DEDICATION ACKNOWLEDGEMENTS

CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ACRONYMS

<u>CHAPTER I</u>

Introduction

1.1 Major issues of the study on CdSe nanocrystals	1
1.2 Wurtzite and zinc-blende structure	3
1.3 Electronic structure of CdSe nanocrystals	7
1.4 Framework of the thesis.	.12
1.5 References	.14
RII	

CHAPTER II

Experimental Principles and Approaches

2.1 Preparation of CdSe nanocrystals by colloidal method18
2.2 TEM and optical characterization
2.3 X-ray diffraction
2.4 X-ray absorption spectroscopy
2.5 Photoemission spectroscopy
2.6 References

CHAPTER III

Size Dependence of Structural Characteristics

in CdSe Nanocrystals

3.1 Introduction
3.2 Simulation of X-ray diffraction patterns
3.3 Diffraction patterns fitted with a simple model
3.4 EXAFS studies on bond lengths
3.5 Discussion
3.6 Summary
3.7 References

CHAPTER IV

Photoemission Final-State Effect

on Electronic Properties of CdSe Nanocrystals

4.1 Introduction	83
4.2 Size dependence of photoemission spectra	84
4.3 Photoemission final-state effect	91
4.4 Discussion.	92
4.5 Summary	04
4.6 References	04

CHAPTER V

Relation between Surface Properties

and Photoluminescence Efficiency in CdSe Nanocrystals

5.2 Growth rate
5.3 Absorption and photoluminescence measurements 109
5.4 Photoemission studies
5.5 Discussion
5.6 Summary
5.7 References

CHAPTER VI

LIST OF FIGURES

Figure

1.1: The scheme of a unit cell of wurzite structure
1.2: Crystal structure of zinc-blende structure and atomic positions
1.3: Three views of the wurtzite and zinc-blende crystal structures
1.4: Absorption spectrum of CdSe nanoparticles with size of 33 Å
1.5: Lowest transition energy of CdSe nanoparticles as a function of size9
2.1: The schematic representation of the organometallic preparation of CdSe NCs
using TOPO, HDA, and TOP
2.2: TEM images of CdSe nanocrystals passivated with TOPO/HDA and treated by
pyridine
2.3: Size histograms of CdSe NCs
2.4: Optical spectra of CdSe nanocrystals
2.5: Color photograph for different size samples of CdSe nanocrystals
2.6: Relations involved in letting the r_{mn} vector take all orientations in space
2.7: Schematic representation of X-ray diffraction apparatus used in conventional
mode
2.8: The brilliance of X-ray sources as a function of time
2.9: Schematic representation of the accelerator and experimental facilities at the
NSRRC, the Taiwan Light Source
2.10: The bright spectra from NSRRC light sources, compared to traditional light

sources	31
2.11: X-ray absorption measurements.	.33
2.12: The absorption cross-section μ/ρ for Cd and Se over the x-ray energy range of	f 1
to 100 keV	34
2.13: Schematic representation of the set-up for EXAFS measurements usi	ng
synchrotron radiation.	36
2.14: Se <i>K</i> -edge EXAFS spectrum of bulk CdSe	.37
2.15: Schemes of scattering processes.	38
2.16: Se <i>K</i> -edge EXAFS <i>k</i> - and k^3 -weighted spectra of bulk CdSe	.39
2.17: Energy diagram of the photoemission process.	43

2.18:	Synchrotron	photoemission	spectrum	of	CdSe	nanocrystals	passivated	with
ТОРС)/HDA							44
2.19:	Schematic dia	agram of photoe	mission ex	peri	iment.			46

3.1: Powder X-ray diffraction spectra of bulk CdSe and CdSe NC
3.2: Powder diffraction pattern of TOPO/HDA-passivated CdSe NCs and the
calculated patterns for wurtzite and zinc-blende NCs with size of 31 Å
3.3: Experimental diffraction spectra of bulk CdSe and three CdSe NCs as well as the
corresponding simulations by Debye formula
3.4: The wurtzite stacking fraction as a function of the NC mean diameter
3.5: Powder X-ray diffraction patterns of CdSe NCs and the corresponding fits59
3.6: Size-dependent lattice parameters of CdSe NCs determined by fit of powder
XRD data
3.7: k^3 -weighted Cd and Se <i>K</i> -edge EXAFS spectra of bulk CdSe and NCs 61
3.8: Fourier tranforms of Cd and Se K-edge EXAFS spectra for bulk CdSe and
three-sized nanocrystals
3.9: Fourier filtered EXAFS spectra and the best fits of CdSe NCs
3.10: Fourier tranforms of Se K-edge EXAFS spectra, measured at ~ 10 K, for CdSe
NCs with mean diameter 31 Å
3.11: The measured first-shell coordination numbers of five NCs are plotted with the
calculated values by the ball-and-stick model
3.12: Mean length of the Cd–Se and Cd–O/N bonds for CdSe nanocrystals68
3.13: The scheme of a tetrahedral structure
3.14: Single-shell filtered Se K-edge data measured at the temperature of ~ 10 K and
the corresponding fits
3.15: Size dependence of normalized bond lengths, $R^{(1)}$ and $R^{(2)}$, for CdSe NCs
passivated with TOPO/HDA is plotted together with the normalized lattice parameters,
<i>c</i> and <i>a</i>
3.16: The structural parameters <i>u</i> of CdSe nanocrystals
3.17: Relative structure parameters of CdSe NCs dependent on particle size74
3.18: Surface energy of TOPO/HDA-passivated CdSe NCs as a function of size76
3.19: Schematic diagram of the size-dependent phase transition of CdSe

4.1: Size-dependent Cd $3d_{5/2}$ and Se 3d photoemission spectra of bulk CdSe and

A.1:	An ellipsoidal particle represents in real and reciprocal space.	127
B.1:	The representation of a charge q inside a dielectric sphere.	130

LIST OF TABLES

Table

1.1 Structural parapeters of CdSe and ideal wurtzite.	.4
3.1 Structural parameters derived from EXAFS spectra of CdSe nanocrystals	65

LIST OF ACRONYMS

DW factor	Debye-Waller factor
ESCA	electron spectroscopy for chemical analysis
EXAFS	extended X-ray absorption fine structure
HDA	hexadecylamine
IMFP	inelastic mean free path
КТ	Koopman's theorem
NCs	nanocrystals
OA	oleic acid
ОРА	octadecylphosphonic acid
PES	photoemission/photoelectron spectroscopy
PL	photoluminescence
QDs	quantum dots
ТЕМ	transmission electron microscope
ТОР	trioctylphosphine
ТОРО	trioctylphosphine oxide
UV	ultraviolet
WZ	wurtzite
XANES	X-ray absorption near-edge spectroscopy
XRD	
ZB	zinc blende