
An Algorithm for Large-Scale Analog Block
Placement with Symmetry Constraints

Prepared by Shing-Weng Fang
Directed by Prof. Hung-Ming Chen

Department of Electronics Engineering

National Chiao Tung University

Hsinchu, Taiwan 300, R.O.C.

2007-01



Contents

1 Introduction 1

1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4

2.1 Symmetry Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Layout Design with Symmetry Constraints . . . . . . . . . . . . . . . 5

2.3 Sequence-Pair Placement with Symmetry Constraints . . . . . . . . . 8

2.3.1 Sequence-Pair Representation Review . . . . . . . . . . . . . . 8

2.3.2 Cell Placement Methods with Symmetry Constraints . . . . . 10

2.3.3 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 12

3 Proposed Methodology 13

3.1 Improved Sequence-Pair Packing for Symmetry Constraints . . . . . . 13

3.2 Linear Programming with Symmetry Constraints . . . . . . . . . . . 14

3.2.1 Linear Constraint Expressions from Symmetry Constraints

and Given Sequence Pair . . . . . . . . . . . . . . . . . . . . . 14

iii



3.2.2 Removal of Transitive Edges . . . . . . . . . . . . . . . . . . . 15

3.2.3 Set of Parameters with Linear Constraint Expressions . . . . . 16

3.3 Annealing Process in Placement . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Set of Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Our Approach to Dealing with the Set of Moves . . . . . . . . 18

3.3.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Experimental Results 20

5 Conclusion and Future Work 24

iv



List of Figures

2.1 one self symmetry block (as) and two pairs of symmetry blocks :(bl ,

br) , (cl, cr)[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 One-dimensional cross-coupled symmetric multi-finger transistor pair.

The rectangles with dotted patterns represent the poly-silicon layer.[10]

6

2.3 Two-dimensional cross-coupled symmetric multi-finger transistor pair.

The rectangles with dotted patterns represent the poly-silicon layer.[10]

6

2.4 One dimensional symmetric layout of on-chip resistors [10] . . . . . . 7

2.5 Four comparator subcircuits ( A, B, C, and D) laid-out in a split-

symmetric common-centroid layout. [10] . . . . . . . . . . . . . . . . 7

2.6 (a) Oblique grid for sequence-pair (X,Y) = ( (4,3,1,6,2,5) , (6,3,5,4,1,2)

). (b) The corresponding packing. [3] . . . . . . . . . . . . . . . . . 9

2.7 (a) In horizontal constraint graph GH(V,E), a path sh412th corre-

sponds to <4 1 2>, a common subsequence of (X,Y) = ( (4,3,1,6,2,5),(6,3,5,4,1,2)

). (b) In vertical constraint graph Gv(V,E), a path sh634th corre-

sponds to <6 3 4>, a common subsequence of (XR,Y) = ( (4,3,1,6,2,5),(6,3,5,4,1,2)

).[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Placement with symmetry groups G = (E,F), (B,H)[8] . . . . . . . . 11

v



3.1 (a) The process of packing block i to n. (b) The corresponding packing

with sequence-pair (431625, 635412) . . . . . . . . . . . . . . . . . . 14

3.2 blocks placement for seq-pair (al bs c ar; al c bs ar) . . . . . . . . . 15

3.3 The result of a symmetric group in D70 (the symmetry axis is at 175) 17

4.1 D120 with 120 blocks and 5 symmetry groups at Table 4.1 with our

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 D220 with 220 blocks and 5 symmetry groups about 1 hour with dead

space of 9.93 percent with our approach . . . . . . . . . . . . . . . . 23

vi



List of Tables

4.1 Experimental comparisons between the results of our approach(Pentium4

2.8GHz) and [4](Xeon(TM) 3.00GHz) . . . . . . . . . . . . . . . . . . 21

4.2 Experimental comparisons between the results of our approach(Pentium4

2.8GHz) and similar program in [4](Pentium4 2.8GHz) . . . . . . . . 22

vii



Chapter 1

Introduction

Recently, analog circuits are developed rapidly in high technology industry. The

most important issue for analog signals is the parasitic. We take account of the

balance of layout-induced parasitic devices to avoid both degradation of power sup-

ply rejection ratio [1] and the balance of layout-induced parasitic since the analog

circuits are sensitive to parasitic disturbances, crosstalk, substrate noise, power sup-

ply, etc. Placement symmetry can also be used to reduce the sensitivity of thermal

gradients in circuits. Failure to balance thermal couplings in differential circuits can

introduce unwanted oscillations. Therefore, in order to deal with mismatches, the

thermally sensitive devices couples should be placed symmetrically in analog cir-

cuits. Indeed, the basic reason for symmetry constraints is the problem of process

variations. Considering the basic reason, therefore, the cells of the same symmetry

group that has a common axis have better to be placed together and we allow several

symmetry groups in our floorplan.

The problem of placing devices with symmetry constraint[1,2,13,14,15] used sim-

ulated annealing as an optimization engine based on a packing representation. We

classify the representations into two categories. (1) absolute representation, and

(2) topological representations[2, 8]. In absolute representation, modules are repre-

sented by their absolute coordinates on the chip plane. Illegal overlaps will occur

since no restrictions is made to the relative positions between modules. The main

1



disadvantages of using the absolute representation are the typically high running

times and sometimes low-quality placement solutions, and also the need of an in-

creased tuning effort due to the difficulty of predicting an appropriate weight for the

overlap penalty. In topological representation, the relative positions between the

modules are encoded. To compare with absolute representation, the solution space

is much smaller, but complicated computations are needed for checking symmetry

feasibility and adjusting the module positions to satisfy the constraints.

There are many ways for blocks placement with symmetry constraints, like TCG-

S* [18],O tree [17], and sequence pair [4, 6]. We prefer the the way of sequence

pair because of application of the method of symmetry-feasible. Both [4] and [6]

offer approaches with sequence pair to dealing with the full cell placement with

the symmetry constraints [2, 3]. However, In modern industry, we usually deal

with large-scale circuit design. We implement the method of [4] and improve it by

combining the symmetry cells first. Second, we know that the cost of placement

based on rectangle-packing by the sequence-pair [5] becomes vast when the size is

big, especially including symmetry constraints executed by linear programming. So

we execute the simulated annealing with the positions of the symmetry and non-

symmetry cells in a way of correlation.

1.1 Our Contribution

In this thesis, we implement our algorithm by two parts. First, we combine the

cells of the same symmetry group for eliminating whether transitive edges are neces-

sary or not. Second, to avoid the running time is vast due to the linear programming

with symmetry constraints, we execute the simulated annealing with the positions

of the symmetry and non-symmetry cells in a way of correlation. After that, we

confirm our results with symmetry constraints by comparing with the paper, ”Ana-

2



log Placement with Symmetry and Other Placement Constraints”, with the same

benchmark. As a result,when number of blocks increases, we get a more effective

solution in the similar time compared with this paper costs. We will demonstrate

the effectiveness of our approach by experiment result.

1.2 Organization of this Thesis

In Chapter 2, we will introduce the symmetry constraints in the cell placement

with sequence-pair and even in the physical design, and describe how to handle

with it, especially developing trends of analog design. And then describe how the

symmetric cells and non-symmetric cells are separated in the floorplan and many

kinds of symmetry in the physical design. Finally, we give the problem formulation.

In Chapter 3, we discuss our method of allocating positions of symmetry cells and

non-symmetry cells into floorplan and how to execute simulated annealing. Our

experiment results are presented in Chapter 4. Finally, we give the conclusion of

this thesis and future work in Chapter 5.

3



Chapter 2

Preliminaries

In this chapter, we will introduce the symmetry constraints in the cell placement

with sequence-pair and even in the physical design, and describe how to handle

with it, especially developing trends of analog design. And then describe how the

symmetric cells and non-symmetric cells are separated in the floorplan and many

kinds of symmetry in the physical design. Finally, we give the problem formulation.

2.1 Symmetry Constraints

The ”symmetry groups” are composed of several blocks that exhibit a form of

symmetry and they all share a common symmetry axis. And this symmetry axis can

be horizontal or vertical. The ” symmetry constraints” are represented by symmetry

groups. The symmetry group may include several pairs of symmetry blocks and self

symmetry blocks whose center must be placed on the symmetry axis. In a pair of

cells placed symmetrically, both of the size and shape of the two blocks are the same,

and every one is placed on one side of the axis. The symmetry condition is showed

as figure 2.1[4].

About this topic of symmetry constraints, we will introduced two hot application

including layout design and cell placement for analog designs bellow.

4



Figure 2.1: one self symmetry block (as) and two pairs of symmetry blocks :(bl , br)
, (cl, cr)[4]

2.2 Layout Design with Symmetry Constraints

As cell placement, device matching and layout symmetry are of utmost impor-

tance for high performance analog and RF circuits. Symmetric layout of matched

transistor alleviates the effects of mismatch in analog/RF circuits. [9]

Recently, the issue of analog layout automation is a hot topic and template-based

methods are effective in reuse layout automation for analog circuits such as opera-

tional amplifier. But in the generation layout with symmetry constraints of process,

the detections for symmetric layouts generated from libraries become very complex

as the layouts become large. Moreover, multi-level symmetry constraint generation

has built for more effective retargeting large analog layouts [10]. In following, we

will introduce the some kinds of devices laid-out symmetrically in trend.

One-dimensional cross-coupled symmetric multi-finger transistor pair(also called

interdigitation or interleaveing symmetry): As shown in Figure 2.2, the two tran-

sistors, M1 and M2, are arranged symmetrically and the layout has 21 axes of

symmetry and 66 unit transistor pairs.

Two-dimensional cross-coupled symmetric multi-finger transistor pair: As shown

in Figure 2.3, the two transistors, M1 and M2, are arranged symmetrically and the

layout has 12 axes of symmetry and 13 unit transistor pairs.

5



Figure 2.2: One-dimensional cross-coupled symmetric multi-finger transistor pair.
The rectangles with dotted patterns represent the poly-silicon layer.[10]

Figure 2.3: Two-dimensional cross-coupled symmetric multi-finger transistor pair.
The rectangles with dotted patterns represent the poly-silicon layer.[10]

6



Figure 2.4: One dimensional symmetric layout of on-chip resistors [10]

Figure 2.5: Four comparator subcircuits ( A, B, C, and D) laid-out in a split-
symmetric common-centroid layout. [10]

Matched passive devices: The resistor-chain layout ,as shown in Figure 2.4, in-

cluding three resistors which are laid-out in an interdigitated fashion with one-

dimensional common-centroid symmetry[11]. They would be identical resistances

regardless of process and temperature gradients due to match between the resistors.

Matched block: Beside matched devices, blocks are also often identical by design

in large analog circuits. For example, as shown in Figure 2.5, it is a 2-bits comparator

circuit composed of 4 unit comparators. For high performance, they are laid-out in

common-centroid fashion. That is, for all blocks of A1, A2, B1, B2, C1, C2 ,D1,

and D2 may be laid-out with one or two dimensionally symmetric layouts or may

be translated with respect to each other since all blocks are identical.

The layout for large analog circuits, we must cost large number of symmetry

constraints due to the increase in layout size and complexity. This cost is too

7



expensive. Even considering layout of matched blocks shown in Figure 2.5, the

layout in each block may comprise several devices with symmetry constraints like

Figure 2.2 2.4, and it is that there are many unwanted symmetry constraints to be

computed necessarily, especially in layout of matched blocks.

2.3 Sequence-Pair Placement with Symmetry Con-

straints

2.3.1 Sequence-Pair Representation Review

A sequence-pair [3] is a pair of module-name sequence like ( (4,3,1,6,2,5), (6,3,5,4,1,2)

), where 1,2,3,4,5,6 represents a module respectively. We can know the relationship

between two modules from the two sequence-pair as follows:

( (...bi...b...),( ...bi...bj...) ) means bi is on the left of bj

( (...bi...bj...),( ...bj...bi...) ) means bi is below of bj

Figure 2.6 shows the grid and the corresponding packing. From the sequence-

pair, we can translate it into the grid graph. From the grid, we can know the

approximate location of each module and establish a horizontal graph and vertical

graph, as showed in Figure 2.7. And then place all modules into the locations ac-

cording to the horizontal and vertical graph.

The GH(V,E) (V: vertex set, E: edge set) called horizontal constraint graph

is constructed as follows:

1) V: source s, sink t, and other vertices label 1,2,3,4,5,6

2) E: (s, x),(x ,t) and (x, x’) where x’ is right of x in the sequence-pair.

3) Vertex weight: zero for s and t, but the width of blocks for the other.

The vertical constraint graph can be constructed similar. When the number

of block is n, the H/V constraint can be obtained in O(n2) time by applying the

well-known longest path algorithm[7]. From [3], it is evaluated only in O(n log log

n) time.

8



Figure 2.6: (a) Oblique grid for sequence-pair (X,Y) = ( (4,3,1,6,2,5) , (6,3,5,4,1,2)
). (b) The corresponding packing. [3]

Figure 2.7: (a) In horizontal constraint graph GH(V,E), a path sh412th corresponds
to <4 1 2>, a common subsequence of (X,Y) = ( (4,3,1,6,2,5),(6,3,5,4,1,2) ). (b)
In vertical constraint graph Gv(V,E), a path sh634th corresponds to <6 3 4>, a
common subsequence of (XR,Y) = ( (4,3,1,6,2,5),(6,3,5,4,1,2) ).[3]

9



2.3.2 Cell Placement Methods with Symmetry Constraints

From Balasa’s placement method[2,8], if cells a x and y in a symmetry group in

sequence-pair S satisfy

a−1(x) < a−1(y) ⇔ b−1(sym(y)) < b−1 (sym(x))

where (a , b) is the sequence-pair for a symmetric group to a vertical axis,a−1(x)

is the position of the cell x in a, and sym(x) is the cell symmetric to cell x, the

sequence-pair S is said to be symmetric-feasible[2]. If we choose y = sym(x) (it

means x ,y are a symmetric pair ), and sym(sym(x)) = x , we rewrite it:

a−1(x) < a−1 (sym(x)) ⇔ b−1 (x) < b−1 (sym(x))

condition (S) shows that any symmetric pair of cells appears in the same order in

the sequence a and b. If we choose two cells x ,y belonging to distinct symmetric

pairs, we rewrite it:

a−1(x) < a−1 (y) ⇔ b−1 (sym(y)) < b−1 (sym(x))

The symmetric cells appear in reversed order in the sequence a and b.

For example, a sequence-pair representation of placement configuration shown

in Figure 2.8 [8] (a, b) = (BCEAFDHG,ABCDEFG). The symmetry group G =

(E,F), (B,H)with two pairs of symmetric blocks satisfy the condition, so (a, b) is

symmetric-feasible. And we also can find any distinct block x and y in G to satisfy

it.

According to this symmetry group condition, the blocks of a horizontal symme-

try group will appear in a mirror form in a sequence-pair, we can set that:

a = ...A1...A2...Ax...

b = ...sym(Ax)...sym(A2)...sym(A1)...

Similarly, for a vertical symmetry group, we can set that:

a = ...A1...A2...Ax...

b = ...sym(A1)...sym(A2)...sym(Ax)...

10



Figure 2.8: Placement with symmetry groups G = (E,F), (B,H)[8]

2.3.3 Previous Works

The authors in [4] studied the problem of cell placement with symmetry con-

straints for analog IC layout design and proposed methods to obtain a simple con-

straint graph [16] directly from a sequence pair in O(snloglogn+es) time and derive

a set of linear constraints expressions from the graph,where the time cost loglogn

is utilized the method of obtaining the lower left corner packing [3]. And the time

of es is the cost of the proposed algorithm SP-Core, where the SP-Core is to judge

whether transitive edge are necessary or not. They also shorten the time required by

linear programming, the number of variables and linear expressions are decreased by

substituting expressions for dependent variables, and the resultant placement is ob-

tained by solving the linear expressions using linear programming. If the symmetry

axis is only vertical, they obtain the placement more quickly by vertical constraint

graph based on a sequence-pair.

About symmetry constraints, the authors in [6] studied the problem and instead

of handling the constraints by having a penalty term in the cost function to penalize

violations, a unified method is proposed that, by adjusting the edge weights in a

pair of constraint graphs, can try to satisfy symmetry constraints simultaneously in

a candidate floorplan solution.

11



Given a sequence pair, it will be scanned initially to check if it will be a feasible

solution satisfying all the constraints, where the initial condition for sequence pairs

are generated only to satisfy the symmetry conditions. After this initial scan, a pair

of constraint graph(Hh,Hv) will be built according to the sequence pair to represent

the relative positions between the modules. Additional nodes di and constraint

edges will be inserted to Hh and Hv to enforce the required symmetry constraints.

Then a procedure ”symmetry()” will be called to generate the packing and evalu-

ate its cost finally if the ”symmetry()” is feasible, where the ”symmetry()” is for

computations of the variable edge weights with symmetry constraints.

2.3.4 Problem Formulation

The problem we concerned is described as follows. Let M = m1,m2...,mn be

a set of n rectangular blocks including k symmetry groups composed of pairs of

symmetry blocks and self-symmetry blocks. Each block has its height hi and width

wi. The blocks with symmetry constraints are placed symmetrically and contigu-

ously with a common axis in the same symmetry group. The goal is to find an

optimal floorplan with minimum cost in (area and wire-length). And all blocks are

not allowed overlapped.

12



Chapter 3

Proposed Methodology

Our method is constructed by two parts. First, considering the blocks with

symmetry constraints, they will be constructed with the linear program. Second,

all blocks with the symmetric blocks then are constructed by [3] with sequence-pair.

The objective is to construct a floorplan F with satisfying symmetry constraints

and minimizing a cost function cost(F) = area(F) + wire(F) where is a user given

weight, area(F) is total area of F and wire(F) is the total wire length of F measured

by the half-perimeter estimation. The important issue is the set of moves in the

annealing process. How to set the moves is the key point in order to match our

proposed methodology.

3.1 Improved Sequence-Pair Packing for Symme-

try Constraints

In sequence-pair packing, we will apply the method with fast evaluation of

sequence-pair proposed by [3].

For given a sequence-pair (X, Y ), considering placement with x coordinates,

both X and Y have n blocks with 1, 2,..., n. The weight w(b) is the width of

block b. Block position array P[b], b = 1,2,...,n is used to record the x coordinate

of block b. Match array match[i], i = 1,2,...,n is record that match[i] = j iff X [i] =

13



Figure 3.1: (a) The process of packing block i to n. (b) The corresponding packing
with sequence-pair (431625, 635412)

Y [j]. And the length array L[1...n] is used to record the length of candidates of the

longest common subsequence (LCS). The algorithm is presented in [3]. An example

is shown in Figure 3.1.

Now, with applying symmetry blocks that have been constructed by linear pro-

gram with the algorithm in [3], if a block with symmetry constraints is packed, all

blocks of the symmetric group that this block belongs to will be packed sequentially

so that all blocks with symmetry constraints are packed together. In the same way,

we must update the length array L[1...n]. However, for each symmetric group, we

must pick the blocks abuts to source and destination.

3.2 Linear Programming with Symmetry Constraints

3.2.1 Linear Constraint Expressions from Symmetry Con-
straints and Given Sequence Pair

We construct the linear constraints from H/V constraints of a given sequence

pair. For example, the expression of ”a is in the left of b” in the horizontal con-

straints can be derived [12].

14



Figure 3.2: blocks placement for seq-pair (al bs c ar; al c bs ar)

x(a) + w(a) x(b) is set x(a) - x(b) -w(a)

where x(a) and x(b) are x coordinates of the left edge of block a and b, and w(a) is

the width of a.

For symmetry constraints, a block pair al and ar is symmetry to a vertical sym-

metry axis. It can be derived

Axis- (x(al) + w(al)) = x(ar) - Axis is set

2*Axis - x(al) - x(ar) = w(al)

where Axis is x coordinate of a vertical symmetric axis for a symmetry group.

For y direction of linear constraints can be derived

y(al) = y(ar) is set y(al) - y(ar) = 0

For self symmetric block of as, it can be derived

Axis - (x(as) + w(as)) = x(as) - Axis is set

Axis - x(as) = w(as)/2

3.2.2 Removal of Transitive Edges

It is mentioned in [4], consider a sequence pair(al bs c ar ; al c bs ar) and w(c)

> w(bs), the transitive edge (al, ar) is required to avoid overlap of c and ar. The

packing is shown in Figure 3.2.

15



To solve this problem, we construct a simple constraint graph by utilizing the

method of obtaining the left corner packing in O(n log log n) time from a sequence

pair[3]. In our sequence pair, all blocks with symmetry constraints are limited to be

arranged in order. That means each block with symmetry constraints is weighted

by its width or height, so we don’t consider addition constraints because a non-

symmetric block isn’t added when symmetric blocks are packed.

Take the example mentioned above, the sequence pair will become (al bs ar; al

bs ar), so we don’t consider the overlap of c and ar.

3.2.3 Set of Parameters with Linear Constraint Expressions

All blocks with symmetry constraints in the sequence-pair are scanned first,

and some equations are constructed with placement constraints and symmetry con-

straints. In placement constraints, block ni is set to xi in sequence-pair (X,Y ) =

( (n1,n2..nk),(any order) ) ,the coefficient of xi is either 1 or -1 depends on our

sequence, and the values of the equation are set to the width of the block where is

placed left in horizontal placement. Later, in symmetry constraints, the xi+1 to xi+k

are set for symmetry constraints where k is the numbers of symmetry constraints

and xi+k+1 to xi+k+2 are set for the symmetry axis and the objective function,

the coefficient of x is also either 1 or -1 depends on symmetric equations, and the

values of the equations is set to 0 for pairs blocks, half of width for self-symmetry

blocks. An example of symmetric groups in D70 is shown as Figure 3.3.

3.3 Annealing Process in Placement

We allow several conditions in our annealing process in following. Beside, we

propose an efficient way by executing two annealing in a way of correlation. By this

way, we can also get a reasonable result in shorter time.

16



Figure 3.3: The result of a symmetric group in D70 (the symmetry axis is at 175)

3.3.1 Set of Moves

1. Swapping two blocks of the same symmetry group:

Two blocks A and B are picked randomly from a symmetry group, and they do

not belong to a symmetry pair. Then we swap A and B in s1 and swap sym(A) and

sym(B) in s2. Block A and B can be either belong to a symmetry pair individually

or self symmetry.

2. Swapping two cells

A cell may be either an asymmetric block or a symmetry group. Each cell are

picked randomly and swap them. For example, if two cells picked randomly are two

symmetry groups. After swapping, the sequence pair in s1 is (a1,a2..A1..A2..ai..Aj )

originally, it will become (a1,a2KA2..A1..ai..Aj ) if we swap A1 and A2. Where

(a1...ai) belong to non-symmetry blocks, (A1...Aj ) belong to symmetry groups and

Aj would include several symmetry blocks. Notice that the relative ordering between

blocks of the same group are not changed. We can also do the similar way in s2.

3. Exchange its width and its height of a block

A block is picked randomly and its width and its weight are changed. If a block

which belongs to a symmetry pair is picked, we must also make the corresponding

17



change to its pair.

4. Rotating a symmetry group

A symmetry group can be symmetry in a horizontal or a vertical axis. But

in considerations of application, we allow only all groups that are symmetry in a

horizontal or a vertical axis.

3.3.2 Our Approach to Dealing with the Set of Moves

We divide annealing process in two parts. One is to minimize the cost function

of every symmetry group and then another is to minimize the cost function of total

area including symmetric blocks and non-symmetric blocks. The cost function will

be mentioned in following. The two parts are introduced as follows:

Annealing process for symmetric groups: In the process, we apply the set of

moves in 3.1.1-1. Each symmetry group has its goal is that minimizing a cost

function individually.

Annealing process for all blocks including symmetric blocks and non-symmetric

blocks: In this process, we apply the set of moves in 3.1.1-2 4. Here we don’t execute

the move of 3.1.1-1.

We will execute the part 1 and part 2 in a way of correlation. For example, we

may execute a ratio of iterations in part 1 to part 2 to be 1:10, and even more.

The cost in part 1 is vast, although the numbers of blocks are smaller than all in

our floorplan. In traditional approach, we must consider the move of 3.1.1-1 for all

iterations. By the approach we propose, we will evidence to get an efficient solution

in a short time and it is more obvious when total blocks in all floorplan are more.

3.3.3 Cost Function

We construct a cost function cost(F ) = area(F ) + a*wire(F ), where F is the

foorplan, area(F ) is the total area of executed blocks,a is a user given weight, and

18



wire(F ) is the total wire length of F measured by the half-perimeter estimation.

19



Chapter 4

Experimental Results

We proposed an more effective method of obtaining large-scale block placement

satisfying the given symmetry constraints , and compare our result in our approach

with [6] and [4]. Here we implemented our algorithm in the C++ programming

language in Intel Pentium4 2.8GHz CPU with 2.0GB memory. (1) In comparing

to paper [6] with symmetry constraints, the experimental results are implemented

on an Intel(R) Xeon(TM) CPU 3.00GHz work station with 2GB memory. (2) In

comparing to paper [4] with symmetry constraints, we implement their method by

changing our set of moves in traditional way. For a reasonable compare, we valuate

between Intel Pentium and Intel(R) Xeon(TM) by an easy program. The ratio of

speed of Intel Pentium to Intel(R) Xeon(TM) about 1:1.06. Table 4.1 shows the

results of this set of experiment. We compare the dead space with approximate

simulation time. The third shows the number of symmetry groups and 5 symmetry

groups with 8, 7, 7, 4 and 6 blocks respectively. Notice that the data is assign

randomly.

In our approach, we can find that we have a more effective result when the total

blocks are increased. When the block numbers increase up to 220, we have a smaller

dead space in our approach than that in [6].For the data set of D220,considering the

speed of machines, our simulation time will be divided 1.06 time,and the data of

time and the time is 21 m. 1.6 s. and the space is 12.08 percent in [4] and the time

20



Table 4.1: Experimental comparisons between the results of our approach(Pentium4
2.8GHz) and [4](Xeon(TM) 3.00GHz)

Data Block Symmetry Our Approach [4]
Set No. Constraints Time Dead Space(%) Time Dead Space(%)
D50 50 8,7,7,4,6 66s 19.41 74.5s 4.28
D70 70 9,4,9,5,9 2m 10.1s 17.08 2m 12.9s 5.07
D100 100 4,12,4,11,12 4m 38s 16.85 4m 58.2s 8.48
D120 120 5,4,4,7,8 6m 34s 13.03 6m 15.2s 8.49
D170 170 8,7,7,4,6 13m 35.3s 12.69 13m 5.9s 10.14
D220 220 8,7,7,4,6 20m 48.3s 11.84 21m 1.6s 12.08

Figure 4.1: D120 with 120 blocks and 5 symmetry groups at Table 4.1 with our
approach

is 19m. 57.9s. and the space is 11.84 percent in our approach. However, we can not

compile the program of [6] when block numbers is over 250. Figure 4.1 shows the

placement of D120 in Table 4.1.

Beside, we add our approach by changing our set of moves in traditional way as

shown in Table 4.2. We also run it in the similar simulation time to compare its

dead space. We can find it is not effective due to a too short simulation time for

this approach. We take about 1 hour to simulate our programming and Figure 4.2

shows the results.

21



Table 4.2: Experimental comparisons between the results of our approach(Pentium4
2.8GHz) and similar program in [4](Pentium4 2.8GHz)

Data Block Symmetry Our Approach [6]
Set No. Constraints Time Dead Space(%) Time Dead Space(%)
D50 50 8,7,7,4,6 66s 19.41 65s 35.23
D70 70 9,4,9,5,9 2m 10.1s 17.08 2m 8.4s 34.25
D100 100 4,12,4,11,12 4m 38s 16.85 4m 48s 35.61
D120 120 5,4,4,7,8 6m 34s 13.03 6m 39s 32.01
D170 170 8,7,7,4,6 13m 35.3s 12.69 13m 10.3s 25.61
D220 220 8,7,7,4,6 20m 48.3s 11.84 20m 30.3s 24.32

Indeed, we do not run the linear program for symmetry constraints every iter-

ation. And when the size of floorplan becomes larger, the effect of the symmetry

groups becomes smaller. We offer an effective way to deal with the large floorplan

applied in VLSI designs now.

22



Figure 4.2: D220 with 220 blocks and 5 symmetry groups about 1 hour with dead
space of 9.93 percent with our approach

23



Chapter 5

Conclusion and Future Work

In this thesis, we proposed an more effective method of obtaining large-scale

block placement satisfying all the given symmetry constraints. This algorithm has

an efficient trend to get a nearly optimum solution and when the sizes of the floorplan

become larger, the effect of the symmetry groups becomes smaller. We offer an

effective way to deal with the large floorplan applied in VLSI designs now.

Our future problem is experiments on industrial applications of analog circuits.

Even it is useful and helps to speed up the automation of analog layout designs with

symmetry constraints.

24



Bibliography

[1] J. Cohn, D. Garrod, R. Rutenbar and L. Carly , ”Analog Device-Level Lay-

out Automation,” Kluwer Academic Pub., 1994.

[2] F. Balasa and K. Lampaert , ”Symmetry within the Sequence-Pair represen-

tation in the Context of Placement for Analog Design,” IEEE Trans. CAD,

vol.19, no.7, pp.721-731, 2000.

[3] K. Krishnamoorthy, S.C. Maruvada and F. Balasa , ”Fast Evaluation of

Symmetric-Feasible Sequence-Pairs for Analog Topological Placement,” 5th

IEEE Int. Conf. on ASIC(ASICON), pp.71-74, 2003.

[4] S. Kouda, C. Kodama, and K. Fujiyoshi , ”Improved Method of cell Place-

ment with Symmetry Constraints for Analog IC Layout Design,” ISPD’06,

April 9-12, 2006.

[5] H.Murata, K. Fujiyoshi, and S.Nakatake , ”VLSI Module Placement Based

in Rectangle-Packing by the Sequence-Pair,” IEEE Tran. CAD, vol. 15, no.

12,1996.

[6] Y.C. Tam, Evangeline F.Y. Young, and C. Chu , ”Analog Placement with

Symmetry and Other Placement Constraints,” International Conference on

Computer-Aided Design, pp. 5-9, 2006.

25



[7] H. Murata, K. Fujitoshi, S. Nakatake, and Y. Kajitani , ”Rectangle-Packing-

Based Module Placement,” IEEE International Conference on Computer-

Aided. pp. 472-479, 1995.

[8] F. Balasa, S. C. Maruvada, and K. Krishnamoorthy , ”On the Exploration

of the Solution Space in Analog Placement with Symmetry Constraints,”

IEEE Tran. CAD, vol. 23, no. 2, 2004.

[9] S. Bhattacharya, N. Janglrajarng, R. Hartono, and C-J. Richard

Shi,”Hierarchical Extraction and Verification of Symmetry Constraints for

Analog Layout Automation,” IEEE Design Automation Conference, pp. 400-

405, 2004.

[10] S. Bhattacharya, N. Janglrajarng, and C-J. Richard Shi , ”Multi-Level Sym-

metry Constraint Generation for Retargeting Large Analog Layouts,” IEEE

Tran. CAD, vol. 25, pp. 945-960, 2004.

[11] A. Hastings , ”The Art of Analog Layout,” Prentice Hall, 2001.

[12] J.-G Kim and Y.-D Kim , ”A linear programming-based algorithm for floor-

planning in VLSI design,” IEEE Trans. CAD, vol. 22, no. 5, pp. 584-592,

2003.

[13] K. Lampaert, G. Gielen, and W. Sansen , ”A Performance-driven Placement

Tool for Analog Integrated Circuits,” IEEE J. Solid-State Circuits, vol. 30.

no. 7, pp. 773-780, 1995.

[14] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani , ”Rectangle-

Packing-Based Module Placement,” Proceedings IEEE International Con-

ference on Computer-Aided Design, pages 472-479, 1995.

26



[15] Evangeline F. Y. Young, Chris C. N. Chu, and M. L. Ho , ”Placement

Constraints in Floorplan Design,” IEEE Transactions on Very Large Scale

Integration Systems, vol. 12, no. 7, pp. 735-745, 2004.

[16] R. Okuda, T. Sato, H. Onodera and K. Tamaru , ”An algorithm for layout

compaction problem with symmetry constraint,” IEICE Trans. Fundamen-

tals, vol.J70-A, no. 3, pp. 536-543, 1990 (in Japanese).

[17] Yingxin Pang; Balasa, F.; Lampaert, K.; Chung-Kuan Cheng , ”Block place-

ment with symmetry constraints based on the O-tree non-silicing represen-

tation,” DAC, pages 464 - 467, June 5-9, 2000

[18] Jai-Ming Lin; Guang-Ming Wu; Yao-Wen Chang; Jen-Hui Chuang, ”Place-

ment with symmetry constraints for analog layout design using TCG-S,”

ASPDAC, vol 2, pages 1135 - 1138, 18-21 Jan. 2005

27


