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Appendix A

Width of (hkl) Diffraction Peak for a Hexagonal
Structure Particle

The reciprocal lattice was introduced by P. Ewald in 1921. Let a, b, ¢ be the
elementary translations of a space lattice. The reciprocal lattice is defined by
translations a*, b’, ¢”. For a hexagonal structure, the unit vector of the reciprocal
lattice in Cartesian system can be obtained via transformation from trigonal to

orthonormal axes:

5 (A1)

A reciprocal lattice vector is
G,, =ha" +kb" +Ic”, (A.2)

where h, k, | are integers.

126



Appendix A / Width of (hkl) Diffraction Peak...
An ellipsoid particle with the length of short axe L, and the length of long axe

L. has the ellipsoid equation in reciprocal space:

XYL T g (A.3)
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FIG. A.1: An ellipsoidal particle represents in real and reciprocal space.

For any (hkl), the reciprocal vector is q=(ha't,kb’t,Ic"t), in which t is a constant.

In order to obtain the points of the reciprocal vector intersecting the ellipsoid

surface, we should solve t. Substituting g into (A.3), we have

_— 1 _ (A.4)
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The distance between these two intersection points, which is the width of the

diffraction peak referring to the domain size, is
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W,y = 2¢/(ha’t)? + (kb "t)? + (Ic"t)?

h?+hk+k? 12
+
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TN ehk+k®, 12, (A5)
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Appendix B

Electrostatic Calculation
for the lonization Energy of a Dielectric Particle

In spherical coordinates (r, 6, @), the Laplace equation can be written in the

form:

0, (B.1)
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in which @ is the potential. For the form of the Laplace equation in spherical

coordinates with an azimuthal symmetry, the general solution is:
®(,0) = 3[4, + BV P (cos0) , (B.2)
=0

where A, and By can be determined from the boundary conditions and Py is a

Legendre polynomial. Consider a charge g at 7, inside a dielectric sphere, the

potential at 7 due to a point charge can be expressed as:

1 © k
——=> L B(cosy), (B.3)
‘V—Fq‘ 1=0 V>

where < (r-) is the smaller (larger) of |7 | and |7, |, and y is the angle between 7

and 7.
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Suppose 7, on the z axis, as shown in Fig. B.1, the potential inside and

outside the dielectric sphere can be written as:

© k
@, (r,0)= Z[Akrk + 4 Jﬂ(cose), (B.4)
1=0 & I">
e 1
o, (r,0)= Z(ck e ]Pk(cosé?) ) (B.5)
=0

FIG. B.1: The representation of a charge ¢ inside a dielectric sphere embedded in a medium.

By solving the electrostatic boundary-value problem according to Maxwell’s
equation, we can obtain that
&
k+1)(1-—
gr* (k+1)( ,92)

A = ,
YR g (k+ 1)+ e,k

C =gt 2k +1
T e k+ D)+ ek’

(B.6)
(B.7)

in which R is the radius of the dielectric sphere and & and &, are the dielectric
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constants of the surrounding medium and the sphere, respectively. Thus,

e qr P (k+1) k g 1
) 0) = _1 — P o0 T 7> B8
. (1,0) ;RZ"“ :, 51(k+1)+ Py ) (cos )+(92 ‘77_’7‘1 (B.8)

ST g (k+1)+ &,k r* £

If the dielectric sphere is embedded in vacuum (¢, =1), Egs. (B.8) and (B.9) will

correspond to Egs. (4.1) and (4.2), respectively.

Consider now the photoionization process: the photoelectron and the
photohole are created by the absorption of the incident-photon energy, then the
photoelectron is emitted from the matter with a photohole. If the photoelectron
travels to infinity, there is no interaction between the photoelectron and the
remaining system. The energy of the final state is the interaction energy between

the photohole (g=t¢) and its image.

in

=i(5—l)i k+1 (r_thJril
2R\ ¢ JZk(e+1)+1\ R 2¢ 6

where ¢ is the dielectric constant of the sphere, 7, is the position of the photohole

1
Ef(rh):EeCD
, (B.10)

residing in the dielectric sphere, and J is an atomic dimension in order to
prevent the problem of infinite self-energies. After rearrangement to facilitate

numerical computation, the final-state energy can be rewritten as

e-1) & (e-1) r’ e2 e-1 1 (rh
E (rh)— + —r Z Ry
2R\ & ) 2Re\e+1)R* -y, TR et “ile+1)+1\R) 2606

(B.11)

in which the factor one half denotes the self energy or the integration of ¢ from 0
to e. The last term was considered in the literature by Brus [Ref. 18 in Chap IV]

but is dropped in our discussion in Chapter IV because it is independent of the
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spherical radius and is cancelled with respect to bulk [see Eq. (4.4)]. In metal
case, the dielectric constant & goes to infinity, the last term vanishes. This

reflects perfect screening.
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