The Design of LDPC Decoder for WIMAN
802.16e¢

MBI B A R R

The Implementation of LDPC code for WiMAN
802.16e¢

Frd. kR Student: Shau-Wei Yen
R v Advisor: Dr. Shye-Jye Jou
g

i

B =R <
TaoF A B gk
2.+ P
AA =
A 'Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical and Computer Engineering
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in

Electronics Engineering
June 2006
HsinChu, Taiwan, Republic of China

PER R4 LT RS

il

W

%R R A K B AR AT I B 2 K

hahed s AR - BAEIEANNBE b A G RE Bak o SR
Mo * 3T AR E WIMAN 802.16e & 4t o 5 7 ff i Afsm e HFEE o

Min-sum algorithm e ¥ f& v &3 R aad 5 ¥

1%
i
E
&
=
T‘.ﬁ!
g;
Kz
d
T\
i
e
&
M
T

B - B ERTE PR R R v s R R o et (]
802.16¢ M3 A I =%t 445 Yo AR B g LT R R - 946 0.13um
2B TS B ATE D RN T (T AR B R 20 v BlehfEBEEN T o T R A

ﬁjf@ﬁ?jﬁ F % 203Mb 0t BlefRagiEALE ¢ o0 B F £ 5 700mW o

il

The Design of LDPC Decoder for WiMAN
802.16e¢

Student : Shau-Wei Yen Adviser:Shye-Jye Jou

Department of Electronics Engineering & Institute Electronics

National Chiao Tung University

ABSTRACT

In this thesis, a fully compliant LDPC decoder is presented. The LDPC decoder is
applied for WIMAN 802.16e standard: Jn-order-to simplify the computation of decoding unit,
Min-sum algorithm with normalization‘is'used to achieve the BER performance the same with
the theoretical performance. The architecture adopts a re-schedule decoding data flow to
reduce memory usage and decoding latency. Also the characteristic of 802.16e LDPC parity
check matrices is used to support different modes. After fabricated in 0.13um 1P8M process,
the proposed partial parallel decoder can support 20.3Mb/s data rate under 20 decoding

iteration. The power consumption is 700mW while iteration decoding.

v

=+ 2
o
BEEA EORL AR EAHEF S A SR b 2 B R P L e

BT EAN TP RAREA D TR fANR R DI N i FRR R 2356
e Y AR A ;f@i—-wge/\;\ mgéu;&@? ’gi\. s AT PR 4 3
EABF PP TR R B

B kAR R B B e momo 0 fin S E B — g,ﬁf*ﬁi@v SRR E Sy

L %*Ksbﬂw M BRER IR NS L el RS A nfes 2 B
FRIFe AT G R PR H IR AT LR S RS
AT B R TN 'lfgﬁ} SRy Y

£ k& g #fOcean group in 23R8 | > £ H 25 F £ !
AR e BAG L B AN DT 0 4 B HEE B Ocean group #% i1 A 3F F A7

4%
N

A RNF LY oauER M

TARM nFI U E ER o
BB g P AN A S IR R ER R 24 e RS

WA HFT R

Contents

Chapter 1 INtroQUCTION.eocuiieiieie ettt ettt ettt e bt eesae e seeesbeessaeesseessseensaenseennns 1
1.1 Overview of Channel Codec for Wireless Metropolitan Area Network....................... 1

1.2 IMIOTIVALION ..ottt ettt ettt sttt et sbe et et e sbe e b e et esbeeaeeanens 1

1.3 ThesiS OrganiZationcoeeruerieruienierienieeteeitente ettt et ste et seeenteessesaeesaeenenaeens 2
Chapter 2 LDPC COde......couiiiiiiiieriteieeteee ettt sttt sttt ettt sttt eae e 3
2.1 Concept OF LDPC ..ottt ettt e et e et a e e sseeessaeessaeenes 3
2.1.1 Message Passing AIGOTithimcccoeeiiiiiiiiiiiiieceeeece e 4

2.1.2 Decoding CONCEPLeeevuvieeirieeiieeeiieeeieeeeieeeeieeesteeeseaeeenereesereesnseeessseeennneens 11

2.1.3 DecodiNg FIOWccuiiiiiiiieiieeie ettt e 13

2.2 LDPC Code fOr 802.160€eieiieiiieiieeiieeiieeiie ettt ettt et 16
2.2.1 Parity Check Matrix Definitionccccoeriiiriiniiiiiniiniiicnccceeeeseecees 18

2.2.2 LDPC ENCOAET......oiuuiinitin i st aneeeeeeeenteeeieeenieesiteenieesiteaseesiteesbeessseenaeesaneenneeenne 20

2.2.3 Implementation Bottlenecke e v . orilineieiieiiiiiiiiieiiciieee e 22

Chapter 3 Algorithm Optimization for Implementation:................cccccceeviieviieriienieeieesie e, 23
3.1 Min-Sum AIZOTIthim i i e e 23

3.2 Simulation ReSult i ot 30
Chapter 4 Architecture Design and Circuit Tmplementationc.ccoceevieniininiininiincnnne. 35
4.1 DECOACT DESIZN ..eeuvvieiiiieeiiieeiie e ettt e eite e etteeete e e s teeessteeesaaeeesseeesseeensseesnseaessseeessseens 35
4.1.1 ATChitecture OVETVIEW.....ccuiiiuiiiieiieiieieeite sttt ettt ettt 35

4.1.2 Tterative Decoding BIOCK.........cccuiiviiiiiieiieniiciiece et 36

4.1.3 MemMOTry ATTANZEIMENL.eeeiiiieriieeriieeniteesieeesiteeesireeesibeeesabeessaaeessreesneeesnnee 44

4.1.4 Cyclic Shift BIOCKcc.eiiiiiiiiiiiiicicccceeeeee e 44

4.1.5 Shift Size ROM Table.........ooiiiiiiiiiiiieiee e e 48

4.2 Chip Implementationc.cccciieeiiieeiieecie ettt e e sree e s e e sereesereeeaaeeenneeas 50
Chapter 5 Conclusion and Future Workccccoeciiiiiiiiiiiiiiicceeece et 53
5.1 CONCIUSION ...ttt ettt ettt ettt e b e e enteseeenee 53

S22 FUUIE WOTK ..ttt 53
REFEIEIICES........ooniiiiiiiii ettt et et ettt e eatees 54

vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

2.1
2.2
23
2.4
2.4
2.5
2.6
2.8
2.9
2.10
3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

List of Figures

An example of NOrmal Graphiciiciveiinsvninisnininnnenssencsssicsssncssssecssssscssssesens 5
Graph representation of the extrinsic and the intrinsic probabilities................. 6
Graph representation of the message passing between two vertices........c..cee.... 8
The corresponding Tanner Graph......ceiicniissnricssssnniccsssssecssssssesssssssssssnses 11
The check node update for By ...cueiiiiicvniiinisnricniisnricsssnniccsssnnsecsssssssessssssssssnnns 12
Bit node update for By ...couiiiniininiiniiiinisnninssnisssnncsssnncssssnssssssssssssssssssssssssssassssses 13
The example of definition for decoding procedure...........ceeevveeiervericscneccscnnncnes 14
The defiNitionN Of Hpj cccceeeeeeeennneiieeeerreeeneneecsscecereesesssssssssesssssssssssssssssssssssssssssossesssses 19
Decomposition of parity check MatriXcccecceeevercsseicssneicsseecsssencssnecsssnncsssnecnns 21

The architecture of encoder for LDPC codescuueeeueeicsnerissneecssneccssneecsnnnens 21
The check node with degree d.........cccoceeeiiiivvnniiciissnnricsssnnicsssssnsecsssssssessssssssssssnnns 24
The bit node With degree K...quimacceiccssncssssncsssnncssnnsssssssssssssssssssssssssssssssssssses 25
Plot of the W(X) fUNCHION ...ceeeereerennecessiineeccssssnsecssssassessssssssssssnssesssssassssssssnsssssanes 28
Simulation result (1):-theoretical value for maximum code length 30
Simulation result (2):-theoretical value for minimum code length.................... 31
Simulation result (3): Normalization factor comparisonccceeeeecvercccercssnnns 31
Simulation result (4): Fixed-point'simulation for integer partccccceevureecnnes 32
Simulation result (5): Fixed-point simulation for fraction part...........cccccceeuue... 33
Simulation result (6): Fixed-point simulation for iteration...........ccceeeeeervrecnnees 33
LDPC decoding flOWccoceieisercscnnicssnnicsssnicssssesssssesss 35
LDPC decoder block diagramcoeeeneesrensenssnensaenssnensannssnesssnsssnesssessssessasssssenes 36
Check Node Updating Memory Access Schedule...........eicevcveiicnscnnrccccsnneccscnnns 38
ONE DALA SOTLEY uuueeenneeiiineeiiinteessnnecsssnecsssnessssnessssesssssesssssesssssessssssssssssssssssssssnssssas 39
C2B Register Arrangementcoeeceeeecssnsssssrssssassssssssssssssssssssssssssssssssssasssssasssssas 39
B2C block architecturecceeerenireecsecssnecsannssnensaecsnecsanees .41
XOR DIOCK ArchiteCture.....cceeeceecseeeseesseensnecseensncssseessnssssecssnssssesssnssssesssassssessaases 42
|3 27 @ 1173 1110) o) 1] (1Tl OO 43
Deriving qn,k P2) ™ 1 N1 T 11) RN 43
5x5 identity matrix and itS pPermutationccecveeecssercsseicssescssnnscssssssssansses 45

vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

C2B register arrangemeNt.......cccccceeeecssssssecsssssssessse 45
C2B register arrangement after Shiftingccceeveeevevercnivrcssvercsssercssercscnercsnns 45
B2C memory arrangement.... .. e eececcseecssssecsssresssssesses 46
B2C memory arrangement after right shiftingcocvveevveeneensenseennennne 46
B2C memory arrangement after left Shiftingcooeeeverveennuecseecseninensneenne 46
Sharing mechanism of CYCliC SHIfter.......couuveriiiirerricsivniicsissnniecsisnnecsssnseccssnnns 47
TWO level CYCHIC SHIfter ...ciccinueiiiiiivniicsissnniinsisnniccsssnnnicssssnnsessssssssessssssssssssssssssans 48
Overall architeCture.......ieiiineineiiseensseinsiinseecsensssecsessssecsseesssessessssssssassssesses 49
Chip layout of the LDPC decoder Chipcccceeeeceicncercscnnicscnnicssnercssnnicssnsscsnsees 50

viii

Table 2.1
Table 3.1
Table 4.1
Table 4.2
Table 4.3

List of Tables

LDPC block size and code rateueeeveeeseecseecssnecsaesssnccsaennne
Parameter setting for implementationeceveecrenseecsnecnne
Summary of the LDPC decoder chipccceecerercurrcscueicscnencsnnne

Gate count of functional block

oooooooooooooooooooooooo

oooooooooooooooooooooooo

Comparison of LDPC chip

X

Chapter1
Introduction

1.1 Overview of Channel Codec for Wireless Metropolitan

Area Network

Wireless Metropolitan Area Network, allowing end-users to travel throughout a hot zone
cell without losing connectivity, has been a very important technique in wireless
communication. The services provideportability.and mobility to make users more convenient
to access information. For a highrquality service;.the.channel capacity seems more important
for WiMAN, therefore, the error-correcting capability 1s a great issue in WiMAN. In WiIMAN
802.16e standard [23], there are four channel coding methods: Convolutional coding (CC) [1],
Reed-solomon coding (RS)[2], Turbo coding [3], and Low-Density Parity Check Coding
(LDPC) [4]. The first three codes have been proposed in many application, such as DVB-T
etc, and LDPC coding was rediscovered in recent years. Because LDPC can provide a better
error correcting capability than the first three codes, so WiIMAN adopts LDPC coding as an

optional error correcting method.

1.2 Motivation

LDPC code was first proposed by Gallager [4] in 1953. It can provide a better
performance in error correcting capability, but due to the difficulty of circuit implementation,
LDPC code was not on the main stream until it was rediscovered by Mackay [5][6]. LDPC

code provide a simple algorithm when decoding, however, the circuit implementation is still a

great challenge even the implementation technique has advanced a lot. In WiMAN 802.16e
standard, it provides many different types of LDPC parity check matrix for users to choose
according to the tradeoff between performance and cost. All types of parity check matrices
make the architecture hard to design.

In this thesis, we propose an architecture that can support all types of parity check
matrices in WiMAN 802.16e. The architecture provides a partial parallel computation unit
method to accelerate the throughput rate, and employs the special characteristics of LDPC
code in 802.16e to make the data paths and memory controls more simple to decrease the
hardware complexity in circuit implementation. The detail discussion and architecture will be

given in the following chapters.

1.3 Thesis Organization

The remainder of this thesis-is organized.as. follow. Chapter 2 describes the concept and
the decoding algorithm of LDPC codes:and thedefinition of parity check matrix of LDPC in
WiMAN 802.16¢ standard. Some improved algorithms for LDPC codes and simulation results
are introduced at Chapter 3. In Chapter 4, the proposed LDPC decoder architecture, including
functional units, memory arrangement, are presented in detail. Besides, the chip
implementation results and the summary will be described in Chapter 5. Finally, conclusions

and future work are made in Chapter 6.

Chapter 2
LDPC Code

Low-density parity check (LDPC) code was first introduced by Gallager in the 1960s,
but was almost forgotten until Mackay and Neal rediscovered. The most advantage of LDPC
codes is it can achieve near Shannon limit error performance. Besides, its algorithm provides
very simple arithmetic computations and parallelism to decrease the complexity of hardware
design and increase the throughput rate. With these advantages, many applications, such as
802.16e and DVB-S2, have took LDPC ‘codes into account for the forward error correction

(FEC) to achieve high-speed and high performance.

2.1 Concept of LDPC

LDPC codes, just a linear block, is constructed by a sparse parity check matrix H which
means there are almost zeros and only a small number of ones in the entries. With the sparse
matrix H, the complexity of computation is reduced in decoding. LDPC codes can be divided
into two types, one is regular LDPC code, the other is irregular LDPC code. The regular
LDPC codes mean that each row has the same number of ones, and each column does so. For
example, in a regular M-by-N LDPC code, there are A ones in each of the M rows and p ones
in each of the N columns. The irregular LDPC codes mean the numbers of ones in the rows

and the columns are different.

2.1.1 Message Passing Algorithm

LDPC decoding algorithm is based on soft iterative decoding which relies on the message
passing algorithm [8][9][16]. Thus, in this section, message passing algorithm which is based
on the probabilistic decoding is introduced. For a variable X, there are three important
probabilities in message passing algorithm. For the event (or called the constraint) {x=a},
suppose that E is an event affecting on the variable X. The intrinsic probability [10]
represents the probability P(x=a) that the variable x takes the value a. So for the variable x

with respect to E, its intrinsic probability can be denoted by
P"(x=a)=P(x=a) @.1)
On the other hand, the posterior probability is the conditional probability for the variable x

taking the value a based on the knowledge of the event E. The posterior probability can be

denoted by
R (x=a)=P(x=alE) 2.2)

The two probabilities can be viewed as the probability before and after taking the event E
into account.

Besides, with Bayes’ theorem, the posterior probability can be rewritten as follow :

6 £FHY | B HE ppyinag

P(x:a|E):ﬁP(E|x:a)P(x:a) (2.3)
The term at right-hand side of the equation P(X =a) is the intrinsic probability. The term
P(E|x=4a) is proportional to the extrinsic probability, which describes the probability that
the new information for X obtained from the event E. The extrinsic probability can be denoted
by

P‘(x=a)=(D_P(E|x=a))"'P(E|x=a)=p,P(E|x=2) (24

a'eA

p. represents the normalization constant to make the summation of the terms P . (x=a"

t
for a'e A equals to 1 (i.e., Z PEeX (x=2a') :1), assuming a’ takes values from the

a'eA
alphabet set A.

Then the relationship between the intrinsic, extrinsic and posterior probabilities in (2.3) can be

rewritten as

PP (x=a)=p,P"(x=a)P(x=a) (2.5)

Where P, is anormalization constant as follow

1
P, = (Z PM(x=a)P (x = a)j 2.6)
acA

If A=GF(2), GF(2) denotes the set which only has two possible value 0 and 1, also called

binary variables. The log-likelihood ratio representation for (2.5) is

post _ int _ ext _
LPOSI(X)ZlnP t(X_l):ln P.t(x_1)+lnpt(x_1)
PP (x=0) = PI(X=0) " P*(x=0)

=L+ LX) 2.7
In the graph representation, we use a normal_graph {11][12] which is an undirected graph,
consisting of nodes ~ ordinary edges.and left edges. The nodes denote the constraints and the
ordinary edges denote the state variable for message passing and the left edges denote the
symbol variables. Fig. 2.1 shows an example with three vertices :

The edges connecting two vertices are ordinary edges, and the edges connecting only one

vertex is left edges

left edge

ordinary edge

Fig. 2.1 An example of normal graph

5

Fig. 2.2 Graph representation of the extrinsic and the intrinsic probabilities

One node

Now consider a single node C, with d edges, as shown in Fig. 2.2. There are d-1 left edges.
We define a set S, which is a subspace, of.the d-dimensional vector space A (S, c A?),
and any d-tuple x=(X,X,,...,Xs)€S_will satisfy’ the constraint C. Each edge has the

intrinsic probability P™(x ;) associated with the symbol x; for j=1~d, then a posteriori
probability of a symbol X; with respect to C.will be obtained from the combination of the
intrinsic probabilities and the extrinsic probability P®(x,). Therefore we have to evaluate
P*(x) based on the constraint C and the intrinsic probabilities Pi”t(xj) with j#i. The
extrinsic probability P®(x.)is

P*(x)=p.P(C|x) (2.8)

To evaluate the extrinsic probability, we have to evaluate the conditional probability

P(C|x), The conditional probability P(C|X) can be evaluated as

P(CI%)= 2. PC.{x;}5,1%)
Xj ,Vj:&i
xeSc

= D P(Co Xy Xy Koo Xg | X))

Xj ,Vj:&i
xeSc

=) PC Xygeres Xiys X eees Xg)P (K ces Xy Xipoeees X | %))
xj,Vj:&i
xeSc

2.9)

The first term on the right-hand side of (2.9) is always equal to 1 because the constraint C is

always true with given {X j}?zl where {X j}?zl belong to the constraint set Sc. And the last

term on the right-hand side is rewritten based on the independence of the variables {X; }L
d -
P(Xirer X 12 Xisrees Xg |Xi):HP'”t(Xj) (2.10)
j=1
Ji
The (2.8) can be rewritten as

d .
PEXt(Xi):pe Z Hpmt(xj) (2.11)

X Vit j=1
xeSc J#l

And the posterior probability can be derived using (2.11) :

PP (%) = pcP™ (x)P™ ()

d
=p. . [IP™(x) (2.12)

Xj,Vj=i j=1
xeSc
Where & is the normalization constant as
-1
d -
_ int
pe=| 2 TTP™(x) (2.13)
=l
:eSc .

Py (x) X; Py (x))
4—

int P ext(x')
Py (x;) @ i

PeXt(x,'+])

Fig. 2.3 Graph representation of the message passing between two vertices

Two node

Moreover, we consider the graph with two vertices (constraints), C; and C,, as shown in Fig.
2.3. The constraint C; has i—1 left edges and one ordinary edge, corresponding to the
symbol X, ~X_, and X . On the othershand;, X, ~ X, are constrained by C, where only X
is on the ordinary edge. Besides, the twovertices.are associated to two constrain set, Sc, and
Sc, such that any x, =(X,X,,=., X)€S¢,~and X, =(X;,X,,,....X;) €Sc,. As shown in Fig.

2.3,the symbol X, is considered first, we have to evaluate the extrinsic probability for the

i+1

left edge based on both C; and C,. First, we only consider the constrain C,, according to the

result in (2.11),the extrinsic probability can be rewritten as

PeXt(Xi+1) = ,OZP(CZ | Xi+1) =P Z P(Izn)t(xl)H Pmt(xj) (2.14)

X, \Xi4 j=i+2
X, €8¢,

The intrinsic probability P(i;;(xi) for C; in on the ordinary edge that is unable to be acquired

from the inputs. Therefore, we evaluate the extrinsic probability based on both constrains C,

and C,.
PEXt(XiH) = peP(CUCZ | Xi+1) (215)

We can rewrite the above probability as

P(CI’C2|Xi+1): Z P(CI’C27Xi’Xi+29‘”9Xd |Xi+1)

X3 \Xiy
X, €8¢,

Z P(C,1C0%,) P(Cru X Xippeens Xg [%)

X3 Vi
X, €8¢,

Z P(Claxiaxi+2""’xd |Xi+1)

X3 \Xiy1
X, €8¢,

where the second equality comes from a Markov chain
P(C,.C, |x)=P(C, | x)P(C,|X)
Such that the term
P(C,|C,.x,)=P(C,|x,)=1, for x,eSc,

The term on the right-side of (2.16) can be continuously rewritten as
P (Cl’ Xi>Xiszseeor Xq | Xi+1) = P(C, [X)P (X, Xisee Xg | Xi1)
d
=BEXI [Px))
}::H

=(p)" P(f;(t (X)P™ (%) H P(X;)

j=i+2

From the Fig. 2.3,

P(i};(t(xi) = pIP(Cl | Xi)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

is the extrinsic probability of X, with respect to C, and the intrinsic probability P™(x,) is

for the ordinary edge variable X, . Since the ordinary edge connect C; and C, without any

external input, the probability P™(x) can be initialized to be a constant. We set

P™(x)= % for X, € A. Therefore, the extrinsic probability in (2.15) can be expressed as

Al
d
P (X,)=p" > PO P(x))

Xy \ Xy j=i+2

X, €8¢,

Where p,'=p./p,|Al, from the Fig. 2.3, we can know that

(2.21)

t t
P2 (%) =PJ'(x) (2.22)

(1) (X) is available. So only constrain C2 is necessary for estimating P (X, +1) In the
same way, pe (X j) for j=(i+2)~d can also be derived. Moreover, pe (X)) with

| =1~ (i—1), the extrinsic probability (2) (X) with respected to C, is required. And the

intrinsic probability is assume that
t t
P (%) = P37 (%) (2.23)
The processes of (2.22) and (2.23) are the message passing between the vertex C; and C,.
With the message algorithm, we can simplify the problem of solving both C; and C; into the

problem of solving the single vertex graph. The problem is more simple than the original

problem. We concludes the message passéd on'the edge X, as follow :

He e, (X) = P(‘ff(x) Py Z HP(X) (2.24)

X, \X;
x]eSCl

d
He, e, (X)= P(;);t(xi)zp2 Z H P(X;) (2.25)

X, \X j=i+l
X, €8¢,

The operation in the message passing is the sum of products, thus the message passing
algorithm is also called the sum-product algorithm [13].
Generally, if the graph consisting vertices, Cy, Ci,...,Cq4, the vertex Cy has d ordinary edges

that respectively connect to C;, Ca,..., Cq4 with symbol variables X1,X2,...,Xq. Assuming the

message (g ¢ (X;) with j=1~d have been derived from C, ~C;, we can evaluate

He, sc, by

d
He, e, = Z Hﬂcﬁco(xj) (2.26)

X\Xi j:1
xeSc, J#i

10

Where Sc, is the constrain set for Co, and X = (X;,X,,...,X;) . And the message tc

for i=1~d can be obtained and become the intrinsic probability inputs for the vertices

Ci~Cq.

2.1.2 Decoding Concept

Just like linear block codes, the goal of a M-by-N LDPC codes is, given a codeword

X =[X,%,L ,X,]', to satisfy the equation HX =0. LDPC codes can be represented by a

Tanner graph [14][15]. Fig. 1 is an illustrative example of a 2 x 4 parity check matrix H.

There are four bit nodes, B, B, Bs, Ba, (also called variable node), which represent the 4-bits

codeword X =[X, X,, X;, X, 1", and there. are two check nodes, C;, C,, which represent the two

parity check equation of H. The=connections between check nodes and bit node means that
there are ones at the corresponding positions in the parity check matrix H. For example, the
connection between C; and B; means that H,, =1 .in the parity check matrix H, where Hp,
denotes the element at the m™ row and the n™ column of H. In the thesis, for simplicity, we

only consider binary LDPC codes. So every addition actually denotes exclusive-or.

X]
1 1 0 0}x 0 X, ®x,=0
HX=0= = (2.27)
1 0 1 1]x 0 X®xX,®x,=0
X4
Ci Cy Check Node

Z

@ @ @ @ Bit Node

Fig. 2.4 The corresponding Tanner graph

11

LDPC decoding is based on the belief propagation (BP) algorithm, also called message
passing algorithm, which provides an efficient and powerful approach to decode LDPC codes.
Each bit node transmits its information to other bit nodes through the check node equation.
The erroneous data can possibly be correct with iterative exchanging information between
check nodes and bit nodes.

Now we first introduce the LDPC decoding algorithm in the simple view of probability. Take
Fig. 1 as example, as Fig. 2, we first update the bit node information through the check node

equation. We call this process check node update. Let us consider the first check node

Eqn.(2.1) x,®x, =0. To obtain the probability of X;, assume we know the probability of
X, =0 is qo, denotes as P(x,=0)=0q,, and p(X,=1)=q, (The equation ,+q, =1 is
always true). We can know X; and Xo'must be the same to satisfy the equation X, @ X, =0. So

we can obtain P(X, =0)=0q, and p(X, =1)=¢,:

G G,

/NN
D ® @& & ®

(90,91) (do,q1) (ro.11)

Fig. 2.4 The check node update for B,
Now we consider the second check node equation X, @ X, ® X, =0. To get the probability of
X1, assume we know P(X,=0)=q,, P(X;=1)=0q,, P(X,=0)=r, and P(x,=1)=r, .
Through the second check node equation, we can derive the following equation :

{P(Xl =0)=P(Xx;®x, =0)=P(x; =0)P(x, =0)+ P(x, =DP(X, =1) = q,F, +q,1; 2.2)

P(x, =1)=P(x,®x, =1)=P(x; =1)P(X, =0)+ P(X; = 0)P(Xx, =1) =q,r, + q,,

Here we define CHK(q,,q,,1,,1)=(q,r, +q,1,,q,F, +0,r,). Then we obtain each bit node’s

12

probability through the check nodes that connects to it.

We will do the next process called bit node update. This process is for bit nodes to gather all
probability from the check nodes connecting to them. Fig. 3 is the illustration for bit node
update. There are two check nodes connecting to bit node 1, so bit node 1’s probability can be

calculate as follow :
P(x, =0)c P(C,=0 and x =0)P(C,=0 and x =0)=q,r,

(2.28)
P(x,=)<P(C,=0 and x =1)P(C,=0 and x =1)=qr

(90,91) (ro,r1)
C C,

\/

Figs2.5 Bitmode update for B,

To ensure P(x=0)+ P(x=1) =1, we normalize the probability of X;. So we can obtain that

P(x, = 0) =l pel o G0 (2.29)
q0r0+q1r1 q0r0+q1rl
Here we define
VAR(Gy, G Ty, 1}) = (—020 ah_ (2.30)

2
qOrO + qlrl qOrO + qlrl

2.1.3 Decoding Flow

Based on the above equation we can roughly construct the LDPC decoding algorithm. In
order to decrease complexity of computations, we represent the probabilistic messages by

Log-Likelihood Ratios (LLR), the LLR is defines as

PU=0) _

L) @in— = - In A 2.31)

Then the equation can be rewritten as

13

CHK(U,,U,)=CHK(U, ®U,) = 1n1/;ﬂ

+4,
U,+U, U,+U,
1+e%e” e 2 te 2 (232)
=In RN =In U, U,
e > +e °?
VARU,,U,)=In(44,)=In4 +In4, =L, +L, (2.33)

These two equations can be computed in Log-Likelihood Ratios form to reduce the numbers
of computation parameters and VAR equation only needs addition operation instead of

multiplication and division. If we construct the general form of CHK and VAR, we can get that

CHK(U,,U,,...U,)=CHKU, ®U, ®..®U,)

(2.34)
= CHK (CHK (..CHK (CHK (U, ®U,)®U,)..)®U,)

VARU,,U,,..,U,) =In(A44,..4,)

=InA+lnd; +..+Ind =L +L, +...+L (2.35)

Before we describe the BP' decoding "algorithm, we define some parameters for
simplifying decoding procedure; Take Fig. 4 for example, Fig. 4 is a 4 x 6 parity check

matrix.

Bit node index n

L(4) L)\

\]

vy SO
0
1

S O O

0

M(I)\

Check node index k
o = O O
o O = O

S = O

Fig. 2.6 The example of definition for decoding procedure

M(n) denotes the set of check nodes that connect to the bit node n, where n represents the n®
column of the parity check matrix, i.e., M(n) represents the positions of “I”s in the n™
column. L(k) denotes the set of bit nodes that connect to the check node k, where k represents
the k™ row of the parity check matrix, i.e., L(k) represent the positions of “1”’s in the k™ row.

M(n)\k denotes the set of M(n) excluding the k™ check node, and L(k)\n denotes the set of L(k)

14

excluding the n™ bit node. “qni” denotes the probability of information that the bit node n
transmits to the check node k, “ri,” denotes the probability of information that the check node
k transmits to the bit node n. BP algorithm is based on iterative decoding procedure, the

iterative decoding procedure is shown below.

Initialization
We assume the channel is AWGN channel, BPSK mapping (0 mapped to +1 and 1
mapped to -1) is used. u, is the channel’s input, and y, is the channel’s output. The channel

transition probabilities are shown below

1 T, 2
P, = p(u, =—1 yn):—ze o
2o
i () (2.36)
(1= p) =P, =Y,)= ———e >
2o

In the LLR form the probability is rewritten.as

— L 2oy 1)
Lu)=1In p(u, +1|yn):lne 52 =D~ l)):%yn 237
pu, ==11Y,) o

We set the initial probabilities of g, as L(u,) and r, as zero.

Message passing
1% step : check node updating, i.e., information passing from check nodes to bit nodes by
collecting the incoming information q,x’s. Then we update the probabilities 1y ,’s for the next

step.

= CHK > @q,,) (2.38)

n eL(k)\n
2" step: bit node updating, i.e., information passing from each bit node to check nodes

by collecting the incoming information ry,’s. We update the probabilities qnx’s for next

15

iteration decoding and make decision at next step.

oy =VAR(VAR (1)L =L+ > 1, (239)

k'eM (n)\k

3" step: summing up, for each bit node n, we sum up all information from all the check

nodes connecting to the bit node n. We define qi’s as the summation results.

q, =VAR(VAR (1, ,). L(m) = L(n) + > r (2.40)

keM (n)

Decision

We decode un by analyzing ¢, ¢, =0 represents that the probability of un=1 is

larger than that of U, =0, so we can derive the following equation :

A {0 if., q,>0
Un.= (2.41)

1__ otherwise

According to the Un’s we obtain above, we check whether un satisfies the parity check

equation Hu=0. If yes, u, is a‘legal codeword, then the iterative decoding stop. If not,
return back to the message passing procedure until the legal codeword is obtained or the

maximum iteration number is achieved.

2.2 LDPC Code for 802.16¢

In WiMAX 802.16¢ , there are 19 types of block size, from 576 to 2304, each block size is a
multiple of 24. There are six types of code rate, including 1/2, 2/3 (A,B), 3/4 (A,B), 5/6. Table
1 shows the 19 types block size and their corresponding parameters. “z factor” represents a
shift size factor according to different block sizes. Because LDPC code in 802.16¢ is a
systematic code. Codeword is composed of original information bits and parity check bits.
“k” represents the original information size without parity check bits. The users have to adapt

16

satisfying the error correction capacity.

Table 2.1 LDPC block size and code rate

block size and code rate according to the channel situation to achieve high-speed with

k (bytes)
n (bit) n (bytes) z factor
R=1/2 R=2/3 R=3/4 R=5/6
576 72 24 36 48 54 60
672 84 28 42 56 63 70
768 96 32 48 64 72 80
864 108 36 54 72 81 90
960 120 40 60 80 90 100
1056 132 44 66 88 99 110
1152 144 48 72 96 108 120
1248 156 52 78 104 117 130
1344 168 56 84 112 126 140
1440 180 60 90 120 135 150
1536 192 64 96 128 144 160
1632 204 68 102 136 153 170
1728 216 72 108 144 162 180
1824 228 76 114 152 171 190
1920 240 80 120 160 180 200
2016 252 84 126 168 189 210
2112 264 88 132 176 198 220
2208 276 92 138 184 207 230
2304 288 96 144 192 216 240

17

2.2.1 Parity Check Matrix Definition

Each LDPC code is defined by a matrix H of size m-by-n, where n is as previously defined-
the length of the code, and m is the number of the number of parity check bits in the code.

The parity check matrix H is defined as :

P, P, P, L P,, P,
p, P, P, L P,., P,
H=P, P, P, L 2 ot |= P
L L L L L
Poo Py Poo Lo Pons P

Fig 2.7 the parity check matrix of LDPC codes

where P, ; is one of a set of z-by-z permutation matrices or a z-by-z zero matrix. The matrix

H is expanded from a binary base .matrix Hy of size of mp-by-n,. where m, =m/z, and

n,=n/z,, with z is the z factor corresponding to the code length. The base matrix Hy is

expanded by replacing each 1 with a z-by-z permutation matrix and each 0 with a z-by-z zero
matrix. The base matrix size ny is always equal to 24 and my is set according to the code rate

as follow :

Table 2.2 Row number of code rate

Code rate 1/2 2/3 3/4 5/6

My 12 8 6 4

The matrix Hp, only has information about whether the P, ; is a permutation matrix or a

zero matrix, it doesn’t contain shift size of permutation matrix. The permutations are circular
right shift, and the set of permutation matrices contains the z-by-z identity matrix and circular
right shifted of the identity matrix. Each permutation matrix is specified a single circular right
shift factor, so the binary base matrix information and permutation shift information can be

combined into a compact model matrix Hpp,. The matrix Hy,y, is the same size as the binary

18

base matrix Hyp, and each entry (i,j) of Hy is replaced by the permutation information to
generate the model matrix Hpmy,, Each 0 in Hy, is replaced by a negative value (e.g. by -1) to
denote a z-by-z zero matrix and Each 1 in Hy, is replaced by a circular shift factor P(i, j)
(P(,) isa positive integer).

Hj, can be partitioned into two parts- Hp; and Hp,, where Hyp; corresponds to the systematic

bits and Hy; corresponds to the parity check bits as follow:
H, = [(Hbl)mbxkb ‘ (Hb2)mb><mb] (2.42)
where k, =k/z,.

Hy; also can be partitioned into two parts- hy, and H’p, where vector hy, has odd weight and
H’p; has a dual-diagonal structure, where the matrix element (i,j) (i denotes row and j denotes

column) is equal to 1 when i=j and i=j#:1; and €équal to 0 elsewhere:

Hb2 I [hb |H'b2]

<t

hideerth | 0
@ | 1
- MR 0

M | 00 1
L hy(m,=1) | 1 1)

Fig. 2.8 The definition of Hp,

The matrix hp has a characteristic that hy(0) and hy(my-1) are equal to 1, one of
[hy(1),hp(2),...,hy(mp-1)] is equal to 1, and others are equal to 0.

In model matrix Hym, €ach 1 in H’p; has a shift size of 0, indicating that there is a z-by-z
identity matrix when expanding to H, and hy(0) and hy(my-1) have the same shift sizes.

The base model matrix Hpy, 1s defined for the largest code length (n=2304) of all code
rate. For other code lengths, the shift sizes have to be changed according to the code length.

The set of shifts P(i, j) in the base model matrix Hpp, are still used for other code length of

19

the same code rate.
For code rates 1/2 code, 2/3A and B code, 2/3B code and 5/6 code, the shift sizes
{P(f,i,])} fora code size corresponding to the expansion factor z; are derived from P(i, j)

by scaling P(i, j) proportionally:

pd,), p(i, j) <0
f’-’- - .’. f . .
D [&J,pa,mo

0

(2.43)

Where f denotes the index of 19 types of code length for a giving code rate, {=0,1,2,...,18, {=0
denotes the largest code length (n=2304). zr denotes the z factor corresponding to the code

length, so zp represents the z factor of the largest code length (n=2304) and is set to 96.

Besides, the operation LXJ denotes that it only gets the integer part of X when X is positive.

For code rate 2/3A code, the shift sizes {P(f:i, j)} for a code size corresponding to the

expansion factor z; are derived from_P(i, J) by usinga modulo function:

pﬁj’):{ pes), p(, j) <0 2.44)

mod(p(is).z,), p(i, j) >0

2.2.2 LDPC Encoder

For efficiency and memory saving, LDPC encoder generates codeword with parity check
matrix H instead of generator matrix G by Richardson [7]. Because parity check matrix H is

in an approximate lower triangular form, so the matrix can be written in the form:

A BT
H=
C D E
where A'is (m—z)xk, Bis (m—z)xz, Tis (m—z)x(m—-2), Cis zxk, Dis zxz and

B
finally E is zx(m—2), here z is the same as z factor, the [Dj and D denote the expansion

of hy and hy(my-1) respectively, the Fig. 2.9 shows the parity check matrix composition.

20

C DEIZ

Fig. 2.9 Decomposition of parity check matrix

Let codeword v =[u,p,,p,], where u denotes the systematic part-original message, p; and p»
denote the parity part, p; has length z and p; has length (m-z). According to the definition of

parity check matrix H, each codeword of H must satisfy the equation H-v' =0. So the

equation can be rewritten as follow:

Au" +Bp"+Tp, =0OLLLLLL (1
{ p +Tp, (1) 2.45)

Cu' +Dp, +Ep;>»=0LLLLLL (2
According to equation (1), p,' canbe rewritten ass p,- =T '(Au' +Bp,") and replace p,' in
the equation (2), then the equation (2).becomes
(ET'A+CUL+(ET'B+D)p, =0 (2.46)
Because ET'B+D isan identity matrix, so plT can be derived from

plT =(ET A+ C)UT (2.47)
And p,' can be derived from p," =T '(Au’ +Bp,") (2.48)

The fig is the block diagram of encoder architecture:

> A > ET' —»E} » B ’?— ' —p
A

Fig. 2.10 The architecture of encoder for LDPC codes

Yy Vv
T <

21

All the matrix that the encoder needs can be obtained from parity check matrix, only T
seems hard to obtain. But T is a dual diagonal matrix so it has a characteristic that T is a

lower triangular matrix. This characteristic can be easily verified.

2.2.3 Implementation Bottleneck

To construct the LDPC decoder for 802.16e¢, there are some problems should be considered :

1 ~ There are 5 code rates, according to different code rates, the shift size tables are different,
and the row numbers are different, too. Thus, to construct a LDPC decoder that can
change modes by a simple control logic and share the computation units in an efficient
method is an important task.

2 ~ For the same mode, there are 19:block lengths, according to different block lengths, the
compositions of the parity s*check matrices,have different z factor sub-matrices, it is
important to decrease the area for ¢yclic shifters when doing permutation.

3+ The computation of check node.is difficult in hardware implementation. To simplify the
computation in a easier form to reduce chip area and decoding latency and in the same
condition to maintain the decoding performance is the most important task.

The maximum iteration number is also an important index while considering the latency of

the decoding flow. A smaller maximum iteration number can have better throughput rate. In

conventional LDPC decoding algorithm, it takes larger maximum iteration number to achieve
the required bit-error-rate performance. By adopting an improved algorithm, it only needs

smaller maximum iteration number to achieve the same performance.

22

Chapter 3
Algorithm Optimization for
Implementation

In Chapter 2 we know that in the LDPC decoding algorithm, the check node update
processing occupies the most calculation latency. In this chapter, we analyze the check node
update equation based on message passing algorithm and at the view of probability to form an
approximation equation called Min-sum algorithm [25] that is much easier to implement.
Besides, we adopt a dynamic normalization factor to improve the decoding performance.
Finally, we present some simulation results: for:hardware implementation and performance

comparison.

3.1 Min-Sum Algorithm

Consider the check node update process, Fig. 3.1 is the check node with d degrees, the

constrain with respect to the check node is

Sc; ={(X» Xy, X)) [X + X, +L + X, =0} (3.1
If we want to evaluate the message with respect to the constrain for the edge X, the message
should be

Ho o, (%) =P 06) = P(X +L + X, + %, +L +X; =X) (32)

23

7/ A\N

X X2 Xd

Fig. 3.1 The check node with degree d

To derive the (3.2), we consider the following equation first
P(x +x,=0)=P™(x, =0)P™(x, =0)+P™(x, =)P™(x, =1)

33
:(1_p1)(1_p2)+p1p2 G

Where p, denotes the intrinsic probability Pim(xi =1) and (3.3) can be expressed in other
form

2P (x, +x,=0)=1=(A=2p)(1-2p,) (3.4)
If we assume the equation

2P (X, + X%, +L +x;=0)-1=2IT; -1
=(1-2p)(1-2p,)L (1-2p)) (3.5)

:H(l_zpi)

is true. The following equation can be derived by

IT,,, =P + X, +L +X;+X;, =0)
=P +X +L +X; =0)P(x
:Hj(l_ pj+l)+(1_nj)pj+]

=0)+P(x + X% +L +X, =DP(x,, =1) (3.6)

j+ i

According to (3.6), we can derive

oM, ~1=2[I1; (1~ p;,) +(-TT))p,., |1
= 211, -)(1-2p,.,) (3.7

j+l

:H(l_zpi)

24

By induction, we conclude from (3.7) that

[T, =P(X + X, +L +X; =0)

:%{l+ﬁ(l—2pi)} 38
Then (3.2) can be obtained from
1, |
/ucj—>xi (Xi = 0) :E 1+ H (1_2/ux,—>cj (XI :1)) (3.9
1=l 1
1, |
/ucj—»(i (Xi = 1) :E 1- H (1_21uX|—>CJ- (XI = 1)) (3.10)
I=1,1%i i

Where the probability s, ey (x = 1) is the message from the bit node X, as Fig. 3.2.

P (x)=P(rx)

v
Fig. 3.2 The bit node with degree k

It received the message from the check nodes connecting to it excluding ¢; and sent the

message /. (%) tothe checknode c; as

_ k
H e, (% =0)= o, P™ (5 =0)] 45 (% =0) (3.11)
I=1,1% j
_ k
/uxi—mj (Xi :1) = pbgpmt(xi = 1) H :uc,—»(i (Xi = 1) (3.12)
I=1,1% j
Where
. K
po =D P =1 [T sy (X =1) (3.13)
X I=1,1%

25

The intrinsic probability P™(x) comes from the received symbol r.

For simplifying the equation, we use log-likelihood ratio to represent the messages. The ratio

is defined before as (2.6)

P(x=0) _, 1-P(x=1)

L=) T =)

Rewriting the above equation it will become

1
D
Then we can write
L(x)
1—2P(x:1):eL(X—)1—t h(L(X)
e +1
Where the hyperbolic tangent is defined as
e -1
tanh(—) =
e+l

(3.14)

(3.15)

(3.16)

According to (3.15), the (3.9) and«(3.10) can be reformulated with log-likelihood ratio as

d
I+ 200, (% =1)
LC . (Xi) — ln I:lc,il;tl

| =TT 24, (% =1)

I=Li=i
1+ H tanh(b (X))

— ln 1=1,1i
1- H tanh(X'_w (X))
2 x,—>c (XI)
=2tanh” (H tanh(T))

I1=1,1i

Where the inverse hyperbolic tangent is

tanh™'(y) =~ In Y
2 1-y

Furthermore, we define a new function for x>0

W0 =P () = I8~ ingtanhY))
1-e™* 2

26

(3.17)

(3.18)

(3.19)

Then we decompose the term in (3.17)

H tanh X'_)C H A

I=1,1=i I=11#i
¢ d
=1 11 mgn(A)]exp[> ln|A|]
I=1,1#i I=1,1=i
d d I—x —C; (XI)‘
=1 T1 Sign(LX%(X,))]exp Y In| tanh| ————!
I=1,ii Y eyt 2
(3.20)

The sign magnitude of A is the same with L, . (X). And we note that for any integer t

) 1+(-1) e
-1) Wi (x)= In
N o e oz
Then we replace the x in (3.21).as
Lx|—>c (XI)‘
I1=1,I#i 2
(3.17) is rewritten as
d ; - Lx,—>c (XI)‘
L ()= T1 S|gn(LXI%j(X,)) ¥ —Z In| tanh —
1=1,1=i I=L,1#i
(3.23)
d L d
:[H Slgn(Lx,—mj (XI))j\P Z lP(X —C; I)‘)j

I1=1,1i I=1,1=#i

Compared to (3.17), the multiplications are replaced with additions, it is easier for

implementation. And the message from bit node X; to check node ¢; can be represented as

27

. k
pbgpmt(xi = O) H'IL[Q—)Xi (X| = 0)
in_)cj (Xi) = ln I=1,1%]

PP (X =1) H Mg, s, (Xi :1)

I=1,1%] (3.24)

=L"(x)+ Zk: L, . (%)

I=1,1%]

For hardware implementation, the function W¥(X) in (3.23) is often constructed by the table

look-up approach because the operation of W(X) is too complex.

Fig. 3:3 . Plot of the M¥(X) function

Then we analyze the function W(x) as Fig. 3.3, from Fig. 3.3, we can find the property of

W(X) thatthe smaller X has larger result of W(X). In the (3.23), the summation will be

dominated by the smaller , therefore (3.23) can be simplified by an approximate

LxI —Cj (XI)

equation as

d
Lo, (%)= (llli Sign(l—x|—>cj (%))},emuijf)l\i L e, (%)‘ (3.25)

The set L(j)\i is defined the same as section 2.1.3. The decoding procedure based on (3.24)

and (3.25) is referred to min-sum algorithm. We can implement the check node update with
the comparison unit instead of table look-up method. But it will lose some bit-error-rate (BER)

performance if we adopt (3.25) compared to (3.23). There are some popular compensating

28

methods for min-sum algorithm such as offset compensation [17][18][19] and normalization

compensation [20][21][22] :

d
Lcj—>xi (Xi) z(H Sign(Lxl—Wj (X|))j|£n|_(ljl;l\|

I1=1,1=i

L e, (%)‘ —a (3.26)

or

L e, (%)‘ (3.27)

L. (xi)zﬂx(ﬁ sign(LXl%j (%,))}énul,r)l\.

I=1,l%i
where « and f are compensation factor with >0 and 0< £ <1. The (3.27) often has

better performance than (3.26) because the compensation factor « in (3.26) is constant, it

won’t change depending on the value of |L

(X,)‘ . If we don’t know the range of

X —Cj

Ly e, (X,)|, we can’t derive a optimum,_,@sConsidering the compensation factor S in
(3.27), although it is constant, but-the operation issmultiplication, the result will depend on the

value of , S0 we can derive a optimum value for /. For the same check node, we

Ly, (%)
provide two different values /£ for'the.compensation.

Compared with the Eqn.(2.32) , Eqn.(3.17), Eqn.(3.23), The last three equations need
complex computation units to derive the exponential function, the hyper-tangent function, the
W(X). The look-up table (LUT) is mostly used to derive the approximation value to reduce
the computation units. But the LUT’s size determined the correcting capability of these
function, if we use a detailed LUT for deriving the approximation value, the size of LUT
occupies a lot of area, otherwise, if we use a gross LUT, the error with respect to the
theoretical increase and we will loss BER performance. Min-sum algorithm using
normalization factor can almost achieve the same BER performance with the theoretical one
with a sorting unit to find the minimum value of relative input data. The area for check node

updating can be saved a lot.

29

3.2 Simulation Results

In this section, we will present the simulation results and some parameters setting for
implementation. The simulation environment is set by the C code. All the simulation results
are signal-to-noise ratio (SNR) versus BER through changing some parameters required for
implementation.

We set the simulation environment is BPSK modulation and AWGN noise channel, according
to (3.17), we can derive the theoretical performance for 802.16e, Fig. 3.4 illustrate the SNR

versus BER.

Cade lengih=2304

- —=— Code Rate=1/2 |
“| === Code Rate=2/3 |
—&— Code Hate=3/4

10° -
0.5 25
SMH{E)

Fig. 3.4 Simulation result (1): theoretical value for maximum code length

The simulation result is based on the maximum iteration number=20 and compare the code
1/2 ~ 2/3B ~ 3/4A and 5/6 of the maximum code length=2304, all code rates can achieve

BER =10 before SNR=3.5dB.

30

GO ngin=6rs
L?x [1] Code Rate 56 2/3 1/2 34 compansan
10 G : _
——Cocle Rate=1/2}:]
ko S e : —— Code Hate=2/3 []
3 —&— Code Hate=5/4

—e— Code Rate=5/6 |

(=

n

o
-~

’ SNR(dB)
Fig. 3.5 Simulation result (2): theoretical value for minimum code length

The Fig. 3.5 shows the simulation result based on the minimum code length=576, other

parameter setting is the same with Flg 3 4! From, Flg 3.3 and 3.4, we can derive that the

"\- o

parity check matrices defined in 8102 I6e Cﬂ}l Prov;de the performance of BER =107"

between SNR =2 ~7dB ;'lf_ e ~ &l 3

g)
B i e o

Now for optimization we use m1r1a$um degorlthm ,w,}th different normalize factor, the Fig. 3.5

shows the simulation result. At the 51mu1at10n we take code rate=1/2 and code length=576, the

iteration number is 20.

Normaize faciod companson

: HET —e— Theorsatical result

i —8—BETA=0.75
—=—PBETA=0.875
SRR ——BETA=0.625
------ —7— Without BETA

BER

2
SNR(B)

Fig. 3.6 Simulation result (3): Normalization factor comparison

31

For easier implementation, we choose normalize factor based on the power of 2 such as
0.75 ~ 0.625 and 0.875. We can see that the normalize factor=0.75 can achieve almost the
theoretical result, and so as normalize factor=0.625.

For implementation, we have to process fix-point simulation to simulate the hardware
processing, The number of bits needed to present the message also requires simulation to
derive. We simulate the code length=576 and provide min-sum algorithm with normalization
factor=0.75 and iteration number is 20. First we fix the fraction part at 1bit and simulate with
different integer part bits shown as Fig. 3.6 and from the figure we can find that the integer
part bits equal to 4bits is the best choice. Then we fix the integer part at 4bits and simulate
different fraction part bits shown as Fig. 3.7. And from the figure the fraction part has best
choice of 2bits.

%o

—8—Floating point

1 —e—Fixed point with integer par=3bit
—— Fixed point with integer part=4bit
—7Fixed point with integer part=5bit

BER
)

2
SNR(dB)

Fig. 3.7 Simulation result (4): Fixed-point simulation for integer part

32

I'ﬂ a Fxed paint For fmction part

----- —=—Theoretical result
| = Floating point

== Fixed point with fraction parl=1bit
S —e—Fixed point with fraction part=2bits -

iidiiil i oiidi

BER

2
SNR(dB)

Fig. 3.8 Simulation result (5): Fixed-point simulation for fraction part

The maximum iteration number will affect the performance of BER. But the performance will
saturate with the maximum iteration .number .becomes larger because the dependency of

message. After iterative decoding'; the aséumptidn of dependency won’t be always true, then

L= | > 4

the decoding equation we use Wﬂl'.ﬁas s_oméérfor withirespect to the actual condition. Fig. 3.8
] . i b ‘ .l

—

shows the fixed point simulatioﬁ:".'c_gvitﬁ='difféféﬁt majx1mum iteration number. The simulation
parameter is based on the maximum code length=2304 of code rate 1/2. We can find that the
iteration number=20 is a good choice between latency and performance.

-y Fooed poinit For itertion
10 v

=
...... —e— |TERATION=20
—v—ITERATION=25

s —=— [TERATION=30
10* \\\‘\X SEsie —— ITERATION=15 | _
e \ \ \ ________ R 3

b\

3 £
R0 — RS | —

BER

i
2 25 a 3.

X i
10

05 '
SNR(dR)

Ll

Fig. 3.9 Simulation result (6): Fixed-point simulation for iteration

33

According to the simulation results above, we set out proposed architecture based on the

parameter as Table 3.1

Table 3.1 Parameter setting for implementation

Maximum iteration number 20
Normalization factor 0.75
Integer 4 bits
Bit length
Fraction 2 bits

34

Chapter 4
Architecture Design and Circuit
Implementation

According to our analysis and simulation, we propose a LDPC decoder architecture for
802.16e. In this LDPC decoder architecture we propose a hierarchical cyclic shifter block for
cyclic shifter. Besides, with the characteristic of LDPC decoding algorithm, the memory
arrangement is also an important point for improvement. To reduce the complexity of
computation element, we rewritten_the equation for check node updating and bit node
updating to accelerate the check mode updating speed to reduce the memory usage. Final we

will present the implementation result and some problems we met at backend APR process.

4.1 Decoder Design

4.1.1 Architecture Overview

According to the LDPC decoding flow shown in Fig. 4.1, the Fig. 4.2 is the block diagram of
the LDPC decoder, the decoder is partitioned into several block. Each block processes based

on the sub-matrix defined in the Section 2.2.1.

Yy
| Check Node Bit Node
Updating Updating

Yes .
—— Finish

Initialization

Stopping
Criterion

Fig.4.1 LDPC decoding flow

35

The decoder is designed based on the maximum input number 2304 and the maximum
column number 1152 (code rate=1/2) to support all types of LDPC code in 802.16e. Each
process is controlled by the decoder controller. The Input Buffer stores the input data and for
every Zs input data received, the Input Buffer will store the data into Channel Value Memory.
Beside, it also stores the data into the B2C memory for the first iteration check node updating.
The C2B update block reads data from the B2C memory to process check node updating. The
check node output registers store the check node updating result. Then the B2C update block
reads data from the C2B registers and stores the results at B2C memory. The iteration repeats
between C2B update and B2C update, the iteration decoding processes until the maximum
iteration is reached. Final, the Decision block decides whether the data is one (or zero) based
on the result of B2C update. The detail process and architecture is explained at the following

sub section.

B2C ROM
Memory Table

Received a5 . Decoded

Data In
put C2B B2C Data
RS ..
Buffer Updating Updating - »
T F ¥

A

Channel Value C2B
Memory Registers

Fig. 4.2 LDPC decoder block diagram
4.1.2 TIterative Decoding Block

In this section we will introduce the proposed iterative decoding block architecture, in order to
save memory usage, some computations of LDPC decoding algorithm are moved to different

block, final we will explain the overall architecture for this block.

36

C2B block (I) and C2B registers

The C2B block processes check node updating, we choose Min-Sum algorithm with
normalized scaling method. According to the Min-Sum algorithm, the minimum value of bit
node message determines the absolute value of the result. We can use normalized scaling
method to compensate the error relative to the accurate result. The equation is denotes as

following -

t.~8 [] sign@,,)min(q,,) 0<pB<I @1

n'eL(k)\n
For each I ,, the component of L(k)\n is L(k) excluding n. According to the above equation,
with the row degree t, we have to sort the qn',k where n'eL(k)\n to find the minimum
value of them t times for the same kof I, s, the latency is very long and the control logic is

very complicated. We find that, fordifferent I, s;their components of L(k)\n are almost the
same. So we can sort all the elements-of the-L(k) first, with the sorting result we will rapidly

find eachn of I, , at more simple control logic. The algorithm is present as below :

qn,k ‘ # ml

ﬂml H sgn(qn,k) If

n={L(k)}

pm, [] sen(q,,) otherwise
n={L(k)}

Fen (4.2)

Where m, denotes the minimum value of qn,k in the set of L(k), and m, denotes the
second minimum value of qn,k in the set of L(k). With this algorithm, we sort all the

qn,k of the sets L(k) one time, we only have to find out the minimum value and second

minimum value.
Before introduce the sorting architecture, we present the memory access schedule for check
node updating. By the same method with channel value memory arrangement, we divided

37

memory bank the same as sub-matrix defined in the section 2.2.1, the sub-matrix is based on

the maximum matrix which isa 96x96 matrix.

| | |
| | |
I I I B :
| | | arre

Poas [y | Por || Poo 7 shifier (2] SO A
I I I
| | |
I I I
\ | | B |
‘ ‘ \ /. | Barre -

P1,23 [oeeeenees \ P171 \ Pl,o 7™ Shifter 7> Sorter +>
I I I	
I I I
......... /.| Barrel /- /s

Pj_1,23 } } Pj-l,l } Pj-l,O 7™ Shifter 7> Sorter
I I I

‘ 1 1 Time 1

Eycle:23 | I Cycle=2 | Cycle=1

Fig. 4.2 Check Node Updating Memory Access Schedule

Fig. 4.2 is the check node updating memory access schedule, each row has 24 sub-matrices,
the sub-matrices are the length of 96. We adopt partial parallel computation units, j is the
partial parallel number. The barrel shifters-can rotate the data in the memory to the correct
position for check node updating, the rotation range is 0 to 95. The detail architecture of the
barrel shifter will be discussed in the section 4.1.5. With the limitation of memory bus, every
cycle we only access one column sub-matrices data and access the sub-matrices in column
order at following cycle. The Sorter is composed of 96 data sorters, they reads the data after

barrel shifter and the previous data. The data sorter architecture is as Fig. 4.3.

38

r - - — —— — — /|
| Min P Scaling [New Min |
| 2"Min [Scaling P ndn 1+ |
COMP New 2™ Min _
| Min index > |
New Min Index,
| T |
Data after
| shifter Sign | -~
- - - _ __— _— _ 1

Fig. 4.3 One Data Sorter

The data sorter store the previous minimum value (Min) *second minimum value (Min2") and

the minimum value location (Min index). There is one thing to know, Min and Min2nd are all

absolute values. The minimum value location ranges from 1 to 24, the block COMP compares

Min ~ Min2™ and new input data after, barrel:shifter to find new Min ~ new Min2™ and new

Min index, also the new input ddta is taking absolute value from the data. Our check node

updating processing element doesn’t directly calculate: I, , out, we just find out the required

information. The task of getting [,* will hold-at bit node updating.

The C2B register has to store four types values, Fig. 4.4 shows the register arrangement :

Check 0 Check 1 Check2 | Check 1151
Min Min Min Min
Check 0 Check 1 Check2 | Check 1151
2"Min 2"Min 2"Min 2"Min
Check 0 Check 1 Check2 | Check 1151
Index Index Index Index
Check 0 Check 1 Check2 | Check 1151
Sign Sign Sign Sign

Fig. 4.4 C2B Register Arrangement

Each block 5 bits

Each block 5 bits

Each block 5 bits

Each block 24 bits

1. Minimum value : For 1152 rows of parity check matrix, there are 1152 minimum values we

called Check Min for each row, because minimum value is absolute value, it require 5 bits to

39

represent the absolute value. Total register requirement is 1152 x5 = 5760 bits.

2. Second minimum value : The same with minimum value, for 1152 rows of parity check
matrix, there are 1152 second minimum values called Check 2"Min for each row. Total
register requirement is also 1152 x5 = 5760 bits.

3. Minimum value index : Each row is divided into 24 arrays, each array only has one 1, so
the minimum value location called Check Index has 24 possible locations. It requires 5 bits to

represent 24. Total register requirement is 1152 x5 = 5760 bits.

4. Sign magnitude : The registers stores the sign magnitudes for the term sign(q,,,) .

One row has to store 24 sign magnitude called Check Sign, so total register require
1152 x24 = 27648 bits,

The total register requirement is 44928bits.

B2C Block and B2C memory

The B2C block processes bit node.updating, Originally it just sums up the required Iy , and
channel value, but the C2B block doesn’t get Iy , it only stores the required information for

l'.n because we move this task for B2C block to execute. In order to reduce the complexity
of control logic, we move some computation to C2B block. The B2C block contains two

procedures : one is deriving [y ,, the other is summing up. The Fig. 4.5 is the architecture for

B2C block :

40

Derive 1y Sum up
Column number |

Check
Min
Check
2"Min
Check
Index

Check
Sign

¥

Accumulator
Register

Check
Min
Check
2"Min
Check
Index

Check
Sign

Y

XOR

Fig. 4.5 B2C block architecture

The first procedure is to derivecthe W h5-according to the sub-matrix column number, the

algorithm is as below :

sel =Min2™, if Column number = Index
sel = Min, otherwise

The multiplexer follows this algorithm to select the correct value Now lets consider the check
sign part, each check sign block contains 24 bits, each bit denotes each sub-matrix column

value’s sign magnitude. But some sub-matrices are zero matrices, so these matrices’ sign

magnitude we set to 0. In the Eqn.(4.2) of deriving I ,, the term H sgn(d,)
n'={L(k)\n}

requires the block check sign, the operation H is realized by exclusive-or. The set

n'= { L(k)\ n} makes the control logic more complex, we decide to XOR 25 bits, the first 24

bits are the all check sign bits in one check sign block, and the 25" bit is the decided by the

41

column number to xor the sign magnitude of Q, , , which is also in the check sign block. The

architecture is as below :

Bit 1 |Bit2 [Bit3 | oeeeee Bit24 Column number

Cancellation

Fig. 4.6 XOR block architecture

Now compare Eqn.(2.14) and Eqn.(2.15) :

0o« =VAR(VAR(T,.),L(n)) = L(n)+ Z .

k'eM(n)\k N

k'eM (n)\k
=VAR(VAR (r,), k(n))=L(n)+ r
o ~VARQVAR (G LY <L)+ 3. 1,
We can find
qn,k = qn - rk,n (4.3)

The term I, , we can derive from the B2C block. In order to save memory usage, we just
store the information of {,, we don’t store the information of 0, . For one row there are

24 possible 0, s, it needs 6 bits to represent 0, , originally we need

1152x24x6 =165888bits. Now we only need 1152x6 =6912bits, the total memory usage

reduction is about 95%. The B2C memory block is as Fig. 4.7 :

Column | Column | Column | Column
1 2 3 96
Column | Column | Column | Column
97 98 99 192 Each block is
: : : : 6bits
Column | Column | Column | Column
2209 2210 2211 1152

Fig. 4.7 B2C memory block

C2B block (IT)

Because the B2C memory doesn’t store the information of ,, , it only store the information

of (,, we have to rewritten the Eqn.(4.1). According to Eqn.(4.3), Eqn.(4.2) is rewritten as

follow :

. t-1 t-1 t-1 t-1 : t-1
px min (a"'—r) [] sen(ar’—nl) if gt =m,
t - n={L(k)}

T Bx2™ min (g, o) [sen(ay'—r)) otherwise 44)
ik n={L(k)}

t
The superscript of r and ¢ denotes the iteration number, r-k,n denotes I, , derived from

C2B block (in our design, it is-actually=derived at. B2C block)at t" iteration, and q;_l
denotes (], derived from B2C block:at (t-l)th iteration. In order to reduce memory usage,

we move the task of deriving 0, to C2B'block to complete. Before find the minimum

t
and second minimum of qn,k , we have to find out the qn,k first by subtracting rk,n

from (, . So the architecture is as Fig. 4.8 :

Column number

Check
Min
Check
2"Min
Check
Index

Check
Sign

Cyclic | _
shifter

B2C
Memory

Fig. 4.8 Deriving qn,k architecture

43

The Cyclic shifter block will be introduced at next section.

4.1.3 Memory Arrangement

The memory arrangement can be divided into three parts : one is the channel value memory,
another is the C2B register, and the other is the B2C memory. For convenient, the C2B
register and B2C memory are introduced before with their relative processing elements. The
channel value memory arrangement is very simple. Its task is to store the input data, the
maximum input number is 2304, but in order to support full modes of LDPC code in 802.16¢,

we partition 2304 into 24 arrays which is the same with sub-matrix definition, so each array

can store maximum 96 input data. When the mode is defined by Z, x Z, sub-matrices where

Z, islessthan 96, every Z, inpufdata are stored-at the array in order, Z, denotes the z

factor. Take block length=1152 for example, its z factot is 48, the 1% to 48" data are stored in
the 1% array, the 49" to 96™ data are store in'the 2™ array and so on, and final the 1105™ to

1152™ data are store in the 24™ array.

4.1.4 Cyclic Shift Block

There are two blocks requiring cyclic shifter : C2B block for C2B register and B2C block for
B2C memory, but the two blocks require different direction cyclic shifter, and shift direction
is different from the direction of matrix. We will explain why this happens.

Now we consider the C2B register first, C2B register number is labeled by the row number in
parity check matrix. So there are 1152 block, each block contains one 5 bits Check Min ~ one
5 bits Check 2" Min -one 5 bits Check Index and one 24 Check Sign. But the C2B register is
for B2C block to read, we have to convert the row arrangement to the column arrangement, so
we need cyclic shifter to help us. Now we take a 5 bits cyclic shifter for example as shown in

44

Fig. 4.9,

Fig. 4.9 5x5 identity matrix and its permutation

The left hand matrix is a 5x5 identity matrix, after permutation the matrix becomes the

right hand form, the shift size is 2. C2B register arrangement is shown in Fig. 4.10

Row Row Row Row Row
1 2 3 4 5

Fig. 4.10 C2B register arrangement

After right shifting 2, the register arrangement 1§ shown in Fig. 4.11 :

Row Row Row Row Row
4 5 1 2 3

Fig. 4.11 €2B'register-arrangement after shifting

So the cyclic shifter satisfies the B2C block process’s requirement, it can shift the data
according to the shift size to the correct position for the B2C block read.
Then we consider the B2C memory, the B2C memory number is labeled by the column

number in the parity check matrix. So there are 2304 block, each block contains one 6 bits
g, value. But the B2C memory is used for C2B block reading to derive q,, , we should

convert the data order from column order to row order. As in the C2B case we take a 5 bits

cyclic shifter for example as shown below.

1 1

45

The same with the Fig. 4.8, according to our memory arrangement is shown as Fig. 4.12 :

Column
1

Column
2

Column
3

Column
4

Column
5

Fig. 4.12 B2C memory arrangement

If we do the same process as C2B register, the memory arrangement after shifting becomes as

follow is shown as Fig. 4.13 :

Column Column Column Column Column
4 5 1 2 3

Fig. 4.13 B2C memory arrangement after right shifting

Originally the column 1 message should be passed to row 4, but the right shift 2 doesn’t
make the goal we wish. The column 1 message was passed to row 3, this arrangement is
incorrect. We can find that for B2C memory wemeed left shift instead of right shift, if we left

shift 2, the memory arrangement'is shown as Fig. 4.14 :

Column Column Column Column Column
3 4 5 1 2

Fig. 4.14 B2C memory atrangement after left shifting

This memory arrangement satisfies our row order. So for C2B register and B2C memory, we
need one right cyclic shifter and one left cyclic shifter and these operations will require many
hardware area, so for the left shifter, we try to use the right shifter by rewriting the shifting
size. Comparing Fig. 4.13 and Fig. 4.11, for a t bits left shifter with shift size of r is equal to a
t bits right shifter with shift size of t-r. So we can add an adder and a 2 input multiplexer to
share the right shifter for both blocks. In our design, t denotes the z factor Zf. Fig. 4.14 shows

the architecture of the sharing mechanism,

46

Sel

Z factor
To Check
> Sub Updating or
Shift size . MUX Cyclic Bit Updating
Shifter

\

Fig. 4.15 Sharing mechanism of cyclic shifter

The cyclic shift block is a very important module because there are many modes for 802.16e.
Now consider the size of sub-matrix, due to different modes, the shift size varies from 24 to
96, the interval is 4. A t-bits cyclic shifter can support O~t-1 shift size of cyclic shift. In
conventional cyclic shifter design, for a shift size=24 barrel shifter, it is constructed by a 24
bits cyclic shifter. In our design, directly constructing a t-bits cyclic shifter will occupies a lot
of area because of a lot of multiplexerss For'éxample, a 96 bits cyclic shifter needs a 96 inputs
multiplexer. We construct a hieratchical ieyclic shifter for our architecture, we cut the shifter
into two part : one is at the sight of macroscopic of ¢yclic shifter and the other is fine-tuning.
We employ the characteristic of ‘all“modes shift sizes, the shift sizes have the same
submultiples. So we shift the data at higher interval to reduce multiplexer inputs and
complexity, and then at next level we fine-tune the data to the correct position. Therefore, we
develop a two-level cyclic shifter, the first level shifter shifts data at interval 4, that is, the
shift size is the multiple of 4. The second level shifter shift data at interval 1, the shift range is
from 0 to 3. For a 96 bits data, the first level cyclic shifter requires a 24 inputs multiplexer, the
second level cyclic shifter requires a 4 inputs multiplexer. Compared to the conventional
cyclic shifter, we can save a lot of architecture area for cyclic shifter. The Fig. 4.15 shows the

architecture of two level cyclic shifter -

47

Shift size[6:2] Shift size[1:0]

Shift size=0

J—————
L Shift size=4
Shift size=8 Shift size=0
—_—

[
Lt

Shift size= L

24 i t MUX |— MUX —»
TP : Shift size=2

Shift size=21 Shift size=3

Shift size=22 |
v Shift size=23 /

- —

Fig. 4.16 Two level cyclic shifter

4.1.5 Shift Size ROM Table

We construct a ROM to store the value of! the shift-size for different code rate and length,
besides. In order to separate zero matrix-and identity matrix, we additionally store enable
signals for sub-matrices. The enable signal is zero if the sub-matrix is zero matrix, otherwise,
the enable signal is set to 1. Besides, to increase the bandwidth of the data bus, we cut the
shift size ROM table into two parts, odd ROM and even ROM. At the same time, we read one
shift size from each ROM to support shifter to process permute. It will decrease the latency of

accessing the ROM table and make the control signal simpler.

4.1.6 The Overall architecture

The Fig 4.17 illustrates the overall architecture for proposed decoding process.

48

f Channel Value memory
+

U

Shift size=0 Shift size[6:2] Shift size[1:0] Odd Shift size ROM table

Shift size=4

Shift size=8 Shift size=0

Shift size=1

Shift size=2 MUX

Shift size=84 Shift size=3
Shift size=88
Shift size=92

|
=
2 .
o

Column number

Check
Min sel Tk,
Mux X - Min New Min -
Check ‘l |
2 ndy g
Check | y comp | New 2"Min , |
Index Min index |
Check Sub New Min Index |
Sign [Cancellation I | |
qu /
i) Sign | |
—> Accumulator | |
Register | |

B2C
Memory
Write |
+ back to
C2B
olumn number |rcgistcr

Check

Min
2"Min Scaling

Check

2"Min
Check
Index

Check

comp | New 2"Min

Min index

New Min Index

Cancellation

=2 /
¥ i

dll

Sign

Shift size[6:2] Shift size[1:0] = -

Shift size=0
Shift size=4
Shift size=8 Shift size=0

Even Shift size ROM table

Shift size=1

Shift size=2

Shift si.ze:84 Shift size=3
7 -
Shift size=88

—
Shift size=92

Output
Decision —

Fig. 4.17 Opverall architecture

We adopt partial parallel of 2 to construct our decoding process, each parallel element process

96 computation units

49

4.2 Chip Implementation

The proposed LDPC decoder was implemented with the 0.13 um 1P8M standard CMOS
process. The chip layout of the LDPC decoder including the B2C memory, the shift size ROM
table, ADDLL and the other control logic and processing blocks is shown in Fig. 4.16. The
decoder die size is 13.69 um®. The total gate count of the LDPC decoder is 1265K, where
194K is for B2C memory. We use 184 pins for pads and 67 pins for I/O pads and 114 pins for
VDD/GND pads. The SRAM contains the B2C Memory and Channel Memory, and the
ROMI and ROM2 are the shift size rom table.

The post simulation result is tested to verify the functional correctness. The maximum
iteration number is 20. The maximal data rate of the decoder is 28.3 Mb/s at typical case

while working at 198MHz and 20.3 Mb/s ‘at worst case. The power consumption is 700 mW.

‘H.f.-'
& 'H.‘!l

This power consumption analyz@s« O?ly Eqﬂu;pena,mOnﬁdecodmg excluding receiving data and

"".d

outputting result. =_— f_'h_x;x.':’ [3

_...‘;_w_‘ .~.-

The throughput rate is mostly cdr;§tra'ined by t,h@e:cychc shifters latency and the data bus

bandwidth for message passing. Although We s1mp11fy the operation of iteration decoding, a

lot of accessing memory operations makes our decoding latency longer.

Fig. 4.18 Chip layout of the LDPC decoder chip

50

Table 4.1 Summary of the LDPC decoder chip

Technology Standard 0.13-um CMOS 1P8§M
Core size 3.0um x 3.0um
Chip size 3.7um x 3.7 um
Gate count 1265K
Power dissipation 700mW @ 198MHz *
Maximum data rate 20.3Mb/s @ 20iterations **

* ¢ The simulation environment is set at typical speed corner (1.2V Supply voltage) and the
power consumption analyzes only on the iteration decoding excluding receiving data and

outputting result.

** I The simulation environment is set at worst speed corner (1.08V Supply voltage) with
considering the coupling noise due to,erosstalk effect on signal wires. The maximum data rate
is 28.3Mb/s at typical case, the worst IR drap=0.04 V.

Table 4.2 shows the gate count of each functional block, “Control + C2B Register” denotes

the control logic for the whole decodet.and the registers for C2B block storage.

Table 4.2 Gate count of functional block

Function Block Total gate count

Cyclic Shifter 135K
C2B Block 176K

B2C Block 37K
Control + C2B Register 758K

RAM 91K

ROM + Asynchronus 73K
Total 1270K

4.3 Comparison

The comparison of our proposed LDPC code decoder with state-of-the-arts are listed in Table

51

4.2.

Table 4.3 Comparison of LDPC chip

Proposed [24]
Block length 576~2304 (19 types) 1200
Code structure Irregular irregular
Code rate 1/2,2/3, 3/4, 5/6 3/5
Silicon proven No Yes No
Technology 0.13-um 0.18-um 0.13-um
Supply voltage 1.2V 1.8V 1.2V
Clock freq. 142MHz 83MHz 145MHz
Chip size 13.69mm’ 25mm’ 13.47mm’
Gate count 1.265M 1.15M
Power dissipation 700mW@ 198MHz 644mW 299mW
Data rate 20.3Mb/s@1.08V 3.33Gb/s 5.8Gb/s
Decoding iteration 20 8

52

Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, we analyze the LDPC code for 802.16e based on the BER performance and
propose an efficient architecture for 802.16e. In the proposed architecture we reschedule the
process task for reducing memory usage and decreasing the latency. According our post
simulation, this LDPC decoder can achieye.the data rate to 20.3Mb/s using 0.13um, 1.08YV,
1P8M CMOS process and the power consumption 15 700mW at iterative decoding. The core

occupies 3.0umx 3.0um and the chip size is with 184 pins

5.2 Future Work

For our proposed architecture, the area for processing element is still too large, and the
throughput rate is a little low to achieve the standard requirement. Our future work is to
optimize the area and throughput rate. We will try to reuse the processing element to decrease

the area and try to reschedule the processing element to achieve high clock rate.

53

References

[1]
2]

[3]

P. Elias, “Coding for noisy channels”, IRE. Conv. Rec. , pt.4, pp.37-47, 1955.
I. S. Reed and G. Solomon, “Polynomial Codes over Certain Fields,” J. Soc. Ind. Appl.
Math., 8: 300-304, June 1960.
C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.
R. G.. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol.
IT-8, pp. 21-28, Jan. 1962.
D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” |[EEE
Trans. Inform. Theory, vol. 45, pp:399-431;,.Mar. 1999.
D. J. C. Mackay and R. M. ‘Neal, “Near Shannon limit performance of low-density
parity-check codes,” Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996.
T. J. Richardson and R. L. Utbanke, “Efficient encoding of Low-Density Parity-Check
codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

J. Pearl, Probabilistic Reasoning in intelligent systems: networks of plausible
inference.San Mateo: Morgan Kaufmann, 1988.
R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as a instanec of
Pearl’s blief propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16, no. 2, pp.

140-152, Feb. 1998.

[10] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by probability

propagation in graphical models,” IEEE J. Select. Areas Commun., vol. 16, no. 2, pp.

219-230, Feb. 1998.

[11]J. L. Fan, Constrained coding and soft iterative decoding. Netherlands: Kluwer

Academic, 2001.

54

[12] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 520-548, Feb. 2001.

[13] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

[14] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.
Theory, vol. IT-27, no. 5, pp. 399431, Sept. 1981.

[15] D. B. West, Introduction to graph theory, 2nd ed. NJ: Prentice-Hall, 2001.

[16] J. L. Fan, Constrained Coding and Soft Iterative Decoding. Kluwer Academic Publishers,
2001

[17] A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative
detection algorithms based on density evolution,” in IEEE GLOBECOM’01, vol. 2, Nov.
2001, pp. 1021 — 1025

[18] X. Y. Hu, Eleftheriou, D. M. Arnhold, and-A. Dhelakia, “Efficient implementation of the
sum-product algorithm for decoding ldpc.codes,” in IEEE GLOBECOM’01, vol. 2, Nov.
2001, pp. 25-29

[19] H. S. Song and P. Zhang, “Very-low-complexity decoding algorithm for low-density
parity-check codes,” in IEEE PIMRC’03, vol. 1, Sep. 2003, pp. 161 — 165

[20] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based
decoding of low-density parity check codes,” IEEE. Trans. Commun., vol. 50, pp.
406414, Mar. 2002

[21] H. Jun and K. M. Chugg, “Optimization of scaling soft information in iterative decoding
via density evolution methods,” in IEEE. Trans. Commun., vol. 6, Jun. 2005, pp. 957 —
961.

[22] J. Chen and M. P. C. Fossorier, “Density evolution for two improved bp-based decoding
algorithms of Idpc codes,” IEEE. Communications Letters, vol. 6, pp. 208 — 210, May
2002

55

[23] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for
Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and
Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed
Bands and Corrigendum 1, 2006.

[24] Chien-Ching Lin, Kai-Li Lin, Hsie-Chia Chang and Chen-Yi Lee, “A 3.33Gb/s
(1200,720) Low-Density Parity Check Code Decoder,” IEEE ESSCIRC, pp. 211 - 214
Sep. 2005.

[25] N.Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ. Linkoping,

Sweden, 1996.

56

2004. 9~2006. 8 = 2 = R AT ke i

57

