
 i

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

低密度同位元檢查碼於無線通訊網路之設計

The Design of LDPC Decoder for WiMAN

802.16e

研 究 生：嚴紹維

指導教授：周世傑 博士

中 華 民 國 九 十 五 年 八 月

 ii

低密度同位元檢查碼於無線通訊網路之實現

The Implementation of LDPC code for WiMAN

802.16e

研究生: 嚴紹維 Student: Shau-Wei Yen
指導教授: 周世傑 Advisor: Dr. Shye-Jye Jou

國 立 交 通 大 學

電 子 工 程 學 系

電 子 研 究 所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of Master

in

Electronics Engineering

June 2006

HsinChu, Taiwan, Republic of China

中華民國九十五年七月

 iii

低密度同位元檢查碼於無線通訊網路之設計
研究生：嚴紹維 指導教授：周世傑

國立交通大學電子工程學系電子研究所

摘要

在本論文中，我們提出一個支援全模式的低密度同位元檢查碼解碼器的設計，此設計適

應用於無線通訊網路 WiMAN 802.16e 系統。為了簡化在解碼中執行的運算，採用

Min-sum algorithm 搭配常態化的方法以達到與理論值相同的位元錯誤率表現。此架構

採用了一個重新安排的解碼流程來降低記憶體的使用量以及解碼的時間。此外更利用

802.16e 低密度同位元檢查碼中同位元檢查矩陣的特性去支援不同模式。經過 0.13um 製

成實作晶片，所提出的部份平行解碼器於固定 20 次迴圈的解碼模式下，可以達到最高

的傳輸速率為 20.3Mb，在迴圈的解碼過程當中，功率消耗為 700mW。

 iv

The Design of LDPC Decoder for WiMAN

802.16e
Student：Shau-Wei Yen Adviser:Shye-Jye Jou

Department of Electronics Engineering & Institute Electronics

National Chiao Tung University

ABSTRACT

 In this thesis, a fully compliant LDPC decoder is presented. The LDPC decoder is

applied for WiMAN 802.16e standard. In order to simplify the computation of decoding unit,

Min-sum algorithm with normalization is used to achieve the BER performance the same with

the theoretical performance. The architecture adopts a re-schedule decoding data flow to

reduce memory usage and decoding latency. Also the characteristic of 802.16e LDPC parity

check matrices is used to support different modes. After fabricated in 0.13um 1P8M process,

the proposed partial parallel decoder can support 20.3Mb/s data rate under 20 decoding

iteration. The power consumption is 700mW while iteration decoding.

 v

誌 謝

這短短兩年的碩士生涯，讓我收穫許多，在許多師長的提攜以及同學朋友的鼓勵幫

助下，讓我的研究路程順利且平穩，首先我要感謝的是我的指導教授周世傑老師，無論

在研究上以及做人處事都給我許多的建議以及鼓勵，讓我有信心面對研究的挑戰，也提

供我最好的研究資源讓我對於研究能夠更專注。

再來我要感謝我的學姐 momo，在這兩年他一直從旁鼓勵並幫助我，讓我對於研究

上的問題都能迎刃而解，還要感謝實驗室的學長庭楨以及小胖給予我的幫助以及感謝學

弟俊男幫助我在研究上有更快的進度，此外要感謝全實驗室的學長姐同學學弟們，讓我

在這個實驗室能以愉快的心情去作研究。

再來要感謝 Ocean group 的全部成員，尤其是建青學長給予我許多研究上的建議以

及研究的方向，讓我能夠更專注在我的研究，也感謝整個 Ocean group 提供了我許多研

究相關的資訊以及建議。

最要感謝的就是我的家人，因為有你們在我背後全力的支持與付出，讓我能夠專心

於我的研究。

 vi

Contents

Chapter 1 Introduction..1

1.1 Overview of Channel Codec for Wireless Metropolitan Area Network.......................1

1.2 Motivation ..1

1.3 Thesis Organization ..2

Chapter 2 LDPC Code..3

2.1 Concept of LDPC ...3

2.1.1 Message Passing Algorithm ..4

2.1.2 Decoding Concept ... 11

2.1.3 Decoding Flow ..13

2.2 LDPC Code for 802.16e ...16

2.2.1 Parity Check Matrix Definition ...18

2.2.2 LDPC Encoder...20

2.2.3 Implementation Bottleneck..22

Chapter 3 Algorithm Optimization for Implementation...23

3.1 Min-Sum Algorithm ...23

3.2 Simulation Result ...30

Chapter 4 Architecture Design and Circuit Implementation ..35

4.1 Decoder Design ..35

4.1.1 Architecture Overview...35

4.1.2 Iterative Decoding Block...36

4.1.3 Memory Arrangement..44

4.1.4 Cyclic Shift Block ...44

4.1.5 Shift Size ROM Table..48

4.2 Chip Implementation ..50

Chapter 5 Conclusion and Future Work ...53

5.1 Conclusion..53

5.2 Future Work ..53

References..54

 vii

List of Figures
Fig. 2.1 An example of normal graph ..5

Fig. 2.2 Graph representation of the extrinsic and the intrinsic probabilities.................6

Fig. 2.3 Graph representation of the message passing between two vertices...................8

Fig. 2.4 The corresponding Tanner graph... 11

Fig. 2.4 The check node update for B1 ...12

Fig. 2.5 Bit node update for B1 ...13

Fig. 2.6 The example of definition for decoding procedure ...14

Fig. 2.8 The definition of Hb2 ..19

Fig. 2.9 Decomposition of parity check matrix ...21

Fig. 2.10 The architecture of encoder for LDPC codes ..21

Fig. 3.1 The check node with degree d...24

Fig. 3.2 The bit node with degree k ..25

Fig. 3.3 Plot of the ()xΨ function ..28

Fig. 3.4 Simulation result (1): theoretical value for maximum code length30

Fig. 3.5 Simulation result (2): theoretical value for minimum code length....................31

Fig. 3.6 Simulation result (3): Normalization factor comparison31

Fig. 3.7 Simulation result (4): Fixed-point simulation for integer part32

Fig. 3.8 Simulation result (5): Fixed-point simulation for fraction part.........................33

Fig. 3.9 Simulation result (6): Fixed-point simulation for iteration................................33

Fig. 4.1 LDPC decoding flow ..35

Fig. 4.2 LDPC decoder block diagram ..36

Fig. 4.2 Check Node Updating Memory Access Schedule..38

Fig. 4.3 One Data Sorter ...39

Fig. 4.4 C2B Register Arrangement ...39

Fig. 4.5 B2C block architecture ..41

Fig. 4.6 XOR block architecture...42

Fig. 4.7 B2C memory block ..43

Fig. 4.8 Deriving ,n kq architecture ...43

Fig. 4.9 5 5× identity matrix and its permutation ...45

 viii

Fig. 4.10 C2B register arrangement...45

Fig. 4.11 C2B register arrangement after shifting ..45

Fig. 4.12 B2C memory arrangement..46

Fig. 4.13 B2C memory arrangement after right shifting ...46

Fig. 4.14 B2C memory arrangement after left shifting ..46

Fig. 4.15 Sharing mechanism of cyclic shifter...47

Fig. 4.16 Two level cyclic shifter...48

Fig. 4.17 Overall architecture ...49

Fig. 4.18 Chip layout of the LDPC decoder chip ..50

 ix

List of Tables

Table 2.1 LDPC block size and code rate ..17
Table 3.1 Parameter setting for implementation ..34
Table 4.1 Summary of the LDPC decoder chip ..51
Table 4.2 Gate count of functional block...51
Table 4.3 Comparison of LDPC chip ...52

 1

Chapter 1

Introduction

1.1 Overview of Channel Codec for Wireless Metropolitan

Area Network

Wireless Metropolitan Area Network, allowing end-users to travel throughout a hot zone

cell without losing connectivity, has been a very important technique in wireless

communication. The services provide portability and mobility to make users more convenient

to access information. For a high quality service, the channel capacity seems more important

for WiMAN, therefore, the error correcting capability is a great issue in WiMAN. In WiMAN

802.16e standard [23], there are four channel coding methods: Convolutional coding (CC) [1],

Reed-solomon coding (RS)[2], Turbo coding [3], and Low-Density Parity Check Coding

(LDPC) [4]. The first three codes have been proposed in many application, such as DVB-T

etc, and LDPC coding was rediscovered in recent years. Because LDPC can provide a better

error correcting capability than the first three codes, so WiMAN adopts LDPC coding as an

optional error correcting method.

1.2 Motivation

LDPC code was first proposed by Gallager [4] in 1953. It can provide a better

performance in error correcting capability, but due to the difficulty of circuit implementation,

LDPC code was not on the main stream until it was rediscovered by Mackay [5][6]. LDPC

code provide a simple algorithm when decoding, however, the circuit implementation is still a

 2

great challenge even the implementation technique has advanced a lot. In WiMAN 802.16e

standard, it provides many different types of LDPC parity check matrix for users to choose

according to the tradeoff between performance and cost. All types of parity check matrices

make the architecture hard to design.

In this thesis, we propose an architecture that can support all types of parity check

matrices in WiMAN 802.16e. The architecture provides a partial parallel computation unit

method to accelerate the throughput rate, and employs the special characteristics of LDPC

code in 802.16e to make the data paths and memory controls more simple to decrease the

hardware complexity in circuit implementation. The detail discussion and architecture will be

given in the following chapters.

1.3 Thesis Organization

The remainder of this thesis is organized as follow. Chapter 2 describes the concept and

the decoding algorithm of LDPC codes and the definition of parity check matrix of LDPC in

WiMAN 802.16e standard. Some improved algorithms for LDPC codes and simulation results

are introduced at Chapter 3. In Chapter 4, the proposed LDPC decoder architecture, including

functional units, memory arrangement, are presented in detail. Besides, the chip

implementation results and the summary will be described in Chapter 5. Finally, conclusions

and future work are made in Chapter 6.

 3

Chapter 2
LDPC Code

Low-density parity check (LDPC) code was first introduced by Gallager in the 1960s,

but was almost forgotten until Mackay and Neal rediscovered. The most advantage of LDPC

codes is it can achieve near Shannon limit error performance. Besides, its algorithm provides

very simple arithmetic computations and parallelism to decrease the complexity of hardware

design and increase the throughput rate. With these advantages, many applications, such as

802.16e and DVB-S2, have took LDPC codes into account for the forward error correction

(FEC) to achieve high-speed and high performance.

2.1 Concept of LDPC

LDPC codes, just a linear block, is constructed by a sparse parity check matrix H which

means there are almost zeros and only a small number of ones in the entries. With the sparse

matrix H, the complexity of computation is reduced in decoding. LDPC codes can be divided

into two types, one is regular LDPC code, the other is irregular LDPC code. The regular

LDPC codes mean that each row has the same number of ones, and each column does so. For

example, in a regular M-by-N LDPC code, there are λ ones in each of the M rows and ρ ones

in each of the N columns. The irregular LDPC codes mean the numbers of ones in the rows

and the columns are different.

 4

2.1.1 Message Passing Algorithm

LDPC decoding algorithm is based on soft iterative decoding which relies on the message

passing algorithm [8][9][16]. Thus, in this section, message passing algorithm which is based

on the probabilistic decoding is introduced. For a variable x, there are three important

probabilities in message passing algorithm. For the event (or called the constraint) {x=a},

suppose that E is an event affecting on the variable x. The intrinsic probability [10]

represents the probability P(x=a) that the variable x takes the value a. So for the variable x

with respect to E, its intrinsic probability can be denoted by

() ()int
EP x a P x a= = = (2.1)

On the other hand, the posterior probability is the conditional probability for the variable x

taking the value a based on the knowledge of the event E. The posterior probability can be

denoted by

() (|)post
EP x a P x a E= = = (2.2)

The two probabilities can be viewed as the probability before and after taking the event E

into account.

Besides, with Bayes’ theorem, the posterior probability can be rewritten as follow：

.
1(|) (|) ()
()

prop to extrinsicposterior intrinsic

P x a E P E x a P x a
P E

= = = =
6 4 7 4 8 6 4 7 4 8 64 7 48

 (2.3)

The term at right-hand side of the equation ()P x a= is the intrinsic probability. The term

(|)P E x a= is proportional to the extrinsic probability, which describes the probability that

the new information for x obtained from the event E. The extrinsic probability can be denoted

by

1

'
() ((| ')) (|) (|)ext

E e
a A

P x a P E x a P E x a P E x aρ−

∈

= = = = = =∑ (2.4)

eρ represents the normalization constant to make the summation of the terms (')ext
EP x a=

 5

for 'a A∈ equals to 1 (i.e.,
'

(') 1ext
E

a A

P x a
∈

= =∑), assuming a’ takes values from the

alphabet set A.

Then the relationship between the intrinsic, extrinsic and posterior probabilities in (2.3) can be

rewritten as

() () ()post int ext
E E EcP x a P x a P x aρ= = = = (2.5)

Where cρ is a normalization constant as follow

1

() ()int ext
c E E

a A

P x a P x aρ
−

∈

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
∑ (2.6)

If A=GF(2), GF(2) denotes the set which only has two possible value 0 and 1, also called

binary variables. The log-likelihood ratio representation for (2.5) is

(1) (1) (1)() ln ln ln () ()
(0) (0) (0)

post int ext
post ext int

post int ext

P x P x P xL x L x L x
P x P x P x

= = =
= = + = +

= = = (2.7)

In the graph representation, we use a normal graph [11][12] which is an undirected graph,

consisting of nodes、ordinary edges and left edges. The nodes denote the constraints and the

ordinary edges denote the state variable for message passing and the left edges denote the

symbol variables. Fig. 2.1 shows an example with three vertices：

The edges connecting two vertices are ordinary edges, and the edges connecting only one

vertex is left edges

C1

C3 C2

left edge

ordinary edge
vertex

Fig. 2.1 An example of normal graph

 6

Fig. 2.2 Graph representation of the extrinsic and the intrinsic probabilities

One node

Now consider a single node C, with d edges, as shown in Fig. 2.2. There are d-1 left edges.

We define a set cS which is a subspace of the d-dimensional vector space dA (d
c ⊂S A),

and any d-tuple 1 2 c(, ,...,)dx x x= ∈x S will satisfy the constraint C. Each edge has the

intrinsic probability ()int
jP x associated with the symbol jx for 1 ~j d= , then a posteriori

probability of a symbol jx with respect to C will be obtained from the combination of the

intrinsic probabilities and the extrinsic probability ()ext
iP x . Therefore we have to evaluate

()ext
iP x based on the constraint C and the intrinsic probabilities ()int

jP x with j i≠ . The

extrinsic probability ()ext
iP x is

() (|)ext
i e iP x P C xρ= (2.8)

To evaluate the extrinsic probability, we have to evaluate the conditional probability

(|)iP C x , The conditional probability (|)iP C x can be evaluated as

 7

() 1
,

c

1 1 1
,

c

1 1 1 1 1 1
,

c

| (,{ } |)

(, ,..., , ,..., |)

(| ,..., , ,...,) (,..., , ,..., |)

j

j

j

d
i j j i

x j i

i i d i
x j i

i i d i i d i
x j i

P C x P C x x

P C x x x x x

P C x x x x P x x x x x

=
∀ ≠

∈

− +
∀ ≠

∈

− + − +
∀ ≠

∈

=

=

=

∑

∑

∑

x S

x S

x S

(2.9)

The first term on the right-hand side of (2.9) is always equal to 1 because the constraint C is

always true with given 1{ }d
j jx = where 1{ }d

j jx = belong to the constraint set cS . And the last

term on the right-hand side is rewritten based on the independence of the variables 1{ }d
j jx =

1 1 1
1

(,..., , ,..., |) ()
d

int
i i d i j

j
j i

P x x x x x P x− +
=
≠

=∏ (2,10)

The (2.8) can be rewritten as

, 1
c

() ()
j

d
ext int

i e j
x j i j

j i

P x P xρ
∀ ≠ =

≠∈

= ∑ ∏
x S

 (2.11)

And the posterior probability can be derived using (2.11)：

()

, 1
c

(

() ()

)
j

post int ext
c

d
int

c j
x

i

i j

i

j

iP x P x

P x

P xρ

ρ
∀ ≠ =

∈

=

= ∑ ∏
x S

 (2.12)

Where oc% is the normalization constant as

1

1
c

()
i

d
int

c j
x j

P xρ

−

=
∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑∏
x S

 (2.13)

 8

...
... ...

...

Fig. 2.3 Graph representation of the message passing between two vertices

Two node

Moreover, we consider the graph with two vertices (constraints), C1 and C2, as shown in Fig.

2.3. The constraint C1 has 1i − left edges and one ordinary edge, corresponding to the

symbol 1 1~ ix x − and ix . On the other hand, ~i dx x are constrained by C2 where only ix

is on the ordinary edge. Besides, the two vertices are associated to two constrain set, 1cS and

2cS such that any 1 2 1(, ,...,) cix x x= ∈1x S and 1 2(, ,...,) ci i dx x x+= ∈2x S . As shown in Fig.

2.3, the symbol 1ix + is considered first, we have to evaluate the extrinsic probability for the

left edge based on both C1 and C2. First, we only consider the constrain C2, according to the

result in (2.11),the extrinsic probability can be rewritten as

1
2

1 2 2 1 2 (2)
\ 2

c

() (|) () ()
i

d
ext int int

i i i j
x j i

P x P C x P x P xρ ρ
+

+ +
= +

∈

= = ∑ ∏
2
2

x
x S

 (2.14)

The intrinsic probability (2) ()int
iP x for C2 in on the ordinary edge that is unable to be acquired

from the inputs. Therefore, we evaluate the extrinsic probability based on both constrains C1

and C2.

1 1 2 1() (, |)ext
i e iP x P C C xρ+ += (2.15)

We can rewrite the above probability as

 9

()

() ()

()

2 1
2 2

2 1
2 2

2 1
2 2

1 2 1 1 2 2 1
x \
x c

2 1 1 2 1
x \
x c

1 2 1
x \
x c

, | (, , , ,..., |)

| , , , ,..., |

, , ,..., |

i

i

i

i i i d i
x

i i d i
x

i i d i
x

P C C x P C C x x x x

P C C P C x x x x

P C x x x x

+

+

+

+ + +

∈

+ +

∈

+ +

∈

=

=

=

∑

∑

∑

S

2

S

S

x
 (2.16)

where the second equality comes from a Markov chain

1 2 1 2(, |) (|) (|)i i iP C C x P C x P C x= (2.17)

Such that the term

()2 1 2| , (|) 1P C C P C= =2 2x x , for 2c∈2x S (2.18)

The term on the right-side of (2.16) can be continuously rewritten as

()1 2 1 1 2 1

1

1

1
1 (1)

2

, , ,..., | (|) (, ,..., |)

(|) ()

() () () ()

i i d i i i d i

d

i j
j i
j i

d
ext int

i i j
j i

P C x x x x P C P x x x x

P C x P x

P x P x P xρ

+ + + +

=
≠ +

−

= +

=

=

=

∏

∏

2x

 (2.19)

From the Fig. 2.3,

 (1) 1 1() (|)ext
i iP x P C xρ= (2.20)

is the extrinsic probability of ix with respect to C1, and the intrinsic probability ()int
iP x is

for the ordinary edge variable ix . Since the ordinary edge connect C1 and C2 without any

external input, the probability ()int
iP x can be initialized to be a constant. We set

1()
| |

int
iP x =

A
 for ix ∈A . Therefore, the extrinsic probability in (2.15) can be expressed as

2 1
2 2

1 (1)
x \ 2
x c

() ' () ()
i

d
ext ext

i e i j
x j i

P x P x P xρ
+

+
= +

∈

= ∑ ∏
S

 (2.21)

Where 1' / | |e cρ ρ ρ= A , from the Fig. 2.3, we can know that

 10

(2) (1)() ()int ext
i iP x P x= (2.22)

if (1) ()ext
iP x is available. So only constrain C2 is necessary for estimating 1()ext

iP x + . In the

same way, ()ext
jP x for (2) ~j i d= + can also be derived. Moreover, ()ext

lP x with

1 ~ (1)l i= − , the extrinsic probability (2) ()ext
iP x with respected to C2 is required. And the

intrinsic probability is assume that

(1) (2)() ()int ext
i iP x P x= (2.23)

The processes of (2.22) and (2.23) are the message passing between the vertex C1 and C2.

With the message algorithm, we can simplify the problem of solving both C1 and C2 into the

problem of solving the single vertex graph. The problem is more simple than the original

problem. We concludes the message passed on the edge ix as follow：

 1 2

1
1 1

1

(1) 1
x \ 1
x c

() () ()
i

i
ext

C C i i j
x j

x P x P xμ ρ
−

→
=

∈

= = ∑ ∏
S

 (2.24)

2 1

2
2 2

(2) 2
x \ 1
x c

() () ()
i

d
ext

C C i i j
x j i

x P x P xμ ρ→
= +

∈

= = ∑ ∏
S

 (2.25)

The operation in the message passing is the sum of products, thus the message passing

algorithm is also called the sum-product algorithm [13].

Generally, if the graph consisting vertices, C0, C1,…,Cd, the vertex C0 has d ordinary edges

that respectively connect to C1, C2,…, Cd with symbol variables x1,x2,…,xd. Assuming the

message
0
()Cj C jxμ → with 1 ~j d= have been derived from 1 ~ dC C , we can evaluate

0 iC Cμ → by

0 0

0

x\ 1
x c

()
i i

i

d

C C C C j
x j

j i

xμ μ→ →
=
≠∈

= ∑ ∏
S

 (2.26)

 11

Where 0Sc is the constrain set for C0, and 1 2(, ,...,)dx x x=x . And the message
0 iC Cμ →

for 1 ~i d= can be obtained and become the intrinsic probability inputs for the vertices

C1~Cd.

2.1.2 Decoding Concept

Just like linear block codes, the goal of a M-by-N LDPC codes is, given a codeword

1 2[, , ,]T
Nx x x=X L , to satisfy the equation 0HX = . LDPC codes can be represented by a

Tanner graph [14][15]. Fig. 1 is an illustrative example of a 2 × 4 parity check matrix H.

There are four bit nodes, B1, B2, B3, B4, (also called variable node), which represent the 4-bits

codeword 1 2 3 4[, , ,]Tx x x x=X , and there are two check nodes, C1, C2, which represent the two

parity check equation of H. The connections between check nodes and bit node means that

there are ones at the corresponding positions in the parity check matrix H. For example, the

connection between C1 and B1 means that 11 1H = in the parity check matrix H, where Hmn

denotes the element at the mth row and the nth column of H. In the thesis, for simplicity, we

only consider binary LDPC codes. So every addition actually denotes exclusive-or.

1

1 22

1 3 43

4

01 1 0 0 0
0

01 0 1 1 0

x
x xx

x x xx
x

⎡ ⎤
⎢ ⎥ ⊕ =⎧⎡ ⎤ ⎡ ⎤⎢ ⎥= ⇒ = ⇒ ⎨⎢ ⎥ ⎢ ⎥⎢ ⎥ ⊕ ⊕ =⎣ ⎦ ⎣ ⎦ ⎩
⎢ ⎥
⎣ ⎦

HX (2.27)

C1 C2

B1 B2 B3 B4

Check Node

Bit Node

Fig. 2.4 The corresponding Tanner graph

 12

LDPC decoding is based on the belief propagation (BP) algorithm, also called message

passing algorithm, which provides an efficient and powerful approach to decode LDPC codes.

Each bit node transmits its information to other bit nodes through the check node equation.

The erroneous data can possibly be correct with iterative exchanging information between

check nodes and bit nodes.

Now we first introduce the LDPC decoding algorithm in the simple view of probability. Take

Fig. 1 as example, as Fig. 2, we first update the bit node information through the check node

equation. We call this process check node update. Let us consider the first check node

Eqn.(2.1) 1 2 0x x⊕ = . To obtain the probability of x1, assume we know the probability of

2 0x = is q0, denotes as 2 0(0)P x q= = , and 2 1(1)p x q= = (The equation 0 1 1q q+ = is

always true). We can know x1 and x2 must be the same to satisfy the equation 1 2 0x x⊕ = . So

we can obtain 1 0(0)P x q= = and 1 1(1)p x q= = .

C1

B1 B2

(q0,q1)

C2

B1 B3 B4

(q0,q1) (r0,r1)

Fig. 2.4 The check node update for B1

Now we consider the second check node equation 1 3 4 0x x x⊕ ⊕ = . To get the probability of

x1, assume we know 3 0(0)P x q= = , 3 1(1)P x q= = , 4 0(0)P x r= = and 4 1(1)P x r= = .

Through the second check node equation, we can derive the following equation：

1 3 4 3 4 3 4 0 0 1 1

1 3 4 3 4 3 4 1 0 0 1

(0) (0) (0) (0) (1) (1)
(1) (1) (1) (0) (0) (1)

P x P x x P x P x P x P x q r q r
P x P x x P x P x P x P x q r q r

= = ⊕ = = = = + = = = +⎧
⎨ = = ⊕ = = = = + = = = +⎩

(2.2)

Here we define 0 1 0 1 0 0 1 1 1 0 0 1(, , ,) (,)CHK q q r r q r q r q r q r= + + . Then we obtain each bit node’s

 13

probability through the check nodes that connects to it.

We will do the next process called bit node update. This process is for bit nodes to gather all

probability from the check nodes connecting to them. Fig. 3 is the illustration for bit node

update. There are two check nodes connecting to bit node 1, so bit node 1’s probability can be

calculate as follow：

1 1 1 2 1 0 0

1 1 1 2 1 1 1

(0) (0 0) (0 0)
(1) (0 1) (0 1)

P x P C and x P C and x q r
P x P C and x P C and x q r

= ∝ = = = = =
= ∝ = = = = =

 (2.28)

C1 C2

B1

(q0,q1) (r0,r1)

Fig. 2.5 Bit node update for B1

To ensure (0) (1) 1P x P x= + = = , we normalize the probability of x1. So we can obtain that

 0 0 1 1
1 1

0 0 1 1 0 0 1 1

(0) (1)q r q rP x P x
q r q r q r q r

= = = =
+ +

 (2.29)

Here we define

0 0 1 1
0 1 0 1

0 0 1 1 0 0 1 1

(, , ,) (,)q r q rVAR q q r r
q r q r q r q r

=
+ +

 (2.30)

2.1.3 Decoding Flow

Based on the above equation we can roughly construct the LDPC decoding algorithm. In

order to decrease complexity of computations, we represent the probabilistic messages by

Log-Likelihood Ratios (LLR), the LLR is defines as

(0)() ln ln
(1)

P UL U
P U

λ=
=

=
@ (2.31)

Then the equation can be rewritten as

 14

1 2 1 2
1 2

1 2 1 21 2

1 2
1 2 1 2

1 2

2 2

2 2

1(,) () ln

1ln ln

U U U U
U U

U U U UU U

CHK U U CHK U U

e e e e
e e

e e

λ λ
λ λ
+ +

−

− −
−

+
= ⊕ =

+

+ +
= =

+
+

 (2.32)

1 2 1 2 1 2 1 2(,) ln() ln lnVAR U U L Lλ λ λ λ= = + = + (2.33)

These two equations can be computed in Log-Likelihood Ratios form to reduce the numbers

of computation parameters and VAR equation only needs addition operation instead of

multiplication and division. If we construct the general form of CHK and VAR, we can get that

1 2 1 2

1 2 3

(, ,...,) (...)
((... (())...))

N N

N

CHK U U U CHK U U U
CHK CHK CHK CHK U U U U

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕

 (2.34)

1 2 1 2

1 2 1 2

(, ,...,) ln(...)
ln ln ... ln ...

N N

N N

VAR U U U
L L L

λ λ λ
λ λ λ

=
= + + + = + + +

 (2.35)

Before we describe the BP decoding algorithm, we define some parameters for

simplifying decoding procedure. Take Fig. 4 for example, Fig. 4 is a 4 × 6 parity check

matrix.

1 0 0 0 0 0
0 1 0 0 0 1
1 0 0 1 1 0
1 1 1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Fig. 2.6 The example of definition for decoding procedure

M(n) denotes the set of check nodes that connect to the bit node n, where n represents the nth

column of the parity check matrix, i.e., M(n) represents the positions of “1”s in the nth

column. L(k) denotes the set of bit nodes that connect to the check node k, where k represents

the kth row of the parity check matrix, i.e., L(k) represent the positions of “1”s in the kth row.

M(n)\k denotes the set of M(n) excluding the kth check node, and L(k)\n denotes the set of L(k)

 15

excluding the nth bit node. “qn,k” denotes the probability of information that the bit node n

transmits to the check node k, “rk,n” denotes the probability of information that the check node

k transmits to the bit node n. BP algorithm is based on iterative decoding procedure, the

iterative decoding procedure is shown below.

Initialization

We assume the channel is AWGN channel, BPSK mapping (0 mapped to +1 and 1

mapped to -1) is used. un is the channel’s input, and yn is the channel’s output. The channel

transition probabilities are shown below

2

2

2

2

(1)

2
2

(1)

2
2

1(1|)
2

1(1) (1|)
2

n

n

y

n n n

y

n n n

p p u y e

p p u y e

σ

σ

πσ

πσ

+
−

−
−

= = − =

− = = + =
 (2.36)

In the LLR form the probability is rewritten as

2 2
2

1 ((1) (1))
2

2

(1|) 2() ln ln
(1|)

n ny y
n n

n n
n n

p u yL u e y
p u y

σ

σ
− − − += +

= = =
= −

 (2.37)

We set the initial probabilities of qn,k as L(un) and rk,n as zero.

Message passing

1st step：check node updating, i.e., information passing from check nodes to bit nodes by

collecting the incoming information qn,k’s. Then we update the probabilities rk,n’s for the next

step.

, ',' ()\
()k n n kn L k n

r CHK q
∈

= ⊕∑ (2.38)

 2nd step: bit node updating, i.e., information passing from each bit node to check nodes

by collecting the incoming information rk,n’s. We update the probabilities qn,k’s for next

 16

iteration decoding and make decision at next step.

, ', ',' ()\ ' ()\
((), ()) ()n k k n k nk M n k k M n k

q VAR VAR r L n L n r
∈ ∈

= = + ∑ (2.39)

 3rd step: summing up, for each bit node n, we sum up all information from all the check

nodes connecting to the bit node n. We define qk’s as the summation results.

, ,() ()
((), ()) ()n k n k nk M n k M n

q VAR VAR r L n L n r
∈ ∈

= = + ∑ (2.40)

Decision

 We decode nu
∧

 by analyzing qn, 0nq ≥ represents that the probability of 1nu
∧

= is

larger than that of 0nu
∧

= , so we can derive the following equation：

0 0
1

n
n

if q
u

otherwise

∧ ≥⎧
= ⎨
⎩

 (2.41)

 According to the nu
∧

’s we obtain above, we check whether nu
∧

 satisfies the parity check

equation 0u
∧

=Hg . If yes, nu
∧

 is a legal codeword, then the iterative decoding stop. If not,

return back to the message passing procedure until the legal codeword is obtained or the

maximum iteration number is achieved.

2.2 LDPC Code for 802.16e

In WiMAX 802.16e , there are 19 types of block size, from 576 to 2304, each block size is a

multiple of 24. There are six types of code rate, including 1/2, 2/3 (A,B), 3/4 (A,B), 5/6. Table

1 shows the 19 types block size and their corresponding parameters. “z factor” represents a

shift size factor according to different block sizes. Because LDPC code in 802.16e is a

systematic code. Codeword is composed of original information bits and parity check bits.

“k” represents the original information size without parity check bits. The users have to adapt

 17

block size and code rate according to the channel situation to achieve high-speed with

satisfying the error correction capacity.

Table 2.1 LDPC block size and code rate

k (bytes)
n (bit) n (bytes) z factor

R=1/2 R=2/3 R=3/4 R=5/6

576 72 24 36 48 54 60

672 84 28 42 56 63 70

768 96 32 48 64 72 80

864 108 36 54 72 81 90

960 120 40 60 80 90 100

1056 132 44 66 88 99 110

1152 144 48 72 96 108 120

1248 156 52 78 104 117 130

1344 168 56 84 112 126 140

1440 180 60 90 120 135 150

1536 192 64 96 128 144 160

1632 204 68 102 136 153 170

1728 216 72 108 144 162 180

1824 228 76 114 152 171 190

1920 240 80 120 160 180 200

2016 252 84 126 168 189 210

2112 264 88 132 176 198 220

2208 276 92 138 184 207 230

2304 288 96 144 192 216 240

 18

2.2.1 Parity Check Matrix Definition

Each LDPC code is defined by a matrix H of size m-by-n, where n is as previously defined-

the length of the code, and m is the number of the number of parity check bits in the code.

The parity check matrix H is defined as：

0,0 0,1 0,2 0, 2 0, 1

1,0 1,1 1,2 1, 2 1, 1

2,0 2,1 2,2 2, 2 2, 1

1,0 1,1 1,2 1, 2 1, 1

b b

b b

b

b b

b b b b b b b

n n

n n
H

n n

m m m m n m n

− −

− −

− −

− − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P P P P

P P P P P

Η PP P P P P

P P P P P

L

L

L

L L L L L L

L

Fig 2.7 the parity check matrix of LDPC codes

where ,i jP is one of a set of z-by-z permutation matrices or a z-by-z zero matrix. The matrix

H is expanded from a binary base matrix Hb of size of mb-by-nb. where /b fm m z= and

/b fn n z= , with zf is the z factor corresponding to the code length. The base matrix Hb is

expanded by replacing each 1 with a z-by-z permutation matrix and each 0 with a z-by-z zero

matrix. The base matrix size nb is always equal to 24 and mb is set according to the code rate

as follow：

Table 2.2 Row number of code rate

Code rate 1/2 2/3 3/4 5/6

mb 12 8 6 4

The matrix Hb only has information about whether the ,i jP is a permutation matrix or a

zero matrix, it doesn’t contain shift size of permutation matrix. The permutations are circular

right shift, and the set of permutation matrices contains the z-by-z identity matrix and circular

right shifted of the identity matrix. Each permutation matrix is specified a single circular right

shift factor, so the binary base matrix information and permutation shift information can be

combined into a compact model matrix Hbm. The matrix Hbm is the same size as the binary

 19

base matrix Hb, and each entry (i,j) of Hb is replaced by the permutation information to

generate the model matrix Hbm, Each 0 in Hb is replaced by a negative value (e.g. by -1) to

denote a z-by-z zero matrix and Each 1 in Hb is replaced by a circular shift factor (,)P i j

((,)P i j is a positive integer).

Hb can be partitioned into two parts- Hb1 and Hb2, where Hb1 corresponds to the systematic

bits and Hb2 corresponds to the parity check bits as follow:

[() | ()]
b b b bm k m m× ×=b b1 b2H H H (2.42)

where /b fk k z= .

Hb2 also can be partitioned into two parts- hb and H’b2, where vector hb has odd weight and

H’b2 has a dual-diagonal structure, where the matrix element (i,j) (i denotes row and j denotes

column) is equal to 1 when i=j and i=j+1, and equal to 0 elsewhere:

[|]
(0) | 1
(1) | 1 1 0
(2) | 1

|
| 0 1

(1) | 1 1

b

b

b

b b

h
h
h

h m

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b2 b b2H h H'

M O

M O

Fig. 2.8 The definition of Hb2

The matrix hb has a characteristic that hb(0) and hb(mb-1) are equal to 1, one of

[hb(1),hb(2),…,hb(mb-1)] is equal to 1, and others are equal to 0.

In model matrix Hbm, each 1 in H’b2 has a shift size of 0, indicating that there is a z-by-z

identity matrix when expanding to H, and hb(0) and hb(mb-1) have the same shift sizes.

The base model matrix Hbm is defined for the largest code length (n=2304) of all code

rate. For other code lengths, the shift sizes have to be changed according to the code length.

The set of shifts (,)P i j in the base model matrix Hbm are still used for other code length of

 20

the same code rate.

For code rates 1/2 code, 2/3A and B code, 2/3B code and 5/6 code, the shift sizes

{ (, ,)}P f i j for a code size corresponding to the expansion factor zf are derived from (,)P i j

by scaling (,)P i j proportionally:

0

(,), (,) 0
(,)(, ,)

, (,) 0f

p i j p i j
p i j zp f i j

p i j
z

≤⎧
⎪= ⎢ ⎥⎨ >⎢ ⎥⎪
⎣ ⎦⎩

 (2.43)

Where f denotes the index of 19 types of code length for a giving code rate, f=0,1,2,…,18, f=0

denotes the largest code length (n=2304). zf denotes the z factor corresponding to the code

length, so z0 represents the z factor of the largest code length (n=2304) and is set to 96.

Besides, the operation x⎢ ⎥⎣ ⎦ denotes that it only gets the integer part of x when x is positive.

For code rate 2/3A code, the shift sizes { (, ,)}P f i j for a code size corresponding to the

expansion factor zf are derived from (,)P i j by using a modulo function:

(,), (,) 0
(, ,)

mod((,),), (,) 0f

p i j p i j
p f i j

p i j z p i j
≤⎧

= ⎨ >⎩
 (2.44)

2.2.2 LDPC Encoder

For efficiency and memory saving, LDPC encoder generates codeword with parity check

matrix H instead of generator matrix G by Richardson [7]. Because parity check matrix H is

in an approximate lower triangular form, so the matrix can be written in the form:

A B T
H

C D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

where A is ()m z k− × , B is ()m z z− × , T is () ()m z m z− × − , C is z k× , D is z z× and

finally E is ()z m z× − , here z is the same as z factor, the
B
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and D denote the expansion

of hb and hb(mb-1) respectively, the Fig. 2.9 shows the parity check matrix composition.

 21

A B T

C D E

k z m-z

m

n

m-z

z

Fig. 2.9 Decomposition of parity check matrix

Let codeword [, ,]= 1 2v u p p , where u denotes the systematic part-original message, p1 and p2

denote the parity part, p1 has length z and p2 has length (m-z). According to the definition of

parity check matrix H, each codeword of H must satisfy the equation 0TH v⋅ = . So the

equation can be rewritten as follow:

1 2

1 2

0 (1)

0 (2)

T T T

T T T

Au Bp Tp

Cu Dp Ep

⎧ + + =⎪
⎨

+ + =⎪⎩

L L L L L L

L L L L L L
 (2.45)

According to equation (1), p2
T can be rewritten as 1

2 1()T T Tp T Au Bp−= + and replace p2
T in

the equation (2), then the equation (2) becomes

1 1
1() () 0T TET A C u ET B D p− −+ + + = (2.46)

Because 1ET B D− + is an identity matrix, so p1
T can be derived from

 1
1 ()T Tp ET A C u−= + (2.47)

And p2
T can be derived from 1

2 1()T T Tp T Au Bp−= + (2.48)

The fig is the block diagram of encoder architecture:

A ET-1

C

B T-1

u
p1

p2

Fig. 2.10 The architecture of encoder for LDPC codes

 22

All the matrix that the encoder needs can be obtained from parity check matrix, only T-1

seems hard to obtain. But T is a dual diagonal matrix so it has a characteristic that T-1 is a

lower triangular matrix. This characteristic can be easily verified.

2.2.3 Implementation Bottleneck

To construct the LDPC decoder for 802.16e, there are some problems should be considered：

1、 There are 5 code rates, according to different code rates, the shift size tables are different,

and the row numbers are different, too. Thus, to construct a LDPC decoder that can

change modes by a simple control logic and share the computation units in an efficient

method is an important task.

2、 For the same mode, there are 19 block lengths, according to different block lengths, the

compositions of the parity check matrices have different z factor sub-matrices, it is

important to decrease the area for cyclic shifters when doing permutation.

3、 The computation of check node is difficult in hardware implementation. To simplify the

computation in a easier form to reduce chip area and decoding latency and in the same

condition to maintain the decoding performance is the most important task.

The maximum iteration number is also an important index while considering the latency of

the decoding flow. A smaller maximum iteration number can have better throughput rate. In

conventional LDPC decoding algorithm, it takes larger maximum iteration number to achieve

the required bit-error-rate performance. By adopting an improved algorithm, it only needs

smaller maximum iteration number to achieve the same performance.

 23

Chapter 3
Algorithm Optimization for

Implementation

In Chapter 2 we know that in the LDPC decoding algorithm, the check node update

processing occupies the most calculation latency. In this chapter, we analyze the check node

update equation based on message passing algorithm and at the view of probability to form an

approximation equation called Min-sum algorithm [25] that is much easier to implement.

Besides, we adopt a dynamic normalization factor to improve the decoding performance.

Finally, we present some simulation results for hardware implementation and performance

comparison.

3.1 Min-Sum Algorithm

Consider the check node update process, Fig. 3.1 is the check node with d degrees, the

constrain with respect to the check node is

j 1 2 1 2c {(, ,...,) | 0}d dx x x x x x= + + + =S L (3.1)

If we want to evaluate the message with respect to the constrain for the edge ix , the message

should be

() 1 1 1() ()
j i

ext
c x i i i i d ix P x P x x x x xμ → − += = + + + + + =L L (3.2)

 24

Fig. 3.1 The check node with degree d

To derive the (3.2), we consider the following equation first

()1 2 1 2 1 2

1 2 1 2

0 (0) (0) (1) (1)
(1)(1)

int int int intP x x P x P x P x P x
p p p p

+ = = = = + = =

= − − +
 (3.3)

Where ip denotes the intrinsic probability (1)int
iP x = and (3.3) can be expressed in other

form

()1 2 1 22 0 1 (1 2)(1 2)P x x p p+ = − = − − (3.4)

If we assume the equation

()1 2

1 2

1

2 0 1 2 1

(1 2)(1 2) (1 2)

(1 2)

j j

j

j

i
i

P x x x

p p p

p
=

+ + + = − = Π −

= − − −

= −∏

L

L (3.5)

is true. The following equation can be derived by

1 1 2 1

1 2 1 1 2 1

1 1

(0)

(0) (0) (1) (1)

(1) (1)

j j j

j j j j

j j j j

P x x x x

P x x x P x P x x x P x

p p

+ +

+ +

+ +

Π = + + + + =

= + + + = = + + + + = =

= Π − + −Π

L

L L (3.6)

According to (3.6), we can derive

1 1 1

1

1

1

2 1 2 (1) (1) 1

(2 1)(1 2)

(1 2)

j j j j j

j j

j

i
i

p p

p

p

+ + +

+

+

=

⎡ ⎤Π − = Π − + −Π −⎣ ⎦
= Π − −

= −∏

 (3.7)

 25

By induction, we conclude from (3.7) that

1 2

1

(0)

1 1 (1 2)
2

d d

k

i
i

P x x x

p
=

Π = + + + =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∏

L

 (3.8)

Then (3.2) can be obtained from

() ()
1,

10 1 (1 2 1)
2j i l j

d

c x i x c l
l l i

x xμ μ→ →
= ≠

⎡ ⎤
= = + − =⎢ ⎥

⎣ ⎦
∏ (3.9)

() ()
1,

11 1 (1 2 1)
2j i l j

d

c x i x c l
l l i

x xμ μ→ →
= ≠

⎡ ⎤
= = − − =⎢ ⎥

⎣ ⎦
∏ (3.10)

Where the probability ()1
l jx c lxμ → = is the message from the bit node lx as Fig. 3.2.

Fig. 3.2 The bit node with degree k

It received the message from the check nodes connecting to it excluding jc and sent the

message ()
l jx c lxμ → to the check node jc as

() ()
1,

0 (0) 0
i j l i

k
int

x c i b i c x i
l l j

x P x xμ ρ μ→ →
= ≠

= = = =∏g (3.11)

() ()
1,

1 (1) 1
i j l i

k
int

x c i b i c x i
l l j

x P x xμ ρ μ→ →
= ≠

= = = =∏g (3.12)

Where

()
1,

(1) 1
l i

i

k
int

b i c x i
x l l j

P x xρ μ →
= ≠

= = =∑ ∏ (3.13)

 26

The intrinsic probability ()int
iP x comes from the received symbol ir .

For simplifying the equation, we use log-likelihood ratio to represent the messages. The ratio

is defined before as (2.6)

(0) 1 (1)() ln ln
(1) (1)

P x P xL x
P x P x

= − =
= =

= =

Rewriting the above equation it will become

()

1(1)
1L xP x

e
= =

+
 (3.14)

Then we can write
()

()

1 ()1 2 (1) tanh()
1 2

L x

L x

e L xP x
e

−
− = = =

+
 (3.15)

Where the hyperbolic tangent is defined as

1tanh()
2 1

x

x

x e
e
−

=
+

 (3.16)

According to (3.15), the (3.9) and (3.10) can be reformulated with log-likelihood ratio as

()
()

()

()

()

()

1,

1,

1,

1,

1

1,

1 (1 2 1)
ln

1 (1 2 1)

1 tanh()
2

ln
1 tanh()

2

2 tanh (tanh())
2

l j

j i

l j

l j

l j

l j

d

x c l
l l i

c x i d

x c l
l l i

d
x c l

l l i

d
x c l

l l i

d
x c l

l l i

x
L x

x

L x

L x

L x

μ

μ

→
= ≠

→

→
= ≠

→

= ≠

→

= ≠

→−

= ≠

+ − =
=

− − =

+
=

−

=

∏

∏

∏

∏

∏

 (3.17)

Where the inverse hyperbolic tangent is

1 1 1tanh () ln
2 1

yy
y

− +
=

−
 (3.18)

Furthermore, we define a new function for 0x >

1 1() () ln ln(tanh())
1 2

x

x

e xx x
e

−
−

−

+
Ψ = Ψ = = −

−
 (3.19)

 27

Then we decompose the term in (3.17)

()

()() ()

1, 1,

1,1,

1,1,

tanh
2

() exp ln

exp ln tanh
2

l j

l j

l j

d d
x c l

l
l l i l l i

d d

l l
l l il l i

d d x c l

x c l
l l il l i

L x
A

sign A A

L x
sign L x

→

= ≠ = ≠

= ≠= ≠

→

→
= ≠= ≠

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

∏ ∏

∑∏

∑∏

(3.20)

The sign magnitude of lA is the same with ()
l jx c lL x→ . And we note that for any integer t

() () ()
()

1 1 1
1 ln

1 1

t x
t

t x

e
x

e

−
−

−

+ −
− Ψ =

− −
 (3.21)

Then we replace the x in (3.21) as

()
1,

ln tanh
2

l j
d x c l

l l i

L x
x

→

= ≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ (3.22)

(3.17) is rewritten as

() ()() ()

()() ()()

1

1,1,

1

1,1,

ln tanh
2

l j

j i l j

l j l j

d d x c l

c x i x c l
l l il l i

d d

x c l x c l
l l il l i

L x
L x sign L x

sign L x L x

→−
→ →

= ≠= ≠

−
→ →

= ≠= ≠

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞ ⎜ ⎟⎢ ⎥⎜ ⎟= Ψ −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞ ⎛ ⎞

= Ψ Ψ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑∏

∑∏
 (3.23)

Compared to (3.17), the multiplications are replaced with additions, it is easier for

implementation. And the message from bit node ix to check node jc can be represented as

 28

()
()

()

() ()

1,

1,

1,

(0) 0
ln

(1) 1

l i

i j

l i

l i

k
int

b i c x i
l l j

x c i k
int

b i c x i
l l j

k
int

i c x i
l l j

P x x
L x

P x x

L x L x

ρ μ

ρ μ

→
= ≠

→

→
= ≠

→
= ≠

= =
=

= =

= +

∏

∏

∑

g

g
 (3.24)

For hardware implementation, the function ()xΨ in (3.23) is often constructed by the table

look-up approach because the operation of ()xΨ is too complex.

Fig. 3.3 Plot of the ()xΨ function

Then we analyze the function ()xΨ as Fig. 3.3, from Fig. 3.3, we can find the property of

()xΨ that the smaller x has larger result of ()xΨ . In the (3.23), the summation will be

dominated by the smaller ()
l jx c lL x→ , therefore (3.23) can be simplified by an approximate

equation as

() ()() ()
()\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L x→ → →∈
= ≠

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠
∏ (3.25)

The set () \L j i is defined the same as section 2.1.3. The decoding procedure based on (3.24)

and (3.25) is referred to min-sum algorithm. We can implement the check node update with

the comparison unit instead of table look-up method. But it will lose some bit-error-rate (BER)

performance if we adopt (3.25) compared to (3.23). There are some popular compensating

 29

methods for min-sum algorithm such as offset compensation [17][18][19] and normalization

compensation [20][21][22]：

() ()() ()
()\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L x α→ → →∈
= ≠

⎛ ⎞
≈ −⎜ ⎟
⎝ ⎠
∏ (3.26)

or

() ()() ()
()\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L xβ→ → →∈
= ≠

⎛ ⎞
≈ ×⎜ ⎟

⎝ ⎠
∏ (3.27)

where α and β are compensation factor with 0α > and 0 1β< ≤ . The (3.27) often has

better performance than (3.26) because the compensation factor α in (3.26) is constant, it

won’t change depending on the value of ()
l jx c lL x→ . If we don’t know the range of

()
l jx c lL x→ , we can’t derive a optimum α . Considering the compensation factor β in

(3.27), although it is constant, but the operation is multiplication, the result will depend on the

value of ()
l jx c lL x→ , so we can derive a optimum value for β . For the same check node, we

provide two different values β for the compensation.

Compared with the Eqn.(2.32) , Eqn.(3.17), Eqn.(3.23), The last three equations need

complex computation units to derive the exponential function, the hyper-tangent function, the

()xΨ . The look-up table (LUT) is mostly used to derive the approximation value to reduce

the computation units. But the LUT’s size determined the correcting capability of these

function, if we use a detailed LUT for deriving the approximation value, the size of LUT

occupies a lot of area, otherwise, if we use a gross LUT, the error with respect to the

theoretical increase and we will loss BER performance. Min-sum algorithm using

normalization factor can almost achieve the same BER performance with the theoretical one

with a sorting unit to find the minimum value of relative input data. The area for check node

updating can be saved a lot.

 30

3.2 Simulation Results

In this section, we will present the simulation results and some parameters setting for

implementation. The simulation environment is set by the C code. All the simulation results

are signal-to-noise ratio (SNR) versus BER through changing some parameters required for

implementation.

We set the simulation environment is BPSK modulation and AWGN noise channel, according

to (3.17), we can derive the theoretical performance for 802.16e, Fig. 3.4 illustrate the SNR

versus BER.

Fig. 3.4 Simulation result (1): theoretical value for maximum code length

The simulation result is based on the maximum iteration number=20 and compare the code

1/2、2/3B、3/4A and 5/6 of the maximum code length=2304, all code rates can achieve

510BER −= before 3.5SNR dB= .

 31

Fig. 3.5 Simulation result (2): theoretical value for minimum code length

The Fig. 3.5 shows the simulation result based on the minimum code length=576, other

parameter setting is the same with Fig. 3.4. From Fig. 3.3 and 3.4, we can derive that the

parity check matrices defined in 802.16e can provide the performance of 410BER −=

between 2 ~ 7SNR dB=

Now for optimization we use min-sum algorithm with different normalize factor, the Fig. 3.5

shows the simulation result. At the simulation we take code rate=1/2 and code length=576, the

iteration number is 20.

Fig. 3.6 Simulation result (3): Normalization factor comparison

 32

For easier implementation, we choose normalize factor based on the power of 2 such as

0.75 、0.625 and 0.875. We can see that the normalize factor=0.75 can achieve almost the

theoretical result, and so as normalize factor=0.625.

For implementation, we have to process fix-point simulation to simulate the hardware

processing, The number of bits needed to present the message also requires simulation to

derive. We simulate the code length=576 and provide min-sum algorithm with normalization

factor=0.75 and iteration number is 20. First we fix the fraction part at 1bit and simulate with

different integer part bits shown as Fig. 3.6 and from the figure we can find that the integer

part bits equal to 4bits is the best choice. Then we fix the integer part at 4bits and simulate

different fraction part bits shown as Fig. 3.7. And from the figure the fraction part has best

choice of 2bits.

Fig. 3.7 Simulation result (4): Fixed-point simulation for integer part

 33

Fig. 3.8 Simulation result (5): Fixed-point simulation for fraction part

The maximum iteration number will affect the performance of BER. But the performance will

saturate with the maximum iteration number becomes larger because the dependency of

message. After iterative decoding, the assumption of dependency won’t be always true, then

the decoding equation we use will has some error with respect to the actual condition. Fig. 3.8

shows the fixed point simulation with different maximum iteration number. The simulation

parameter is based on the maximum code length=2304 of code rate 1/2. We can find that the

iteration number=20 is a good choice between latency and performance.

Fig. 3.9 Simulation result (6): Fixed-point simulation for iteration

 34

According to the simulation results above, we set out proposed architecture based on the

parameter as Table 3.1

Table 3.1 Parameter setting for implementation

Maximum iteration number 20

Normalization factor 0.75

Integer 4 bits
Bit length

Fraction 2 bits

 35

Chapter 4
 Architecture Design and Circuit

Implementation

According to our analysis and simulation, we propose a LDPC decoder architecture for

802.16e. In this LDPC decoder architecture we propose a hierarchical cyclic shifter block for

cyclic shifter. Besides, with the characteristic of LDPC decoding algorithm, the memory

arrangement is also an important point for improvement. To reduce the complexity of

computation element, we rewritten the equation for check node updating and bit node

updating to accelerate the check node updating speed to reduce the memory usage. Final we

will present the implementation result and some problems we met at backend APR process.

4.1 Decoder Design

4.1.1 Architecture Overview

According to the LDPC decoding flow shown in Fig. 4.1, the Fig. 4.2 is the block diagram of

the LDPC decoder, the decoder is partitioned into several block. Each block processes based

on the sub-matrix defined in the Section 2.2.1.

Fig. 4.1 LDPC decoding flow

 36

The decoder is designed based on the maximum input number 2304 and the maximum

column number 1152 (code rate=1/2) to support all types of LDPC code in 802.16e. Each

process is controlled by the decoder controller. The Input Buffer stores the input data and for

every Zf input data received, the Input Buffer will store the data into Channel Value Memory.

Beside, it also stores the data into the B2C memory for the first iteration check node updating.

The C2B update block reads data from the B2C memory to process check node updating. The

check node output registers store the check node updating result. Then the B2C update block

reads data from the C2B registers and stores the results at B2C memory. The iteration repeats

between C2B update and B2C update, the iteration decoding processes until the maximum

iteration is reached. Final, the Decision block decides whether the data is one (or zero) based

on the result of B2C update. The detail process and architecture is explained at the following

sub section.

Fig. 4.2 LDPC decoder block diagram

4.1.2 Iterative Decoding Block

In this section we will introduce the proposed iterative decoding block architecture, in order to

save memory usage, some computations of LDPC decoding algorithm are moved to different

block, final we will explain the overall architecture for this block.

 37

C2B block (I) and C2B registers

The C2B block processes check node updating, we choose Min-Sum algorithm with

normalized scaling method. According to the Min-Sum algorithm, the minimum value of bit

node message determines the absolute value of the result. We can use normalized scaling

method to compensate the error relative to the accurate result. The equation is denotes as

following：

(), ', ',
' ()\

() min 0 1k n n k n k
n L k n

r sign q qβ β
∈

≈ < ≤∏ (4.1)

For each ,k nr , the component of L(k)\n is L(k) excluding n. According to the above equation,

with the row degree t, we have to sort the ',n kq where ' () \n L k n∈ to find the minimum

value of them t times for the same k of ,k nr s, the latency is very long and the control logic is

very complicated. We find that, for different ,k nr s, their components of L(k)\n are almost the

same. So we can sort all the elements of the L(k) first, with the sorting result we will rapidly

find each n of ,k nr at more simple control logic. The algorithm is present as below：

1 , , 1
{ ()}

,
2 ,

{ ()}

sgn()

sgn()

n k n k
n L k

k n
n k

n L k

m q if q m
r

m q otherwise

β

β
=

=

⎧ ≠
⎪

= ⎨
⎪
⎩

∏

∏ (4.2)

Where 1m denotes the minimum value of ,n kq in the set of L(k), and 2m denotes the

second minimum value of ,n kq in the set of L(k). With this algorithm, we sort all the

,n kq of the sets L(k) one time, we only have to find out the minimum value and second

minimum value.

Before introduce the sorting architecture, we present the memory access schedule for check

node updating. By the same method with channel value memory arrangement, we divided

 38

memory bank the same as sub-matrix defined in the section 2.2.1, the sub-matrix is based on

the maximum matrix which is a 96 96× matrix.

Fig. 4.2 Check Node Updating Memory Access Schedule

Fig. 4.2 is the check node updating memory access schedule, each row has 24 sub-matrices,

the sub-matrices are the length of 96. We adopt partial parallel computation units, j is the

partial parallel number. The barrel shifters can rotate the data in the memory to the correct

position for check node updating, the rotation range is 0 to 95. The detail architecture of the

barrel shifter will be discussed in the section 4.1.5. With the limitation of memory bus, every

cycle we only access one column sub-matrices data and access the sub-matrices in column

order at following cycle. The Sorter is composed of 96 data sorters, they reads the data after

barrel shifter and the previous data. The data sorter architecture is as Fig. 4.3.

 39

Fig. 4.3 One Data Sorter

The data sorter store the previous minimum value (Min)、second minimum value (Min2nd) and

the minimum value location (Min index). There is one thing to know, Min and Min2nd are all

absolute values. The minimum value location ranges from 1 to 24, the block COMP compares

Min、Min2nd and new input data after barrel shifter to find new Min、new Min2nd and new

Min index, also the new input data is taking absolute value from the data. Our check node

updating processing element doesn’t directly calculate ,k nr out, we just find out the required

information. The task of getting ,k nr will hold at bit node updating.

The C2B register has to store four types values, Fig. 4.4 shows the register arrangement：

Fig. 4.4 C2B Register Arrangement

1. Minimum value：For 1152 rows of parity check matrix, there are 1152 minimum values we

called Check Min for each row, because minimum value is absolute value, it require 5 bits to

 40

represent the absolute value. Total register requirement is 1152 5 5760× = bits.

2. Second minimum value： The same with minimum value, for 1152 rows of parity check

matrix, there are 1152 second minimum values called Check 2ndMin for each row. Total

register requirement is also 1152 5 5760× = bits.

3. Minimum value index： Each row is divided into 24 arrays, each array only has one 1, so

the minimum value location called Check Index has 24 possible locations. It requires 5 bits to

represent 24. Total register requirement is 1152 5 5760× = bits.

4. Sign magnitude： The registers stores the sign magnitudes for the term ',()n ksign q .

One row has to store 24 sign magnitude called Check Sign, so total register require

1152 24 27648× = bits,

The total register requirement is 44928bits.

B2C Block and B2C memory

The B2C block processes bit node updating, Originally it just sums up the required ,k nr and

channel value, but the C2B block doesn’t get ,k nr , it only stores the required information for

,k nr because we move this task for B2C block to execute. In order to reduce the complexity

of control logic, we move some computation to C2B block. The B2C block contains two

procedures：one is deriving ,k nr , the other is summing up. The Fig. 4.5 is the architecture for

B2C block：

 41

Check
Min

Check
2ndMin
Check
Index

Check
Sign

Mux
rk,n

Check
Min

Check
2ndMin
Check
Index
Check
Sign

Mux
rk,n

+

Accumulator
Register

Derive rk,n Sum up
Column number

sel

sel

XOR

XOR

X

X

Fig. 4.5 B2C block architecture

The first procedure is to derive the ,k nr , according to the sub-matrix column number, the

algorithm is as below：

2 ,
,

ndsel Min if Column number Index
sel Min otherwise
⎧ = =
⎨

=⎩

The multiplexer follows this algorithm to select the correct value Now lets consider the check

sign part, each check sign block contains 24 bits, each bit denotes each sub-matrix column

value’s sign magnitude. But some sub-matrices are zero matrices, so these matrices’ sign

magnitude we set to 0. In the Eqn.(4.2) of deriving ,k nr , the term '
' { ()\ }

sgn()n k
n L k n

q
=
∏

requires the block check sign, the operation ∏ is realized by exclusive-or. The set

{ }' () \n L k n= makes the control logic more complex, we decide to XOR 25 bits, the first 24

bits are the all check sign bits in one check sign block, and the 25th bit is the decided by the

 42

column number to xor the sign magnitude of ,n kq , which is also in the check sign block. The

architecture is as below：

Fig. 4.6 XOR block architecture

Now compare Eqn.(2.14) and Eqn.(2.15)：

, ', ',' ()\ ' ()\
((), ()) ()n k k n k nk M n k k M n k

q VAR VAR r L n L n r
∈ ∈

= = + ∑

, ,() ()
((), ()) ()n k n k nk M n k M n

q VAR VAR r L n L n r
∈ ∈

= = + ∑

We can find

, ,n k n k nq q r= − (4.3)

The term ,k nr we can derive from the B2C block. In order to save memory usage, we just

store the information of nq , we don’t store the information of ,n kq . For one row there are

24 possible ,n kq s, it needs 6 bits to represent ,n kq , originally we need

1152 24 6 165888× × = bits. Now we only need 1152 6 6912× = bits, the total memory usage

reduction is about 95%. The B2C memory block is as Fig. 4.7：

 43

Fig. 4.7 B2C memory block

C2B block (II)

Because the B2C memory doesn’t store the information of ,n kq , it only store the information

of nq , we have to rewritten the Eqn.(4.1). According to Eqn.(4.3), Eqn.(4.2) is rewritten as

follow：

1 1 1 1 1
, , 1{ ()}

{ ()}
, 1 1 1 1

, ,{ ()}
{ ()}

min () sgn()

2 min () sgn()

t t t t t
n k n n k n nn L k

n L kt
k n nd t t t t

n k n n k nn L k
n L k

q r q r if q m
r

q r q r otherwise

β

β

− − − − −

=
=

− − − −

=
=

⎧ × − − ≠
⎪= ⎨

× − −⎪
⎩

∏

∏ (4.4)

The superscript of r and q denotes the iteration number, ,
t

k nr denotes ,k nr derived from

C2B block (in our design, it is actually derived at B2C block)at tth iteration, and 1t
nq −

denotes nq derived from B2C block at (t-1)th iteration. In order to reduce memory usage,

we move the task of deriving ,n kq to C2B block to complete. Before find the minimum

and second minimum of ,n kq , we have to find out the ,n kq first by subtracting ,
t

k nr

from nq . So the architecture is as Fig. 4.8：

Fig. 4.8 Deriving ,n kq architecture

 44

The Cyclic shifter block will be introduced at next section.

4.1.3 Memory Arrangement

The memory arrangement can be divided into three parts： one is the channel value memory,

another is the C2B register, and the other is the B2C memory. For convenient, the C2B

register and B2C memory are introduced before with their relative processing elements. The

channel value memory arrangement is very simple. Its task is to store the input data, the

maximum input number is 2304, but in order to support full modes of LDPC code in 802.16e,

we partition 2304 into 24 arrays which is the same with sub-matrix definition, so each array

can store maximum 96 input data. When the mode is defined by f fZ Z× sub-matrices where

fZ is less than 96, every fZ input data are stored at the array in order, fZ denotes the z

factor. Take block length=1152 for example, its z factor is 48, the 1st to 48th data are stored in

the 1st array, the 49th to 96th data are store in the 2nd array and so on, and final the 1105th to

1152th data are store in the 24th array.

4.1.4 Cyclic Shift Block

There are two blocks requiring cyclic shifter：C2B block for C2B register and B2C block for

B2C memory, but the two blocks require different direction cyclic shifter, and shift direction

is different from the direction of matrix. We will explain why this happens.

Now we consider the C2B register first, C2B register number is labeled by the row number in

parity check matrix. So there are 1152 block, each block contains one 5 bits Check Min、 one

5 bits Check 2nd Min 、one 5 bits Check Index and one 24 Check Sign. But the C2B register is

for B2C block to read, we have to convert the row arrangement to the column arrangement, so

we need cyclic shifter to help us. Now we take a 5 bits cyclic shifter for example as shown in

 45

Fig. 4.9,

1 1
1 1

1 1
1 1

1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Fig. 4.9 5 5× identity matrix and its permutation

The left hand matrix is a 5 5× identity matrix, after permutation the matrix becomes the

right hand form, the shift size is 2. C2B register arrangement is shown in Fig. 4.10

Fig. 4.10 C2B register arrangement

After right shifting 2, the register arrangement is shown in Fig. 4.11：

Fig. 4.11 C2B register arrangement after shifting

So the cyclic shifter satisfies the B2C block process’s requirement, it can shift the data

according to the shift size to the correct position for the B2C block read.

Then we consider the B2C memory, the B2C memory number is labeled by the column

number in the parity check matrix. So there are 2304 block, each block contains one 6 bits

nq value. But the B2C memory is used for C2B block reading to derive ,n kq , we should

convert the data order from column order to row order. As in the C2B case we take a 5 bits

cyclic shifter for example as shown below.

1 1
1 1

1 1
1 1

1 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 46

The same with the Fig. 4.8, according to our memory arrangement is shown as Fig. 4.12：

Fig. 4.12 B2C memory arrangement

If we do the same process as C2B register, the memory arrangement after shifting becomes as

follow is shown as Fig. 4.13：

Fig. 4.13 B2C memory arrangement after right shifting

Originally the column 1 message should be passed to row 4, but the right shift 2 doesn’t

make the goal we wish. The column 1 message was passed to row 3, this arrangement is

incorrect. We can find that for B2C memory we need left shift instead of right shift, if we left

shift 2, the memory arrangement is shown as Fig. 4.14：

Fig. 4.14 B2C memory arrangement after left shifting

This memory arrangement satisfies our row order. So for C2B register and B2C memory, we

need one right cyclic shifter and one left cyclic shifter and these operations will require many

hardware area, so for the left shifter, we try to use the right shifter by rewriting the shifting

size. Comparing Fig. 4.13 and Fig. 4.11, for a t bits left shifter with shift size of r is equal to a

t bits right shifter with shift size of t-r. So we can add an adder and a 2 input multiplexer to

share the right shifter for both blocks. In our design, t denotes the z factor Zf. Fig. 4.14 shows

the architecture of the sharing mechanism,

 47

Fig. 4.15 Sharing mechanism of cyclic shifter

The cyclic shift block is a very important module because there are many modes for 802.16e.

Now consider the size of sub-matrix, due to different modes, the shift size varies from 24 to

96, the interval is 4. A t-bits cyclic shifter can support 0~t-1 shift size of cyclic shift. In

conventional cyclic shifter design, for a shift size=24 barrel shifter, it is constructed by a 24

bits cyclic shifter. In our design, directly constructing a t-bits cyclic shifter will occupies a lot

of area because of a lot of multiplexers. For example, a 96 bits cyclic shifter needs a 96 inputs

multiplexer. We construct a hierarchical cyclic shifter for our architecture, we cut the shifter

into two part： one is at the sight of macroscopic of cyclic shifter and the other is fine-tuning.

We employ the characteristic of all modes shift sizes, the shift sizes have the same

submultiples. So we shift the data at higher interval to reduce multiplexer inputs and

complexity, and then at next level we fine-tune the data to the correct position. Therefore, we

develop a two-level cyclic shifter, the first level shifter shifts data at interval 4, that is, the

shift size is the multiple of 4. The second level shifter shift data at interval 1, the shift range is

from 0 to 3. For a 96 bits data, the first level cyclic shifter requires a 24 inputs multiplexer, the

second level cyclic shifter requires a 4 inputs multiplexer. Compared to the conventional

cyclic shifter, we can save a lot of architecture area for cyclic shifter. The Fig. 4.15 shows the

architecture of two level cyclic shifter：

 48

Fig. 4.16 Two level cyclic shifter

4.1.5 Shift Size ROM Table

We construct a ROM to store the value of the shift size for different code rate and length,

besides. In order to separate zero matrix and identity matrix, we additionally store enable

signals for sub-matrices. The enable signal is zero if the sub-matrix is zero matrix, otherwise,

the enable signal is set to 1. Besides, to increase the bandwidth of the data bus, we cut the

shift size ROM table into two parts, odd ROM and even ROM. At the same time, we read one

shift size from each ROM to support shifter to process permute. It will decrease the latency of

accessing the ROM table and make the control signal simpler.

4.1.6 The Overall architecture

The Fig 4.17 illustrates the overall architecture for proposed decoding process.

 49

Min

2ndMin

Min index
COMP

New Min

New 2ndMin

New Min Index

Sign

 | |

Scaling

Scaling

Check
Min

Check
2ndMin
Check
Index
Check
Sign

Mux X
rk,nsel

Column number

Sub

B2C
Memory

qn,k

MUX

…
…

…
…

…

Shift size=0Shift size=8
Shift size=4

Shift size=84
Shift size=88
Shift size=92

MUX

Shift size=1

Shift size=2

Shift size=3

Shift size=0 Shift size[6:2] Shift size[1:0]

Min

2ndMin

Min index
COMP

New Min

New 2ndMin

New Min Index

Sign

 | |

Scaling

Scaling

Check
Min

Check
2ndMin
Check
Index
Check
Sign

Mux X

rk,n

sel

Cancellation

Column number

qn,k

MUX

…
…

…
…

…

Shift size=0Shift size=8
Shift size=4

Shift size=84
Shift size=88
Shift size=92

MUX

Shift size=1

Shift size=2

Shift size=3

Shift size=0

Shift size[6:2] Shift size[1:0]

 Sub

+

Accumulator
Register

Write
back to

C2B
register

Odd Shift size ROM table

Even Shift size ROM table

Decision
Output

Channel Value memory

+

Cancellation

Fig. 4.17 Overall architecture

We adopt partial parallel of 2 to construct our decoding process, each parallel element process

96 computation units

 50

4.2 Chip Implementation

The proposed LDPC decoder was implemented with the 0.13 um 1P8M standard CMOS

process. The chip layout of the LDPC decoder including the B2C memory, the shift size ROM

table, ADDLL and the other control logic and processing blocks is shown in Fig. 4.16. The

decoder die size is 13.69 um2. The total gate count of the LDPC decoder is 1265K, where

194K is for B2C memory. We use 184 pins for pads and 67 pins for I/O pads and 114 pins for

VDD/GND pads. The SRAM contains the B2C Memory and Channel Memory, and the

ROM1 and ROM2 are the shift size rom table.

The post simulation result is tested to verify the functional correctness. The maximum

iteration number is 20. The maximal data rate of the decoder is 28.3 Mb/s at typical case

while working at 198MHz and 20.3 Mb/s at worst case. The power consumption is 700 mW.

This power consumption analyzes only on iteration decoding excluding receiving data and

outputting result.

The throughput rate is mostly constrained by the cyclic shifters latency and the data bus

bandwidth for message passing. Although we simplify the operation of iteration decoding, a

lot of accessing memory operations makes our decoding latency longer.

SRAM

Shifter1

Shifter2

R
O

M
2

ROM1

ADDLL

Fig. 4.18 Chip layout of the LDPC decoder chip

 51

Table 4.1 Summary of the LDPC decoder chip

Technology Standard 0.13-um CMOS 1P8M

Core size 3.0 um × 3.0 um

Chip size 3.7 um × 3.7 um

Gate count 1265K

Power dissipation 700mW @ 198MHz *

Maximum data rate 20.3Mb/s @ 20iterations **

*： The simulation environment is set at typical speed corner (1.2V Supply voltage) and the

power consumption analyzes only on the iteration decoding excluding receiving data and

outputting result.

**： The simulation environment is set at worst speed corner (1.08V Supply voltage) with

considering the coupling noise due to crosstalk effect on signal wires. The maximum data rate

is 28.3Mb/s at typical case, the worst IR drop=0.04V.

Table 4.2 shows the gate count of each functional block, “Control + C2B Register” denotes

the control logic for the whole decoder and the registers for C2B block storage.

Table 4.2 Gate count of functional block
Function Block Total gate count
Cyclic Shifter 135K

C2B Block 176K
B2C Block 37K

Control + C2B Register 758K
RAM 91K

ROM + Asynchronus 73K
Total 1270K

4.3 Comparison

The comparison of our proposed LDPC code decoder with state-of-the-arts are listed in Table

 52

4.2.

Table 4.3 Comparison of LDPC chip

 Proposed [24]

Block length 576~2304 (19 types) 1200

Code structure Irregular irregular

Code rate 1/2, 2/3, 3/4, 5/6 3/5

Silicon proven No Yes No

Technology 0.13-um 0.18-um 0.13-um

Supply voltage 1.2V 1.8V 1.2V

Clock freq. 142MHz 83MHz 145MHz

Chip size 13.69mm2 25mm2 13.47mm2

Gate count 1.265M 1.15M

Power dissipation 700mW@198MHz 644mW 299mW

Data rate 20.3Mb/s@1.08V 3.33Gb/s 5.8Gb/s

Decoding iteration 20 8

 53

Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, we analyze the LDPC code for 802.16e based on the BER performance and

propose an efficient architecture for 802.16e. In the proposed architecture we reschedule the

process task for reducing memory usage and decreasing the latency. According our post

simulation, this LDPC decoder can achieve the data rate to 20.3Mb/s using 0.13um, 1.08V,

1P8M CMOS process and the power consumption is 700mW at iterative decoding. The core

occupies 3.0um×3.0um and the chip size is with 184 pins

5.2 Future Work

For our proposed architecture, the area for processing element is still too large, and the

throughput rate is a little low to achieve the standard requirement. Our future work is to

optimize the area and throughput rate. We will try to reuse the processing element to decrease

the area and try to reschedule the processing element to achieve high clock rate.

 54

References

[1] P. Elias, “Coding for noisy channels”, IRE. Conv. Rec. , pt.4, pp.37-47, 1955.

[2] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Fields,” J. Soc. Ind. Appl.

Math., 8: 300-304, June 1960.

[3] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[4] R. G.. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol.

IT-8, pp. 21-28, Jan. 1962.

[5] D. J. C. Mackay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[6] D. J. C. Mackay and R. M. Neal, “Near Shannon limit performance of low-density

parity-check codes,” Electron. Lett., vol. 32, pp. 1645-1646, Aug. 1996.

[7] T. J. Richardson and R. L. Urbanke, “Efficient encoding of Low-Density Parity-Check

codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638-656, Feb. 2001.

[8] J. Pearl, Probabilistic Reasoning in intelligent systems: networks of plausible

inference.San Mateo: Morgan Kaufmann, 1988.

[9] R. J. McEliece, D. J. C. MacKay, and J. F. Cheng, “Turbo decoding as a instanec of

Pearl’s blief propagation algorithm,” IEEE J. Select. Areas Commun., vol. 16, no. 2, pp.

140–152, Feb. 1998.

[10] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by probability

propagation in graphical models,” IEEE J. Select. Areas Commun., vol. 16, no. 2, pp.

219–230, Feb. 1998.

[11] J. L. Fan, Constrained coding and soft iterative decoding. Netherlands: Kluwer

Academic, 2001.

 55

[12] G. D. Forney, Jr., “Codes on graphs: Normal realizations,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 520–548, Feb. 2001.

[13] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[14] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, vol. IT-27, no. 5, pp. 399–431, Sept. 1981.

[15] D. B. West, Introduction to graph theory, 2nd ed. NJ: Prentice-Hall, 2001.

[16] J. L. Fan, Constrained Coding and Soft Iterative Decoding. Kluwer Academic Publishers,

2001

[17] A. Anastasopoulos, “A comparison between the sum-product and the min-sum iterative

detection algorithms based on density evolution,” in IEEE GLOBECOM’01, vol. 2, Nov.

2001, pp. 1021 – 1025

[18] X. Y. Hu, Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient implementation of the

sum-product algorithm for decoding ldpc codes,” in IEEE GLOBECOM’01, vol. 2, Nov.

2001, pp. 25–29

[19] H. S. Song and P. Zhang, “Very-low-complexity decoding algorithm for low-density

parity-check codes,” in IEEE PIMRC’03, vol. 1, Sep. 2003, pp. 161 – 165

[20] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based

decoding of low-density parity check codes,” IEEE. Trans. Commun., vol. 50, pp.

406–414, Mar. 2002

[21] H. Jun and K. M. Chugg, “Optimization of scaling soft information in iterative decoding

via density evolution methods,” in IEEE. Trans. Commun., vol. 6, Jun. 2005, pp. 957 –

961.

[22] J. Chen and M. P. C. Fossorier, “Density evolution for two improved bp-based decoding

algorithms of ldpc codes,” IEEE. Communications Letters, vol. 6, pp. 208 – 210, May

2002

 56

[23] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for

Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and

Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed

Bands and Corrigendum 1 , 2006.

[24] Chien-Ching Lin, Kai-Li Lin, Hsie-Chia Chang and Chen-Yi Lee, “A 3.33Gb/s

(1200,720) Low-Density Parity Check Code Decoder,” IEEE ESSCIRC, pp. 211 - 214

Sep. 2005.

[25] N.Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ. Linkoping,

Sweden, 1996.

 57

作 者 簡 歷

姓名: 嚴紹維

出生地: 台灣省高雄市

出生日期: 1982.7.29

學歷: 1988.9~1994.6 高雄市立四維國小

 1994.9~1997.6 高雄市立五福國中

 1997.9~2000.6 高雄市立高雄高級中學

 2000.9~2004.6 國立交通大學 電子工程學系 學士

 2004.9~2006.8 國立交通大學 電子研究所 系統組 碩士

