. As shown in Figure 25, the delay 

element always gets a unit of memory; the process “Guard” and the process “Coarse 

signal detection” get one unit of memory and another unit of memory in an iteration 

respectively. In the same iteration, the process “Guard” sends a request to the memory 

scheduler before the process “Coarse signal detection” sends a request to the memory 

scheduler. Thus, we set that the process “Guard” does not gets grant before the 

process “Coarse signal detection” gets in the last iteration. We will see the effect at 

this case study in Chapter 4. 
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Figure 25 OFDM memory static scheduling 
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Chapter 4  

Experimental Results 

 

4.1 Experimental Information 

 

In this chapter, we introduce some experiments with different hardware 

architecture and different scheduling strategy on our platform. These experiments 

confirm practicability of our platform. 

As we said earlier, we must get hardware timing or make reasonable assumptions 

make timed functional model. At this case study, FFT architecture and the latency of 

matrix operation are the factors. Table 1 shows that how we make the assumption 

about the two factors. Besides, all of our experiments compute 30000 symbols. 

 

Item Clock 

Complex number adder timing 100MHz 

Complex number multiplier timing 100MHz 

Butterfly processing element timing 100MHz 

Table 1 Experimental fundamental assumptions of timing 
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We base on these assumptions to decide the timing of modules in the system. 

Then we make simulation of systems with different scheduling strategy and different 

hardware architecture to verify the effect of static scheduling, adding delay element to 

increase parallelism and different FFT architectures. These experiments also verify 

that platform based design is helpful for design space exploration. The experimental 

results are introduced in 4.2. 
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4.2 Experimental Results 

 

4.2.1 Experiment 

Experiment I is our general case. In other words, the result is our standard to let 

us understand the effect of different scheduling strategy and different hardware 

architecture. The hardware architecture of system in experiment I is shown in Table 2. 

 

Item Architecture 

Memory  2048 bytes, unlimited memory bandwidth 

FFT Memory based, radix-4 

Delay element One 

Static scheduling none 

Table 2 Experimental assumptions of architecture in experiment I 

Figure 26 shows the result of experiment I. 
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Figure 26 OFDM execution time of experiment I (ms) 
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    In the figure, we see that using more than two units of FFTs hardware or more 

than six units of memories does not help decrease the execution time and the system 

in the condition gets no result with less than four units of memories. 

In 3.2, we supposed that if a delay element is added to the system, the system 

may be more efficient than the original system. In experiment II, we verify whether 

the strategy is valid or not. The hardware architecture of system in experiment II is 

shown in Table 3. 

 

Item Architecture 

Memory  2048 bytes, unlimited memory bandwidth 

FFT Memory based, radix-4 

Delay element Two

Static scheduling none 

Table 3 Experimental assumptions of architecture in experiment II 

 

Figure 27 shows the result of experiment II. 
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Figure 27 OFDM execution time of experiment II (ms) 

    In the figure, we see that using more than two units of FFTs hardware or more 

than seven units of memories does not help decrease the execution time and the 

system in the condition gets no result with less than five units of memories. 

Experiment III 

We supposed that our mechanism of static scheduling decreases the need of 

resource in 3.4. In experiment III, we verify the mechanism we suggested is efferent 

or not. The hardware architecture of system in experiment III is shown in Table 4. 

 

Item Architecture 

Memory  2048 bytes, unlimited memory bandwidth 

FFT Memory based, radix-4 

Delay element One 

Static scheduling Set the order of memory grant

Table 4 Experimental assumptions of architecture in experiment III 
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Figure 27 shows the result of experiment III. 
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Figure 28 OFDM execution time of experiment III (ms) 

    In the figure, we see that using more than two units of FFTs hardware or more 

than five units of memories does not help decrease the execution time and the system 

in the condition gets no result with less than three units of memories. 

We use the strategy suggested in 3.2 and our mechanism of static scheduling 

suggested in 3.4 in Experiment IV at the same time. Table 5 depicts the hardware 

architecture of system in experiment IV. 

 

Item Architecture 

Memory  2048 bytes, unlimited memory bandwidth 

FFT Memory based, radix-4 

Delay element Two

Static scheduling Set the order of memory grant

Table 5 Experimental assumptions of architecture in experiment IV 
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Figure 28 shows the result of experiment IV 
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Figure 29 OFDM execution time of experiment IV (ms) 

    In the figure, we see that using more than two units of FFTs hardware or more 

than six units of memories does not help decrease the execution time and the system 

in the condition gets no result with less than four units of memories. 

The convenience of changing architecture in a system model is one main 

advantage of platform design. It allows us try different architectures in a system to 

find the best configuration of hardware. Experiment V just exhibits the convenience. 

Table 6 depicts the hardware architecture of system in experiment V. We change the 

FFT architecture in the system. 
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Item Architecture 

Memory  2048 bytes, unlimited memory bandwidth 

FFT Memory based, radix-4

Delay element One 

Static scheduling None 

Table 6 Experimental assumptions of architecture in experiment V 

Figure 30 shows the result of experiment V. 
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Figure 30 OFDM execution time of experiment V (ms) 

    In the figure, we see that using more than two units of FFTs hardware or more 

than six units of memories does not help decrease the execution time and the system 

in the condition gets no result with less than four units of memories. It also shows the 

effect of FFT architecture the system in the condition gets no result with less than four 

units of memories. 
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4.2.2 Performance Analysis 

     

OFDM execution time (ms) 

# of memories # of FFTs Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 

1 x x 322 X X 3 

2 x x 300 x X 

1 292 x 292 322 384 4 

2 276 x 276 299 322 

1 292 292 230 292 384 5 

2 276 276 215 277 322 

1 230 290 230 172 323 6 

2 215 274 215 156 261 

1 230 172 230 172 323 7 

2 215 156 215 156 261 

1 230 172 230 172 323 8 

2 215 156 215 156 261 

Table 7 Performance analysis 

     

    Table 7 shows all of our experimental result expect cases using three units FFT 

architecture. We ignore cases using three units of FFT hardware there because the 

results of these cases are the same as cases using two units of FFT hardware and we 

show these things above. In the table we see some interesting thins we mention below.  

In experiment II, we add a delay element to increase parallelism. The strategy 

spends more memory. However, it decreases the execution time when the system has 
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sufficient memory. Thus, it gets good performance with these cases using seven and 

eight units of memories. 

In experiment III, we use static scheduling to make good use of memories. Thus, 

it gets good performance with these cases using five and three units of memories. 

In experiment IV, we use static scheduling and add a delay element at the same 

time. It gets good performance with these cases using six units of memories. 

Therefore, we see that design space exploration at electric system level is useful. 

It helps us choice different architectures at different condition. For example, at this 

case study, we can decide which architecture should be used basing on these 

experimental results, like deciding to use static scheduling and add no delay element 

when having only three units of memories to use etc. 

Besides, we also can see the effect of FFT architecture in experimental results. It 

should notice that the process may transfers memories to another process instead of 

releasing every condition. Thus, some cases without enough can not get results. 
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Chapter 5  

Conclusion and Future Work 

 

In this work, we apply a top-down design methodology to an OFDM design. By 

incorporating the process network model, the timed functional model, systems with 

different configurations can be simulated in a short time. Some important parameters 

are then extracted from the simulation result and the performance of the system can be 

assessed before the system is implemented. 

Concretely speaking, we establish a framework with process network model, 

timed functional model, and resource scheduling for design space exploration and 

design modeling. Performances of systems with different configurations can be 

examined. 

Also, we try to use our framework to verify our static scheduling mechanism and 

our idea to increase parallelism. The experimental results show that our platform is 

practical.
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