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Appendix A  

 

Width of (hkl) Diffraction Peak for a Hexagonal 
Structure Particle 
 

 

 

The reciprocal lattice was introduced by P. Ewald in 1921. Let a, b, c be the 

elementary translations of a space lattice. The reciprocal lattice is defined by 

translations a*, b*, c*. For a hexagonal structure, the unit vector of the reciprocal 

lattice in Cartesian system can be obtained via transformation from trigonal to 

orthonormal axes: 
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A reciprocal lattice vector is  

∗∗∗ ++= clbkahGhkl
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,                   (A.2) 

where h, k, l are integers. 
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An ellipsoid particle with the length of short axe La and the length of long axe 

Lc has the ellipsoid equation in reciprocal space: 
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FIG. A.1: An ellipsoidal particle represents in real and reciprocal space. 

 

For any (hkl), the reciprocal vector is ),,( tcltbkthaq ∗∗∗= vvv , in which t is a constant. 

In order to obtain the points of the reciprocal vector intersecting the ellipsoid 

surface, we should solve t. Substituting qv  into (A.3), we have 
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The distance between these two intersection points, which is the width of the 

diffraction peak referring to the domain size, is  
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Appendix B  

 

Electrostatic Calculation  
for the Ionization Energy of a Dielectric Particle 
 

 

 

In spherical coordinates (r, θ, φ), the Laplace equation can be written in the 

form:   
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in which Φ is the potential. For the form of the Laplace equation in spherical 

coordinates with an azimuthal symmetry, the general solution is: 
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where Ak and Bk can be determined from the boundary conditions and Pk is a 

Legendre polynomial. Consider a charge q at qr
v  inside a dielectric sphere, the 

potential at rv  due to a point charge can be expressed as: 
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where r< (r>) is the smaller (larger) of | rv | and | qr
v |, and γ is the angle between rv  

and qr
v .  
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Suppose qr
v  on the z axis, as shown in Fig. B.1, the potential inside and 

outside the dielectric sphere can be written as: 
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FIG. B.1: The representation of a charge q inside a dielectric sphere embedded in a medium. 

 

By solving the electrostatic boundary-value problem according to Maxwell’s 

equation, we can obtain that  
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in which R is the radius of the dielectric sphere and ε1 and ε2 are the dielectric 
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constants of the surrounding medium and the sphere, respectively. Thus,  
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If the dielectric sphere is embedded in vacuum ( 11 =ε ), Eqs. (B.8) and (B.9) will 

correspond to Eqs. (4.1) and (4.2), respectively.  

Consider now the photoionization process: the photoelectron and the 

photohole are created by the absorption of the incident-photon energy, then the 

photoelectron is emitted from the matter with a photohole. If the photoelectron 

travels to infinity, there is no interaction between the photoelectron and the 

remaining system. The energy of the final state is the interaction energy between 

the photohole (q=+e) and its image.  

( ) δεεε
ε 1

211
11

2

2
1)(

22

0

2 e
R
r

k
k

R
e

erE

k
h

k

inhf

+⎟
⎠
⎞

⎜
⎝
⎛

++
+

⎟
⎠
⎞

⎜
⎝
⎛ −

=

Φ=

∑
∞

=

,           (B.10) 

where ε is the dielectric constant of the sphere, rh is the position of the photohole 

residing in the dielectric sphere, and δ is an atomic dimension in order to 

prevent the problem of infinite self-energies. After rearrangement to facilitate 

numerical computation, the final-state energy can be rewritten as 
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in which the factor one half denotes the self energy or the integration of q from 0 

to e. The last term was considered in the literature by Brus [Ref. 18 in Chap IV] 

but is dropped in our discussion in Chapter IV because it is independent of the 
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spherical radius and is cancelled with respect to bulk [see Eq. (4.4)]. In metal 

case, the dielectric constant ε goes to infinity, the last term vanishes. This 

reflects perfect screening. 
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