

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

低密度對偶檢查碼解碼演算法之改進以及其高

速解碼器架構之設計

An Improved LDPC Decoding Algorithm and Designs of

High-Throughput Decoder Architecture

研 究 生：邱敏杰

指導教授：陳紹基 博士

中 華 民 國 九 十 五 年 七 月

低密度對偶檢查碼解碼演算法之改進以及其高速解碼

器架構之設計

An Improved LDPC Decoding Algorithm and Designs

of High-Throughput Decoder Architecture

研 究 生：邱敏杰 Student：Min-chieh Chiu

指導教授：陳紹基 博士 Advisor：Sau-Gee Chen

國 立 交 通 大 學

電子工程學系 電子研究所所碩士班

碩 士 論 文

A Thesis

Submitted to Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics Engineering

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

 I

低密度對偶檢查碼解碼演算法之改進以及

其高速解碼器架構之設計

學生：邱敏杰 指導教授：陳紹基 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

由於低密度對偶檢查碼 (LDPC) 的編碼增益接近向農 (Shannon) 極限以及解碼

程序上擁有低複雜度的特性，所以在近年來受到廣泛的討論。在解碼的理論裡,

尤其又以 min-sum 演算法最廣泛地被運用。因為想較於 sum-product 演算法，

min-sum 演算法比較適合在硬體電路的實現。本文中，我們在 min-sum 演算法的

運算式子中加了兩個參數：固定補償參數以及動態誤差參數，相較於固定補償

min-sum 演算法來說，增進了解碼器的解碼效能約 0.2dB。此外，在解碼器的設

計上，我們使用部分平行 (partial-parallel) 的架構，此架構可同時處理兩筆不同

之 codewords 來加快傳輸速度及資料路徑的工作效率，且共用運算單元以縮減晶

片面積的大小，設計一個碼率為 1/2、長度為 576 位元、最大循環解碼次數為 10

的非規則低密度對偶檢查碼解碼器，在 0.18 mµ 製程下，此解碼器之資料流為每

秒 1.31bps、面積為 95 萬個邏輯閘、消耗功率為 620mW。

 II

An Improved LDPC Decoding Algorithm and Designs of

High-Throughput Decoder Architecture

Student: Min-Chieh Chiu Advisor: Dr. Sau-Gee Chen

Department of Electronics Engineering &

Institute of Electronics

National Chiao Tung University

ABSTRACT

In recent years, low-density parity-check (LDPC) codes have attracted a lot of

attention due to the near Shannon limit coding gains when iteratively decoded. The

min-sum decoding algorithm is extensively used because it is more suitable for VLSI

implementations than sum-product algorithm. In this thesis, we propose a dynamic

normalized-offset technique for min-sum algorithm and achieve a better decoding

performance by about 0.2dB than normalization min-sum algorithm. Based on a

partial-parallel architecture, an irregular LDPC decoder has been implemented,

assuming code rate of 1/2, code length of 576 bits, and the maximum number of

decoding iterations is 10. This architecture can process two different codewords

concurrently to increase throughput and data path efficiency. The irregular LDPC

decoder can achieve a data decoding throughput rate up to 1.31Gbps, an area of 950k

gates, and a power consumption of 620mW using UMC 0.18 mµ process technology.

 III

誌 謝

 本篇論文的完成承蒙指導教授 陳紹基博士兩年多來的悉心指導教

誨，讓我能夠確立研究的方向，給予我多方面的協助，在此至上由衷

的感激。

 其次，感謝曲健全學長無私地提供協助，使我受益良多。謝謝實驗

室的同學譽桀、昀震、金融、文威、彥欽以及勝國，謝謝你們在課業

及生活上給予我許多的幫助。還有實驗室的學弟妹們，瑞徽、飛群、

思恆、至良、宜融、曉嵐，謝謝你們帶給我們許多美好的回憶。

 最後，謹以此論文獻給我最深愛的家人，爺爺邱魁金、奶奶邱傅菊

妹、叔公邱瑞金、父親邱正弘，感謝您們從小到大對我的包容與呵護，

含辛茹苦地栽培。另外，也要感謝我的女友湘宜多年來對我的包容及

生活上無微不至地照顧，讓我可以專心地完成本論文。願將此一喜悅

獻給我親愛的家人及所有關心我的朋友們，謝謝您們。

 IV

Contents
中文摘要..Ⅰ
ABSTRACT ...Ⅱ

ACKNOWLEDGEMENT ...Ⅲ
CONTENTS...Ⅳ
LIST OF TABLES ...Ⅵ
LIST OF FIGURES ...Ⅶ

Chapter 1 Introduction..1

1.1 Background of LDPC Codes ...1
1.2 Thesis Organization ...2

Chapter 2 Low-Density Parity-Check Code..3

2.1 Fundamental Concept of LDPC Code ...3
2.2 Constructions of LDPC Codes...5

2.2.1 Random Code Construction..6
2.2.2 Deterministic Code Construction..8

2.3 Encoding of LDPC Codes..11
2.3.1 Conventional Method..12
2.3.2 Richardson’s Method ..13
2.3.3 Quasi-Cyclic Code ..17
2.3.3 Quasi-Cyclic Based Code ...19

2.4 Conventional LDPC Decoding Algorithm...20
2.4.1 Bit-Flipping Algorithm ...20
2.4.2 Message Passing Algorithm..24

Chapter 3 Modified Min-Sum Algorithms ..36

3.1 Normalization Technique for Min-Sum Algorithm ...36
3.2 Dynamic Normalization Technique for Min-Sum Algorithm..........................42
3.3 Proposed Dynamic Normalized-Offset-Compensation Technique for Min-Sum

Algorithm...43

Chapter 4 Simulation Results and Analysis...45

4.1 Floating-Point Simulations ..46
4.2 Fixed-Point Simulations...50

Chapter 5 Architecture Designs of LDPC Code Decoders52

 V

5.1 The Whole Decoder Architecture ..52
5.2 Hardware Performance Comparison and Summary ..65

Chapter 6 Conclusions and Future Work..68
6.1 Conclusions..68
6.2 Future Work ...68

Appendix A: LDPC Codes Specification in IEEE 802.16e OFDMA.....................70

References...73

Autobiography..76

 VI

List of Tables

Table 2.1 Efficient computation step of ()1 1
1
T Tp ET A C sφ− −= − − +15

Table 2.2 Efficient computation step of)(1
1

2
TTT BpAsTp +−= −15

Table 2.3 Summary of Richardson’s encoding procedure.16

Table 2.4 Summary of sum-product algorithm..33

Table 2.5 Summary of min-sum algorithm..34

Table 5.1 Comparison of direct and backhanded CNU architectures..................61

Table 5.2 Area, speed, and power consumption of the CNU using min-sum

algorithm and modified min-sum algorithm..66

Table 5.3 Comparison of LDPC decoders ...67

 VII

List of Figures
Figure 2.1 Example of a (8, 4, 2)-regular LDPC code and its corresponding

Tanner graph. ...4

Figure 2.2 Example of an LDPC code matrix, where (n, r, c) = (20, 4, 3)..............7

Figure 2.3 The parity-check matrix H of a block-LDPC code................................9

Figure 2.4 Example of a rate-1/2 quasi-cyclic code from two circulant matrices,

where xxa += 1)(1 and 42
2 1)(xxxa ++=10

Figure 2.5 The parity-check matrix in an approximate lower triangular form......13

Figure 2.6 (a) Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with

two circulants, where xxa += 1)(1 and 42
2 1)(xxxa ++=18

Figure 2.6 (b) Example of a rate-1/2 quasi-cyclic code. (b) Corresponding generator

matrix in systematic form ..18

Figure 2.7 Tanner graph of the given example parity-check matrix.25

Figure 2.8 Serial configuration for check node update function...........................29

Figure 2.9 Check node update function of sum-product algorithm30

Figure 2.10 Check node update function of min-sum algorithm30

Figure 2.11 Notations for iterative decoding procedure..31

Figure 2.12 The whole LDPC decoding procedure...33

Figure 3.1 Function plot of ()xφ ...37

Figure 3.2 The absolute difference between the normalization technique and

sum-product algorithm, vs. the of normalization factor β42

Figure 3.3 BER performance vs. threshold values K for rate 1/2 LDPC code......44

Figure 4.1 Decoding performance at different iteration numbers46

Figure 4.2 BER performance of the rate-1/2 code at different codeword lengths, in

AWGN channel, maximum iteration=10 ...47

 VIII

Figure 4.3 Floating-point BER simulations of two decoding algorithms in AWGN

 channel with code length=576, code rate=1/2, maximum iteration=10

..47

Figure 4.4 Floating-point BER simulations of normalized min-sum decoding

 algorithms in AWGN channel with code length=576, code rate=1/2,

 maximum iteration=10...48

Figure 4.5 Floating-point BER simulations under normalized-offset technique in

 min-sum decoding algorithms, in AWGN channel with code

length=576, code rate=1/2, maximum iteration=10.............................48

Figure 4.6 Floating-point BER simulations of the dynamic normalized-offset

 min-sum decoding algorithm and its comparison with other algorithms,

in AWGN channel with code length=576, code rate=1/2, maximum

iteration=10..49

Figure 4.7 Floating-point BER simulations under normalized-offset compensated

technique and dynamic normalization technique in min-sum algorithm.

..49

Figure 4.8 Fixed-point BER simulations of three different quantization

configurations of min-sum decoding algorithm, in AWGN channel,

 code length=576, code rate=1/2, maximum iteration=1050

Figure 4.9 Floating-point vs. fixed-point BER simulations of the normalization

 and dynamic normalized-offset min-sum algorithm............................51

Figure 5.1 The parity-check matrix H of block-LDPC code.................................52

Figure 5.2 The partition of parity-check matrix H ..53

Figure 5.3 I/O pin of the decoder IP..53

Figure 5.4 The whole LDPC decoder architecture for the block-LDPC code54

 IX

Figure 5.5 A simple parity-check matrix example, based on shifted identity matrix

..55

Figure 5.6(a) The sub-modules of the whole decoder ...55

Figure 5.6(b) The outputs of the module INDEX..56

Figure 5.7(a) Values shuffling before sending to check node updating unit56

Figure 5.7(b) Values shuffling before sending to bit node updating unit57

Figure 5.8(a) The architecture of CNU using min-sum algorithm58

Figure 5.8(b) The architecture of CNU using modified min-sum algorithm.............58

Figure 5.9 Block diagram of CS6 module...59

Figure 5.10(a) Block diagram of CMP-4 module..60

Figure 5.10(b) Block diagram of CMP-6 module..60

Figure 5.11 CNU architecture using min-sum algorithm..61

Figure 5.12 The architecture of the bit node updating unit with 4 inputs62

Figure 5.13(a) The architecture of RE-4B based MMU..63

Figure 5.13(b) The timing diagram of the message memory units..............................64

Figure 5.14 The message passing snapshots between MMU0 and MMU165

Figure A.1 Base matrix of the rate 1/2 code ..71

Figure A.2 Base matrix of the rate 2/3, type A code ..71

Figure A.3 Base matrix of the rate 2/3, type B code..72

Figure A.4 Base matrix of the rate 3/4, type A code ..72

Figure A.5 Base matrix of the rate 3/4, type B code..72

Figure A.6 Base matrix of the rate 5/6 code ..72

 1

Chapter 1

Introduction

1.1 Background of LDPC Codes

Low-density parity check (LDPC) code, a linear block code defined by a very

sparse parity-check matrix, was first introduced by Gallager [1]. Due to the difficulty

in circuit implementation, LDPC codes have been ignored for about forty years except

for the study of codes defined on graphs by Tanner [3]. The rediscovery of LDPC

code was done by MacKay [10]. It has engaged much research interest ever since,

because the sparse property of parity-check matrix makes the decoding algorithm

simple and practical with good communication throughput rates. LDPC code is

currently widely considered a serious competitor to the turbo codes. The main

advantages of LDPC codes over turbo codes are that LDPC decoders are known to

require an order of magnitude less arithmetic computations, and the decoding

algorithms for LDPC codes are parallelizable and can potentially be accomplished at

significantly greater speeds. The main decoding algorithm of LDPC codes is

sum-product algorithm [10]. However, sum-product algorithm is prone to quantization

errors while realized in hardware. Thus, several reduced-complexity algorithms with

different levels of performance degradation have been proposed [14]. The thesis

proposed a dynamically normalized-offset technique to improve the decoding

performance and reduce the decoding complexity.

 2

The implementation of LDPC codes decoders can be classified into fully parallel

decoders, and partial-parallel decoders. The fully parallel decoders directly map the

corresponding bipartite graph [17] into hardware and all the processing units are

hard-wired according to the connectivity of the graph. Thus they can achieve very

high decoding speed but have a high hardware cost. Another approach is to have a

partial-parallel decoder [19], in which the functional units are reused in order to

decrease the chip-area. Moreover, this architecture can process two different

codewords concurrently to has moderate throughput. The other aim of this thesis is to

improve the partial-parallel architecture and save chip area, with little degradation of

the throughput.

1.2 Thesis Organization

 This thesis is organized as follows. In chapter 2, basic concept of the LDPC

codes: the code construction, encoding concept and various decoding algorithms will

be introduced. Chapter 3 will first introduce the modified min-sum algorithm which

uses the normalized technique. Then we propose a new dynamic normalized-offset

technique for min-sum decoding algorithm. In chapter 4, the simulation results for the

LDPC code which is discussed in chapter 2 and chapter 3 will be shown. In chapter 5,

hardware architecture of the LDPC decoder will be discussed here. In the end of this

thesis, brief conclusions and future work will be presented in chapter 6.

 3

Chapter 2

Low-Density Parity-Check Codes

In this chapter, an introduction to low-density parity-check code will be given,

including the fundamental concepts of LDPC code, code construction, encoding

mechanism and decoding algorithm.

2.1 Fundamental Concept of LDPC Code

A binary LDPC code is a binary linear block code that can be defined by a sparse

binary nm× parity-check matrix. A matrix is called a sparse matrix because there is

only a small fraction of its entries are ones. In other words, most part of the

parity-check matrix are zeros and the else part of that are ones.

For any nm× parity-check matrix H, it defines a (n, k, r, c)-regular LDPC code

if every column vector of H has the same weight c and every row vector of H has the

same weight r. Here the weight of a vector is the number of ones in the vector.

k n m= − . By counting the ones in H, it follows that n c k r× = × . Hence if nm < ,

then c r< . Suppose the parity-check matrix has full rank, the code rate of H is

() / 1 /r c r c r− = − . If all the column-weights or the row-weights are not the same, an

LDPC code is said to be irregular.

 4

As suggested by Tanner [7], an LDPC code can be represented by a bipartite

graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph

also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes,

called the variable (bit) nodes, correspond to the symbols in a codeword. The other

type of nodes, called the check nodes, correspond to the set of parity check equations.

If the parity-check matrix H is an nm× matrix, it has m check nodes and n variable

nodes. A variable node vi is connected to a check node cj by an edge, denoted as (vi, cj),

if and only if the entry hi,j of H is one. A cycle in a graph of nodes and edges is

defined as a sequence of connected edges which starts from a node and ends at the

same node, and satisfies the condition that no node (except the initial and final node)

appears more than one time. The number of edges on a cycle is called the length of

the cycle. The length of the shortest cycle in a Tanner graph is called the girth of the

graph.

Regular LDPC codes are those where all nodes of the same type have the same

degree. The degree of a node is the number of edges connected to that node. For

example, Figure2.1 shows a (8, 4, 4, 2)-regular LDPC code and its corresponding

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

Figure 2.1 (8, 4, 4, 2)-regular LDPC code and its corresponding Tanner graph.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

10011010
01100110
10101001
01010101

H

 5

Tanner graph. In this example, there are 8 variable nodes (vi), 4 check nodes (ci), the

row weight is 4 and the column weight is 2. The edges (c1, v3), (v3, c3), (c3, v7), and (v7,

c1) depict a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the

girth of the Tanner graph is 4. Irregular LDPC codes were introduced in [8] and [9].

2.2 Constructions of LDPC Codes

This section is going to discuss the parity-check matrix H of LDPC code. The

design of H is the moment when the asymptotical constraints (the parameters of the

class you designed, like the degree distribution, the rate) have to meet the practical

constraints (finite dimension, girths).

Here, we describe some recipes which take some practical constraints into

account. Two techniques exist in the literature: random and deterministic ones. The

design compromise is that for increasing the girth, the sparseness has to be decreased,

so is the code performance decreased due to a low minimum distance. On the contrary,

for high minimum distance, the sparseness has to be increased yielding the creation of

low-length girth, due to the fact that H dimensions are finite, and thus, yielding a poor

convergence of sum-product algorithm.

 6

2.2.1 Random Code Construction

The first constructions of LDPC codes are random ones. They were proposed by

Gallager [1] and MacKay [10]. The parity check matrix in Gallager’s method is a

concatenation and/or superposition of sub-matrices; these sub-matrices are created by

performing some permutations on a particular (random or not) sub-matrix which

usually has a column weight of 1. The parity check matrix in MacKay’s method is

computer-generated. These two methods are introduced below.

Gallager’s method [1]

Define an (n, r, c) parity check-matrix as a matrix of n columns that has c ones in

each column, r ones in each row, and zeros elsewhere. Following this definition, an (n,

r, c) parity-check matrix has /nc r rows and thus a rate of 1 /coderate c r≥ − . In

order to construct an ensemble of (n, r, c) matrices, consider first the special (n, r, c)

matrix in Figure 2.2, where n, r and c are 20, 4 and 3, respectively.

 7

10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

Figure 2.2 Example of an LDPC code matrix, where (n, r, c)=(20,4,3)

This matrix is divided into c sub-matrices, each containing a single 1 in each

column. The first of these sub-matrices contains all its 1’s in descending order where

the ith row contains 1’s in columns (1) 1i r− + to ir . The other sub-matrices are

merely column permutations of the first. We define the ensemble of (n, r, c) codes as

the ensemble resulting from random permutations of the columns of each of the

bottom (1)c − sub-matrices of a matrix such as in Figure 2.2 with equal probability

assigned to each permutation. This definition is somewhat arbitrary and is made for

mathematical convenience. In fact such an ensemble does not include all (n, r, c)

codes as just defined. Also, at least (1)c − rows in each matrix of the ensemble are

linearly dependent. This simply means that the codes have a slightly higher

information rate than the matrix indicates.

 8

MacKay’s method [10]

A computer-generated code was introduced by MacKay [10]. The parity-check

matrix is randomly generated. First, parameters n, m, r, and c are chosen to conform

an (n, m, r, c)-regular LDPC code where n, r and c are the same as in Gallager’s code

and m is the number of the parity-check equations in H. Then, 1’s are randomly

generated into c different positions of the first column. The second column is

generated in the same way, but checks are made to insure that no two columns have a

1 in the same position more than twice in order to avoid 4-cycle in the Tanner graph.

If there is a 4-cycyle in the Tanner graph, the decoding performance will be reduced

by about 0.5dB. Avoidance of 4-cycles in a parity-check matrix is therefore required.

The next few columns are generated sequentially and checks for 4-cycles must be

performed in each generation. In this procedure, the number of 1’s in each row must

be recorded, and if any row already has r ones, the next-column generation will not

select that row.

2.2.2 Deterministic Code Construction

A parity-check matrix H by random construction is sparse, but its corresponding

generator matrix is not. This property will increase encoding complexity. To

circumvent this problem, deterministic code construction schemes have been

proposed. It can lead to low encoding complexities. Some forms of the deterministic

code construction include block-LDPC code, quasi-cyclic code [5], and quasi-cyclic

based code [21]. They are introduced below.

 9

Block-LDPC Code

The parity check matrix H based on block-LDPC code is composed by several

sub-matrices. The size of H is m-by-n. The sub-matrices are shifted identity matrices

or zero matrices. The matrix form of H is shown in Figure 2.3. Sub-matrix ,i jP is

one of a set of z-by-z permutation matrices or a z-by-z zero matrix. Matrix H is

expanded from a binary base matrix bH of size bm -by- bn , where bm z m= ⋅ ,

bn z n= ⋅ , and z is an integer ≥ 1. The base matrix is expanded by replacing each 1

in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero

matrix. The used permutations are circular right shifts, and the set of permutation

matrices contains the z-by-z identity matrix and circularly right-shifted versions of the

identity matrix. The details of block-LDPC Code can be seen in Appendix A.

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

b

b

b b b b

n

n

m m m n

P P P

P P P
H

P P P

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M L M

L

Figure 2.3 The parity-check matrix H of a block-LDPC code

Quasi-Cyclic Code [5]

A code is quasi-cyclic if, for any cyclic shift of a codeword by l places, the

resulting word is also a codeword. A cyclic code is a quasi-cyclic code with 1=l .

Consider the binary quasi-cyclic codes described by a parity-check matrix

],...,[21 lAAAH = (2.10)

where lAAA ,..., 21 are binary vv× circulant matrices. The algebra of ()vv×

binary circulant matrices is isomorphic to the algebra of polynomials modulo 1−vx

 10

over GF(2). A circulant matrix A is completely characterized by the polynomial

 1
1

2
210)(−

−++++= v
v xaxaxaaxa (2.11)

where the coefficients are from the first row of A , and a code C with parity-check

matrix of the form (2.10) can be completely characterized by the polynomials

)(),...,(),(21 xaxaxa l . Figure 2.4(a) shows an example of a rate-1/2 quasi-cyclic

code, where xxa += 1)(1 and 42
2 1)(xxxa ++= . Figure 2.4(b) shows the

corresponding Tanner graph representation. For this example, we can see the edges

(c1, v6), (v6, c4), (c4, v8), (v8, c1) depict a 4-cycle in this graph which is to be avoided

for performance consideration.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H

(a) A parity-check matrix with two circulant matrices

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

5c

9v 10v

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck

nodesvariable

5c

9v 10v

(b) Tanner graph representation

Figure2.4 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where

xxa += 1)(1 and 42
2 1)(xxxa ++=

 11

Quasi-Cyclic Based Code [21]

The code is constructed with a base of quasi-cyclic code. The parity check

matrix is in the following form.

 ⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

ll

l

BBBB
AAA

H
121

121

...
0...

 (2.12)

where ll BBBAAA and ,...,,,,...,, 21121 − are all vv× circulant matrices. The code

length is vl and the code rate is (
l
21−). We can use the difference families [21] to

determine the polynomials of each of the circulant matrix),(and)(xbxa ji where

}1,...,2,1{ −∈ li and },...,2,1{ lj∈ , just as the quasi-cyclic code. In order to avoid

any 4-cycles in the new structure of the parity-check matrix, we provide a new

difference family to solve this problem. First, construct two)1,,(γv difference

families Family A and Family B and combine the two families to form a new

difference Family C , subject to the following two constraints.

Constraint 1: The differences [(yixi aa ,, −) mod v] and [(yixi bb ,, −) mod v],

where yxyxli ≠=−= ,,...,2,1, ;1,...,2,1 γ , give each element, can not be the same.

Constraint 2: The differences [(yjxi aa ,, −) mod v] and [(yjxi bb ,, −) mod v],

where , ,...,2,1, ;,1,...,2,1, γ=≠−= yxjilji give each element, can not be the same.

2.3 Encoding of LDPC Codes

Since LDPC code is a linear block code, it can be encoded by conventional

methods. However, conventional methods require encoding complexities proportional

to the quadratic of the code length. The high encoding cost of LDPC code becomes a

major drawback when compared to the turbo codes which have linear time encoding

 12

complexity. In this section, we will introduce some improved methods.

2.3.1 Conventional Method

Let],...,,,[1210 −= kuuuuu be a row vector of message bits with length k and

],...,,,[1210 −= nccccc be a codeword with length n. Let G with dimension k n× be

the generating matrix of this code, and

 uGc = . (2.12)

If H is the parity-check matrix of this code with dimension m n× , where m n k= − ,

then

0
0

0 0

=⇒

=⇒

=⇒=

T

T

TTT

GH
uGH
cHHc

 (2.13)

Suppose a sparse parity-check matrix H with full rank is constructed. Gaussian

elimination and column reordering can be used to derive an equivalent parity-check

matrix in the systematic form][rsystematic IPH = . Thus equation (2.13) can be solved

to get the generating matrix in a systematic form as

][T
ksystematic PIG = . (2.14)

Finally, the generating matrix G can be obtained by doing the reverse column

reordering to the systematicG .

Triangularized parity-check matrix form [4]

In [4], it suggests to force the parity-check matrix to be in a lower triangular

form. Under this restriction, it guarantees a linear time encoding complexity, but, in

 13

general, it also results in some loss of performance.

2.3.2 Richardson’s Method [3]

Richardson’s method is the most extensively used among LDPC encoding

algorithms. Figure 2.5 shows how to bring a parity-check matrix into an approximate

lower triangular form using row and column permutations. Note that since this

Figure 2.5 The parity-check matrix in an approximate lower triangular form

transformation was accomplished solely by permutations, the parity check matrix H is

still sparse. This method is to cut the parity check matrix H into 6 sub-matrices: A, B,

T, C, D, E. Especially, the sub-matrix T is in lower triangular form.

More precisely, it is assumed that the matrix is written in the form

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H (2.15)

where A is)()(mngm −×− , B is ggm ×−)(, T is)()(gmgm −×− , C is

)(mng −× , D is gg × , and E is)(gmg −× . Further, all these matrices are sparse

and T is lower triangular with ones along the diagonal. Let),,(21 ppsx = denote the

 14

codeword of this parity-check matrix where s is the message bits with length

)(nm − , 1p combined with 2p are the parity bits, and 1p and 2p have length

g , and)(gm − , respectively. Multiplying the matrix in equation (2.16) on both sides

of the constraint equation 0TH x⋅ =

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − IET

I
1

0
 (2.16)

can result in

 1 1 0
0

TA B T
x

ET A C ET B D− −

⎛ ⎞
⋅ =⎜ ⎟− + − +⎝ ⎠

. (2.17)

Expanding equation (2.17), one can get equations (2.18) and (2.19)

 021 =++ TTT TpBpAs (2.18)

 () () 01
11 =+−++− −− TT pDBETsCAET . (2.19)

Define 1ET B Dφ −= − + and assume for the moment that φ is nonsingular. Then

from equation (2.19) we conclude that

 ()1 1
1
T Tp ET A C sφ− −= − − + . (2.20)

Hence, once the)(mng −× matrix ()1 1 TET A C sφ− −− − + has been pre-computed,

the determination of 1p can be accomplished with a time complexity of

(())O g n m× − simply by performing a multiplication with this (generally dense)

matrix. This complexity can be further reduced as shown in Table 2.1. Rather than

pre-computing ()1 1 TET A C sφ− −− − + and then multiplying with Ts , 1p can be

determined by breaking the computation into several smaller steps, each of which is

computationally efficient. To this end, we first determine TAs , which has complexity

of ()O n , because A is sparse. Next, we multiply the result by 1−T . Since

TT yAsT =−][1 is equivalent to the system TT TyAs =][, this can also be

accomplished in ()O n time by back-substitution method, because T is lower

triangular and sparse. The remaining steps are fairly straightforward. It follows that

 15

the overall complexity of determining 1p is 2().O n g+ In a similar manner, noting

from equation (2.18) that)(1
1

2
TTT BpAsTp +−= − , we can determine 2p in time

complexity of ()O n , as shown step by step in Table 2.2.

 A summary of this efficient encoding procedure is given in Table 2.3. It contains

two steps, the preprocessing step and the actual encoding step. In the preprocessing

step, we first perform row and column permutations to bring the parity-check matrix

into the approximate lower triangular form with as small a gap g as possible. In actual

encoding, it contains the steps listed in Table 2.1 and 2.2. The overall encoding

complexity is 2()O n g+ , where g is the gap of the approximate triangularization.

Table 2.1 Efficient computation steps of ()1 1
1
T Tp ET A C sφ− −= − − +

Operation Comment Complexity

TAs

][1 TAsT −

][1 TAsTE −−

TCs

][][1 TT CsAsET +− −

1 1[]T TET As Csφ− −− − +

Multiplication by sparse matrix

TTTT TyAsyAsT =⇔=−][][1

Multiplication by sparse matrix

Multiplication by sparse matrix

Addition

Multiplication by dense gg × matrix

()nΟ

()nΟ

()nΟ

()nΟ

()nΟ

()2gΟ

Table 2.2 Efficient computation steps of)(1
1

2
TTT BpAsTp +−= −

Operation Comment Complexity

TAs

TBp1

][][1
TT BpAs +

Multiplication by sparse matrix

Multiplication by sparse matrix

Addition

()nΟ

()nΟ

()nΟ

 16

][1
1 TT BpAsT +− − TTTTTT TyBpAsyBpAsT =+−⇔=+− −][][11

1 ()nΟ

Table 2.3 Summary of Richardson’s encoding procedure

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent

parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that DBET +− −1 is

non-singular.

1. [Triangularization] Perform row and column permutations to bring the

parity-check matrix H into the approximate lower triangular form

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H

 with as small a gap g as possible.

2. [Check] Check that DBET +− −1 is non-singular, performing further

column permutations if necessary to ensure this property.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− 0

0
111 DBETCAET

TBA
EDC
TBA

IET
I

Encoding: Input: Parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that

DBET +− −1 is non-singular and a vector s denote the message bits has length

)(nm − . Output: The vector),,(21 ppsx = where 1p has length g and 2p has

length)(gm − , such that TTHx 0= .

1. Determine 1p as shown in Table 2.1.

2. Determine 2p as shown in Table 2.2.

 17

2.3.3 Quasi-Cyclic Code [5]

As reviewed in section 2.2, the quasi-cyclic code can be described by a

parity-check matrix],...,[21 lAAAH = and each of a circulant matrix jA is

completely formed by the polynomial 1
110)(−
−+++= v

v xaxaaxa with

coefficients from its first row. A code C with parity-check matrix H can be completely

characterized by the polynomials 1 2(), (),..., and ()la x a x a x . As for the encoding, if

one of the circulant matrices is invertible (say lA) the generator matrix for the code

can be constructed in the following systematic form.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−

−

−

−

T
ll

T
l

T
l

lv

AA

AA
AA

IG

)(
...

)(
)(

1
1

2
1

1
1

)1((2.21)

It results in a quasi-cyclic code of length vl and dimension)1(−lv . The encoding

process can be achieved with linear complexity using a)1(−lv -stage shift register.

Regarding the algebraic computation, the polynomial transpose is defined as

 ∑
−

=

−=
1

0

,)(
n

i

in
i

T xaxa 1=nx . (2.22)

For a binary [n, k] code, length vln = and dimension)1(−= lvk , the k-bit message

[]110 ,...,, −kiii is described by the polynomial 1
110 ...)(−
−+++= k

k xixiixi and the

codeword for this message is)](),([)(xpxxixc k= , where)(xp is given by

 ,))()(()()(
1

1

1∑
−

=

− ∗∗=
l

j

T
jlj xaxaxixp (2.23)

where)(xi j is the polynomial representation of the information bits)1(−jvi to 1−vji ,

 1
11)1()1(...)(−
−+−− +++= v

vjjvjvj xixiixi (2.24)

and polynomial multiplication)(∗ is mod 1−vx .

 18

 As an example, consider a rate-1/2 quasi-cyclic code with 5=v , 2=l , the first

circulant is described by xxa += 1)(1 and the second circulant is described by

42
2 1)(xxxa ++= , which is invertible and

 421
2)(xxxxa ++=− . (2.25)

The generator matrix contains a 55× identity matrix and the 55× matrix

described by the polynomial

 32
1

1
2 1)1())()((xxxaxa TT +=+=∗− . (2.26)

Figure 2.6 shows the example parity-check matrix and the corresponding generator

matrix.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H

(a) A parity-check matrix with two circulants

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100
01010
00101
10010
01001

10000
01000
00100
00010
00001

G

(b) The corresponding generator matrix in systematic form

Figure 2.6 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two

circulants, where xxa += 1)(1 and 42
2 1)(xxxa ++= . (b) Corresponding generator

matrix in systematic form.

 19

Quasi-Cyclic Based Code [21]

As reviewed in section 2.2, the quasi-cyclic based code can be described by a

parity-check matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

ll

l

BBBB
AAA

H
121

121

...
0...

, where

ll BBBAAA and ,...,,,,...,, 21121 − are all vv× circulant matrices. Regarding the

encoding for the quasi-cyclic based structure, suppose that two of the circulant

matrices 1−lA and lB are invertible, we can derive two generator matrices in the

following systematic forms

 []1)2(

2
1
1

2
1
1

1
1
1

)2(1

)(
...

)(
)(

GI

AA

AA
AA

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−
−

−
−

−
−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= (2.27)

and

 []2)1(

1
1

2
1

1
1

)1(2

)(
...

)(
)(

GI

BB

BB
BB

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−

−

−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= . (2.28)

Let],,[21 ppdc = denote the codeword of the proposed parity-check matrix where d

is the message bits with length)2(−lv , and 1p combined with 2p are the parity

bits, each having the same length v . The encoding procedure is partitioned into two

steps.

Encoding Step 1: We can use the generator matrix 1G to get the parity bits 1p . That

is

 11 Gdp ×= . (2.29)

Then, combine the parity bits 1p with the message bits d to form an intermediate

codeword c′ where],[1pdc =′ .

 20

Encoding Step 2: The last parity bits 2p can be derived from the generator matrix

2G and the intermediate codeword c′ . That is

 22 Gcp ×′= . (2.30)

2.4 Conventional LDPC Code Decoding Algorithm

There are several decoding algorithms for LDPC codes. The LDPC decoding

algorithms can be summarized as: bit-flipping algorithm [20], and message passing

algorithm [11]. In the following, we will make an introduction of the decoding

algorithms.

2.4.1 Bit-Flipping Algorithm [20]

The idea for decoding is the fact that in case of low-density parity-check

matrices the syndrome weight increases with the number of errors in average until

errors weights are much larger than half the minimum distance. Therefore, the idea is

to flip one bit in each iteration, and the bit to be flipped is chosen such that the

syndrome weight decreases. It should be noted that not only rows of the parity-check

matrix can be used for decoding, but in principle all vectors of the dual code with

minimum (or small) weight. In the following, we will introduce two of the bit-flipping

algorithms [20].

 21

Notation and Basic Definitions

The idea behind this algorithm is to “flip” the least number of bits until the parity

check equation 0TH x⋅ = is satisfied. Suppose a binary (n,k) LDPC code is used for

error control over a binary-input additive white Gaussian noise (BIAWGN) channel

with zero mean and power spectral density 2σ . The letter n is the code length and k

is the message length. Assume binary phase-shift-keying (BPSK) signaling with unit

energy is adopted. A codeword 0 1 1(, , ,) { (2)}n
nc c c c GF−= ∈L is mapped into bipolar

sequence 0 1 1(, , ,)nx x x x −= L before its transmission, where 2 (1),i ix c= ⋅ −

0 1i n≤ ≤ − . Let 0 1 1(, , ,)ny y y y −= L be the soft-decision received sequence at the

output of the receiver matched filter. For 0 1i n≤ ≤ − , i i iy x n= + , where in is a

Gaussian random variable with zero mean and variance 2σ . An initial binary hard

decision of the received sequence, (0) (0) (0) (0)
0 1 1(, , ,)nz z z z −= L , is determined as follows

 (0) 1, 0
0, 0

i
i

i

y
z

y
≥⎧

= ⎨ ≤⎩
 (2.31)

For any tentative binary hard decision z made at the end of ach decoding iteration, we

can compute the syndrome vector as .Ts H z= ⋅ One can define the log-likelihood

ratio (LLR) for ear channel output , 0 1iy i n≤ ≤ − :

 (1|)ln
(0 |)

i i
i

i i

p c yL
p c y

=
=

=
 (2.32)

The absolute value of iL , iL , is called the reliability of the initial decision (0)
iz .

For any binary vector 0 1 1(, , ,)nv v v v −= L , let wt(v) be the Hamming weight of v . Let

iu be the n dimensional unit vector, i.e., a vector with “1” at the i-th position and “0”

everywhere else.

 22

Algorithm I

Step (1) Initialization: Set iteration counter k = 0. Calculate (0)z and (0) (0)()
T

S wt H z= ⋅ .

Step (2) If () 0kS = , then go to Step (8).

Step (3) k←k+1. If maxk k> , where maxk is the maximum number of iterations, go to

Step (9).

Step (4) For each 0,1, , 1i n= −L , calculate () (1)[()]k k T
i iS wt H z u−= ⋅ +

Step (5) Find () {0,1, , 1}kj n∈ −L with () ()

0
arg(min)k k

ii n
j S

≤ <
= .

Step (6) If () (1)k kj j −= , then go to Step (9).

Step (7) Calculate ()
() (1)

k
k k

j
z z u−= + and () ()()

Tk kS wt H z= ⋅ . Go to Step (2).

Step (8) Stop the decoding and return ()kz .

Step (9) Declare a decoding failure and return (1)kz − .

So the algorithm flips only one bit at each iteration and the bit to be flipped is

chosen according to the fact that, in average, the weight of the syndrome increases

with the weight of the error. Note that in some cases, the decoder can choose a wrong

position j, and thus introduce a new error. But there is still a high likelihood that this

new error will be corrected in some later step of the algorithm.

Algorithm II

Algorithm I can be modified, with almost no increase in complexity, to achieve

better error performance, by including some kind of reliability information (or

measure) of the received symbols. Many algorithms for decoding linear block codes

 23

based on this reliability measure have been devised. Consider the received

soft-decision sequence 0 1 1(, , ,)ny y y y −= L . For the AWGN channel, a simple measure

of the reliability, iL , of a received symbol iy is its magnitude, iy . The larger the

magnitude iy is, the larger the reliability of the hard-decision digit iz is. If the

reliability of a received symbol iy is high, we want to prevent the decoding

algorithm from flipping this symbol, because the probability of this symbol being

erroneous is less than the probability of this symbol being correct. This can be

achieved by appropriately increasing the values iS in the decoding algorithm. The

solution is to increase the values of iS by the following term: iL . The larger value

of iL implies that the hard-decision iz is more reliable. The steps of the soft

version of the decoding algorithm are described in detail below:

Step (1) Initialization: Set iteration counter k = 0. Calculate (0)z and (0) (0)()
T

S wt H z= ⋅ .

Step (2) If () 0kS = , then go to Step (8).

Step (3) k←k+1. If maxk k> , go to Step (9).

Step (4) For each 0,1, , 1i n= −L , calculate () (1)[()]k k T
i i iS wt H z u L−= ⋅ + +

Step (5) Find () {0,1, , 1}kj n∈ −L with () ()

0
arg(min)k k

ii n
j S

≤ <
= .

Step (6) If () (1)k kj j −= , then go to Step (9).

Step (7) Calculate ()
() (1)

k
k k

j
z z u−= + and () ()()

Tk kS wt H z= ⋅ . Go to Step (2).

Step (8) Stop the decoding and return ()kz .

Step (9) Declare a decoding failure and return (1)kz − .

 24

It is important to point out that, in both algorithms, though the maximum

number of iteration is specified, the algorithms have an inherent stopping criterion.

The decoding process stops either when a valid codeword is obtained (Step 2) or

when the minimum syndrome weight at the kth iteration and the minimum syndrome

weight at the (k-1)th iteration are found in the same position (Step 6).

The bit-flipping algorithm just corrects at most one error bit in one iteration. The

codeword length of LDPC code is usually hundreds (or thousands) of bits. When the

channel SNR (signal-to-noise ratio) is low, the decoding iteration number of the

bit-flipping algorithm needs to be high to correct the erroneous bits. This will lower

the throughput of the decoder. And according to Step (5), equation (2.33) is to find the

minimal value of the n numbers. The value of n (codeword length) is usually large.

The hardware complexity of equation (2.33) is high.

 () ()

0
arg(min)k k

ii n
j S

≤ <
= (2.33)

2.4.2 Message Passing Algorithm [11]

Since the bit-flipping algorithm is hard to be implemented in hardware, the

message passing algorithm is extensively used for LDPC decoding. The message

passing algorithm is an iterative decoding process. Messages between variable nodes

and check nodes are exchanged back and forth. The decoder expects that error will be

corrected progressively by using this iterative message-passing algorithm. At present,

there are two types of iterative decoding algorithms applied to LDPC codes in

general.

 25

 Sum-product algorithm, also known as belief propagation algorithm.

 Min-sum algorithm

Both of sum-product algorithm and min-sum algorithm are message passing

algorithms. In the following, we will discuss these two algorithms in detail. First, we

explain the decoding procedure in Tanner graph below.

Decoding Procedure in Tanner Graph Form

Now we make a description of the message passing algorithm using Tanner

graph form. Here is a simple example of irregular LDPC code. The parity-check

matrix is shown below.

Tanner graph of this parity-check matrix is shown in Figure 2.7.

Figure 2.7 Tanner graph of the given example parity-check matrix

Assume every line in the Tanner graph has two information messages. One is

expressed in a solid line and the other is expressed in a dotted line. We use the

messages to decode the received signal. For convenience of explanation, we take one

part of Tanner graph which is shown below.

1 1 0 1
1 0 1 1

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ 2S

1x 4x3x2x

1S

 26

The solid line and the dotted line are represented by s xq → and ,x sr → respectively. In

this example, we can get
1 1s xq → by

2 1x sr → and
4 1x sr → . Equation (2.34) shows how to

compute
1 1s xq → .

1 1 2 1 4 1

()s x x s x sq CHK r r→ → →= ⊕ (2.34)

On the other hand, we can also get
1 1x sr → by

2 1s xq → and 1L , where 1L is the

initialization value. The initialization value 1L will be discussed later. Equation (2.35)

shows how to compute
1 1x sr → .

1 1 2 1 1()x s s xr VAR q L→ →= ⊕ (2.35)

There is CHK function in equation (2.34) and VAR function in equation (2.35).

The two special functions will be introduced in the following contents. In the Tanner

graph, we can compute the solid line message s xq → by the dotted line messages x sr →

which are connected to the same check node. In the same way, we can compute the

 27

dotted line message x sr → by the real line messages s xq → which are connected to the

same bit node. So the values of x sr → and s xq → are updated iteratively. We call this

iterative decoding.

Decoding Procedure in Matrix Form

Because Tanner graph is a representation of the parity-check matrix H, we can

also use the matrix form to replace Tanner graph form. Let us take the same

parity-check matrix H in the previous section
1 1 0 1
1 0 1 1

H ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 as an example. In

equation (2.36) and equation (2.37), we define matrix Q and matrix R. The positions

of the nonzero values in R and Q are the same as those of the ones in H.

 1 1 1 2 1 4

2 1 2 3 2 4

0

0
s x s x s x

s x s x s x

q q q
Q

q q q
→ → →

→ → →

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.36)

 1 1 2 1 4 1

1 2 3 2 4 2

0

0
x s x s x s

x s x s x s

r r r
R

r r r
→ → →

→ → →

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.37)

The elements in the matrix Q are computed by the elements in the matrix R, for

example,
1 1 2 1 4 1

()s x x s x sq CHK r r→ → →= ⊕ . On the other hand, the elements in the matrix

R are computed by the elements in the matrix Q. For example,

1 1 2 1 1()x s s xr VAR q L→ →= ⊕ , where 1L is the initialization value. So the elements in

matrix R and Q are updated iteratively. We can also regard the CHK function as the

horizontal step and VAR function as the vertical step in the decoding procedure.

 28

In the LDPC iterative decoding procedure, there are two main functions: VAR

and CHK . Equation (2.38) shows the VAR function with two inputs and equation

(2.39) is the general form of the VAR function.

 1 2 1 2()VAR q q q q⊕ = + (2.38)

 1 2 1 2()l lVAR q q q q q q⊕ ⊕ ⊕ = + + +L L (2.39)

The VAR function is fixed regardless of the decoding algorithms. It is just a

summation operation.

The CHK function with two inputs can be reformulated in different forms.

There are

))()(()()(

))
2

tanh()
2

(tanh(tanh2)(

2121

211
21

LLLsignLsign

LLLLCHK

φφφ +=

×=⊕ −

 (2.40)

where

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

1
1ln

2
tanhln)(x

x

e
exxφ and xx =))((φφ , (2.41)

and

21

21

1
1ln

22

))
2

ln(cosh())
2

ln(cosh()(

2121

2121
21

LL

LL

e
eLLLL

LLLL
LLCHK

−−

+−

+

+
+

−
−

+
=

−
−

+
=⊕

21

21

1
1ln),min()sign(L)sign(L 2121 LL

LL

e
eLL

−−

+−

+

+
+××= (2.42)

),min()()(2121 LLLsignLsign ××≈ . (2.43)

When CHK function is in the form of equation (2.40) or equation (2.42), we call the

decoding algorithm as sum-product algorithm. The fourth term
21

21

1
1ln LL

LL

e
e

−−

+−

+
+ in

equation (2.42) is called the correction factor. When the check node computation is in

 29

the form of equation (2.43), or in other words an approximate form, we call it the

min-sum algorithm.

The above discussion of check node computation is only about the CHK

function with two inputs. Now, we will discuss the general form of the CHK

function. The general form of the CHK function can be expressed in equation

(2.44).

))...))(((...()...(32121 ll LLLLCHKCHKCHKCHKLLLCHK ⊕⊕⊕=⊕⊕⊕ (2.44)

The purpose of equation (2.44) is to unfold 1 2(...)lCHK L L L⊕ ⊕ ⊕ . The procedure is:

first, compute 1 1 2(),a CHK L L= ⊕ then 2 1 3(),a CHK a L= ⊕ …,

1 2()l l la CHK a L− −= ⊕ . The computation result of equation (2.44) is 1la − . This can be

viewed as serial computation. Figure 2.8 shows the serial configuration for the general

form of the CHK function.

Figure 2.8 Serial configuration for check node update function

The serial computation has a long critical path in the check node update unit.

From equations (2.40), (2.43), and (2.44), we can generalize the CHK function as

equation (2.45) for sum-product algorithm, and equation (2.46) for min-sum

algorithm.

 30

 1 2 1 2
1

() () [() () ()]
l

l i l
i

CHK L L L sign L L L Lφ φ φ φ
=

⊕ ⊕ ⊕ = + + +∏L L (2.45)

where 1() ln
1

x

x

ex
e

φ
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠

1 2 1 2 1 2() () () () min[, , ,]l l lCHK L L L sign L sign L sign L L L L⊕ ⊕ ⊕ = ⋅ ⋅L L L (2.46)

Equations (2.45) and (2.46) tell us that the check node update function can also be

viewed as parallel configuration. If we derive the check node update function in

parallel configuration, the critical path of the check node update function will be

reduced. Figure 2.9 and 2.10 respectively show the check node updating function of

the sum-product algorithm and the min-sum algorithm. These two figures neglect the

multiplication of the sign symbols for an artistic view of the figures.

 Figure 2.9 Check node update function of sum-product algorithm

 Figure 2.10 Check node update function of min-sum algorithm

 31

Iterative Decoding Procedure [12]

The discussion in section 2.4.2 is only part of the whole iterative decoding

procedure. Now, we consider the actual decoding procedure. It means that there will

involve many iterations for a decoding process. First, let us describe some notations

for the iterative decoding procedure in Figure 2.11.)(lM denotes the set of check

nodes that are connected to the variable node l , i.e., positions of “1”s in the thl

column of the parity-check matrix.)(mL denotes the set of variable nodes that

participate in the thm parity-check equation, i.e., the positions of “1”s in the thm

row of the parity-check matrix. lmL \)(represents the set)(mL excluding the thl

variable node and mlM \)(represents the set)(lM excluding the thm check node.

m lq → denotes the probability message that check node m sends to variable node l .

l mr→ denotes the probability message that variable node l sends to check node m .

The probability message of m lq → and l mr→ are computed in LLR domain. The

iterative decoding procedure is shown below.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

01010100
10101000
00000111
00011001
01100010
11000001

1\)3(L)3(L
)1(M

1\)1(M

lindex nodeVariable

m
in

de
x

no

de
Ch

ec
k

Figure 2.11 Notations for iterative decoding procedure

 32

1. Initialization

Let

 2

(1) 2ln
(0)

l l
l l

l l

P y x
L y

P y x σ
=

= =
=

 (2.46)

be the log likelihood ratio of a variable node, where)(baP specifies that given b is

transmitted, the probability that the receiver receives a, where 2σ is the noise

variance of the Gaussian channel. For every position),(lm such that 1, =lmH ,

m lq → is initialized as

 m l lq L→ = . (2.47)

2. Message passing

Step1 (message passing from check nodes to variable nodes): Each check node

m gathers all the incoming message m lq → ’s, and update the message on the variable

node l based on the messages from all other variable nodes connected to the check

node m .

 '
' ()\

()l m m l
l L m l

r qCHK→ →
∈

= ⊕∑ . (2.48)

)(mL denotes the set of variable nodes that participate in the thm parity-check

equation.)(mL can also be viewed as the horizontal set in the parity check matrix H.

 Step2 (message passing from variable nodes to check nodes): Each variable node

l passes its probability message to all the check nodes that are connected to it.

()\ ()\

 ((),)m l l m l l l mm M l l m M l l
q VAR VAR r L L r→ → →∈ ∈

= = + ∑ (2.49)

 Step3 (decoding): For each variable node l , messages from all the check nodes

that are connected to the variable node l are summed up.

() ()

 ((),)l l m l l l mm M l m M l
q VAR VAR r L L r→ →∈ ∈

= = + ∑ . (2.50)

 33

Hard decision is made on .lq The decoded vector x̂ is decided as

0, 0
,0

1, 0
l

l
l

q
x l n

q
>⎧

= ≤ <⎨ ≤⎩
. The resulting decoded vector x̂ is checked against the

parity-check equation 0ˆ =TxH . If 0ˆ =TxH , the decoder stops and outputs x̂ .

Otherwise, it goes to step1 until the parity-check equation is procured or the specific

maximum iteration number is reached. The whole LDPC decoding procedure can be

expressed in Figure 2.12.

Figure 2.12 The whole LDPC decoding procedure

Table 2.4 Summary of sum-product algorithm

1. Initialization:

2. Message passing:

 Step1: Message passing from check nodes to variable nodes. For each ml, ,

compute

2
2

,

 1
(0) 2 ln , w h ere is th e n o ise varian ce
(1)

 , 1

l l
l l

l l

m l

m l l

F o r l n
P y x

L y
P y x

F o r every l m su ch th a t H
q L

σ
σ

→

≤ ≤

=
= =

=

=

=

'
' ()\

()l m m l
l L m l

r qCHK→ →
∈

= ⊕∑

 34

()()

() () [() ()]m l m l m l m l
l L ml L m

sign q sign q q qφ φ φ′ ′→ → → →
′′ ∈∈

= × −∑∏

 where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

1
1ln

2
tanhln)(x

x

e
exxφ and xx =))((φφ .

 Step2: Message passing from variable nodes to check nodes. For each ml, ,

compute

 .

Step3: Decoding

ˆ ˆ (0, ,
)

1

TIf Hx then x is the estimated codeword
or the iteration number is reached a predetermined threshold
the algorithm stops

else
return to step

=

⇒

⇒

 Table 2.5 Summary of min-sum algorithm

1. Initialization:

2. Message passing:

 Step1: Message passing from check nodes to variable nodes. For each ml, ,

compute

() ()

 ,
 ((),)

 1 ,
ˆ ˆ 0 0, 1 0

l l m l l l mm M l m M l

l l l l

For each l
q VAR VAR r L L r

For l n
x if q x if q

→ →∈
∈

= = +

≤ ≤
= > = <

∑

' '' ()\ ' ()\

 ((),)m l l m l l l mm M l m m M l m

q VAR VAR r L L r→ → →∈
∈

= = + ∑

llm

lm

l
ll

ll
l

Lq
HthatsuchmleveryFor

y
xyP
xyP

L

nlFor

=

=

=
=
=

=

≤≤

,

,

2
2

1 ,

 variancenoise theis where,2
)1(
)0(

ln

1

σ
σ

 35

 '
' ()\()

() () min{ }m l m l m l
l L m ml L m

sign q sign q q′→ → →
′ ∈∈

= ×∏

 Step2: Message passing from variable nodes to check nodes. For each ml, ,

compute

 .

Step3: Decoding

1

 , ˆ ,0ˆ(

stepreturn to
else

stopsalgorithmthe
thresholdnedpredetermiaexceedsiterationofnumbertheor

codewordestimatedtheisxthenxHIf T

⇒

⇒

=

'
' ()\

()l m m l
l L m l

r qCHK→ →
∈

= ⊕∑

() ()

 ,
 ((),)

 1 ,
ˆ ˆ 0 0, 1 0

l l m l l l mm M l m M l

l l l l

For each l
q VAR VAR r L L r

For l n
x if q x if q

→ →∈
∈

= = +

≤ ≤
= > = <

∑

' '' ()\ ' ()\

 ((),)m l l m l l l mm M l m m M l m

q VAR VAR r L L r→ → →∈
∈

= = + ∑

 36

Chapter 3

Modified Min-Sum Algorithms

In this chapter, we will introduce modified LDPC decoding algorithms. As

mentioned in chapter 2, the sum-product algorithm has better performance than

min-sum algorithm. In the following, we will depict the difference between

sum-product algorithm and min-sum algorithm. Our final goal is to modify min-sum

algorithm in order to achieve decoding performances close to sum-product algorithm.

3.1 Normalization Technique for Min-Sum Algorithm [14]

Equation (3.1) is the check node updating function in the sum-product algorithm.

In equation (3.1), there is a major function 1() ln
1

x

x

ex
e

φ
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠
. The function plot of

()xφ is shown in Figure 3.1. Implementation of the nonlinear function ()xφ is

complicated. Even the commonly adopted table-look-up scheme suffers loss in error

performance because of the large quantization error, especially when x is small.

 1 2 1 2
1

() () [() () ()]
w

l i l
i

CHK L L L sign L L L Lφ φ φ φ
=

⊕ ⊕ ⊕ = + + +∏L L (3.1)

 37

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

x

1 1
(

)
ln

x xe e
x

φ
⎛

⎞
+

⎜
⎟

−
⎝

⎠
=

Figure 3.1 Function plot of ()xφ

Equation (3.2) is the check node update function used in min-sum algorithm.

The key part of equation (3.2) is to find the minimal value among w numbers:

1 2min[, , ,]wL L LL . The value of w is decided by the row weight of the parity

check matrix H and it’s usually small (say, 6 or 7). Therefore, the min-sum

algorithm is more suitable to for implementation in hardware.

 1 2 1 2
1

() () min[, , ,]
w

w i w
i

CHK L L L sign L L L L
=

⊕ ⊕ ⊕ =∏L L (3.2)

As we mentioned in chapter 2, equation (3.2) is an approximate form of

equation (3.1). Assume the result of equation (3.1) is A and the that of equation (3.2)

is B. In [14], it proves the following two statements about the relationship between A

and B.

 38

Statements:

(1) Values A and B have the same sign, i.e., () ()sign A sign B= ;

(2) The absolute magnitude of B is always greater than that of A, i.e., B A>

Statement (1) is quite straightforward because ()xφ and min()x are both positive

functions. For convenience of proving statement (2), we assume iB L= , where i is

an arbitrary number between 1 and w .

1 2

1 2

1 2

() () () ()
Take the function () on both sides, one has

 (()) [() () ()]

 [() () ()] because (()) ,0<

i w

i w

i w i i

L L L L

L L L L

L L L L L L i w

B A

φ φ φ φ
φ

φ φ φ φ φ φ

φ φ φ φ φ φ

< + + +

⇒ > + + +

⇒ > + + + = ≤

⇒ >

L

L

L

Note that because ()xφ is a decreasing function, the comparison symbol should be

changed if one takes the function ()xφ on both inequality sides. Hence statement (2)

is proved.

These two statements suggest the use of normalization to get more accurate soft

values from B . In other words, one can multiply B by a factor β which is

smaller than 1 to get a better approximation of A . To determine the normalization

factor β , one can consider the criterion of forcing the mean of the normalized

magnitude Bβ ⋅ to equal the mean of the magnitude A [14], i.e.

()
()

E A
E B

β = (3.3)

The normalization factor β that makes Bβ ⋅ equal to A in the average sense

may not be the best, but it seems a quite reasonable choice. In the following, a

theoretical value of β is derived.

 39

It is assumed the channel is a Gaussian channel with noise variance 2σ . For

convenience, one denotes the set { : 1,2, , }iL i w= L . Then iL are independent, and

identically distributed (i.i.d.) random variables. The probability density function

(p.d.f.) of iL depends on SNR and code rate. One can also write

 1 2[] { [() () ()]}wE A E L L Lφ φ φ φ= + + +L (3.4)

 1 2[] {min[, ,]}wE B E L L L= L (3.5)

One first generates the random vectors 1 2{ , , , }lL L LL , and then calculate the means

of A and B statistically based on equations (3.4) and (3.5). The normalization

factor can be obtained from equation (3.3). One can calculate equations (3.4) and (3.5)

by the theory of probabilities.

First, one can calculate []E B . Let , 1, 2, ,i iM L i w= = L , so that the p.d.f. of

iM is

 () (() ()) () 2 () ()
i i i iM L L Lf m f l f l u l f l u l= + − = ⋅ (3.6)

where ()
iLf ⋅ is the p.d.f. of iL and ()u l is a unit-step function of l . It follows

1 2

1 2

1

() [min(, , ,)]
 [, , ,]

 [()]

w

w

w

P B l P L L L l
P L l L l L l

P L l

> = >

= > > >

= >

L (3.7)

The last equation in (3.7) follows from the fact that { }iL are i.i.d. random variables.

Since 0B > , one can write

1

10

1 10

0

() [()]

 [()]

 [1 () ()]

 [() ()]

w

w
Mm

w

m m

w

m m

E B P M m dm

f m dm dm

m mQ Q dm

m mQ Q dm

µ

µ

µ µ
σ σ
µ µ

σ σ

∞

∞ ∞

∞

= >

=

− +
= − +

− +
+ +

∫
∫ ∫

∫

∫

 (3.8)

 40

The second integration in (3.8) can be omitted and finally one obtains

0

() [1 () ()]w

m m

m mE B Q Q dm
µ µ µ

σ σ
− +

≈ − +∫ (3.9)

where 2 2

2 4, ,mµ σ
σ σ

= = 2σ is the channel noise variance, and

2 / 21()
2

x

x
Q x e dx

π
∞ −= ∫ .

Next one can calculate []E A in equation (3.4).

1 2

1 2

1 2

1 2

1 2
1 1 1[() () ()] [ln{ }]
1 1 1

1 1 1 [ln()] , where =
1 1 1

1 ln
1

w

w

w

w

LL L

w L L L

LL L

L L L

e e eL L L
e e e

e e eX X
e e e

X
X

φ φ φ φ φ

φ

+ + +
+ + + = ⋅ ⋅ ⋅

− − −
+ + +

= ⋅ ⋅ ⋅
− − −

+
=

−

L L

L

3 5
1 2() , using Taylor's series

3 5
X XX

− −
−= + + +L

 (3.10)

Let []k
kp E X −= . Since { }iL are i.i.d. random variables, one can get

1

1

1

1

1

[]

1 ()
1

1 { []}
1

 [(tanh(/ 2))]

 [(tanh(/ 2))]

i

i

k
k

kLw

L
i

kL
w

L

k w

k w

p E X

eE
e

eE
e

E L

E M

−

=

=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠
=

=

∏

 (3.11)

From equations (3.10) and (3.11), one can get

3 5
1

3 5
1

[] [][] 2{ [] }
3 5

 2()
3 5

E X E XE A E X

p pp

− −
−= + + +

= + + +

L

L

 (3.12)

A few lower-order terms of equation (3.12) are enough to give a very good estimation

of []E A in most cases. Combined with value []E B given in equation (3.9), one

 41

can obtain the theoretical value of the normalization factor β . But in practical, the

theoretical value of β is hard to compute. To use the theoretical value of β for

different SNR values seems to be impractical. Thus, for a specific LDPC code, one

can associate a fixed normalization factor through simulations.

Now, let’s set the number of w (the input number of a check node updating

function) to 6. This is because the row-weight of H is 6 or 7 in 802.16e standard (see

appendix A). Assume

 1 2 6[() () ()]A L L Lφ φ φ φ= + + +L (3.13)

 1 2 6min[, , ,]B L L L= L (3.14)

The purpose of Figure 3.2 is to find the normalization factor β . The vertical axis of

Figure 3.2 is B Aβ ⋅ − , and the horizontal axis is β . In hardware implementation,

only a certain value of β will be chosen for finite-precision representation. For

example, one can set β to be a multiple of 0.125 for simple hardware

implementation. Through Figure 3.2, our objective is to choose the most appropriate

β so that the value of B Aβ ⋅ − is as small as possible. From simulations,

0.75β = is found to be a suitable value. When β is 0.75, it is shown that

B Aβ ⋅ − is less than 0.2.

 42

Figure 3.2 The absolute difference between the normalization technique and

 sum-product algorithm, vs. the normalization factorβ

3.2 Dynamic Normalization Technique for Min-Sum

Algorithm [23]

In section 3.1, one can use the normalized factor β to compensate the result of

equation (3.2) so that it can approximate equation (3.1) more accurately. In [23], it

shows the idea to adjust the normalized factor β dynamically to get better decoding

performance. Thus the normalization factor β can have the form:

 1

2

, when
, when

B K
B K

β
β

β
<⎧

= ⎨ ≥⎩
 (3.15)

In [23], it selects two normalization factors 1β and 2β first. For convenience

of hardware implementation, only certain simple values of 1β and 2β should be

chosen for finite-precision realizations. For check node degree of 6, it found that

1 0.75β = and 2 0.875β = are good choices. Then through simulations, one can find

the optimum threshold value K to have the lowest decoder BER. The detailed

 43

simulation results are in chapter 4.

3.3 Proposed Dynamic Normalized-Offset-Compensation

 Technique for Min-Sum Algorithm

Compared to the dynamic normalization technique, one can extend the idea by

adding an additional offset factor α to equation (3.2) [6] in order to get even more

accurate check-node updating values. Equation (3.16) shows the normalized-offset

technique for min-sum algorithm.

 1 2 1 2
1

() (){ min[, , ,] }
w

w i w
i

CHK L L L sign L L L Lβ α
=

⊕ ⊕ ⊕ = ⋅ +∏L L (3.16)

In section 3.1, we have decided the value 0.75 of β when the check node degree is 6.

Through simulations in chapter 4, we find that for fixed value of α , the decoding

performance is not always better than that of 0α = . So we have the idea to adjust the

offset factor α dynamically.

Now, we have the inspiration if the offset factor α can be dynamically

adjusted to get better performance. Equation (3.17) shows the dynamic offset factor

α .

 1

2

, when
, when

B K
B K

α
α

α
<⎧

= ⎨ ≥⎩
 (3.17)

Through simulations, we can decide the best values of 1α and 2α . As we discuss in

section 3.1, In hardware implementation, only certain simple values of 1α and 2α

will be chosen for finite-precision realizations. For check node degree of 6, we found

that 1 0α = and 2 0.125α = are good choices.

In the following, we are going to decide the threshold K for a particular LDPC

Code. Figure 3.3 shows the selection of K for rate 1/2 LDPC code vs. SNRs. K=0

 44

means that we have fixed offset factor α . Otherwise, we have the dynamic offset

factor α . In Figure 3.4, we can find the threshold value K equal to 1.5 is a good

choice. The detail simulation results will be shown in chapter 4.

Figure 3.3 BER performance vs. threshold values K for rate 1/2 LDPC code

 45

Chapter 4

Simulation Results and Analysis

In the beginning of this chapter, we will make a comparison of error correction

performances by using different structures of the parity-check matrices such as

randomly constructed code, and block-LDPC code in 802.16e standard. Then we will

make a comparison of error correction performance with major decoding algorithms

for LDPC codes such as sum-product algorithm, min-sum algorithm, and the

proposed improved min-sum algorithm. In the end, we will furthermore analyze the

finite-precision effects on the decoding performance, and decide proper word lengths

of variables considering tradeoffs between the performance and the hardware cost.

Before proceeding to the following simulations, some parameters should be

described here:

1: The randomly constructed codes are derived from [22], and they have a

regular column weight and row weight.

2: The block-LDPC code used is for 802.16e standard.

3: For the decoding algorithm, we adopt the sum-product algorithm, min-sum

algorithm, and the proposed modified min-sum algorithm.

4: We assume AWGN channels and BPSK modulation as our test environment

conditions.

 46

4.1 Floating-Point Simulations

One of the most important factors of concern when decoding the received

signals is the iteration number. As the number becomes larger, the correct codewords

are more likely to be decoded. However, more iterations imply higher computation

cost and latency. Therefore, we need to choose a proper iteration number in the

decoding process. In Figure 4.1, we show the BER simulation results vs. SNR, with

different iteration numbers, for the LDPC code at rate 1/2 and length 576, BPSK, and

sum-product decoding algorithm are adopted. We can find that the performance

improvement tends to be insignificant after 10 iterations, which is about 0.2 dB. As a

result, LDPC decoding with 10 iterations is considered as a good choice for practical

implementation.

1 1.5 2 2.5 3 3.5 4
10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

iteration=1
iteration 10
iteration 20
iteration 30
iteration 50

Figure 4.1 Decoding performance at different iteration numbers.

 47

1 1.5 2 2.5 3 3.5 4
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Eb/No

B
E

R

Length 576
length 2304

Figure 4.2 BER Performance of the rate-1/2 code at different codeword lengths, in

AWGN channel, maximum iteration=10.

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Min-Sum Algorithm
Sum-Product Algorithm

Figure 4.3 Floating-point BER simulations of two decoding algorithms in AWGN

channel with code length=576, code rate=1/2, maximum iteration=10.

 48

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Normalized min-sum:beta=0.5
Normalized min-sum:beta=0.75
Normalized min-sum:beta=0.875
Sum-Product

Figure 4.4 Floating-point BER simulations of normalized min-sum decoding

 algorithms in AWGN channel with code length=576, code rate=1/2,

 maximum iteration=10.

1 1.5 2 2.5 3 3.5 4
10-6

10
-5

10
-4

10
-3

10-2

10-1

100

Eb/No

B
E

R

afa=0.25
afa=-0.25
afa=0
afa=0.125

Figure 4.5 Floating-point BER simulations under normalized-offset technique in

 min-sum decoding algorithms, in AWGN channel with code length=576,

 code rate=1/2, maximum iteration=10.

 49

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

NMS:beta=0.75
Proposed DNOMS
Sum-Product

Figure 4.6 Floating-point BER simulations of the dynamic normalized-offset

 min-sum decoding algorithm and its comparison with other algorithms, in

 AWGN channel with code length=576, code rate=1/2.

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Dynamic Normalization
Proposed DNOMS
Dynamic Normalization with Offset Factor
Sum-Product

Figure 4.7 Floating-point BER simulations under normalized-offset-compensated

technique and dynamic normalization technique in min-sum algorithm.

 50

4.2 Fixed-Point Simulations

In this section, we furthermore analyze the finite-word-length performance of

the LDPC decoder. Possible tradeoff between hardware complexity and decoding

performance will be discussed. Let [t:f] denote the quantization scheme in which a

total of t bits are used, and f bits are used for the fractional part of the values.

Various quantization configurations such as [6:3], [7:3], [8:4] are investigated here.

1 1.5 2 2.5 3 3.5 4
10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

Fixed-Point MS[6:3]
Fixed-Point MS[7:3]
Fixed-Point MS[8:4]
floating-point MS

Figure 4.8 Fixed-point BER simulations of three different quantization

 configurations of min-sum decoding algorithm, in AWGN channel,

 code length=576, code rate=1/2, maximum iteration=10.

 51

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No

B
E

R

NMS fixed-point[7:3] beta=0.75
NMS floating-point beta=0.75
DNOMS fixed-point[7:3]
DNOMS floating-point

Figure 4.9 Floating-point vs. fixed-point BER simulations of the normalization and

 dynamic normalized-offset min-sum algorithm.

 52

Chapter 5

Architecture Designs of LDPC Code Decoders

In this chapter, we will introduce the hardware architectures of the LDPC code

decoder in our design and discuss the implementation of an irregular LDPC decoder

for 802.16e standard. The decoder has a code rate 1/2 and code length of 576 bits. The

parity-check matrix of this code is listed in Appendix A.

5.1 The Whole Decoder Architecture

The parity-check matrix H in our design is in block-LDPC form as we discuss in

section 2.2. The parity-check matrix is composed of b bm n× sub-matrices. The

sub-matrices are zero matrices or permutation matrices with the same size of z z× .

The permutations used are circular right shifts, and the set of permutation matrices

contains the z z× identity matrix and circular right shifted versions of the identity

matrix.

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

b

b

b b b b

n

n

m m m n

P P P

P P P
H

P P P

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M L M

L

Figure 5.1 The parity check matrix H of block-LDPC Code

 53

In our design, we consider a LDPC code with code-rate 1/2 and 288-by-576

parity-check matrix for 802.16e standard. While considering circuit complexity, the

288-by-576 parity-check matrix H of LDPC code are divided into four 144-by-288

sub-matrices to fit partial-parallel architecture, which is shown in Figure 5.2. The

LDPC code decoder architecture in our design is illustrated in Figure 5.4. This

architecture contains 144 CNUs, 288 BNUs and two dedicated message memory units

(MMU). The set of data processed by CNUs are 00 01{ , }h h and 10 11{ , }h h , whereas the

data fed into BNUs should be 00 10{ , }h h and 01 11{ , }h h . Note that two MMUs are

employed to process two different codewords concurrently without stalls. Therefore,

the LDPC decoder is not only area-efficient but also its the decoding speed is

comparable with fully parallel architectures.

Figure 5.2 The partition of parity-check matrix H

Figure 5.3 I/O pin of the decoder IP

 54

Figure 5.4 The whole LDPC decoder architecture for the block LDPC code

The I/O pin of the decoder chip is shown in Figure 5.3. Figure 5.4 shows the

block diagram of the decoder architecture. The modules in it will be described

explicitly in the following. We adopt partial-parallel architectures [19], so the decoder

can handle 2 codewords at one time.

Input Buffer [19]

The input buffer is a storage component that receives and keeps channel values

for iterative decoding. Channel values should be fed into the COPY module during

initialization and BNU processing time.

COPY, INDEX, and ROM modules

The parity-check matrix H is sparse which means there are few ones in the

matrix. It is not worth to save the whole parity-check matrix in the memory. So we

use the module INDEX to keep the information of H. We take a simple example to

explain how these modules work. Figure 5.4 shows the simple parity-check matrix.

 55

Figure 5.5 A simple parity-check matrix example, based on shifted identity matrix.

The parity-check matrix is composed by 4 sub-matrices and the sub-matrices are

right-circular-shifted matrices. The shifted numbers are expressed in Figure 5.5. Since

the parity-check matrix size in this example is 8-by-8, we receive 8 channel values.

The channel values are assumed to be []1 2 3 4 5 6 7 8v v v v v v v v v=
r

, and

then they are fed to the module “COPY”. Figure 5.6 (a) and 5.6 (b) show how

modules “COPY”, “INDEX”, “ROM” work. The outputs of the module “INDEX” are

1 2 3 4, , , i i i i
v uv uv uv

. They reserve the channel values and add the indices of the shifted

numbers. The indices of the shifted numbers are stored in module “ROM.”

 Figure 5.6 (a) The sub-modules of the whole decoder

 56

 Figure 5.6 (b) The outputs of the module INDEX

The indices represent the shifted amounts and the information of H. So we place the

indices in front of the channel values.

SHUFFLE1, SHUFFLE2 modules

Before sending the values to the check-node update unit, we have to shuffle left

the values in order to give the correct positions when doing check-node computation

and shuffle right the values before doing the bit-node computation. The amount of the

shuffling value is decided by the index numbers. Figure 5.7(a) and 5.7(b) show how

modules SHUFFLE1 and SHUFFLE2 work. In this example,

2 7 3 8 4 5 1 6(,), (,), (,), (,)v v v v v v v v are the input pairs of the check-node update unit.

Before sending the values to the bit-node update unit, we have to shuffle back the

values. Thus we can have the correct answers.

Figure 5.7(a) Values shuffling before sending to check-node update unit

 57

 Figure 5.7(b) Values shuffling before sending to bit-node update unit

CNU[15]

Check node update units (CNUs) are used to compute the check node equation.

The check-to-bit message ,m lr for the check node m and bit node l using the

incoming bit-to-check messages ,m lq is computed by CNU as follows

 , , , '
()\

() min{ }m l m l m l
l L m l

r sign q q′
′∈

= ×∏ (5.1)

where () \L m l denotes the set of bit nodes connected to the check node m except

l . Figure 5.8(a) shows the architecture of the CNU using the min-sum algorithm. The

check node update unit has 6 inputs and 6 outputs. In Figure 5.8(a) and 5.8(b), the

output of “MIN” is the minimal value of the 2 inputs. The aim of this circuit is to find

the minimal value of the other 5 inputs. This architecture is quite straightforward.

Figure 5.8(b) shows the architecture of the CNU using the proposed modified

min-sum algorithm.

 58

Figure 5.8(a) The architecture of CNU using min-sum algorithm

Figure 5.8(b) The architecture of CNU using modified min-sum algorithm

 59

The other way to implement equation (5.1) is to search the minimal value and

the second minimal value from inputs. Figure 5.9 shows the block diagram of the

compare-select unit (CS6). The detailed architecture of CMP-6 in Figure 5.9 is

illustrated in Figure 5.10, which consists of two kinds of comparators: CMP-2 and

CMP-4. CMP-4 finds out the minimal and the second minimal values from the four

inputs, a, b, c , and d. In addition, CMP-2 is a two input comparator which is much

simpler than CMP-4.

Figure 5.9 Block diagram of CS6 module

 60

Figure 5.10(a) Block diagram of CMP-4 module

Figure 5.10(b) Block diagram of CMP-6 module

The whole architecture of the 6-input CNU is shown in Figure 5.11.

 61

Figure 5.11 CNU architecture using min-sum algorithm

Table 5.1 compares the hardware performance of two different CNU

architectures. We call the architecture in Figure 5.8(a) is direct CNU architecture and

the architecture in Figure 5.11 is backhanded CNU architecture. We can find that the

direct CNU architecture has only 45% size of the backhanded CNU architecture. So

we choose the direct CNU architecture.

Table 5.1 Comparison of direct and backhanded CNU architectures

 Direct CNU architecture
Backhanded CNU

architecture

Area (gate count) 0.52k 1.16k

Speed (MHz) 100 100

Power Consumption

(mW)
4.82 10.85

 62

BNU

Figure 5.12 shows the architecture of the bit node update unit for 4 inputs. “SM”

means the sign-magnitude representation and “2’s” means the two’s compliment

representation. While finding the absolute minimal value of two inputs,

sign-magnitude representation is more suitable for hardware implementation than

two’s compliment. In contrast, while adding computation, two’s compliment

representation is more suitable for hardware implementation than sign-magnitude

representation.

Figure 5.12 The architecture of the bit node updating unit with 4 inputs

MMU0 and MMU1 [19]

In [19], it introduces a partial-parallel decoder architecture that can increase the

decoder throughput with moderate decoder area. We adopt the partial-parallel

architecture in our design and make an improvement in the message memory units.

 63

Message memory units (MMU) are used to store the message values that are

generated by CNUs and BNUs. To increase the decoding throughput, two MMUs are

employed to concurrently process two different codewords in the decoder. The

register exchange scheme based on four sub-blocks (RE-4B) is proposed as shown in

Figure 5.13(a). In MMU, sub-blocks A, B, D capture the outputs from CNU while

sub-blocks C and D deliver the message data to SHUFFLE2. The detailed timing

diagram of MMU0 and MMU1 are illustrated in Figure 5.13(b). (0)
xyh means the

copied message of codeword 0 and (1)
xyh means that of codeword 1.

Figure 5.13(a) The architecture of RE-4B based MMU

 64

Figure 5.13(b) The timing diagram of the message memory units

While in the iterative decoding procedure, MMU0 and MMU1 pass messages to

each other through SHUFFLE1, CNU, SHUFFLE2, and BNU modules. Disregarding

the combinational circuit, the detailed relationship and snapshots between MMU0 and

MMU1 is shown in Figure 5.14.

 65

Figure 5.14 The message passing snapshots between MMU0 and MMU1

5.2 Hardware Performance Comparison and Summary

To compare the area, speed, latency, and power consumption of the architectures

discussed in this section, we describe the hardware architectures in VHDL, and

afterwards simulate and synthesize it using EDA tools SynopsisTM, PrimePower, and

DesignAnalyzer. The process technology is UMC 0.18 mµ process. Table 5.2 lists the

results of CNU using min-sum algorithm and the proposed modified min-sum

algorithm.

 66

Table 5.2 Area, speed, and power consumption of the CNU using min-sum

algorithm and modified min-sum algorithm

 6 input CNU 6 input CNU

(modified)

7 input CNU 7 input CNU

(modified)

Area

(gate count)
0.52k 0.57k 0.72 0.79

Speed (MHz) 100 100 100 100

Power

Consumption

(mW)

4.82 4.96 6.77 7.1

As mentioned before, two different codewords are processed concurrently

without any stalls. In our proposed design, BNUs and CNUs have no idle time. Hence,

it leads to an efficient utilization of the functional units. The design takes four cycles

to complete a decoding iteration for each codeword, including two cycles for

horizontal steps in CNUs and two cycles for vertical steps in BNUs. For channel

value loading, each codeword takes two extra cycles. Since the maximum iteration of

the decoding procedure is 10, the total amount of cycles needed to complete the

decoding of two different codewords is 2+2+10*4=44 cycles. According to our initial

synthesis results, the clock frequency is 100MHz, thus the data decoding throughput

is 100*[1152*(1/2)]/44≈1.31 Gbps.

The proposed LDPC decoder is compared with other designs as listed in Table

5.3. The objective of our design is to devise a high throughput LDPC decoder with

little chip area. Partial-parallel decoder architecture can meet our demand. Compared

with [19], our design has lower data throughput. Because our decoder design has

shorter code length and lower code rate. In our design, one codeword has 288

message bits. In [19], one codeword has 720 bits. Moreover considering the BER

 67

performance, we choose the iteration number=10. This also reduces the data

throughput. The superiority of our design is the chip area. Although we choose higher

quantization bits, the chip area in our design has 82.6% of the design in [19] and

54.3% of the design in [17].

Table 5.3 Comparison of LDPC decoders

Proposed LDPC

decoder
[19] [17]

Code length 576 1200 1024

Code rate 1/2 3/5 1/2

Quantization bits 7 6 4

Iteration number 10 8 10

Architecture Partial-parallel Partial-parallel Fully-parallel

Process

Technology (μm)
0.18 0.18 0.16

Clock rate (MHz) 100 83 64

Power (mW) 620 644 690

Area (gate count) 950k 1150k 1750k

Throughput

(Mbps)
1310 3330 500

 68

Chapter 6

Conclusions and Future Work

6.1 Conclusions

From this work, we summarize that using dynamic normalized-offset technique

in LDPC decoder can further improve the error correction performance when

compared with the conventional method. Various simulation results of LDPC decoder

are investigated and the optimal choice considering the tradeoff between the hardware

complexity and the performance have been discussed in this thesis.

In this thesis, with partial-parallel architecture, high-throughput and

area-efficient LDPC code decoders are proposed for high-speed communication

systems. A (576, 288) LDPC code in 802.16e standard has been implemented, of

which the code rate is 1/2, the code length is 576 bits, and the maximum number of

decoding iterations is 10. The LDPC decoder in our design can achieve a data

throughput of 1.31 Gbps and the chip area is 950k gates using the UMC 0.18 mµ

process technology.

6.2 Future Work

The normalization factor β and the offset factor α influence the decoder

BER performance quite large. Through our research, we found that our proposed

dynamic normalized-offset technique and dynamic normalization technique [23] have

 69

similar BER decoding performance. The other idea is to dynamically adjust the two

factors α and β in the same time. The threshold values of α and β may be

obtained through simulations. Moreover, as mentioned in Appendix A, there are a lot

of different codeword lengths and code rates in 802.16e standard. Our future work is

to integrate the multi-mode 802.16e LDPC decoder design.

 70

Appendix A

LDPC Codes Specification in IEEE 802.16e

OFDMA

The LDPC code in IEEE802.16e is a systematic linear block code, where k

systematic information bits are encoded to n coded bits by adding m n k= −

parity-check bits. The code-rate is /k n .

The LDPC code in IEEE802.16e is defined based on a parity-check matrix H of

size m n× that is expanded from a binary base matrix bH with size b bm n× , where

bm z m= ⋅ and bn z n= ⋅ . In this standard, there are six different base matrices. One

for the rate 1/2 code is depicted in Figure A.1. Two different ones for two rate 2/3

codes, type A is in Figure A.2 and type B is in Figure A.3. Two different ones for two

rate 3/4 codes, type A is in Figure A.4 and type B is in Figure A.5. One for the rate 5/6

code is depicted in Figure A.6. In these base matrices, size bn is an integer equal to

24 and the expansion factor z is an integer between 24 and 96. Therefore, we can

compute the minimal code length as min 24 24 576n = × = bits and the maximum code

length as max 24 96 2304n = × = bits.

For codes 1/2, 2/3B, 3/4A, 3/4B, and 5/6, the shift sizes (, ,)p f i j for a code

size corresponding to the expansion factor fz are derived from (,)p i j , which is the

element at the i-th row, j-th column in the base matrices, by scaling (,)p i j

proportionally as

 71

0

(,), (,) 0
(,)(, ,)

, (,) 0f

p i j p i j
p i j zp f i j

p i j
z

≤⎧
⎪= ⎢ ⎥⎨ >⎢ ⎥⎪
⎣ ⎦⎩

 (A.1)

For code 2/3A, the shift sizes (, ,)p f i j are derived by using a modulo function as

(,), (,) 0

(, ,)
mod[(,),], (,) 0f

p i j p i j
p f i j

p i j z p i j
≤⎧

= ⎨ >⎩
 (A.2)

A base matrix entry (, ,) 1p f i j = − indicates a replacement with a z z×

all-zero matrix and an entry (, ,) 0p f i j ≥ indicates a replacement with a z z×

permutation matrix. The permutation matrix represents a circular right shift by

(, ,)p f i j positions. This entry (, ,) 0p f i j = indicates a z z× identity matrix.

Rate 1/2:
1 94 73 1 1 1 1 1 55 83 1 1 7 0 1 1 1 1 1 1 1 1 1 1
1 27 1 1 1 22 79 9 1 1 1 12 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 24 22 81 1 33 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1

61 1 47 1 1 1 1 1 65 25 1 1 1 1 1 0 0 1 1 1 1 1 1 1
1
1
1
1

− − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − − −
− −
−
−
−

1 39 1 1 1 84 1 1 41 72 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 46 40 1 82 1 1 1 79 0 1 1 1 1 0 0 1 1 1 1 1
1 95 53 1 1 1 1 1 14 18 1 1 1 1 1 1 1 0 0 1 1 1 1

11 73 1 1 1 2 1 1 47 1 1 1 1 1 1 1 1 1 0 0 1 1 1
12 1 1 1

1 1 1
1 1 76

43 1 1

− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −
− − −

− − − −
− −

− −

83 24 1 43 1 1 1 51 1 1 1 1 1 1 1 1 0 0 1 1
1 1 94 1 59 1 1 70 72 1 1 1 1 1 1 1 1 1 0 0 1

65 1 1 1 1 39 49 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 66 1 47 1 1 1 26 7 1 1 1 1 1 1 1 1 1 1 0

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

Figure A.1 Base matrix of the rate 1/2 code

Rate 2/3 A code:
3 0 1 1 2 0 1 3 7 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 36 1 1 34 10 1 1 18 2 1 3 0 1 0 0 1 1 1 1 1
1 1 12 2 1 15 1 40 1 3 1 15 1 2 13 1 1 1 0 0 1 1 1 1
1 1 19 24 1 3 0 1 6 1 17 1 1 1 8 39 1 1 1 0 0 1 1 1

20 1 6
1 1 10

35 25
1 6

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

−
− −

−
−

1 1 10 29 1 1 28 1 14 1 38 1 1 0 1 1 1 0 0 1 1
1 28 20 1 1 8 1 36 1 9 1 21 45 1 1 1 1 1 0 0 1

1 37 1 21 1 1 5 1 1 0 1 4 20 1 1 1 1 1 1 1 0 0
6 1 1 1 4 1 14 30 1 3 36 1 14 1 1 1 1 1 1 1 1 0

− − − − − − − − − − − − −
− − − − − − − − − − − −

− − − − − − − − − − − − −
− − − − − − − − − − − − −

Figure A.2 Base matrix of the rate 2/3, type A code

 72

Rate 2/3 B code:
2 1 19 1 47 1 48 1 36 1 82 1 47 1 15 1 95 0 1 1 1 1 1 1
1 69 1 88 1 33 1 3 1 16 1 37 1 40 1 48 1 0 0 1 1 1 1 1

10 1 86 1 62 1 28 1 85 1 16 1 34 1 73 1 1 1 0 0 1 1 1 1
1 28 1 32 1 81 1 27 1 88 1 5 1 56 1 37 1 1 1 0 0 1 1 1

23

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

1 29 1 15 1 30 1 66 1 24 1 50 1 62 1 1 1 1 1 0 0 1 1
1 30 1 65 1 54 1 14 1 0 1 30 1 74 1 0 1 1 1 1 1 0 0 1

32 1 0 1 15 1 56 1 85 1 5 1 6 1 52 1 0 1 1 1 1 1 0 0
1 0 1 1 1 13 1 61 1 84 1 55 1 78 1 41 95 1 1 1 1 1 1 0

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

− − − − − − − − − − − − −
− − − − − − − − − − − − − − −

Figure A.3 Base matrix of the rate 2/3, type B code

Rate 3/4 A code:
6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1
62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1 -1 0 0 -1 -1 -1
71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1 -1 0 0 -1 -1
38 61 -1 66 9 73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32 0 -1 -1 0 0 -1
-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0
-1 63 31 88 20 -1 -1 -1 6 40 56 16 71 53 -1 -1 27 26 48 -1 -1 -1 -1 0

Figure A.4 Base matrix of the rate 3/4, type A code

Rate 3/4 B code:
-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1
42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 0 0 -1 -1 -1
-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -1 -1
64 2 -1 -1 63 -1 -1 3 51 -1 81 15 94 9 85 36 14 19 -1 -1 -1 0 0 -1
-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77 1 3 72 60 25 -1 -1 -1 -1 0 0
77 -1 -1 -1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -1 -1 -1 -1 0

Figure A.5 Base matrix of the rate 3/4, type A code

Rate 5/6 code:
1 25 55 1 47 4 1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 1 1
1 6 1 36 40 47 12 79 47 1 41 21 12 71 14 72 0 44 49 0 0 0 0 1

51 81 83 4 67 1 21 1 31 24 91 61 81 9 86 78 60 88 67 15 1 1 0 0
50 1 50 15 1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 1 1 0

− − − −
− − − −

− − − −
− − − −

Figure A.6 Base matrix of the rate 5/6 code

 73

References

[1] R. G. Gallager, Low-density parity-check codes, Cambridge, MA: MIT Press,

1963.

[2] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electron. Lett., Vol. 32, pp. 1645-1646, Aug. 1996.

[3] T. J. Richardson and R. L. Urbabke, “Efficient encoding of low-density

parity-check codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 638-656, Feb.

2001.

[4] D. J. C. Mackay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of

irregular gallager codes,’’ IEEE Trans. Comm., Vol. 47, pp. 1449-1454, Oct.

1999.

[5] S. J. Johnson and S. R. Weller, “A family of irregular LDPC codes with low

encoding complexity,” IEEE Comm. Lett., Vol. 7, pp. 79-81, Feb. 2003.

[6] J. Chen, A. Dholakia, E. Eleftheriou, and M.P.C. Fosoorier, and X.Y. Hu,

“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun., Vol. 53,

pp. 1288-1299, July 2005.

[7] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, Vol. 27, pp. 533-547, Sep. 1981.

[8] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,

“Practical loss-resilient codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 569-584,

Feb. 2001.

[9] T. J. Richardson, M. A. Shokrollashi, and R. L. Urbanke, “Design of

 74

capacity-approaching irregular low-density parity-check codes,” IEEE Trans.

Inform. Theory, Vol. 47, pp. 619-637, Feb. 2001.

[10] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, Vol. 45, pp. 399-431, Mar. 1999.

[11] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the

sum-product algorithm,” IEEE Trans. Inform. Theory, Vol. 47, pp. 498-519, Feb.

2001.

[12] H. Futaki and T. Ohtuski, “Low-density parity-check (LDPC) coded OFDM

systems,” IEEE VTS, Vol. 1, pp. 82-86, Fall. 2001.

[13] X. Y. Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient

implementation of the sum-product algorithm for decoding LDPC codes,” IEEE

GLOBECOM’01, Vol. 02, pp. 1036-1036E, Nov. 2001.

[14] Jinghu Chen and Marc P.C. Fossorier, “Near Optimum Universal Belief

Propagation Based Decoding of Low-Density Parity Check Codes,” IEEE Trans.

on Commun., Vol. 50, pp. 583-587, NO.3 Mar. 2002.

[15] Marjan Karkooti and Joseph R. Cavallaro, “Semi-parallel reconfigurable

architectures for real-time LDPC decoding,” IEEE ITCC’04 Vol. 65, pp.

683-689.

[16] Z. Wang, Y. Chen, and K. K. Parhi, “Area efficient decoding of quasi-cyclic low

density parity check codes,” IEEE ICASSP’04, Vol. 5, pp. 49-52, May. 2004.

[17] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2

low-density parity-check code decoder,” IEEE J. Solid-State Circuits, Vol. 37, pp.

404-412, Mar. 2002.

 75

[18] Y. Chen and D. Hocevar, “A FPGA and ASIC implementation of rate 1/2,

8088-b irregular low density parity check decoder,” IEEE GLOBECOM’03, Vol.

3, pp. 113-117, Dec. 2003.

[19] Chien-Ching Lin, Kai-Li Lin, Hsie-Chia Chang and Chen-Yi Lee, “A 3.33Gb/s

(1200,720) low-density parity check code decoder,” IEEE Proceedings of

ESSCIRC, Grenoble, France, 2005.

[20] T.M.N. Ngatched, M. Bossert, and A. Fahrner, “Two decoding algorithms for

 low-density parity check codes,” IEEE ITCC’04, Vol. 32, pp. 253-257.

[21] Yuan-Jih Chu and Sau-Gee Chen, “An efficient LDPC code structure

combined with the concept of difference family,” IWCMC’06, Vol. 18, pp.

355-360.

[22] I. V. Kozintsev. Software for low-density parity-check codes. [Online] Available

at: http://www.kozintsev.net/soft.html.

[23] Yen-Chin Liao, Chien-Ching Lin, Chih-Wei Liu, and Hsie-Chia Chang, “A

dynamic normalization technique for decoding LDPC codes,” IEEE Signal

Processing Systems Design and Implementation, pp. 768-772, Nov. 2005.

 76

自 傳

邱敏杰，1982 年 6 月 15 日出生，高雄縣人。2004 年自國立暨南

國際大學電機工程學系畢業，隨即進入國立交通大學電子研究所攻讀

碩士學位。研究興趣為通訊系統與數位信號處理，碩士論文題目為低

密度對偶檢查碼解碼演算法之改進以及其高速解碼器架構之設計。

