MPRHRIELEFBIRE 2 gz 2 3
& faAE B o

An Improved LDPC Decoding Algorithm and Designs of
High-Throughput Decoder Architecture

Foyo4 L eRarg

_— i~

hERE mEA L

J~4
N
|

Pimi

c“gﬁ‘-a\@a‘],ﬁ;



MBRRHEBRABIEBAE Z 20802 2 B #3245
AR
An Improved LDPC Decoding Algorithm and Designs
of High-Throughput Decoder Architecture

oy o4 L ERATA Student : Min-chieh Chiu
hERRImEA #L Advisor : Sau-Gee Chen

THIERE E TFFLTAARLTL

A Thesis
Submitted te Institute-of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in

Electronics Engineering

July 2006

Hsinchu, Taiwan, Republic of China

SEAEL LT e



RS SR 2 e 2
EREfRBEFHELK

F2 1 EmaA hErE o meA #L

d 2B R B LA (LDPO)enimiE i Z4&iT» B (Shannon) #&*117 2 275
2R b P MAF SRR R Tl T E KRR IR L it ih o B fRAE IR AL,
£ Hx 17 min-sum JF B2 BB Z B AEY s F] 58 &Y sum-product JFE i
min-sum J# & ;# L #GE £ A R BT IRe A2 ¢ o AP A min-sum jF B % 0
FENF P e A B Sl B Sl 2 B A Sl AR R AT K
min-sum i & % k350 BE T FR B iR 9 0.2dB o g b o o fRE E ik
PR o AR 8 T {F (partial-parallel) A ST R EJIES L7 F
2 codewords X 4u B gig & 2 FORELGL (EakS o P 5% FEH A LGRS
Pwm el o K- BAFE 12 R R G S5T6 A s B Jﬁﬁiﬁ’i/{%:ﬂﬁt; 10
LR R B SRS E 0 A 018 mAlAET o fRA B T L B

# 1.31bps ~ & 4 5 95 § B BAEF ~ i 4274 F 5 620mW o



An Improved LDPC Decoding Algorithm and Designs of

High-Throughput Decoder Architecture

Student: Min-Chieh Chiu  Advisor: Dr. Sau-Gee Chen

Department of Electronics Engineering &
Institute of Electronics

National Chiao Tung University

ABSTRACT

In recent years, low-density patity-check (LDPC) codes have attracted a lot of
attention due to the near Shannon'limit coding gains when iteratively decoded. The
min-sum decoding algorithm is extensively used because it is more suitable for VLSI
implementations than sum-product algorithm. In this thesis, we propose a dynamic
normalized-offset technique for min-sum algorithm and achieve a better decoding
performance by about 0.2dB than normalization min-sum algorithm. Based on a
partial-parallel architecture, an irregular LDPC decoder has been implemented,
assuming code rate of 1/2, code length of 576 bits, and the maximum number of
decoding iterations is 10. This architecture can process two different codewords
concurrently to increase throughput and data path efficiency. The irregular LDPC
decoder can achieve a data decoding throughput rate up to 1.31Gbps, an area of 950k

gates, and a power consumption of 620mW using UMC 0.18 gzm process technology.

II



Aawmr RS R Fh Rk MERAE LA £ RhE e dh R

[, Sy 2\ K= H2 2 ~ > Ay » 2 A4 - - s
O RANNR LI w0 BA NG S G e Gt T bl R

SR BT o
o Rotd 2B L afr RERe B AL 25 - BT %

Tl ER % SBE - _45]%1; v R s B AR R BT AR
FenFles o By FHRE O FAT O Rk HFE

LA D B uER B SN S Ay

=
G
-
'ﬂ"‘.
N
=

Eh YRR BT IR 0 R R I £ s B g

III



Contents

B B R I
ABSTRACT ettt ettt ettt et e st e bt et e et esbeenteeneenseenseeneas I
ACKNOWLEDGEMENT ...ttt I
CONTENTS . ..ttt ettt ettt e e e st e be et e ste e seeneesseenseennenaeens vV
LIST OF TABLES ...ttt ettt sttt et sbe et e sse e eneas VI
LIST OF FIGURES ...ttt VI
Chapter 1 INTrOAUCTION. ........oiiiiieic et e 1
1.1 Background of LDPC CoOdes .......cceeeiiiiiiiieeiieeieeeie e 1

1.2 Thesis OrganizZation ..........c.ceccveeeiuieeniieeerieeeseeeesteeesseeesseeessseeessseeessseesssseesssees 2
Chapter 2 Low-Density Parity-Check Code..........ccocoiiiiiiiiiiniiiie e 3
2.1 Fundamental Concept of LDPC Code .........coevvieeiiiieeiiieciieecee e 3
2.2 Constructions of LDPC Codes........cccueiuiiiiiiiiiiiiiiieieeeeeeeeeee e 5
2.2.1 Random Code ConstruCtion i oo eeeeeeneeeiieeiieeiee et 6

2.2.2 Deterministic Code CONSIIUCTION .. oifi cuveerveerieeniieeieeniieeieenieeeiee e eeeans 8

2.3 Encoding of LDPC Codes......oooobaiiid i e 11
2.3.1 Conventional Method... . ... i e 12

2.3.2 Richardson’s Method..... . i il it e 13

2.3.3 Quasi-Cyclic Code ... it eeiiiontee e eie et eree e e e saeeeeeaeeens 17

2.3.3 Quasi-Cyclic Based Code .........cccvieeiiiieiiieciieeceeeeee e 19

2.4 Conventional LDPC Decoding Algorithm...........ccccoeeevveevciieeiiieeieeeiee e 20
2.4.1 Bit-Flipping AlgOTithim .........c.cooviiiiiiiieiiieceeeeeee e 20

2.4.2 Message Passing Algorithm...........ccccvveeiiiieiiiiieiiiiceee e 24
Chapter 3 Modified Min-Sum AIgOrithms ... 36
3.1 Normalization Technique for Min-Sum Algorithm ...........cccccceeeviiiiniiennninn, 36
3.2 Dynamic Normalization Technique for Min-Sum Algorithm............c............. 42
3.3 Proposed Dynamic Normalized-Offset-Compensation Technique for Min-Sum

W F0) 5 1111 o DU 43
Chapter 4 Simulation Results and ANalysis. ... 45
4.1 Floating-Point SIMUIAtIONS ........cceciieeiiieeiiee e 46
4.2 Fixed-Point SIMUIations........ccoueiiiiiiiiiienieee e 50
Chapter 5 Architecture Designs of LDPC Code Decoders..........ccccevveiiveiiveevieennne. 52

v



5.1 The Whole Decoder ATCHITECTULE ......coveeeeeeee e 52

5.2 Hardware Performance Comparison and SUMmary ...........ccccceeeeveeerveeennveeenne 65
Chapter 6 Conclusions and Future WOrK...........ccoccieiiiiiniieescee e 68
6.1 CONCIUSIONS......uviieiiieeiiieeiiee et e et e e steeetteesteeesteeessbeeessseeessseeesseeesseesnsseennes 68
6.2 FULUTE WOTK ...ttt et e e e eenaee e 68
Appendix A: LDPC Codes Specification in IEEE 802.16e OFDMA..................... 70
RETEBIBINCES ... bbb 73
AULODIOGIAPNY ... s 76



List of Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 5.1

Table 5.2

Table 5.3

Efficient computation step of p; =—¢~' (—ET A+ C)ST ................. 15
Efficient computation step of p; =T (As" +Bp] ) ccevevvevrerrrrnn. 15
Summary of Richardson’s encoding procedure. ...........cccceevverirennnns 16
Summary of sum-product algorithm............cccoeeeiiiniiieniiicee e, 33
Summary of min-sum algorithm.............cccoeviiiiiiniiiiiieieeeees 34
Comparison of direct and backhanded CNU architectures.................. 61

Area, speed, and power consumption of the CNU using min-sum
algorithm and modified min-sum algorithm.............ccccoeoviiiniiennnennne. 66

Comparison of LDPC decoders ..........ccocuveriieiienieenieniieieeeieeeee e 67

VI



List of Figures

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6 (a)

Figure 2.6 (b)

Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 3.1

Figure 3.2

Figure 3.3
Figure 4.1

Figure 4.2

Example of a (8, 4, 2)-regular LDPC code and its corresponding

Tanner Graph. ...ccc.ooviiiiieie e 4
Example of an LDPC code matrix, where (n, 1, ¢) = (20, 4, 3).............. 7
The parity-check matrix H of a block-LDPC code..........ccccevevueriennnns 9

Example of a rate-1/2 quasi-cyclic code from two circulant matrices,
where a,(X)=1+X and a,(X)=1+X> +X* oo, 10
The parity-check matrix in an approximate lower triangular form......13
Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with
two circulants, where a,(X)=1+Xx and a,(X)=1+x>+x"............ 18

Example of a rate-1/2 quasi-cyclic code. (b) Corresponding generator

matrix in systematic form i, . u s 18
Tanner graph of the'given example parity-check matrix. ........c.......... 25
Serial configuration for check-nede update function.............ccccceee.e. 29
Check node update function of sum-product algorithm ...................... 30
Check node update function of min-sum algorithm ............c...c.coc....... 30
Notations for iterative decoding procedure............ccoocuvevieriienieeeenne. 31
The whole LDPC decoding procedure............cceevveeerienreenieenreenieennnnnn 33
Function plot of @(X) .eeeeieeeiieniieiieeeeeee e 37

The absolute difference between the normalization technique and

sum-product algorithm, vs. the of normalization factor £ ................ 42
BER performance vs. threshold values K for rate 1/2 LDPC code......44
Decoding performance at different iteration numbers......................... 46
BER performance of the rate-1/2 code at different codeword lengths, in

AWGN channel, maximum iteration=10 ...............cccceeeeeiiiiieieeineeeenns 47

VIl



Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1
Figure 5.2
Figure 5.3

Figure 5.4

Floating-point BER simulations of two decoding algorithms in AWGN

channel with code length=576, code rate=1/2, maximum iteration=10

Floating-point BER simulations of normalized min-sum decoding
algorithms in AWGN channel with code length=576, code rate=1/2,
maximum 1teration=10..........cccccceeriiiiiiiiiie e 48
Floating-point BER simulations under normalized-offset technique in
min-sum decoding algorithms, in AWGN channel with code
length=576, code rate=1/2, maximum iteration=10.............cccceecverne.... 48
Floating-point BER simulations of the dynamic normalized-offset
min-sum decoding algorithm and its comparison with other algorithms,
in AWGN channel:'with code length=576, code rate=1/2, maximum
iteration=10...... w; psbesbiies st B (B .............c..eoneeneeneeeennenrennnenennees 49

Floating-point BER simulations.under normalized-offset compensated

technique and dynami¢ normalization technique in min-sum algorithm.

.............................................................................................................. 49
Fixed-point BER simulations of three different quantization
configurations of min-sum decoding algorithm, in AWGN channel,

code length=576, code rate=1/2, maximum iteration=10.................... 50

Floating-point vs. fixed-point BER simulations of the normalization

and dynamic normalized-offset min-sum algorithm............c............... 51
The parity-check matrix H of block-LDPC code..........ccccocvereeuennnenne. 52
The partition of parity-check matrix H...........ccoovviiiiiiiiniiiee, 53
I/O pin of the decoder IP...........cocoeviiiiiiiniiiiiceeeecceeee 53

The whole LDPC decoder architecture for the block-LDPC code....... 54

VIII



Figure 5.5

A simple parity-check matrix example, based on shifted identity matrix

.............................................................................................................. 55
Figure 5.6(a) The sub-modules of the whole decoder ...........ccccoeeieviieiieniiiiieen, 55
Figure 5.6(b) The outputs of the module INDEX .........cccccooiiiiiiiniiiiiiieeeee 56
Figure 5.7(a) Values shuffling before sending to check node updating unit ............. 56
Figure 5.7(b) Values shuffling before sending to bit node updating unit .................. 57
Figure 5.8(a) The architecture of CNU using min-sum algorithm ..............c.ccccc..... 58
Figure 5.8(b) The architecture of CNU using modified min-sum algorithm............. 58
Figure 5.9 Block diagram of CS6 module..........cccoevvieriiiiieniieiiecieeeeeeeeeeee, 59
Figure 5.10(a) Block diagram of CMP-4 module..........cccccocerviiniiniiiiniininiciceee, 60
Figure 5.10(b) Block diagram of CMP-6 module............ccceeevieriiniiienieeiienieeieeenns 60
Figure 5.11  CNU architecture using min-sum-algorithm...........ccccocccovviviniinnnnn. 61
Figure 5.12  The architecture-of the bit node-updating unit with 4 inputs............... 62
Figure 5.13(a) The architecture of RE-4B.based MMU ............cccocimiiiiiiinninniinnn, 63
Figure 5.13(b) The timing diagram ‘of the message memory units.........c.ccceceeveeenennen. 64
Figure 5.14  The message passing snapshots between MMUO and MMUL ............ 65
Figure A.1 Base matrix of the rate 1/2 code ........ccoeveeviieiiiiiiiiecieeeceee e 71
Figure A.2  Base matrix of the rate 2/3, type A code .......ccceevueriinvininiiniencnienne. 71
Figure A.3  Base matrix of the rate 2/3, type B code........cceovveiiivienciieniecieeens 72
Figure A4  Base matrix of the rate 3/4, type A code .......coceeverviiniineniicnicneniene. 72
Figure A.5  Base matrix of the rate 3/4, type B code........ccevvvviievienciieniecieeens 72
Figure A.6  Base matrix of the rate 5/6 code ..........ccceeviiniiiiniiniininiiiceee, 72

IX



Chapter 1

Introduction

1.1 Background of LDPC Codes

Low-density parity check (LDPC) code, a linear block code defined by a very
sparse parity-check matrix, was first introduced by Gallager [1]. Due to the difficulty
in circuit implementation, LDPC codes have beenignored for about forty years except
for the study of codes defined-on.graphs by-Tanner [3]. The rediscovery of LDPC
code was done by MacKay [10]. Itthas-engaged much research interest ever since,
because the sparse property of parity-check-matrix makes the decoding algorithm
simple and practical with good communication throughput rates. LDPC code is
currently widely considered a serious competitor to the turbo codes. The main
advantages of LDPC codes over turbo codes are that LDPC decoders are known to
require an order of magnitude less arithmetic computations, and the decoding
algorithms for LDPC codes are parallelizable and can potentially be accomplished at
significantly greater speeds. The main decoding algorithm of LDPC codes is
sum-product algorithm [10]. However, sum-product algorithm is prone to quantization
errors while realized in hardware. Thus, several reduced-complexity algorithms with
different levels of performance degradation have been proposed [14]. The thesis
proposed a dynamically normalized-offset technique to improve the decoding

performance and reduce the decoding complexity.

1



The implementation of LDPC codes decoders can be classified into fully parallel
decoders, and partial-parallel decoders. The fully parallel decoders directly map the
corresponding bipartite graph [17] into hardware and all the processing units are
hard-wired according to the connectivity of the graph. Thus they can achieve very
high decoding speed but have a high hardware cost. Another approach is to have a
partial-parallel decoder [19], in which the functional units are reused in order to
decrease the chip-area. Moreover, this architecture can process two different
codewords concurrently to has moderate throughput. The other aim of this thesis is to
improve the partial-parallel architecture and save chip area, with little degradation of

the throughput.

1.2 Thesis Organization

This thesis is organized as: follows.-In-chapter 2, basic concept of the LDPC
codes: the code construction, encoding concept and various decoding algorithms will
be introduced. Chapter 3 will first introduce the modified min-sum algorithm which
uses the normalized technique. Then we propose a new dynamic normalized-offset
technique for min-sum decoding algorithm. In chapter 4, the simulation results for the
LDPC code which is discussed in chapter 2 and chapter 3 will be shown. In chapter 5,
hardware architecture of the LDPC decoder will be discussed here. In the end of this

thesis, brief conclusions and future work will be presented in chapter 6.



Chapter 2

Low-Density Parity-Check Codes

In this chapter, an introduction to low-density parity-check code will be given,
including the fundamental concepts of LDPC code, code construction, encoding

mechanism and decoding algorithm.

2.1 Fundamental Concept of LDRPC Code

A binary LDPC code is a binary-linear-block code that can be defined by a sparse
binary mxn parity-check matrix. A 'matrixis called a sparse matrix because there is
only a small fraction of its entries are ones. In other words, most part of the
parity-check matrix are zeros and the else part of that are ones.

For any mxn parity-check matrix H, it defines a (n, k, r, ¢)-regular LDPC code
if every column vector of H has the same weight ¢ and every row vector of H has the
same weight r. Here the weight of a vector is the number of ones in the vector.
k=n-m. By counting the ones in H, it follows that nxc=kxr. Hence if m<n,
then c<r. Suppose the parity-check matrix has full rank, the code rate of H is

(r—=c)/r=1-c/r. If all the column-weights or the row-weights are not the same, an

LDPC code is said to be irregular.



As suggested by Tanner [7], an LDPC code can be represented by a bipartite
graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph
also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes,
called the variable (bit) nodes, correspond to the symbols in a codeword. The other
type of nodes, called the check nodes, correspond to the set of parity check equations.
If the parity-check matrix H is an mxn matrix, it has m check nodes and n variable
nodes. A variable node V; is connected to a check node c;j by an edge, denoted as (i, Cj),
if and only if the entry h;j of H is one. A cycle in a graph of nodes and edges is
defined as a sequence of connected edges which starts from a node and ends at the
same node, and satisfies the condition that no node (except the initial and final node)
appears more than one time. The number of edges on a cycle is called the length of
the cycle. The length of the shortest cycle in a Tanner graph is called the girth of the
graph.

Regular LDPC codes are those iwhere-all-nodes of the same type have the same
degree. The degree of a node is the number of edges connected to that node. For

example, Figure2.1 shows a (8, 4, 4, 2)-regular LDPC code and its corresponding

‘1T 01 01 0 1 O

H—l 0 01 01 0 1

101 1.0 01 1 0

01 011 0 0 1]

C, c, C, c,
check nodes
variable nodes
v, v, vV, v, Vs o Vg v, A

Figure 2.1 (8, 4, 4, 2)-regular LDPC code and its corresponding Tanner graph.

4



Tanner graph. In this example, there are 8 variable nodes (i), 4 check nodes (C;), the
row weight is 4 and the column weight is 2. The edges (Ci1, V3), (V3, C3), (C3, V7), and (V7,
C1) depict a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the

girth of the Tanner graph is 4. Irregular LDPC codes were introduced in [8] and [9].

2.2 Constructions of LDPC Codes

This section is going to discuss the parity-check matrix H of LDPC code. The
design of H is the moment when the asymptotical constraints (the parameters of the
class you designed, like the degree distribution, the rate) have to meet the practical
constraints (finite dimension, girths).

Here, we describe some-recipes which take some practical constraints into
account. Two techniques exist in the literature: random and deterministic ones. The
design compromise is that for increasing the igirth, the sparseness has to be decreased,
so is the code performance decreased due to a low minimum distance. On the contrary,
for high minimum distance, the sparseness has to be increased yielding the creation of
low-length girth, due to the fact that H dimensions are finite, and thus, yielding a poor

convergence of sum-product algorithm.



2.2.1 Random Code Construction

The first constructions of LDPC codes are random ones. They were proposed by
Gallager [1] and MacKay [10]. The parity check matrix in Gallager’s method is a
concatenation and/or superposition of sub-matrices; these sub-matrices are created by
performing some permutations on a particular (random or not) sub-matrix which
usually has a column weight of 1. The parity check matrix in MacKay’s method is

computer-generated. These two methods are introduced below.

Gallager’s method [1]

Define an (n, r, C) parity chetk=matrix as a matrix of n columns that has ¢ ones in
each column, r ones in each row, and zeros elsewhere. Following this definition, an (n,
I, C) parity-check matrix has nc/r rows and thus a rate of coderate>1-c/r. In
order to construct an ensemble of (n, I, C) matrices, consider first the special (n, I, C)

matrix in Figure 2.2, where n, r and c are 20, 4 and 3, respectively.



1 111000O0O0O0OOOO0OO0OO0OOO0OO0OO0OO
oo0o0o0111100O0O0O0O0O0OO0OO0O0OO0OO
0o0o000O0OO0OO0OO0OT1T1TT1T1TG0O0OO0OO0OO0O0O0O0
000000000 O0O0OO0OT1T1TT1TT1TUO0OSO0OO0O0
0 00O0O0OO0OO0OO0OO0OO0OO0OO0ODO0OO0OO0OO0OTI>ITI1TTI1!1
1 000100O0T1O0O0OO0OT1TO0O0OO0OO0OO0OO0OO
010001 0O0O0OT1O0OO0O0O0O0OO0OO0OT1O0O0O®O0
0o0100O01O0O0O0OO0OO0OO0O0T1O0O0OO0O0T1TGO0OFO
0001 000O0O0OO01O0O0O0OT1O0O0O0T1O®O0
000O0O0O0O0OT1O0O0OO0OT1UO0O0O0OT1O0O0OQO0]1
1 000010O0O0O0OO0O1O0O0O0O0O0OO0OT1O0TOQO0
01 000O0O1O0O0OO0O01O0O0OO0OO0OT1TG0O0OO0OO
001000O0O1O0O0O0OO0O1O0O0OO0O0OO0OT1O0
00010O0O0OO0O1O0O0OO0O0O0OT1O0OO0T1O0O0TGO0
000O01O0O0O0OO0O1UO0OO0O0O0OO0OT1O0O0®O0O01

Figure 2.2 Example of an LDPC code matrix, where (n, 1, ¢)=(20,4,3)

This matrix is divided inte C.sub-matriees, each containing a single 1 in each
column. The first of these sub-matrices contains all its 1’s in descending order where
the i™ row contains 1’s in colummn§ (i—1)r+1 to ir. The other sub-matrices are
merely column permutations of the first. We define the ensemble of (n, I, C) codes as
the ensemble resulting from random permutations of the columns of each of the
bottom (C—1) sub-matrices of a matrix such as in Figure 2.2 with equal probability
assigned to each permutation. This definition is somewhat arbitrary and is made for
mathematical convenience. In fact such an ensemble does not include all (n, r, C)
codes as just defined. Also, at least (C—1) rows in each matrix of the ensemble are
linearly dependent. This simply means that the codes have a slightly higher

information rate than the matrix indicates.



MacKay’s method [10]

A computer-generated code was introduced by MacKay [10]. The parity-check
matrix is randomly generated. First, parameters n, m, r, and c are chosen to conform
an (n, m, r, ¢)-regular LDPC code where n, r and C are the same as in Gallager’s code
and m is the number of the parity-check equations in H. Then, 1’s are randomly
generated into C different positions of the first column. The second column is
generated in the same way, but checks are made to insure that no two columns have a
1 in the same position more than twice in order to avoid 4-cycle in the Tanner graph.
If there is a 4-cycyle in the Tanner graph, the decoding performance will be reduced
by about 0.5dB. Avoidance of 4-cycles in a parity-check matrix is therefore required.
The next few columns are generated sequentially and checks for 4-cycles must be
performed in each generation. In‘this procedute, the number of 1’s in each row must
be recorded, and if any row alteady has r.ones, the next-column generation will not

select that row.

2.2.2 Deterministic Code Construction

A parity-check matrix H by random construction is sparse, but its corresponding
generator matrix is not. This property will increase encoding complexity. To
circumvent this problem, deterministic code construction schemes have been
proposed. It can lead to low encoding complexities. Some forms of the deterministic
code construction include block-LDPC code, quasi-cyclic code [5], and quasi-cyclic

based code [21]. They are introduced below.



Block-LDPC Code

The parity check matrix H based on block-LDPC code is composed by several

sub-matrices. The size of H is m-by-n. The sub-matrices are shifted identity matrices

or zero matrices. The matrix form of H is shown in Figure 2.3. Sub-matrix B ; is

one of a set of z-by-z permutation matrices or a z-by-z zero matrix. Matrix H is
expanded from a binary base matrix H, of size m, -by-n,, where m=z-m, ,
N=2z-n,,and zZ is an integer > 1. The base matrix is expanded by replacing each 1
in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero
matrix. The used permutations are circular right shifts, and the set of permutation
matrices contains the z-by-z identity matrix and circularly right-shifted versions of the

identity matrix. The details of block-LDPC Code ¢an be seen in Appendix A.

Po,o Po,l = ) Po,nb—l
H = 1,0 1,1 1,n,—1
L Pmb—l,O Pmb—l,l o Pmb—l,nb—l |

Figure 2.3 The parity-check matrix H of a block-LDPC code

Quasi-Cyclic Code [5]

A code is quasi-cyclic if, for any cyclic shift of a codeword by | places, the
resulting word is also a codeword. A cyclic code is a quasi-cyclic code with | =1.

Consider the binary quasi-cyclic codes described by a parity-check matrix

H=[A.A,..Al (2.10)

where A, A,,..A are binary vxV circulant matrices. The algebra of (va)

binary circulant matrices is isomorphic to the algebra of polynomials modulo x' —1



over GF(2). A circulant matrix A is completely characterized by the polynomial

a(x)=a, +a,Xx+a,x* +...+a, x"" (2.11)

v-1
where the coefficients are from the first row of A, and a code C with parity-check
matrix of the form (2.10) can be completely characterized by the polynomials
a,(x),a,(X),....,a,;(X). Figure 2.4(a) shows an example of a rate-1/2 quasi-cyclic
code, where a,(X)=1+x and a,(X)=1+x>+x*. Figure 2.4(b) shows the
corresponding Tanner graph representation. For this example, we can see the edges
(C1, Ve), (Vs, Ca), (Ca, Vg), (Vg, C1) depict a 4-cycle in this graph which is to be avoided

for performance consideration.

11000101 01
0 14190 01l 0 1 0
H=[0 0 1700, 1-1 0 1
0 Smiimirl b = 1 0
150 0 05140 1 0 1 1)

(a) A parity-check mateix with'two circulant matrices

check nodes

variable nodes

(b) Tanner graph representation

Figure2.4 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where

a,(X)=1+x and a,(x)=1+x>+x*

10



Quasi-Cyclic Based Code [21]
The code is constructed with a base of quasi-cyclic code. The parity check

matrix is in the following form.
A 0
H :{ A A } (2.12)

where ALA,,..,A_,B,,B,,.,and B, are all vxv circulant matrices. The code

length is vl and the code rate is (1 —%). We can use the difference families [21] to

determine the polynomials of each of the circulant matrix a;(X) and b;(x), where

ief{l,2,...1-1} and je{l,2,.,l}, just as the quasi-cyclic code. In order to avoid
any 4-cycles in the new structure of the parity-check matrix, we provide a new

difference family to solve this preblem. First, construct two (V,y,l) difference
families Family A and Family: B and combine the two families to form a new

difference Family C , subject to:the following two constraints.
Constraint 1: The differences [(a;, — ;) mod V] and [(b;, —b;,) mod V],
where 1=12,...1 -1;x,y=1,2,...,7, X# Yy, give each element, can not be the same.
Constraint 2: The differences [(a;, —a;,) mod V] and [(b;, —b; ) mod V],

where i, j=12,.,1-Li# |;X,y=12,...,y, give each element, can not be the same.

2.3 Encoding of LDPC Codes

Since LDPC code is a linear block code, it can be encoded by conventional
methods. However, conventional methods require encoding complexities proportional
to the quadratic of the code length. The high encoding cost of LDPC code becomes a

major drawback when compared to the turbo codes which have linear time encoding

11



complexity. In this section, we will introduce some improved methods.

2.3.1 Conventional Method

Let u=[u,,u,,u,,..,u, ] be a row vector of message bits with length k and

¢ =[c,,c,,C,,....C, ;] be a codeword with length n. Let G with dimension kxn be

the generating matrix of this code, and
c=uG. (2.12)
If H is the parity-check matrix of this code with dimension mxn, where m=n-Kk,

then

Hc' =0" =cH™ =0
= UGH' =0 (2.13)
—=GH' =0

Suppose a sparse parity-check matrix .H* with ‘full’ rank is constructed. Gaussian

elimination and column reordering can be used to-'derive an equivalent parity-check

matrix in the systematic form H = [P|I . |. Thus equation (2.13) can be solved

systematic
to get the generating matrix in a systematic form as

G

systematic

=[1,[P"1. (2.14)
Finally, the generating matrix G can be obtained by doing the reverse column

reordering to the Gsystematic .

Triangularized parity-check matrix form [4]

In [4], it suggests to force the parity-check matrix to be in a lower triangular

form. Under this restriction, it guarantees a linear time encoding complexity, but, in

12



general, it also results in some loss of performance.

2.3.2 Richardson’s Method [3]

Richardson’s method is the most extensively used among LDPC encoding
algorithms. Figure 2.5 shows how to bring a parity-check matrix into an approximate

lower triangular form using row and column permutations. Note that since this

n-m = m-£
-
i I
Ax ! m-g
I .
C g
[ £
# I
Y I

n
Figure 2.5 The parity-check matrix in an approximate lower triangular form
transformation was accomplished solely by permutations, the parity check matrix H is
still sparse. This method is to cut the parity check matrix H into 6 sub-matrices: A, B,
T, C, D, E. Especially, the sub-matrix T is in lower triangular form.

More precisely, it is assumed that the matrix is written in the form

[A B T]
H = (2.15)
C DE

where A is (Im—g)x(n—-m), B is (m—-g)xg, T is (m—-g)x(m—-g), C is
gx(h—m),Dis gxg,and Eis gx(m-—g). Further, all these matrices are sparse

and T is lower triangular with ones along the diagonal. Let X =(s, p,, p,) denote the

13



codeword of this parity-check matrix where S is the message bits with length
(m-n), p, combined with p, are the parity bits, and p, and p, have length

g,and (m-—g), respectively. Multiplying the matrix in equation (2.16) on both sides

of the constraint equation H-x' =0

! 2.16
—ET | (2:16)

can result in

A B )
B ., X =0. (2.17)
—-ET"A+C —-ET"B+D 0
Expanding equation (2.17), one can get equations (2.18) and (2.19)
As' +Bp, +Tp; =0 (2.18)
(-ET'A+Ck" +(-ET'B+D)p =0. (2.19)

Define ¢=-ET 'B+D and assume!for thé moment that ¢ is nonsingular. Then

from equation (2.19) we conclude that

pi=—¢ H(<ET'A+CJs". (2.20)

Hence, once the gx(N—m) matrix =g (—ET*1A+C)ST has been pre-computed,
the determination of p, can be accomplished with a time complexity of
O(gx(n—m)) simply by performing a multiplication with this (generally dense)

matrix. This complexity can be further reduced as shown in Table 2.1. Rather than
pre-computing —¢~' (—ET ‘1A+C)ST and then multiplying with s, p, can be

determined by breaking the computation into several smaller steps, each of which is
computationally efficient. To this end, we first determine As', which has complexity
of O(n), because A is sparse. Next, we multiply the result by T~'. Since
T'[As"]=y" is equivalent to the system [As']=Ty' , this can also be
accomplished in O(n) time by back-substitution method, because T 1is lower

triangular and sparse. The remaining steps are fairly straightforward. It follows that

14



the overall complexity of determining p, is O(n+g°). In a similar manner, noting
from equation (2.18) that p, =-T '(As' +Bp/), we can determine p, in time
complexity of O(n), as shown step by step in Table 2.2.

A summary of this efficient encoding procedure is given in Table 2.3. It contains
two steps, the preprocessing step and the actual encoding step. In the preprocessing
step, we first perform row and column permutations to bring the parity-check matrix
into the approximate lower triangular form with as small a gap g as possible. In actual
encoding, it contains the steps listed in Table 2.1 and 2.2. The overall encoding

complexity is O(n+g*), where g is the gap of the approximate triangularization.

Table 2.1 Efficient computation steps of p] =—¢' (—ET A+ C) s’

Operation Comiment Complexity
As’ Multiplication by sparse matrix o(n)
T'[As"] T A =y [As ] =Ty’ o(n)
—E[T'As"] Multiplication by sparse matrix o(n)

Cs' Multiplication by sparse matrix o(n)

[-ET "'As" ]+[Cs"] Addition o(n)
—¢ ' [-ET'As” +Cs] Multiplication by dense gxg matrix | O(g?)

Table 2.2 Efficient computation steps of p; =-T ' (As' +Bp,)

Operation Comment Complexity
As’ Multiplication by sparse matrix O(n)
Bp, Multiplication by sparse matrix o(n)
[As"]+[Bp/ ] Addition o(n)

15




~T'[As" +Bp/ ] ~T'[As" +Bp/ 1= y" < —As" +Bp/ 1=Ty" | O(n)

Table 2.3 Summary of Richardson’s encoding procedure

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent

A B T

parity-check matrix of the form (C o E] such that —ET'B+D is

non-singular.
1. [Triangularization] Perform row and column permutations to bring the
parity-check matrix H into the approximate lower triangular form
A B T
H =
C D E
with as small a gap g as possible.

2. [Check] Check that =ET'B# D is.non-singular, performing further
column permutations if necessary to ensure this property.

I 0YA BYTY” A B T
ET' I\C D EJ {=EBT7"A+C -ET'B+D 0

A B T

Encoding: Input: Parity-check matrix of the form (C E] such that

—ET'B+D is non-singular and a vector S denote the message bits has length
(m—n). Output: The vector X=(S, p,, p,) where p, haslength g and p, has
length (m—g), such that Hx" =0".

1. Determine p, as shown in Table 2.1.

2. Determine p, as shown in Table 2.2.

16




2.3.3 Quasi-Cyclic Code [5]

As reviewed in section 2.2, the quasi-cyclic code can be described by a

parity-check matrix H =[A,A,,..A]] and each of a circulant matrix A; is

completely formed by the polynomial a(x)=a,+aX+...+a,,x"" with

coefficients from its first row. A code C with parity-check matrix H can be completely
characterized by the polynomials a,(X), a,(X),..., and &,(X). As for the encoding, if

one of the circulant matrices is invertible (say A, ) the generator matrix for the code

can be constructed in the following systematic form.

(ATADT
G = Lai @y, Az) (2.21)
(AACZ)T

It results in a quasi-cyclic code-of length. vl _and dimension v(l —1). The encoding
process can be achieved with linear complexity ‘using a V(| —1)-stage shift register.

Regarding the algebraic computation, the polynomial transpose is defined as
n-1 _
a0’ => ax", x"=1. (2.22)
i=0

For a binary [n, k] code, length n=vl and dimension k =v(lI —1), the k-bit message

k-1

[igsi)sri,, ] is described by the polynomial i(X)=i, +i,X+..+i,,x“" and the
codeword for this message is ¢(x) =[i(X),x* p(x)], where p(x) is given by
1-1
PO) =D 1 () * (@ (x) *a;(x)’, (2.23)
j=1

where 1;(x) is the polynomial representation of the information bits 1,;,, to I,

- - - - 1
1 () =y Fiy oy X e iy X (2.24)

and polynomial multiplication (*) ismod X' —1.

17



As an example, consider a rate-1/2 quasi-cyclic code with v=5, | =2, the first
circulant is described by a,(X)=1+X and the second circulant is described by

a,(X) =1+ x* +x*, which is invertible and
-1 _ 2 4
a, (X)=Xx + X"+ x". (2.25)

The generator matrix contains a 5x5 identity matrix and the 5x5 matrix
described by the polynomial

@' *a,x) =1+x*)" =1+x’. (2.26)
Figure 2.6 shows the example parity-check matrix and the corresponding generator

matrix.

11 040004, 0 1 0 1
0 1T 0 0L 10 1 0
H=[050 1 15001 1 0 1
0-0°0 141 0k 1 0
120 0 0rton 10 1 1]

(a) A parity-check matrix with two circulants

1000010010
01000071001
G=[0 01 001 0100
0001001010
00001001 0 1]

(b) The corresponding generator matrix in systematic form
Figure 2.6 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two
circulants, where a,(X)=1+X and a,(X)=1+Xx>+x". (b) Corresponding generator

matrix in systematic form.

18



Quasi-Cyclic Based Code [21]

As reviewed in section 2.2, the quasi-cyclic based code can be described by a

A 0
parity-check matrix H=|" A A , where
B, B, .. B, B

ALA,,...,A ,B,B,,.,and B, are all vxv circulant matrices. Regarding the

encoding for the quasi-cyclic based structure, suppose that two of the circulant

matrices A, and B, are invertible, we can derive two generator matrices in the

following systematic forms

(AT AT

(AT AT
v(1-2) e = [IV(I—Z)GI] (2.27)

(ALA )T

G

1 systematic

and

(B 'B))’
(BiB,)"
GZsystematic = Iv(l~1) I Z :[Iv(H)Gz]- (2.28)

(B/"B,.)’
Let c=[d, p,, p,] denote the codeword of the proposed parity-check matrix where d
is the message bits with length v(l —2), and p, combined with p, are the parity
bits, each having the same length Vv. The encoding procedure is partitioned into two

steps.

Encoding Step 1: We can use the generator matrix G, to get the parity bits p,. That
is

p,=dxG,. (2.29)
Then, combine the parity bits p, with the message bits d to form an intermediate

codeword ¢’ where c¢'=[d,p,].

19



Encoding Step 2: The last parity bits p, can be derived from the generator matrix

G, and the intermediate codeword c’. That is

p, =Cc'xG,. (2.30)

2.4 Conventional LDPC Code Decoding Algorithm

There are several decoding algorithms for LDPC codes. The LDPC decoding
algorithms can be summarized as: bit-flipping algorithm [20], and message passing
algorithm [11]. In the following,*we will make an introduction of the decoding

algorithms.

2.4.1 Bit-Flipping Algorithm:{20]

The idea for decoding is the fact that in case of low-density parity-check
matrices the syndrome weight increases with the number of errors in average until
errors weights are much larger than half the minimum distance. Therefore, the idea is
to flip one bit in each iteration, and the bit to be flipped is chosen such that the
syndrome weight decreases. It should be noted that not only rows of the parity-check
matrix can be used for decoding, but in principle all vectors of the dual code with
minimum (or small) weight. In the following, we will introduce two of the bit-flipping

algorithms [20].

20



Notation and Basic Definitions

The idea behind this algorithm is to “flip” the least number of bits until the parity
check equation H-Xx" =0 is satisfied. Suppose a binary (n,k) LDPC code is used for
error control over a binary-input additive white Gaussian noise (BIAWGN) channel
with zero mean and power spectral density . The letter n is the code length and k

is the message length. Assume binary phase-shift-keying (BPSK) signaling with unit
energy is adopted. A codeword ¢=(c,,C,, --,C, ;)€ {GF(2)}" is mapped into bipolar
sequence X =(X,,X,,~*-,X,,) before its transmission, where X, =2-(c,—1),
0<i<n-1.Let y=(Y,Y,» Y, ) be the soft-decision received sequence at the
output of the receiver matched filter. For 0<i<n-1, y, =X +n,, where n, is a
Gaussian random variable with zero mean.and variance . An initial binary hard

decision of the received sequence, =y Z(()O), 21(0),- .-, Z:]‘i)l) , 1s determined as follows

Ly >0
U s 2.31)
0.y, <0

For any tentative binary hard decision Z made at the end of ach decoding iteration, we

can compute the syndrome vector as S=H-z". One can define the log-likelihood

ratio (LLR) for ear channel output y,, 0<i<n-1:

L = 1HM (2.32)
p(c =0]y,)
, is called the reliability of the initial decision z'”.

The absolute value of L;, |L

For any binary vector V=(v,,V,,---,V, ), let wt(V) be the Hamming weight of v . Let
u; be the n dimensional unit vector, i.e., a vector with “1” at the i-th position and “0”

everywhere else.

21



Algorithm |

Step (1) Initialization: Set iteration counter k = 0. Calculate z” and S” = wt(H - 7O ).

Step (2) If S® =0, then go to Step (8).

Step (3) ke—k+1.If k>k__,where k__ is the maximum number of iterations, go to

max °

Step (9).

Step (4) For each i=0,1,---,n—1, calculate S™ =wt[H -(z*" +u,)"]

Step (5) Find j® €{0,1,---,n—1} with j* =arg(minS®).

0<i<n
Step (6) If j® = j*™ then go to Step (9).
Step (7) Calculate z* =z*™" + U, and S® =wt(H -z%"). Go to Step (2).
Step (8) Stop the decoding and return z11:
Step (9) Declare a decoding failure and return 2% "

So the algorithm flips only one bit at-each iteration and the bit to be flipped is
chosen according to the fact that, in ‘average, the weight of the syndrome increases
with the weight of the error. Note that in some cases, the decoder can choose a wrong

position j, and thus introduce a new error. But there is still a high likelihood that this

new error will be corrected in some later step of the algorithm.

Algorithm 11

Algorithm I can be modified, with almost no increase in complexity, to achieve
better error performance, by including some kind of reliability information (or

measure) of the received symbols. Many algorithms for decoding linear block codes

22



based on this reliability measure have been devised. Consider the received

soft-decision sequence Yy = (Y,, Y,, "+, ¥,_,) - For the AWGN channel, a simple measure

of the reliability, L, of a received symbol Yy, is its magnitude,

yi|. The larger the

magnitude |yi| is, the larger the reliability of the hard-decision digit z, is. If the

reliability of a received symbol Yy, is high, we want to prevent the decoding

algorithm from flipping this symbol, because the probability of this symbol being
erroneous is less than the probability of this symbol being correct. This can be

achieved by appropriately increasing the values S, in the decoding algorithm. The

solution is to increase the values of S, by the following term: |Li|. The larger value

of |Li| implies that the hard-decision z, is more reliable. The steps of the soft

version of the decoding algorithni'are described.in detail below:

Step (1) Initialization: Set iteration coutiter K = 0. Calculate z” and S” = wt(H - 7O ).

Step (2) If S® =0, then go to Step (8).

Step (3) ke—k+1.If k>k__, go to Step (9).

Step (4) For each i=0,1,---,n—1, calculate S =wt[H -(z“" +u)"]+|L]
Step (5) Find j* €{0,1,---,n—1} with j® =arg(min 5MY.
Step (6) If j* = j*, then go to Step (9).

Step (7) Calculate z(k)=z<k‘”+uj(k, and S® =wt(H-z""). Go to Step (2).

Step (8) Stop the decoding and return z.

Step (9) Declare a decoding failure and return z*™".

23



It is important to point out that, in both algorithms, though the maximum
number of iteration is specified, the algorithms have an inherent stopping criterion.
The decoding process stops either when a valid codeword is obtained (Step 2) or
when the minimum syndrome weight at the kth iteration and the minimum syndrome
weight at the (k-1)th iteration are found in the same position (Step 6).

The bit-flipping algorithm just corrects at most one error bit in one iteration. The
codeword length of LDPC code is usually hundreds (or thousands) of bits. When the
channel SNR (signal-to-noise ratio) is low, the decoding iteration number of the
bit-flipping algorithm needs to be high to correct the erroneous bits. This will lower
the throughput of the decoder. And according to Step (5), equation (2.33) is to find the
minimal value of the n numbers. The value of n (codeword length) is usually large.

The hardware complexity of equation (2.33) is high.

i = arg(minS™) (2.33)

0<i<n

2.4.2 Message Passing Algorithm [11]

Since the bit-flipping algorithm is hard to be implemented in hardware, the
message passing algorithm is extensively used for LDPC decoding. The message
passing algorithm is an iterative decoding process. Messages between variable nodes
and check nodes are exchanged back and forth. The decoder expects that error will be
corrected progressively by using this iterative message-passing algorithm. At present,
there are two types of iterative decoding algorithms applied to LDPC codes in

general.

24



B Sum-product algorithm, also known as belief propagation algorithm.
B Min-sum algorithm

Both of sum-product algorithm and min-sum algorithm are message passing
algorithms. In the following, we will discuss these two algorithms in detail. First, we

explain the decoding procedure in Tanner graph below.

Decoding Procedure in Tanner Graph Form

Now we make a description of the message passing algorithm using Tanner
graph form. Here is a simple example of irregular LDPC code. The parity-check

matrix is shown below.

1 1.0 1]5
I Ogped 1| S

X F=RAE X,

Tanner graph of this parity-check matrix is shown in Figure 2.7.

[S¥]

checknode

bit node

Figure 2.7 Tanner graph of the given example parity-check matrix

Assume every line in the Tanner graph has two information messages. One is
expressed in a solid line and the other is expressed in a dotted line. We use the
messages to decode the received signal. For convenience of explanation, we take one

part of Tanner graph which is shown below.

25



checknode

bit node

The solid line and the dotted line are represented by ¢ ,, and F, respectively. In

X—>s?

this example, we can get ¢, ,, by T, and 1, . Equation (2.34) shows how to

X, —§;

compute 0 ,, .

0y, =CHK(r, ,, &1, ) (2.34)

X, >S5 X4 —>S;

On the other hand, we canalso get I, . by-q, ,, and L, where L, is the

S

initialization value. The initialization value- L, will be discussed later. Equation (2.35)

shows how to compute I, .

checknode

® hit node
x4
N =VAR(Q, ,, ®L)) (2.35)

There is CHK function in equation (2.34) and VAR function in equation (2.35).

The two special functions will be introduced in the following contents. In the Tanner

graph, we can compute the solid line message ¢ ,, by the dotted line messages T, .,

which are connected to the same check node. In the same way, we can compute the

26



dotted line message r,_,. by the real line messages ¢, ,, which are connected to the

same bit node. So the values of r_,. and Q,,, are updated iteratively. We call this

S

iterative decoding.

Decoding Procedure in Matrix Form

Because Tanner graph is a representation of the parity-check matrix H, we can

also use the matrix form to replace Tanner graph form. Let us take the same

1 1 01

parity-check matrix H in the previous section H :L 0 1 1

} as an example. In

equation (2.36) and equation (2.37), we define matrix Q and matrix R. The positions

of the nonzero values in R and Q are the same as those of the ones in H.

qsl—»(1 qsl—>x2 0 qslax4
Q= (2.36)
qsz—»(l 0 qszax3 qszax4

r‘X—)S rX—)S 0 rX—)S
R_| wou TS e (2.37)

XS, X3S, X4 Sy

The elements in the matrix Q are computed by the elements in the matrix R, for

example, ¢ ,, =CHK(r @r, _ . ). On the other hand, the elements in the matrix

X, =S, X4 =S,
R are computed by the elements in the matrix Q. For example,

rs =VAR(Q, ,, ®L;), where L is the initialization value. So the elements in

X —$;

matrix R and Q are updated iteratively. We can also regard the CHK function as the

horizontal step and VAR function as the vertical step in the decoding procedure.

27



In the LDPC iterative decoding procedure, there are two main functions: VAR
and CHK. Equation (2.38) shows the VAR function with two inputs and equation

(2.39) is the general form of the VAR function.
VAR(q, ©0,) =g, +0, (2.38)
VAR(Q, ©0,®---®q))=0,+0, +---+( (2.39)

The VAR function is fixed regardless of the decoding algorithms. It is just a

summation operation.

The CHK function with two inputs can be reformulated in different forms.

There are
CHK(L, @ L,) = 2tanh™ (tanh(i) X tanh(i))
e 2 2 (2.40)
= sign(L)sign(L, )a(a( L, ) + #(|L,[)
where
P(X) = —ln[tanh[gn 2 ln[ex h U and #(P(X)) =X, (2.41)
e —
and
CHK(L, ®L,)= ln(cosh(%)) - ln(cosh(lﬂ%l_z))
L] |- L2|+ln1+e“LI*L2‘
2 L2 | et
1+e bt
=sign(L, ) xsign(L, ) x min(|L,|,|L,|) + 1n1 o 242
+e '
~ sign(L, ) x sign(L, ) x min(|L, |,|L, ). (2.43)

When CHK function is in the form of equation (2.40) or equation (2.42), we call the

+e—\L1+LZ\

= in
1+el

decoding algorithm as sum-product algorithm. The fourth term In

equation (2.42) is called the correction factor. When the check node computation is in

28



the form of equation (2.43), or in other words an approximate form, we call it the

min-sum algorithm.

The above discussion of check node computation is only about the CHK
function with two inputs. Now, we will discuss the general form of the CHK
function. The general form of the CHK function can be expressed in equation

(2.44).
CHK(L, ®L, ®...®L,) = CHK(CHK(..CHK(CHK(L, ®L,) ® L,)..)®L,) (2.44)

The purpose of equation (2.44) is to unfold CHK(L, @ L, ®...® L,). The procedure is:
first, compute a, =CHK(L, @L,), then a, =CHK(a, @L,), oo
a,, =CHK(a,_, ®L,). The computation result-of equation (2.44) is @, ,. This can be

viewed as serial computation. Figure 2.8 shows the serial configuration for the general

form of the CHK function.

Figure 2.8 Serial configuration for check node update function

The serial computation has a long critical path in the check node update unit.
From equations (2.40), (2.43), and (2.44), we can generalize the CHK function as
equation (2.45) for sum-product algorithm, and equation (2.46) for min-sum

algorithm.

29



CHK(L ®L, &--@L) =HSign(LiW[¢(|L1|)+¢(||-2|)+'--+¢(|L| DI (2.45)

where ¢(X) = ln[ei ”J

e’ —1

CHK(L®eL ®---®L)= sign(Ll)-sign(Lz)----sign(L,)min[|Ll

L2

L1 (2.46)

2 2 2

Equations (2.45) and (2.46) tell us that the check node update function can also be
viewed as parallel configuration. If we derive the check node update function in
parallel configuration, the critical path of the check node update function will be
reduced. Figure 2.9 and 2.10 respectively show the check node updating function of
the sum-product algorithm and the min-sum algorithm. These two figures neglect the

multiplication of the sign symbols for an artistic view of the figures.

Figure 2.9 Check node update function of sum-product algorithm

£ p— MIN

v L L L Ly, ... L

i

Figure 2.10 Check node update function of min-sum algorithm

30



Iterative Decoding Procedure [12]

The discussion in section 2.4.2 is only part of the whole iterative decoding
procedure. Now, we consider the actual decoding procedure. It means that there will
involve many iterations for a decoding process. First, let us describe some notations
for the iterative decoding procedure in Figure 2.11. M(l) denotes the set of check
nodes that are connected to the variable node I, i.c., positions of “1”s in the |
column of the parity-check matrix. L(m) denotes the set of variable nodes that
participate in the m™ parity-check equation, i.e., the positions of “I1”’s in the m"
row of the parity-check matrix. L(m)\l represents the set L(m) excluding the 1"
variable node and M (I)\'m represents the set M (I) excluding the m™ check node.
Q,, denotes the probability message that cheek-node m sends to variable node |.

r

I—>m

denotes the probability message that variable node | sends to check node m.
The probability message of @, mand I, are eomputed in LLR domain. The

iterative decoding procedure is shown below.

Variable node index |=
L(3) L(3)\1

M@

Check node index m

M (D\1

A\

o - o o o ~

1
1
0
0
0
1

1

0

1
/1
0

0

Figure 2.11 Notations for iterative decoding procedure

31



1. Initialization

Let

P(y,|x =1
L= PO =D 2y (2.46)
P(y,[x =0) o

be the log likelihood ratio of a variable node, where P(a|b) specifies that given b is

transmitted, the probability that the receiver receives a, where o’ is the noise

variance of the Gaussian channel. For every position (m,lI) such that H , =1,

0, 1s initialized as
O =L - (2.47)
2. Message passing
Stepl (message passing from chieck nodes to variable nodes): Each check node
m gathers all the incoming message (-, ’s, and update the message on the variable
node | based on the messages from all other variable nodes connected to the check

node m.

L, =CHKQ.®q__,). (2.48)

I'eL(m)\l
L(m) denotes the set of variable nodes that participate in the m™ parity-check

equation. L(m) can also be viewed as the horizontal set in the parity check matrix H.

Step2 (message passing from variable nodes to check nodes): Each variable node

| passes its probability message to all the check nodes that are connected to it.

Onor = VAR(VAR (1), L) =L+ > 1, (2.49)

meM (D\I
Step3 (decoding): For each variable node |, messages from all the check nodes

that are connected to the variable node | are summed up.

G = VAR(VAR (1), L) =L+ 3 iy (2.50)

meM (1)

32



Hard decision is made on 0,- The decoded vector X is decided as

0,q, >0 ) A .
X, :{1 §'<0 ,0<l<n. The resulting decoded vector X is checked against the
Y =

parity-check equation HR' =0. If HR" =0, the decoder stops and outputs X .
Otherwise, it goes to stepl until the parity-check equation is procured or the specific
maximum iteration number is reached. The whole LDPC decoding procedure can be

expressed in Figure 2.12.

Initialization

J L

Check Node
Update

J L

Bit Node
Update

<

@ Yes

Figure 2.12 The whole LDPC decoding procedure

No

Iteration humberis

reachedor Hx' =0

Table 2.4 Summary of sum-product algorithm

1. Initialization:
For1<I<n
P X, =0
, =1In M: %y,, where o’ is the noise variance
Py[x =1 o
For every |I,m such that H , =1
Onor = Ly

2. Message passing:

Stepl: Message passing from check nodes to variable nodes. For each I,m,

compute e =CHK (Z ®q )

I'eL(m)\I

33



=sign(@,) [ sign(@r) xAAC D |t ) — 80 ]

I'eL(m) I'eL(m)

where ¢(X) = —ln[tanh(%D = ln(eX i H and @(P(X)) = X.
e
Step2: Message passing from variable nodes to check nodes. For each I,m,

compute qmal =VAR( VAR (rlam')’ LI) = I—I + z r-Iam'

m'eM ()\m meM (1)\m

Step3: Decoding

For each I,
ql = VAR(;/Eﬁﬁ)(rlam)’ LI) = I‘I + me%“) rIam
For 1<l <n,

X =0if g >0,% =1ifrg <0

If (HR" =0, then X is'the estimated codeword,
or the iteration number is reached a‘predetermined threshold)
= the algorithm stops
else
= return to stepl

Table 2.5 Summary of min-sum algorithm

1. Initialization:
For 1<1<n
L Piixi=0) 2
L P =D
For every |,m such that H , =1
Om, = L
2. Message passing:

—y,,where o’ is the noise variance

Stepl: Message passing from check nodes to variable nodes. For each I,m,

compute

34




e =CHK (Z e, )

I'eL(m)\I
=sign(d,_,) [ | sign(q,_,)xmin{q,, [}
I'eL(m) I'eL(m)\m
Step2: Message passing from variable nodes to check nodes. For each I,m,
compute
Oy =VAR( VAR (1), L) =Ly + Z() o

Step3: Decoding

For each I,
= VAR(VAR(r_ ), L)=L + r
ql (meM(I)( I—>m) I) | meZM:u) l-m
For 1<l <n,

% =0if g >0, % =Lif1g<0

If (HRT =0,then X is the estimated codeword |,
or the number of iteration exceeds a predetermi ned threshold
— the algorithm stops

else
= returnto stepl

35



Chapter 3

Modified Min-Sum Algorithms

In this chapter, we will introduce modified LDPC decoding algorithms. As
mentioned in chapter 2, the sum-product algorithm has better performance than
min-sum algorithm. In the following, we will depict the difference between
sum-product algorithm and min-sum algorithm. Our final goal is to modify min-sum

algorithm in order to achieve decoding performances close to sum-product algorithm.

3.1 Normalization Technique for Min-Sum Algorithm [14]

Equation (3.1) is the check node updating function in the sum-product algorithm.

€ +1] The function plot of

X

In equation (3.1), there is a major function ¢@(X) = ln(

#(x) is shown in Figure 3.1. Implementation of the nonlinear function @(X) is
complicated. Even the commonly adopted table-look-up scheme suffers loss in error

performance because of the large quantization error, especially when X is small.

CHK(L, ®L, ®--@L) =] [sign(L)glg(L )+ (L) ++4(L)]  G.D)

36



e*+1
e’ -1

$(X) =1n[

Figure 3.1 Function-plotof #(x)

Equation (3.2) is the check node‘update function used in min-sum algorithm.

The key part of equation (3.2) is to find the minimal value among W numbers:

min[| L,

L2

L0, I_W|]. The value of w is decided by the row weight of the parity

check matrix H and it’s usually small (say, 6 or 7). Therefore, the min-sum

algorithm is more suitable to for implementation in hardware.

L2

L[] (32)

2 2 2

CHK(L, ®L, ®---@L,) =] [sign(L;) min[|L,

i=1
As we mentioned in chapter 2, equation (3.2) is an approximate form of
equation (3.1). Assume the result of equation (3.1) is A and the that of equation (3.2)
is B. In [14], it proves the following two statements about the relationship between A

and B.

37



Statements:

(1) Values A and B have the same sign, i.e., Sign(A) = sign(B) ;

(2) The absolute magnitude of B is always greater than that of A, i.e.,

B >|A
Statement (1) is quite straightforward because ¢(X) and min(X) are both positive

, where 1 is

functions. For convenience of proving statement (2), we assume|B| =|Li

an arbitrary number between 1 and w.

AL <p(LD+(LD+-+ (L]
Take the function ¢() on both sides, one has

= #(H(LD) > gL+ (L) +--+S(L,D]
= 4| >dp(Lp+s(LD++p(L] because (L) =L 0<i<w
= B > |A

Note that because @(X) is a decreasing functien, the comparison symbol should be
changed if one takes the function @#(X) on both.inequality sides. Hence statement (2)

is proved.
These two statements suggest the use of normalization to get more accurate soft

values from B. In other words, one can multiply B by a factor S which is

smaller than 1 to get a better approximation of A. To determine the normalization

factor £, one can consider the criterion of forcing the mean of the normalized

magnitude S |B| to equal the mean of the magnitude |A| [14], 1.e.

_EdA

p= E(B|)

(3.3)

The normalization factor £ that makes ﬂ-|B| equal to |A| in the average sense

may not be the best, but it seems a quite reasonable choice. In the following, a

theoretical value of £ is derived.

38



It is assumed the channel is a Gaussian channel with noise variance o*. For
convenience, one denotes the set {L :1=1,2,---,w}. Then L, are independent, and
identically distributed (i.i.d.) random variables. The probability density function

(p.d.f.)) of L, depends on SNR and code rate. One can also write

E[|Al= E{glg(L)+ (L) +--+ (L)1} (3.4)

12

E[|B|] = E{min][|L,

Ly, |L[1} (3.5)

One first generates the random vectors {L,,L,,---,L,}, and then calculate the means
of |A| and |B| statistically based on equations (3.4) and (3.5). The normalization

factor can be obtained from equation (3.3). One can calculate equations (3.4) and (3.5)

by the theory of probabilities.

First, one can calculate E[|B|]. Let M, = |Li

, 1=1,2,---,w, so that the p.d.f. of

M. is

fy, (M) = (F (DA, =HHuh=2- £, (Du(l) (3.6)

where f (1) isthep.d.f.of L and u(l) isa unit-step function of I. It follows

P(B|>1)=P[min(L,,L,,,L,) >1]
=P[L >LL >1,---,L,>1] (3.7
=[P(L)>1]"

The last equation in (3.7) follows from the fact that {L;} are i.i.d. random variables.

Since |B| > (0, one can write
E(B|) =j0°°[P(|\/|1 > m)]"dm
=[] fy, (m)dm, ]"dm

= ['n-Q =+l

O,

(3.8)

——)]"dm
m On

)]"dm

QA=) + QA
# (o o,

m

39



The second integration in (3.8) can be omitted and finally one obtains

y+m

m
E(B) ~ [/ 1-Q(—=)+Q(—= oo am (3.9)
2 4 . . . )
where u=—, 0,=—, © i1s the channel noise variance, and
o o
Q) = —— [ e dx
2 7%

Next one can calculate E[|A|] in equation (3.4).

|| ILo| Ll
AL+ L]+ o D1 = gl S S Sy

Ll Ll [™
=¢@[In(X)] , where X=e +tler+l e +1
1 gkl [
e -te e (3.10)

X +1
=1In
X -1
X2 X7
=2(X"+ SRy +---), using Taylor's series

Let p,=E[X™].Since {L;} are iid.random variables, one can get

b 1)
:{E[[eLl J 1% (3.11)
€

=[E(tanh(|L;|/2))]"
=[E(tanh(M, /2))]"

From equations (3.10) and (3.11), one can get

= E[X’3]+ E[X’5]+
3 > (3.12)
=2(p 2 )

E[|All=2{E[X

A few lower-order terms of equation (3.12) are enough to give a very good estimation
of E[|A|] in most cases. Combined with value E[|B|] given in equation (3.9), one

40



can obtain the theoretical value of the normalization factor £ . But in practical, the
theoretical value of £ is hard to compute. To use the theoretical value of £ for
different SNR values seems to be impractical. Thus, for a specific LDPC code, one
can associate a fixed normalization factor through simulations.

Now, let’s set the number of w (the input number of a check node updating
function) to 6. This is because the row-weight of H is 6 or 7 in 802.16e standard (see

appendix A). Assume
A= gL )+ (L )+ +4( L] (3.13)

B = min|[|L,

LZ

L|] (3.14)

b 2 b

The purpose of Figure 3.2 is to find the normalization factor /. The vertical axis of

Figure 3.2 is |f-B—A

, and the hetizontal axis is £ . In hardware implementation,

only a certain value of £ will be chosen for finite-precision representation. For
example, one can set £ to be.a _multiple of 0.125 for simple hardware

implementation. Through Figure 3.2, our objective is to choose the most appropriate
£ so that the value of |ﬂ -B—A| is as small as possible. From simulations,
P =0.75 is found to be a suitable value. When A is 0.75, it is shown that

|ﬂ- B- A| is less than 0.2.

41



[xE:] o

52-4

oS

[«

apc)

L 1 L L L L L
oz 0z 0.4 s e a7 oz k=) 1

Figure 3.2 The absolute difference between the normalization technique and

sum-product algorithm, vs. the normalization factor f

3.2 Dynamic Normalization ~Technique for Min-Sum

Algorithm [23]
In section 3.1, one can use the normalized factor £ to compensate the result of

equation (3.2) so that it can approximate equation (3.1) more accurately. In [23], it
shows the idea to adjust the normalized factor £ dynamically to get better decoding

performance. Thus the normalization factor £ can have the form:

ﬂ:{ﬂl, when B < K (3.15)

B,, whenB > K

In [23], it selects two normalization factors S and f, first. For convenience
of hardware implementation, only certain simple values of £ and g, should be

chosen for finite-precision realizations. For check node degree of 6, it found that

B,=0.75 and B, =0.875 are good choices. Then through simulations, one can find

the optimum threshold value K to have the lowest decoder BER. The detailed

42



simulation results are in chapter 4.

3.3 Proposed Dynamic Normalized-Offset-Compensation

Technique for Min-Sum Algorithm

Compared to the dynamic normalization technique, one can extend the idea by
adding an additional offset factor « to equation (3.2) [6] in order to get even more
accurate check-node updating values. Equation (3.16) shows the normalized-offset

technique for min-sum algorithm.

I_2

LJ+a}  (3.16)

2 2 2

CHK(L ®L,®---®L,)=]]sign(L){B-min]|L,

i=1
In section 3.1, we have decided the value 0.75 of f when the check node degree is 6.
Through simulations in chapter 4, we find that for fixed value of «, the decoding

performance is not always better than that of . =0.So we have the idea to adjust the

offset factor « dynamically.

Now, we have the inspiration if the offset factor & can be dynamically
adjusted to get better performance. Equation (3.17) shows the dynamic offset factor

a.

a,, whenB < K
a= (3.17)

a,, whenB > K

Through simulations, we can decide the best values of o, and «,. As we discuss in
section 3.1, In hardware implementation, only certain simple values of ¢, and «,
will be chosen for finite-precision realizations. For check node degree of 6, we found
that o, =0 and «, =0.125 are good choices.

In the following, we are going to decide the threshold K for a particular LDPC

Code. Figure 3.3 shows the selection of K for rate 1/2 LDPC code vs. SNRs. K=0

43



means that we have fixed offset factor « . Otherwise, we have the dynamic offset
factor « . In Figure 3.4, we can find the threshold value K equal to 1.5 is a good

choice. The detail simulation results will be shown in chapter 4.

I :I cl DI ol ::

THR=Z0
THR=ZS
=g THR=30

o

BER

Figure 3.3 BER performance vs: threshold.values K for rate 1/2 LDPC code

44



Chapter 4

Simulation Results and Analysis

In the beginning of this chapter, we will make a comparison of error correction
performances by using different structures of the parity-check matrices such as
randomly constructed code, and block-LDPC code in 802.16e standard. Then we will
make a comparison of error correction performance with major decoding algorithms
for LDPC codes such as sum-preduct algorithm, min-sum algorithm, and the
proposed improved min-sum algorithm. In:the end,;*we will furthermore analyze the
finite-precision effects on the decoding performance,’and decide proper word lengths
of variables considering tradeoffs"between the performance and the hardware cost.

Before proceeding to the following simulations, some parameters should be
described here:

1: The randomly constructed codes are derived from [22], and they have a
regular column weight and row weight.

2: The block-LDPC code used is for 802.16e standard.

3: For the decoding algorithm, we adopt the sum-product algorithm, min-sum
algorithm, and the proposed modified min-sum algorithm.

4: We assume AWGN channels and BPSK modulation as our test environment

conditions.

45



4.1 Floating-Point Simulations

One of the most important factors of concern when decoding the received
signals is the iteration number. As the number becomes larger, the correct codewords
are more likely to be decoded. However, more iterations imply higher computation
cost and latency. Therefore, we need to choose a proper iteration number in the
decoding process. In Figure 4.1, we show the BER simulation results vs. SNR, with
different iteration numbers, for the LDPC code at rate 1/2 and length 576, BPSK, and
sum-product decoding algorithm are adopted. We can find that the performance
improvement tends to be insignificant after 10 iterations, which is about 0.2 dB. As a
result, LDPC decoding with 10 iterations is'considered as a good choice for practical

implementation.

10°

T 5
-©- iteration=1 |]
—— iteration 10 |]
—=— iteration 20 |4
—&— iteration 30 |
4 —7— iteration 50

BER

1 15 2 2.5 3 3.5 4

Figure 4.1 Decoding performance at different iteration numbers.

46



10° T

AN —— Length 576
\\\ —o length 2304

107 g

10*F i

BER

10" |

107+

10 L L L L L
1 1.5 2 2.5 3 3.5 4

EblN0

Figure 4.2 BER Performance of the rate-1/2 code at different codeword lengths, in

AWGN channel, maximum iteration=10.

10 T

T
—=— Min-Sum Algorithm 1
—©—- Sum-Product Algorithm |

10°F ,:

10° | | | | |

b "o

Figure 4.3 Floating-point BER simulations of two decoding algorithms in AWGN

channel with code length=576, code rate=1/2, maximum iteration=10.

47



10 T T

—< Normalized min-sum:beta=0.5
—©— Normalized min-sum:beta=0.75
—+— Normalized min-sum:beta=0.875
—>— Sum-Product

BER

b o

Figure 4.4 Floating-point BER simulations of normalized min-sum decoding
algorithms in AWGN channel with code'length=576, code rate=1/2,

maximum iteration=10.

10° :
—— afa=0.25 |
—> afa=-0.25 |
—— afa=0 ]
= & afa=0.125
10—
107
5 10°t
o
10*F
10°F
10° | | | | |
1 15 2 2.5 3 35 4

Eb/NO

Figure 4.5 Floating-point BER simulations under normalized-offset technique in
min-sum decoding algorithms, in AWGN channel with code length=576,

code rate=1/2, maximum iteration=10.

48



T
—+ NMS:beta=0.75

—p— Proposed DNOMS
—©- Sum-Product

BER

b o

Figure 4.6 Floating-point BER simulations of the dynamic normalized-offset
min-sum decoding algorithm and its comparison with other algorithms, in

AWGN channel with eode length=576, code rate=1/2.

T
—+— Dynamic Normalization
—>— Proposed DNOMS
Dynamic Normalization with Offset Factor
—©— Sum-Product

BER

10° 1 1 | | |

1 15 2 2.5 3 3.5 4
Eb/N
o

Figure 4.7 Floating-point BER simulations under normalized-offset-compensated

technique and dynamic normalization technique in min-sum algorithm.

49



4.2 Fixed-Point Simulations

In this section, we furthermore analyze the finite-word-length performance of
the LDPC decoder. Possible tradeoff between hardware complexity and decoding
performance will be discussed. Let [t:f] denote the quantization scheme in which a
total of t bits are used, and f bits are used for the fractional part of the values.

Various quantization configurations such as [6:3], [7:3], [8:4] are investigated here.

T
Fixed-Point MS[6:3]
—>— Fixed-Point MS[7:3]
—5— Fixed-Point MS[8:4]
| —p —— floating-point MS
-1 \\\
10+
102}
@
w
[2a]
10°}
10°}
10° ! ‘ ‘ : ‘
1 15 2 25 3 3.5 4

Figure 4.8 Fixed-point BER simulations of three different quantization
configurations of min-sum decoding algorithm, in AWGN channel,

code length=576, code rate=1/2, maximum iteration=10.

50



T T
—+— NMS fixed-point[7:3] beta=0.75
—- NMS floating-point beta=0.75
e —<— DNOMS fixed-point[7:3]
4 DNOMS floating-point
107 F T
107}
& 10°}
[2a]
10°F
10°}
10° | | | | |
1 15 2 25 3 3.5 4
E, /N
b o

Figure 4.9 Floating-point vs. fixed-point BER simulations of the normalization and

dynamic normalized-offset min-sum algorithm.

51



Chapter 5

Architecture Designs of LDPC Code Decoders

In this chapter, we will introduce the hardware architectures of the LDPC code
decoder in our design and discuss the implementation of an irregular LDPC decoder
for 802.16e standard. The decoder has a code rate 1/2 and code length of 576 bits. The

parity-check matrix of this code is listed in Appendix A.

5.1 The Whole Decoder Architecture

The parity-check matrix H in our design is.iniblock-LDPC form as we discuss in
section 2.2. The parity-check matrix is composed of m,xn, sub-matrices. The
sub-matrices are zero matrices or permutation matrices with the same size of zxz.
The permutations used are circular right shifts, and the set of permutation matrices
contains the zxz identity matrix and circular right shifted versions of the identity

matrix.

Po,o PO,I o PO,nb—l
H = 1,0 Pl,l 1,0, -1
L Pmb—l,O th—l,l o Pmb—l,nb—l )

Figure 5.1 The parity check matrix H of block-LDPC Code

52



In our design, we consider a LDPC code with code-rate 1/2 and 288-by-576
parity-check matrix for 802.16e standard. While considering circuit complexity, the
288-by-576 parity-check matrix H of LDPC code are divided into four 144-by-