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ABSTRACT

Multi-Input Multi-Output (MIMO) transmission has become a popular
technique to increase spectral efficiency. Meanwhile, the design of
cost-effective receivers for MIMO channels remains a challenging task.
Maximum-Likelihood (ML) detector-can. achieve superb performance, yet the
computational complexity is “enormously high. Receivers based on sphere
decoding (SD) reach the performance of ML detectors, and potentially a great
deal of computational cost can be saved. In this thesis, a practical
sphere-decoding algorithm is proposed. It utilizes a simple and effective way to
set the initial radius which plays a decisive role in determining the
computational complexity. Furthermore, a pseudo-antenna augmentation scheme
1s employed such that sphere decoding can be applied where the number of
receive antennas is less than that of transmit antennal; thus enhance the

applicability of this powerful algorithm.
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Chapter 1

Introduction

1.1 Introduction

Sphere Decoding has recently been applied to signal detection problem for
Multi-Input Multi-Output (MIMO) systems [1]-[4]. It is a reduced search
algorithm for doing ML detection. Notice that brute-force ML detection has
computational complexity that is, exponentially growing in the number of
sub-streams, the constellation size,rand the mumber of transmit antennas; as a
result, it is not feasible for practical systems. Indeed, SD holds the potential of
significantly reducing the computational cest while maintaining the superb
performance of an ML detector and therefore is compared favorably with other

sub-optimal detectors proposed for MIMO systems.

1.2 Thesis Outline

This thesis is organized as follows. The MIMO system model and some
detection algorithms for MIMO system are laid out in Chapter 2. The basic
sphere decoding algorithm is discussed in Chapter 3. The radius-setting method
and the pseudo-antenna augmentation scheme are described in Chapter 4.
Simulation results are presented in Chapter 5, and finally, a brief conclusion in

Chapter 6.



Chapter 2

Multiple-Input Multiple-Output

2.1 MIMO System Model

For getting high data rates on a rich-scattering wireless channel without
increasing transmit power, a technique is to use multiple transmit and receive
antennas, the so called multiple-input multiple-output (MIMO) system. MIMO
technique uses spatial diversity to fight multipath fading in wireless channels

and also enhance channel capagcity.

The MIMO system modeliis as follow. Assume N transmit antennas and

N receive antennas. Let S be'the transmitted vector symbols (also referred

to as “vector constellation symbol”) in & " or ™ whose entries are chosen
from some complex constellation O (e.g. QPSK, 16-QAM etc.). The received
signal is given by

y=Hs+n (1.1)
where Y €™ is the received signal vector, He """ is the Rayleigh flat
fading channel matrix, and the entries of N is the additive i.i.d. zero mean
circularly symmetric complex Gaussian (ZMCSCG) noise with variance of O ? ,
ie. N.~CN(0,6%), k=1, ...,N,.

Figure 2.1 shows the block diagram of a simple MIMO system.
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Figure 2.1 MIMO system block diagram.

2.2 MIMO Receivers

Some detection algorithms for MIMO systems are reviewed in the

following.

2.2.1 Linear Detection Methods

The linear detection method first estimates the channel matrix then tries to
compensate (inverse) the channel effect by another matrix. The inverse matrix is
usually based on Zero Forcing (ZF) or Minimum Mean Square Error (MMSE)
criterion. This method requires very low computational complexity, but results

in significant performance degradation.

2.2.2 Nulling and Cancelling

Successive interference cancellation (SIC) peels the transmission signal



apart one data stream at a time. It decodes and cancels the data stream iteratively
until all transmitted streams are resolved. If sorting is done to determine the
decoding order from the highest to the lowest SNR, it is called ordered
successive interference cancellation (OSIC). An example is the so-called
Vertical Bell-laboratory LAyered Space-Time (V-BLAST) receiver [5]. OSIC
has a slightly better performance than SIC does, but is still suboptimal and

suffers from error propagation.

2.2.3 Brute-Force Maximum Likelihood (ML) Detection

Assuming that the transmitted'data’sequence is i.1.d., the maximum

likelihood detector for a MIMO system, performs the operation:

Sy =arg min”y — HSH2

seONT

=argmin(y—HS)H (y—Hs) )

seONT
where Yy is the observed vector signal, H is the channel matrix whose size is
Np xN;, ©" is the entire set of possible transmitted vector symbols, O is
the complex-valued modulating constellation, and (-)" means Hermitian

transpose. The ML detector is optimal in terms of symbol error rate, but the

computational complexity can be prohibitively high if it is implemented by

. . N
exhaustively searching over ¢ ' .



2.2.4 Sphere Decoding (SD)

In 1985, U. Fincke and M. Phost proposed an algorithm named
Fincke-Phost algorithm [6] (or SD algorithm) which offers a large reduction in
computational complexity for the class of computationally-hard combinatorial
problems, for instance, the aforementioned ML detection problem. SD algorithm
used for resolving MIMO channel was presented in [1]-[4] and was shown to
reduce the complexity of ML detector significantly [1], [7], [8]. The enormous
computational complexity of ML detector arises from the huge number of vector
symbols to be compared in order to find the solution in (1). The main idea of SD
algorithm is to use a highly efficient.method to reduce the number of candidate
vector symbols before the.sactualyecomparison happens. For more on the

efficiency of SD, please refer to [1], [7], [8]-
Let 2 be a sphere centered at the received vector y, and the radius d of 22
is properly defined such that only a small number of vector symbols fall inside

D after being transformed by the channel matrix. The search of the closest

transformed vector symbol to y can be conducted among these candidates in 22

rather than the entire set @' , thereby reducing the search space and hence the

required computations. Figure 2.2 shows a space diagram of the concept of
sphere decoding algorithm. A well-designed sphere decoder would have

performance equal to that of an ML detector. For example, it can reach full

diversity while V-BLAST can only reach N xN; +1 [9].



Figure 2.2 Concept behind the sphere decoder.

Two questions need to be addressed for an effective sphere decoder to be
constructed:
1. How to choose the radius d such that the number of candidates is well
limited?

2. How to determine efficiently if a channel symbol actually lies inside the
hypersphere 22 ?

In this paper, a simple yet effective’ method to set the radius of the
hypersphere 22 is proposed. A pseudo-antenna augmentation scheme is also
proposed such that SD can efficiently determine the position of a lattice point
relative to 22 in the case where the number of transmit antennas is larger than

the number of receive antennas, thus expand the applicability of SD. Compared
to existing literatures which handle rank deficient channel matrices [2],
[10]-[12], our method is more intuitive and straightforward, and it enjoys a
computational complexity in polynomial when SNR is sufficiently high, while

methods in [2], [10], [11] have a complexity growing exponentially in
(N; —Ny).

The comparison of diversity order and SNR loss of some detection methods



of MIMO system with spatial multiplexing are presented in Table 1. [9].

Receiver Diversity order SNR loss
ZF N —N; +1 High
MMSE ~N,—N; +1 Low
SIC =~N,—N; +1 Low
OSIC >N, —N; +1, <N, Low
ML N, Zero

Table 1. Summary of comparative performance of receivers for spatial

multiplexing.



Chapter 3

Sphere Decoding Algorithm

Herein we will discuss the details of basic sphere decoding algorithm.
Assume Nz = N; | and channel matrix H is column independent and real value,

H can be QR-factorized [13] as
H=0R

-[Q, QZ]B} 3.1)

NgxN . . NrxN .
where Qe & *"* is an osthonormalismatrix, ReZ®"" is an upper

triangular matrix, and R' Zdsyan Ny %N - upper triangular matrix of R. The

matrices Q; and Q, consist of thefirst 'N_.‘and last N; orthonormal columns
of Q respectively.

The lattice point Hs lies inside the hypersphere D of radius d if and only if

d*z [y —Hs|". 62

From (3.1) and (3.2), we have
&~y 2oy R 63)

2
Define d"=d’ _HQZHYH and £Z= QlH Y, and (3.3) becomes

2
N, N,
2
d“2>12z->rs 34
i=1 j=i ) (3.4)

The RHS of (2.4) can be expanded as



2 2
(ZNT NNy Sy ) + (ZNT—l ~ NNy Sy T rNT—l,NT—ISNT—l) T (3.5)

where the first term depends only on SNT , the second term depends on both

SN, and Sn, -1 and so on. Hence one necessary condition for Hs lies inside the

. 12 2 . ..
hypersphere D is d"“”> (ZNT — I, N, S, ) . This condition leads to SNT
belonging to the interval
'
d'+z,

. 3.6
My, N, (3.6)

—d '+ z,
— <S5, <
Ny

N N

2
For every Sy, satisfying (3.6), defining dy " =d, "~ (ZNT L SNT) and

Zy. N, = Zngor — Moo, S, 5 @ strongennecessary condition ca be found as

2
12
dNT—l 2 (ZNT—1|NT = rNT—l,NT—lsNT—l) , (3.7)

and that is equivalent to

_dNT—l + ZNT—I\NT

<s < dNT—l + ZNT—uNT

Nr-1 = . 3.8
PN, 1N, - (3-:8)

PN, 1N, -1

We can also do this search method to find possible SNT—Z related to SNT and

SNT -1 we found, and so on until possible S, found. Thereby we can obtain all

candidates belonging to (3.2). Next, the set of all candidates is searched and the

one closed to the received signal vector is chosen to generate the decoding result
[1], [31, [9], [14].

If H, Y, S,and N are complex-valued, they can be written as



R{H} —1{H}
7y R{H}}
_[R{y}
J/__ I{y}l (3.9)

Figure 3.1 Sample tree generated to determine lattice pointsina Nt=3
hypersphere.

Fig. 3.1 shows the searching tree of the concept of sphere decoding
algorithm. Assume Nt = 3, and §; is takes on three possible values. The dotted

lines are the points not satisfied (3.2), and circles are candidates.

10



Chapter 4

The Proposed Sphere Decoding Algorithm

To make the SD algorithm a practical choice for MIMO receiver design,
two important modifications are proposed. The first is for finding a proper value
for d and the second is a pseudo-antenna augmentation scheme to expand the
applicable scope of SD. These modifications are discussed in the following two

subsections.

4.1 Setting the Radius

In drawing the decision tegions for-an ML detector, the decision boundaries
lie on the mid-lines between neighboring lattice points. If the shortest decision

distance is used as the initial value of d, it is most likely that the SD algorithm
finds one and only one candidate in the hypersphere 72 when the noise is small

enough that no decision errors occur (this is the case for most of the time). The
shortest decision distance can be easily calculated for certain highly regular
modulation constellations. For instance, the shortest decision distance in a
square lattice is
in- H(s, —s
TEEPEH (s, -5y (4.1)
NT .

where sy and §; € @ are the transmitted symbol vectors. For square QAM,

the minimum decision distance can be found as

11



min [ - 1) o) 42)

ki 2

> H

where (H); denotes the i-th column of H, k; and |; takes on the value 0 or 1, and

the vector [kla e e kNT ]7&“1: e e INT . The expression of minimum

distance can be further simplified as

} chi(H)iH (4.3)

where [Ckilz e G, ] represents all possible non-zero vectors whose

elements take on values from{O,l,—l} . Therefore, to find the minimum decision

distance is to find the minimum norm over a set of random vectors with complex
Gaussian elements.
To find the minimum norm in (4.3) is straightforward; nevertheless, it can

take a long time if the problem dimension is large. Notice that among these

random vectors, (H)l IEREY (H)NT have the smallest expected norm. As a

result, when Nt is large, the minimum norm will likely occur as the norm of

some vector in {(H)l CRERR) (H)NT } Therefore, it is proposed that, instead

of the minimum decision distance, the minimum column norm in (4.4) is used as
the initial value of d. If no candidate point is found inside the hypersphere, then
a larger value will be adopted and the SD procedure is repeated until a

termination criterion is met. In short, we make

d (HY| @4

initial

= min
1

where 1=1, ..., N; .

12
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Figure 4.1 The diagram shows the idea of finding a proper radius. Assume
BPSK and a 2x2 channel matrix for simplicity.

Fig. 4.1 shows the concept with a simple example of a 2x2 MIMO
channel. Solid points represent the possible.transmitted symbols, and circles are
the received lattice points; i.ey, ~the transmitted symbols multiplied by the

channel matrix. Line b; and 0; represent the mid-lines between neighboring
points, and c; and C, are the two decision distances of HS, . In this example, C;
and c, are exactly the column norms of H, and ¢, is chosen as the initial radius

of hypersphere 2.

4.2 A Pseudo-Antenna Augmentation Scheme

Typical sphere decoders for MIMO channels can only handle the case where
N = N; [1]. These sphere decoders fail when N; > N; because H does not

have full column rank and therefore cannot be QR-factorized. Here, a

13



modification is proposed to deal with the case N; > Ny,

The idea is to augment H into a matrix with full column rank. Let the

augmented matrix be

a 0 0

0 a 0 0
- NTXNT = 0 0 a O 0

h11 h12 hl,NT

: (4.5)

Dy M o o e by
— aI(NT-NR) O(NT-NR)XNR
H

in which the bottom Ng rows comprise. the. original channel matrix, | is the
identity matrix, and a is either'a small real or complex number depending on the
modulation scheme. The pseudoreceived vector is defined as

as|

asy _y,

N1
Z hliSi +n
= , (4.6)

Ny
D hy S +ny
L i=1

and the noise vector is augmented as

14



-

N x1 =

n, 4.7)

'
n (N7 —Ng)xl

n

Ngx1

to make the final augmented received vector to be

. O, N
Ynga =
Y iNgxt (4.8)

—Hs + 1.

By this augmentation, H “has full’column rank and can be decomposed via

standard QR factorization algorithms. The SD algorithm can now be applied
with similar effectiveness for the case N; > N;. This method is similar but

more straightforward than the method in [12] in which an augmented diagonal

matrix &l is added to the matrix H"H to make it full-rank. More
comparisons will be made when the effect of a is analyzed.

The concept of pseudo-antenna augmentation is shown in Fig. 4.2 where a
simple 2x1 MIMO channel is augmented to a 2x2 MIMO channel. Fig.
4.3(a) shows the space diagram of the transmitted symbol vector, fig. 4.3(b)
shows the pseudo received signals space, and the augmented received signals
space was shown in fig 4.3(c). From (3.6) and (3.8), the smaller the value of a is ,

the closer the augmented and pseudo received signals become. This observation

15



1s also shown in Fig. 4.3(a)-(c).

Figure 4.3(a) The space diagram of the transmitted symbol vectors.

asg

A

(b, @) (b1, d)

his;t+hass
X X

(bs, @) (b, @)

Figure 4.3(b) The pseudo received signal vectors. Assume Nt= 2, Ngr=1,

BPSK modulation and h, >h, >0 for simplicity. Define b =h +h,,

b,=h —-h,, by=-h +h, and b, =-h —h, for convenience.

16



| b
. ~——> ~—> h;s;+hys,

Figure 4.3(c) The augmented received signal vectors.

The effect of the value taken by a can be further analyzed as follows. The
set of constellation points resulting in received signals inside the hypersphere 22

1s found as
2= {02y | 49)

The inequality in (3.9) can be expanded to

Np 2

) N ER
>Jaf Y [sfeeds

i=1 i=1

Nt

Z i(s;—%)+n

i

(4.10)

The lower bound of the radius'd with.which the correct symbol S lies in the
hypersphere, i.e., X=S € s” , depénds-on the noise condition and a. Assume

2
QPSK for simplicity, then |Sl|2 :'”:‘SNT*NR‘ =2 and the lower bound in

(3.10) satisfies

2
d7 22(N; —Ng)jal’ +Z\”\ @.11)
The expected lower bound is thus
2 2 2
E{dLB}ZZ(NT_NR)‘a‘ +Ngo™. (4.12)
As can be seen clearly in (4.11), if @ is small, the lower bound on the radius with

which the correct symbol vector can be included is essentially independent of a.

But if a is large, the radius needs to be large.

17
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Figure 4.4 The space diagram of the hypersphere D when a is very large.

Assume BPSK and a 2x1 MIMO channel for simplicity.

Fig. 4.4 shows the diagram of a.simple example with a 2x1 MIMO
channel, BPSK, and a large a. Letpoint.p; be the augmented received signal and
Z, the pseudo received signal. The total number of possible received points is 4.
As is said before, the radius of the sphere needs to be large. However, when
setting the radius, it is extremely difficult for the decoder to find a radius barely
large enough to include the lattice point corresponding to the correct symbol
while avoid including wrong lattice points in the sphere simultaneously. In Fig.
4.4, the sphere not only contains the correct point z; but also z,. If a more
sophisticated modulation such as 64-QAM is used, and the number of transmit
antenna is larger, much more lattice points will inevitably be included in the
large hypershpere, and the efficiency of SD will be greatly diminished.
Therefore, a should be as small as possible, as long as the numerical stability is
maintained in the computing process. With a small a, the complexity of SD is

essentially independent of a and the same as that of usual SD algorithms, i.e.,

18



roughly O(NT3) when SNR is high [1]. The efficiency of the method in [12],

on the contrary, depends on the choice of &, and the optimal choice of &
depends on noise condition and is not easy to find.

After the set of all candidate points is generated, the final step of the
modified SD algorithm for MIMO channels works the same as the ML detector
does. The estimated transmitted symbol vector S is obtained by exhaustive

search and equals to

S=arg min”y — HS||. (4.13)
Hse?

19



Chapter 5

Simulation Results

BER

1 1
0o 2 4 8 8 10 12 14 16 1B 20 22 24
Eb/NO(dE)

Figure 5.1 The BER curves of SD and brute-force ML detector. Assume
N+=6, Ng=3, QPSK, spatial multiplexing,anda=0.1+0.1j.

Fig. 5.1 shows the performance of SD compared to that of ML receiver. The
value of a is set to be very small and the BER performance is equal to that of a

brute-force ML receiver.

Fig. 5.2 shows the average number of candidates found in 22 when

different values of a and N—b and the proposed initial radius are used. Notice
0

that when a is getting smaller, say, less than 0.14+0.1j, the number of

candidates found in 22 is essentially independent of a and is only function of

20



SNR. Also notice that when SNR is moderately large, e.g., in the applications of
spatial multiplexing, the number of candidates is close to 1. This means the

proposed SD algorithm is operating in a very efficient manner.

| —%—a=10410
ol —e—a=01+01] |]
-a=001+0.01] [

avg. #(points)

10 1 1 1 .

0 5 10 15 20 25
E,/N,(dB)

Figure 5.2 The average'number of candidates inside sphere D with

different values of a and % .Assume Nt=6, Ngr=3 and QPSK

0

modulation.

Table II. lists the probabilities of when the minimum column norm
coincides the minimum distance under different settings. For most of the time,
when Nt = Ng, they do coincide. When Nt > Ny, the probability is not high.
However, simulation (Fig. 5.2) shows that the minimum column norm is still an
effective radius setter with moderate SNRs, judging from the low number of

candidates found.

21



2 4

6

8

0.8339 | 0.4537

0.1804

0.0553

0.9327 | 0.7770

0.5650

0.3610

0.9668 | 0.9010

0.7970

0.6650

2
4
6
8

0.9859 | 0.9490

0.9170

0.8550

Table I1. The probability of minimum column norm equal to minimum

decision distance.
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Chapter 6

Conclusion

SD algorithm can significantly lower the computational cost of ML
detectors by reducing the number of possible candidates before executing the
final step of exhaustive search. In this paper, two special features are introduced
to enhance the capability of SD. First, a radius-setting method is used to keep
the number of candidate lattice points consistently low. Second, a
pseudo-antenna augmentation scheme is employed to cope with the situation
where the number of transmit antennas s large than that of receive antennas,
which happens often in real-world applications. In short, the modified SD

algorithm constitutes an attractive option for practical MIMO receiver design.
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Future work

Refer to [1], herein we will show a closed form of expected complexity of

. 2 > 2 e . 2 }
SD algorithm. From (1.1), ?Hy—HSH :?HHH 1s a X random variable

n
with 5 degrees of freedom where n = 2Ny due to complex Gaussian noise

vector. From (3.2), we may choose the radius d in such a way that with a high

probability we find the transmitted vector inside the hypersphere D as

Ny
> 92
LR P P

e

where 1—¢& is set to a value close to 1, say,- 1 — & = 0.99 | If the point is not

(A.1)

found, we can increase the probability. I~ &, adjust the radius, and search

again. Apply to the radius setting method in (4.4), if the radius in (A.1) is large
than that in (4.4), we may enlarge the radius used in SD algorithm.

The complexity of SD algorithm is proportional to the number of nodes
visited on the tree in searching tree as Fig. 3.1 and, consequently, to the number
of points visited in the spheres of radius d and dimensions k=1, 2, ..., m. Hence
the expected complexity is proportional to the number of points in such spheres
that the algorithm visits on average. Thus the expected complexity of SD

algorithm is given by

C(m,0”) = Z (expected # of points in k-sphere of radius d) x (flops/point) . (A.2)

k=1

2E, (k.d%) 2fp(k)

The coefficient fy(k) = 2k + 17 is the number of elementary operations

24



(additions, subtractions, and multiplications) that the Fincke-Pohst algorithm
performs per each visited point in dimension K.

Assume S; is the transmitted vector, S, is an arbitrary lattice points, the

probability that the k-dimensional lattice point Sz lies inside the hypersphere

D around Y =HS, +N with radius d can be expressed as the incomplete

gamma function

n—m-+k
> d2 -1
y d ’n—m+k :.‘-2(62+q) A 2 a4
2(c7 +0Q) 2 0 r n—m+k) : (A.3)
2

where 4= Hsa_st Hz :

In communication applications;i.the “expected number of points in
k-dimensional hypersphere “depends on the modulation we use. Therefore the
expected complexity C(m,d*;&) of SD algorithm to find the optimum solution is

1. for a 2-PAM constellation 1s

N RS ST d’ n—-m+Kk
Zl(l—g)e Z}fp(k)qz(;(q)y[z( — j (A.4)

i k= O-z + q)

k k!
where [ jZ —— ., is the number of k-dimensional lattice points with
q) q!(k-q)

2
q= HSa_StH , and di is the radius used for i-th search. For QPSK

modulation, it can be treated as two dimensional 2-PAM constellation and
modify n = 2Ng, m = 2Nr.

2. for a 4-PAM constellation is

© om kK (k 2 —
2(1—5)8'Ipr(k)ZzikZ(Jgk.(q)y[z I m+kj, (A.5)
i=I k=1 q 1=0 ( 2

. o’ +0Q)
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where gi(q) is the coefficient of X% in the polynomial

(1+x+x4+x9)|(l+2x+x4)k_I

1 &G(K
and % Z(ng (d) is the number of k-dimensional lattice points with
=0

2
q= Hsa_stu . And 16-QAM modulation can also be treated as two
dimensional 4-PAM constellation from.

3. for a 8-PAM constellation is

® oo 1 d’ n-m+Kk
1- TINTE (KDY — N !
Zl( 8)8 ; p( )Zq: 4k Z ng1J2J3J4 (q)7[2(02 + q)’ 2 j)

| It ot it ia=k
(A.6)

where 0y j;.;, (A) is the coefficient'¢f x” in the polynomial

[L,jpjg,jjqﬁl1<x)¢;<x>¢;<x>¢44<x>,

( k j_ k!
j19j2>j3=j4 jl!jz!j3!j4!’

() =1+ X+ X+ X7+ X+ X7+ %+ x¥,

and

2 (x) =14+ 2X+ X+ %7+ X'+ xP X,
5 (X) = 142X+ 2x* + X7 + X'+ x5,
(X)) =142+ 2x* +2x7 + x"°.
And 64-QAM modulation can also be treated as two dimensional
8-PAM constellation from. Similar expressions can be obtained for 16-PAM,

etc., constellations.
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When the Gram-Schmidt process is used to compute the QR factorization

H = QR , roundoff error can build up as the vectors (Q); are calculated one by

one on a computer. For large i, j , and i+ j, the scalar products (Q)iH (Q) j

may not be sufficiently close to zero. Interestingly, a rearrangement of the
calculation, known as modified Gram-Schmidt (MGS), yields a much sounder
computational procedure[13]. If orthonormality is critical, then MGS should be
used to compute orthonormal bases only when the vectors to be orthogonalized
are fairly independent, even though the computational complexity of MGS
requires about twice as much arithmetic.

Figure 6.1 shows the flowchart of SD algorithm, m is the number of
transmit antennas (m = Nrp). In this figute; we can make a roughly estimation of
the computation complexity :of SD algorithm. The complexity of a tree search in
SD algorithm is 2(N1+3) flops, and the complexity of MGS is about 2NN’
flops. When Nt = Ny = 4, 64-QAM modulation, total number of source nodes of

search trees is 64°+64*+64 = 266304. If we use the radius setting method in this

E
paper and assume N—b= 16dB, the expected number of source nodes of search
0

trees is about 70, and the probability of the number of source nodes of search
trees that less than 200 is about 95%. Therefore we can use 200 as a terminate

condition of the number of source nodes of search trees.
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. |2
k=m,d},=d*-[Qx
Ym|m+1 = Ym
d '+
+ UB(s,) = kT Yk ’
Set UB,LB Y
- -
S = LB-1 —d '+ Yikt
LB(s,) = | Y

# N x

:
\ k--, Yir1 = Y — Z M iSi a

j=k+1 Y
12 _ A2 2
d k — d k+1 (yk+1 - rk+1,k+1sk+1)

END

Figure 6.1 The flowchart of decoding algorithm

Assume Nt = Nr = 4, 64-QAM modulation, and %= 16dB, a roughly

0

estimation of the complexity of SD algorithm for 802.11n standard in high data
rate(40MHz) mode is as follows
108(2x4x4% + 2x(4 + 3)x200)/(3.6¥10°) = 8.784x 10" flops
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Appendix

Proof of probability density function(pdf) of miinH(H)i , where H is a
m-by-n complex Gaussian matrix

The i-th column norm of matrix H can be expressed as

N 2
= 2] =M,

hl =9tfh ) +3{h, )

and

Assume ER{hji} and S{hji} arézboth N(0,07%) distribution, where

2

1 2
o =§. Then the distribution of ‘hji‘ 18 E(/i) and the distribution of

O s TN, where s .
For convenience, let
r.v.Y, = ||(H)i ,i=1... M,
and
rv.Z=min(Y,).

1

The pdf of random variables Y; can be derived easily as

2/1N y2N—1e—ly2
L'(N)

fy (y)= uy),i=1,...,M.

The cumulative distribution function (CDF) of random variable Z is derived as

follow
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F,(z)=Pr[min(Y,)< 7]
. N-1 M
=1-pMe ™™ {7/22“‘2 +2(N =12 z2*N* +...+2N_1Hk7N}
k=1

a0 _
(N-DU " 24

where B ,andz>0

By differentiating the CDF of random variable Z we obtain the pdf

No1 ML
f,(2)=-Mp"e " [;/22’“‘2 +27°(N -1z*"* +...+2N“7/NHk} x

k=1

{2yz2N2[z1(N ~D)-2z]|+ 22 (N-DZ""*[ (N —2)—/12]+...+2N;/Nﬁk(—/lz)}

N Ai-l_io2(N—i) ML N 9i,i52(N=D) ol
:_MﬂMe_aMzz[(N_l)!]M{zz J/Z( ):| {227 [(N 1)z ZZ]}’

im (N=D! = (N -D)!

and z2>0.
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