
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 25 April 2014, At: 06:45
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Multivariate Behavioral Research
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/hmbr20

Exact Analysis of Squared Cross-Validity Coefficient in
Predictive Regression Models
Gwowen Shieh a
a Department of Management Science , National Chiao Tung University ,
Published online: 10 Feb 2009.

To cite this article: Gwowen Shieh (2009) Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models,
Multivariate Behavioral Research, 44:1, 82-105

To link to this article:  http://dx.doi.org/10.1080/00273170802620097

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/hmbr20
http://dx.doi.org/10.1080/00273170802620097
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Multivariate Behavioral Research, 44:82–105, 2009

Copyright © Taylor & Francis Group, LLC

ISSN: 0027-3171 print/1532-7906 online

DOI: 10.1080/00273170802620097

Exact Analysis of Squared
Cross-Validity Coefficient in Predictive

Regression Models

Gwowen Shieh
Department of Management Science

National Chiao Tung University

In regression analysis, the notion of population validity is of theoretical interest

for describing the usefulness of the underlying regression model, whereas the

presumably more important concept of population cross-validity represents the

predictive effectiveness for the regression equation in future research. It appears

that the inference procedures of the squared multiple correlation coefficient have

been extensively developed. In contrast, a full range of statistical methods for the

analysis of the squared cross-validity coefficient is considerably far from complete.

This article considers a distinct expression for the definition of the squared cross-

validity coefficient as the direct connection and monotone transformation to the

squared multiple correlation coefficient. Therefore, all the currently available exact

methods for interval estimation, power calculation, and sample size determination

of the squared multiple correlation coefficient are naturally modified and extended

to the analysis of the squared cross-validity coefficient. The adequacies of the

existing approximate procedures and the suggested exact method are evaluated

through a Monte Carlo study. Furthermore, practical applications in areas of

psychology and management are presented to illustrate the essential features of

the proposed methodologies. The first empirical example uses 6 control variables

related to driver characteristics and traffic congestion and their relation to stress

in bus drivers, and the second example relates skills, cognitive performance, and

personality to team performance measures. The results in this article can facilitate

the recommended practice of cross-validation in psychological and other areas of

social science research.

Correspondence concerning this article should be addressed to Gwowen Shieh, Department of

Management Science, National Chiao Tung University, Hsinchu, Taiwan 30050, R.O.C. E-mail:

gwshieh@mail.nctu.edu.tw
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SQUARED CROSS-VALIDITY COEFFICIENT 83

It is well known that the methodology of multiple linear regression is widely

used for two major purposes: description and prediction. Essentially, an optimal

linear function is constructed with the collected data to formulate the relation

between a criterion variable and a set of predictor variables. For descriptive

purpose, the sample squared multiple correlation coefficient, usually denoted by

R2, is commonly employed to assess the overall goodness-of-fit of derived linear

regression models in many applications. In this case, R2 denotes the percentage

of the total variation of the criterion that is accounted for by the relation with

the predictors. On the other hand, the equation obtained from the sample (the

derivation sample or screening sample) may be utilized for predicting future

outcomes of the criterion variable corresponding to a set of specified values of

predictor variables. Hence, the predictive effectiveness is of primary concern

and the empirical approach to the evaluation of the cross-validity requires a

second sample of criterion and predictor variables (the validation sample) from

the same population of interest. Then, the predictive validity is conveniently

indexed by the squared simple correlation coefficient .R2
C / between the actual

criterion scores of the validation sample and its predicted scores according to

the values of predictors of the second sample in combination with the orig-

inal regression weights developed in the first or derivation sample. If only

one sample is available, it is then partitioned into two subsamples, creating

a derivation and a validation subsample as required of the prescribed empirical

strategy.

However, the empirical cross-validation procedures have been criticized for

their severe drawbacks in terms of stability of regression weights, laborious

process, and waste of data. These limitations raise serious questions about the

practicality of the empirical cross-validation methods. More important, they are

generally not more accurate than formula-based estimators of cross-validity.

Costs and benefits associated with different cross-validation strategies have

previously been discussed in Murphy (1984). It is evident that the formula-

based approach to cross-validation possesses a number of advantages over the

empirical method. Henceforth, the empirical approach is not considered.

Even though the notion of cross-validation has been advocated in the literature

for some time, it has generally been underused in many areas of the social

sciences. The extensive reviews and discussions of Mitchell (1985), Podsakoff

and Dalton (1987), and St. John and Roth (1999) have identified the prob-

lem by profiling the empirical studies reported in several important journals:

Academy of Management Journal; Administrative Science Quarterly; Journal

of Applied Psychology; Journal of Management, Organizational Behavior and

Human Decision Processes; Organizational Behavior and Human Performance;

and Strategic Management Journal for different periods of time. In particular,

St. John and Roth not only have identified the barriers to cross-validation

but also have attempted to assess the impact of not cross-validating. They
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84 SHIEH

explicitly demonstrated the overfitting phenomenon of R2 and adjusted R2

for cross-validation purpose using the Browne (1975, 2000) estimator as the

benchmark and calculating the corresponding shrinkage and percentage drop in

R2. Consequently, formula-based methods are recommended as a simple and

effective procedure for the estimation of cross-validity without sacrificing part

of a sample size or incurring the costs of additional data collection. However, it

has been found that the problem of shrinkage from overestimation is sensitive

to sample size and number of predictor variables. Therefore, a salient yet very

interesting question of which formula is more appropriate for representing the

underlying cross-validity in the framework of multiple linear regression has

received considerable attention from methodologists.

A vast variety of measures that quantify the degree of cross-validity have

been proposed and examined. Raju, Bilgic, Edwards, and Fleer (1997, 1999)

and Yin and Fan (2001) provided excellent reviews and thorough descriptions

of the existing analytical formulas of the squared cross-validity coefficient .¡2
C /.

Unfortunately, the lack of consensus in determining the performance of promi-

nent estimators and the failure to examine the competing formulas in a unified

setup are obvious limitations of the existing results in Raju et al. (1999) and

Yin and Fan. More recently, Shieh (2008) considered the notion of positive-

part modification or replacing negative estimates with zero for all notewor-

thy formulas and conducted comparisons of the exact bias and mean square

error.

The cross-validation formulas are point estimators. For the purpose of interval

estimation, Cattin (1980) considered a direct procedure by simple manipula-

tion of the results of Browne (1975) with a normal approximation to obtain

confidence intervals for the squared cross-validity coefficient. Because ¡2
C is

intertwined with the squared multiple correlation coefficient ¡2, Fowler (1986)

proposed a two-step interval estimation procedure. The process first constructs

an approximate interval estimate of ¡2, which is then converted to the desired

confidence interval of ¡2
C with the function given in Equation (2.8) of Browne

(1975). Consequently, Fowler’s (1986) method is more accurate than that of

Cattin. However, Nijsse (1990) has shown that Fowler’s (1986) interval esti-

mation procedure is questionable to some extent. Nijsse also demonstrated that

Helland’s (1987) method is more accurate than Fowler’s (1986) procedure for

approximating the distribution of R2. However, they both are approximate and

there exist as well other numerous expressions, approximations, and computing

algorithms that can be used to construct confidence intervals for the squared mul-

tiple correlation coefficient and the squared cross-validity coefficient. The reader

can consult Johnson, Kotz, and Balakrishnan (1995, chap. 32) and Stuart and Ord

(1994, chap. 16) for further details. Obviously, the approximate procedures are

comparatively easy to use and seem to give practically useful results. However,
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SQUARED CROSS-VALIDITY COEFFICIENT 85

with the advent of computers and the general availability of statistical software,

computational simplicity is no longer an adequate criterion. Most important,

the superiority of exact analysis is irreplaceable. Therefore, the exact approach

should be considered instead. Although there is a very strong correspondence

between hypothesis testing and interval estimation, it is noteworthy that to our

knowledge, a general discussion of a hypothesis testing procedure for ¡2
C does

not exist. From a methodological point of view, the lack of a full range of

accessible and accurate statistical methods is a dilemma and major setback to

the advancement of cross-validation.

In an effort to improve the quality of research design and analysis within

the multiple linear regression framework, this article provides exact statistical

methods for the analysis of ¡2
C . The standard inferential procedures of interval

estimation and hypothesis testing are derived. It is hoped that their applicability

may be extended to a wide range of problems encountered in applied research;

therefore, the corresponding sample size methodologies are developed as well.

In order to verify accuracy and to demonstrate the advantage of the proposed

extension, examples and simulation studies are presented to evaluate the exact

interval estimation procedure and compare the performance with existing meth-

ods. Given the complex interrelations that exist between multiple variables in

psychological and other social science settings, it is important that researchers

become conversant with exact cross-validation techniques. Hence, the job stress

and team performance studies of Evans and Carrere (1991) and Neuman and

Wright (1999), respectively, are used to exemplify the field application of the

suggested procedure in practical problems. The appended numerical presenta-

tions of cross-validity also help to enhance the impact of their research findings

for subsequent regression analysis in future investigations. In this article, we

restrict ourselves to the normal theory framework that the predictor variables

have a multivariate normal distribution. Although the estimation of cross-validity

for stepwise regression analysis is also an important problem, it was considered

beyond the scope of the present study. The reader is referred to Schmitt and

Ployhart (1999) for an in-depth discussion.

The remainder of the article is organized in the following manner: In the next

section, the fundamental theory and analytical results of the model formulation

and cross-validation in the context of multiple linear regression with multinor-

mal predictor variables are described. A brief review is given for the existing

approximate interval estimation methods of ¡2
C that have motivated our work.

Then, the important details of the exact inferential procedures for the analysis

of ¡2
C are presented. Moreover, detailed numerical investigations are conducted

to assess the adequacy of the proposed method and illustrate the disadvantages

of the currently available approximations. Finally, some concluding remarks are

provided.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
46

 2
5 

A
pr

il 
20

14
 



86 SHIEH

THEORETICAL DEVELOPMENT

Model Formulation and Cross-Validation

Consider the standard multiple linear regression model with criterion variable

Yi and p predictor variables .Xi1; : : : ; Xip/ for i D 1; : : : ; N independent

sets of these variables. Assume that .Yi ; Xi1; : : : ; Xip/T have a joint (p C 1)-

dimensional multivariate normal distribution NpC1.�; †/, where

� D
�

�”

�X

�

and † D
"

¢2
Y †YX

†T
YX †X

#

:

It follows that the squared multiple correlation coefficient for Yi with respect

to Xi D .Xi1; : : : ; Xip/T is ¡2 D †YX†�1
X †T

YX=¢2
Y , and the corresponding

maximum likelihood estimator of ¡2 is the usual sample squared multiple cor-

relation coefficient R2 D SYXS�1
X ST

YX=s2
Y , where SYX D YT .IN � J=N /X,

SX D XT .IN � J=N /X, s2
Y D YT .IN � J=N /Y, with Y D .Y1; : : : ; YN /T ,

X D .X1; : : : ; XN /T , IN is the identity matrix of dimension N , and J is the

N � N square matrix of 1’s. It is well known that R2 can be expressed as the

squared Pearson product-moment correlation coefficient between the observed

response Y and its estimated values OY D XM
O“ where XM D .1N ; X/, 1N is

the N � 1 vector of all 1’s, O“ D fXT
M XM g�1XT

M Y is the least squares and

maximum likelihood estimator of “ D .“0; “T
1 /, “1 D .“1; : : : ; “p/T , and “0,

“1; : : : ; “p are unknown parameters. When the regression equation is employed

for predictive purpose, the population squared cross-validity coefficient ¡2
C is of

primary concern. In this situation, the sample squared cross-validity coefficient

R2
C is the most natural estimator of ¡2

C , where R2
C is the squared Pearson

product-moment correlation coefficient between the observed response values

Y� from the second (validation) random sample .X�; Y�/ and its estimated

values OY� D X�
M

O“, obtained from the original regression equation of the first

(derivation) sample, where X�
M D .1N ; X�/.

Park and Dudycha (1974) noted that the sample squared cross-validity coef-

ficient R2
C is an estimate of the predictive effectiveness measure

Q¡2
C . O“1/ D .†YX

O“1/2=.¢2
Y �

O“T

1 †X
O“1/

for the derived equation with regression weights O“1 for “1. As they noted, Q¡2
C is

a population parameter for a given estimated regression coefficient vector O“1 and

is a random variable rather than a fixed parameter over the all possible values

of O“1. From a mathematical standpoint, Q¡2
C is a function of model parameters

and the derivation sample. Hence, depending primarily upon the researcher’s

purpose, it can be viewed as a parameter or a random variable. Specifically,
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SQUARED CROSS-VALIDITY COEFFICIENT 87

Browne (1975) considered Q¡2
C a parameter and proposed several estimators for

Q¡2
C without the use of a validation sample. In contrast, Mendoza and Stafford

(2001) and Mendoza (1977) treated Q¡2
C as a random variable and studied the

problems of confidence interval estimation and tolerance interval estimation of

¡2, respectively. Likewise, Algina and Keselman (2000) and Park and Dudycha

employed the distributional property of Q¡2
C to determine the sample sizes required

for accurate estimation of ¡2. Although some of the results in these articles are

useful for deriving inference procedures of ¡2
C , it should be clear that these

studies are not directly relevant to the inference of ¡2
C .

Here we emphasize the fundamental distinction between the predictive effec-

tiveness measure Q¡2
C and ¡2

C . In view of the random nature of Q¡2
C , ¡2

C is defined

as the expected value of the index of predictive effectiveness:

¡2
C D EŒ Q¡2

C �;

where the expectation is taken with respect to the distribution of O“1. Accordingly,

we focus our attention here on inference procedures for ¡2
C developed from the

derivation sample alone without requiring a validation sample. Note that the

derivation of EŒ Q¡2
C � requires knowledge of the joint distribution of O“1. However,

Gross (1973) and Park and Dudycha (1974) showed that Q¡2
C can be expressed

as

Q¡2
C D ¡2

1 C .p � 1/=G�
; (1)

where G� is distributed as F (1, p � 1, •), the noncentral F distribution with

1 and p � 1 degrees of freedom, and noncentrality parameter • D .N � p �
2/¡2=.1�¡2/. Correspondingly, the population squared cross-validity coefficient

¡2
C is rewritten as

¡2
C D EG� Œ Q¡2

C �; (2)

where the expectation is taken with respect to the distribution of G� defined in

Equation (1). It is important to note that G� is stochastically increasing in its

noncentrality (see Ghosh, 1973), and • is strictly increasing in ¡2. Therefore, ¡2
C

is a monotonic increasing function of ¡2 for fixed values of N and p. For ease

of exposition, ¡2
C defined in Equation (2) is alternatively expressed as

¡2
C D £2.¡2/ (3)

to emphasize the dependence of the evaluation EG� Œ Q¡2
C � on ¡2. For a concise

visualization of the behavior of ¡2
C or £2.¡2/, Figures 1 and 2 present plots of

¡2
C against ¡2 for various selected values of N and p. It can be seen that ¡2

C
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88 SHIEH

FIGURE 1 The squared cross-validity coefficient for N D 50.

increases with increasing ¡2, with increasing N , and with decreasing p, when

all other factors are fixed.

On the other hand, Browne (1975) provided a different approach to computing

¡2
C , suggesting a first-order approximation to the expected value of Q¡2

C . It is of

the form

¨2.¡2/ D .N � p � 3/¡4 C ¡2

.N � 2p � 2/¡2 C p
: (4)

In order to characterize the accuracy of the approximation, under a variety of

different settings, Tables 1–3 compare the two functions ¡2
C D £2.¡2/ and ¨2.¡2/

for ¡2 D 0:1 to 0.9 in increments of 0.1 and selected values of N and p. For
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SQUARED CROSS-VALIDITY COEFFICIENT 89

FIGURE 2 The squared cross-validity coefficient for p D 10.

ease of comparison, the differences between ¡2
C and ¨2 are denoted by Diff

D ¨2 � ¡2
C in these tables. As expected, the performance of Browne’s (1975)

approximation varies with the sample size N and the number of parameters

p. When N D 20, there are some cases for p D 15 in Table 1 that give

comparatively large errors. However, the results in Tables 2–3 show that the ap-

proximation is generally adequate for moderate and large N with comparatively

small p.

Furthermore, by replacing ¡2 with a proper estimator O¡2 D O¡2.R2/ in Equa-

tion (4), the resulting estimator

O¡2
C:B D ¨2.O¡2/ D .N � p � 3/O¡4 C O¡2

.N � 2p � 2/O¡2 C p
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90 SHIEH

TABLE 1

The Values of ¡2
C

D £2(¡2) and ¨2(¡2) for Selected Values of ¡2 and p When N D 20

p D 2 p D 5 p D 15

¡2 ¡2
C

¨2 Diff ¡2
C

¨2 Diff ¡2
C

¨2 Diff

0.10 0.0676 0.0735 0.0059 0.0351 0.0379 0.0028 0.0091 0.0087 0.0004

0.20 0.1586 0.1667 0.0081 0.0966 0.1030 0.0064 0.0238 0.0222 �0.0016

0.30 0.2599 0.2661 0.0062 0.1790 0.1865 0.0075 0.0459 0.0421 �0.0038

0.40 0.3648 0.3684 0.0036 0.2768 0.2829 0.0061 0.0779 0.0706 �0.0073

0.50 0.4706 0.4722 0.0016 0.3854 0.3889 0.0035 0.1238 0.1111 �0.0127

0.60 0.5765 0.5769 0.0004 0.5012 0.5020 0.0008 0.1893 0.1692 �0.0201

0.70 0.6824 0.6822 �0.0002 0.6219 0.6208 �0.0011 0.2845 0.2545 �0.0300

0.80 0.7882 0.7879 �0.0003 0.7459 0.7439 �0.0020 0.4263 0.3852 �0.0411

0.90 0.8941 0.8938 �0.0003 0.8721 0.8705 �0.0016 0.6458 0.6000 �0.0458

Note. Diff D ¨2 � ¡2

C
.

TABLE 2

The Values of ¡2
C

D £2(¡2) and ¨2(¡2) for Selected Values of ¡2 and p When N D 50

p D 2 p D 5 p D 15

¡2 ¡2
C

¨2 Diff ¡2
C

¨2 Diff ¡2
C

¨2 Diff

0.10 0.0823 0.0859 0.0036 0.0552 0.0591 0.0039 0.0173 0.0178 0.0005

0.20 0.1830 0.1852 0.0022 0.1451 0.1492 0.0041 0.0579 0.0593 0.0014

0.30 0.2851 0.2862 0.0011 0.2459 0.2488 0.0029 0.1200 0.1219 0.0019

0.40 0.3872 0.3878 0.0006 0.3508 0.3525 0.0017 0.2018 0.2034 0.0016

0.50 0.4894 0.4896 0.0002 0.4576 0.4583 0.0007 0.3013 0.3021 0.0008

0.60 0.5915 0.5915 0.0000 0.5653 0.5655 0.0002 0.4165 0.4161 �0.0004

0.70 0.6936 0.6936 0.0000 0.6735 0.6734 �0.0001 0.5455 0.5441 �0.0014

0.80 0.7957 0.7957 0.0000 0.7821 0.7819 �0.0002 0.6868 0.6848 �0.0020

0.90 0.8979 0.8978 �0.0001 0.8910 0.8908 �0.0002 0.8387 0.8371 �0.0016

Note. Diff D ¨2 � ¡2

C
.

is employed to estimate ¡2
C , where O¡4 D .O¡2/2. In addition, Browne (1975)

showed that the variance of Q¡2
C can be well approximated by

¤.¡2/

D 2.N � p � 2/.p � 1/¡4.1 � ¡2/2f2.N � p � 5/¡2 C 1 � .N � 2p � 6/¨2.¡2/g
.N � p � 4/f.N � 2p � 2/¡2 C pg3

:
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SQUARED CROSS-VALIDITY COEFFICIENT 91

TABLE 3

The Values of ¡2
C

D £2(¡2) and ¨2(¡2) for Selected Values of ¡2 and p When N D 100

p D 2 p D 5 p D 15

¡2 ¡2
C

¨2 Diff ¡2
C

¨2 Diff ¡2
C

¨2 Diff

0.10 0.0908 0.0921 0.0013 0.0715 0.0739 0.0024 0.0326 0.0337 0.0011

0.20 0.1918 0.1923 0.0005 0.1701 0.1717 0.0016 0.1020 0.1038 0.0018

0.30 0.2928 0.2930 0.0002 0.2724 0.2732 0.0008 0.1916 0.1933 0.0017

0.40 0.3938 0.3939 0.0001 0.3757 0.3761 0.0004 0.2933 0.2944 0.0011

0.50 0.4948 0.4949 0.0001 0.4794 0.4796 0.0002 0.4024 0.4031 0.0007

0.60 0.5959 0.5959 0.0000 0.5833 0.5834 0.0001 0.5166 0.5168 0.0002

0.70 0.6969 0.6969 0.0000 0.6874 0.6874 0.0000 0.6343 0.6342 �0.0001

0.80 0.7979 0.7979 0.0000 0.7916 0.7915 �0.0001 0.7545 0.7542 �0.0003

0.90 0.8990 0.8990 0.0000 0.8958 0.8957 �0.0001 0.8765 0.8763 �0.0002

Note. Diff D ¨2 � ¡2

C
.

In an attempt to compute a confidence interval, Cattin (1980) considered the

following approximation

O¡2
C:BOP � ¡2

C

O¤1=2

BOP

P� N.0; 1/

where O¡2
C:BOP D ¨2.O¡2

OP /, O¤BOP D ¤.O¡2
OP /, and O¡2

OP D O¡2
OP .R2/ is the

simplifying approximation of the unique minimum variance unbiased estimator

of ¡2 given in Olkin and Pratt (1958):

O¡2
OP .R2/

D 1 � N � 3

N � p � 1
.1 � R2/

�

1 C 2.1 � R2/

N � p C 1
C 8.1 � R2/2

.N � p C 1/.N � p C 3/

�

:

Specifically, Cattin suggested the 100.1 � ’/% confidence interval .CL; CU / for

¡2
C , where CL D O¡2

C:BOP � z’=2 O¤1=2

BOP , CU D O¡2
C:BOP C z’=2 O¤1=2

BOP , and z’=2 is the

upper 100.’=2/ percentage point of the standard normal distribution.

Despite the simplicity of Cattin’s (1980) confidence interval procedure, Fowler

(1986) noted that it has some undesirable properties. Specifically, Fowler (1986)

indicated that the adapted variance approximation seriously underestimates the

corresponding true variance. Moreover, the distribution of R2 is generally skewed.

Even though it is not obvious at first sight, the equidistant confidence interval

formulation of Cattin is therefore presumably inappropriate and is not likely to

be accurate. Numerical inspections showed that the actual coverage probability
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is far below the nominal level; thus, the procedure is not only inaccurate but

also misleading.

Fowler (1986) as well adopted a formula of Laubscher (1960) for nor-

malizing the noncentral F distribution, in combination with some additional

calculations, to find the 100.1 � ’/% confidence interval .O¡2
FL ; O¡2

F U / of ¡2,

where O¡2
FL and O¡2

F U denote the lower and upper 100.’=2/% confidence limits,

respectively. The two limits are converted to yield the 100.1 � ’/% confidence

interval .FL; FU / through the function ¨2.¡2/, where FL D ¨2.O¡2
FL/ and FU D

¨2.O¡2
F U /. Fowler’s (1986) two-stage procedure is slightly more involved than

Cattin’s (1980) approach. According to Fowler’s (1986) analytical and numerical

comparisons, the interval .CL; CU / of Cattin (1980) is outperformed by his

interval .FL; FU /. However, Nijsse (1990) noted that the confidence limits

.O¡2
FL; O¡2

F U / are somehow too large and concluded that Fowler’s (1986) method

should not be used unless one is only interested in the lower limit of a confidence

interval. Thus, the resulting confidence intervals of the squared cross-validity

coefficient are problematic and their practical usefulness in applied research is

limited.

Exact Analysis

Essentially, Fowler’s (1986) approach involves two different approximation pro-

cesses in the construction of the two-step confidence intervals. For the approx-

imation of the distribution of sample squared multiple correlation coefficient,

Fowler (1986) employed a normalization of the noncentral F distribution in

combination with a transformation that equates the first two moments of the

noncentral F distribution to the first two moments of a central F distribution.

A detailed step-by-step description and additional results of the technique are

provided in Nijsse (1990). Moreover, it was shown in Browne (1975) that the

transformation ¨2.¡2/ represents a large sample approximation to the exact

squared cross-validity coefficient ¡2
C . Therefore, the conversion of .O¡2

FL; O¡2
F U /

to .FL; FU /, through the function ¨2.¡2/ in the second step of Fowler’s (1986)

interval estimation procedure, involves further approximation. Thus, the overall

performance of Fowler’s (1986) confidence interval of the squared cross-validity

coefficient is suspect. On the other hand, an exact approach will incorporate the

exact distributional properties of R2 for the inference of ¡2 and the transfor-

mation £2.¡2/ given in Equation (3) into the construction of interval estimation

procedure rather than the approximate ¨2.¡2/ defined in Equation (4).

Specifically, for a selected point estimate O¡2 in the estimation of ¡2, we

propose to consider the corresponding point estimate in the estimation of ¡2
C :

O¡2
C D £2.O¡2/ D EH �

� O¡2

1 C .p � 1/=H�

�

; (5)
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SQUARED CROSS-VALIDITY COEFFICIENT 93

where H� is distributed as F.1; p � 1; O•/ and O• D .N � p � 2/O¡2=.1 � O¡2/. Note

that the numerical computation of £2.O¡2/ requires the evaluation of the noncentral

F probability distribution function and the one-dimensional integration with

respect to the noncentral F probability distribution function. Obviously, this is

more involved than the calculation of ¨2.O¡2/ considered in Cattin (1980) and

Fowler (1986); however, it is of little consequence if a computer is employed.

Because the related mathematics and probability functions are readily embedded

in modern statistical packages, such as the SAS (2008) system, no substantial

computing efforts are required.

To facilitate the presentation of the exact inference procedures of ¡2
C , it is

instructive to note that the exact methods and algorithms for interval estimation,

hypothesis testing, and sample size determination of ¡2 are widely available.

More extensive discussions can be found in Algina and Olejnik (2003); Dunlap,

Xin, and Myers (2004); Gatsonis and Sampson (1989); Mendoza and Stafford

(2001); Shieh (2006); and Steiger and Fouladi (1992). In this study, we extend

this information for the analysis of ¡2 to ¡2
C .

Interval Estimation

The exact interval estimation of ¡2
C is conducted in two steps. First, we need to

find the confidence interval of ¡2 using the observed sample squared multiple cor-

relation coefficient R2. Suppose .O¡2
EL; O¡2

EU / is the exact 100.1�’/% confidence

interval of ¡2, where O¡2
EL D O¡2

EL.R2/ and O¡2
EU D O¡2

EU .R2/ denote the lower

100’1% and upper 100’2% confidence limits, respectively, with ’ D ’1 C ’2.

Then, in the second step, the confidence limits of ¡2 are converted to the

confidence limits of ¡2
C by Equation (5). Accordingly, the suggested exact

100.1 � ’/% confidence interval of ¡2
C is .O£2

EL; O£2
EU / where O£2

EL D £2.O¡2
EL/

and O£2
EU D £2.O¡2

EU /. The most common practice is to assume ’1 D ’2 D ’=2,

although it may not yield the shortest length confidence interval for a given ’.

Furthermore, the one-sided confidence intervals are readily obtained by setting

’1 or ’2 to zero.

When planning future research, it is important to determine the required

sample sizes for interval estimation with the prescribed length and desired

accuracy. With ¡2
C , 1 � ’, and proper bounds bL > 0 and bU > 0, the smallest

sample size N needed for the interval .¡2
C � bL; ¡2

C C bU / with coverage

probability at least 1 � ’ can be computed from

P f¡2
C � bL < £2.R2/ < ¡2

C C bU g D P fR2
L < R2 < R2

U g � 1 � ’;

where R2
L and R2

U are the inverted values so that ¡2
C � bL D £2.R2

L/ and

¡2
C C bU D £2.R2

U /, respectively, and ¡2 is the corresponding unique inverse

of ¡2
C D £2.¡2/. The process of finding the necessary sample size for accurate
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94 SHIEH

TABLE 4

Minimum Sample Sizes Required for the Prescribed

Interval [0, ¡2
C

C b) of O¡2
C

D £2(R2) With Coverage

Probability of at Least 0.95 When p D 5

b

¡2
C

0.05 0.10 0.15 0.20

0.00 161 81 54 41

0.05 438 164 94 64

0.10 570 194 107 71

0.15 663 213 114 74

0.20 724 222 116 74

0.25 757 225 115 73

0.30 764 222 112 70

0.35 749 214 106 65

0.40 715 201 98 60

0.45 665 185 89 54

0.50 603 165 79 48

0.55 531 144 69 41

0.60 453 122 58 34

0.65 372 99 46 27

0.70 292 77 36 20

0.75 215 56 26 14

0.80 145 37 17 NA

0.85 86 21 NA NA

0.90 39 NA NA NA

0.95 NA NA NA NA

interval estimation of ¡2
C involves an iterative process to find the solution because

£2 and the probability density function of R2 depend on the sample size N . For

illustrative purposes, the minimum sample sizes needed to control the prescribed

interval Œ0; ¡2
C C b/ with coverage probability of at least 0.95 are presented in

Table 4 for values of ¡2
C ranging from 0 to 0.95 in increments of 0.05, and

b D 0.05, 0.10, 0.15, and 0.20. Similarly, the cases of upper and two-sided

100.1 � ’/% intervals and related sample size calculations can be conducted.

Hypothesis Testing

Hypothesis testing of ¡2
C involves two steps as well. Consider the following

one- and two-tail tests of the hypotheses H0: ¡2
C � ¡2

C:0, H0: ¡2
C � ¡2

C:0, and

H0: ¡2
C D ¡2

C:0, where ¡2
C:0 (� 0/ is a specified constant that corresponds to

some threshold for identifying minimum or substantial research findings. The

related considerations of testing substantive significance in the context of general

linear models are noted in Fowler (1985), Murphy and Myors (1999), Steiger
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SQUARED CROSS-VALIDITY COEFFICIENT 95

(2004), and Wilcox (1980). First, the prescribed three tests are transformed into

hypothesis tests H0: ¡2 � ¡2
0, H0: ¡2 � ¡2

0, and H0: ¡2 D ¡2
0, where ¡2

0 is the

unique value of £2.¡2
0/ D ¡2

C:0. Then, the decision of whether or not to reject the

test of ¡2 readily amounts to the conclusion for the corresponding test of ¡2
C .

The power function associated with the test H0: ¡2
C � ¡2

C:0 versus H1: ¡2
C >

¡2
C:0 can be written as

P f£2.R2/ > £2.R2
’/j¡2

C D ¡2
C:1g D P fR2 > R2

’j¡2 D ¡2
1g;

where R2
’ is the upper 100’% percentile of the distribution of R2 when ¡2 D ¡2

0,

i.e., P f£2.R2/ > £2.R2
’/j¡2

C D ¡2
C:0g D P fR2 > R2

’j¡2 D ¡2
0g D ’, ¡2

1 > ¡2
0,

and ¡2
C:1 D £2.¡2

1/ > ¡2
C:0. Furthermore, this power function can be utilized to

calculate the sample size needed in order to attain the specified power. Because

the distribution of R2 and the critical value R2
’ depend on the sample size N ,

an iterative search is essential for the computing procedure to find the minimum

sample size. Similarly, the power function of the test H0: ¡2
C � ¡2

C:0 versus

H1: ¡2
C < ¡2

C:0 is

P f£2.R2/ < £2.R2
1�’/j¡2

C D ¡2
C:1g D P fR2 < R2

1�’j¡2 D ¡2
1g;

where R2
1�’ is the lower 100’% percentile of the distribution of R2 when ¡2 D

¡2
0, ¡2

1 < ¡2
0, and ¡2

C:1 D £2.¡2
1/ < ¡2

C:0. The two-sided test H0: ¡2
C D ¡2

C:0 versus

H1: ¡2
C ¤ ¡2

C:0 has the power function

P f£2.R2/ < £2.R2
1�’=2/ and £2.R2/ > £2.R2

’=2/j¡2
C D ¡2

C:1g

D P fR2 < R2
1�’=2 and R2 > R2

’=2j¡2 D ¡2
1g;

where R2
1�’=2 and are the lower and upper 100.’=2/% percentiles of the distri-

bution of R2 when ¡2 D ¡2
0, ¡2

1 ¤ ¡2
0, and ¡2

C:1 D £2.¡2
1/ ¤ ¡2

C:0. The sample size

determinations for the tests H0: ¡2
C � ¡2

C:0 and H0: ¡2
C D ¡2

C:0 can be conducted

in a completely analogous fashion. Table 5 enumerates the sample sizes for ¡2
C

of 0.05 to 0.95 in increments of 0.05 and nominal power D 0.80, 0.90, 0.95, and

0.99 to attain the nominal power for the test of H0: ¡2
C D 0 versus H1: ¡2

C > 0

with p D 5 and ’ D 0:05.

STUDY 1

Owing to the limited and imprecise results in the literature, detailed numerical

study is conducted to evaluate the approximate methods of Cattin (1980) and

Fowler (1986) and the proposed exact approach for interval estimation of ¡2
C .
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96 SHIEH

TABLE 5

Sample Sizes Required for the Test of H0: ¡2
C

D 0

Versus H1: ¡2
C

> 0 to Achieve the Specified

Power With p D 5 and ’ D 0.05

Power

¡2
C

0.80 0.90 0.95 0.99

0.05 190 257 319 451

0.10 93 126 155 219

0.15 61 82 101 142

0.20 45 60 74 103

0.25 35 47 57 80

0.30 29 38 46 64

0.35 24 32 38 53

0.40 21 27 33 45

0.45 18 23 28 38

0.50 16 20 24 33

0.55 15 18 21 29

0.60 13 16 19 25

0.65 12 14 17 22

0.70 11 13 15 19

0.75 10 12 13 17

0.80 10 11 12 15

0.85 9 10 11 13

0.90 8 9 10 11

0.95 8 8 9 9

Method

The six model formulations described in Table 3 of Fowler (1986) are the basis

for the numerical assessments. For the three chosen combinations of .N; p/ D
(15, 6), (45, 2), and (45, 10), the confidence limits of the competing procedures

are computed for the values R2 D 0:3 and 0.7. For the approximate methods,

the 100.1 � q/% confidence limit derived from the normal approximation of

Cattin (1980) is Cq D O¡2
C:BOP Czq O¤1=2

BOP , where zq is the 100.1�q/th percentile

of the standard normal distribution. The corresponding confidence limit from

Fowler (1986) is Fq D ¨2.O¡2
Fq/, where O¡2

Fq D O¡2
Fq.R2/ is the approximate

100.1 � q/% confidence limit of ¡2, which is calculated according to the square

root transformation of Laubscher (1960). The exact confidence limit O£2
Eq D

£2.O¡2
Eq/ is calculated by the two-stage process, where O¡2

Eq D O¡2
Eq.R2/ is the

exact 100.1�q/% confidence limit of ¡2. The results are summarized in Table 6

for confidence level D 1 � q D 0.025, 0.05, 0.10, 0.90, 0.95, and 0.975.
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SQUARED CROSS-VALIDITY COEFFICIENT 97

TABLE 6

The Approximate (Cattin, 1980 and Fowler, 1986) and Exact Confidence Limits for ¡2
C

Confidence Level

N p R2 Method 0.025 0.05 0.10 0.90 0.95 0.975

15 6 0.3 Cattin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fowler 0.0000 0.0000 0.0000 0.0908 0.1821 0.2721

Exact 0.0000 0.0000 0.0000 0.0764 0.1523 0.2305

15 6 0.7 Cattin 0.0563 0.1001 0.1507 0.5072 0.5577 0.6015

Fowler 0.0000 0.0000 0.0119 0.6019 0.6739 0.7294

Exact 0.0000 0.0000 0.0149 0.5917 0.6619 0.7150

45 2 0.3 Cattin 0.2161 0.2232 0.2315 0.2899 0.2982 0.3054

Fowler 0.0627 0.0878 0.1208 0.3857 0.4256 0.4602

Exact 0.0546 0.0805 0.1153 0.4163 0.4590 0.4950

45 2 0.7 Cattin 0.6677 0.6710 0.6749 0.7022 0.7061 0.7094

Fowler 0.4830 0.5193 0.5592 0.7784 0.8011 0.8192

Exact 0.4884 0.5236 0.5622 0.7719 0.7936 0.8110

45 10 0.3 Cattin �0.0110 �0.0038 0.0045 0.0630 0.0713 0.0785

Fowler 0.0000 0.0000 0.0000 0.1790 0.2295 0.2744

Exact 0.0000 0.0000 0.0000 0.1712 0.2204 0.2648

45 10 0.7 Cattin 0.4470 0.4613 0.4779 0.5945 0.6110 0.6253

Fowler 0.2552 0.3016 0.3547 0.6682 0.7020 0.7291

Exact 0.2567 0.3027 0.3551 0.6609 0.6935 0.7196

Results

Inspection of the confidence limits in Table 3 of Fowler (1986) and those we

present in Table 6 indicates that the numerical computations due to Fowler

(1986) are problematic to some extent. Notably, the confidence limits Cq of

Cattin (1980) in Table 6 differ considerably from those in Table 3 of Fowler

(1986) for the four cases of .N; p; R2/ D (15, 6, 0.7), (45, 2, 0.3), (45, 10,

0.3), and (45, 10, 0.7). Also, there are some minor differences between the two

tables for .N; p; R2/ D (45, 2, 0.7). The only case of complete agreement occurs

when .N; p; R2/ D (15, 6, 0.3) where the point estimate O¡2
OP 2 yields the negative

value of �0.2313 (the common practice is to replace a negative estimate with

zero because the parameter ¡2 being estimated is nonnegative). Accordingly,

it can be determined that the estimated values for the mean and variance are

O¡2
C:BR-OP 2 D O¤BR-OP 2 D 0. This unfortunately leads to the undesirable result

that the confidence limit is identically zero for all confidence levels. However,

this was not addressed in Cattin. Regarding Fowler’s (1986) method, it seems

that there is an acceptable agreement between the calculated confidence limits Fq

and those in Table 3 of Fowler (1986), although only the first two decimal digits

were reported in the latter. Furthermore, the “exact” confidence limits of Table 3
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98 SHIEH

of Fowler (1986) are actually approximates. The results show, however, that they

are not too different from the exact values O£2
Eq given in Table 6. Nonetheless,

it should be noted that the reported confidence limits are substantially different

for .N; p; R2/ D (45, 2, 0.7).

Discussion

Despite these discrepancies, the general conclusion that Fowler’s (1986) method

is closer to the exact approach than Cattin’s (1980) procedure is still valid.

Nonetheless, Fowler’s (1986) approximation gives useful lower confidence limits

for most of the cases investigated, though the upper confidence limits are less

accurate, and there are some cases where the differences are large. Notably,

Fowler’s confidence limits are 0.0908, 0.1821, and 0.2721 for confidence level

D 0.90, 0.95, and 0.975 when .N; p; R2/ D (15, 6, 0.3), whereas the cor-

responding exact confidence limits are 0.0764, 0.1523, and 0.2305. Moreover,

when .N; p; R2/ D (45, 2, 0.3), the confidence limits presented by Fowler (1986)

and the exact approach are 0.3857, 0.4256, and 0.4602 and 0.4163, 0.4590, and

0.4950, respectively, for the three confidence levels of 0.90, 0.95, and 0.975.

Thus, the exact approach outperforms the methods of Cattin and Fowler (1986).

STUDY 2

In Study 1, the results in Table 6 assumed a specific observed value of R2,

namely, 0.3 or 0.7. In general, these values only represent two realizations of

R2 over the whole range of [0, 1]. Hence, it is of theoretical importance to

investigate the overall performance of these interval estimation approaches in

achieving nominal coverage probability.

Method

In order to evaluate the accuracy in achieving the nominal coverage probability,

we continue to compare the competing methods in terms of the discrepancy

between simulated coverage probability and nominal coverage probability under

the same combined settings of N and p in Table 6. The setting of N D 100

and p D 10, which is more likely to be encountered in applied work, is also

investigated. For the present purpose, we consider the values ¡2 D 0:3 or 0.7.

Simulated coverage probability was obtained by simulating 10,000 replicate

samples of R2. It is worth noting that the exact probability density function of

R2 was originally obtained by Fisher (1928) and is extremely complex. It is

difficult to generate a pseudorandom variable with the common expression of

R2 in terms of the hypergeometric and beta functions. However, it is well known

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
46

 2
5 

A
pr

il 
20

14
 



SQUARED CROSS-VALIDITY COEFFICIENT 99

that there is a direct connection between the correlation model with multinormal

variables and the multivariate normal regression model. Hence, inferences for

¡2 can be accomplished with the usual F � statistic:

F � D R2=p

.1 � R2/=.N � p � 1/
:

Additionally, there is an important correspondence between the derived F �

distribution and the following generic form suggested by Hodgson (1968) and

Gurland (1968), namely,

.Z C
p

ƒ � W1/2 C W2

W3

;

where ƒ D ¡2=.1 � ¡2/, Z has the standard normal distribution N.0; 1/, W1 �
¦2.N �1/, W 2 � ¦2.p �1/, W3 � ¦2.N �p �1/ where ¦2.df / denotes a chi-

square distribution with df degree(s) of freedom, and the random variables Z,

W1, W2, and W3 are mutually independent. Consequently, the pseudo F � random

variable or, equivalently, the pseudo R2 random variable, can be generated by

employing the provided random number functions of standard normal and chi-

square distributions in most modern statistical packages.

Results

For each replicate of R2, the lower and upper 5% confidence limits are computed

with the approximate methods of Cattin (1980) and Fowler (1986) and compared

with the exact approach. The simulated coverage probability is the proportion of

the 10,000 replicates whose confidence intervals include ¡2
C . The adequacy of an

interval estimation procedure is determined by the difference (error D simulated

coverage probability � nominal coverage probability) between the simulated

coverage probability and the designated nominal confidence level. With the

calculated lower and upper 5% confidence limits, we examined the performance

of the upper 95%, lower 95%, and two-sided 90% confidence intervals for the

three methods. All calculations were performed using programs written with

SAS/IML (SAS Institute, 2008). Numerical results are reported in Table 7.

Discussion

It can be seen from the results summarized in Table 7 that the ordering of

accuracy is consistently O£2
Eq , which surpasses Fq , which in turn is better than

Cq in all cases considered. Indeed, Cattin’s (1980) method resulted in the

largest discrepancies in achieving the nominal cover probability among the three
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TABLE 7

Simulated Coverage Probability of the Approximate (Cattin, 1980 and Fowler, 1986)

and Exact Confidence Intervals (CI) for ¡2
C

Upper 95% CI Lower 95% CI Two-sided 90% CI

N p ¡2 ¡2
C

Method

Simulated

Coverage

Probability Error

Simulated

Coverage

Probability Error

Simulated

Coverage

Probability Error

15 6 0.3 0.1288 Cattin 0.7551 �0.1949 0.7073 �0.2427 0.4624 �0.4376

Fowler 0.9585 0.0085 0.9627 0.0127 0.9212 0.0212

Exact 0.9533 0.0033 0.9507 0.0007 0.9040 0.0040

15 6 0.7 0.5484 Cattin 0.7178 �0.2322 0.8669 �0.0831 0.5847 �0.3153

Fowler 0.9606 0.0106 0.9582 0.0082 0.9188 0.0188

Exact 0.9505 0.0005 0.0499 �0.0001 0.90004 0.0004

45 2 0.3 0.2833 Cattin 0.6071 �0.3429 0.6201 �0.3299 0.2272 �0.6728

Fowler 0.9457 �0.0043 0.8327 �0.1173 0.7784 �0.1216

Exact 0.9503 0.0003 0.9514 0.0014 0.9017 0.0017

45 2 0.7 0.6929 Cattin 0.5474 �0.4026 0.6235 �0.3265 0.1709 �0.7291

Fowler 0.9581 0.0081 0.9599 0.0099 0.9180 0.0180

Exact 0.9520 0.0020 0.9510 0.0010 0.9030 0.0030

45 10 0.3 0.1845 Cattin 0.7197 �0.2303 0.7342 �0.2158 0.4539 �0.4461

Fowler 0.9459 �0.0041 0.9571 0.0071 0.9030 0.0030

Exact 0.9471 �0.0029 0.9506 0.0006 0.8977 �0.0023

45 10 0.7 0.6280 Cattin 0.6819 �0.2681 0.7880 �0.1620 0.4699 �0.4301

Fowler 0.9542 0.0042 0.9613 0.0113 0.9155 0.0155

Exact 0.9494 �0.0006 0.9533 0.0033 0.9027 0.0027

100 10 0.3 0.2419 Cattin 0.6788 �0.2712 0.7048 �0.2452 0.3836 �0.5164

Fowler 0.9501 0.0001 0.9384 �0.0116 0.8885 �0.0115

Exact 0.9514 0.0014 0.9506 0.0006 0.9020 0.0020

100 10 0.7 0.6708 Cattin 0.6285 �0.3215 0.6960 �0.2540 0.3245 �0.5755

Fowler 0.9570 0.0070 0.9600 0.0100 0.9170 0.0170

Exact 0.9524 0.0024 0.9482 �0.0018 0.9006 0.0006

competing formulas. Specifically, the simulated coverage probabilities are far

below the nominal levels, and all the computed errors are substantially less

than zero. The worst situation occurred with .N; p; ¡2/ D (45, 2, 0.7) and

¡2
C D 0:6929 where the errors were �0.4026, �0.3265, and �0.7291 for the

upper 95%, lower 95%, and two-sided 90% confidence intervals, respectively.

Fowler’s (1986) procedure produced sufficiently accurate upper 95% confi-

dence intervals with errors in the range of �0.0043 to 0.0106, whereas the lower

95% and two-sided 90% intervals varied considerably with model characteristics

and incurred comparatively larger magnitude of errors. Moreover, the errors

were as low as �0.1173 and �0.1216 for the lower 95% and two-sided 90%

confidence interval estimations, respectively, when .N; p; ¡2/ D (45, 2, 0.3) and

¡2
C D 0:2833. Fowler’s (1986) method has the undesirable property that the

lower one-sided and two-sided interval estimations are less accurate than the

upper one-sided interval estimation.

The exact confidence interval procedure resulted in consistently good per-

formance, achieving the nominal levels for all model configurations. Indeed, it
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SQUARED CROSS-VALIDITY COEFFICIENT 101

yielded the smallest absolute errors compared with the other approximations and

the associated absolute errors never exceeded 0.004 in all 24 cases.

EMPIRICAL ILLUSTRATIONS

In addition to the detailed investigations employing Monte Carlo simulation

techniques, it seems desirable that the competing cross-validation procedures

be subjected to further study employing real data with varying characteristics.

Two examples related to management and psychology researchers are used as

illustrations: one studies job stress with moderate sample size and the second

concerns performance evaluations for a comparatively large sample size. The

ultimate aim is to demonstrate the formula-based cross-validity procedures for

point and interval estimation primarily because of their ease of computation in

accord with the advocated practice of cross-validation. Also, particular emphasis

is devoted to revealing the potential consequence of failing to recognize the

underlying limitations of the approximate methods.

First, Evans and Carrere (1991) conducted multiple regression analysis to

investigate the link between traffic congestion and psychophysiological stress

among public transport operators and to test the hypothesized mediating role

of perceived control in the traffic congestion-psychophysiological stress. Sixty

male bus drivers were sampled at an urban center within the Los Angeles

metropolitan area. Notably, traffic congestion was calculated as the ratio of

traffic volume to the maximum carrying capacity of the roadway segment for

each driver’s shift. The level of neuroendocrine marker from driver’s urine

sample provides a reliable and valid measure of occupational stress over work.

In predicting a nonadrenaline stress indicator of bus drivers at work with a

combination of six control variables (age, seniority, caffeine consumption, etc.)

and traffic congestion, the regression analysis yields an R2 D 0:16 for p D 7 and

N D 60. On the basis of the standard description, it is of practical importance to

assess the predictive effectiveness of the resulting regression equation in future

research with new participants. Hence, the point estimates O¡2
OP and O¡2

C:BOP

of ¡2 and ¡2
C , respectively, are computed. As interval estimation is a more

informative alternative to point estimation for inference purpose, the lower and

upper 2.5% confidence limits of ¡2
C are calculated for the approximate and

exact methods. The results are summarized in Table 8. It is worth noting,

consistent with the general concept regarding the overestimation problem of

R2, that O¡2
OP D 0:0489 and O¡2

C:BOP D 0:0184 are substantially smaller than

R2 D 0:16. Furthermore, the two-sided 95% confidence interval (0, 0.1937) of

the exact approach is moderately different from the interval (0, 0.1726) of Fowler

(1986) and substantially disagrees with Cattin’s (1980) interval of (�0.0075,

0.0443).
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TABLE 8

Examples of the Approximate (Cattin, 1980 and Fowler, 1986)

and Exact Confidence Intervals for ¡2
C

N p R2 O¡2
OP 2 O¡2

C:BR-OP2 Method

Lower and

Upper 2.5% Confidence Limits

60 7 0.16 0.0489 0.0184 Cattin �0.0075 0.0443

Fowler 0 0.1726

Exact 0 0.1937

316 5 0.20 0.1881 0.1782 Cattin 0.1645 0.1920

Fowler 0.1137 0.2165

Exact 0.1043 0.2626

Neuman and Wright (1999) examined the effectiveness of using general

cognitive ability, job-specific skills, and personality traits jointly to predict work

team performance at both the individual level and group level. The traditional

job analytic procedure was conducted for 316 full-time human resource rep-

resentatives, across the United States, of a large wholesale department store

organization. These 316 representatives were organized into 79 four-person

work teams. Specifically, hierarchical regressions of skills, cognitive ability,

and personality on peer ratings of team member performance were conducted

at the individual level. The particular analysis reveals that the utility index

of the model is R2 D 0:20 for p D 5 and N D 316. The results sup-

port the two major individual level hypotheses that team member job-specific

skills and general cognitive ability predict team member performance, and the

personality contributed to the prediction of performance ratings beyond skills

and cognitive ability. The present result can be readily extended for predictive

purposes. Although the overall goodness-of-fit of the two examples are almost

identical, the computed values of O¡2
OP D 0:1881 and O¡2

C:BOP D 0:1782 for the

study of team member performance are dramatically larger than those in the

occupational stress analysis due to sample size discrepancy. The corresponding

lower and upper 2.5% confidence limits of ¡2
C are presented in Table 8, and

the pattern of results is similar to those illustrated earlier for Evans and Carrere

(1991). Note that the resulting exact confidence intervals are not centered on

the values of the common measure R2 or the nearly unbiased estimate O¡2
C:BOP

of ¡2
C .

In short, the formula-based approach to cross-validation requires only the

standard regression results commonly available from statistical software pack-

ages. The existing approximate methods are not accurate enough both analyti-

cally and empirically to be applicable in a great diversity ofstudy designs. Es-

sentially, the exact procedure offers an important alternative with great practical

and pedagogical appeal for the advancement of cross-validation.
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CONCLUSIONS

According to the comprehensive reviews of Mitchell (1985), Podsakoff and

Dalton (1987), and St. John and Roth (1999), it appears that researchers have

not paid much attention to the process of cross-validation. Although much effort

has been devoted to the construction of useful measures of population cross-

validity in the literature, the inferential procedures that have been developed

are unsatisfactory and incomplete for the practical purposes of modern analysis.

Consequently, we presented exact procedures for interval estimation and hypoth-

esis testing of the squared cross-validity coefficient as well as discussing feasible

solutions to the issue of sample size determination. Furthermore, according

to our results, the exact approach is recommended for interval estimation and

hypothesis testing of the squared cross-validity coefficient.
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