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摘要 

 多輸入多輸出（MIMO）傳輸已經是一種用來增加頻寬效益的眾所周知

的技術。同時，如何設計出在多輸入多輸出通道使用的低運算量的接收器

仍然是一項艱難的挑戰。最大概似偵測器（ML detector）可以達到極好的

效能，然而其所需的計算量是非常龐大的。使用球體解碼演算法（Sphere 

Decoding Algorithm）可以達到和最大概似偵測器一樣的效能，並且可以降

低大量的運算量。在此篇論文中，我們提出了一種較實用的球體解碼演算

法。利用了一種簡單而且有效率的方法來設定球體的半徑初值，其扮演著

決定計算量的一個很重要的角色。此外，我們利用一種增加虛擬天線的架

構使得球體演算法能被應用在當傳送天線個數大於接收天線個數的情況；

這個方法增加了球體解碼演算法更大的可用性，而且不致改變它原有的低

運算量及高效能的特性。 
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ABSTRACT 
 
 Multi-Input Multi-Output (MIMO) transmission has become a popular 

technique to increase spectral efficiency. Meanwhile, the design of 

cost-effective receivers for MIMO channels remains a challenging task. 

Maximum-Likelihood (ML) detector can achieve superb performance, yet the 

computational complexity is enormously high. Receivers based on sphere 

decoding (SD) reach the performance of ML detectors, and potentially a great 

deal of computational cost can be saved. In this thesis, a practical 

sphere-decoding algorithm is proposed. It utilizes a simple and effective way to 

set the initial radius which plays a decisive role in determining the 

computational complexity. Furthermore, a pseudo-antenna augmentation scheme 

is employed such that sphere decoding can be applied where the number of 

receive antennas is less than that of transmit antennal; thus enhance the 

applicability of this powerful algorithm. 
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Symbols 

 

TN  ：The number of transmit antennas 

RN  ：The number of receive antennas 

( )Hi  ：Hermitian transpose operation 

m n×R  ：m-by-n real valued matrix 

m n×C  ：m-by-n complex valued matrix 

mR  ：m-by-1 real valued vector 

mC  ：m-by-1 complex valued vector 

{ }iR  ：Real part operation 

{ }iI  ：Image part operation 

{ }E i  ：Expectation value operation 

min ii
a  ：Minimum of ia  

( )i
A  ：The i-th column of matrix A 
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Chapter 1 

Introduction 

1.1 Introduction 

 Sphere Decoding has recently been applied to signal detection problem for 

Multi-Input Multi-Output (MIMO) systems [1]–[4]. It is a reduced search 

algorithm for doing ML detection. Notice that brute-force ML detection has 

computational complexity that is exponentially growing in the number of 

sub-streams, the constellation size, and the number of transmit antennas; as a 

result, it is not feasible for practical systems. Indeed, SD holds the potential of 

significantly reducing the computational cost while maintaining the superb 

performance of an ML detector and therefore is compared favorably with other 

sub-optimal detectors proposed for MIMO systems. 

 

1.2 Thesis Outline 

 This thesis is organized as follows. The MIMO system model and some 

detection algorithms for MIMO system are laid out in Chapter 2. The basic 

sphere decoding algorithm is discussed in Chapter 3. The radius-setting method 

and the pseudo-antenna augmentation scheme are described in Chapter 4. 

Simulation results are presented in Chapter 5, and finally, a brief conclusion in 

Chapter 6. 
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Chapter 2 

Multiple-Input Multiple-Output 

2.1 MIMO System Model 

 For getting high data rates on a rich-scattering wireless channel without 

increasing transmit power, a technique is to use multiple transmit and receive 

antennas, the so called multiple-input multiple-output (MIMO) system. MIMO 

technique uses spatial diversity to fight multipath fading in wireless channels 

and also enhance channel capacity.  

 The MIMO system model is as follow. Assume TN  transmit antennas and 

RN  receive antennas. Let s  be the transmitted vector symbols (also referred 

to as “vector constellation symbol”) in TNR  or TNC whose entries are chosen 

from some complex constellation O (e.g. QPSK, 16-QAM etc.). The received 

signal is given by 

  = +y Hs n         (1.1) 

where RN∈y C  is the received signal vector, R TN N×∈H C  is the Rayleigh flat 

fading channel matrix, and the entries of n  is the additive i.i.d. zero mean 

circularly symmetric complex Gaussian (ZMCSCG) noise with variance of 2σ , 

i.e., 
2~ (0, ),  1,  ,k Rn CN k Nσ = … .  

 Figure 2.1 shows the block diagram of a simple MIMO system.  
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Figure 2.1 MIMO system block diagram. 

 

2.2 MIMO Receivers 

 Some detection algorithms for MIMO systems are reviewed in the 

following. 

 

2.2.1 Linear Detection Methods 

 The linear detection method first estimates the channel matrix then tries to 

compensate (inverse) the channel effect by another matrix. The inverse matrix is 

usually based on Zero Forcing (ZF) or Minimum Mean Square Error (MMSE) 

criterion. This method requires very low computational complexity, but results 

in significant performance degradation. 

 

2.2.2 Nulling and Cancelling  

 Successive interference cancellation (SIC) peels the transmission signal 
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apart one data stream at a time. It decodes and cancels the data stream iteratively 

until all transmitted streams are resolved. If sorting is done to determine the 

decoding order from the highest to the lowest SNR, it is called ordered 

successive interference cancellation (OSIC). An example is the so-called 

Vertical Bell-laboratory LAyered Space-Time (V-BLAST) receiver [5]. OSIC 

has a slightly better performance than SIC does, but is still suboptimal and 

suffers from error propagation. 

 

2.2.3 Brute-Force Maximum Likelihood (ML) Detection 

 Assuming that the transmitted data sequence is i.i.d., the maximum 

likelihood detector for a MIMO system performs the operation: 

  ( ) ( )

2ˆ arg min

      =arg min

NT

NT

ML
s

H

s

∈

∈

= −

− −

s y Hs

y Hs y Hs
O

O

      (1) 

where y is the observed vector signal, H is the channel matrix whose size is 

R TN N× , NTO  is the entire set of possible transmitted vector symbols, O is 

the complex-valued modulating constellation, and ( )Hi means Hermitian 

transpose. The ML detector is optimal in terms of symbol error rate, but the 

computational complexity can be prohibitively high if it is implemented by 

exhaustively searching over NTO . 
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2.2.4 Sphere Decoding (SD) 

 In 1985, U. Fincke and M. Phost proposed an algorithm named 

Fincke-Phost algorithm [6] (or SD algorithm) which offers a large reduction in 

computational complexity for the class of computationally-hard combinatorial 

problems, for instance, the aforementioned ML detection problem. SD algorithm 

used for resolving MIMO channel was presented in [1]–[4] and was shown to 

reduce the complexity of ML detector significantly [1], [7], [8]. The enormous 

computational complexity of ML detector arises from the huge number of vector 

symbols to be compared in order to find the solution in (1). The main idea of SD 

algorithm is to use a highly efficient method to reduce the number of candidate 

vector symbols before the actual comparison happens. For more on the 

efficiency of SD, please refer to [1], [7], [8]. 

 Let D  be a sphere centered at the received vector y, and the radius d of D  

is properly defined such that only a small number of vector symbols fall inside 

D after being transformed by the channel matrix. The search of the closest 

transformed vector symbol to y can be conducted among these candidates in D 

rather than the entire set NTO , thereby reducing the search space and hence the 

required computations. Figure 2.2 shows a space diagram of the concept of 

sphere decoding algorithm. A well-designed sphere decoder would have 

performance equal to that of an ML detector. For example, it can reach full 

diversity while V-BLAST can only reach 1R TN N× +  [9]. 
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Figure 2.2 Concept behind the sphere decoder. 

  

 Two questions need to be addressed for an effective sphere decoder to be 

constructed: 

1. How to choose the radius d such that the number of candidates is well 

limited? 

2. How to determine efficiently if a channel symbol actually lies inside the 

hypersphere D  ? 

 In this paper, a simple yet effective method to set the radius of the 

hypersphere D  is proposed. A pseudo-antenna augmentation scheme is also 

proposed such that SD can efficiently determine the position of a lattice point 

relative to D  in the case where the number of transmit antennas is larger than 

the number of receive antennas, thus expand the applicability of SD. Compared 

to existing literatures which handle rank deficient channel matrices [2], 

[10]–[12], our method is more intuitive and straightforward, and it enjoys a 

computational complexity in polynomial when SNR is sufficiently high, while 

methods in [2], [10], [11] have a complexity growing exponentially in 

( )T RN N− . 

 The comparison of diversity order and SNR loss of some detection methods 

y

D 
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of MIMO system with spatial multiplexing are presented in Table I. [9]. 

 

Receiver Diversity order SNR loss 

ZF 1R TN N− +  High 

MMSE 1R TN N≅ − +  Low 

SIC 1R TN N≅ − +  Low 

OSIC 1,  R T RN N N≥ − + ≤ Low 

ML 
RN  Zero 

 Table I. Summary of comparative performance of receivers for spatial 

multiplexing. 
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Chapter 3 

Sphere Decoding Algorithm 

  Herein we will discuss the details of basic sphere decoding algorithm. 

Assume R TN N≥ , and channel matrix H is column independent and real value, 

H can be QR-factorized [13] as 

 [ ] '
    =

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2

H QR
R

Q Q
0

        (3.1) 

where R RN N×∈Q R  is an orthonormal matrix, R TN N×∈R R  is an upper 

triangular matrix, and 'R  is an T TN N×  upper triangular matrix of R. The 

matrices Q1 and Q2 consist of the first TN  and last TN  orthonormal columns 

of Q respectively.  

 The lattice point Hs lies inside the hypersphere D of radius d if and only if  

  
22d ≥ −y Hs  .        (3.2) 

From (3.1) and (3.2), we have  

  
2 22 H Hd − ≥ −2 1Q y Q y Rs .      (3.3) 

Define 
22 2' Hd d= − 2Q y  and 

H= 1z Q y , and (3.3) becomes 

  

2

2

1

'
T TN N

i ij j
i j i

d z r s
= =

⎞⎛
≥ − ⎟⎜

⎝ ⎠
∑ ∑ .       (3.4) 

The RHS of (2.4) can be expanded as 
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 ( ) ( )2 2

, 1 1, 1, 1 1 ...
T T T T T T T T T T TN N N N N N N N N N Nz r s z r s r s− − − − −− + − − +   (3.5) 

where the first term depends only on TNs , the second term depends on both 

TNs and 1TNs −  and so on. Hence one necessary condition for Hs lies inside the 

hypersphere D is ( )22
,'

T T T TN N N Nd z r s≥ − . This condition leads to TNs  

belonging to the interval  

 
, ,

' '
T T

T

T T T T

N N
N

N N N N

d z d z
s

r r
⎡ ⎤ ⎢ ⎥− + +

≤ ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦

.     (3.6) 

For every TNs  satisfying (3.6), defining ( )22 2
1 ,' '

T T T T T TN N N N N Nd d z r s− = − −  and 

1| 1 1,T T T T T TN N N N N Nz z r s− − −= − , a stronger necessary condition ca be found as 

 ( )2
2

1 1, 1 11'
T T T TT TN N N NN Nd z r s− − − −−≥ − ,     (3.7) 

and that is equivalent to  

 

' '
1 1| 1 1|

1
1, 1 1, 1

T T T T T T

T

T T T T

N N N N N N
N

N N N N

d z d z
s

r r
− − − −

−
− − − −

⎡ ⎤ ⎢ ⎥− + +
≤ ≤⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
.   (3.8) 

We can also do this search method to find possible 2TNs −  related to TNs and 

1TNs −  we found, and so on until possible 1s  found. Thereby we can obtain all 

candidates belonging to (3.2). Next, the set of all candidates is searched and the 

one closed to the received signal vector is chosen to generate the decoding result 

[1], [3], [9], [14]. 

 If H , y , s , and n  are complex-valued, they can be written as 
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{ } { }
{ } { }
{ }
{ }
{ }
{ }

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

H H
H H

y
y

s
s

R -I

I R

R

I

R

I

H

Y

S

       (3.9) 

Then we can use (3.9) in substitution for H , y , and s  in (3.1) and (3.2). 

 

 
Figure 3.1 Sample tree generated to determine lattice points in a NT = 3 

hypersphere. 
 

 Fig. 3.1 shows the searching tree of the concept of sphere decoding 

algorithm. Assume NT = 3, and si is takes on three possible values. The dotted 

lines are the points not satisfied (3.2), and circles are candidates.  

 

 

 

s3 

s2 

s1 
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Chapter 4 

The Proposed Sphere Decoding Algorithm 

 To make the SD algorithm a practical choice for MIMO receiver design, 

two important modifications are proposed. The first is for finding a proper value 

for d and the second is a pseudo-antenna augmentation scheme to expand the 

applicable scope of SD. These modifications are discussed in the following two 

subsections. 

 

4.1 Setting the Radius 

 In drawing the decision regions for an ML detector, the decision boundaries 

lie on the mid-lines between neighboring lattice points. If the shortest decision 

distance is used as the initial value of d, it is most likely that the SD algorithm 

finds one and only one candidate in the hypersphere D  when the noise is small 

enough that no decision errors occur (this is the case for most of the time). The 

shortest decision distance can be easily calculated for certain highly regular 

modulation constellations. For instance, the shortest decision distance in a 

square lattice is  

 
1min ( )
2 i ji j≠

−H s s         (4.1) 

where si and sj 
NT∈O are the transmitted symbol vectors. For square QAM, 

the minimum decision distance can be found as 
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 ,
1

1min ( 1) ( 1) ( )
2

T
i i

i i

N
k l

ik l
i=

⎡ ⎤− − −⎣ ⎦∑ H      (4.2) 

where (H)i denotes the i-th column of H, ki and li takes on the value 0 or 1, and 

the vector 1 1[ ,  ,   ] [ ,  ,   ]
T TN Nk k l l≠… … . The expression of minimum 

distance can be further simplified as 

 { } _
1, , 3 1 1

min ( )
T

NT

N

k i i
k i

c
∈ − =

∑ H
…        (4.3) 

where _1 _[ ,  ,   ]
Tk k Nc c…  represents all possible non-zero vectors whose 

elements take on values from{ }0,1, 1− . Therefore, to find the minimum decision 

distance is to find the minimum norm over a set of random vectors with complex 

Gaussian elements. 

 To find the minimum norm in (4.3) is straightforward; nevertheless, it can 

take a long time if the problem dimension is large. Notice that among these 

random vectors, ( ) ( )1
,  ,  

TN
H H…  have the smallest expected norm. As a 

result, when NT is large, the minimum norm will likely occur as the norm of 

some vector in ( ) ( ){ }1
,  ,  

TN
H H… . Therefore, it is proposed that, instead 

of the minimum decision distance, the minimum column norm in (4.4) is used as 

the initial value of d. If no candidate point is found inside the hypersphere, then 

a larger value will be adopted and the SD procedure is repeated until a 

termination criterion is met. In short, we make 

 min ( )i
initial i

d = H         (4.4) 

where 1,  ,  Ti N= … . 

 



 13

 

Figure 4.1 The diagram shows the idea of finding a proper radius. Assume 
BPSK and a 2 2×  channel matrix for simplicity. 

  

 Fig. 4.1 shows the concept with a simple example of a 2 2×  MIMO 

channel. Solid points represent the possible transmitted symbols, and circles are 

the received lattice points, i.e., the transmitted symbols multiplied by the 

channel matrix. Line b1 and b2 represent the mid-lines between neighboring 

points, and c1 and c2 are the two decision distances of 1Hs . In this example, c1 

and c2 are exactly the column norms of H, and c1 is chosen as the initial radius 

of hypersphere D . 

 

4.2 A Pseudo-Antenna Augmentation Scheme 

 Typical sphere decoders for MIMO channels can only handle the case where 

R TN N≥  [1]. These sphere decoders fail when T RN N>  because H does not 

have full column rank and therefore cannot be QR-factorized. Here, a 

 Hs1b1

b2

c1 c2
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modification is proposed to deal with the case T RN N> .  

 The idea is to augment H into a matrix with full column rank. Let the 

augmented matrix be 

 

T R T R R

11 12 1,

,1 ,2 ,

(N -N ) (N -N ) N

0 0
0 0 0

0 0 0 0

            =

T T

T

R R R T

N N

N

N N N N

a
a

a
h h h

h h h

a

×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

H

I 0

H

    (4.5) 

in which the bottom NR rows comprise the original channel matrix, I is the 

identity matrix, and a is either a small real or complex number depending on the 

modulation scheme. The pseudo received vector is defined as 

 

1

1 1
1

,
1

T R

T

T

R R

N N

N

i i
i

N

N i i N
i

as

as

h s n

h s n

−

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

∑

∑

,        (4.6) 

and the noise vector is augmented as 
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1

1
1

( ) 1

1

'
         =

T R

T

R

T R

R

N N
N

N

N N

N

as

as

n

n

−

×

− ×

×

−⎡ ⎤
⎢ ⎥
⎢ ⎥
−⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

n

n

n

         (4.7) 

to make the final augmented received vector to be 

 

( ) 1
1

1

 =

         = .

T R

T

R

N N
N

N

− ×

×
×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

+

0
y

y

Hs n
        (4.8) 

By this augmentation, H  has full column rank and can be decomposed via 

standard QR factorization algorithms. The SD algorithm can now be applied 

with similar effectiveness for the case T RN N> . This method is similar but 

more straightforward than the method in [12] in which an augmented diagonal 

matrix αI  is added to the matrix HH H  to make it full-rank. More 

comparisons will be made when the effect of a is analyzed. 

 The concept of pseudo-antenna augmentation is shown in Fig. 4.2 where a 

simple 2 1×  MIMO channel is augmented to a 2 2×  MIMO channel. Fig. 

4.3(a) shows the space diagram of the transmitted symbol vector, fig. 4.3(b) 

shows the pseudo received signals space, and the augmented received signals 

space was shown in fig 4.3(c). From (3.6) and (3.8), the smaller the value of a is , 

the closer the augmented and pseudo received signals become. This observation 



 16

is also shown in Fig. 4.3(a)-(c). 

 

 

Figure 4.2 The diagram of an augmented 2 2×  MIMO system. 
  

s1

s2

 
Figure 4.3(a)  The space diagram of the transmitted symbol vectors. 

 

 

Figure 4.3(b) The pseudo received signal vectors. Assume NT = 2, NR = 1, 

BPSK modulation and 1 2 0h h> >  for simplicity. Define 1 1 2b h h= + , 

2 1 2b h h= − , 3 1 2b h h= − + , and 4 1 2b h h= − −  for convenience. 

 

s1 

s2 

h1 

h2 

a 
x’ 

0 
n’ 

y 
n 

x 

 as1

h1s1+h2s2

(b2, a) (b1, a)

 (b3, a)(b4, a) 
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Figure 4.3(c) The augmented received signal vectors. 
 

 The effect of the value taken by a can be further analyzed as follows. The 

set of constellation points resulting in received signals inside the hypersphere D 

is found as 

 { }22 .s d= ≥ −x y HxD
           (4.9) 

The inequality in (3.9) can be expanded to 

 ( )
2

2 22

1 1 1

.
T R R TN N N N

i ij j j i
i i j

d a s h s x n
−

= = =

≥ + − +∑ ∑∑    (4.10) 

The lower bound of the radius d with which the correct symbol s lies in the 

hypersphere, i.e., = ∈x s sD , depends on the noise condition and a. Assume 

QPSK for simplicity, then 
22

1 2
T RN Ns s −= = =…  and the lower bound in 

(3.10) satisfies 

 ( ) 2 22

1

2 .
RN

LB T R i
i

d N N a n
=

≥ − +∑      (4.11) 

The expected lower bound is thus 

 { } ( ) 22 22 .LB T R RE d N N a N σ≥ − +       (4.12) 

As can be seen clearly in (4.11), if a is small, the lower bound on the radius with 

which the correct symbol vector can be included is essentially independent of a. 

But if a is large, the radius needs to be large. 

 

h1s1+h2s2
b2 b1 b3 b4 

0 
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Figure 4.4 The space diagram of the hypersphere D when a is very large. 

Assume BPSK and a 2 1×  MIMO channel for simplicity. 
  

 Fig. 4.4 shows the diagram of a simple example with a 2 1×  MIMO 

channel, BPSK, and a large a. Let point p1 be the augmented received signal and 

z1 the pseudo received signal. The total number of possible received points is 4. 

As is said before, the radius of the sphere needs to be large. However, when 

setting the radius, it is extremely difficult for the decoder to find a radius barely 

large enough to include the lattice point corresponding to the correct symbol 

while avoid including wrong lattice points in the sphere simultaneously. In Fig. 

4.4, the sphere not only contains the correct point z1 but also z2. If a more 

sophisticated modulation such as 64-QAM is used, and the number of transmit 

antenna is larger, much more lattice points will inevitably be included in the 

large hypershpere, and the efficiency of SD will be greatly diminished. 

Therefore, a should be as small as possible, as long as the numerical stability is 

maintained in the computing process. With a small a, the complexity of SD is 

essentially independent of a and the same as that of usual SD algorithms, i.e., 

h1s1+h2s2 

z1 

 as1 

p1 

z2 
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roughly ( )3
TO N  when SNR is high [1]. The efficiency of the method in [12], 

on the contrary, depends on the choice of α , and the optimal choice of α  

depends on noise condition and is not easy to find.  

 After the set of all candidate points is generated, the final step of the 

modified SD algorithm for MIMO channels works the same as the ML detector 

does. The estimated transmitted symbol vector ŝ  is obtained by exhaustive 

search and equals to 

ˆ arg min .
∈

= −
Hs

s y Hs
D

       (4.13) 
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Chapter 5 

Simulation Results 

 
Figure 5.1  The BER curves of SD and brute-force ML detector. Assume 

NT=6, NR=3, QPSK, spatial multiplexing, and a = 0.1 + 0.1 j . 
 

 Fig. 5.1 shows the performance of SD compared to that of ML receiver. The 

value of a is set to be very small and the BER performance is equal to that of a 

brute-force ML receiver.  

 Fig. 5.2 shows the average number of candidates found in D  when 

different values of a and 
0

bE
N  and the proposed initial radius are used. Notice 

that when a is getting smaller, say, less than 0.1 0.1 j+ , the number of 

candidates found in D  is essentially independent of a and is only function of 
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SNR. Also notice that when SNR is moderately large, e.g., in the applications of 

spatial multiplexing, the number of candidates is close to 1. This means the 

proposed SD algorithm is operating in a very efficient manner. 
 

 

Figure 5.2  The average number of candidates inside sphere D with 

different values of a and 
0

bE
N

. Assume NT = 6, NR = 3 and QPSK 

modulation. 
 

 Table II. lists the probabilities of when the minimum column norm 

coincides the minimum distance under different settings. For most of the time, 

when NT = NR, they do coincide. When NT > NR, the probability is not high. 

However, simulation (Fig. 5.2) shows that the minimum column norm is still an 

effective radius setter with moderate SNRs, judging from the low number of 

candidates found. 
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2

4

6

8

2 4 6 8

0.7770
NR

NT

0.9327 0.5650 0.3610

0.45370.8339 0.1804 0.0553

0.94900.9859 0.9170 0.8550

0.90100.9668 0.7970 0.6650

 
 Table II. The probability of minimum column norm equal to minimum 

decision distance. 
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Chapter 6 

Conclusion 

 SD algorithm can significantly lower the computational cost of ML 

detectors by reducing the number of possible candidates before executing the 

final step of exhaustive search. In this paper, two special features are introduced 

to enhance the capability of SD. First, a radius-setting method is used to keep 

the number of candidate lattice points consistently low. Second, a 

pseudo-antenna augmentation scheme is employed to cope with the situation 

where the number of transmit antennas is large than that of receive antennas, 

which happens often in real-world applications. In short, the modified SD 

algorithm constitutes an attractive option for practical MIMO receiver design. 
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Future work 

 Refer to [1], herein we will show a closed form of expected complexity of 

SD algorithm. From (1.1), 
2 2

2 2

2 2
σ σ

− =y Hs n  is a 
2χ random variable 

with 2
n

 degrees of freedom where n = 2NR due to complex Gaussian noise 

vector. From (3.2), we may choose the radius d in such a way that with a high 

probability we find the transmitted vector inside the hypersphere D as 

2
1

2

0
1

2

n

d
e d

n
λλ λ ε

−

− = −
⎞⎛Γ⎜ ⎟

⎝ ⎠

∫ ,     (A.1) 

where 1 ε−  is set to a value close to 1, say, 1 0.99ε− = . If the point is not 

found, we can increase the probability 1 ε− , adjust the radius, and search 

again. Apply to the radius setting method in (4.4), if the radius in (A.1) is large 

than that in (4.4), we may enlarge the radius used in SD algorithm. 

 The complexity of SD algorithm is proportional to the number of nodes 

visited on the tree in searching tree as Fig. 3.1 and, consequently, to the number 

of points visited in the spheres of radius d and dimensions k = 1, 2, …, m. Hence 

the expected complexity is proportional to the number of points in such spheres 

that the algorithm visits on average. Thus the expected complexity of SD 

algorithm is given by 

2

2

1 ( )( , )

( , ) (expected # of points in -sphere of radius ) (flops/point)
pp

m

k f kE k d

C m k dσ
=

= ×∑ . (A.2) 

The coefficient fp(k) = 2k + 17 is the number of elementary operations 
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(additions, subtractions, and multiplications) that the Fincke-Pohst algorithm 

performs per each visited point in dimension k. 

 Assume st is the transmitted vector, sa is an arbitrary lattice points, the 

probability that the k-dimensional lattice point k
as  lies inside the hypersphere 

D around t= +y Hs n  with radius d can be expressed as the incomplete 

gamma function 

2

2

12 2
2( )

2 0
,

2( ) 2
2

n m k
d

qd n m k e d
n m kq

λσ λγ λ
σ

− + −

−+
⎞⎛ − +
=⎟⎜ − ++ ⎞⎛⎝ ⎠ Γ⎜ ⎟

⎝ ⎠

∫ ,    (A.3) 

where 
2

a tq = −s s . 

 In communication applications, the expected number of points in 

k-dimensional hypersphere depends on the modulation we use. Therefore the 

expected complexity C(m,d2,ε ) of SD algorithm to find the optimum solution is 

  1. for a 2-PAM constellation is 

 ( )
2

1
2

1 1 0

1 ( ) ,
2( ) 2

m k
i i

p
i k q

k d n m kf k
q q

ε ε γ
σ

∞
−

= = =

⎞⎛⎞⎛ − +
− ⎟⎜⎟⎜ +⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ,  (A.4) 

 where ( )
!

! !
k k
q q k q
⎞⎛
=⎟⎜ −⎝ ⎠

 is the number of k-dimensional lattice points with 

 
2

a tq = −s s , and id  is the radius used for i-th search. For QPSK 

 modulation, it can be treated as two dimensional 2-PAM constellation and 

 modify n = 2NR, m = 2NT. 

  2. for a 4-PAM constellation is  

 ( )
2

1
2

1 1 0

11 ( ) ( ) ,
2 2( ) 2

m k
i i

p klk
i k q l

k d n m kf k g q
l q

ε ε γ
σ

∞
−

= = =

⎞⎛⎞⎛ − +
− ⎟⎜⎟⎜ +⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ,  (A.5) 
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 where gkl(q) is the coefficient of xq in the polynomial 

( ) ( )4 9 41 1 2
l k l

x x x x x
−

+ + + + + , 

 and 
0

1 ( )
2

k

klk
l

k
g q

l=

⎞⎛
⎟⎜

⎝ ⎠
∑  is the number of k-dimensional lattice points with 

 
2

a tq = −s s . And 16-QAM modulation can also be treated as two 

 dimensional 4-PAM constellation from. 

  3. for a 8-PAM constellation is  

( )
1 2 3 4

1 2 3 4

2
1

2
1 1

11 ( ) ( ) ,
4 2( ) 2

m
i i

p kj j j jk
i k q j j j j k

d n m kf k g q
q

ε ε γ
σ

∞
−

= = + + + =

⎞⎛ − +
− ⎟⎜ +⎝ ⎠

∑ ∑ ∑ ∑ , 

 (A.6) 

 where 
1 2 3 4

( )kj j j jg q  is the coefficient of xq in the polynomial 

31 2 4
1 2 3 4

1 2 3 4

( ) ( ) ( ) ( )
, , ,

jj j jk
x x x x

j j j j
φ φ φ φ
⎞⎛
⎟⎜

⎝ ⎠
, 

 and 

1

2

3

4

1 2 3 4 1 2 3 4

4 9 16 25 36 49
1

4 9 16 25 36
2

4 9 16 25
3

4 9 16
4

! ,
, , , ! ! ! !

( ) 1 ,

( ) 1 2 ,

( ) 1 2 2 ,

( ) 1 2 2 2 .

j

j

j

j

k k
j j j j j j j j

x x x x x x x x

x x x x x x x

x x x x x x

x x x x x

φ

φ

φ

φ

⎞⎛
=⎟⎜

⎝ ⎠
= + + + + + + +

= + + + + + +

= + + + + +

= + + + +

 

  And 64-QAM modulation can also be treated as two dimensional 

 8-PAM constellation from. Similar expressions can be obtained for 16-PAM, 

 etc., constellations. 
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 When the Gram-Schmidt process is used to compute the QR factorization 

=H QR , roundoff error can build up as the vectors (Q)i are calculated one by 

one on a computer. For large i, j , and i j≠ , the scalar products ( ) ( )H

i j
Q Q  

may not be sufficiently close to zero. Interestingly, a rearrangement of the 

calculation, known as modified Gram-Schmidt (MGS), yields a much sounder 

computational procedure[13]. If orthonormality is critical, then MGS should be 

used to compute orthonormal bases only when the vectors to be orthogonalized 

are fairly independent, even though the computational complexity of MGS 

requires about twice as much arithmetic. 

 Figure 6.1 shows the flowchart of SD algorithm, m is the number of 

transmit antennas (m = NT). In this figure, we can make a roughly estimation of 

the computation complexity of SD algorithm. The complexity of a tree search in 

SD algorithm is 2(NT+3) flops, and the complexity of MGS is about 2NRNT
2 

flops. When NT = NR = 4, 64-QAM modulation, total number of source nodes of 

search trees is 643+642+64 = 266304. If we use the radius setting method in this 

paper and assume 
0

bE
N

= 16dB, the expected number of source nodes of search 

trees is about 70, and the probability of the number of source nodes of search 

trees that less than 200 is about 95%. Therefore we can use 200 as a terminate 

condition of the number of source nodes of search trees. 
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Figure 6.1 The flowchart of decoding algorithm 

   

 Assume NT = NR = 4, 64-QAM modulation, and 
0

bE
N

= 16dB, a roughly 

estimation of the complexity of SD algorithm for 802.11n standard in high data 

rate(40MHz) mode is as follows 

 108(2×4×42 + 2×(4 + 3)×200)/(3.6*10-6) = 8.784×1010 flops 

 

22 2 *
m 2

m|m+1 m

k = m, d' = d Q x

y y

−

=

k|k+1 k ,
1

2 2 2
1 1 1, 1 1

k--, y y

' ' ( )

m

k j j
j k

k k k k k k

r s

d d y r s
= +

+ + + + +

= −

= − −

∑

Y Y

Y 

N 

N

N

| 1

,

| 1

,

'
( ) ,

'
( )

k k k
k

k k

k k k
k

k k

d y
UB s

r

d y
LB s

r

+

+

⎢ ⎥+
= ⎢ ⎥
⎣ ⎦
⎡ ⎤− +

= ⎢ ⎥
⎢ ⎥

GO 

Set UB,LB
sk = LB-1 

sk = sk +1 save s 

k = 1? sk <= UB(sk)?  k++ 

k = m+1? 

 END 
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Appendix 

 Proof of probability density function(pdf) of min ( )ii
H , where H is a 

m-by-n complex Gaussian matrix： 

 The i-th column norm of matrix H can be expressed as： 

2

1

( )  , 1, ,
N

i ji
j

h i M
=

= =∑H … , 

and  

{ } { }2 2 2
.ji ji jih h h= ℜ + ℑ  

 Assume { }jihℜ  and { }jihℑ  are both 2(0, )N σ  distribution, where 

2 1
2

σ = . Then the distribution of 
2

jih  is ( )E λ  and the distribution of 

2( )iH  is 
1( , )N
λ

Γ , where 2

1
2

λ
σ

= .  

 For convenience, let 

ir.v.Y ( ) ,  1,  ,Mi i= =H … , 

and 

( )
i

r.v.Z=min Y .i  

The pdf of random variables Yi can be derived easily as  
2

i

2 1

Y
2( ) ( ) , 1, , .

( )

N N yy ef y u y i M
N

λλ − −

= =
Γ

…  

The cumulative distribution function (CDF) of random variable Z is derived as 

follow 
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( )

2

i

1
2 2 2 2 4 1

1

( ) Pr[min Y ]

1 2( 1) 2

Z i

MN
M Mz N N N N

k

F z z

e z N z kλβ γ γ γ
−

− − − −

=

= ≤

⎡ ⎤= − + − + +⎢ ⎥⎣ ⎦
∏…

 

where 
2 1,  = ,  and z 0

( 1)! 2

N

N
λβ γ

λ
= ≥

− . 

 By differentiating the CDF of random variable Z we obtain the pdf 

( )

2

2

11
2 2 2 2 4 1

1

1
2 2 1 2 2 2 4 1

1

1 21 2( )

1

( )=-M 2 ( 1) 2

2 ( 1) 2 ( 1) ( 2) 2 ( )

22-M 1 !
( 1)!

MN
M Mz N N N N

Z
k

N
N N N N

k

M i ii i N iNMM Mz

i

f z e z N z k

z z N z N z z N z k z

zze N
N

λ

λ

β γ γ γ

γ λ γ λ γ λ

γγβ

−−
− − − −

=

−
− − − −

=

−− −
−

=

⎡ ⎤+ − + + ×⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤− − + − − − + + −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤
= −⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦

∏

∏

∑

…

…

( ) 1

1

( )
,

( 1)!

N iN

i

N i z z
N

λ− −

=

⎧ ⎫⎡ ⎤− −⎪ ⎪⎣ ⎦
⎨ ⎬−⎪ ⎪⎩ ⎭
∑

 

and 0z ≥ . 
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