
國 立 交 通 大 學 
 

電子工程學系 電子研究所碩士班 

碩 士 論 文 

 

多重假設測試於訊號偵測之應用 

 

Signal Detection Using A Multiple Hypothesis Test 
 
 

研 究 生：林宗熹 

指導教授：鍾佩蓉博士 

            林大衛博士 

                                            

 

中 華 民 國 九 十 五 年 六 月 



 多重假設測試於訊號處理之應用 

Signal Detection Using A Multiple Hypothesis Test 

研究生: 林宗熹          Student:  John-Si Lin 

指導教授: 鍾佩蓉博士              Advisor: Dr. P. J. Chung  

林大衛博士          Dr. David W. Lin 

     

國 立 交 通 大 學 

 電子工程學系    電子研究所碩士班 

碩士論文 

 
A Thesis 

Submitted to Department of Electronics Engineering & Institute of Electronics 
College of Electrical and Computer Engineering 

National Chiao Tung University 
in Partial Fulfillment of Requirements 

for the Degree of  
Master of Science  

in 
Electronics Engineering 

June 2006 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十五年六月 

 



 i

多重假設測試於訊號偵測之應用 
 

研究生：林宗熹                 指導教授： 鍾佩蓉 博士 

               林大衛 博士 

 
               

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 
 

在多樣化的應用裡，訊號源的檢測估計在理論上一直佔有很大的研究空間，隨著

不同的應用，陣列感應器訊號處理已發展成一個活躍的研究領域。許多的技術已經發

展出針對現實上不同問題的解決之道，例如雷達或利用聲納探測出訊號源的位置。

MUSIC 與 ESPRIT 是早期用於偵測訊號來源方向的方法。1970 年代，AIC 與 MDL
準則是為了選擇模型規模而發展出得兩種不同方法。很多方法在過去幾年當中，已經

發展出針對不同的情境而有不同的演算法，例如在同步訊號源或感應器數目非常少的

情況下。本論文的目的即是藉由結合統計的處理方法，使新的演算法達到更好的成效。 
本論文的方向始自於多重假設測試在訊號處理上的應用。Bonferroni 程序目的在

於控制在即時考量下，同類比較測試時導致第一型錯誤的機率。如此一般的同類型錯

誤率得出的結果是趨於保守的。隨著統計處理的發展，多重假設測試的錯誤率可以控

制在某一個信心水準之下，尤其在某些特定的程序比較中可以控制的更低。

Benjamini-Hochberg 程序展現出一種更加有效用的方法來達到更好的效果，而且保持

錯誤率在一定的信心水準之下。本論文將在介紹這一個程序的流程與效用，並且應用

於訊號偵測的領堿，創新並檢驗是否能達到更好的效用。 
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Abstract 
 

Estimation problems in theoretical have been of great research interest in a great variety 
of applications. With application variation, sensor array signal processing developed as an 
active area of research. Many techniques have shown solutions for several real-world 
problems, such as source localization in radar and sonar. MUSIC and ESPRIT are 
parametric-based methods for detecting the locations of sources. AIC and MDL criteria are 
two kinds of approaches for model selection developed around 1970s. Many approaches in 
different situations, such as coherent signals or small number of sensors, were developed 
for the past years. Our goal is attempt to improve the performance by combining statistics 
processing. 

Our idea comes from the multiple test which were tested in strong sense. The 
Bonferroni procedure controls the probability of committing any type I error in families of 
comparisons under simultaneous consideration. This control of familywise error rate  
results in conservative effects. With statistics development, the error rate of multiple 
hypotheses tests can be controlled under a certain level, especially lower in some of the 
procedure points. The Benjamini-Hochberg procedure shows a more powerful procedure to 
reach better performance and still maintain error rate under certain significance level. This 
work will introduce the controlling procedure and show the result with combing source 
detection problem. 
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Chapter 1

Introduction

Estimation problems in theoretical have been of great research interest in a great variety of

applications. With application variation, sensor array signal processing developed as an ac-

tive area of research. Many techniques have shown solutions for several real-world problems,

such as source localization in radar and sonar. Subspace-Based methods, such as MUltiple

SIgnal Classification (MUSIC), was indeed originally presented as a DOA estimator. Estima-

tion of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) is an algorithm

that dramatically reduces theses computation and storage cost. It is more robust with re-

spect to array imperfections than MUSIC; however, both of them are not the techniques we

focus on in this work because they do not involve the concepts of multiple hypotheses test.

The parametric methods of signal processing require often not only the estimation of a

vector of real-valued parameters but also the selection of one ore several integer-valued para-

meters that are equally important for the specification of a data model. For example, orders

of an autoregressive moving average model, number of sinusoidal components in a sinusoids-

in-noise signal, number of source signals impinging on a sensor array are theses kind of cases.

The integer-valued parameters determine the dimension of the parameter vector of the data

model, and thy must be estimated from the data. The task of selecting the above mentioned

integer parameters is known as model order selection. Akaike Information Criterion (AIC)
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and Minimum Description Length (MDL) are two kind of information Theoretic approaches

developed around 1970s for such a problem. The approach MDL is consistent, whereas the

AIC is not. The definition of consistency means that when the sample size increases to in-

finity, estimated probability goes to one. The advantage of information theoretic criterion is

that it does not need any subjective judgment to detect the number of sources. It determined

as the value for which the AIC or MDL criterion is minimized. However, the drawback of

these methods is failure in the presence of coherent signals. Many approaches in different

situations, such as coherent signals or small number of sensors, were developed for the past

years. Our goal is attempt to improve the performance by combining statistics processing.

Our idea comes from the multiple test which were tested in strong sense. The Bonferroni

procedure [1] controls the probability of committing any type I error in families of com-

parisons under simultaneous consideration. This control of familywise error rate (FWER,

we will introduce in the following chapter) results in conservative effects. With statistics

development, the error rate of multiple hypotheses tests can be controlled under a certain

level, especially lower in some of the procedure points. The Benjamini-Hochberg procedure

[2] shows a more powerful procedure to reach better performance and still maintain error

rate under certain significance level. The following chapters will introduce the controlling

procedure and show the result with combing source detection problem.

The organization of this thesis is:

• Chapter 2 introduce the background knowledge and the signal model we use.

• Chapter 3 analyzes the detection problem and algorithm of our approach.

• Chapter 4 will show the results of simulation in different scenarios.

• Chapter 5 gives conclusion and future work which could be done further.
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• Appendix A briefly introduces the Neyman-Pearson theory and appendix B talks about

the concept of p value used in statistics problem, which is a parameter for hypotheses

test.

3



Chapter 2

Background and Signal Model

In this chapter some background that is used in analysis of signal model is introduced.

In array signal processing, the signals propagated by waves from sources to the array are

functions of position as well as time. They obey the laws of physics, especially the wave

equation. For in-depth understanding and development of array signal processing algorithms,

knowledge about spatiotemporal signal propagation and noise characteristics is required.

2.1 System and Propagating Waves

Let a three-dimensional Cartesian grid, such as p(x, y, z), represent space. Considering time

as the fourth dimension, a space-time signal can be written as s(x, y, z, t), as shown in Fig.

2.1. A point is described by its distance r from the origin, azimuth θ within an equatorial

plane containing the origin, and its angle φ down from the vertical axis. Simple trigonometric

formulas connect spherical coordinates and Cartesian coordinates. The notation ~x denotes

the position vector (x, y, z), where the x, y, and z are the spatial variables. We have
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Figure 2.1: The spherical coordinate system, where θ is azimuth, φ elevation, and r distance
from origin.

r =
√

x2 + y2 + z2,

x = r sin φ cos θ, y = r sin φ sin θ, z = r cos φ,

θ = cos−1
( x√

x2 + y2

)
= sin−1

( y√
x2 + y2

)
,

φ = cos−1
( z√

x2 + y2 + z2

)
.

The physics of propagation is described by wave equation for the appropriate medium

and boundary conditions. Electromagnetic fields obey Maxwell’s equations as follows:

∇× ~E = −∂(µ ~H)

∂t
, ∇ · (ε ~E) = 0,

∇× ~H = −∂(µ~E)

∂t
, ∇ · (ε ~H) = 0,
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where ~E is the electric field intensity, ~H is the magnetic field intensity, ε is the dielectric

permittivity, µ is the magnetic permeability, and ∇ is gradient vector operator defined as

∇ =
∂

∂x
~ix +

∂

∂y
~iy +

∂

∂z
~iz.

From Maxwell’s equations,

∇2 ~E =
1

c2

∂2 ~E

∂t2

where ∇2 denotes the Laplacian operator

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Putting the wave s(~x, t) into the above equation, we obtain the wave equation as

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
=

1

c2

∂2s

∂t2
(2.1)

where c =
1√
εµ

. The solution of the wave equation is a propagating wave. It determines

the performance of array processing, which tries to extract useful information from the

propagating waves. As a partial differential equation, it is often suggested to hypothesize a

separable solution, which means a wave of the form

s(x, y, z, t) = f(x)g(y)h(z)p(t).

Assume a complex exponential form

s(x, y, z, t) = A exp{j(wt− kxx− kyy − kzz)} (2.2)

where A is a complex constant and kx, ky, kz, and w are nonnegative real constants. Sub-

stituting this form into the wave equation and cancelling the common terms, we have the

constraint

k2
x + k2

y + k2
z =

w2

c2
. (2.3)
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Monochromatic, meaning “one color,” plane wave thus arises from the solution of (2.2).

Plane wave arises because at any instant of time t0, under the constraint kx + ky + kz = C,

where C is constant, all points of s(x, y, z, t0) lie in the same plane. We may simply rewrite

the expression as

s(~x, t) = A exp{j(wt− ~k · ~x)} (2.4)

where ~k · ~x is constant. As time proceeds by δt, planes of constant phase propagate by an

amount of δ~x. The equation s(~x + δ~x, t + δt) = s(~x, t) implies that

wδt− ~k · ~x = 0. (2.5)

As illustrated in Fig. 2.2, the reason why one chooses δ~x to have the same direction as ~k

is for giving the minimum magnitude. The direction of propagation ~ζo of the plane wave

corresponds to the direction of ~k and it is given by

~ζo =
~k

k

where k = |~k| is the magnitude of the wavenumber vector. We get wδt = |~k||δ~x| due to the

simplification of ~k · δ~x = |~k||δ~x| and hence
|δ~x|
δt

=
w

|~k|
denotes the speed of propagation of

the plane wave. Because |~k|2 = w2/c2, the speed of propagation is given by

|δ~x|
δt

= c.

The distance propagated during one temporal period, defined as T = 2π/w, is the wave-

length λ. If δt in (2.5) is substituted by 2π/w, then δ~x = λ = 2π/|~k|, where vector ~k is

wavenumber vector and its magnitude indicates the number of cycles (in radians) per meter.

The quantity w is temporal frequency; therefore the wavenumber vector can be considered

as spatial frequency variables, a three dimensional vector.

Rewriting (2.2) from the above simplification, we get

s(~x, t) = A exp{j(w(t− ~α · ~x)} (2.6)

7



Figure 2.2: The vertical lines represent the plane waves. If one wants to see how much a
plane wave moves during δt units, set δ~x in the same direction which ~k propagates towards
and is known as direction of propagation.

where slowness vector, ~α, equals ~k/w, the reciprocal of the propagation speed.

For a linear equation, the linear combination of several solutions is also a solution. If

s1(~x, t) and s2(~x, t) are two solutions to the wave equation, then as1(~x, t) + bs1(~x, t) is also

a solution, where a, b are scalars. Sum up the monochromatic solutions gives the waveform

s(~x, t) = s(t− ~α · ~x) =
∞∑
−∞

Sn exp{jnw0(t− ~α · ~x)}. (2.7)

By the Fourier theorem, any periodic wave with period T = 2π/w0 can be represented in

the form. The coefficients Sn are given by

Sn =
1

T

∫ T

0

s(u) exp{jnw0u}du.

Equation (2.7) is a periodic wave propagating arbitrary waveform. It propagates with a

speed c = 1/|~α| and has multiple frequencies w = nw0. Since s(~x, t) is a complex exponential

8



waveform, we can use Fourier theory to obtain an alternative expression in the frequency

domain as

s(~x, t) = s(t− ~α · ~x) =
1

2π

∫ ∞

−∞
S(w) exp{jw(t− ~α · ~x)}dw (2.8)

where from the Fourier transform we have

S(w) =

∫ ∞

−∞
s(u) exp{−jwu}du. (2.9)

Here we get the conclusion that any signal satisfies the wave equation, no matter what

the shape of the signal is. This comes from the following reasons:

1. Arbitrary functions can be expressed as a weighted superposition of complex exponen-

tials.

2. Complex exponentials solve the wave equation.

3. The wave equation is linear and the linearity implies that plane waves propagating in

different directions can exist simultaneously.

In summary, the following properties of propagating signals can be exploited by array

processing algorithms:

• Propagating signals are functions of a single variable, s(·). Based on “local” informa-

tion, one can infer the signal over all space and time, i.e., reconstruct the signal over

space and time. Therefore, signals radiated by the sources can be determined.

• The speed of propagation depends on the physical parameters of the medium. If the

characteristics of the medium are known, the speed and direction of propagation can

be inferred.

9



• Signal propagating in a specific direction ~ζo is equivalent to either ~α or ~k. At a given

time instant, the spatial samples provide a set of values s(t0 − ~α · ~xm) that can be used

to determine ~α.

• The superposition principle allows several propagating waves to occur simultaneously

without interaction.

2.2 Wavenumber-Frequency Space

Fourier transform, a useful tool for analyzing time series, can be used to estimate the fre-

quency content of a signal or a weighted sum of sinusoidal functions. The forward Fourier

transform and inverse Fourier transform have similar forms, thus duality exists between the

time-domain and frequency-domain representation. When the Fourier analysis is extended

to multidimensional signals, the properties still hold. Four-dimensional Fourier transform of

a spatiotemporal signal s(~x, t) can be written as

S(~k, w) =

∫ ∞

−∞

∫ ∞

−∞
s(~x, t) exp{−j(wt− ~k · ~x)}d~xd~t. (2.10)

The above can be interpreted as an representation of signals in terms of the temporal fre-

quency variable w and the wavenumber vector variable ~k, which is considered a spatial

frequency variable.

Consider a uniform plane wave

s(~x, t) = exp{j(w0t− ko · ~x)}

where ko and w0 are particular wavenumber vector and temporal frequency. The sinusoidal

wave, with period T = 2π/w0, spatial frequency ko = |~k|, wavelength λ = 2π/ko, speed of

propagation c0 = w0/k
o and direction of propagation parallel to the wavenumber vector ~k,
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has its corresponding Fourier transform

S(~k, w) =

∫ ∞

−∞

∫ ∞

−∞
exp{−j(w − w0)t + (~k − ko) · ~x}d~xdt.

When our space-time signal is a propagating wave, s(~x, t) = s(t−~αo, ~x), the Fourier transform

is

S(~k, w) =

∫ ∞

−∞

∫ ∞

−∞
s(t− ~αo), ~x) exp{−j(wt− ~k · ~x)}d~xdt.

Substituting u = t− ~α · ~x into the above equation, we get

S(~k, w) =

∫ ∞

−∞

∫ ∞

−∞
s(u) exp{−j(wu− (~k − w~αo) · ~x}d~xdt

= S(w)δ(~k − w~α).

2.3 Random Fields

2.3.1 Stationary Random Fields

Spatiotemporal signals can be described as functions of space and time. Noise plays an

important role in determining the characteristics of the propagating signals. Mathematical

modeling of noise requires use of the theory of probability and stochastic processes. Spa-

tiotemporal stochastic processes are known as random fields. Let f(~x, t) denote a random

field. For particular values of ~x = ~xo and t = t0, f(~x0, t0) denotes a random variable that is

characterized by a probability density function pf(~x0,t0)(·). The following gives the definitions

of expected value, correlation function, and covariance function of a random field:

• Expected value: ε[f(~x0, t0)] =
∫

αpf0(α)dα.

• Correlation function: Rf ( ~x0, ~x1, t0, t1) = ε[f0f1] =
∫ ∫

αβpf0,f1(α, β)dαdβ.

• Covariance function: Kf ( ~x0, ~x1, t0, t1) = Rf ( ~x0, ~x1, t0, t1)− ε[f0]ε[f1].

11



Stationary random fields possess an important and special property for the above and

other statistics: The statistics do not vary with absolute time and position. The joint

probability functions of random variables depend only on the difference in position and

time. Thus the correlation function varies with the difference ~x1 − ~x0 and t1 − t0, denoted

~χ and τ below, respectively. The correlation function of a stationary random field can be

written as

Rf (~χ, τ) = ε[f(~x0, t0)f(~x0 + ~χ, t0 + τ)]. (2.11)

When the stationary random field f(~x, t) is filtered by a linear, space-invariant and time-

invariant filter, we get another stationary random field y(~x, t) at the output, see Fig. 2.3. The

filter is characterized by its impulse response h(~x, t) or its wavenumber-frequency response

H(~k, w). The autocorrelation of the output is give by

Ry(~χ, τ) =

∫ ∞

−∞
Rhh(~a, b)Rf (~χ− ~a, ~τ − b)d~adb (2.12)

where Rhh(~a, b) represents the deterministic autocorrelation function of the impulse response

h(~x, t) as

Rhh(~a, b) =

∫ ∞

−∞
h(~x, t)h(~x + ~a, t + b)d~xdt. (2.13)

From (2.11) it can be observed that the correlation function of output random field is equal

to the convolution between the deterministic autocorrelation function of the filter impulse

response and the input correlation function.

The power spectral density function of a random field filtered in space and time can be

shown to be

Sy(~k, w) = |H(~k, w)|2Sf (~k, w). (2.14)

We see that the input power spectral density is multiplied by the squared magnitude of the

filter’s frequency response to obtain the power spectral density function of the (stationary)

output random process.

12



Figure 2.3: Filtered stationary random field.

2.3.2 Correlation Matrices of Sensor Outputs

The correlation functions computed from the sensor outputs play a crucial role in array

processing algorithms, and the corresponding correlation matrices are worthy of some dis-

cussion. Correlation matrices are classified into two classes: spatiotemporal correlation ma-

trices and spatiospectral correlation matrices. Below we introduce the former. For more

information, see [3].

For convenience in mathematical treatment, is is common to use a matrix form where

the sensors are statically positioned, meaning that spatial variables ~x1 and ~x2 are evaluated

at the sensor locations {~xm}, m = 0, ..., M − 1. Also we need to sample simultaneously

at the output of each sensor for {tn}, n = 0, ..., N − 1. The correlation matrix R(t0) is

arranged from these MN values by blocking the matrix into M2 submatrices, each of which
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being a cross-correlation matrix of the temporal values between pairs of sensor outputs. The

MN ×MN spatiotemporal correlation matrix is

R(t0)=




R0,0 R0,1 · · · R0,M−1

R1,0 R1,1 · · · R1,M−1
...

...
. . .

...
RM−1,0 · · · · · · RM−1,M−1




where Rm1,m2 represents the N × N cross-correlation matrix of the field collected by the

sensors m1 and m2. We have

Rm1,m2 = Rf (~xm1 , ~xm2 , tn1 , tn2), n1, n2 = 0, ..., N − 1.

note that R(t0) is a Hermitian matrix because the off-diagonal terms are symmetric, i.e.,

Rm1,m2 = R′
m2,m1

, and each main-diagonal term Rm,m is equal to the temporal correlation

matrix of the observations measured at the mth sensor. When the field is stationary, each

submatrix is Toeplitz, i.e., a matrix with constant values along each diagonal in the form




R0 R−1 · · · R−(M−1)

R1 R0 R−1 R−(M−2)
...

...
. . .

...
RM−1,0 RM−2 · · · R0


.

A special case occurs when the spatial and temporal correlations are separable. The spa-

tiotemporal correlation can be written as Rf (~χ, τ) = R
(s)
f (~χ) · R(t)

f (τ) where the two terms

on the right-hand-side are the spatial correlation function and the temporal correlation

functions, respectively. In terms of the spatiotemporal covariance matrix, it implies that

Rm1,m2 = ρm1,m2R0,0, where ρm1,m2 denotes the spatial correlation coefficient between sen-

sors m1 and m2.

If the sampled field is either spatially or temporally white, the correlation matrix’s struc-

ture is simplified greatly. For the case of a spatially white field, the correlation function

becomes δm2−m1Rf (~0, tn2 − tn1) and ρ = I, yielding the spatiotemporal covariance matrix
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


R0,0 0 · · · 0

0 R0,0 0
...

...
. . . . . .

...
0 · · · · · · R0,0




When the field is temporally white, the spatiotemporal correlation function simplifies to

δn2−n1Rf (~xm2 − ~xm1 , 0). Matrices Rm1,m2 are diagonal, equaling ρm1,m2σ
2I, so that

R=




σ2I ρ0,1σ
2I · · · ρ0,M−1σ

2I

ρ1,0σ
2I σ2I ρ1,2σ

2I
...

...
. . . . . .

...
ρM−1,0σ

2I · · · · · · σ2I


.

2.4 Assumptions on Signal and Noise

Let the sensor outputs be denoted {f(~xm), t}M−1
m=0 , which contains a superposition of signals

and noise. The noise is usually considered as stationary, zero-mean Gaussian, and statisti-

cally independent of the field’s signals. The stationarity is assumed in both the temporal

and the spatial domains and it means that the observation noise collected at each sensor

has identical statistical characteristics and any cross-correlation between the noises at dif-

ferent sensor outputs depends only on the physical distance separating the sensors. The

above assumptions implies the isotropic noise condition: The noise component of the obser-

vations consist of waveforms propagating toward the array from all directions in the field.

Noise comes from everywhere and has well-defined power spectrum. Some signals may be

jammers, which are unwanted signals transmitting toward the array and resulting in inter-

ference on the detecting process for the signals we are interested in. The source locations

of jammers may be known before processing. Signals can be realizations of a stochastic

process or deterministic. They may convey information and our goal is trying to exploit the

information hidden in the signal structure with effective array processing algorithms.

The sampled signal obtained from the mth sensor is a linear combination of signals and
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stationary noise that can be written as

ym(tn) =
Ns−1∑
i=0

si(m, tn) + nm(tn), n = 0, ..., N − 1, (2.15)

where si represents a source that propagates energy. Each signal depends on sensor index

m via a propagation-induced delay-per-sensor ∆i(m): si(m, tn) = si(tn−∆i(m)). It is equal

to the scaled dot product between the source’s apparent direction vector and the sensor’s

location as

∆i(m) =
~ζo
i ~xm

c
.

The propagation speed c varies frequently because of inhomogeneities in the medium. This

variation makes our problem complex and complicated to determine the direction of propa-

gation. For given sensor locations, an algorithm can only estimate the ratio of the signal’s

direction vector and the speed of propagation. Given either the direction or the speed of

propagation, we can get the other term without ambiguity.

As mentioned, the signals can be stochastic or deterministic. The matrices of interest

consist of all possible cross-correlations between the various signals and their observed values

at each sensor. Define an MN ×Ns signal matrix S(t0) as

S(t0)=




s0(0) s1(0) · · · sNs−1(0)
s0(1) s1(1) · · · sNs−1(1)

...
...

. . .
...

s0(M − 1) s1(M − 1) · · · sNs−1(M − 1)




where each column contains a sequence of observations for a specific signal. Each term of

the matrix, s, is equal to col[s − i(m, t0), ..., si(m, tN−1)], i.e., the output sequence vectors

recorded at the mth sensor. The observation vector is written as y(n0T ) = S(n0T )1, where

1 = col[1, ..., 1]. The spatiotemporal correlation matrix R(t0) for a deterministic signal is
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given by

R(t0) = E[y(t0)y
′(t1)]

= S(t0)11′S′(t0) + Rn (2.16)

where y(t0) = S(t0)1 + n(t0) and Rn denotes the correlation matrix of the noise.

Evaluation of the spatiospectral correlation matrix reveals a strikingly similar mathemat-

ical form. We define the M ×Ns signal matrix S as

S=




e−jw∆0(0) · · · e−jw∆Ns−1(0)

... · · · ...
e−jw∆0(M−1) · · · e−jw∆Ns−1(M−1)


.

Each column of this matrix has the form

e(∆i) = col[e−jw∆i(0), ..., e−jw∆i(M−1)]

which represents the propagation-induced phase shift experienced by a unit-amplitude com-

plex exponential signal and measured by the sensors. Define the Ns × Ns matrix C as

intersignal coherence matrix with ci1,i2 = ε[Si1(ω)S∗i1(ω)]. The spatiospectral matrix be-

comes

R(ω) = SCS′ + RN .

The similarity between spatiotemporal and spatiospectral correlation matrices allows us

to ignore whether a time-domain or frequency-domain algorithm is in question. If the signal

is narrow-band, the matrix’s smaller size dramatically reduces the amount of computation; if

wideband, matrices are required to integrate fully the signal components in the observations

and the amount of computation increases proportionally. In short, the signal’s characteristics

affect the algorithm type and the resulting complexity.

17



Problem Formulation

Consider M sensors composed in an array with arbitrary locations and directions. Assume

there are q narrow-band sources centered around a known frequency w0 coming from different

locations θ1, · · · , θq. Use the complex envelopes, p×1 vector, to represent the received signals

as

x(t) =

q∑
i=1

a(θi)si(t) + n(t), (2.17)

where si(t) represents the signal of the ith source received at the reference point and n(t)

represents the noise at the ith sensor. a(θ) is the steering vector of the array toward direction

θ,

a(θ) = [a1(θ)e
−jw0τ1(θ), · · · , aM(θ)e−jw0τM (θ)]. (2.18)

In the (2.18), ai(θ) is the amplitude response of the ith sensor towards direction θ. τi(θ)

represents the propagation delay beteen the reference point and the ith sensor to a wavefront

impinging from direction θ. For simplicity, we use matrix notation to replace (2.17) as

x(t) = A(θ(q))s(t) + n(t), (2.19)

where

A(θ(q)) = [a(θ1), · · · , a(θq)] (2.20)

is the M × q matrix of the steering vectors. We will discuss more in chapter 3.
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Chapter 3

Signal Detection Using a Multiple
Hypothesis Test

The number of signals is an important factor dominating the performance of many algorithms

of signal detection methods. Here we investigate an approach based on multiple hypothesis

test.

3.1 Eigenanalysis Methods

3.1.1 Eigenanalysis

Eigenanalysis is the determination of the natural coordinate system for a given quantity. It

is used frequently in the development of signal processing algorithms. A linear operator’s

spectrum is defined to be its set of eigenvalues and its “natural” basis is the set of normalized

eigenvectors. Let L be a linear operator, x denote a vector and a represent a scalar: L[a1x+

a2x] = a1L[x1] + a2L[x2]. This operation can represent signal processing operations such

as linear filtering and the multiplication of a vector by a matrix. One way of viewing

the eigensystem is that the eigenvalue corresponding to an eigenvector gives the operator’s

gain when it acts on the eigenvector. Let the order of indexes from the smallest to the

largest, λ1, λ2, ..., λM , where M is the number of eigenvectors, corresponds to the order of
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the magnitude of eigenvalues from the largest to the smallest. One common application of

a linear operator is to describe a linear, time-invariant system. The eigensystem (λi, vi)L

refers to the collection of eigenvectors and associated eigenvalues.

The utility of eigenanalysis rests not only on defining the input-reproducing property,

but also on the orthogonality of the eigenvectors and their completeness. A vector x can be

represented by a linear eigenvector expansion which defines a coordinate system:

x =
∑

i aivi with ai =< x, vi >.

Applying the linear operator to defining the system allows the associated linear operator’s

output to have an easily calculated representation as

L[x] =
∑

i

λiaivi.

Eigenvectors of a linear operator do not guarantee to form an orthogonal set for the reason

depending on whether the Fourier transform exists, but this linear operators do.

3.1.2 Signal and Noise Subspaces

For many adaptive array processing algorithms, the spatial correlation matrix R is the crucial

feature. Let us begin with the formulation and definition of signal and noise subspaces.

The observation vector x(t) is the M × 1 vector given by

x(t) =

q∑
i=1

A(Φi)si(t) + n(t) (3.1)

where si(·) is scalar complex waveform referred to as the ith signal, A(Φ) denotes an M × 1

complex vector, parameterized by an unknown parameter vector Φ associated with the ith

signal, and n(·) represents an M × 1 complex vector referred to as the additive noise. M is

known as the number of sensors. Here we assumed the q signals are complex, stationary, and
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ergodic Gaussian random processes with zero mean and positive definite covariance matrices.

The noise vector is assumed to be a complex stationary and ergodic Gaussian vector process,

independent of the signals, with zero mean and covariance matrix given by σ2I, where σ2

is an unknown scalar constant and I is the identity matrix. The problem is how can we

estimate the number of signals from a finite set of observation x(t1), ..., x(tN). Rewrite (3.1)

as

x(t) = As(t) + n(t) (3.2)

where A is the p× q matrix

A = [A(Φ1) · · ·A(Φq)] (3.3)

and s(t) is the q × 1 vector

s(t) = [s1(t) · · · sq(t)]
T . (3.4)

From the previous assumptions that the noise is zero mean, additive, white, Gaussian and

independent of the signals, use of eigeanalysis to develop algorithms hinges on the relation

between the eigenvectors of spatial correlation matrices and signal vectors. The covariance

matrix of X(t) is given by

R = ACSA
′ + σ2I (3.5)

where A′ is the conjugate transpose of A and CS = E[s(·)s(·)′], the covariance matrix of

signals. Assume q < M and that both CS and A are of full rank q. The positivity of R

guarantees the following representation

R = ACSA
′ + σ2I

=
M∑
i=1

λiυiυ
′
i

= UΛU′ (3.6)

where U = [v1, ...vM ] and Λ = diag[λ1, ..., λM ] with λ1 > · · · > λM . Consider the case

of ACSA
′ being singular, i.e., rank(ACSA

′) < M . Then the determinant of ACSA
′ is
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equal to zero. Therefore σ2 is equal to at least one of the eigenvalues of R. But since A

is full-rank and CS > 0, ACSA
′ must be nonnegative definite. Thus σ2 can only be the

minimum eigenvalue λmin. Since rank(ACSA
′) = q, its smallest eigenvalues are zeros with

multiplicity (M − q). In addition, the eigenvalues of R and those of ACSA
′ = R−σ2I differ

from σ in all cases.

Let {vq+1, ...,vM} denote the set of eigenvectors associated with λmin = σ2. Since Rυi =

(ACSA
′ + σ2I)υi = λiυi, we have ACSA

′υi = (λi − σ2)υi. For λi = σ2, ACSA
′vi = 0 or

A′υi = 0. That is, the noise eigenspace is orthogonal to the column space of A.

Since the subspace spanned by {vq+1, ...,vM} is orthogonal to the column space of A,

{v1, ...,vq} must span the column space of A. Thus we can partition the eigenvector/value

pairs into signal eigenvectors {v1, ...,vq} corresponding to λ1 > λ2 > · · · > λq > σ2 and

noise eigenvectors {vq+1, ...,vM} corresponding to λq+1 = · · · = λM = σ2. Let

R = UsΛsU
′
s + UnΛnU

′
n, (3.7)

Λs = diag[λ1, ..., λq],

Λn = diag[λq+1, ..., λM ].

The number of signals q can be determined from multiplicity of the smallest eigenvalue

of R. The problem is that the covariance matrix R is unknown in practice. Because of

the finite sample size, the observed eigenvalues are all different with probability one and

for this reason, it is difficult to determine the number of signals merely by “observing” the

eigenvalues.

3.2 Multiple Hypothesis Test

The problems of interest in array processing are not only bearing estimation, but also the

number of signals. In many algorithms, the number of signals is known so that the resolution
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of bearing estimation improves greatly; in other words, if we have a credible method of

determining the number of sources, we can correctly adopt high resolution algorithms. This

is the so-called source detection problem.

The algorithms used to detect the number of signals incident on the array, such as the

AIC[4], MDL[5], and sphericity test, exploit the form of the spatial correlation matrix R.

AIC and MDL are both information theoretic criteria for a model selection problem proposed

by Wax and Kailath [6], and the sphericity test is a sequence of hypothesis tests on adjacent

groups of eigenvalues of R to determine how many of the smallest eigenvalues are equivalent.

For M sensors, R is the M ×M spatial correlation matrix where the obtained vectors

are selected from the Fourier transforms of the sensor outputs at particular frequencies of

the narrow-band signals. We have discussed the signal and noise subspace in Section 3.1.2.

Now we simplify the notation in (3.5) for convenience as

R = ACSA
′ + σ2

nI

= ACSA
′ + Kn (3.8)

where A is the matrix constructed by columns corresponding to the vector form of signals,

A′ is the conjugate transpose of A, CS is the matrix of the correlation between the signals,

and Kn represents the correlation matrix of the noise. Consider a ULA (uniform linear

array) where the sensors are spaced apart with constant distance, such as half-wavelength,

in a linear way. The columns of A, also called steering vector ,are of the Vandermonde form

aT
i = [1 eγi e2γi · · · e(M−1)γi ] (3.9)

where γi = j2π(d/λ) sin θi, with λ denoting the wavelength of the narrow-band signals, θi

denoting the DOA (degree of arrival), i.e., the direction of ith signal, and d representing the

spacing between sensors. For the AWGN scenario, we have Kn = σ2
nI where σ2

n is the noise

power.
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Conceptually, the correlation matrix is shaped from two parts: signal and non-signal

(noise) subspaces. If there are fewer sources than sensors, then the rank of ACSA
′ is equal

to the number of sources. For the case where there are q sources, ACSA
′ is of rank q with q

eigenvalues ξ1, ξ2, · · · , ξq. On the other hand, the σ2
nI contains M−q diagonal terms equal to

σ2
n. Thus the q largest eigenvalues ξ1+σ2

n, ξ2+σ2
n, · · · , ξq +σ2

n represent the eigenvalues of the

signal subspace; the remaining (M − q) eigenvalues of the correlation matrix σ2
n correspond

to the noise subspace part. For the fewer sources case, i.e., q < M , the smallest M − q

eigenvalues of R are all equal. Since we can determine the order of the noise, we can get

the number of signals. Finally if there are more sources than sensors, we can only detect

at most M − 1 sources since the algorithm assumes that the smallest eigenvalue lies in the

noise subspace with different value from the others; in other words, the algorithm can only

detect M − 1 sources.

3.2.1 Multiple Hypothesis

The motivation of such an experiment comes from the following problem. The following para-

graph is just one case to exemplify the procedure when we make assumption of hypotheses

test. Here are two system, S0 and S1, generating different measurements X distributed as

N [m1,R1] and N [m1,R1], respectively, where N [mi,Ri] indicates that the measurement is

normal distributed with mean mi and correlation matrix Ri. Therefore, we have two models,

or hypotheses, to test which one is more reliable and consistent. The models are:

H0 : X : N [m0,R0],

H1 : X : N [m1,R1].

Generally, we choose the conservative term as null hypothesis, H0, and the other as the

alternative, Hi, i 6= 0. In other fields such as biomedical engineering, pharmaceutical test, or

neuroimaging analysis, we have strong faith on those conventional methods or experienced

24



techniques bringing benefit as time goes by. The problem is that which one should we

select to minimize the probability of erroneous decisions. The Neyman-Pearson detector [7]

provides a scheme of decision according to the likelihood ratio.

Classes of Tests

Let X denote a random vector with distribution Fθ(x), where the θ belongs to the parameter

space Θ which is a disjoint covering of the parameter space, Θ = Θi ∪ Θj. Take the binary

hypothesis case for example. H0 denotes the hypothesis that θ ∈ Θ0 and H1 represents θ

∈ Θ1. The test

H0: θ ∈ Θ0 versus H1: θ ∈ Θ1

thus is called binary test of hypotheses. Moreover, if Θ = Θ0 ∪ Θ1 ∪ · · · ∪ ΘM−1 is the

parameter space, the test

H0 versus H1 versus · · · HM−1

is called multiple or M-ary hypothesis test. Hypotheses also are classified into two kinds:

simple hypotheses and composite hypotheses. If a single vector θ belongs to Θi, the hypoth-

esis Hi is termed simple; otherwise, it is composite. For the binary hypothesis case, if H0

is simple and H1 is composite, this is a test about a simple hypothesis versus a composite

alternative. A typical example is

H0: θ = 0 versus H1: θ 6= 0

where we judge whether θ is equal to zero or not. This kind of binary hypothesis test is

called “two-sided” because the alternative H1 lies on both sides of H0. Alternatively, if the

judgement does not aim on the equality, such as
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Figure 3.1: Two kinds of binary hypotheses.

H0: θ > θ0 versus H1: θ < θ0,

then it is said to be “one-sided” test of a composite hypothesis versus a composite alternative.

False Alarm and Power of A Hypothesis Test

There are two categories of errors: type I error and type II error. Specifically, let X denote

a random vector with distribution Fθ(x), θ ∈ Θ. If the test is a binary hypothesis of H0:θ

∈ Θ0 versus H1:θ ∈ Θ1, the problem can be expressed as

φ(x) =

{
1 : H1, x ∈ R,
0 : H0, x ∈ A.

(3.10)

The meaning of the notation is “if the x belongs to region R, the test function φ(x) = 1

and hypothesis H1 is accepted; if the x lies in region A, the test function φ(x) = 0 and

hypothesis H0 is accepted, H1 is rejected.”
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In signal transmission, the type I error can be interpreted as the parameter θ ∈ Θ0

but x ∈ R, and hence H0 is rejected. This is called false alarm and the corresponding

probability is given by

α = Pθ0 [φ(X) = 1]

= Eθ0φ(X)

= PFA (3.11)

where Eθ0φ(X) is the expectation of φ(X) under the density function fθ0(X). Furthermore,

if H0 is composite, then it is defined to be the following supremum:

α = sup
θ∈Θ0

Eθφ(X), (3.12)

which is the worst probability of accepting H1 when H0 is in force.

If θ ∈ Θ1 and x ∈ R, H1 is accepted when H1 is really in force. The probability of

correctly accepting H1 is the so-called power or detection probability

β = Pθ1 [φ(X) = 1]

= Eθ1φ(X)

= PD. (3.13)

The probability of type II error can be expressed as:

PM = 1− PD, (3.14)

which is the probability of accepting H0 when H1 is in force. If H1 is composite, the power is

defined for each θ ∈ Θ1 and given by the notation β(θ). If θ is scalar and Θ1 a continuous

set, then the power might look like the curve in Fig. 3.2.
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Figure 3.2: A typical power curve.

3.2.2 Sphericity Test

The sphericity test is one kind of well-known algorithms for estimating the number of signals

from the eigenvalues of the spatial correlation matrix of the array. The basic procedure of

sphericity test is a hypothesis test to determine the equivalence of smallest eigenvalues.

James [8] and Lawley [9] have contributed to the test under real correlation matrices; but for

array processing application the spatial correlation matrix is complex. Recently, however,

several publications, such as, [10], [11], and [12], have considered complex spatial correlation

matrices.

Suppose we have the correlation matrix R of a length M Gaussian random vector. The
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test is

H0 : R = σ2
nIM ,

H1 : R 6= σ2
nIM , (3.15)

where σ2
n is unknown. Because we are interested in the equality of eigenvalues, we rewrite

(3.15) as

H0 : λ1 = λ2 = · · · = λM ,

H1 : λ1 > λM , (3.16)

where the λs represent the eigenvalues of the correlation matrix and M is the number of

sensors.

For the source detection problem, the number of sources should be less than the number

of sensors, which is also the number of eigenvalues. Assume there are k, less than M , sources

in the detection range, the M − k smallest eigenvalues would be equal and the others are

greater in magnitudes. The test takes a series of nested hypothesis tests to verify the M − k

eigenvalues for equality. The hypotheses are

H0(k) : λ1 ≥ λ2 ≥ · · · ≥ λk+1 = λk+2 = · · · = λM ,

H1(k) : λ1 ≥ λ2 ≥ · · · ≥ λk+1 ≥ λk+2 ≥ · · · ≥ λM . (3.17)

Since the detection problem focuses on the equality of a subset of eigenvalues, the result can

be deduced from H0(k) by testing the k value. Once the null hypothesis is true, we can say

that the number of sources is k.

Making a decision based on hypotheses testing needs a threshold for judgement. Mauchley
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[13] provides the form of sphericity test as

T (lk+1, lk+2, · · · , lM) = ln

[
(

1
M−k

M∑

i=k+1

li

)M−k

M∏

i=k+1

li

]
H0(k)

<
>

H1(k)
γ (3.18)

where li denotes sampled eigenvalues from the sampled correlation matrix R̂ and, of course,

they have no need to be the same as the true ones. In the equation we notice that γ is

what we depend on to determine whether the hypotheses is true or not. The threshold γ

can be set according to the Neyman-Pearson criterion [14]. A brief introduction is provided

in appendix.

This approach needs knowledge of the distribution of the sphericity under the null hy-

pothesis. Box [15] proposes a likelihood ratio test which shows that

2
(
(N − 1)− 2M2 + 1

6M

)
T (l1, · · · , lM) (3.19)

is asymptotically a chi-square distribution with degrees of freedom M2 − 1, i.e., χ2
M2−1.

Furthermore, Liggett [16] gives the test statistic

2
(
(N − 1)− k − 2(M − k)2 + 1

6(M − k)

)
T (lk+1, · · · , lM), (3.20)

which is asymptotically distributed as χ2
(M−k)2−1. However, both have constraints in appli-

cation. Equation (3.19) is only applicable when all of the eigenvalues are being tested for

equality and (3.20) fails to account for the influence of the larger eigenvalues on the distrib-

ution of the smaller eigenvalues being tested for equality. As a result, they may converge to

a different χ2 distribution or even not a χ2 distribution. In 1990, Williams and Johnson [12]

proposed an improved test statistic to overcome the constraints limiting the performance of
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array processing algorithm. It is

2
(
(N − 1)− k − 2(M − k)2 + 1

6(M − k)
+

k∑
i=1

( li
l̄
− 1

)−2)
· ln

[
(

1
M−k

M∑

i=k+1

li

)M−k

M∏

i=k+1

li

]
, (3.21)

which is asymptotically distributed as χ2
(M−k)2−1, where l̄ =

M∑

i=k+1

li
M − k

. Improvement in

performance occurs when the smaller eigenvalues of R̂ being tested for equality are close in

value to the larger sample eigenvalues; in other words, the larger eigenvalues in the noise

subspace are close to the smaller ones in signal subspace. This new sphericity test statistic

performs as well as AIC and MDL, even better in many cases. Using (3.21) for passive array

processing may solve the problem of source detection when it may be unsolvable by using

other source detection algorithms.

3.2.3 Control of the global level

There are often a number of interesting parameters to be estimated or a number of interesting

hypotheses to be tested. In some cases the problems may be treated separately without any

connection to each other. In most cases, however, the problems are connected and thus we

face a multiple statistical inference problem where we need to consider the different problems

simultaneously.

The multiple test algorithms have been designed and interpreted from several angles.

Some tests are based on decision theoretic concepts, while others are based on probabilities

of making wrong decisions. In the following we use the common approach of protection

against error of the first kind to avoid any true hypotheses.

Let the hypotheses in a multiple test problem be denoted by Hi and the alternatives to

those by Ai. A multiple test procedure is a rule assigning to each outcome a set of rejected

31



hypotheses. That is, for a single null hypothesis H1 against an alternative A1, the size of

the test is defined as the supremum of the probability of the critical region C1 when the

hypothesis H1 is true. This probability of error of the first kind is always kept at a small

level α. If the null hypothesis H1 is true, the probability of accepting it is 1− α. When we

have made a “discovery” by rejecting the null hypothesis, we can be quite confident that the

null hypothesis is not true. This implies that we do not make any a “discovery” by accepting

the null hypotheses, because we do not have such a protection against errors of the second

kind. In such a multiple test, there are many possible combinations of null hypotheses H1,

H2, · · · , HM . If the “discoveries” in the form of rejected null hypotheses need to be claimed

safely, the probability of rejecting any true null hypotheses must be kept small.

3.2.3.1 The Bonferroni Procedure

Before discuss about Bonferroni procedure, we need to know what is familywise error rate

(FWER). In mutiple comparison procedure (MCPs), existence of one or more false results is

called familywise error. MCPs aim to control the probability of committing any type I error

in families of comparisons under simultaneous consideration. FWER (familywise error rate)

is probability of familywise error.

FWER = P (FWE)
= P (One or more Hi|Ho)
= P (Max Hi|H0),

(3.22)

where P (·) is a probability function, H0 is null hypothesis and Hi are alternative hypotheses,

i 6= 0.

It is an important problem in multiple inferences to control of type I error. The traditional

concern in multiple hypotheses focuses on the probability of erroneously rejecting any of the

true null hypotheses, i.e., FWER. Given a significance level α, the control of FWER requires

each of the M tests to be conducted at a lower level. In Bonferroni procedure, the significance
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level of each test is under α/M . Reference [17] has more discussion about this. Figure 3.3

shows the flow of procedure.

3.2.3.2 A Simple Sequentially Rejective Test

Holm proposed a technique based on the Boole inequality which was developed in the multiple

interference theory called the “Bonferroni technique” in Section 3.2.3.1. For this reason the

method is called “sequentially rejective Bonferroni test” [1].

When there are M hypotheses H1, H2, · · · , HM to be tested with the level α/M , the

probability of rejecting any true hypotheses is smaller than or equal to α according to the

Boole inequality. It constitutes the classical Bonferroni multiple test procedure with the

multiple level of significance α.

In the procedure we need some test statistics, Y1, Y2, · · · , YM , to test the separate

hypotheses. Denote by y the the outcome of these test statistics. The critical level α̂k(y)

for the test statistic Yk is equal to the supremum of the probability P (Yk ≤ y) when the

hypothesis Hk is true. We denote Bk = α̂k(Yk) so that the Bonferroni procedure can be

achieved by comparing the levels R1, R2, · · · , RM with α/M (see Fig. 3.3).

The sequentially rejective Bonferroni test has a slight difference by modified version than

the classic one. Let R(i)s be the sorted representation of Ris, i.e., R(i)s are the ordered set

of the original Ris in the sense that R(1) ≤ R(2) ≤ · · · ≤ R(M). In the procedure, we compare

the obtained levels with the numbers
α

M
,

α

n− 1
, · · · ,

α

1
instead of

α

M
. This means that the

probability of rejecting any set of hypotheses using the classical Bonferroni test is smaller

than or equal to that using the sequentially rejective Bonferroni test based on the same test

statistics. The classical Bonferroni test has been applied mainly in cases where no other

multiple test procedure is presented. We can always replace the classic Bonferroni test by

the corresponding sequentially rejective Bonferroni test without loss.
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Figure 3.3: Classic Bonferroni scheme.

Figure 3.4 shows the sequentially rejective Bonferroni procedure. We need to notice

that the judgement of accepting or rejecting null hypotheses depends on the sorted R(i)

corresponding to H(i). Once we reject or accept some H(k) where k is between 1 and M , it

implies that which one we choose is actually the original hypothesis corresponding to H(k).

The great advantage with the sequentially rejective Bonferroni test is flexibility. There

are no restrictions on the type of test except we need the required level for each separate

test.

3.2.3.3 False Discovery Rate

Though the above-described classical multiple comparison procedures (MCPs) have been

used since the early 1950s, they have not yet been adopted widely. Despite of their use

in many institutions such as the FDA of the USA or some journals, these schemes overlook
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Figure 3.4: The Sequentially rejective multiple test procedure

various kind of multiplicity and results in exaggerated treatment differences. Classical MCPs

aim to control the probability of committing any type I error in families of comparisons under

simultaneous consideration. The control of familywise error rate (FWER) is usually required

in a strong sense, say, under all configurations of the true and false hypotheses tested.

Classical MCPs have some difficulties causing constraints in research. First of all, classical

procedures controlling the FWER in the strong sense tend to have substantially less power

than the per comparison procedure of the same levels. Secondly, the control of the FWER

is not so required to be adopted in any kind of application. The control of FWER is quite

substantial when a decision from the various individual inferences is likely to be erroneous

when at least one of them is. For example, several new medical treatments are compared

against a standard. One single treatment is selected from the sets of treatment which are

declared significantly better than the standard. However, a treatment group and a control
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group are often compared by testing various aspects of the effect. The overall result that the

treatment is superior need not be erroneous even if some of the null hypotheses are falsely

rejected. Finally, the FWER controlling MCPs concerns comparisons of multiple treatments

and families whose test statistics are multivariate normal. In practice, problems are not of

the multiple-treatments type and test statistics are not multivariate normal. Actually, the

families are often combined with statistics of different types.

The last issue has been partially addressed by the advancing Bonferroni-type procedures

we have mentioned previously. It adopted observed individual p-value but still follows the

concept of FWER control. The first two problems still present a serious issue. Some ap-

proaches called per comparison error rate (PCER), which neglects the multiplicity problems

altogether, are still recommended by others. A brief introduction about p-value is provided

in appendix.

To keep the balance between type I error control and power, Benjamini and Hochberg

[2] have proposed a new point of view on the problem of multiplicity. The traditional

concern in multiple hypotheses testing problems has been about controlling the probability

of erroneously rejecting even one of the true null hypotheses, i.e., the FWER mentioned

previously. The power of detecting a specific hypothesis is greatly declined when the number

of hypotheses in the family increases. However, the new point of view is more powerful than

FWER controlling procedures and can be used for many multiple testing problems. The

new procedures are as flexible as the Bonferroni is. Here we consider the new procedures.

The Benjamini Hochberg Procedures

Let H1, H2, · · · , HM be the hypotheses or treatments in medical test, and P1, P2, · · · , Pm

are p-values corresponding to them. Sort these p-values into an ordered set P(1) ≤ P(2) ≤
· · · ≤ P(m) and each P(i) corresponds to a specific hypothesis H(i). The Bonferroni multiple
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testing procedure is as follows:

k = max
{

i : P(i) ≤ i

M
γ
}

(3.23)

where the value k implies the meaning: H(i) for i=1, 2, · · · , k is rejected. The procedure

controls the false discovery rate (FDR) at γ.

At first this was mentioned by Simes [18] as an extension to his procedure for rejection

of the intersection hypothesis that all null hypotheses are true if P(i) ≤ 1
M

α. Though Simes

showed that this extension controls the FWER under the intersection null hypothesis, Hom-

mel [19] discussed the invalidity for individual hypotheses, i.e., the probability of erroneous

rejections is greater than α. Afterwards, Hochberg [20] offered another procedure in order

to control the FWER in the above invalid circumstance:

k = max
{

i : P(i) ≤ 1

M + 1− i
α
}

, (3.24)

and still reject all H(i) for i = 1, 2, · · · , k.

Let γ = α in (3.23). Both (3.23) and (3.24) start by comparing P(M) with α. If P(M) is

smaller than α, all hypotheses are rejected; otherwise, the procedure proceeds to P(M−1) and

begins comparison again until it finds a smaller p-value that satisfies the condition; see Fig.

3.5. At the two ends of both Benjamini Hochberg procedure and FDR procedure, both their

compared values are equivalent, which means both procedures are the same. Between the

two ends of testing procedures, in FDR controlling procedure the set of P(i) are compared

with
1− (i− 1)

M
α instead of

1

M + 1− i
α in (3.24). For the reason of the decreasing linearity

between two ends, the FDR controlling procedure rejects at least as many hypotheses as

Hochberg’s procedure, where the compared values between two ends declines hyperbolically,

and has also greater power than other FWER controlling methods.
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Figure 3.5: The Benjamini Hochberg procedure.
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Chapter 4

Simulation

In this chapter, we demonstrate the advantages of the approach by simulation. From the

algorithm in chapter 3, we know how to decide the number of signals. Take Fig. 3.5 for

example, if the comparing procedure does not meet the corresponding criterion, move to the

next step and test; otherwise, we accept the corresponding set of hypotheses. From Fig.

4.1, it is clear that the sorted p values increasingly climb from 0 to 1, and the compared

criterion value is a linearly model. Under our setting of 3 sensors, we see the sorted p value

is greater than compared value since the number of sources is 3; that is, when compared

value is smaller than sorted value, we reject the two corresponding hypotheses and thus the

result of detection is 3.

The whole simulation procedure is demonstrated as Fig. 4.2. First of all, we generate

what kind of scenario we need to distinguish the advantages we have. Can it be outperform

under closely located sources , few number of sensors, or weak sources situations? The

source generation step decides what kind of scenario we try to test. Then, we collect data,

use eigenanalysis to get sampled eigenvalues. Take these eigenvalues into the test statistics,

depending on different proposed formulas we have discussed in chapter 2. After we adopt

the test statistics, use the asymptotically chi-square distribution to get p value. Appendix

will give some concept of how to get p value and why it is used in statistics area. Finally we
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2 3 4 5 6 7 8 9
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sorted p value

critical value

Figure 4.1: From the algorithm, the hypotheses set are rejected by the maximum number
of the set which meet the criterion of procedure; that is, from the figure, the number of
signals is decided from the minimum value of sorted p values greater than the corresponding
compared values.

adopt Benjamini-Hochberg procedure to control the error rate.

Consider different data collected from different scenarios. First, the data is collected

from an array with 7 sensors with inter-element spacings of half a wavelength. Three sources

are generated from different directions, θ1, θ2 and θ3, respectively. We perform 100 Monte-

Carlo runs and detected the number of signals decided by different approaches. Considering

7 sensors with spatial distance d, direction of arrivals (DOA) are 10o, 50o and 80o and

snapshots T = 50. The significance level α is 0.01. The SNR varies from −5 dB to 0 dB in

0.5 dB steps. The setting of arrival angles are general case, which means that all the sources

are separate with sufficient distance. If we use other set of DOA (Degree Of Arrival), such as
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Figure 4.2: Simulation flow diagram.

10o and 50o, we still can get the same result only if the locations of sources are not too close.

(Generally, closely located sources have inference on the clarity of collected data. In order

to avoid this inference, we separate the sources with sufficient degree, such 10o or wider, in

this work.)

Fig. 4.3 shows that when the SNR is under −2 dB, the performance of FDR controlling

is better than sphericity test which is without controlling of global level of multiple test.

In this figure, we add conventional approach, MDL (∅ line), for comparison to reinforce

the advantage of this approach. When the probability goes to one, the slight difference

between these curves can be seen as the result of the setting of significance level and random

parameters in simulation. Significance level is the largest type I error probability we can

accept. Once we set the level, we can control the error probability at least under the level.

Smaller significance level comes with smaller power. Generally, it is suggest to set the level

between 0.2 to 0.01 depends on trade off. Under the same SNR, the proposed procedure has

higher correct probability (increase around 5% to 15%) than the classical one.

Since one benefit of sphericity test comes from the closed locations of sources, we collect

data from 20o and 30o with 10 sensors and other parameters remain unchanged. Figure
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−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
SNR(dB)

FWE

MDL

FDR

Figure 4.3: Three sources are generated from 10o, 50o and 80o direction of arrival, respec-
tively. The array consists 7 sensors with snapshots T = 50. α = 0.01 and SNR = [−5:0.5:0]
dB

4.4 shows the advantage by using the multiple hypotheses control procedure with sphericity

test. The only difference between the two simulations in Fig. 4.4 is the number of sensors.

The underside plot is simulated under 5 sensors and the upper is 10. Under few number of

sensors, we can see that even under the situation of few number of sensors, its performance

still maintains better. If one moves the locations more close, such as the 25o and 30o, the

difference between the two curves will be closer; however, if we maintain the same difference

between degrees, such as 40o and 50o (the difference remains 10o), the gap between two

curves will not changed with their absolute degrees greatly.
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SNR(dB)

FWE

FDR

−5 −4 −3 −2 −1 0 1 2 3
SNR(dB)

FWE

FDR

Figure 4.4: Two sources are located closely from 20o, 30o direction of arrival, respectively.
The upper simulation contains 10 sensors and the underside one contains 5 only. SNR =
[−6:0.5:3] dB, Other parameters remain unchanged.
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SNR(dB)

FWE
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Figure 4.5: Under the same scenario as Fig. 4.4, the only difference is that the sources are
from 40o and 50o. It can be observed that if the difference of DOA (Degree Of Arrivals) does
not change, the result almost remains unchanged.
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Chapter 5

Conclusion and Future Work

Conclusion

The Sphericity test was a well-known algorithm for estimating the number of sources from

the eigenvalues of the spatial correlation matrix of the array. A new sphericity test statistic

was proposed for the complex case whose distribution approaches the asymptotic chi-square

distribution much faster than previously proposed statistics. Experiments have shown the

better performance in situations where the sources are very difficult to detect such as closely

spaced or weak sources.

The approach to multiple hypotheses testing is different from the classical approaches.

The classical ones need the control of the familywise error-rate (FWER) in the strong sense,

a consecutive type I error rate control against any configuration of the hypotheses. FWER,

as a traditional concern in multiple hypothesis problems, controls each of the tests to be

conducted a certain level α. When the number of test increases, the power of the FWE-

controlling procedure is substantially reduced. This is the cost of multiplicity control.

The false discovery rate (FDR) is a completely different point of view for considering the

errors in multiple testing. The power of the FDR controlling method is uniformly larger than

that of the other methods. It showed advantage increasingly with the number of alternative
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hypotheses. In this work, we proposed that use a global FDR controlling procedure on the

sphericity test to verify what we have expected.

Experiments were simulated under different scenarios where the sources were difficult to

detect such as closely located and sparse number of sensors. In chapter 4, we simulated many

results under such situations and the numerical simulations showed that the FDR-controlling

procedure had higher probability of detection than the test statistics without global control.

The improvement made the detection of sources more accurate while it is undetectable with

other sphericity test statistics and sources detection algorithms. Though the performance of

new test statistics has been well-proved, the control of global level of multiple test made it

more accurate and without any loss in power.

Future Work

For recent years, researches on false discovery rate control have been developed in many

fields. The Benjamini-Hochberg approach is a fast and effective technique for gaining power

while still maintaining control of errors. There are several directions where the Benjamini-

Hochberg approach can be extended.

In [2], controlling the FDR has only focused on presenting and motivating the new ap-

proach. A different direction is to develop an adaptive method which incorporates the ideas

of Hochberg and Benjamini.

Confidence thresholds, which have practical advantages for false discovery control, pro-

duces a threshold that controls the probability that FDP (False discovery Proportion [21])

exceeds a pre-specified level, i.e., instead of the Benjamini-Hochberg mean bound FDR ≤ α,

the procedure guarantees that P{FDP ≤ α} ≥ 1−γ small for chosen 0 < α < 1, 0 < γ < 1,

where FDP is an unobserved random variable. It has not yet been proved, confidence en-
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velopes show to be valid under the same positive dependence conditions as work for FDR

control [22].

Secondly, based on a random field definition of FDP, constructs a threshold that controls

the proportion of falsely identified regions of active voxels [22].
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Appendix A

Neyman Pearson Lemma

For a hypothesis test problem, we always need a threshold to make judgement, whether the

hypothesis is true or not. Neyman-Pearson criterion tells us how to find it to meet the most

powerful test of size α. Let Θ = {θ0, θ1} and denote the distribution of X by Fθ(x) for

θ. The distribution has density function fθi
(x). Let us see a powerful test of size α > 0 for

testing H0 : θ0 versus H1 : θ1. In general,

φ(x) =





1, fθ1(x) > kfθ0(x)
γ, fθ1(x) = kfθ0(x)
0, fθ1(x) < kfθ0(x)

(1)

where k is nonnegative number and 0 ≤ γ ≤ 1. If set α equals zero, we have

φ(x) =

{
1, fθ0(x) = 0
0, fθ0(x) > 0

(2)

is the most powerful test. When φ(x) = 1 we choose H1, otherwise we choose H0 when

φ(x) = 0. What is the meaning of φ(x) = γ? It means we flip a γ coin to select H1 with

probability γ.

Next we are going to prove why it is said to be the most powerful. Assume φ′(x) is any

test such that 0 ≤ φ′(x) ≤ 1 and such that its size is less than or equal to the size of φ(x):

α′ = Eθ0φ
′(X) ≤ Eθ0φ(X) = α.
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Figure 1: Neyman-Pearson Criterion representation. The ratio of shadowed area to whole
area of fθ0(x) is α, the size of test.

From the above inequality and (1):

∫
dx[φ(X)− φ′(X)][fθ1(x)− kfθ0(x)] ≥ 0

⇒
∫

[φ(X)− φ′(X)]fθ1(x)dx ≥
∫

[φ(X)− φ′(X)]kfθ0(x)dx

⇒Eθ1φ(X)− Eθ1φ
′(X) ≥ k[Eθ0φ(X)− Eθ0φ

′(X)]

⇒β − β′ ≥ k(α− α′).

Since α′ ≤ α, the above conclusion leads to β − β′ ≥ 0.

Here we are only introducing the basic idea of this criterion. More detail can be found

in [14] and [7].
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Appendix B

Concept of P value

The p-value is a measurement of evidence we have against the null hypotheses. The definition

of p-value, for the observed sample data, is the smallest significance level which we depend

on to reject null hypotheses. Significance level is the largest probability of type I error we can

accept under hypotheses test. The smaller the level is, the more narrow rejective region is.

If null hypotheses can be rejected under a specific significance level, it may be rejected under

smaller level. However, once the level is too low to reject null hypotheses, the test has no

ability of defense. For the Neyman-Pearson criterion, it was mentioned to set a significance

level to perform the hypotheses test and choose the best one according to the outcomes.

However, the problem is what size should the level be set? Choosing the significance level is

a subjective parameter for any test. That is why we treat p-value as an evidence to support

whether the null hypotheses are rejected or not.

How do we use p-value to implement a hypotheses test? The meaning of p-value is the

lowest significance level which reject the null hypotheses, i.e., if the p-value is greater than

the significance level, the null hypotheses cannot be rejected because the level is smaller than

the critical point of rejecting H0; otherwise, if the p-value is smaller than the significance

level, the null hypotheses are rejected. The reason is that since the reject region correspond-

ing to significance level can reject the critical point (reject hypotheses), the reject region
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corresponding to p-value (smaller than significance level, smaller reject region) can reject it

with no doubt.

Example

Before the example, we need to translate the above illustration of p-value to mathematical

formulas for convenience while discussing the problem. The rule of detection by using p-value

is that

p-value < α, then reject H0,

p-value ≥ α, then accept H0,

where α means the significance level. The above rule is based on right-tailed test which

means

H0 : p < α,

H1 : p ≥ α. (1)

See Fig. 1. The right-tailed test is adopted when the analyzers predict the true value is

greater than the critical point (assumed value). In statistics, there are other kinds of tailed

test besides right-tailed test. Left-tailed test is used when we assume the true value is smaller

than the critical point. It can be written as

H0 : p ≥ α,

H1 : p < α, (2)

and two-tailed test is applied when the both value are difficult to predict so that the test is

H0 : p = α,

H1 : p 6= α. (3)
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Figure 1: Right-tailed test.

Let us look at the example. Company A has new food product Y which need to be print-

tagged outside packages. According to the factory’s report, the weight of the product is 3 kg,

which is a standard number. The quality department has survey of the weights to ensure the

tags correspond to the product. From the factory product, which is normally distributed,

49 products are randomly sampled. The mean (µ) and the standard variation (S) are 2.95

kg and 0.38, respectively. The significance level α = 0.05. The quality department wants to

test whether average of the weights on the tag is reliable.

Because X is normally distributed and the number of samples is quite big, we use the

normal distribution for testing the average. The problem can be written as

H0 : µ ≥ 3, (the product is standard and acceptable for consumer),
H1 : µ < 3, (the product is not standard).

(4)
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We use the left-tailed test for calculating p-value because the decision of alternative hypoth-

esis depends on whether µ < 3. The p-value is

p = P(X̄ ≤ X̄0|µ = 3) = P(X̄ ≤ X̄0|µ = 3)

= P
( X̄ − 3

0.0542
≤ 2.95− 3

0.0542

)

= P(Z ≤ −0.92) = 0.178, (5)

where X̄ and X̄0 represent the average of X and X0, respectively. P(·) denotes the probability

function. The number 0.0542 comes from S/
√

n. At last we can find p-value through look-up

tables. Obviously we can tell the result p > α from the calculation. The null hypothesis can

not be rejected and the company maintains the quality of product well and the tag is fine.
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