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低密度同位元檢查碼於無線通訊網路之設計 
研究生：嚴紹維                                   指導教授：周世傑 

 

國立交通大學電子工程學系電子研究所 

摘要 

 
在本論文中，我們提出一個支援全模式的低密度同位元檢查碼解碼器的設計，此設計適

應用於無線通訊網路 WiMAN 802.16e 系統。為了簡化在解碼中執行的運算，採用

Min-sum algorithm 搭配常態化的方法以達到與理論值相同的位元錯誤率表現。此架構

採用了一個重新安排的解碼流程來降低記憶體的使用量以及解碼的時間。此外更利用

802.16e 低密度同位元檢查碼中同位元檢查矩陣的特性去支援不同模式。經過 0.13um 製

成實作晶片，所提出的部份平行解碼器於固定 20 次迴圈的解碼模式下，可以達到最高

的傳輸速率為 20.3Mb，在迴圈的解碼過程當中，功率消耗為 700mW。 
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ABSTRACT 

 

 In this thesis, a fully compliant LDPC decoder is presented. The LDPC decoder is 

applied for WiMAN 802.16e standard. In order to simplify the computation of decoding unit, 

Min-sum algorithm with normalization is used to achieve the BER performance the same with 

the theoretical performance. The architecture adopts a re-schedule decoding data flow to 

reduce memory usage and decoding latency. Also the characteristic of 802.16e LDPC parity 

check matrices is used to support different modes. After fabricated in 0.13um 1P8M process, 

the proposed partial parallel decoder can support 20.3Mb/s data rate under 20 decoding 

iteration. The power consumption is 700mW while iteration decoding. 
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Chapter 1  

Introduction 

 

1.1 Overview of Channel Codec for Wireless Metropolitan 

Area Network 

Wireless Metropolitan Area Network, allowing end-users to travel throughout a hot zone 

cell without losing connectivity, has been a very important technique in wireless 

communication. The services provide portability and mobility to make users more convenient 

to access information. For a high quality service, the channel capacity seems more important 

for WiMAN, therefore, the error correcting capability is a great issue in WiMAN. In WiMAN 

802.16e standard [23], there are four channel coding methods: Convolutional coding (CC) [1], 

Reed-solomon coding (RS)[2], Turbo coding [3], and Low-Density Parity Check Coding 

(LDPC) [4]. The first three codes have been proposed in many application, such as DVB-T 

etc, and LDPC coding was rediscovered in recent years. Because LDPC can provide a better 

error correcting capability than the first three codes, so WiMAN adopts LDPC coding as an 

optional error correcting method. 

1.2 Motivation 

LDPC code was first proposed by Gallager [4] in 1953. It can provide a better 

performance in error correcting capability, but due to the difficulty of circuit implementation, 

LDPC code was not on the main stream until it was rediscovered by Mackay [5][6]. LDPC 

code provide a simple algorithm when decoding, however, the circuit implementation is still a 
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great challenge even the implementation technique has advanced a lot. In WiMAN 802.16e 

standard, it provides many different types of LDPC parity check matrix for users to choose 

according to the tradeoff between performance and cost. All types of parity check matrices 

make the architecture hard to design.  

In this thesis, we propose an architecture that can support all types of parity check 

matrices in WiMAN 802.16e. The architecture provides a partial parallel computation unit 

method to accelerate the throughput rate, and employs the special characteristics of LDPC 

code in 802.16e to make the data paths and memory controls more simple to decrease the 

hardware complexity in circuit implementation. The detail discussion and architecture will be 

given in the following chapters. 

 

1.3 Thesis Organization 

The remainder of this thesis is organized as follow. Chapter 2 describes the concept and 

the decoding algorithm of LDPC codes and the definition of parity check matrix of LDPC in 

WiMAN 802.16e standard. Some improved algorithms for LDPC codes and simulation results 

are introduced at Chapter 3. In Chapter 4, the proposed LDPC decoder architecture, including 

functional units, memory arrangement, are presented in detail. Besides, the chip 

implementation results and the summary will be described in Chapter 5. Finally, conclusions 

and future work are made in Chapter 6. 
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Chapter 2  
LDPC Code 

 

Low-density parity check (LDPC) code was first introduced by Gallager in the 1960s, 

but was almost forgotten until Mackay and Neal rediscovered. The most advantage of LDPC 

codes is it can achieve near Shannon limit error performance. Besides, its algorithm provides 

very simple arithmetic computations and parallelism to decrease the complexity of hardware 

design and increase the throughput rate. With these advantages, many applications, such as 

802.16e and DVB-S2, have took LDPC codes into account for the forward error correction 

(FEC) to achieve high-speed and high performance. 
 

2.1 Concept of LDPC 

LDPC codes, just a linear block, is constructed by a sparse parity check matrix H which 

means there are almost zeros and only a small number of ones in the entries. With the sparse 

matrix H, the complexity of computation is reduced in decoding. LDPC codes can be divided 

into two types, one is regular LDPC code, the other is irregular LDPC code. The regular 

LDPC codes mean that each row has the same number of ones, and each column does so. For 

example, in a regular M-by-N LDPC code, there are λ ones in each of the M rows and ρ ones 

in each of the N columns. The irregular LDPC codes mean the numbers of ones in the rows 

and the columns are different. 
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2.1.1 Message Passing Algorithm 

LDPC decoding algorithm is based on soft iterative decoding which relies on the message 

passing algorithm [8][9][16]. Thus, in this section, message passing algorithm which is based 

on the probabilistic decoding is introduced. For a variable x, there are three important 

probabilities in message passing algorithm. For the event (or called the constraint) {x=a}, 

suppose that E is an event affecting on the variable x. The intrinsic probability [10] 

represents the probability P(x=a) that the variable x takes the value a. So for the variable x 

with respect to E, its intrinsic probability can be denoted by 

( ) ( )int
EP x a P x a= = =                       (2.1) 

On the other hand, the posterior probability is the conditional probability for the variable x 

taking the value a based on the knowledge of the event E. The posterior probability can be 

denoted by  

( ) ( | )post
EP x a P x a E= = =                     (2.2) 

The two probabilities can be viewed as the probability before and after taking the event E 

into account. 

Besides, with Bayes’ theorem, the posterior probability can be rewritten as follow： 

.
1( | ) ( | ) ( )
( )

prop to extrinsicposterior intrinsic

P x a E P E x a P x a
P E

= = = =
6 4 7 4 8 6 4 7 4 8 64 7 48

        (2.3) 

The term at right-hand side of the equation ( )P x a=  is the intrinsic probability. The term 

( | )P E x a=  is proportional to the extrinsic probability, which describes the probability that 

the new information for x obtained from the event E. The extrinsic probability can be denoted 

by 

1

'
( ) ( ( | ')) ( | ) ( | )ext

E e
a A

P x a P E x a P E x a P E x aρ−

∈

= = = = = =∑   (2.4) 

eρ  represents the normalization constant to make the summation of the terms ( ')ext
EP x a=  
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for 'a A∈  equals to 1 (i.e., 
'

( ') 1ext
E

a A

P x a
∈

= =∑ ), assuming a’ takes values from the 

alphabet set A. 

Then the relationship between the intrinsic, extrinsic and posterior probabilities in (2.3) can be 

rewritten as  

( ) ( ) ( )post int ext
E E EcP x a P x a P x aρ= = = =          (2.5) 

Where cρ  is a normalization constant as follow 

1

( ) ( )int ext
c E E

a A

P x a P x aρ
−

∈

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
∑                  (2.6) 

If A=GF(2), GF(2) denotes the set which only has two possible value 0 and 1, also called 

binary variables. The log-likelihood ratio representation for (2.5) is  

( 1) ( 1) ( 1)( ) ln ln ln ( ) ( )
( 0) ( 0) ( 0)

post int ext
post ext int

post int ext

P x P x P xL x L x L x
P x P x P x

= = =
= = + = +

= = =  (2.7) 

In the graph representation, we use a normal graph [11][12] which is an undirected graph, 

consisting of nodes、ordinary edges and left edges. The nodes denote the constraints and the 

ordinary edges denote the state variable for message passing and the left edges denote the 

symbol variables. Fig. 2.1 shows an example with three vertices： 

The edges connecting two vertices are ordinary edges, and the edges connecting only one 

vertex is left edges 

 

C1

C3 C2

left edge

ordinary edge
vertex

 

Fig. 2.1  An example of normal graph 
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Fig. 2.2  Graph representation of the extrinsic and the intrinsic probabilities 

One node 

Now consider a single node C, with d edges, as shown in Fig. 2.2. There are d-1 left edges. 

We define a set cS  which is a subspace of the d-dimensional vector space dA  ( d
c ⊂S A ), 

and any d-tuple 1 2 c( , ,..., )dx x x= ∈x S  will satisfy the constraint C. Each edge has the 

intrinsic probability ( )int
jP x  associated with the symbol jx  for 1 ~j d= , then a posteriori 

probability of a symbol jx  with respect to C will be obtained from the combination of the 

intrinsic probabilities and the extrinsic probability ( )ext
iP x . Therefore we have to evaluate 

( )ext
iP x  based on the constraint C and the intrinsic probabilities ( )int

jP x  with j i≠ . The 

extrinsic probability ( )ext
iP x is 

( ) ( | )ext
i e iP x P C xρ=                     (2.8) 

To evaluate the extrinsic probability, we have to evaluate the conditional probability 

( | )iP C x , The conditional probability ( | )iP C x  can be evaluated as  
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( ) 1
,

c

1 1 1
,

c

1 1 1 1 1 1
,

c

| ( ,{ } | )

( , ,..., , ,..., | )

( | ,..., , ,..., ) ( ,..., , ,..., | )

j

j

j

d
i j j i

x j i

i i d i
x j i

i i d i i d i
x j i

P C x P C x x

P C x x x x x

P C x x x x P x x x x x

=
∀ ≠

∈

− +
∀ ≠

∈

− + − +
∀ ≠

∈

=

=

=

∑

∑

∑

x S

x S

x S

         

(2.9) 

The first term on the right-hand side of (2.9) is always equal to 1 because the constraint C is 

always true with given 1{ }d
j jx =  where 1{ }d

j jx =  belong to the constraint set cS . And the last 

term on the right-hand side is rewritten based on the independence of the variables 1{ }d
j jx =  

1 1 1
1

( ,..., , ,..., | ) ( )
d

int
i i d i j

j
j i

P x x x x x P x− +
=
≠

=∏           (2,10) 

The (2.8) can be rewritten as  

, 1
c

( ) ( )
j

d
ext int

i e j
x j i j

j i

P x P xρ
∀ ≠ =

≠∈

= ∑ ∏
x S

                   (2.11) 

And the posterior probability can be derived using (2.11)： 

( )

, 1
c

(

( ) ( )

)
j

post int ext
c

d
int

c j
x

i

i j

i

j

iP x P x

P x

P xρ

ρ
∀ ≠ =

∈

=

= ∑ ∏
x S

                   (2.12) 

Where oc% is the normalization constant as 

1

1
c

( )
i

d
int

c j
x j

P xρ

−

=
∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑∏
x S

                     (2.13) 
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...
... ...

...

 

Fig. 2.3  Graph representation of the message passing between two vertices 

Two node 

Moreover, we consider the graph with two vertices (constraints), C1 and C2, as shown in Fig. 

2.3. The constraint C1 has 1i −  left edges and one ordinary edge, corresponding to the 

symbol 1 1~ ix x −  and ix . On the other hand, ~i dx x  are constrained by C2 where only ix  

is on the ordinary edge. Besides, the two vertices are associated to two constrain set, 1cS  and 

2cS  such that any 1 2 1( , ,..., ) cix x x= ∈1x S  and 1 2( , ,..., ) ci i dx x x+= ∈2x S . As shown in Fig. 

2.3, the  symbol 1ix +  is considered first, we have to evaluate the extrinsic probability for the 

left edge based on both C1 and C2. First, we only consider the constrain C2, according to the 

result in (2.11),the extrinsic probability can be rewritten as 

1
2

1 2 2 1 2 (2)
\ 2

c

( ) ( | ) ( ) ( )
i

d
ext int int

i i i j
x j i

P x P C x P x P xρ ρ
+

+ +
= +

∈

= = ∑ ∏
2
2

x
x S

  (2.14) 

The intrinsic probability (2) ( )int
iP x  for C2 in on the ordinary edge that is unable to be acquired 

from the inputs. Therefore, we evaluate the extrinsic probability based on both constrains C1 

and C2. 

1 1 2 1( ) ( , | )ext
i e iP x P C C xρ+ +=                    (2.15) 

We can rewrite the above probability as 
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( )

( ) ( )

( )

2 1
2 2

2 1
2 2

2 1
2 2

1 2 1 1 2 2 1
x \
x c

2 1 1 2 1
x \
x c

1 2 1
x \
x c

, | ( , , , ,..., | )

| , , , ,..., |

, , ,..., |

i

i

i

i i i d i
x

i i d i
x

i i d i
x

P C C x P C C x x x x

P C C P C x x x x

P C x x x x

+

+

+

+ + +

∈

+ +

∈

+ +

∈

=

=

=

∑

∑

∑

S

2

S

S

x
    (2.16) 

where the second equality comes from a Markov chain  

1 2 1 2( , | ) ( | ) ( | )i i iP C C x P C x P C x=                     (2.17) 

Such that the term  

( )2 1 2| , ( | ) 1P C C P C= =2 2x x , for 2c∈2x S                 (2.18) 

The term on the right-side of (2.16) can be continuously rewritten as 

( )1 2 1 1 2 1

1

1

1
1 (1)

2

, , ,..., | ( | ) ( , ,..., | )

( | ) ( )

( ) ( ) ( ) ( )

i i d i i i d i

d

i j
j i
j i

d
ext int

i i j
j i

P C x x x x P C P x x x x

P C x P x

P x P x P xρ

+ + + +

=
≠ +

−

= +

=

=

=

∏

∏

2x

       (2.19) 

From the Fig. 2.3, 

 (1) 1 1( ) ( | )ext
i iP x P C xρ=                          (2.20) 

is the extrinsic probability of ix  with respect to C1, and the intrinsic probability ( )int
iP x  is 

for the ordinary edge variable ix . Since the ordinary edge connect C1 and C2 without any 

external input, the probability ( )int
iP x  can be initialized to be a constant. We set 

1( )
| |

int
iP x =

A
 for ix ∈A . Therefore, the extrinsic probability in (2.15) can be expressed as 

2 1
2 2

1 (1)
x \ 2
x c

( ) ' ( ) ( )
i

d
ext ext

i e i j
x j i

P x P x P xρ
+

+
= +

∈

= ∑ ∏
S

                (2.21) 

Where 1' / | |e cρ ρ ρ= A , from the Fig. 2.3, we can know that  
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(2) (1)( ) ( )int ext
i iP x P x=                           (2.22) 

if (1) ( )ext
iP x  is available. So only constrain C2 is necessary for estimating 1( )ext

iP x + . In the 

same way, ( )ext
jP x  for ( 2) ~j i d= + can also be derived. Moreover, ( )ext

lP x  with 

1 ~ ( 1)l i= − , the extrinsic probability (2) ( )ext
iP x  with respected to C2 is required. And the 

intrinsic probability is assume that 

(1) (2)( ) ( )int ext
i iP x P x=                          (2.23) 

The processes of (2.22) and (2.23) are the message passing between the vertex C1 and C2. 

With the message algorithm, we can simplify the problem of solving both C1 and C2 into the 

problem of solving the single vertex graph. The problem is more simple than the original 

problem. We concludes the message passed on the edge ix  as follow： 

  1 2

1
1 1

1

(1) 1
x \ 1
x c

( ) ( ) ( )
i

i
ext

C C i i j
x j

x P x P xμ ρ
−

→
=

∈

= = ∑ ∏
S

             (2.24) 

2 1

2
2 2

(2) 2
x \ 1
x c

( ) ( ) ( )
i

d
ext

C C i i j
x j i

x P x P xμ ρ→
= +

∈

= = ∑ ∏
S

            (2.25) 

The operation in the message passing is the sum of products, thus the message passing 

algorithm is also called the sum-product algorithm [13]. 

Generally, if the graph consisting vertices, C0, C1,…,Cd, the vertex C0 has d ordinary edges 

that respectively connect to C1, C2,…, Cd with symbol variables x1,x2,…,xd. Assuming the 

message 
0
( )Cj C jxμ →  with 1 ~j d=  have been derived from 1 ~ dC C , we can evaluate 

0 iC Cμ →  by 

0 0

0

x\ 1
x c

( )
i i

i

d

C C C C j
x j

j i

xμ μ→ →
=
≠∈

= ∑ ∏
S

                 (2.26) 
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Where 0Sc  is the constrain set for C0, and 1 2( , ,..., )dx x x=x . And the message 
0 iC Cμ →  

for 1 ~i d=  can be obtained and become the intrinsic probability inputs for the vertices 

C1~Cd. 

 

2.1.2 Decoding Concept 

Just like linear block codes, the goal of a M-by-N LDPC codes is, given a codeword 

1 2[ , , , ]T
Nx x x=X L , to satisfy the equation 0HX = . LDPC codes can be represented by a 

Tanner graph [14][15]. Fig. 1 is an illustrative example of a 2 × 4 parity check matrix H. 

There are four bit nodes, B1, B2, B3, B4, (also called variable node), which represent the 4-bits 

codeword 1 2 3 4[ , , , ]Tx x x x=X , and there are two check nodes, C1, C2, which represent the two 

parity check equation of H. The connections between check nodes and bit node means that 

there are ones at the corresponding positions in the parity check matrix H. For example, the 

connection between C1 and B1 means that 11 1H =  in the parity check matrix H, where Hmn 

denotes the element at the mth row and the nth column of H. In the thesis, for simplicity, we 

only consider binary LDPC codes. So every addition actually denotes exclusive-or. 

1

1 22

1 3 43

4

01 1 0 0 0
0

01 0 1 1 0

x
x xx

x x xx
x

⎡ ⎤
⎢ ⎥ ⊕ =⎧⎡ ⎤ ⎡ ⎤⎢ ⎥= ⇒ = ⇒ ⎨⎢ ⎥ ⎢ ⎥⎢ ⎥ ⊕ ⊕ =⎣ ⎦ ⎣ ⎦ ⎩
⎢ ⎥
⎣ ⎦

HX          (2.27) 

 

C1 C2

B1 B2 B3 B4

Check Node

Bit Node
 

Fig. 2.4  The corresponding Tanner graph 
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LDPC decoding is based on the belief propagation (BP) algorithm, also called message 

passing algorithm, which provides an efficient and powerful approach to decode LDPC codes. 

Each bit node transmits its information to other bit nodes through the check node equation. 

The erroneous data can possibly be correct with iterative exchanging information between 

check nodes and bit nodes. 

Now we first introduce the LDPC decoding algorithm in the simple view of probability. Take 

Fig. 1 as example, as Fig. 2, we first update the bit node information through the check node 

equation. We call this process check node update. Let us consider the first check node 

Eqn.(2.1) 1 2 0x x⊕ = . To obtain the probability of x1, assume we know the probability of 

2 0x =  is q0, denotes as 2 0( 0)P x q= = , and 2 1( 1)p x q= =  (The equation 0 1 1q q+ =  is 

always true). We can know x1 and x2 must be the same to satisfy the equation 1 2 0x x⊕ = . So 

we can obtain 1 0( 0)P x q= =  and 1 1( 1)p x q= = . 

C1

B1 B2

(q0,q1)

C2

B1 B3 B4

(q0,q1) (r0,r1) 

Fig. 2.4  The check node update for B1 

Now we consider the second check node equation 1 3 4 0x x x⊕ ⊕ = . To get the probability of 

x1, assume we know 3 0( 0)P x q= = , 3 1( 1)P x q= = , 4 0( 0)P x r= =  and 4 1( 1)P x r= = . 

Through the second check node equation, we can derive the following equation： 

1 3 4 3 4 3 4 0 0 1 1

1 3 4 3 4 3 4 1 0 0 1

( 0) ( 0) ( 0) ( 0) ( 1) ( 1)
( 1) ( 1) ( 1) ( 0) ( 0) ( 1)

P x P x x P x P x P x P x q r q r
P x P x x P x P x P x P x q r q r

= = ⊕ = = = = + = = = +⎧
⎨ = = ⊕ = = = = + = = = +⎩

(2.2) 

Here we define 0 1 0 1 0 0 1 1 1 0 0 1( , , , ) ( , )CHK q q r r q r q r q r q r= + + . Then we obtain each bit node’s 
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probability through the check nodes that connects to it.  

We will do the next process called bit node update. This process is for bit nodes to gather all 

probability from the check nodes connecting to them. Fig. 3 is the illustration for bit node 

update. There are two check nodes connecting to bit node 1, so bit node 1’s probability can be 

calculate as follow： 

1 1 1 2 1 0 0

1 1 1 2 1 1 1

( 0) ( 0 0) ( 0 0)
( 1) ( 0 1) ( 0 1)

P x P C and x P C and x q r
P x P C and x P C and x q r

= ∝ = = = = =
= ∝ = = = = =

       (2.28) 

C1 C2

B1

(q0,q1) (r0,r1)

 

Fig. 2.5  Bit node update for B1 

To ensure ( 0) ( 1) 1P x P x= + = = , we normalize the probability of x1. So we can obtain that 

 0 0 1 1
1 1

0 0 1 1 0 0 1 1

( 0) ( 1)q r q rP x P x
q r q r q r q r

= = = =
+ +

               (2.29) 

Here we define  

0 0 1 1
0 1 0 1

0 0 1 1 0 0 1 1

( , , , ) ( , )q r q rVAR q q r r
q r q r q r q r

=
+ +

                (2.30) 

 

2.1.3 Decoding Flow 

Based on the above equation we can roughly construct the LDPC decoding algorithm. In 

order to decrease complexity of computations, we represent the probabilistic messages by 

Log-Likelihood Ratios (LLR), the LLR is defines as 

( 0)( ) ln ln
( 1)

P UL U
P U

λ=
=

=
@                        (2.31) 

Then the equation can be rewritten as 
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1 2 1 2
1 2

1 2 1 21 2

1 2
1 2 1 2

1 2

2 2

2 2

1( , ) ( ) ln

1ln ln

U U U U
U U

U U U UU U

CHK U U CHK U U

e e e e
e e

e e

λ λ
λ λ
+ +

−

− −
−

+
= ⊕ =

+

+ +
= =

+
+

            (2.32) 

1 2 1 2 1 2 1 2( , ) ln( ) ln lnVAR U U L Lλ λ λ λ= = + = +              (2.33) 

These two equations can be computed in Log-Likelihood Ratios form to reduce the numbers 

of computation parameters and VAR equation only needs addition operation instead of 

multiplication and division. If we construct the general form of CHK and VAR, we can get that 

1 2 1 2

1 2 3

( , ,..., ) ( ... )
( (... ( ( ) )...) )

N N

N

CHK U U U CHK U U U
CHK CHK CHK CHK U U U U

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕

   (2.34) 

1 2 1 2

1 2 1 2

( , ,..., ) ln( ... )
ln ln ... ln ...

N N

N N

VAR U U U
L L L

λ λ λ
λ λ λ

=
= + + + = + + +

       (2.35) 

Before we describe the BP decoding algorithm, we define some parameters for 

simplifying decoding procedure. Take Fig. 4 for example, Fig. 4 is a 4 × 6 parity check 

matrix. 

1 0 0 0 0 0
0 1 0 0 0 1
1 0 0 1 1 0
1 1 1 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

Fig. 2.6  The example of definition for decoding procedure 

M(n) denotes the set of check nodes that connect to the bit node n, where n represents the nth 

column of the parity check matrix, i.e., M(n) represents the positions of  “1”s in the nth 

column. L(k) denotes the set of bit nodes that connect to the check node k, where k represents 

the kth row of the parity check matrix, i.e., L(k) represent the positions of “1”s in the kth row. 

M(n)\k denotes the set of M(n) excluding the kth check node, and L(k)\n denotes the set of L(k) 
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excluding the nth bit node. “qn,k” denotes the probability of information that the bit node n 

transmits to the check node k, “rk,n” denotes the probability of information that the check node 

k transmits to the bit node n. BP algorithm is based on iterative decoding procedure, the 

iterative decoding procedure is shown below. 

 

Initialization  

We assume the channel is AWGN channel, BPSK mapping (0 mapped to +1 and 1 

mapped to -1) is used. un is the channel’s input, and yn is the channel’s output. The channel 

transition probabilities are shown below 

2

2

2

2

( 1)

2
2

( 1)

2
2

1( 1| )
2

1(1 ) ( 1| )
2

n

n

y

n n n

y

n n n

p p u y e

p p u y e

σ

σ

πσ

πσ

+
−

−
−

= = − =

− = = + =
            (2.36) 

In the LLR form the probability is rewritten as 

2 2
2

1 (( 1) ( 1) )
2

2

( 1| ) 2( ) ln ln
( 1| )

n ny y
n n

n n
n n

p u yL u e y
p u y

σ

σ
− − − += +

= = =
= −

         (2.37) 

We set the initial probabilities of qn,k as L(un) and rk,n as zero. 

 

Message passing 

1st step：check node updating, i.e., information passing from check nodes to bit nodes by 

collecting the incoming information qn,k’s. Then we update the probabilities rk,n’s for the next 

step. 

, ',' ( )\
( )k n n kn L k n

r CHK q
∈

= ⊕∑                       (2.38) 

 2nd step: bit node updating, i.e., information passing from each bit node to check nodes 

by collecting the incoming information rk,n’s. We update the probabilities qn,k’s for next 



 16

iteration decoding and make decision at next step. 

, ', ',' ( )\ ' ( )\
( ( ), ( )) ( )n k k n k nk M n k k M n k

q VAR VAR r L n L n r
∈ ∈

= = + ∑         (2.39) 

 3rd step: summing up, for each bit node n, we sum up all information from all the check 

nodes connecting to the bit node n. We define qk’s as the summation results. 

, ,( ) ( )
( ( ), ( )) ( )n k n k nk M n k M n

q VAR VAR r L n L n r
∈ ∈

= = + ∑             (2.40) 

 

Decision 

 We decode nu
∧

 by analyzing qn, 0nq ≥  represents that the probability of 1nu
∧

=  is 

larger than that of 0nu
∧

= , so we can derive the following equation： 

0 0
1

n
n

if q
u

otherwise

∧ ≥⎧
= ⎨
⎩

                          (2.41) 

 According to the nu
∧

’s we obtain above, we check whether nu
∧

 satisfies the parity check 

equation 0u
∧

=Hg . If yes, nu
∧

 is a legal codeword, then the iterative decoding stop. If not, 

return back to the message passing procedure until the legal codeword is obtained or the 

maximum iteration number is achieved. 

 

2.2 LDPC Code for 802.16e 

In WiMAX 802.16e , there are 19 types of block size, from 576 to 2304, each block size is a 

multiple of 24. There are six types of code rate, including 1/2, 2/3 (A,B), 3/4 (A,B), 5/6. Table 

1 shows the 19 types block size and their corresponding parameters. “z factor” represents a 

shift size factor according to different block sizes. Because LDPC code in 802.16e is a 

systematic code. Codeword is composed of original information bits and parity check bits. 

“k” represents the original information size without parity check bits. The users have to adapt 
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block size and code rate according to the channel situation to achieve high-speed with 

satisfying the error correction capacity. 

Table 2.1  LDPC block size and code rate 

k (bytes) 
n (bit) n (bytes) z factor 

R=1/2 R=2/3 R=3/4 R=5/6 

576 72 24 36 48 54 60 

672 84 28 42 56 63 70 

768 96 32 48 64 72 80 

864 108 36 54 72 81 90 

960 120 40 60 80 90 100 

1056 132 44 66 88 99 110 

1152 144 48 72 96 108 120 

1248 156 52 78 104 117 130 

1344 168 56 84 112 126 140 

1440 180 60 90 120 135 150 

1536 192 64 96 128 144 160 

1632 204 68 102 136 153 170 

1728 216 72 108 144 162 180 

1824 228 76 114 152 171 190 

1920 240 80 120 160 180 200 

2016 252 84 126 168 189 210 

2112 264 88 132 176 198 220 

2208 276 92 138 184 207 230 

2304 288 96 144 192 216 240 
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2.2.1 Parity Check Matrix Definition 

Each LDPC code is defined by a matrix H of size m-by-n, where n is as previously defined- 

the length of the code, and m is the number of the number of parity check bits in the code. 

The parity check matrix H is defined as： 

0,0 0,1 0,2 0, 2 0, 1

1,0 1,1 1,2 1, 2 1, 1

2,0 2,1 2,2 2, 2 2, 1

1,0 1,1 1,2 1, 2 1, 1

b b

b b

b

b b

b b b b b b b

n n

n n
H

n n

m m m m n m n

− −

− −

− −

− − − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P P P P P

P P P P P

Η PP P P P P

P P P P P

L

L

L

L L L L L L

L

 

Fig 2.7 the parity check matrix of LDPC codes 

where ,i jP  is one of a set of z-by-z permutation matrices or a z-by-z zero matrix. The matrix 

H is expanded from a binary base matrix Hb of size of mb-by-nb. where /b fm m z=  and 

/b fn n z= , with zf is the z factor corresponding to the code length. The base matrix Hb is 

expanded by replacing each 1 with a z-by-z permutation matrix and each 0 with a z-by-z zero 

matrix. The base matrix size nb is always equal to 24 and mb is set according to the code rate 

as follow： 

Table 2.2 Row number of code rate 

Code rate 1/2 2/3 3/4 5/6 

mb 12 8 6 4 

The matrix Hb only has information about whether the ,i jP  is a permutation matrix or a 

zero matrix, it doesn’t contain shift size of permutation matrix. The permutations are circular 

right shift, and the set of permutation matrices contains the z-by-z identity matrix and circular 

right shifted of the identity matrix. Each permutation matrix is specified a single circular right 

shift factor, so the binary base matrix information and permutation shift information can be 

combined into a compact model matrix Hbm. The matrix Hbm is the same size as the binary 
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base matrix Hb, and each entry (i,j) of Hb is replaced by the permutation information to 

generate the model matrix Hbm, Each 0 in Hb is replaced by a negative value (e.g. by -1) to 

denote a z-by-z zero matrix and Each 1 in Hb is replaced by a circular shift factor ( , )P i j  

( ( , )P i j  is a positive integer). 

Hb can be partitioned into two parts- Hb1 and Hb2, where Hb1 corresponds to the systematic 

bits and Hb2 corresponds to the parity check bits as follow: 

[( ) | ( ) ]
b b b bm k m m× ×=b b1 b2H H H                      (2.42) 

where /b fk k z= . 

Hb2 also can be partitioned into two parts- hb and H’b2, where vector hb has odd weight and 

H’b2 has a dual-diagonal structure, where the matrix element (i,j) (i denotes row and j denotes 

column) is equal to 1 when i=j and i=j+1, and equal to 0 elsewhere: 

[ | ]
(0) | 1
(1) | 1 1 0
(2) | 1

|
| 0 1

( 1) | 1 1

b

b

b

b b

h
h
h

h m

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

b2 b b2H h H'

M O

M O

 

Fig. 2.8  The definition of Hb2 

The matrix hb has a characteristic that hb(0) and hb(mb-1) are equal to 1, one of 

[hb(1),hb(2),…,hb(mb-1)] is equal to 1, and others are equal to 0.  

In model matrix Hbm, each 1 in H’b2 has a shift size of 0, indicating that there is a z-by-z 

identity matrix when expanding to H, and hb(0) and hb(mb-1) have the same shift sizes. 

The base model matrix Hbm is defined for the largest code length (n=2304) of all code 

rate. For other code lengths, the shift sizes have to be changed according to the code length. 

The set of shifts ( , )P i j  in the base model matrix Hbm are still used for other code length of 
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the same code rate.  

For code rates 1/2 code, 2/3A and B code, 2/3B code and 5/6 code, the shift sizes 

{ ( , , )}P f i j  for a code size corresponding to the expansion factor zf are derived from ( , )P i j  

by scaling ( , )P i j  proportionally: 

0

( , ), ( , ) 0
( , )( , , )

, ( , ) 0f

p i j p i j
p i j zp f i j

p i j
z

≤⎧
⎪= ⎢ ⎥⎨ >⎢ ⎥⎪
⎣ ⎦⎩

                     (2.43) 

Where f denotes the index of 19 types of code length for a giving code rate, f=0,1,2,…,18, f=0 

denotes the largest code length (n=2304). zf denotes the z factor corresponding to the code 

length, so z0 represents the z factor of the largest code length (n=2304) and is set to 96. 

Besides, the operation x⎢ ⎥⎣ ⎦  denotes that it only gets the integer part of x when x is positive. 

For code rate 2/3A code, the shift sizes { ( , , )}P f i j  for a code size corresponding to the 

expansion factor zf are derived from ( , )P i j  by using a modulo function: 

( , ), ( , ) 0
( , , )

mod( ( , ), ), ( , ) 0f

p i j p i j
p f i j

p i j z p i j
≤⎧

= ⎨ >⎩
                (2.44) 

 

2.2.2 LDPC Encoder 

For efficiency and memory saving, LDPC encoder generates codeword with parity check 

matrix H instead of generator matrix G by Richardson [7]. Because parity check matrix H is 

in an approximate lower triangular form, so the matrix can be written in the form: 

A B T
H

C D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where A is ( )m z k− × , B is ( )m z z− × , T is ( ) ( )m z m z− × − , C is z k× , D is z z×  and 

finally E is ( )z m z× − , here z is the same as z factor, the 
B
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and D denote the expansion 

of hb and hb(mb-1) respectively, the Fig. 2.9 shows the parity check matrix composition. 
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A B T

C D E

k z m-z

m

n

m-z

z

 

Fig. 2.9  Decomposition of parity check matrix 

Let codeword [ , , ]= 1 2v u p p , where u denotes the systematic part-original message, p1 and p2 

denote the parity part, p1 has length z and p2 has length (m-z). According to the definition of 

parity check matrix H, each codeword of H must satisfy the equation 0TH v⋅ = . So the 

equation can be rewritten as follow: 

1 2

1 2

0 (1)

0 (2)

T T T

T T T

Au Bp Tp

Cu Dp Ep

⎧ + + =⎪
⎨

+ + =⎪⎩

L L L L L L

L L L L L L
                (2.45) 

According to equation (1), p2
T can be rewritten as 1

2 1( )T T Tp T Au Bp−= +  and replace p2
T in 

the equation (2), then the equation (2) becomes 

1 1
1( ) ( ) 0T TET A C u ET B D p− −+ + + =                      (2.46) 

Because 1ET B D− +  is an identity matrix, so p1
T can be derived from 

 1
1 ( )T Tp ET A C u−= +                                  (2.47) 

And p2
T can be derived from 1

2 1( )T T Tp T Au Bp−= +                    (2.48) 

The fig is the block diagram of encoder architecture: 

A ET-1

C

B T-1

u
p1

p2

 

Fig. 2.10  The architecture of encoder for LDPC codes 



 22

All the matrix that the encoder needs can be obtained from parity check matrix, only T-1 

seems hard to obtain. But T is a dual diagonal matrix so it has a characteristic that T-1 is a 

lower triangular matrix. This characteristic can be easily verified. 

 

2.2.3 Implementation Bottleneck 

To construct the LDPC decoder for 802.16e, there are some problems should be considered：  

1、 There are 5 code rates, according to different code rates, the shift size tables are different, 

and the row numbers are different, too. Thus, to construct a LDPC decoder that can 

change modes by a simple control logic and share the computation units in an efficient 

method is an important task. 

2、 For the same mode, there are 19 block lengths, according to different block lengths, the 

compositions of the parity check matrices have different z factor sub-matrices, it is 

important to decrease the area for cyclic shifters when doing permutation. 

3、 The computation of check node is difficult in hardware implementation. To simplify the 

computation in a easier form to reduce chip area and decoding latency and in the same 

condition to maintain the decoding performance is the most important task. 

The maximum iteration number is also an important index while considering the latency of 

the decoding flow. A smaller maximum iteration number can have better throughput rate. In 

conventional LDPC decoding algorithm, it takes larger maximum iteration number to achieve 

the required bit-error-rate performance. By adopting an improved algorithm, it only needs 

smaller maximum iteration number to achieve the same performance. 
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Chapter 3  
Algorithm Optimization for 

Implementation 

 

In Chapter 2 we know that in the LDPC decoding algorithm, the check node update 

processing occupies the most calculation latency. In this chapter, we analyze the check node 

update equation based on message passing algorithm and at the view of probability to form an 

approximation equation called Min-sum algorithm [25] that is much easier to implement. 

Besides, we adopt a dynamic normalization factor to improve the decoding performance. 

Finally, we present some simulation results for hardware implementation and performance 

comparison. 

 

3.1 Min-Sum Algorithm 

Consider the check node update process, Fig. 3.1 is the check node with d degrees, the 

constrain with respect to the check node is  

j 1 2 1 2c {( , ,..., ) | 0}d dx x x x x x= + + + =S L                    (3.1) 

If we want to evaluate the message with respect to the constrain for the edge ix , the message 

should be 

( ) 1 1 1( ) ( )
j i

ext
c x i i i i d ix P x P x x x x xμ → − += = + + + + + =L L            (3.2) 



 24

 

Fig. 3.1  The check node with degree d 

To derive the (3.2), we consider the following equation first 

( )1 2 1 2 1 2

1 2 1 2

0 ( 0) ( 0) ( 1) ( 1)
(1 )(1 )

int int int intP x x P x P x P x P x
p p p p

+ = = = = + = =

= − − +
     (3.3) 

Where ip  denotes the intrinsic probability ( 1)int
iP x =  and (3.3) can be expressed in other 

form 

( )1 2 1 22 0 1 (1 2 )(1 2 )P x x p p+ = − = − −                    (3.4) 

If we assume the equation 

( )1 2

1 2

1

2 0 1 2 1

(1 2 )(1 2 ) (1 2 )

(1 2 )

j j

j

j

i
i

P x x x

p p p

p
=

+ + + = − = Π −

= − − −

= −∏

L

L           (3.5) 

is true. The following equation can be derived by 

1 1 2 1

1 2 1 1 2 1

1 1

( 0)

( 0) ( 0) ( 1) ( 1)

(1 ) (1 )

j j j

j j j j

j j j j

P x x x x

P x x x P x P x x x P x

p p

+ +

+ +

+ +

Π = + + + + =

= + + + = = + + + + = =

= Π − + −Π

L

L L   (3.6) 

According to (3.6), we can derive 

1 1 1

1

1

1

2 1 2 (1 ) (1 ) 1

(2 1)(1 2 )

(1 2 )

j j j j j

j j

j

i
i

p p

p

p

+ + +

+

+

=

⎡ ⎤Π − = Π − + −Π −⎣ ⎦
= Π − −

= −∏

                (3.7) 
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By induction, we conclude from (3.7) that 

1 2

1

( 0)

1 1 (1 2 )
2

d d

k

i
i

P x x x

p
=

Π = + + + =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∏

L

                       (3.8) 

Then (3.2) can be obtained from 

( ) ( )
1,

10 1 (1 2 1 )
2j i l j

d

c x i x c l
l l i

x xμ μ→ →
= ≠

⎡ ⎤
= = + − =⎢ ⎥

⎣ ⎦
∏            (3.9) 

( ) ( )
1,

11 1 (1 2 1 )
2j i l j

d

c x i x c l
l l i

x xμ μ→ →
= ≠

⎡ ⎤
= = − − =⎢ ⎥

⎣ ⎦
∏           (3.10) 

Where the probability ( )1
l jx c lxμ → =  is the message from the bit node lx  as Fig. 3.2.  

 

Fig. 3.2  The bit node with degree k 

It received the message from the check nodes connecting to it excluding jc  and sent the 

message ( )
l jx c lxμ →  to the check node jc  as 

( ) ( )
1,

0 ( 0) 0
i j l i

k
int

x c i b i c x i
l l j

x P x xμ ρ μ→ →
= ≠

= = = =∏g         (3.11) 

( ) ( )
1,

1 ( 1) 1
i j l i

k
int

x c i b i c x i
l l j

x P x xμ ρ μ→ →
= ≠

= = = =∏g          (3.12) 

Where  

( )
1,

( 1) 1
l i

i

k
int

b i c x i
x l l j

P x xρ μ →
= ≠

= = =∑ ∏              (3.13) 
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The intrinsic probability ( )int
iP x  comes from the received symbol ir . 

For simplifying the equation, we use log-likelihood ratio to represent the messages. The ratio 

is defined before as (2.6) 

( 0) 1 ( 1)( ) ln ln
( 1) ( 1)

P x P xL x
P x P x

= − =
= =

= =
 

Rewriting the above equation it will become 

( )

1( 1)
1L xP x

e
= =

+
                             (3.14) 

Then we can write 
( )

( )

1 ( )1 2 ( 1) tanh( )
1 2

L x

L x

e L xP x
e

−
− = = =

+
                  (3.15) 

Where the hyperbolic tangent is defined as 

1tanh( )
2 1

x

x

x e
e
−

=
+

                            (3.16) 

According to (3.15), the (3.9) and (3.10) can be reformulated with log-likelihood ratio as 
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∏
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∏
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                 (3.17) 

Where the inverse hyperbolic tangent is  

1 1 1tanh ( ) ln
2 1

yy
y

− +
=

−
                        (3.18) 

Furthermore, we define a new function for 0x >  

1 1( ) ( ) ln ln(tanh( ))
1 2

x

x

e xx x
e

−
−

−

+
Ψ = Ψ = = −

−
                (3.19) 
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Then we decompose the term in (3.17) 

( )

( )( ) ( )

1, 1,

1,1,
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d d
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d d
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(3.20) 

The sign magnitude of lA  is the same with ( )
l jx c lL x→ . And we note that for any integer t 

( ) ( ) ( )
( )

1 1 1
1 ln

1 1

t x
t

t x

e
x

e

−
−

−

+ −
− Ψ =

− −
                 (3.21) 

Then we replace the x  in (3.21) as 

( )
1,

ln tanh
2

l j
d x c l

l l i

L x
x

→

= ≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −
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∑                 (3.22) 

(3.17) is rewritten as 

( ) ( )( ) ( )

( )( ) ( )( )

1
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∑∏

∑∏
  (3.23) 

Compared to (3.17), the multiplications are replaced with additions, it is easier for 

implementation. And the message from bit node ix  to check node jc  can be represented as 
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For hardware implementation, the function ( )xΨ  in (3.23) is often constructed by the table 

look-up approach because the operation of ( )xΨ  is too complex.  

 

Fig. 3.3  Plot of the ( )xΨ  function 

Then we analyze the function ( )xΨ  as Fig. 3.3, from Fig. 3.3, we can find the property of 

( )xΨ  that the smaller x  has larger result of ( )xΨ . In the (3.23), the summation will be 

dominated by the smaller ( )
l jx c lL x→ , therefore (3.23) can be simplified by an approximate 

equation as 

( ) ( )( ) ( )
( )\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L x→ → →∈
= ≠

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠
∏        (3.25) 

The set ( ) \L j i  is defined the same as section 2.1.3. The decoding procedure based on (3.24) 

and (3.25) is referred to min-sum algorithm. We can implement the check node update with 

the comparison unit instead of table look-up method. But it will lose some bit-error-rate (BER) 

performance if we adopt (3.25) compared to (3.23). There are some popular compensating 
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methods for min-sum algorithm such as offset compensation [17][18][19] and normalization 

compensation [20][21][22]： 

( ) ( )( ) ( )
( )\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L x α→ → →∈
= ≠

⎛ ⎞
≈ −⎜ ⎟
⎝ ⎠
∏      (3.26) 

or 

( ) ( )( ) ( )
( )\

1,

min
j i l j l j

d

c x i x c l x c ll L j i
l l i

L x sign L x L xβ→ → →∈
= ≠

⎛ ⎞
≈ ×⎜ ⎟

⎝ ⎠
∏       (3.27) 

where α  and β  are compensation factor with 0α >  and 0 1β< ≤ . The (3.27) often has 

better performance than (3.26) because the compensation factor α  in (3.26) is constant, it 

won’t change depending on the value of ( )
l jx c lL x→ . If we don’t know the range of 

( )
l jx c lL x→ , we can’t derive a optimum α . Considering the compensation factor β  in 

(3.27), although it is constant, but the operation is multiplication, the result will depend on the 

value of ( )
l jx c lL x→ , so we can derive a optimum value for β . For the same check node, we 

provide two different values β  for the compensation. 

Compared with the Eqn.(2.32) , Eqn.(3.17), Eqn.(3.23), The last three equations need 

complex computation units to derive the exponential function, the hyper-tangent function, the 

( )xΨ . The look-up table (LUT) is mostly used to derive the approximation value to reduce 

the computation units. But the LUT’s size determined the correcting capability of these 

function, if we use a detailed LUT for deriving the approximation value, the size of LUT 

occupies a lot of area, otherwise, if we use a gross LUT, the error with respect to the 

theoretical increase and we will loss BER performance. Min-sum algorithm using 

normalization factor can almost achieve the same BER performance with the theoretical one 

with a sorting unit to find the minimum value of relative input data. The area for check node 

updating can be saved a lot. 
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3.2 Simulation Results 

In this section, we will present the simulation results and some parameters setting for 

implementation. The simulation environment is set by the C code. All the simulation results 

are signal-to-noise ratio (SNR) versus BER through changing some parameters required for 

implementation. 

We set the simulation environment is BPSK modulation and AWGN noise channel, according 

to (3.17), we can derive the theoretical performance for 802.16e, Fig. 3.4 illustrate the SNR 

versus BER. 

 

 

Fig. 3.4  Simulation result (1): theoretical value for maximum code length 

The simulation result is based on the maximum iteration number=20 and compare the code 

1/2、2/3B、3/4A and 5/6 of the maximum code length=2304, all code rates can achieve 

510BER −=  before 3.5SNR dB= . 
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Fig. 3.5  Simulation result (2): theoretical value for minimum code length 

The Fig. 3.5 shows the simulation result based on the minimum code length=576, other 

parameter setting is the same with Fig. 3.4. From Fig. 3.3 and 3.4, we can derive that the 

parity check matrices defined in 802.16e can provide the performance of 410BER −=  

between 2 ~ 7SNR dB=  

Now for optimization we use min-sum algorithm with different normalize factor, the Fig. 3.5 

shows the simulation result. At the simulation we take code rate=1/2 and code length=576, the 

iteration number is 20. 

 

Fig. 3.6  Simulation result (3): Normalization factor comparison 



 32

For easier implementation, we choose normalize factor based on the power of 2 such as 

0.75 、0.625 and 0.875. We can see that the normalize factor=0.75 can achieve almost the 

theoretical result, and so as normalize factor=0.625. 

For implementation, we have to process fix-point simulation to simulate the hardware 

processing, The number of bits needed to present the message also requires simulation to 

derive. We simulate the code length=576 and provide min-sum algorithm with normalization 

factor=0.75 and iteration number is 20. First we fix the fraction part at 1bit and simulate with 

different integer part bits shown as Fig. 3.6 and from the figure we can find that the integer 

part bits equal to 4bits is the best choice. Then we fix the integer part at 4bits and simulate 

different fraction part bits shown as Fig. 3.7. And from the figure the fraction part has best 

choice of 2bits. 

 

Fig. 3.7  Simulation result (4): Fixed-point simulation for integer part 
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Fig. 3.8  Simulation result (5): Fixed-point simulation for fraction part 

The maximum iteration number will affect the performance of BER. But the performance will 

saturate with the maximum iteration number becomes larger because the dependency of 

message. After iterative decoding, the assumption of dependency won’t be always true, then 

the decoding equation we use will has some error with respect to the actual condition. Fig. 3.8 

shows the fixed point simulation with different maximum iteration number. The simulation 

parameter is based on the maximum code length=2304 of code rate 1/2. We can find that the 

iteration number=20 is a good choice between latency and performance. 

 

Fig. 3.9  Simulation result (6): Fixed-point simulation for iteration 
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According to the simulation results above, we set out proposed architecture based on the 

parameter as Table 3.1 

 

Table 3.1  Parameter setting for implementation 

Maximum iteration number 20 

Normalization factor 0.75 

Integer 4 bits 
Bit length 

Fraction 2 bits 
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Chapter 4  
 Architecture Design and Circuit 

Implementation 

 

According to our analysis and simulation, we propose a LDPC decoder architecture for 

802.16e. In this LDPC decoder architecture we propose a hierarchical cyclic shifter block for 

cyclic shifter. Besides, with the characteristic of LDPC decoding algorithm, the memory 

arrangement is also an important point for improvement. To reduce the complexity of 

computation element, we rewritten the equation for check node updating and bit node 

updating to accelerate the check node updating speed to reduce the memory usage. Final we 

will present the implementation result and some problems we met at backend APR process. 

 

4.1 Decoder Design 

4.1.1 Architecture Overview 

According to the LDPC decoding flow shown in Fig. 4.1, the Fig. 4.2 is the block diagram of 

the LDPC decoder, the decoder is partitioned into several block. Each block processes based 

on the sub-matrix defined in the Section 2.2.1.  

 

Fig. 4.1  LDPC decoding flow 
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The decoder is designed based on the maximum input number 2304 and the maximum 

column number 1152 (code rate=1/2) to support all types of LDPC code in 802.16e. Each 

process is controlled by the decoder controller. The Input Buffer stores the input data and for 

every Zf input data received, the Input Buffer will store the data into Channel Value Memory. 

Beside, it also stores the data into the B2C memory for the first iteration check node updating. 

The C2B update block reads data from the B2C memory to process check node updating. The 

check node output registers store the check node updating result. Then the B2C update block 

reads data from the C2B registers and stores the results at B2C memory. The iteration repeats 

between C2B update and B2C update, the iteration decoding processes until the maximum 

iteration is reached. Final, the Decision block decides whether the data is one (or zero) based 

on the result of B2C update. The detail process and architecture is explained at the following 

sub section. 

 

Fig. 4.2  LDPC decoder block diagram 

4.1.2 Iterative Decoding Block 

In this section we will introduce the proposed iterative decoding block architecture, in order to 

save memory usage, some computations of LDPC decoding algorithm are moved to different 

block, final we will explain the overall architecture for this block. 
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C2B block (I) and C2B registers 

The C2B block processes check node updating, we choose Min-Sum algorithm with 

normalized scaling method. According to the Min-Sum algorithm, the minimum value of bit 

node message determines the absolute value of the result. We can use normalized scaling 

method to compensate the error relative to the accurate result. The equation is denotes as 

following： 

( ), ', ',
' ( )\

( ) min 0 1k n n k n k
n L k n

r sign q qβ β
∈

≈ < ≤∏       (4.1) 

For each ,k nr , the component of L(k)\n is L(k) excluding n. According to the above equation, 

with the row degree t, we have to sort the ',n kq  where ' ( ) \n L k n∈  to find the minimum 

value of them t times for the same k of ,k nr s, the latency is very long and the control logic is 

very complicated. We find that, for different ,k nr s, their components of L(k)\n are almost the 

same. So we can sort all the elements of the L(k) first, with the sorting result we will rapidly 

find each n of ,k nr  at more simple control logic. The algorithm is present as below： 

1 , , 1
{ ( )}

,
2 ,

{ ( )}

sgn( )

sgn( )

n k n k
n L k

k n
n k

n L k

m q if q m
r

m q otherwise

β

β
=

=

⎧ ≠
⎪

= ⎨
⎪
⎩

∏

∏              (4.2) 

Where 1m  denotes the minimum value of ,n kq  in the set of L(k), and 2m  denotes the 

second minimum value of ,n kq  in the set of L(k). With this algorithm, we sort all the 

,n kq  of the sets L(k) one time, we only have to find out the minimum value and second 

minimum value. 

Before introduce the sorting architecture, we present the memory access schedule for check 

node updating. By the same method with channel value memory arrangement, we divided 
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memory bank the same as sub-matrix defined in the section 2.2.1, the sub-matrix is based on 

the maximum matrix which is a 96 96×  matrix.  

 

Fig. 4.2  Check Node Updating Memory Access Schedule 

Fig. 4.2 is the check node updating memory access schedule, each row has 24 sub-matrices, 

the sub-matrices are the length of 96. We adopt partial parallel computation units, j is the 

partial parallel number. The barrel shifters can rotate the data in the memory to the correct 

position for check node updating, the rotation range is 0 to 95. The detail architecture of the 

barrel shifter will be discussed in the section 4.1.5. With the limitation of memory bus, every 

cycle we only access one column sub-matrices data and access the sub-matrices in column 

order at following cycle. The Sorter is composed of 96 data sorters, they reads the data after 

barrel shifter and the previous data. The data sorter architecture is as Fig. 4.3. 
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Fig. 4.3  One Data Sorter 

The data sorter store the previous minimum value (Min)、second minimum value (Min2nd) and 

the minimum value location (Min index). There is one thing to know, Min and Min2nd are all 

absolute values. The minimum value location ranges from 1 to 24, the block COMP compares 

Min、Min2nd and new input data after barrel shifter to find new Min、new Min2nd and new 

Min index, also the new input data is taking absolute value from the data. Our check node 

updating processing element doesn’t directly calculate ,k nr  out, we just find out the required 

information. The task of getting ,k nr  will hold at bit node updating. 

The C2B register has to store four types values, Fig. 4.4 shows the register arrangement： 

 

Fig. 4.4  C2B Register Arrangement 

 

1. Minimum value：For 1152 rows of parity check matrix, there are 1152 minimum values we 

called Check Min for each row, because minimum value is absolute value, it require 5 bits to 
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represent the absolute value. Total register requirement is 1152 5 5760× = bits. 

2. Second minimum value： The same with minimum value, for 1152 rows of parity check 

matrix, there are 1152 second minimum values called Check 2ndMin for each row. Total 

register requirement is also 1152 5 5760× = bits. 

3. Minimum value index： Each row is divided into 24 arrays, each array only has one 1, so 

the minimum value location called Check Index has 24 possible locations. It requires 5 bits to 

represent 24. Total register requirement is 1152 5 5760× = bits. 

4. Sign magnitude： The registers stores the sign magnitudes for the term ',( )n ksign q .  

One row has to store 24 sign magnitude called Check Sign, so total register require 

1152 24 27648× = bits, 

The total register requirement is 44928bits. 

 

B2C Block and B2C memory 

The B2C block processes bit node updating, Originally it just sums up the required ,k nr  and 

channel value, but the C2B block doesn’t get ,k nr , it only stores the required information for 

,k nr  because we move this task for B2C block to execute. In order to reduce the complexity 

of control logic, we move some computation to C2B block. The B2C block contains two 

procedures：one is deriving ,k nr , the other is summing up. The Fig. 4.5 is the architecture for 

B2C block： 
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Fig. 4.5  B2C block architecture 

The first procedure is to derive the ,k nr , according to the sub-matrix column number, the 

algorithm is as below： 

2 ,
,

ndsel Min if Column number Index
sel Min otherwise
⎧ = =
⎨

=⎩
 

The multiplexer follows this algorithm to select the correct value Now lets consider the check 

sign part, each check sign block contains 24 bits, each bit denotes each sub-matrix column 

value’s sign magnitude. But some sub-matrices are zero matrices, so these matrices’ sign 

magnitude we set to 0. In the Eqn.(4.2) of deriving ,k nr , the term '
' { ( )\ }

sgn( )n k
n L k n

q
=
∏  

requires the block check sign, the operation ∏ is realized by exclusive-or. The set 

{ }' ( ) \n L k n=  makes the control logic more complex, we decide to XOR 25 bits, the first 24 

bits are the all check sign bits in one check sign block, and the 25th bit is the decided by the 
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column number to xor the sign magnitude of ,n kq , which is also in the check sign block. The 

architecture is as below： 

 

Fig. 4.6  XOR block architecture 

Now compare Eqn.(2.14) and Eqn.(2.15)： 

, ', ',' ( )\ ' ( )\
( ( ), ( )) ( )n k k n k nk M n k k M n k

q VAR VAR r L n L n r
∈ ∈

= = + ∑  

, ,( ) ( )
( ( ), ( )) ( )n k n k nk M n k M n

q VAR VAR r L n L n r
∈ ∈

= = + ∑  

We can find  

, ,n k n k nq q r= −                              (4.3) 

The term ,k nr  we can derive from the B2C block. In order to save memory usage, we just 

store the information of nq , we don’t store the information of ,n kq . For one row there are 

24 possible ,n kq s, it needs 6 bits to represent ,n kq , originally we need 

1152 24 6 165888× × = bits. Now we only need 1152 6 6912× = bits, the total memory usage 

reduction is about 95%. The B2C memory block is as Fig. 4.7： 
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Fig. 4.7  B2C memory block 

 

C2B block (II) 

Because the B2C memory doesn’t store the information of ,n kq , it only store the information 

of nq , we have to rewritten the Eqn.(4.1). According to Eqn.(4.3), Eqn.(4.2) is rewritten as 

follow： 

1 1 1 1 1
, , 1{ ( )}

{ ( )}
, 1 1 1 1
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min ( ) sgn( )

2 min ( ) sgn( )

t t t t t
n k n n k n nn L k
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k n nd t t t t

n k n n k nn L k
n L k

q r q r if q m
r

q r q r otherwise

β

β

− − − − −

=
=

− − − −

=
=

⎧ × − − ≠
⎪= ⎨

× − −⎪
⎩

∏

∏  (4.4) 

The superscript of r and q denotes the iteration number, ,
t

k nr  denotes ,k nr  derived from 

C2B block (in our design, it is actually derived at B2C block)at tth iteration, and 1t
nq −  

denotes nq  derived from B2C block at (t-1)th iteration. In order to reduce memory usage, 

we move the task of deriving ,n kq  to C2B block to complete. Before find the minimum 

and second minimum of ,n kq , we have to find out the ,n kq  first by subtracting ,
t

k nr  

from nq . So the architecture is as Fig. 4.8： 

 

Fig. 4.8  Deriving ,n kq architecture 



 44

The Cyclic shifter block will be introduced at next section. 

 

4.1.3 Memory Arrangement 

The memory arrangement can be divided into three parts： one is the channel value memory, 

another is the C2B register, and the other is the B2C memory. For convenient, the C2B 

register and B2C memory are introduced before with their relative processing elements. The 

channel value memory arrangement is very simple. Its task is to store the input data, the 

maximum input number is 2304, but in order to support full modes of LDPC code in 802.16e, 

we partition 2304 into 24 arrays which is the same with sub-matrix definition, so each array 

can store maximum 96 input data. When the mode is defined by f fZ Z× sub-matrices where 

fZ  is less than 96, every fZ  input data are stored at the array in order, fZ  denotes the z 

factor. Take block length=1152 for example, its z factor is 48, the 1st to 48th data are stored in 

the 1st array, the 49th to 96th data are store in the 2nd array and so on, and final the 1105th to 

1152th data are store in the 24th array. 

 

4.1.4 Cyclic Shift Block 

There are two blocks requiring cyclic shifter：C2B block for C2B register and B2C block for 

B2C memory, but the two blocks require different direction cyclic shifter, and shift direction 

is different from the direction of matrix. We will explain why this happens. 

Now we consider the C2B register first, C2B register number is labeled by the row number in 

parity check matrix. So there are 1152 block, each block contains one 5 bits Check Min、 one 

5 bits Check 2nd Min 、one 5 bits Check Index and one 24 Check Sign. But the C2B register is 

for B2C block to read, we have to convert the row arrangement to the column arrangement, so 

we need cyclic shifter to help us. Now we take a 5 bits cyclic shifter for example as shown in 



 45

Fig. 4.9, 

1 1
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1 1
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⎡ ⎤ ⎡ ⎤
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⎢ ⎥ ⎢ ⎥⇒
⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

Fig. 4.9  5 5×  identity matrix and its permutation 

The left hand matrix is a 5 5×  identity matrix, after permutation the matrix becomes the 

right hand form, the shift size is 2. C2B register arrangement is shown in Fig. 4.10 

 

Fig. 4.10  C2B register arrangement 

After right shifting 2, the register arrangement is shown in Fig. 4.11： 

 

Fig. 4.11  C2B register arrangement after shifting 

So the cyclic shifter satisfies the B2C block process’s requirement, it can shift the data 

according to the shift size to the correct position for the B2C block read. 

Then we consider the B2C memory, the B2C memory number is labeled by the column 

number in the parity check matrix. So there are 2304 block, each block contains one 6 bits 

nq  value. But the B2C memory is used for C2B block reading to derive ,n kq , we should 

convert the data order from column order to row order. As in the C2B case we take a 5 bits 

cyclic shifter for example as shown below. 
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The same with the Fig. 4.8, according to our memory arrangement is shown as Fig. 4.12： 

 

Fig. 4.12  B2C memory arrangement 

If we do the same process as C2B register, the memory arrangement after shifting becomes as 

follow is shown as Fig. 4.13： 

 

Fig. 4.13  B2C memory arrangement after right shifting 

Originally the column 1 message should be passed to row 4, but the right shift 2 doesn’t 

make the goal we wish. The column 1 message was passed to row 3, this arrangement is 

incorrect. We can find that for B2C memory we need left shift instead of right shift, if we left 

shift 2, the memory arrangement is shown as Fig. 4.14： 

 

Fig. 4.14  B2C memory arrangement after left shifting 

This memory arrangement satisfies our row order. So for C2B register and B2C memory, we 

need one right cyclic shifter and one left cyclic shifter and these operations will require many 

hardware area, so for the left shifter, we try to use the right shifter by rewriting the shifting 

size. Comparing Fig. 4.13 and Fig. 4.11, for a t bits left shifter with shift size of r is equal to a 

t bits right shifter with shift size of t-r. So we can add an adder and a 2 input multiplexer to 

share the right shifter for both blocks. In our design, t denotes the z factor Zf. Fig. 4.14 shows 

the architecture of the sharing mechanism, 
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Fig. 4.15  Sharing mechanism of cyclic shifter 

The cyclic shift block is a very important module because there are many modes for 802.16e. 

Now consider the size of sub-matrix, due to different modes, the shift size varies from 24 to 

96, the interval is 4. A t-bits cyclic shifter can support 0~t-1 shift size of cyclic shift. In 

conventional cyclic shifter design, for a shift size=24 barrel shifter, it is constructed by a 24 

bits cyclic shifter. In our design, directly constructing a t-bits cyclic shifter will occupies a lot 

of area because of a lot of multiplexers. For example, a 96 bits cyclic shifter needs a 96 inputs 

multiplexer. We construct a hierarchical cyclic shifter for our architecture, we cut the shifter 

into two part： one is at the sight of macroscopic of cyclic shifter and the other is fine-tuning. 

We employ the characteristic of all modes shift sizes, the shift sizes have the same 

submultiples. So we shift the data at higher interval to reduce multiplexer inputs and 

complexity, and then at next level we fine-tune the data to the correct position. Therefore, we 

develop a two-level cyclic shifter, the first level shifter shifts data at interval 4, that is, the 

shift size is the multiple of 4. The second level shifter shift data at interval 1, the shift range is 

from 0 to 3. For a 96 bits data, the first level cyclic shifter requires a 24 inputs multiplexer, the 

second level cyclic shifter requires a 4 inputs multiplexer. Compared to the conventional 

cyclic shifter, we can save a lot of architecture area for cyclic shifter. The Fig. 4.15 shows the 

architecture of two level cyclic shifter： 
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Fig. 4.16  Two level cyclic shifter 

 

4.1.5 Shift Size ROM Table 

We construct a ROM to store the value of the shift size for different code rate and length, 

besides. In order to separate zero matrix and identity matrix, we additionally store enable 

signals for sub-matrices. The enable signal is zero if the sub-matrix is zero matrix, otherwise, 

the enable signal is set to 1. Besides, to increase the bandwidth of the data bus, we cut the 

shift size ROM table into two parts, odd ROM and even ROM. At the same time, we read one 

shift size from each ROM to support shifter to process permute. It will decrease the latency of 

accessing the ROM table and make the control signal simpler. 

4.1.6 The Overall architecture 

The Fig 4.17 illustrates the overall architecture for proposed decoding process. 
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Fig. 4.17  Overall architecture 

We adopt partial parallel of 2 to construct our decoding process, each parallel element process 

96 computation units 



 50

4.2 Chip Implementation 

The proposed LDPC decoder was implemented with the 0.13 um 1P8M standard CMOS 

process. The chip layout of the LDPC decoder including the B2C memory, the shift size ROM 

table, ADDLL and the other control logic and processing blocks is shown in Fig. 4.16. The 

decoder die size is 13.69 um2. The total gate count of the LDPC decoder is 1265K, where 

194K is for B2C memory. We use 184 pins for pads and 67 pins for I/O pads and 114 pins for 

VDD/GND pads. The SRAM contains the B2C Memory and Channel Memory, and the 

ROM1 and ROM2 are the shift size rom table. 

The post simulation result is tested to verify the functional correctness. The maximum 

iteration number is 20. The maximal data rate of the decoder is 28.3 Mb/s at typical case 

while working at 198MHz and 20.3 Mb/s at worst case. The power consumption is 700 mW. 

This power consumption analyzes only on iteration decoding excluding receiving data and 

outputting result.  

The throughput rate is mostly constrained by the cyclic shifters latency and the data bus 

bandwidth for message passing. Although we simplify the operation of iteration decoding, a 

lot of accessing memory operations makes our decoding latency longer.  

SRAM

Shifter1

Shifter2

R
O

M
2

ROM1

ADDLL

 

Fig. 4.18  Chip layout of the LDPC decoder chip 



 51

Table 4.1  Summary of the LDPC decoder chip 

Technology Standard 0.13-um CMOS 1P8M 

Core size 3.0 um ×  3.0 um 

Chip size 3.7 um ×  3.7 um 

Gate count 1265K 

Power dissipation 700mW @ 198MHz * 

Maximum data rate 20.3Mb/s @ 20iterations ** 

*： The simulation environment is set at typical speed corner (1.2V Supply voltage) and the 

power consumption analyzes only on the iteration decoding excluding receiving data and 

outputting result. 

**： The simulation environment is set at worst speed corner (1.08V Supply voltage) with 

considering the coupling noise due to crosstalk effect on signal wires. The maximum data rate 

is 28.3Mb/s at typical case, the worst IR drop=0.04V. 

Table 4.2 shows the gate count of each functional block, “Control + C2B Register” denotes 

the control logic for the whole decoder and the registers for C2B block storage. 

 

Table 4.2  Gate count of functional block 
Function Block Total gate count 
Cyclic Shifter 135K 

C2B Block 176K 
B2C Block 37K 

Control + C2B Register 758K 
RAM 91K 

ROM + Asynchronus 73K 
Total  1270K 

 

4.3 Comparison 

The comparison of our proposed LDPC code decoder with state-of-the-arts are listed in Table 
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4.2. 

Table 4.3  Comparison of LDPC chip 

 Proposed [24] 

Block length 576~2304 (19 types) 1200 

Code structure Irregular irregular 

Code rate 1/2, 2/3, 3/4, 5/6 3/5 

Silicon proven No Yes No 

Technology 0.13-um 0.18-um 0.13-um 

Supply voltage 1.2V 1.8V 1.2V 

Clock freq. 142MHz 83MHz 145MHz 

Chip size 13.69mm2 25mm2 13.47mm2 

Gate count 1.265M 1.15M 

Power dissipation 700mW@198MHz 644mW 299mW 

Data rate 20.3Mb/s@1.08V 3.33Gb/s 5.8Gb/s 

Decoding iteration 20 8 
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Chapter 5  
Conclusion and Future Work 

 

5.1 Conclusion 

In this thesis, we analyze the LDPC code for 802.16e based on the BER performance and 

propose an efficient architecture for 802.16e. In the proposed architecture we reschedule the 

process task for reducing memory usage and decreasing the latency. According our post 

simulation, this LDPC decoder can achieve the data rate to 20.3Mb/s using 0.13um, 1.08V, 

1P8M CMOS process and the power consumption is 700mW at iterative decoding. The core 

occupies 3.0um×3.0um and the chip size is with 184 pins 

 

5.2 Future Work 

For our proposed architecture, the area for processing element is still too large, and the 

throughput rate is a little low to achieve the standard requirement. Our future work is to 

optimize the area and throughput rate. We will try to reuse the processing element to decrease 

the area and try to reschedule the processing element to achieve high clock rate. 
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