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低密度對偶檢查碼解碼演算法之改進以及

其高速解碼器架構之設計 

學生：邱敏杰    指導教授：陳紹基 博士 

 

國立交通大學 

 

電子工程學系 電子研究所碩士班 

 
 

摘    要 

由於低密度對偶檢查碼 (LDPC) 的編碼增益接近向農 (Shannon) 極限以及解碼

程序上擁有低複雜度的特性，所以在近年來受到廣泛的討論。在解碼的理論裡,

尤其又以 min-sum 演算法最廣泛地被運用。因為想較於 sum-product 演算法，

min-sum 演算法比較適合在硬體電路的實現。本文中，我們在 min-sum 演算法的

運算式子中加了兩個參數：固定補償參數以及動態誤差參數，相較於固定補償

min-sum 演算法來說，增進了解碼器的解碼效能約 0.2dB。此外，在解碼器的設

計上，我們使用部分平行 (partial-parallel) 的架構，此架構可同時處理兩筆不同

之 codewords 來加快傳輸速度及資料路徑的工作效率，且共用運算單元以縮減晶

片面積的大小，設計一個碼率為 1/2、長度為 576 位元、最大循環解碼次數為 10

的非規則低密度對偶檢查碼解碼器，在 0.18 mµ 製程下，此解碼器之資料流為每

秒 1.31bps、面積為 95 萬個邏輯閘、消耗功率為 620mW。 
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ABSTRACT 

In recent years, low-density parity-check (LDPC) codes have attracted a lot of 

attention due to the near Shannon limit coding gains when iteratively decoded. The 

min-sum decoding algorithm is extensively used because it is more suitable for VLSI 

implementations than sum-product algorithm. In this thesis, we propose a dynamic 

normalized-offset technique for min-sum algorithm and achieve a better decoding 

performance by about 0.2dB than normalization min-sum algorithm. Based on a 

partial-parallel architecture, an irregular LDPC decoder has been implemented, 

assuming code rate of 1/2, code length of 576 bits, and the maximum number of 

decoding iterations is 10. This architecture can process two different codewords 

concurrently to increase throughput and data path efficiency. The irregular LDPC 

decoder can achieve a data decoding throughput rate up to 1.31Gbps, an area of 950k 

gates, and a power consumption of 620mW using UMC 0.18 mµ  process technology.  
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Chapter 1 

Introduction 

 

1.1 Background of LDPC Codes 

 

Low-density parity check (LDPC) code, a linear block code defined by a very 

sparse parity-check matrix, was first introduced by Gallager [1]. Due to the difficulty 

in circuit implementation, LDPC codes have been ignored for about forty years except 

for the study of codes defined on graphs by Tanner [3]. The rediscovery of LDPC 

code was done by MacKay [10]. It has engaged much research interest ever since, 

because the sparse property of parity-check matrix makes the decoding algorithm 

simple and practical with good communication throughput rates. LDPC code is 

currently widely considered a serious competitor to the turbo codes. The main 

advantages of LDPC codes over turbo codes are that LDPC decoders are known to 

require an order of magnitude less arithmetic computations, and the decoding 

algorithms for LDPC codes are parallelizable and can potentially be accomplished at 

significantly greater speeds. The main decoding algorithm of LDPC codes is 

sum-product algorithm [10]. However, sum-product algorithm is prone to quantization 

errors while realized in hardware. Thus, several reduced-complexity algorithms with 

different levels of performance degradation have been proposed [14]. The thesis 

proposed a dynamically normalized-offset technique to improve the decoding 

performance and reduce the decoding complexity.  
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The implementation of LDPC codes decoders can be classified into fully parallel 

decoders, and partial-parallel decoders. The fully parallel decoders directly map the 

corresponding bipartite graph [17] into hardware and all the processing units are 

hard-wired according to the connectivity of the graph. Thus they can achieve very 

high decoding speed but have a high hardware cost. Another approach is to have a 

partial-parallel decoder [19], in which the functional units are reused in order to 

decrease the chip-area. Moreover, this architecture can process two different 

codewords concurrently to has moderate throughput. The other aim of this thesis is to 

improve the partial-parallel architecture and save chip area, with little degradation of 

the throughput.  

 

1.2 Thesis Organization 

 

    This thesis is organized as follows. In chapter 2, basic concept of the LDPC 

codes: the code construction, encoding concept and various decoding algorithms will 

be introduced. Chapter 3 will first introduce the modified min-sum algorithm which 

uses the normalized technique. Then we propose a new dynamic normalized-offset 

technique for min-sum decoding algorithm. In chapter 4, the simulation results for the 

LDPC code which is discussed in chapter 2 and chapter 3 will be shown. In chapter 5, 

hardware architecture of the LDPC decoder will be discussed here. In the end of this 

thesis, brief conclusions and future work will be presented in chapter 6.  
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Chapter 2 

Low-Density Parity-Check Codes 

 

In this chapter, an introduction to low-density parity-check code will be given, 

including the fundamental concepts of LDPC code, code construction, encoding 

mechanism and decoding algorithm. 

 

2.1 Fundamental Concept of LDPC Code 

 

A binary LDPC code is a binary linear block code that can be defined by a sparse 

binary nm×  parity-check matrix. A matrix is called a sparse matrix because there is  

only a small fraction of its entries are ones. In other words, most part of the 

parity-check matrix are zeros and the else part of that are ones.  

For any nm×  parity-check matrix H, it defines a (n, k, r, c)-regular LDPC code 

if every column vector of H has the same weight c and every row vector of H has the 

same weight r. Here the weight of a vector is the number of ones in the vector. 

k n m= − . By counting the ones in H, it follows that n c k r× = × . Hence if nm < , 

then c r< . Suppose the parity-check matrix has full rank, the code rate of H is 

( ) / 1 /r c r c r− = − . If all the column-weights or the row-weights are not the same, an 

LDPC code is said to be irregular. 
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As suggested by Tanner [7], an LDPC code can be represented by a bipartite 

graph. An LDPC code corresponds to a unique bipartite graph and a bipartite graph 

also corresponds to a unique LDPC code. In a bipartite graph, one type of nodes, 

called the variable (bit) nodes, correspond to the symbols in a codeword. The other 

type of nodes, called the check nodes, correspond to the set of parity check equations. 

If the parity-check matrix H is an nm×  matrix, it has m check nodes and n variable 

nodes. A variable node vi is connected to a check node cj by an edge, denoted as (vi, cj), 

if and only if the entry hi,j of H is one. A cycle in a graph of nodes and edges is 

defined as a sequence of connected edges which starts from a node and ends at the 

same node, and satisfies the condition that no node (except the initial and final node) 

appears more than one time. The number of edges on a cycle is called the length of 

the cycle. The length of the shortest cycle in a Tanner graph is called the girth of the 

graph. 

Regular LDPC codes are those where all nodes of the same type have the same 

degree. The degree of a node is the number of edges connected to that node. For 

example, Figure2.1 shows a (8, 4, 4, 2)-regular LDPC code and its corresponding 

 

 

 

 

 

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck  

nodesvariable  

3c1c 2c 4c

1v 2v 5v 6v 7v 8v3v 4v

nodescheck  

nodesvariable  
 

Figure 2.1 (8, 4, 4, 2)-regular LDPC code and its corresponding Tanner graph. 
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Tanner graph. In this example, there are 8 variable nodes (vi), 4 check nodes (ci), the 

row weight is 4 and the column weight is 2. The edges (c1, v3), (v3, c3), (c3, v7), and (v7, 

c1) depict a cycle in the Tanner graph. Since this turns out to be the shortest cycle, the 

girth of the Tanner graph is 4. Irregular LDPC codes were introduced in [8] and [9].  

 

 

2.2 Constructions of LDPC Codes  

 

This section is going to discuss the parity-check matrix H of LDPC code. The 

design of H is the moment when the asymptotical constraints (the parameters of the 

class you designed, like the degree distribution, the rate) have to meet the practical 

constraints (finite dimension, girths). 

Here, we describe some recipes which take some practical constraints into 

account. Two techniques exist in the literature: random and deterministic ones. The 

design compromise is that for increasing the girth, the sparseness has to be decreased, 

so is the code performance decreased due to a low minimum distance. On the contrary, 

for high minimum distance, the sparseness has to be increased yielding the creation of 

low-length girth, due to the fact that H dimensions are finite, and thus, yielding a poor 

convergence of sum-product algorithm. 
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2.2.1 Random Code Construction 
 

The first constructions of LDPC codes are random ones. They were proposed by 

Gallager [1] and MacKay [10]. The parity check matrix in Gallager’s method is a 

concatenation and/or superposition of sub-matrices; these sub-matrices are created by 

performing some permutations on a particular (random or not) sub-matrix which 

usually has a column weight of 1. The parity check matrix in MacKay’s method is 

computer-generated. These two methods are introduced below.  

 

 

 

 

Gallager’s method [1] 

 

Define an (n, r, c) parity check-matrix as a matrix of n columns that has c ones in 

each column, r ones in each row, and zeros elsewhere. Following this definition, an (n, 

r, c) parity-check matrix has /nc r  rows and thus a rate of 1 /coderate c r≥ − . In 

order to construct an ensemble of (n, r, c) matrices, consider first the special (n, r, c) 

matrix in Figure 2.2, where n, r and c are 20, 4 and 3, respectively. 
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10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

 

Figure 2.2 Example of an LDPC code matrix, where (n, r, c)=(20,4,3) 

 

This matrix is divided into c sub-matrices, each containing a single 1 in each 

column. The first of these sub-matrices contains all its 1’s in descending order where 

the ith row contains 1’s in columns ( 1) 1i r− +  to ir . The other sub-matrices are 

merely column permutations of the first. We define the ensemble of (n, r, c) codes as 

the ensemble resulting from random permutations of the columns of each of the 

bottom ( 1)c −  sub-matrices of a matrix such as in Figure 2.2 with equal probability 

assigned to each permutation. This definition is somewhat arbitrary and is made for 

mathematical convenience. In fact such an ensemble does not include all (n, r, c) 

codes as just defined. Also, at least ( 1)c −  rows in each matrix of the ensemble are 

linearly dependent. This simply means that the codes have a slightly higher 

information rate than the matrix indicates. 
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MacKay’s method [10] 
 

A computer-generated code was introduced by MacKay [10]. The parity-check 

matrix is randomly generated. First, parameters n, m, r, and c are chosen to conform 

an (n, m, r, c)-regular LDPC code where n, r and c are the same as in Gallager’s code 

and m is the number of the parity-check equations in H. Then, 1’s are randomly 

generated into c different positions of the first column. The second column is 

generated in the same way, but checks are made to insure that no two columns have a 

1 in the same position more than twice in order to avoid 4-cycle in the Tanner graph. 

If there is a 4-cycyle in the Tanner graph, the decoding performance will be reduced 

by about 0.5dB. Avoidance of 4-cycles in a parity-check matrix is therefore required. 

The next few columns are generated sequentially and checks for 4-cycles must be 

performed in each generation. In this procedure, the number of 1’s in each row must 

be recorded, and if any row already has r ones, the next-column generation will not 

select that row. 

 
 

 

 

2.2.2 Deterministic Code Construction 
 

A parity-check matrix H by random construction is sparse, but its corresponding 

generator matrix is not. This property will increase encoding complexity. To 

circumvent this problem, deterministic code construction schemes have been 

proposed. It can lead to low encoding complexities. Some forms of the deterministic 

code construction include block-LDPC code, quasi-cyclic code [5], and quasi-cyclic 

based code [21]. They are introduced below. 
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Block-LDPC Code 

 

The parity check matrix H based on block-LDPC code is composed by several 

sub-matrices. The size of H is m-by-n. The sub-matrices are shifted identity matrices 

or zero matrices. The matrix form of H is shown in Figure 2.3. Sub-matrix ,i jP  is 

one of a set of z-by-z permutation matrices or a z-by-z zero matrix. Matrix H is 

expanded from a binary base matrix bH  of size bm -by- bn , where bm z m= ⋅  , 

bn z n= ⋅ , and z is an integer ≥  1. The base matrix is expanded by replacing each 1 

in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero 

matrix. The used permutations are circular right shifts, and the set of permutation 

matrices contains the z-by-z identity matrix and circularly right-shifted versions of the 

identity matrix. The details of block-LDPC Code can be seen in Appendix A. 

 

                    

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

b

b

b b b b

n

n

m m m n
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P P P
H

P P P

−

−

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M L M

L

 

Figure 2.3 The parity-check matrix H of a block-LDPC code 
 

Quasi-Cyclic Code [5]  

 

A code is quasi-cyclic if, for any cyclic shift of a codeword by l  places, the 

resulting word is also a codeword. A cyclic code is a quasi-cyclic code with 1=l .  

Consider the binary quasi-cyclic codes described by a parity-check matrix 

 ],...,[ 21 lAAAH =  (2.10) 

where lAAA ,..., 21  are binary vv×  circulant matrices. The algebra of ( )vv×  

binary circulant matrices is isomorphic to the algebra of polynomials modulo 1−vx  
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over GF(2). A circulant matrix A  is completely characterized by the polynomial  

 1
1

2
210 ....)( −

−++++= v
v xaxaxaaxa  (2.11) 

where the coefficients are from the first row of A , and a code C with parity-check 

matrix of the form (2.10) can be completely characterized by the polynomials 

)(),...,(),( 21 xaxaxa l .  Figure 2.4(a) shows an example of a rate-1/2 quasi-cyclic 

code, where xxa += 1)(1  and 42
2 1)( xxxa ++= . Figure 2.4(b) shows the 

corresponding Tanner graph representation.  For this example, we can see the edges 

(c1, v6), (v6, c4), (c4, v8), (v8, c1) depict a 4-cycle in this graph which is to be avoided 

for performance consideration.  

 

⎥
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⎥
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(a) A parity-check matrix with two circulant matrices 
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3c1c 2c 4c
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nodesvariable 

5c

9v 10v
 

(b) Tanner graph representation 

Figure2.4 Example of a rate-1/2 quasi-cyclic code from two circulant matrices, where      

xxa += 1)(1  and 42
2 1)( xxxa ++=  
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Quasi-Cyclic Based Code [21] 

The code is constructed with a base of quasi-cyclic code. The parity check 

matrix is in the following form. 

                ⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

ll

l

BBBB
AAA

H
121

121

...
0...

                   (2.12) 

where ll BBBAAA  and ,...,,,,...,, 21121 −  are all vv×  circulant matrices. The code 

length is vl  and the code rate is (
l
21− ). We can use the difference families [21] to 

determine the polynomials of each of the circulant matrix ),(  and  )( xbxa ji  where 

}1,...,2,1{ −∈ li  and },...,2,1{ lj∈ , just as the quasi-cyclic code. In order to avoid 

any 4-cycles in the new structure of the parity-check matrix, we provide a new 

difference family to solve this problem. First, construct two )1,,( γv  difference 

families Family A and Family B and combine the two families to form a new 

difference Family C , subject to the following two constraints.  

Constraint 1: The differences [( yixi aa ,, − ) mod v ] and [( yixi bb ,, − ) mod v ], 

where yxyxli ≠=−=  ,,...,2,1, ;1,...,2,1 γ , give each element, can not be the same.  

Constraint 2: The differences [( yjxi aa ,, − ) mod v ] and [( yjxi bb ,, − ) mod v ], 

where , ,...,2,1, ;,1,...,2,1, γ=≠−= yxjilji  give each element, can not be the same. 

 

2.3 Encoding of LDPC Codes 

 

Since LDPC code is a linear block code, it can be encoded by conventional 

methods. However, conventional methods require encoding complexities proportional 

to the quadratic of the code length. The high encoding cost of LDPC code becomes a 

major drawback when compared to the turbo codes which have linear time encoding 
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complexity. In this section, we will introduce some improved methods. 

 

2.3.1 Conventional Method 

 

Let ],...,,,[ 1210 −= kuuuuu  be a row vector of message bits with length k and 

],...,,,[ 1210 −= nccccc  be a codeword with length n. Let G with dimension k n×  be 

the generating matrix of this code, and 

 uGc = . (2.12) 

If H is the parity-check matrix of this code with dimension m n× , where m n k= − , 

then 

 
0               
0                

0 0

=⇒

=⇒

=⇒=

T

T

TTT

GH
uGH
cHHc

 (2.13) 

Suppose a sparse parity-check matrix H with full rank is constructed. Gaussian 

elimination and column reordering can be used to derive an equivalent parity-check 

matrix in the systematic form ][ rsystematic IPH = . Thus equation (2.13) can be solved 

to get the generating matrix in a systematic form as  

 ][ T
ksystematic PIG = . (2.14) 

Finally, the generating matrix G can be obtained by doing the reverse column 

reordering to the systematicG . 

 

Triangularized parity-check matrix form [4] 

 

In [4], it suggests to force the parity-check matrix to be in a lower triangular 

form. Under this restriction, it guarantees a linear time encoding complexity, but, in 
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general, it also results in some loss of performance. 

 

2.3.2 Richardson’s Method [3] 

 

Richardson’s method is the most extensively used among LDPC encoding 

algorithms. Figure 2.5 shows how to bring a parity-check matrix into an approximate 

lower triangular form using row and column permutations. Note that since this  

 

 

Figure 2.5 The parity-check matrix in an approximate lower triangular form 

transformation was accomplished solely by permutations, the parity check matrix H is 

still sparse. This method is to cut the parity check matrix H into 6 sub-matrices: A, B, 

T, C, D, E. Especially, the sub-matrix T is in lower triangular form. 

More precisely, it is assumed that the matrix is written in the form 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H  (2.15) 

where A is )()( mngm −×− , B is ggm ×− )( , T is )()( gmgm −×− , C is 

)( mng −× , D is gg × , and E is )( gmg −× . Further, all these matrices are sparse 

and T is lower triangular with ones along the diagonal. Let ),,( 21 ppsx =  denote the 
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codeword of this parity-check matrix where s  is the message bits with length 

)( nm − , 1p  combined with 2p  are the parity bits, and 1p  and 2p  have length 

g , and )( gm − , respectively. Multiplying the matrix in equation (2.16) on both sides 

of the constraint equation 0TH x⋅ =  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− − IET

I
1

0
 (2.16) 

can result in 

 1 1 0
0

TA B T
x

ET A C ET B D− −

⎛ ⎞
⋅ =⎜ ⎟− + − +⎝ ⎠

. (2.17) 

Expanding equation (2.17), one can get equations (2.18) and (2.19)  

 021 =++ TTT TpBpAs  (2.18) 

 ( ) ( ) 01
11 =+−++− −− TT pDBETsCAET . (2.19) 

Define 1ET B Dφ −= − +  and assume for the moment that φ  is nonsingular. Then 

from equation (2.19) we conclude that 

 ( )1 1
1
T Tp ET A C sφ− −= − − + . (2.20) 

Hence, once the )( mng −×  matrix ( )1 1 TET A C sφ− −− − +  has been pre-computed, 

the determination of 1p  can be accomplished with a time complexity of 

( ( ))O g n m× −  simply by performing a multiplication with this (generally dense) 

matrix. This complexity can be further reduced as shown in Table 2.1. Rather than 

pre-computing ( )1 1 TET A C sφ− −− − +  and then multiplying with Ts , 1p  can be 

determined by breaking the computation into several smaller steps, each of which is 

computationally efficient. To this end, we first determine TAs , which has complexity 

of ( )O n , because A  is sparse. Next, we multiply the result by 1−T . Since 

TT yAsT =− ][1  is equivalent to the system TT TyAs =][ , this can also be 

accomplished in ( )O n  time by back-substitution method, because T  is lower 

triangular and sparse. The remaining steps are fairly straightforward. It follows that 
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the overall complexity of determining 1p  is 2( ).O n g+  In a similar manner, noting 

from equation (2.18) that )( 1
1

2
TTT BpAsTp +−= − , we can determine 2p  in time 

complexity of ( )O n , as shown step by step in Table 2.2. 

    A summary of this efficient encoding procedure is given in Table 2.3. It contains 

two steps, the preprocessing step and the actual encoding step. In the preprocessing 

step, we first perform row and column permutations to bring the parity-check matrix 

into the approximate lower triangular form with as small a gap g as possible. In actual 

encoding, it contains the steps listed in Table 2.1 and 2.2. The overall encoding 

complexity is 2( )O n g+ , where g is the gap of the approximate triangularization. 

 

Table 2.1 Efficient computation steps of ( )1 1
1
T Tp ET A C sφ− −= − − +  

Operation Comment Complexity 

TAs  

][1 TAsT −  

][ 1 TAsTE −−  

TCs  

][][ 1 TT CsAsET +− −  

1 1[ ]T TET As Csφ− −− − +  

Multiplication by sparse matrix 

TTTT TyAsyAsT =⇔=− ][][1  

Multiplication by sparse matrix 

Multiplication by sparse matrix 

Addition 

Multiplication by dense gg ×  matrix

( )nΟ  

( )nΟ  

( )nΟ  

( )nΟ  

( )nΟ  

( )2gΟ  

 

 

Table 2.2 Efficient computation steps of )( 1
1

2
TTT BpAsTp +−= −  

Operation Comment Complexity 

TAs  

TBp1  

][][ 1
TT BpAs +  

Multiplication by sparse matrix 

Multiplication by sparse matrix 

Addition 

( )nΟ  

( )nΟ  

( )nΟ  
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][ 1
1 TT BpAsT +− −  TTTTTT TyBpAsyBpAsT =+−⇔=+− − ][][ 11

1  ( )nΟ  

 

 

Table 2.3 Summary of Richardson’s encoding procedure  

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent 

parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that DBET +− −1  is 

non-singular. 

1. [Triangularization] Perform row and column permutations to bring the 

parity-check matrix H into the approximate lower triangular form 

                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

EDC
TBA

H  

   with as small a gap g as possible. 

2. [Check] Check that DBET +− −1  is non-singular, performing further 

column permutations if necessary to ensure this property. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− 0

0
111 DBETCAET

TBA
EDC
TBA

IET
I

 

Encoding: Input: Parity-check matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
EDC
TBA

 such that 

DBET +− −1  is non-singular and a vector s denote the message bits has length 

)( nm − . Output: The vector ),,( 21 ppsx =  where 1p  has length g  and 2p  has 

length )( gm − , such that TTHx 0= . 

1. Determine 1p  as shown in Table 2.1. 

2. Determine 2p  as shown in Table 2.2. 
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2.3.3 Quasi-Cyclic Code [5] 

 

As reviewed in section 2.2, the quasi-cyclic code can be described by a 

parity-check matrix ],...,[ 21 lAAAH =  and each of a circulant matrix jA  is 

completely formed by the polynomial 1
110 ....)( −
−+++= v

v xaxaaxa  with 

coefficients from its first row. A code C with parity-check matrix H can be completely 

characterized by the polynomials 1 2( ),  ( ),...,  and ( )la x a x a x . As for the encoding, if 

one of the circulant matrices is invertible (say lA ) the generator matrix for the code 

can be constructed in the following systematic form. 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−

−

−

−

T
ll

T
l

T
l

lv

AA

AA
AA

IG

)(
...

)(
)(

1
1

2
1

1
1

)1(  (2.21) 

It results in a quasi-cyclic code of length vl  and dimension )1( −lv . The encoding 

process can be achieved with linear complexity using a )1( −lv -stage shift register. 

Regarding the algebraic computation, the polynomial transpose is defined as  

 ∑
−

=

−=
1

0

,)(
n

i

in
i

T xaxa  1=nx . (2.22) 

For a binary [n, k] code, length vln =  and dimension )1( −= lvk , the k-bit message 

[ ]110 ,...,, −kiii  is described by the polynomial 1
110 ...)( −
−+++= k

k xixiixi  and the 

codeword for this message is )](),([)( xpxxixc k= , where )(xp  is given by  

 ,))()(()()(
1

1

1∑
−

=

− ∗∗=
l

j

T
jlj xaxaxixp  (2.23) 

where )(xi j  is the polynomial representation of the information bits )1( −jvi  to 1−vji ,  

 1
11)1()1( ...)( −
−+−− +++= v

vjjvjvj xixiixi  (2.24) 

and polynomial multiplication )(∗  is mod 1−vx . 
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    As an example, consider a rate-1/2 quasi-cyclic code with 5=v , 2=l , the first 

circulant is described by xxa += 1)(1  and the second circulant is described by 

42
2 1)( xxxa ++= , which is invertible and 

 421
2 )( xxxxa ++=− . (2.25) 

The generator matrix contains a 55×  identity matrix and the 55×  matrix 

described by the polynomial 

 32
1

1
2 1)1())()(( xxxaxa TT +=+=∗− . (2.26) 

Figure 2.6 shows the example parity-check matrix and the corresponding generator 

matrix. 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11010
01101
10110
01011
10101

10001
11000
01100
00110
00011

H  

(a) A parity-check matrix with two circulants 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10100
01010
00101
10010
01001

10000
01000
00100
00010
00001

G  

(b) The corresponding generator matrix in systematic form 

Figure 2.6 Example of a rate-1/2 quasi-cyclic code. (a) Parity-check matrix with two 

circulants, where xxa += 1)(1  and 42
2 1)( xxxa ++= . (b) Corresponding generator 

matrix in systematic form. 
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Quasi-Cyclic Based Code [21] 

As reviewed in section 2.2, the quasi-cyclic based code can be described by a 

parity-check matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

ll

l

BBBB
AAA

H
121

121

...
0...

, where 

ll BBBAAA  and ,...,,,,...,, 21121 −  are all vv×  circulant matrices. Regarding the 

encoding for the quasi-cyclic based structure, suppose that two of the circulant 

matrices 1−lA  and lB  are invertible, we can derive two generator matrices in the 

following systematic forms 

 [ ]1)2(

2
1
1

2
1
1

1
1
1

)2(1

)(
...

)(
)(

GI

AA

AA
AA

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−
−

−
−

−
−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=  (2.27) 

and 

 [ ]2)1(

1
1

2
1

1
1

)1(2

)(
...

)(
)(

GI

BB

BB
BB

IG lv

T
ll

T
l

T
l

lvsystematic −

−
−

−

−

− =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= . (2.28) 

Let ],,[ 21 ppdc =  denote the codeword of the proposed parity-check matrix where d 

is the message bits with length )2( −lv , and 1p  combined with 2p  are the parity 

bits, each having the same length v . The encoding procedure is partitioned into two 

steps. 

Encoding Step 1: We can use the generator matrix 1G  to get the parity bits 1p . That 

is  

 11 Gdp ×= . (2.29) 

Then, combine the parity bits 1p  with the message bits d to form an intermediate 

codeword c′  where ],[ 1pdc =′ .    
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Encoding Step 2: The last parity bits 2p  can be derived from the generator matrix 

2G  and the intermediate codeword c′ . That is  

                     22 Gcp ×′= .                         (2.30) 

 

 

2.4 Conventional LDPC Code Decoding Algorithm 

 

There are several decoding algorithms for LDPC codes. The LDPC decoding 

algorithms can be summarized as: bit-flipping algorithm [20], and message passing 

algorithm [11]. In the following, we will make an introduction of the decoding 

algorithms. 

 

2.4.1 Bit-Flipping Algorithm [20] 

The idea for decoding is the fact that in case of low-density parity-check 

matrices the syndrome weight increases with the number of errors in average until 

errors weights are much larger than half the minimum distance. Therefore, the idea is 

to flip one bit in each iteration, and the bit to be flipped is chosen such that the 

syndrome weight decreases. It should be noted that not only rows of the parity-check 

matrix can be used for decoding, but in principle all vectors of the dual code with 

minimum (or small) weight. In the following, we will introduce two of the bit-flipping 

algorithms [20]. 
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Notation and Basic Definitions 

The idea behind this algorithm is to “flip” the least number of bits until the parity 

check equation 0TH x⋅ =  is satisfied. Suppose a binary (n,k) LDPC code is used for 

error control over a binary-input additive white Gaussian noise (BIAWGN) channel 

with zero mean and power spectral density 2σ . The letter n is the code length and k 

is the message length. Assume binary phase-shift-keying (BPSK) signaling with unit 

energy is adopted. A codeword 0 1 1( , , , ) { (2)}n
nc c c c GF−= ∈L  is mapped into bipolar 

sequence 0 1 1( , , , )nx x x x −= L before its transmission, where 2 ( 1),i ix c= ⋅ −  

0 1i n≤ ≤ − . Let 0 1 1( , , , )ny y y y −= L be the soft-decision received sequence at the 

output of the receiver matched filter. For 0 1i n≤ ≤ − , i i iy x n= + , where in  is a 

Gaussian random variable with zero mean and variance 2σ . An initial binary hard 

decision of the received sequence, (0) (0) (0) (0)
0 1 1( , , , )nz z z z −= L , is determined as follows 

                            (0) 1, 0
0, 0

i
i

i

y
z

y
≥⎧

= ⎨ ≤⎩
                       (2.31) 

For any tentative binary hard decision z made at the end of ach decoding iteration, we 

can compute the syndrome vector as .Ts H z= ⋅  One can define the log-likelihood 

ratio (LLR) for ear channel output ,  0 1iy i n≤ ≤ − : 

                          ( 1| )ln
( 0 | )

i i
i

i i

p c yL
p c y

=
=

=
                      (2.32) 

The absolute value of iL , iL , is called the reliability of the initial decision (0)
iz . 

For any binary vector 0 1 1( , , , )nv v v v −= L , let wt(v) be the Hamming weight of v . Let  

iu  be the n dimensional unit vector, i.e., a vector with “1” at the i-th position and “0” 

everywhere else. 
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Algorithm I 

 

Step (1) Initialization: Set iteration counter k = 0. Calculate (0)z and (0) (0)( )
T

S wt H z= ⋅ . 

Step (2) If ( ) 0kS = , then go to Step (8). 

Step (3) k←k+1. If maxk k> , where maxk  is the maximum number of iterations, go to 

Step (9). 

Step (4) For each 0,1, , 1i n= −L , calculate ( ) ( 1)[ ( ) ]k k T
i iS wt H z u−= ⋅ +  

Step (5) Find ( ) {0,1, , 1}kj n∈ −L  with ( ) ( )

0
arg(min )k k

ii n
j S

≤ <
= . 

Step (6) If ( ) ( 1)k kj j −= , then go to Step (9). 

Step (7) Calculate ( )
( ) ( 1)

k
k k

j
z z u−= +  and ( ) ( )( )

Tk kS wt H z= ⋅ . Go to Step (2). 

Step (8) Stop the decoding and return ( )kz  . 

Step (9) Declare a decoding failure and return ( 1)kz −  . 

So the algorithm flips only one bit at each iteration and the bit to be flipped is 

chosen according to the fact that, in average, the weight of the syndrome increases 

with the weight of the error. Note that in some cases, the decoder can choose a wrong 

position j, and thus introduce a new error. But there is still a high likelihood that this 

new error will be corrected in some later step of the algorithm. 

 

 

Algorithm II 

 

Algorithm I can be modified, with almost no increase in complexity, to achieve 

better error performance, by including some kind of reliability information (or 

measure) of the received symbols. Many algorithms for decoding linear block codes 
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based on this reliability measure have been devised. Consider the received 

soft-decision sequence 0 1 1( , , , )ny y y y −= L . For the AWGN channel, a simple measure 

of the reliability, iL , of a received symbol iy  is its magnitude, iy . The larger the 

magnitude iy  is, the larger the reliability of the hard-decision digit iz  is. If the 

reliability of a received symbol iy  is high, we want to prevent the decoding 

algorithm from flipping this symbol, because the probability of this symbol being 

erroneous is less than the probability of this symbol being correct. This can be 

achieved by appropriately increasing the values iS  in the decoding algorithm. The 

solution is to increase the values of iS  by the following term: iL . The larger value 

of iL  implies that the hard-decision iz  is more reliable. The steps of the soft 

version of the decoding algorithm are described in detail below: 

 

Step (1) Initialization: Set iteration counter k = 0. Calculate (0)z and (0) (0)( )
T

S wt H z= ⋅ . 

Step (2) If ( ) 0kS = , then go to Step (8). 

Step (3) k←k+1. If maxk k> , go to Step (9). 

Step (4) For each 0,1, , 1i n= −L , calculate ( ) ( 1)[ ( ) ]k k T
i i iS wt H z u L−= ⋅ + +  

Step (5) Find ( ) {0,1, , 1}kj n∈ −L  with ( ) ( )

0
arg(min )k k

ii n
j S

≤ <
= . 

Step (6) If ( ) ( 1)k kj j −= , then go to Step (9). 

Step (7) Calculate ( )
( ) ( 1)

k
k k

j
z z u−= +  and ( ) ( )( )

Tk kS wt H z= ⋅ . Go to Step (2). 

Step (8) Stop the decoding and return ( )kz . 

Step (9) Declare a decoding failure and return ( 1)kz − . 
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It is important to point out that, in both algorithms, though the maximum 

number of iteration is specified, the algorithms have an inherent stopping criterion. 

The decoding process stops either when a valid codeword is obtained (Step 2) or 

when the minimum syndrome weight at the kth iteration and the minimum syndrome 

weight at the (k-1)th iteration are found in the same position (Step 6). 

The bit-flipping algorithm just corrects at most one error bit in one iteration. The 

codeword length of LDPC code is usually hundreds (or thousands) of bits. When the 

channel SNR (signal-to-noise ratio) is low, the decoding iteration number of the 

bit-flipping algorithm needs to be high to correct the erroneous bits. This will lower 

the throughput of the decoder. And according to Step (5), equation (2.33) is to find the 

minimal value of the n numbers. The value of n (codeword length) is usually large. 

The hardware complexity of equation (2.33) is high. 

                          ( ) ( )

0
arg(min )k k

ii n
j S

≤ <
=                       (2.33) 

 

2.4.2 Message Passing Algorithm [11] 

 

Since the bit-flipping algorithm is hard to be implemented in hardware, the 

message passing algorithm is extensively used for LDPC decoding. The message 

passing algorithm is an iterative decoding process. Messages between variable nodes 

and check nodes are exchanged back and forth. The decoder expects that error will be 

corrected progressively by using this iterative message-passing algorithm. At present, 

there are two types of iterative decoding algorithms applied to LDPC codes in 

general. 
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 Sum-product algorithm, also known as belief propagation algorithm. 

 Min-sum algorithm 

Both of sum-product algorithm and min-sum algorithm are message passing 

algorithms. In the following, we will discuss these two algorithms in detail. First, we 

explain the decoding procedure in Tanner graph below. 

Decoding Procedure in Tanner Graph Form 

Now we make a description of the message passing algorithm using Tanner 

graph form. Here is a simple example of irregular LDPC code. The parity-check 

matrix is shown below.  

 

 

Tanner graph of this parity-check matrix is shown in Figure 2.7.  

  

Figure 2.7 Tanner graph of the given example parity-check matrix 

Assume every line in the Tanner graph has two information messages. One is 

expressed in a solid line and the other is expressed in a dotted line. We use the 

messages to decode the received signal. For convenience of explanation, we take one 

part of Tanner graph which is shown below. 

1 1 0 1
1 0 1 1

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ 2S

1x 4x3x2x

1S
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The solid line and the dotted line are represented by s xq →  and ,x sr →  respectively. In 

this example, we can get 
1 1s xq →  by 

2 1x sr →  and 
4 1x sr → . Equation (2.34) shows how to 

compute 
1 1s xq → . 

 
1 1 2 1 4 1

( )s x x s x sq CHK r r→ → →= ⊕   (2.34) 

On the other hand, we can also get 
1 1x sr →  by 

2 1s xq →  and 1L , where 1L  is the 

initialization value. The initialization value 1L  will be discussed later. Equation (2.35) 

shows how to compute 
1 1x sr → . 

  

 
1 1 2 1 1( )x s s xr VAR q L→ →= ⊕   (2.35) 

There is CHK  function in equation (2.34) and VAR  function in equation (2.35). 

The two special functions will be introduced in the following contents. In the Tanner 

graph, we can compute the solid line message s xq →  by the dotted line messages x sr →  

which are connected to the same check node. In the same way, we can compute the 
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dotted line message x sr →  by the real line messages s xq →  which are connected to the 

same bit node. So the values of x sr →  and s xq →  are updated iteratively. We call this 

iterative decoding.  

 

Decoding Procedure in Matrix Form 

Because Tanner graph is a representation of the parity-check matrix H, we can 

also use the matrix form to replace Tanner graph form. Let us take the same 

parity-check matrix H in the previous section 
1 1 0 1
1 0 1 1

H ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 as an example. In 

equation (2.36) and equation (2.37), we define matrix Q and matrix R. The positions 

of the nonzero values in R and Q are the same as those of the ones in H. 

 1 1 1 2 1 4

2 1 2 3 2 4

0

0
s x s x s x

s x s x s x

q q q
Q

q q q
→ → →

→ → →

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.36) 

 1 1 2 1 4 1

1 2 3 2 4 2

0

0
x s x s x s

x s x s x s

r r r
R

r r r
→ → →

→ → →

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2.37) 

The elements in the matrix Q are computed by the elements in the matrix R, for 

example, 
1 1 2 1 4 1

( )s x x s x sq CHK r r→ → →= ⊕ . On the other hand, the elements in the matrix 

R are computed by the elements in the matrix Q. For example, 

1 1 2 1 1( )x s s xr VAR q L→ →= ⊕ , where 1L  is the initialization value. So the elements in 

matrix R and Q are updated iteratively. We can also regard the CHK  function as the 

horizontal step and VAR  function as the vertical step in the decoding procedure.  
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In the LDPC iterative decoding procedure, there are two main functions: VAR  

and CHK . Equation (2.38) shows the VAR  function with two inputs and equation 

(2.39) is the general form of the VAR  function. 

 1 2 1 2( )VAR q q q q⊕ = +   (2.38) 

 1 2 1 2( )l lVAR q q q q q q⊕ ⊕ ⊕ = + + +L L   (2.39) 

The VAR  function is fixed regardless of the decoding algorithms. It is just a 

summation operation.  

The CHK  function with two inputs can be reformulated in different forms. 

There are 
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          ),min()()( 2121 LLLsignLsign ××≈ .              (2.43) 

When CHK  function is in the form of equation (2.40) or equation (2.42), we call the 

decoding algorithm as sum-product algorithm. The fourth term 
21

21

1
1ln LL

LL

e
e

−−

+−

+
+  in 

equation (2.42) is called the correction factor. When the check node computation is in 
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the form of equation (2.43), or in other words an approximate form, we call it the 

min-sum algorithm. 

 

The above discussion of check node computation is only about the CHK  

function with two inputs. Now, we will discuss the general form of the CHK  

function. The general form of the CHK  function can be expressed in equation 

(2.44). 

 ))...))(((...()...( 32121 ll LLLLCHKCHKCHKCHKLLLCHK ⊕⊕⊕=⊕⊕⊕  (2.44)                

The purpose of equation (2.44) is to unfold 1 2( ... )lCHK L L L⊕ ⊕ ⊕ . The procedure is: 

first, compute 1 1 2( ),a CHK L L= ⊕  then 2 1 3( ),a CHK a L= ⊕ …, 

1 2( )l l la CHK a L− −= ⊕ . The computation result of equation (2.44) is 1la − . This can be 

viewed as serial computation. Figure 2.8 shows the serial configuration for the general 

form of the CHK  function.   

  

Figure 2.8 Serial configuration for check node update function 

 

The serial computation has a long critical path in the check node update unit. 

From equations (2.40), (2.43), and (2.44), we can generalize the CHK  function as 

equation (2.45) for sum-product algorithm, and equation (2.46) for min-sum 

algorithm.            
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 1 2 1 2
1

( ) ( ) [ ( ) ( ) ( )]
l

l i l
i

CHK L L L sign L L L Lφ φ φ φ
=

⊕ ⊕ ⊕ = + + +∏L L   (2.45)               

where 1( ) ln
1

x

x

ex
e

φ
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠
 

1 2 1 2 1 2( ) ( ) ( ) ( ) min[ , , , ]l l lCHK L L L sign L sign L sign L L L L⊕ ⊕ ⊕ = ⋅ ⋅L L L (2.46)              

Equations (2.45) and (2.46) tell us that the check node update function can also be 

viewed as parallel configuration. If we derive the check node update function in 

parallel configuration, the critical path of the check node update function will be 

reduced. Figure 2.9 and 2.10 respectively show the check node updating function of 

the sum-product algorithm and the min-sum algorithm. These two figures neglect the 

multiplication of the sign symbols for an artistic view of the figures. 

  

       Figure 2.9 Check node update function of sum-product algorithm   

 

  

       Figure 2.10 Check node update function of min-sum algorithm  
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Iterative Decoding Procedure [12] 

 

The discussion in section 2.4.2 is only part of the whole iterative decoding 

procedure. Now, we consider the actual decoding procedure. It means that there will 

involve many iterations for a decoding process. First, let us describe some notations 

for the iterative decoding procedure in Figure 2.11. )(lM  denotes the set of check 

nodes that are connected to the variable node l , i.e., positions of “1”s in the thl  

column of the parity-check matrix. )(mL  denotes the set of variable nodes that 

participate in the thm  parity-check equation, i.e., the positions of “1”s in the thm  

row of the parity-check matrix. lmL \)(  represents the set )(mL  excluding the thl  

variable node and mlM \)(  represents the set )(lM  excluding the thm  check node. 

m lq →  denotes the probability message that check node m  sends to variable node l . 

l mr→  denotes the probability message that variable node l  sends to check node m . 

The probability message of m lq →  and l mr→  are computed in LLR domain. The 

iterative decoding procedure is shown below. 
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Figure 2.11 Notations for iterative decoding procedure 
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1. Initialization 

Let  

 2

( 1) 2ln
( 0)

l l
l l

l l

P y x
L y

P y x σ
=

= =
=

 (2.46) 

be the log likelihood ratio of a variable node, where )( baP  specifies that given b is 

transmitted, the probability that the receiver receives a, where 2σ  is the noise 

variance of the Gaussian channel. For every position ),( lm  such that 1, =lmH , 

m lq →  is initialized as                  

 m l lq L→ = .  (2.47) 

2. Message passing 

Step1 (message passing from check nodes to variable nodes): Each check node 

m  gathers all the incoming message m lq → ’s, and update the message on the variable 

node l  based on the messages from all other variable nodes connected to the check 

node m . 

 '
' ( )\

( )l m m l
l L m l

r qCHK→ →
∈

= ⊕∑ . (2.48) 

)(mL  denotes the set of variable nodes that participate in the thm  parity-check 

equation. )(mL  can also be viewed as the horizontal set in the parity check matrix H.  

 

    Step2 (message passing from variable nodes to check nodes): Each variable node 

l  passes its probability message to all the check nodes that are connected to it. 

 
( )\ ( )\

 ( ( ), )m l l m l l l mm M l l m M l l
q VAR VAR r L L r→ → →∈ ∈

= = + ∑  (2.49) 

    Step3 (decoding): For each variable node l , messages from all the check nodes 

that are connected to the variable node l  are summed up. 

 
( ) ( )

 ( ( ), )l l m l l l mm M l m M l
q VAR VAR r L L r→ →∈ ∈

= = + ∑ . (2.50) 
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Hard decision is made on .lq The decoded vector x̂  is decided as 

0, 0
,0

1, 0
l

l
l

q
x l n

q
>⎧

= ≤ <⎨ ≤⎩
. The resulting decoded vector x̂  is checked against the 

parity-check equation 0ˆ =TxH . If 0ˆ =TxH , the decoder stops and outputs x̂ . 

Otherwise, it goes to step1 until the parity-check equation is procured or the specific 

maximum iteration number is reached. The whole LDPC decoding procedure can be 

expressed in Figure 2.12. 

  

Figure 2.12 The whole LDPC decoding procedure 

 

Table 2.4 Summary of sum-product algorithm 

1. Initialization: 

              

 

 

2. Message passing: 

    Step1: Message passing from check nodes to variable nodes. For each ml, , 

compute 
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    Step2: Message passing from variable nodes to check nodes. For each ml, , 

compute 

                                                  . 

Step3: Decoding 
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             Table 2.5 Summary of min-sum algorithm 

1. Initialization: 

              

 

 

2. Message passing: 

    Step1: Message passing from check nodes to variable nodes. For each ml, , 
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    Step2: Message passing from variable nodes to check nodes. For each ml, , 

compute 

                                                  . 

Step3: Decoding 
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Chapter 3 

Modified Min-Sum Algorithms 

 

In this chapter, we will introduce modified LDPC decoding algorithms. As 

mentioned in chapter 2, the sum-product algorithm has better performance than 

min-sum algorithm. In the following, we will depict the difference between 

sum-product algorithm and min-sum algorithm. Our final goal is to modify min-sum 

algorithm in order to achieve decoding performances close to sum-product algorithm.    

 

3.1 Normalization Technique for Min-Sum Algorithm [14] 
 

Equation (3.1) is the check node updating function in the sum-product algorithm. 

In equation (3.1), there is a major function 1( ) ln
1

x

x

ex
e

φ
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠
. The function plot of 

( )xφ  is shown in Figure 3.1. Implementation of the nonlinear function ( )xφ  is 

complicated. Even the commonly adopted table-look-up scheme suffers loss in error 

performance because of the large quantization error, especially when x is small. 

  

 1 2 1 2
1

( ) ( ) [ ( ) ( ) ( )]
w

l i l
i

CHK L L L sign L L L Lφ φ φ φ
=

⊕ ⊕ ⊕ = + + +∏L L   (3.1) 
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Figure 3.1 Function plot of ( )xφ  

Equation (3.2) is the check node update function used in min-sum algorithm. 

The key part of equation (3.2) is to find the minimal value among w  numbers: 

1 2min[ , , , ]wL L LL . The value of w  is decided by the row weight of the parity 

check matrix H  and it’s usually small (say, 6 or 7). Therefore, the min-sum 

algorithm is more suitable to for implementation in hardware. 

 

 1 2 1 2
1

( ) ( ) min[ , , , ]
w

w i w
i

CHK L L L sign L L L L
=

⊕ ⊕ ⊕ =∏L L   (3.2) 

As we mentioned in chapter 2, equation (3.2) is an approximate form of 

equation (3.1). Assume the result of equation (3.1) is A and the that of equation (3.2) 

is B. In [14], it proves the following two statements about the relationship between A 

and B. 
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Statements: 

(1) Values A and B have the same sign, i.e., ( ) ( )sign A sign B= ; 

(2) The absolute magnitude of B is always greater than that of A, i.e., B A>  

Statement (1) is quite straightforward because ( )xφ  and min( )x  are both positive 

functions. For convenience of proving statement (2), we assume iB L= , where i is 

an arbitrary number between 1 and w .  

1 2

1 2

1 2

( ) ( ) ( ) ( )
Take the function () on both sides, one has 

 ( ( )) [ ( ) ( ) ( )]   

          [ ( ) ( ) ( )]   because  ( ( ))  ,0<   

               

i w

i w

i w i i

L L L L

L L L L

L L L L L L i w

B A

φ φ φ φ
φ

φ φ φ φ φ φ

φ φ φ φ φ φ

< + + +

⇒ > + + +

⇒ > + + + = ≤

⇒ >

L

L

L

 

Note that because ( )xφ  is a decreasing function, the comparison symbol should be 

changed if one takes the function ( )xφ  on both inequality sides. Hence statement (2) 

is proved. 

These two statements suggest the use of normalization to get more accurate soft 

values from B . In other words, one can multiply B  by a factor β  which is 

smaller than 1 to get a better approximation of A . To determine the normalization 

factor β , one can consider the criterion of forcing the mean of the normalized 

magnitude Bβ ⋅  to equal the mean of the magnitude A  [14], i.e. 

 
( )
( )

E A
E B

β =   (3.3) 

The normalization factor β  that makes Bβ ⋅  equal to A  in the average sense 

may not be the best, but it seems a quite reasonable choice. In the following, a 

theoretical value of β  is derived. 

 



 39

It is assumed the channel is a Gaussian channel with noise variance 2σ . For 

convenience, one denotes the set { : 1,2, , }iL i w= L . Then iL  are independent, and 

identically distributed (i.i.d.) random variables. The probability density function 

(p.d.f.) of iL  depends on SNR and code rate. One can also write 

 1 2[ ] { [ ( ) ( ) ( )]}wE A E L L Lφ φ φ φ= + + +L   (3.4) 

 1 2[ ] {min[ , , ]}wE B E L L L= L   (3.5) 

One first generates the random vectors 1 2{ , , , }lL L LL , and then calculate the means 

of A  and B  statistically based on equations (3.4) and (3.5). The normalization 

factor can be obtained from equation (3.3). One can calculate equations (3.4) and (3.5) 

by the theory of probabilities.  

First, one can calculate [ ]E B . Let ,  1, 2, ,i iM L i w= = L , so that the p.d.f. of 

iM  is  

 ( ) ( ( ) ( )) ( ) 2 ( ) ( )
i i i iM L L Lf m f l f l u l f l u l= + − = ⋅   (3.6) 

where ( )
iLf ⋅  is the p.d.f. of iL  and ( )u l  is a unit-step function of l . It follows 
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> = >

= > > >

= >

L   (3.7) 

The last equation in (3.7) follows from the fact that { }iL  are i.i.d. random variables. 

Since 0B > , one can write 
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  (3.8) 
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The second integration in (3.8) can be omitted and finally one obtains 

 
0

( ) [1 ( ) ( )]w

m m

m mE B Q Q dm
µ µ µ

σ σ
− +

≈ − +∫   (3.9) 

where 2 2

2 4,  ,mµ σ
σ σ

= = 2σ  is the channel noise variance, and 

2 / 21( )
2

x

x
Q x e dx

π
∞ −= ∫ . 

Next one can calculate [ ]E A  in equation (3.4). 
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Let [ ]k
kp E X −= . Since { }iL  are i.i.d. random variables, one can get 
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  (3.11) 

From equations (3.10) and (3.11), one can get   

                      

 

3 5
1

3 5
1

[ ] [ ][ ] 2{ [ ] }
3 5

         2( )
3 5

E X E XE A E X

p pp

− −
−= + + +

= + + +

L

L

  (3.12) 

A few lower-order terms of equation (3.12) are enough to give a very good estimation 

of [ ]E A  in most cases. Combined with value [ ]E B  given in equation (3.9), one 
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can obtain the theoretical value of the normalization factor β . But in practical, the 

theoretical value of β  is hard to compute. To use the theoretical value of β  for 

different SNR values seems to be impractical. Thus, for a specific LDPC code, one 

can associate a fixed normalization factor through simulations. 

Now, let’s set the number of w  (the input number of a check node updating 

function) to 6. This is because the row-weight of H is 6 or 7 in 802.16e standard (see 

appendix A). Assume  

 1 2 6[ ( ) ( ) ( )]A L L Lφ φ φ φ= + + +L   (3.13) 

 1 2 6min[ , , , ]B L L L= L   (3.14) 

The purpose of Figure 3.2 is to find the normalization factor β . The vertical axis of 

Figure 3.2 is B Aβ ⋅ − , and the horizontal axis is β . In hardware implementation, 

only a certain value of β  will be chosen for finite-precision representation. For 

example, one can set β  to be a multiple of 0.125 for simple hardware 

implementation. Through Figure 3.2, our objective is to choose the most appropriate 

β  so that the value of B Aβ ⋅ −  is as small as possible. From simulations, 

0.75β =  is found to be a suitable value. When β  is 0.75, it is shown that 

B Aβ ⋅ −  is less than 0.2. 
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Figure 3.2 The absolute difference between the normalization technique and 

  sum-product algorithm, vs. the normalization factorβ  

 

3.2 Dynamic Normalization Technique for Min-Sum 

Algorithm [23] 

In section 3.1, one can use the normalized factor β  to compensate the result of 

equation (3.2) so that it can approximate equation (3.1) more accurately. In [23], it 

shows the idea to adjust the normalized factor β  dynamically to get better decoding 

performance. Thus the normalization factor β  can have the form: 

 1

2

,  when   
,  when   

B K
B K

β
β

β
<⎧

= ⎨ ≥⎩
 (3.15) 

In [23], it selects two normalization factors 1β  and 2β  first. For convenience 

of hardware implementation, only certain simple values of 1β  and 2β  should be 

chosen for finite-precision realizations. For check node degree of 6, it found that 

1 0.75β =  and 2 0.875β =  are good choices. Then through simulations, one can find 

the optimum threshold value K to have the lowest decoder BER. The detailed 
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simulation results are in chapter 4.  

3.3 Proposed Dynamic Normalized-Offset-Compensation               

   Technique for Min-Sum Algorithm 

 

Compared to the dynamic normalization technique, one can extend the idea by 

adding an additional offset factor α  to equation (3.2) [6] in order to get even more 

accurate check-node updating values. Equation (3.16) shows the normalized-offset 

technique for min-sum algorithm. 

 1 2 1 2
1

( ) ( ){ min[ , , , ] }
w

w i w
i

CHK L L L sign L L L Lβ α
=

⊕ ⊕ ⊕ = ⋅ +∏L L  (3.16) 

In section 3.1, we have decided the value 0.75 of β  when the check node degree is 6. 

Through simulations in chapter 4, we find that for fixed value of α , the decoding 

performance is not always better than that of 0α = . So we have the idea to adjust the 

offset factor α  dynamically.  

 

Now, we have the inspiration if the offset factor α  can be dynamically 

adjusted to get better performance. Equation (3.17) shows the dynamic offset factor 

α .  

 1

2

,  when   
,  when   

B K
B K

α
α

α
<⎧

= ⎨ ≥⎩
  (3.17) 

Through simulations, we can decide the best values of 1α  and 2α . As we discuss in 

section 3.1, In hardware implementation, only certain simple values of 1α and 2α  

will be chosen for finite-precision realizations. For check node degree of 6, we found 

that 1 0α =  and 2 0.125α =  are good choices.  

In the following, we are going to decide the threshold K for a particular LDPC 

Code. Figure 3.3 shows the selection of K for rate 1/2 LDPC code vs. SNRs. K=0 
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means that we have fixed offset factor α . Otherwise, we have the dynamic offset 

factor α . In Figure 3.4, we can find the threshold value K equal to 1.5 is a good 

choice. The detail simulation results will be shown in chapter 4.  

 
 

         

Figure 3.3 BER performance vs. threshold values K for rate 1/2 LDPC code 
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Chapter 4 

Simulation Results and Analysis 

 

In the beginning of this chapter, we will make a comparison of error correction 

performances by using different structures of the parity-check matrices such as 

randomly constructed code, and block-LDPC code in 802.16e standard. Then we will 

make a comparison of error correction performance with major decoding algorithms 

for LDPC codes such as sum-product algorithm, min-sum algorithm, and the 

proposed improved min-sum algorithm. In the end, we will furthermore analyze the 

finite-precision effects on the decoding performance, and decide proper word lengths 

of variables considering tradeoffs between the performance and the hardware cost.  

Before proceeding to the following simulations, some parameters should be 

described here: 

1: The randomly constructed codes are derived from [22], and they have a 

regular column weight and row weight. 

2: The block-LDPC code used is for 802.16e standard.   

3: For the decoding algorithm, we adopt the sum-product algorithm, min-sum 

algorithm, and the proposed modified min-sum algorithm. 

4: We assume AWGN channels and BPSK modulation as our test environment 

conditions. 
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4.1 Floating-Point Simulations 

 

One of the most important factors of concern when decoding the received 

signals is the iteration number. As the number becomes larger, the correct codewords 

are more likely to be decoded. However, more iterations imply higher computation 

cost and latency. Therefore, we need to choose a proper iteration number in the 

decoding process. In Figure 4.1, we show the BER simulation results vs. SNR, with 

different iteration numbers, for the LDPC code at rate 1/2 and length 576, BPSK, and 

sum-product decoding algorithm are adopted. We can find that the performance 

improvement tends to be insignificant after 10 iterations, which is about 0.2 dB. As a 

result, LDPC decoding with 10 iterations is considered as a good choice for practical 

implementation. 
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Figure 4.1 Decoding performance at different iteration numbers. 
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Figure 4.2 BER Performance of the rate-1/2 code at different codeword lengths, in 

AWGN channel, maximum iteration=10. 
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Figure 4.3 Floating-point BER simulations of two decoding algorithms in AWGN 

channel with code length=576, code rate=1/2, maximum iteration=10. 
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Figure 4.4 Floating-point BER simulations of normalized min-sum decoding     

        algorithms in AWGN channel with code length=576, code rate=1/2,    

        maximum iteration=10. 
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Figure 4.5 Floating-point BER simulations under normalized-offset technique in   

        min-sum decoding algorithms, in AWGN channel with code length=576,    

        code rate=1/2, maximum iteration=10. 
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Figure 4.6 Floating-point BER simulations of the dynamic normalized-offset            

        min-sum decoding algorithm and its comparison with other algorithms, in   

        AWGN channel with code length=576, code rate=1/2. 
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Figure 4.7 Floating-point BER simulations under normalized-offset-compensated 

technique and dynamic normalization technique in min-sum algorithm. 
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4.2 Fixed-Point Simulations 

In this section, we furthermore analyze the finite-word-length performance of 

the LDPC decoder. Possible tradeoff between hardware complexity and decoding 

performance will be discussed. Let [t:f] denote the quantization scheme in which a 

total of t bits are used, and f  bits are used for the fractional part of the values. 

Various quantization configurations such as [6:3], [7:3], [8:4] are investigated here.  
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Figure 4.8 Fixed-point BER simulations of three different quantization   

         configurations of min-sum decoding algorithm, in AWGN channel,   

         code length=576, code rate=1/2, maximum iteration=10. 
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Figure 4.9 Floating-point vs. fixed-point BER simulations of the normalization and   

        dynamic normalized-offset min-sum algorithm. 
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Chapter 5 

Architecture Designs of LDPC Code Decoders  

 

In this chapter, we will introduce the hardware architectures of the LDPC code 

decoder in our design and discuss the implementation of an irregular LDPC decoder 

for 802.16e standard. The decoder has a code rate 1/2 and code length of 576 bits. The 

parity-check matrix of this code is listed in Appendix A. 

 

5.1 The Whole Decoder Architecture  

 

The parity-check matrix H in our design is in block-LDPC form as we discuss in 

section 2.2. The parity-check matrix is composed of b bm n×  sub-matrices. The 

sub-matrices are zero matrices or permutation matrices with the same size of z z× . 

The permutations used are circular right shifts, and the set of permutation matrices 

contains the z z×  identity matrix and circular right shifted versions of the identity 

matrix. 
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Figure 5.1 The parity check matrix H of block-LDPC Code 
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In our design, we consider a LDPC code with code-rate 1/2 and 288-by-576 

parity-check matrix for 802.16e standard. While considering circuit complexity, the 

288-by-576 parity-check matrix H of LDPC code are divided into four 144-by-288 

sub-matrices to fit partial-parallel architecture, which is shown in Figure 5.2. The 

LDPC code decoder architecture in our design is illustrated in Figure 5.4. This 

architecture contains 144 CNUs, 288 BNUs and two dedicated message memory units 

(MMU). The set of data processed by CNUs are 00 01{ , }h h  and 10 11{ , }h h , whereas the 

data fed into BNUs should be 00 10{ , }h h  and 01 11{ , }h h . Note that two MMUs are 

employed to process two different codewords concurrently without stalls. Therefore, 

the LDPC decoder is not only area-efficient but also its the decoding speed is 

comparable with fully parallel architectures.  

  

  
Figure 5.2 The partition of parity-check matrix H 

 
 

 

  
Figure 5.3 I/O pin of the decoder IP 
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Figure 5.4 The whole LDPC decoder architecture for the block LDPC code 

 

The I/O pin of the decoder chip is shown in Figure 5.3. Figure 5.4 shows the 

block diagram of the decoder architecture. The modules in it will be described 

explicitly in the following. We adopt partial-parallel architectures [19], so the decoder 

can handle 2 codewords at one time. 

 
Input Buffer [19] 

The input buffer is a storage component that receives and keeps channel values 

for iterative decoding. Channel values should be fed into the COPY module during 

initialization and BNU processing time. 

 

COPY, INDEX, and ROM modules 

The parity-check matrix H is sparse which means there are few ones in the 

matrix. It is not worth to save the whole parity-check matrix in the memory. So we 

use the module INDEX to keep the information of H. We take a simple example to 

explain how these modules work. Figure 5.4 shows the simple parity-check matrix. 
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Figure 5.5 A simple parity-check matrix example, based on shifted identity matrix. 

 

The parity-check matrix is composed by 4 sub-matrices and the sub-matrices are 

right-circular-shifted matrices. The shifted numbers are expressed in Figure 5.5. Since 

the parity-check matrix size in this example is 8-by-8, we receive 8 channel values. 

The channel values are assumed to be [ ]1 2 3 4 5 6 7 8v v v v v v v v v=
r

, and 

then they are fed to the module “COPY”. Figure 5.6 (a) and 5.6 (b) show how 

modules “COPY”, “INDEX”, “ROM” work. The outputs of the module “INDEX” are 

1 2 3 4,  ,  ,  i i i i
v uv uv uv

. They reserve the channel values and add the indices of the shifted 

numbers. The indices of the shifted numbers are stored in module “ROM.” 

 

 

               Figure 5.6 (a) The sub-modules of the whole decoder 
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               Figure 5.6 (b) The outputs of the module INDEX 

The indices represent the shifted amounts and the information of H. So we place the 

indices in front of the channel values. 

 

SHUFFLE1, SHUFFLE2 modules 

Before sending the values to the check-node update unit, we have to shuffle left 

the values in order to give the correct positions when doing check-node computation 

and shuffle right the values before doing the bit-node computation. The amount of the 

shuffling value is decided by the index numbers. Figure 5.7(a) and 5.7(b) show how 

modules SHUFFLE1 and SHUFFLE2 work. In this example, 

2 7 3 8 4 5 1 6( , ), ( , ), ( , ), ( , )v v v v v v v v  are the input pairs of the check-node update unit. 

Before sending the values to the bit-node update unit, we have to shuffle back the 

values. Thus we can have the correct answers. 

 

Figure 5.7(a) Values shuffling before sending to check-node update unit 
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  Figure 5.7(b) Values shuffling before sending to bit-node update unit 

CNU[15] 

Check node update units (CNUs) are used to compute the check node equation. 

The check-to-bit message ,m lr  for the check node m  and bit node l  using the 

incoming bit-to-check messages ,m lq  is computed by CNU as follows 

 , , , '
( )\

( ) min{ }m l m l m l
l L m l

r sign q q′
′∈

= ×∏   (5.1) 

where ( ) \L m l  denotes the set of bit nodes connected to the check node m  except 

l . Figure 5.8(a) shows the architecture of the CNU using the min-sum algorithm. The 

check node update unit has 6 inputs and 6 outputs. In Figure 5.8(a) and 5.8(b), the 

output of “MIN” is the minimal value of the 2 inputs. The aim of this circuit is to find 

the minimal value of the other 5 inputs. This architecture is quite straightforward. 

Figure 5.8(b) shows the architecture of the CNU using the proposed modified 

min-sum algorithm.     
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Figure 5.8(a) The architecture of CNU using min-sum algorithm 

 

Figure 5.8(b) The architecture of CNU using modified min-sum algorithm 
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The other way to implement equation (5.1) is to search the minimal value and 

the second minimal value from inputs. Figure 5.9 shows the block diagram of the 

compare-select unit (CS6). The detailed architecture of CMP-6 in Figure 5.9 is 

illustrated in Figure 5.10, which consists of two kinds of comparators: CMP-2 and 

CMP-4. CMP-4 finds out the minimal and the second minimal values from the four 

inputs, a, b, c , and d. In addition, CMP-2 is a two input comparator which is much 

simpler than CMP-4. 

 

      

   

Figure 5.9 Block diagram of CS6 module 
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Figure 5.10(a) Block diagram of CMP-4 module 

                     

            

Figure 5.10(b) Block diagram of CMP-6 module 

 

The whole architecture of the 6-input CNU is shown in Figure 5.11.  
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Figure 5.11 CNU architecture using min-sum algorithm 

 

 

 

 

Table 5.1 compares the hardware performance of two different CNU 

architectures. We call the architecture in Figure 5.8(a) is direct CNU architecture and 

the architecture in Figure 5.11 is backhanded CNU architecture. We can find that the 

direct CNU architecture has only 45% size of the backhanded CNU architecture. So 

we choose the direct CNU architecture. 

Table 5.1 Comparison of direct and backhanded CNU architectures 

 Direct CNU architecture 
Backhanded CNU 

architecture 

Area (gate count) 0.52k 1.16k 

Speed (MHz) 100 100 

Power Consumption 

(mW) 
4.82 10.85 
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BNU 

Figure 5.12 shows the architecture of the bit node update unit for 4 inputs. “SM” 

means the sign-magnitude representation and “2’s” means the two’s compliment 

representation. While finding the absolute minimal value of two inputs, 

sign-magnitude representation is more suitable for hardware implementation than 

two’s compliment. In contrast, while adding computation, two’s compliment 

representation is more suitable for hardware implementation than sign-magnitude 

representation.  

 

  

Figure 5.12 The architecture of the bit node updating unit with 4 inputs 
 
 
 
 
 
 
 
MMU0 and MMU1 [19] 

In [19], it introduces a partial-parallel decoder architecture that can increase the 

decoder throughput with moderate decoder area. We adopt the partial-parallel 

architecture in our design and make an improvement in the message memory units.  
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Message memory units (MMU) are used to store the message values that are 

generated by CNUs and BNUs. To increase the decoding throughput, two MMUs are 

employed to concurrently process two different codewords in the decoder. The 

register exchange scheme based on four sub-blocks (RE-4B) is proposed as shown in 

Figure 5.13(a). In MMU, sub-blocks A, B, D capture the outputs from CNU while 

sub-blocks C and D deliver the message data to SHUFFLE2. The detailed timing 

diagram of MMU0 and MMU1 are illustrated in Figure 5.13(b). (0)
xyh  means the 

copied message of codeword 0 and (1)
xyh  means that of codeword 1. 

 

  

Figure 5.13(a) The architecture of RE-4B based MMU 
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Figure 5.13(b) The timing diagram of the message memory units 

 

While in the iterative decoding procedure, MMU0 and MMU1 pass messages to 

each other through SHUFFLE1, CNU, SHUFFLE2, and BNU modules. Disregarding 

the combinational circuit, the detailed relationship and snapshots between MMU0 and 

MMU1 is shown in Figure 5.14. 
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Figure 5.14 The message passing snapshots between MMU0 and MMU1 

 

 

 

5.2 Hardware Performance Comparison and Summary  

 

To compare the area, speed, latency, and power consumption of the architectures 

discussed in this section, we describe the hardware architectures in VHDL, and 

afterwards simulate and synthesize it using EDA tools SynopsisTM, PrimePower, and 

DesignAnalyzer. The process technology is UMC 0.18 mµ  process. Table 5.2 lists the 

results of CNU using min-sum algorithm and the proposed modified min-sum 

algorithm.  
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Table 5.2 Area, speed, and power consumption of the CNU using min-sum               

algorithm and modified min-sum algorithm  

 6 input CNU 6 input CNU 

(modified) 

7 input CNU 7 input CNU 

(modified) 

Area 

(gate count) 
0.52k 0.57k 0.72 0.79 

Speed (MHz) 100 100 100 100 

Power 

Consumption 

(mW) 

4.82 4.96 6.77 7.1 

As mentioned before, two different codewords are processed concurrently 

without any stalls. In our proposed design, BNUs and CNUs have no idle time. Hence, 

it leads to an efficient utilization of the functional units. The design takes four cycles 

to complete a decoding iteration for each codeword, including two cycles for 

horizontal steps in CNUs and two cycles for vertical steps in BNUs. For channel 

value loading, each codeword takes two extra cycles. Since the maximum iteration of 

the decoding procedure is 10, the total amount of cycles needed to complete the 

decoding of two different codewords is 2+2+10*4=44 cycles. According to our initial 

synthesis results, the clock frequency is 100MHz, thus the data decoding throughput 

is 100*[1152*(1/2)]/44≈1.31 Gbps.  

The proposed LDPC decoder is compared with other designs as listed in Table 

5.3. The objective of our design is to devise a high throughput LDPC decoder with 

little chip area. Partial-parallel decoder architecture can meet our demand. Compared 

with [19], our design has lower data throughput. Because our decoder design has 

shorter code length and lower code rate. In our design, one codeword has 288 

message bits. In [19], one codeword has 720 bits. Moreover considering the BER 
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performance, we choose the iteration number=10. This also reduces the data 

throughput. The superiority of our design is the chip area. Although we choose higher 

quantization bits, the chip area in our design has 82.6% of the design in [19] and 

54.3% of the design in [17]. 

 

Table 5.3 Comparison of LDPC decoders 

 
Proposed LDPC 

decoder 
[19] [17] 

Code length 576 1200 1024 

Code rate 1/2 3/5 1/2 

Quantization bits 7 6 4 

Iteration number 10 8 10 

Architecture Partial-parallel Partial-parallel Fully-parallel 

Process 

Technology (μm) 
0.18 0.18 0.16 

Clock rate (MHz) 100 83 64 

Power (mW) 620 644 690 

Area (gate count) 950k 1150k 1750k 

Throughput 

(Mbps) 
1310 3330 500 
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Chapter 6 

Conclusions and Future Work 

 

6.1 Conclusions 

From this work, we summarize that using dynamic normalized-offset technique 

in LDPC decoder can further improve the error correction performance when 

compared with the conventional method. Various simulation results of LDPC decoder 

are investigated and the optimal choice considering the tradeoff between the hardware 

complexity and the performance have been discussed in this thesis.  

In this thesis, with partial-parallel architecture, high-throughput and 

area-efficient LDPC code decoders are proposed for high-speed communication 

systems. A (576, 288) LDPC code in 802.16e standard has been implemented, of 

which the code rate is 1/2, the code length is 576 bits, and the maximum number of 

decoding iterations is 10. The LDPC decoder in our design can achieve a data 

throughput of 1.31 Gbps and the chip area is 950k gates using the UMC 0.18 mµ  

process technology. 

 

6.2 Future Work 

The normalization factor β  and the offset factor α  influence the decoder 

BER performance quite large. Through our research, we found that our proposed 

dynamic normalized-offset technique and dynamic normalization technique [23] have 
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similar BER decoding performance. The other idea is to dynamically adjust the two 

factors α  and β  in the same time. The threshold values of α  and β  may be 

obtained through simulations. Moreover, as mentioned in Appendix A, there are a lot 

of different codeword lengths and code rates in 802.16e standard. Our future work is 

to integrate the multi-mode 802.16e LDPC decoder design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70

Appendix A 

LDPC Codes Specification in IEEE 802.16e 

OFDMA 

 

The LDPC code in IEEE802.16e is a systematic linear block code, where k  

systematic information bits are encoded to n  coded bits by adding m n k= −  

parity-check bits. The code-rate is /k n . 

The LDPC code in IEEE802.16e is defined based on a parity-check matrix H of 

size m n×  that is expanded from a binary base matrix bH  with size b bm n× , where 

bm z m= ⋅  and bn z n= ⋅ . In this standard, there are six different base matrices. One 

for the rate 1/2 code is depicted in Figure A.1. Two different ones for two rate 2/3 

codes, type A is in Figure A.2 and type B is in Figure A.3. Two different ones for two 

rate 3/4 codes, type A is in Figure A.4 and type B is in Figure A.5. One for the rate 5/6 

code is depicted in Figure A.6. In these base matrices, size bn  is an integer equal to 

24 and the expansion factor z  is an integer between 24 and 96. Therefore, we can 

compute the minimal code length as min 24 24 576n = × =  bits and the maximum code 

length as max 24 96 2304n = × =  bits.  

For codes 1/2, 2/3B, 3/4A, 3/4B, and 5/6, the shift sizes ( , , )p f i j  for a code 

size corresponding to the expansion factor fz  are derived from ( , )p i j , which is the 

element at the i-th row, j-th column in the base matrices, by scaling ( , )p i j  

proportionally as  
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0

( , ),           ( , ) 0 
( , )( , , )

,   ( , ) 0f

p i j p i j
p i j zp f i j

p i j
z

≤⎧
⎪= ⎢ ⎥⎨ >⎢ ⎥⎪
⎣ ⎦⎩

 (A.1) 

For code 2/3A, the shift sizes ( , , )p f i j  are derived by using a modulo function as 

 
( , ),                  ( , ) 0 

( , , )
mod[ ( , ), ],   ( , ) 0f

p i j p i j
p f i j

p i j z p i j
≤⎧

= ⎨ >⎩
 (A.2) 

A base matrix entry ( , , ) 1p f i j = −  indicates a replacement with a z z×  

all-zero matrix and an entry ( , , ) 0p f i j ≥  indicates a replacement with a z z×  

permutation matrix. The permutation matrix represents a circular right shift by 

( , , )p f i j  positions. This entry ( , , ) 0p f i j =  indicates a z z×  identity matrix. 

 

Rate 1/2:
1 94 73 1 1 1 1 1 55 83 1 1 7 0 1 1 1 1 1 1 1 1 1 1
1 27 1 1 1 22 79 9 1 1 1 12 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 24 22 81 1 33 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1

61 1 47 1 1 1 1 1 65 25 1 1 1 1 1 0 0 1 1 1 1 1 1 1
1
1
1
1

− − − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − − −
− −
−
−
−

1 39 1 1 1 84 1 1 41 72 1 1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 46 40 1 82 1 1 1 79 0 1 1 1 1 0 0 1 1 1 1 1
1 95 53 1 1 1 1 1 14 18 1 1 1 1 1 1 1 0 0 1 1 1 1

11 73 1 1 1 2 1 1 47 1 1 1 1 1 1 1 1 1 0 0 1 1 1
12 1 1 1

1 1 1
1 1 76

43 1 1

− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −
− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −
− − −

− − − −
− −

− −

83 24 1 43 1 1 1 51 1 1 1 1 1 1 1 1 0 0 1 1
1 1 94 1 59 1 1 70 72 1 1 1 1 1 1 1 1 1 0 0 1

65 1 1 1 1 39 49 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 66 1 47 1 1 1 26 7 1 1 1 1 1 1 1 1 1 1 0

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

 

 
Figure A.1 Base matrix of the rate 1/2 code 

 
Rate 2/3 A code:
3 0 1 1 2 0 1 3 7 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 36 1 1 34 10 1 1 18 2 1 3 0 1 0 0 1 1 1 1 1
1 1 12 2 1 15 1 40 1 3 1 15 1 2 13 1 1 1 0 0 1 1 1 1
1 1 19 24 1 3 0 1 6 1 17 1 1 1 8 39 1 1 1 0 0 1 1 1

20 1 6
1 1 10

35 25
1 6

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

−
− −

−
−

1 1 10 29 1 1 28 1 14 1 38 1 1 0 1 1 1 0 0 1 1
1 28 20 1 1 8 1 36 1 9 1 21 45 1 1 1 1 1 0 0 1

1 37 1 21 1 1 5 1 1 0 1 4 20 1 1 1 1 1 1 1 0 0
6 1 1 1 4 1 14 30 1 3 36 1 14 1 1 1 1 1 1 1 1 0

− − − − − − − − − − − − −
− − − − − − − − − − − −

− − − − − − − − − − − − −
− − − − − − − − − − − − −

 

 
Figure A.2 Base matrix of the rate 2/3, type A code 
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Rate 2/3 B code:
2 1 19 1 47 1 48 1 36 1 82 1 47 1 15 1 95 0 1 1 1 1 1 1
1 69 1 88 1 33 1 3 1 16 1 37 1 40 1 48 1 0 0 1 1 1 1 1

10 1 86 1 62 1 28 1 85 1 16 1 34 1 73 1 1 1 0 0 1 1 1 1
1 28 1 32 1 81 1 27 1 88 1 5 1 56 1 37 1 1 1 0 0 1 1 1

23

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

1 29 1 15 1 30 1 66 1 24 1 50 1 62 1 1 1 1 1 0 0 1 1
1 30 1 65 1 54 1 14 1 0 1 30 1 74 1 0 1 1 1 1 1 0 0 1

32 1 0 1 15 1 56 1 85 1 5 1 6 1 52 1 0 1 1 1 1 1 0 0
1 0 1 1 1 13 1 61 1 84 1 55 1 78 1 41 95 1 1 1 1 1 1 0

− − − − − − − − − − − − − −
− − − − − − − − − − − − − −

− − − − − − − − − − − − −
− − − − − − − − − − − − − − −

 

 
Figure A.3 Base matrix of the rate 2/3, type B code 

 

Rate 3/4 A code:
6 38 3 93 -1 -1 -1 30 70 -1 86 -1 37 38 4 11 -1 46 48 0 -1 -1 -1 -1
62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1 -1 0 0 -1 -1 -1
71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1 -1 0 0 -1 -1
38 61 -1 66 9 73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32 0 -1 -1 0 0 -1
-1 -1 -1 -1 32 52 55 80 95 22 6 51 24 90 44 20 -1 -1 -1 -1 -1 -1 0 0
-1 63 31 88 20 -1 -1 -1 6 40 56 16 71 53 -1 -1 27 26 48 -1 -1 -1 -1 0

 

 
Figure A.4 Base matrix of the rate 3/4, type A code 

 

Rate 3/4 B code:
-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92 0 0 -1 -1 -1 -1
42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 0 0 -1 -1 -1
-1 -1 20 -1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 80 -1 0 0 -1 -1
64 2 -1 -1 63 -1 -1 3 51 -1 81 15 94 9 85 36 14 19 -1 -1 -1 0 0 -1
-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77 1 3 72 60 25 -1 -1 -1 -1 0 0
77 -1 -1 -1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -1 -1 -1 -1 0

 

 
Figure A.5 Base matrix of the rate 3/4, type A code 

 
Rate 5/6  code:
1 25 55 1 47 4 1 91 84 8 86 52 82 33 5 0 36 20 4 77 80 0 1 1
1 6 1 36 40 47 12 79 47 1 41 21 12 71 14 72 0 44 49 0 0 0 0 1

51 81 83 4 67 1 21 1 31 24 91 61 81 9 86 78 60 88 67 15 1 1 0 0
50 1 50 15 1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 1 1 0

− − − −
− − − −

− − − −
− − − −

 

 
Figure A.6 Base matrix of the rate 5/6 code 
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