
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

使用 ARM9 處理器實現 MPEG-4 視訊之軟體解碼

Software Implementation of MPEG-4 Video Decoder

on ARM9 Processor

研 究 生 : 吳和璋

指導教授 : 林大衛 博士

中 華 民 國 九 十 五 年 九 月

使用 ARM9 處理器實現 MPEG-4 視訊之軟體解碼

Software Implementation of MPEG-4 Video Decoder

on ARM9 Processor

研 究 生 : 吳和璋 Student : Ho-Chang Wu
指導教授 : 林大衛 博士 Advisor : Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

In

Electronics Engineering

September 2006

Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 五 年 九 月

使用 ARM9 處理器實現 MPEG-4 視訊之軟體解碼

研究生: 吳和璋 指導教授: 林大衛 教授

國立交通大學電子工程學系 電子研究所碩士班

摘要

MPEG-4 是個眾所週知的視訊標準，它對通訊傳播及互動式應用提供了具

有彈性的視訊及音訊編碼。在本篇論文中，我們在 ARM9 微處理器上實現了

MPEG-4 視訊解碼。我們的參考軟體是 MoMuSys，它是個包含 MPEG-4 main
profile 編碼及解碼的軟體。

ARM 處理器是個簡化指令集電腦(RISC)微處理器。為了實作以及有更好的

表現，我們善用了 ARM 處理器的特色，例如條件執行以及一次讀取多個字

(word)。
在我們的實作中，先用 ARM 開發工具(ADS)其中的編譯器和 VTune 來得到

MoMuSys 的特性資料。其中 VTune 是個為英特爾處理器而設計的軟體開發工

具。接下來我們分析了這些特性資料並找出相當耗費時間的程式。在最佳化前，

因為 MoMuSys 是個根據每個物件來解碼的解碼器，而我們只需要根據每張圖來

解碼的解碼器，所以我們減少了程式的大小以及記憶體的使用。
在我們最佳化的過程中，我們先針對整個解碼的流程並根據離散餘弦轉換

(DCT)的特性來跳過多餘的運算。然後根據各個相當耗費時間的程式的特性，使

用了 ARM 處理器的特性以及適用於他們各自的方法來做最佳化。雖然我們沒有

把整個解碼器做最佳化，我們的 MPEG-4 simple profile 解碼器已經達到了即時解

碼的目標。跟別人的實作比較，我們實作的性能是有競爭性的。
在本篇論文中，我們先介紹了 MPEG-4 標準，還有 ARM 處理器的概述。

然後討論了複雜度分析、實作策略、最佳化技巧、以及實驗結果。論文最後做一

結論並提出未來可再繼續發展的主題。

Software Implementation of MPEG-4 Video
Decoder on ARM9 Processor

Student: Ho-Chang Wu Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

The MPEG-4 standard is a public standard which provides a flexible video and

audio coding solution for broadcast and interactive applications. In this thesis, we

consider implementation of an MPEG-4 video decoder on the ARM9 system. Our

reference software is the codec of MoMuSys which is a software for MPEG-4 main

profile encoding and decoding.

The ARM processor is a reduced instruction set computer (RISC)

microprocessor. For implementation, the feature of the ARM processor, such as

conditional execution and loading multiple words, are employed for better

performance.

In our implementation, we first get the profile of the MoMuSys code by using

the compiler of the ARM Developer Suite (ADS) and VTune which is a software

development tool for Intel processors. Then we analyze the profiles and find the

time-critical functions. Before optimization, we reduce the code size and the usage of

memory because the MoMuSys decoder is for object-based decoding and we

implement frame-based decoder only.

In our optimization, we first focus on the decoding flow and skip some

computations according to the nature of discrete cosine transform (DCT). Then we

employ the features of the ARM processor to optimize the time-critical

functions according to their characteristics respectively.

Although we do not optimize the whole decoder, our MPEG-4 simple profile

decoder can achieve the goal of real-time decoding. Compared with other

implementations, the performance of our implementation is competitive.

In this thesis, we first introduce the MPEG-4 standard and give an overview of

the ARM9 processor. Then the complexity analysis, implementation strategies, the

optimization techniques, and the experiment results are discussed. Finally, we give a

conclusion and point out some subjects for potential future work.

誌謝

本篇論文的完成，由衷感謝我的指導教授－林大衛老師。從踏入交大研究

所，老師就給予許多指導與鼓勵。在老師熱情的指導下，專業知識從無到有，從

討論中獲得許多做研究的方法，也讓我走過兩年充實的研究生生涯。研究過程

中，老師樂觀的生活態度，影響了我對人生的態度，之後即使面對難題，也能提

起勇氣面對。老師就像一盞明燈，指引我求學與人生的方向，著實受益良多。

在充滿人情味的實驗室，即使再辛苦，我清楚地知道，我並不孤單，有許

多學長姐、同學以及學弟與我一起奮鬥。承蒙家揚、俊榮、朝雄、崑健等學長的

照顧，在我在遇到難題時，總是能給予適當的協助與鼓勵。感謝實驗室的崇諺、

治傑、家賢、鴻志、育彰、旻弘、德亘，在他們的砥礪與幫助下，論文才能順利

完成，還有學弟介遠和政達，從旁也給予不少協助。另外，好友志龍、哲欣、郁

民，在這兩年來給予很多生活上、精神上的幫助，很感謝他們。

感謝我的家人，父親吳清安先生、母親陳美玉女士、大姐吳彩華小姐、二

姐吳佩洳小姐，在我的求學路中，是我強力的後盾，讓我在生活上無後顧之憂，

溫暖的家成了我動力的來源。另外感謝我摯愛的女友佩瑩，陪伴我一路走來，給

予我許多支持與鼓勵，是我精神上的支柱。

我的父親，辛苦工作一生，卻英年早逝，於去年底得肺癌後，病痛纏身半

年多，於今年八月中逝世。從我小時候，我的父親就教導我是非對錯的觀念，他

溫和的脾氣以及任勞任怨的工作態度，讓我相當景仰，也對我的人格教育產生莫

大影響。在我的求學途中，他不斷地給予實質與精神上的支持，也充分尊重我的

意見，讓我一路走來平坦順利。即使在他生病時，也時時關心我的課業與人生規

劃，是個完完全全的好父親。如今，他未能看到我從研究所畢業，是我人生中的

一大遺憾。在此，僅將本篇論文獻給我最敬愛的父親吳清安先生。

吳和璋

民國九十五年九月於新竹

Contents

1 Introduction 1

2 Overview of MPEG-4 3

2.1 Organization of the MPEG-4 Standard [2], [3] 3

2.2 MPEG-4 Video Coding Overview (from [4]) 6

2.2.1 Structure of MPEG-4 Video Data 7

2.3 MPEG-4 Video Texture Coding (from [6], [7] and [8]) 9

2.3.1 VOP Formation . 10

2.3.2 Motion Coding . 10

2.3.3 Texture Coder . 15

2.4 Profiles and Levels (from [4]) . 19

2.4.1 Profiles and Levels . 19

3 Environment of ARM9 22

3.1 Overview of the ARM Architecture (from [9]) 22

3.1.1 Organization of the ARM9 Processor (from [10]) 23

3.1.2 ARM Registers . 24

3.1.3 Exceptions . 25

3.1.4 Status Registers . 26

3.2 ARM Instruction Set (from [9]) . 26

3.2.1 Branch Instructions . 27

3.2.2 Data-Processing Instructions . 27

3.2.3 Status Register Transfer Instructions 30

I

3.2.4 Load and Store Instructions . 30

3.2.5 Coprocessor Instructions . 32

3.2.6 Exception-Generating Instructions 33

3.3 The Thumb Instruction Set (from [9]) 33

3.4 Memory and System Architectures . 34

3.4.1 Write Buffers . 36

3.4.2 Caches (from [11]) . 36

3.5 ARM Developer Suite (ADS) (from [12]) 37

4 Analysis of Computational and Storage Complexity of MPEG-4 Framed-

Based Video Decoder 41

4.1 Introduction to MoMuSys . 41

4.2 Complexity Analysis of MoMuSys Decoder 42

4.2.1 Profile Using the Profiler of ADS 42

4.2.2 Low-Level Computational Complexity Analysis 46

4.3 Code Size and Memory Usage Reduction for Implementation 49

4.3.1 Code Size Reduction . 49

4.3.2 Memory Usage Reduction . 51

5 MPEG-4 Video Decoder Implementation and Optimization for ARM9 55

5.1 Algorithmic Optimization . 55

5.1.1 Algorithmic Optimization for Blocks in Intra Frames with Null

AC Coefficients [15] . 56

5.1.2 Algorithmic Optimization for Null Residual Blocks of P-frames . 59

5.1.3 Optimization for Image Interpolation and Padding 60

5.1.4 Optimization for Motion Compensation 65

5.2 Assembly/Architecture Level Optimization 67

5.2.1 Loop Overhead Reduction . 67

5.2.2 Conditional Execution of Instructions 69

5.2.3 Reduction of Memory Accesses using LDM and STM 70

II

5.2.4 Experiment Results of Assembly/Architecture Level Optimiza-

tion So Far . 73

5.2.5 Optimization of IDCT . 74

5.3 Conclusion on Optimization . 78

5.3.1 Overall Improvement after Optimization 78

5.3.2 Profile Using the Profiler of ADS after Optimization 79

5.4 Comparison with Other Implementations 81

6 Conclusion and Future Work 84

6.1 Conclusion . 84

6.2 Future Work . 85

A Assembly Code of Several Functions for Optimization 90

A.1 8 � 8 IDCT . 90

A.2 VOP Reconstruction . 94

A.3 Other Regular Functions . 96

A.3.1 CopyImageI . 96

A.3.2 Bzero . 96

A.3.3 Putblock . 97

A.3.4 MB clip . 97

III

List of Figures

2.1 A high level view of an MPEG-4 terminal (from [6]). 4

2.2 Segmentation of a picture to VOPs (from [6]). 8

2.3 Logical structure of coded video data (from [8]). 8

2.4 VOP types. 9

2.5 Positions of luminance and chrominance samples in 4:2:0 data (from [7]). 10

2.6 Detailed structure of VO encoder (from [6]). 11

2.7 Padding process (from [7]). 12

2.8 Interpolation scheme for half sample search. 12

2.9 Motion vector prediction (from [7]). 14

2.10 Quantizers of MPEG-4. (a) Quantizer for intra DC coefficient. (b) Quan-

tizer for inter DC and all AC coefficients. 17

2.11 Prediction of DC coefficients of blocks in an intra MB (from [6]). 18

2.12 Prediction of AC coefficients of blocks in an intra MB (from [6]). 18

2.13 Scans for
� � �

blocks (from [4]). 20

3.1 5-stage organization of ARM9 (from [10]). 24

3.2 Format of the CPSR and the SPSRs (from [9]). 26

3.3 Formats of ARM instruction set (from [9]). 28

3.4 Formats of Thumb instruction set (from [9]). 35

3.5 ARM tools for developers. 39

4.1 Block diagram of MPEG-4 frame-based video decoder [4]. 44

4.2 Flow of motion compensation. 48

4.3 Revised code using the #ifdef macros 52

IV

5.1 DC spreading from decoded coefficient to output block (from [15]). . . . 56

5.2 Modified flow of motion compensation with optimized interpolation. . . . 63

5.3 Example of padding in the upper-left corner of a frame. 64

5.4 Modified flow of motion compensation with optimized padding. 65

5.5 Example code of interpolation and padding. 66

5.6 Example code of mode splitting. 68

5.7 Assembly code for for-loops generated by the compiler of ADS. 69

5.8 Our initial assembly code for for-loops. 69

5.9 Optimized assembly code for for-loops. 69

5.10 Example of zero-checking. 70

5.11 Saturation using conditional execution. 71

5.12 The IDCT algorithm used in MoMuSys [15]. 78

5.13 The even-odd decomposition IDCT algorithm [20]. 79

V

List of Tables

2.1 Default Quantization Matrix Q (from [4]) 16

2.2 Nonlinear Scaler for DC Coefficients of DCT Blocks (from[4]) 17

2.3 Profiles and Tools (from [4]) . 21

4.1 Functionalities of MoMuSys . 43

4.2 Profile of Frame-Based MPEG-4 Decoding of QCIF Sequences on VTune

(from [15]) . 45

4.3 Profile of Frame-Based MPEG-4 Decoding of QCIF Sequences on ADS . 46

4.4 Complexity of Luminance Motion Compensation for One QCIF Frame

(from [15]) . 49

4.5 Complexity of Chrominance Motion Compensation for One QCIF Frame

(from [15]) . 50

4.6 Complexity of Dequantization and IDCT for One 8 � 8 Block in MoMuSys 51

4.7 Files in MoMuSys That Are Not Needed for Simple Profile Implementa-

tion . 53

4.8 Functions with Memory Allocation Instructions 54

5.1 Number of Skipped Blocks in 90 Intra Frames (Check CBP and ACPred Flag

Only) (from [15]) . 58

5.2 Number of Skipped Blocks in 90 Intra Frames with Further Check After

AC Prediction (from [15]) . 58

5.3 Execution Time of Intra Frame Decoding on ARM9 59

5.4 Number of Skipped Blocks in 89 P-Frames 59

5.5 Execution Time of Inter (P) Frame Decoding on ARM9 60

VI

5.6 Analysis of Necessary Interpolation (from [15]) 62

5.7 Execution Time and Storage Requirement of Image Interpolation and

Padding on ARM9 . 63

5.8 Execution Time of P-Frame Decoding on ARM9 After Modification of

Interpolation and Padding . 65

5.9 Execution Time of P-Frame Decoding after Optimization of Motion Com-

pensation on ARM9 . 67

5.10 Execution Time of Functions Optimized in Assembly/Architecture Level . 75

5.11 Execution Time of P-Frame Decoding after Optimization of VOP Recon-

struction on ARM9 . 75

5.12 Improvement after Optimization for Regular Functions 76

5.13 Comparison of Computational Complexity for 8-point IDCT 76

5.14 Cycles of Floating-Point and Fixed-Point 1-D IDCT Using ADS Com-

piler in Release Mode . 76

5.15 Improvement after Optimization of IDCT 77

5.16 Overall Improvement after Optimization 79

5.17 Profile of Intra Frame Decoding after Optimization 81

5.18 Profile of P-Frame Decoding after Optimization 82

5.19 Performance of MPEG-4 Video Decoder on Different Platforms 83

VII

Chapter 1

Introduction

Compression of audio-video data are becoming more and more important in multime-

dia communication. We have to make our existing communication channels and storage

memory cost effective. The higher compression ratio we have, the more cost we save.

However, speed is another issue for real-time implementation. It is important to find the

balance in compression ratio, speed, and cost.

Various coding standards have been developed for different types of applications. The

Moving Pictures Experts Group (MPEG) of the International Standardization Organiza-

tion (ISO) formulated the MPEG-4 standard for compressing digital video and audio. The

MPEG-4 video standard was originally for coding with high efficiency, very low bit-rate

in mobile video communications, tele-shopping, interactive TV, etc. However, MPEG-4

video encoding and decoding requires significant amount of computation.

We consider implementation of an MPEG-4 video decoder on the ARM9 system. The

implementation is based on modifying the code from MoMuSys [1], a main reference

software of MPEG-4. The goal we want to reach is real-time implementation of MPEG-4

simple profile decoder and implementation of MPEG-4 main profile decoder.

Recently, the technique of embedded systems has been developed very well. The

cause is that RISC cores are increasingly being used. A popular RISC processor in em-

bedded applications is ARM core because of its low power consumption and small size

in silicon, which are crucial for mobile applications. Using ARM9 system to implement

MPEG-4 decoder, a key difficulty we face is optimizing the algorithms on a general pur-

1

pose RISC processor which is not explicitly designed for MPEG-4 applications.

This thesis is organized as follows. Chapter 2 is an overview of MPEG-4. Chapter 3

gives a brief description of ARM920T that we use. Chapter 4 discusses the analysis of

the MPEG-4 simple profile video decoder for ARM920T. The optimization methods and

the overall experimental results of the MPEG-4 decoder after optimization are described

in chapter 5. Finally, chapter 6 contains the conclusion.

2

Chapter 2

Overview of MPEG-4

The ISO MPEG (Moving Picture Experts Group) committee, after successful comple-

tion of the MPEG-1 and the MPEG-2 standards, delivered MPEG-4 in 2000, the third

MPEG standard. MPEG-4 was originally intended for very high compression coding of

audio-visual information at very low bit-rates of 64 kbps or under. In general, MPEG-4

provides a flexible video and audio coding solution for broadcast and interactive applica-

tions. MPEG-4 builds success on of three fields:

� digital TV and HDTV,

� interactive graphics applications, and

� interactive multimedia (e.g., World Wide Web).

In this chapter, we introduce the organization of the MPEG-4 standard, its video tex-

ture encoding and decoding scheme, and other special video coding tools.

2.1 Organization of the MPEG-4 Standard [2], [3]

The MPEG-4 standard (ISO/IEC 14496) provides methods of audio-visual objects generic

coding, as illustrated in Figure 2.1. It consists of the following basic parts.

1. ISO/IEC 14496-1: Systems

3

Figure 2.1: A high level view of an MPEG-4 terminal (from [6]).

The MPEG-4 Systems specification defines architecture and tools to create audio-

visual scenes from individual objects. Scene description is a major tool for MPEG-4

systems. The MPEG-4 scene description, a totally new component in the MPEG

specifications, is based on VRML (virtual reality modeling language) and specifies

the spatial-temporal composition of objects in a scene. The scene description allows

easy creation of compelling audio-visual content, and it is at the core of the systems

specification.

2. ISO/IEC 14496-2: Visual

The MPEG-4 visual specification defines the main video codec. It consists of natu-

ral, arbitrary shape and synthetic video coding.

Similarly to MPEG-1 and MPEG-2, the main video coding tools are still texture

coding for natural video coding. In order to reduce spatial redundancy, the MPEG-4

visual specification uses DCT, IDCT, intra prediction, quantization and de-quantization

for intra coding. In order to reduce temporal redundancy, the MPEG-4 visual spec-

4

ification uses motion estimation and motion compensation for inter coding. In vi-

sual coding, the major difference from MPEG-1 and MPEG-2 is object coding. In

MPEG-4, each picture is considered as consisting of objects, since some MPEG-4

functionalities require access not only to entire pictures but also to objects.

For synthetic video coding, in MPEG-4, mesh-based representation is useful. Tri-

angular mesh-based representation of general objects is a tool in MPEG-4.

3. ISO/IEC 14496-3: Audio

ISO/IEC 14496-3 (MPEG-4 Audio) integrates many different types of audio cod-

ing: natural sound with synthetic sound, low bit-rate delivery with high-quality

delivery, complex sound tracks with simple ones, speech with music, and tradi-

tional content with interactive and virtual-reality content. MPEG-4 Audio is a

rather generic standard that applies to applications requiring the use of advanced

sound compression, synthesis, manipulation, or playback. MPEG-4, unlike pre-

vious audio standards created by ISO/IEC and other groups, does not target at a

single application such as real-time telephony or high-quality audio compression.

The subparts specify state-of-the-art coding tools in several domains. However,

MPEG-4 Audio is more than just the sum of its parts.

As the tools described are integrated with the rest of the MPEG-4 standard, new

possibilities for object-based audio coding, interactive presentation, dynamic sound

tracks, and other sorts of new media, are enabled.

4. ISO/IEC 14496-4: Conformance Testing

This part of ISO/IEC 14496 specifies how tests can be designed to verify whether

bitstreams and decoders meet requirements specified in parts 1, 2, and 3 of ISO/IEC

14496. In this part of ISO/IEC 14496, encoders are not addressed specifically. An

encoder may be said to be an ISO/IEC 14496 encoder if it generates bitstreams

compliant with the syntactic and semantic bitstreams requirements specified in parts

1, 2 and 3 of ISO/IEC 14496.

5. ISO/IEC 14496-5: Reference Software

5

Reference software is normative in the sense that any conforming implementation

of the software, taking the same conforming bitstreams, using the same output file

format, will output the same file. Complying ISO/IEC 14496 implementations are

not expected to follow the algorithms or the programming techniques used by the

reference software.

6. ISO/IEC 14496-6: DMIF

Delivery Multi-media Integration Framework, DMIF, is an interface between the

application and the transport, which enables the MPEG-4 application developer to

be confident of the transport. Using the right DMIF instantiation, a single applica-

tion can run on different transport layers.

MPEG-4 DMIF supports the following functionalities:

� A transparent MPEG-4 DMIF-application interface irrespective of whether

the peer is a remote interactive peer, broadcast or local storage media.

� Support for mobile networks, developed together with ITU-T.

� User commands with acknowledgment messages.

� Management of MPEG-4 Sync Layer information.

� Control of establishing FlexMux channels.

� Homogeneous networks between interactive peers: IP, ATM, mobile, PSTN,

Narrowband ISDN.

2.2 MPEG-4 Video Coding Overview (from [4])

MPEG-4 video provides standardized core technologies allowing efficient storage, trans-

mission and manipulation of video data in multimedia applications. It provides technolo-

gies to view, access and manipulate objects, with great error robustness at a large range

of bit-rates. Video activities in MPEG-4 aim at providing solutions in the form of tools

and algorithms enabling functionalities such as efficient compression, object scalability,

spatial and temporal scalability, error resilience, and fine granularity scalability.

6

2.2.1 Structure of MPEG-4 Video Data

Many of MPEG-4 functionalities have to access not only sequence of pictures, but also

a whole object, and further, not only individual pictures, but also temporal instances of

these objects within a picture. An input video sequence can be defined as a sequence of

related pictures, separated in time.

MPEG-4 video applies to the concept of Video Objects (VOs) and their temporal

instances, Video Object Planes (VOPs). Figure 2.2 is a diagram which describes the

decomposition of a picture into a number of separate VOPs. Further, we show the class

hierarchy used for representation of coded bitstreams in Figure 2.3.

� Video Session (VS)

Visual object sequence is the highest syntactic structure of the coded visual bit-

stream. The MPEG-4 scene may contain any 2-D or 3-D natural or synthetic ob-

jects.

� Video Object (VO)

Video Object represents a complete scene or a portion of a scene. The sequence,

at the output of the decoding process, consists of a series of reconstructed VOPs

separated in time and readied for display using the composition.

� Video Object Layer (VOL)

Coded video data consist of an ordered set of video bitstreams, called layers. De-

pending on the application, every video object can be encoded in scalable (multi-

layer) or non-scalable form (single layer), represented by VOL. If there is only one

layer, the coding process are called non-scalable video coding.

� Group of Video Object Planes (GOV)

Group of Video Object Planes (GOV) are optional entities and are essentially access

units for editing, tune-in or synchronization.

� Video Object Plane (VOP)

7

Figure 2.2: Segmentation of a picture to VOPs (from [6]).

Figure 2.3: Logical structure of coded video data (from [8]).

8

I−frame I−frameB−frame P−frameP−frame

Figure 2.4: VOP types.

A Video Object Plane represents a snap shot in time of a Video Object. There are

four types of VOP (Fig. 2.4) that use different coding methods:

1. I-VOP: An intra-coded VOP is coded using information only from itself.

2. P-VOP: A predictive-coded VOP is coded using motion compensated prediction

from a past reference VOP.

3. B-VOP: A bidirectionally predictive-coded VOP is coded using motion compen-

sated prediction from a past and/or future reference VOP(s).

4. S-VOP: A sprite is a VOP for a sprite object or a VOP which is coded using predic-

tion based on global motion compensation from a past reference VOP.

The macroblock is a basic coding structure of VOP. It contains a section of the lumi-

nance component and the sub-sampled chrominance components in 4:2:0 format. There

are 4 luminance blocks and 2 chrominance blocks in a macroblock. In this format, the

luminance and chrominance samples are positioned as shown in Figure 2.5.

2.3 MPEG-4 Video Texture Coding (from [6], [7] and [8])

Because we consider implementation of frame based MPEG-4 decoder, we focus on in-

troducing it, with only a small part addressing object-based MPEG-4 decoder.

9

Figure 2.5: Positions of luminance and chrominance samples in 4:2:0 data (from [7]).

Figure 2.6 presents the internal structure of the VO encoder. The same encoding

scheme is applied in coding all the VOPs of a given session. The encoder has an entirely

new component compared to previous video coding standards: arbitrary shape coding.

2.3.1 VOP Formation

The video object shape information is obtained after segmentation. The shape information

is hereafter referred to as alpha plane, which is used to form a VOP. The value 255 is

assigned to pixels belonging to the objects and 0 is assigned to pixels outside the objects.

However, as we consider frame-based coding, the pixels of an alpha plane are always 255.

2.3.2 Motion Coding

There are four types of VOPs (see Figure 2.4) that use different coding methods, I-VOP,

P-VOP, B-VOP and S-VOP. Motion coding is essential for P-VOP and B-VOP to reduce

temporal redundancy. The motion coder consists of a motion estimator, motion compen-

sator, previous/next VOPs store and motion vector predictor and coder.

10

Figure 2.6: Detailed structure of VO encoder (from [6]).

Padding Process

Figure 2.7 shows a simplified diagram of the padding process. the values of luminance

and chrominance samples outside the VOP are defined by the padding process.

By replicating the boundary samples of the VOP towards the exterior, a MB that lies

on the VOP boundary is padded . This process is divided into horizontal repetitive padding

and vertical repetitive padding.

Motion Estimation

Motion estimation (ME) is an important method for doing prediction between adjacent

frames/pictures. Further, MPEG-4 encoder adopts block-based motion estimation tech-

nique, instead of pixel-based technique.

For every
��� � ���

luminance MB, the basic motion estimation is performed. Besides,

motion vectors can be sent for individual
� � �

blocks to make prediction more accurate.

One way of motion estimation is doing full search to integer pixel accuracy vector and,

using it as the initial estimate, performing a half-pixel search around it.

Interpolation of MB is necessary because the motion vector may be non-integer num-

bers. Figure 2.8 illustrates the interpolation method. By bilinear interpolation, the half

11

Vertical
Repetitive
Padding

Extended
Padding

Horizontal
Repetitive
Padding

Saturation

Σ

Predictions

Framestores

f [y][x]

d [y][x]

s [y][x]

s’ [y][x]

hor_pad [y][x] hv_pad [y][x]

d’ [y][x]

Figure 2.7: Padding process (from [7]).

+ +

+ +

+ Integer pixel position

Half pixel position

A B

C D

a b

c d

a = A,
b = (A + B + 1 - rounding_control) / 2
c = (A + C + 1 - rounding_control) / 2,
d = (A + B + C + D + 2 - rounding_control) / 4

Figure 2.8: Interpolation scheme for half sample search.

12

sample values can be calculated. Then, we will obtain the half-pixel motion vector by

using interpolation.

Motion Vector Encoder

The motion vector will be coded when using INTER mode coding.

Motion vector is coded differentially by using a spatial neighborhood of three candi-

date MVs already coded (see Figure 2.9). At the borders of the current VOP, the following

decision rules are applied:

1. If there is only one MB of candidate predictors outside the VOP, it is set to zero.

2. If there are two MBs of candidate predictors outside the VOP, they are set to the

third candidate predictor.

3. If all three MBs of candidate predictors are outside the VOP, they are set to zero.

For horizontal and vertical components, the median value of the three candidates for

the same component is used as predictor, denoted ��� and ��� , respectively:

�������
	������������� � ���������������
����� �!�

�������"	�������#���
� � � ���
�����$�����%�&�'��(

Then, the vector differences, �
��)*�+���"���%�-,.��� � and ����)*�-�������%�/,0�%�1� ,
are coded by variable-length coding.

Motion Compensation

The motion compensation is performed on the prediction block, 243�	��$568795 :;7 , from the ref-

erence VOP. In addition to basic motion compensation processing, three alternatives are

supported, namely, unrestricted motion compensation, four MV motion compensation

and overlapped motion compensation.

For unrestricted motion compensation, the motion vectors are allowed to point outside

the decoded area of a reference VOP. The 243&	��$5<=7>5 :;7 is defined as:

�?3&	A@B�"C-DFEG�8C*H�IJ�K�$L�M?3�3ONP�;���RQTS'UBLWVX3&�!�Y�$��=UZN[QTS'UBL\V�3], � �!�

13

MV2 MV3

MV1 MV

MV3MV2 MV2

MV1

MV1 MV

MVMV(0,0)

(0,0)

MV : Current motion vector
MV1: Previous motion vector
MV2: Above motion vector
MV3: Above right motion vector

: VOP border

MV1 MV1

Figure 2.9: Motion vector prediction (from [7]).

� 3&	A@ �"C-DFEJ�8C*H�IG�8�TL�M$3�3 NP��� �YQ Q�UBL\VX3;���R�1��=U N[Q�Q�UBLWVX3 , � �!�

where QTS'UBL\V�3*� vop horizontal mc spatial ref, Q Q�UBL\VX3-� vop vertical mc spatial ref,

�K�1L�M?3�3A�Y�$L�M?3�3&� are the coordinates of a sample in the current VOP, �K�T3�	A@$� �?3&	A@G� are

the coordinates of a sample in the reference VOP, �8���$� �;� � is the motion vector, and

�K�1���U � �$��=U � are the dimensions of the bounding rectangle of the reference VOP.

One/two/four vectors decision is indicated by the MCBPC codeword and field prediction

flag for each macroblock. If one motion vector is transmitted for a certain macroblock,

this is defined as four vectors with the same value as the MV. When two field motion vec-

tors are transmitted, each of the four block prediction motion vectors has the value equal

to the average of the field motion vectors (rounded such that all fractional pixel offsets

become half pixel offsets). If MCBPC indicates that four motion vectors are transmitted

for the current macroblock, the information for the first motion vector is transmitted as the

codeword MVD and the information for the three additional motion vectors is transmitted

as the codewords MVD2–4. If four vectors are used, each of the motion vectors is used

for all pixels in one of the four luminance blocks in the macroblock.

Overlapped motion compensation is performed when the flag obmc disable = 0. Each

pixel in an
� � �

luminance prediction block is a weighted sum of three prediction values,

divided by 8. The creation of each pixel �*�8 �9: � , in an
� � �

luminance prediction block

14

is governed by the following equation:

�*�8Y�>:T�#�
� ���������
	���� � ���
	��������� � ��� � ��� �����������
	���� � ���
	��������� � ��� � ��� �����������
	 ��� � ���
	��������� � ��� � ��� ��! �" �

where (��� #$ ���
� #%) denotes the motion vector for the current block, (��� &
$ ���
� &%) de-

notes the motion vector of the block either above or below, (�
� '$ ���
� '%) denotes the

motion vector either to the left or right of the current block, and (# �8 �9: � , (& �8 �9: � , and

(' �KY�9: � denote the weighting of each pixel in the current block and neighbor blocks.

Since the VOP may be coded in P or B mode, there are three types of motion vec-

tors, forward mode, backward mode, and bi-directional mode. The different modes make

different predictions �-�8Y�>:T� .

1. Forward mode

Only the forward vector (MVFx,MVFy) is applied in this mode. The prediction

blocks � % �8 �9: �!� �*)T�KY�9: �!� �
+&�KY�9: � are generated from the forward reference VOP.

2. Backward mode

Only the Backward vector (MVBx,MVBy) is applied in this mode. The prediction

blocks � % �8 �9: �!� �*)T�KY�9: �!� �
+&�KY�9: � are generated from the backward reference VOP.

3. Bi-directional mode

Both the forward vector (MVFx,MVFy) and the backward vector (MVBx,MVBy)

are applied in this mode. The prediction blocks � % �8 �9: �!� �*)T�KY�9: �!� �
+&�KY�9: � are gen-

erated from the forward and backward reference VOPs by doing the forward pre-

diction and the backward prediction and then averaging both predictions pixel by

pixel.

2.3.3 Texture Coder

There are three components, luminance Y and two chrominance components Cb and Cr,

to present the texture information of a video signal. The texture information is directly in

the luminance and chrominance components for an I-VOP. However, for a P-VOP and a

B-VOP, the texture information represents only the residual after motion compensation.

15

The coding process for texture includes padding process (if needed),
� � �

block based

DCT, quantization, coefficient prediction, coefficient scan and variable-length coding.

Discrete Cosine Transform Coding (DCT)

The transform coding in the MPEG-4 standard is based on
� � �

discrete cosine transform

(DCT). Before quantization, the encoder does forward transform. Then the encoder does

inverse transform after inverse quantization for reconstructing the VOP.

Quantization

MPEG-4 video supports two techniques of quantization (Q), the H.263 quantization method

and the MPEG quantization method. We often use the H.263 quantization method, which

is midtread quantizer for intra and inter AC coefficients and midrise quantizer for intra

DC coefficients. The MPEG quantization method is a uniform quantizer with the default

matrix.

The H.263 quantizer (see Figure 2.10) has uniform quantization for intra DC coeffi-

cients and nearly uniform midtread quantization for the inter DC and all AC coefficients.

Values of AC data between , Th and N Th are quantized to zero. Coefficients in a mac-

roblock are quantized with the same quantizer.

After DCT, each coefficient goes through a uniform quantizer. Table 2.1 is the default

quantizer matrix.

In an intra macroblock, the DC coefficients of
� � �

blocks are scaled by a constant

Table 2.1: Default Quantization Matrix Q (from [4])

(intra) (non intra)

8 16 19 22 26 27 29 34 16 16 16 16 16 16 16 16

16 16 22 24 27 29 34 37 16 16 16 16 16 16 16 16

19 22 26 27 29 34 34 38 16 16 16 16 16 16 16 16

22 22 26 27 29 34 37 40 16 16 16 16 16 16 16 16

22 26 27 29 32 35 40 48 16 16 16 16 16 16 16 16

26 27 29 32 35 40 48 58 16 16 16 16 16 16 16 16

26 27 29 34 38 46 56 69 16 16 16 16 16 16 16 16

27 29 35 38 46 56 69 83 16 16 16 16 16 16 16 16

16

1/2Q

−1/2Q Th

Th+1/2Q

−Th
−Th−Q

(b)(a)

3/2Q

−3/2Q

Figure 2.10: Quantizers of MPEG-4. (a) Quantizer for intra DC coefficient. (b) Quantizer

for inter DC and all AC coefficients.

Table 2.2: Nonlinear Scaler for DC Coefficients of DCT Blocks (from[4])

component DC scaler for Quantizer (Q) range

1–4 5–8 9–24 25–31

Luminance 8 2Q Q+8 2Q+16

Chrominance 8 �
� ���� Q+16

scaling factor of 8. Besides, Table 2.2 shows a nonlinear scaler which is used to provide

a higher coding efficiency. We can see that the luminance and chrominance blocks use

different quantizers.

Intra Prediction

Compared with inter prediction, intra prediction only uses self-information to predict the

later data in the same VOP. When coding an intra block, the DC coefficient and many AC

coefficients are coded by intra prediction. In the MPEG-4 standard, inter prediction is

employed to reduce the spatial redundancy between
� � �

blocks.

DC prediction is illustrated in Figure 2.11. Taking three previous decoded DC coeffi-

cients as references, we can predict the DC value of the current block. For example, the

DC value of block X is predicted from the DC coefficients of blocks A, B and C. The

technique of prediction in MPEG-4 standards is gradient based. If the absolute value of

a horizontal gradient is is less than the absolute value of a vertical gradient, the QDC of

17

���
���
���
���
���
���
���
���

A

B C D

X MacroblockY

���������������
��������������������������������������

���������
���������

���
���

or �������������
������������������������������������

���������
���������

	�	
	�	

or

Figure 2.11: Prediction of DC coefficients of blocks in an intra MB (from [6]).

� � � � �� � � � � � � � � � � �� � � � � �� � � � �� � � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �

 ! ! ! ! ! !" " " " "# # # # # #$ $ $ $ $ $% % % % %& & & & & & ' ' ' ' ' '(((((()))))* * * * * *+ + + + +, , , , , ,- - - - -

A

B

X

DC

or

Macroblock

./ / / / / /0 0 0 0 01 1 1 1 1 12 2 2 2 23 3 3 3 3 34 4 4 4 45 5 5 5 55 5 5 5 56 6 6 6 66 6 6 6 6
7 7 7 7 77 7 7 7 78 8 8 8 88 8 8 8 89 9 9 9 9: : : : :: : : : :
; ; ; ; ;; ; ; ; ;

Y

or

Figure 2.12: Prediction of AC coefficients of blocks in an intra MB (from [6]).

18

block C is used as the prediction, else QDC value of block A is used.

Figure 2.12 shows the AC prediction using the result of DC prediction. The direction

of AC prediction is the same as DC prediction and only for the coefficients in the first row

or in the first column.

Scan

Figure 2.13 shows three kinds of scan, alternate-horizontal, alternate-vertical and zigzag,

to scan the DC and AC coefficients and change 2-D block data to 1-D data. The three

scan types are chosen depending on the direction of DC prediction. If the direction is

vertical, alternate-horizontal scan is used for the current block. If the direction is horizon-

tal, alternate-vertical scan is selected for the current block. For all other blocks, zigzag

scanned is used.

Variable-Length Coding (VLC)

After scan the coefficients become 1-D data, usually with many zeros. The data stream

is good for run-length coding. The AC coefficients are encoded by the variable-length

codes for EVENTs, where an EVENT consists of the triplet LAST, RUN, and LEVEL.

LAST indicates that the code is the last code of the block or not. The value of RUN is the

number of successive zeros preceding the coded coefficient. The value of LEVEL is the

non-zero value of the coded coefficient.

2.4 Profiles and Levels (from [4])

2.4.1 Profiles and Levels

MPEG-4 defines many tools to compress the video data, but not all of them have to be

implemented. Similar to MPEG-2, profiles and levels are defined as subsets of the entire

bitstreams syntax containing all the tools. According to different applications, we can

choose the profile we need. There are eight profiles defined by MPEG-4: simple, core,

main, simple scalable, animated & mesh, basic animated texture, still scalable texture

19

Figure 2.13: Scans for
� � �

blocks (from [4]).

profile and simple face. Table 2.3 shows the detailed definitions.

The simple scalable profile is the same as simple profile, but with the rectangular scal-

ability added. The core profile is the profile with all tools of the simple profile, temporal

scalability, B-VOP coding and binary shape coding. The main profile is the profile with

all tools in core profile, gray shape coding, interlace and sprite coding. The other profiles

are for particular applications, such as 2D dynamic mesh coding and facial animation

coding.

In the thesis, we focus on implementing the main profile decoder and optimizing the

simple profile decoder.

20

Table 2.3: Profiles and Tools (from [4])

Simple Core Main Simple Animated Basic Still Simple

Visual Tools Scalable 2D Mesh Animated Scalable Face

Texture Texture Face

Basic
1. I VOP

2. P VOP V V V V V

3. AC/DC prediction

4. 4MV unrestricted MV

Error resilience
1. Slice resynchronization V V V V V

2. Data partitioning

3. Reversible VLC

Short header V V V V

B-VOP V V V V

Method 1/Method 2 V V V

quantization

P-VOP based
temporal scalability
1. Rectangular V V V

2. Arbitrary shape

Binary shape V V V

Grey shape V

Interlace V

Sprite V

Temporal scalability V

(Rectangular)

Spatial scalability V

(Rectangular)

Scalable still V V V

Texture

2D dynamic mesh V V

with uniform topology

2D dynamic mesh V

with Delaunay topology

Facial animation V

Parameters

21

Chapter 3

Environment of ARM9

In this chapter, we introduce the environment of ARM9. The reduced instruction set

computer (RISC) microprocessor ARM is a popular processor which was developed at

Acorn Computers Limited of Cambridge, England, between 1983 and 1985. For MPEG-

4 implementation, we use ARM920T as the core processor, which has a clock rate of 200

MHz and a 5-stage pipeline organization. We first introduce the architecture of ARM9.

Then the instruction sets, memory architecture, and development tools will be introduced.

3.1 Overview of the ARM Architecture (from [9])

The ARM is a reduced instruction set computer (RISC), as it incorporates these typical

RISC architecture features:

� a large uniform register file;

� a load/store architecture, where data-processing operations only operate on register

contents, not directly on memory contents;

� simple addressing modes, with all load/store addresses being determined from reg-

ister contents and instruction fields only; and

� uniform and fixed-length instruction fields, to simplify instruction decode.

In addition, the ARM architecture has the following enhancements:

22

� control over both the Arithmetic Logic Unit (ALU) and shifter in every data-processing

instruction to maximize the use of an ALU and a shifter;

� auto-increment and auto-decrement addressing modes to optimize program loops;

� “Load and Store Multiple” instructions to maximize data throughput; and

� conditional execution of all instructions to maximize execution throughput.

These enhancements to a basic RISC architecture allow ARM processors to achieve a

good balance of high performance, low code size, low power consumption and low silicon

area.

3.1.1 Organization of the ARM9 Processor (from [10])

Figure 3.1 shows the organization of the ARM9 processor. The functionalities of the five

stages are:

� Fetch: The instruction is fetched from memory and placed in the instruction pipeline.

� Decode: The instruction is decoded and register operands read from the register

files. There are 3 operand read ports in the register file so that most ARM instruc-

tions can source all their operands in one cycle.

� Execute: An operand is shifted and the ALU result generated. If the instruction is a

load or store, the memory address is computed in the ALU.

� Buffer/Data: Data memory is accessed if required. Otherwise the ALU result is

simply buffered for one cycle.

� Write back: The result generated by the instruction are written back to the register

file, including any data loaded from memory.

23

Figure 3.1: 5-stage organization of ARM9 (from [10]).

3.1.2 ARM Registers

ARM has 31 general-purpose 32-bit registers. At any one time, 16 of these registers are

visible. The other registers are used to speed up exception processing. All the register

specifiers in ARM instructions can address any of the 16 visible registers. Two of the 16

visible registers have special roles:

� Link register: Register 14 is the Link Register (LR). This register holds the address

of the next instruction after a Branch and Link (BL) instruction, which is the in-

struction used to make a subroutine call. At all other times, R14 can be used as a

general-purpose register.

� Program counter: Register 15 is the Program Counter (PC). It can be used in most

instructions as a pointer to the instruction which is two instructions after the instruc-

tion being executed. All ARM instructions are four bytes long (one 32-bit word)

and are always aligned on a word boundary. This means that the bottom two bits of

the PC are always zero, and therefore the PC contains only 30 non-constant bits.

24

The remaining 14 registers have no special hardware purpose. Their uses are defined

purely by software. Besides, software normally uses R13 as a Stack Pointer (SP).

3.1.3 Exceptions

ARM supports five types of exception, and a privileged processing mode for each type.

The five types of exceptions are:

� fast interrupt,

� normal interrupt,

� memory aborts, which can be used to implement memory protection or virtual

memory,

� attempted execution of an undefined instruction, and

� software interrupt (SWI) instructions which can be used to make a call to an oper-

ating system.

When an exception occurs, some of the standard registers are replaced with registers

specific to the exception mode. All exception modes have banked registers which are

the replacements for R13 and R14. The fast interrupt mode has more registers for fast

interrupt processing.

When an exception handler is entered, R14 holds the return address for exception

processing. This is used to return after the exception is processed and to address the

instruction that caused the exception.

When an exception occurs, the ARM processor halts execution after the current in-

struction and begins execution at one of a number of fixed addresses in memory, known

as the exception vectors. There is a separate vector location for each exception.

An operating system installs a handler for every exception at initialization. Privileged

operating system tasks are normally run in System mode to allow exceptions to occur

within the operating system without state loss.

25

3.1.4 Status Registers

All processor states other than the general-purpose register contents is held in status reg-

isters. The current operating processor status is in the Current Program Status Register

(CPSR). The CPSR holds:

� 4 condition code flags (Negative, Zero, Carry and oVerflow),

� 2 interrupt disable bits, one for each type of interrupt,

� 5 bits which encode the current processor mode, and

� 1 bit which encodes whether ARM or Thumb instructions are being executed exe-

cution throughput.

Each exception mode also has a Saved Program Status Register (SPSR) which holds

the CPSR of the task immediately before the exception occurred. The CPSR and the SP-

SRs are accessed with special instructions. The bit fields of CPSR and SPSR are showen

in Figure 3.2.

3.2 ARM Instruction Set (from [9])

The ARM instruction set can be divided into six broad classes of instruction:

� Branch instructions

� Data-processing instructions

� Status register transfer instructions

� Load and store instructions

Figure 3.2: Format of the CPSR and the SPSRs (from [9]).

26

� Coprocessor instructions

� Exception-generating instructions

Most data-processing instructions and one type of coprocessor instructions can update

the four condition code flags in the CPSR (Negative, Zero, Carry and oVerflow) according

to their result.

Figure 3.3 shows the ARM instruction formats. We can see that almost all ARM

instructions contain a 4-bit condition field. One value of this field specifies that the in-

struction is executed unconditionally.

3.2.1 Branch Instructions

As well as allowing many data-processing or load instructions to change control flow

by writing the PC, a standard Branch instruction is provided with a 24-bit signed offset,

allowing forward and backward branches of up to 32 MB.

There is a Branch and Link (BL) option that also preserves the address of the instruc-

tion after the branch in R14, the LR. This provides a subroutine call which can be returned

from by copying the LR into the PC.

There are also branch instructions which can switch the instruction set, so that exe-

cution continues at the branch target using the Thumb instruction set. These allow ARM

code to call Thumb subroutines, and ARM subroutines to return to a Thumb caller. Sim-

ilar instructions in the Thumb instruction set allow the corresponding Thumb-to-ARM

switches.

3.2.2 Data-Processing Instructions

The data-processing instructions perform calculations on the general-purpose registers.

There are four types of data-processing instructions:

� Arithmetic/logic instructions

� Comparison instructions

27

Figure 3.3: Formats of ARM instruction set (from [9]).

� Multiply instructions

� Count Leading Zeros instruction

Arithmetic/Logic Instructions

There are twelve arithmetic/logic instructions which share a common instruction format.

They perform an arithmetic or logical operation on up to two source operands, and write

the result to a destination register. They can also optionally update the condition code

flags based on the result. Of the two source operands:

� one is always a register,

28

� the other has two basic forms:

– an immediate value,

– a register value, optionally shifted.

If the operand is a shifted register, the shift amount can be either an immediate value or

the value of another register. Four types of shift can be specified. Every arithmetic/logic

instruction can therefore perform an arithmetic/logic and a shift operation. As a result,

ARM does not have dedicated shift instructions.

Because the Program Counter (PC) is a general-purpose register, arithmetic/logic in-

structions can write their results directly to the PC. This allows easy implementation of a

variety of jump instructions.

Comparison Instructions

There are four comparison instructions which use the same instruction format as the arith-

metic/logic instructions. They perform an arithmetic or logical operation on two source

operands, but do not write the result to a register. They always update the condition flags

based on the result.

The source operands of comparison instructions take the same forms as those of arith-

metic/logic instructions, including the ability to incorporate a shift operation.

Multiply Instructions

Multiply instructions come in two classes. Both types multiply two 32-bit register values

and store their result:

� 32-bit result: Normal. Stores the 32-bit result in a register.

� 64-bit result: Long. Stores the 64-bit result in two separate registers.

Both types of multiply instruction can optionally perform an accumulate operation.

29

Count Leading Zeros Instruction

The Count Leading Zeros (CLZ) instruction determines the number of zero bits at the

most significant end of a register value, up to the first 1 bit. This number is written to the

destination register of the CLZ instruction.

3.2.3 Status Register Transfer Instructions

The status register transfer instructions transfer the contents of the CPSR or an SPSR to

or from a general-purpose register. Writing to the CPSR can:

� set the values of the condition code flags,

� set the values of the interrupt enable bits, or

� set the processor mode.

3.2.4 Load and Store Instructions

The following load and store instructions are available:

� Load and Store Register

� Load and Store Multiple registers

� Swap register and memory contents

Load and Store Register

Load Register instructions can load a 32-bit word, a 16-bit halfword or an 8-bit byte from

memory into a register. Byte and halfword loads can be automatically zero-extended or

sign-extended as they are loaded.

Store Register instructions can store a 32-bit word, a 16-bit halfword or an 8-bit byte

from a register to memory.

Load and Store Register instructions have three primary addressing modes, all of

which use a base register and an offset specified by the instruction:

30

� In offset addressing, the memory address is formed by adding or subtracting an

offset to or from the base register value.

� In pre-indexed addressing, the memory address is formed in the same way as for

offset addressing. As a side-effect, the memory address is also written back to the

base register.

� In post-indexed addressing, the memory address is the base register value. As a

side-effect, an offset is added to or subtracted from the base register value and the

result is written back to the base register.

In each case, the offset can be either an immediate or the value of an index register.

Register-based offsets can also be scaled with shift operations.

As the PC is a general-purpose register, a 32-bit value can be loaded directly into the

PC to perform a jump to any address in the 4 GB memory space.

Load and Store Multiple Registers

Load Multiple (LDM) and Store Multiple (STM) instructions perform a block transfer of

any number of the general-purpose registers to or from memory. Four addressing modes

are provided:

� pre-increment,

� post-increment,

� pre-decrement, and

� post-decrement.

The base address is specified by a register value, which can be optionally updated

after the transfer. As the subroutine return address and PC values are in general-purpose

registers, very efficient subroutine entry and exit sequences can be constructed with LDM

and STM:

31

� A single STM instruction at subroutine entry can push register contents and the

return address onto the stack, updating the stack pointer in the process.

� A single LDM instruction at subroutine exit can restore register contents from the

stack, load the PC with the return address, and update the stack pointer.

LDM and STM instructions also allow very efficient code for block copies and similar

data movement algorithms.

Swap Register and Memory Contents

A swap (SWP) instruction performs the following sequence of operations:

1. It loads a value from a register-specified memory location.

2. It stores the contents of a register to the same memory location.

3. It writes the value loaded in step 1 to a register.

By specifying the same register for steps 2 and 3, the contents of a memory location

and a register are interchanged.

3.2.5 Coprocessor Instructions

There are three types of coprocessor instructions as follows.

Data-Processing Instructions

These start a coprocessor-specific internal operation.

Data Transfer Instructions

These transfer coprocessor data to or from memory. The address of the transfer is calcu-

lated by the ARM processor.

Register Transfer Instructions

These allow a coprocessor value to be transferred to or from an ARM register.

32

3.2.6 Exception-Generating Instructions

Two types of instruction are designed to cause specific exceptions to occur.

Software Interrupt (SWI) Instructions

SWI instructions cause a software interrupt exception to occur. These are normally used to

make calls to an operating system, to request an OS-defined service. The exception entry

caused by a SWI instruction also changes to a privileged processor mode. This allows an

unprivileged task to gain access to privileged functions, but only in ways permitted by the

OS.

Software Breakpoint (BKPT) Instructions

BKPT instructions cause an abort exception to occur. If suitable debugger software is

installed on the abort vector, an abort exception generated in this fashion is treated as

a breakpoint. If debug hardware is present in the system, it can instead treat a BKPT

instruction directly as a breakpoint, preventing the abort exception from occurring.

In addition to the above, the following types of instruction cause an Undefined In-

struction exception to occur:

� coprocessor instructions which are not recognized by any hardware coprocessor,

and

� most instruction words that have not yet been allocated a meaning as an ARM

instruction.

In each case, this exception is normally used either to generate a suitable error or to initiate

software emulation of the instruction.

3.3 The Thumb Instruction Set (from [9])

Compared with the ARM instructions, the Thumb instructions address the issue of code

density. Thumb only uses 16-bit length and highly increases the code density. Besides,

The Thumb instruction set is a re-encoded subset of the ARM instruction set.

33

Thumb does not alter the underlying programmer’s model of the ARM architecture. It

merely presents restricted access to it. All Thumb data-processing instructions operate on

full 32-bit values, and full 32-bit addresses are produced by both data-access instructions

and instruction fetches.

When the processor is executing Thumb instructions, eight general-purpose integer

registers are available (R0 to R7) which are the same physical registers as R0 to R7 when

executing ARM instructions. Some Thumb instructions also access the Program Counter

(ARM Register 15), the Link Register (ARM Register 14) and the Stack Pointer (ARM

Register 13).

Thumb does not provide direct access to the CPSR or any SPSR (as the MSR and

MRS instructions do in the ARM instruction set). Thumb execution is flagged by the T

bit (bit5) in the CPSR:

� T == 0: 32-bit instructions are fetched (and the PC is incremented by four) and are

executed as ARM instructions.

� T == 1: 16-bit instructions are fetched (and the PC is incremented by two) and are

executed as Thumb instructions.

Figure 3.4 shows the instruction formats of Thumb. The main difference between

ARM and Thumb instructions is the condition field. For higher code density, there is no

condition field in Thumb instructions. Besides, the offset field and immediate field are

smaller.

3.4 Memory and System Architectures

ARM processors and software are designed to be connected to a byte-addressed memory.

Word and halfword accesses to the memory ignore the alignment of the address and access

the naturally-aligned value that is addressed (so a memory access ignores address bits 0

and 1 for word access, and ignores bit 0 for halfword accesses). The endianness of the

ARM processor should normally match that of the memory system, or be configured to

34

Figure 3.4: Formats of Thumb instruction set (from [9]).

match it before any non-word accesses occur (when the endianness is configurable and

CP15 is implemented, bit7 of CP15 register 1 controls the endianness).

Memory that is used to hold programs and data should be marked as follows:

� Main (RAM) memory is normally set as cachable and bufferable.

� ROM memory is normally set as cachable, and should be marked as read only, so

the bufferable attribute is not used and should be 1.

35

3.4.1 Write Buffers

Some ARM implementations incorporate a merging write buffer that subsumes multiple

writes to the same location into a single write to main memory. Furthermore, some write

buffers re-order writes, so that writes are issued to memory in a different order to the order

in which they are issued by the processor.

For writes to bufferable areas of memory, memory aborts can only be signaled to the

processor as a result of conditions that are detectable at the time the data is placed in the

write buffer. Conditions that can only be detected when the data is later written to main

memory (such as a parity error from main memory) must be handled by other methods

(typically by raising an interrupt).

3.4.2 Caches (from [11])

Caches hold copies of the contents of memory locations. In general, these are memory

locations that have been loaded from recently. These copies are automatically used in

preference to off-chip memory.

Caches only give an advantage if the cached memory locations are used again. In a

real system this is very common, for example:

� instruction loops, and

� frequently referenced data.

Cache operation is transparent to the programmer. However, a programmer must ini-

tialize the core to specify what off-chip memory locations are to be cached.

Harvard Architecture

ARM’s cached Harvard cores have separate instruction and data caches, but use the same

bus to access external memory. A programmer can define the properties of memory re-

gions for data and instructions separately. For ARM920T, there is a 16 KB instruction

memory and a 16 KB data memory.

36

Cache Between ARM and Coprocessor

ARM processors do not normally support cache coherence between the ARM and other

system bus masters. Bus snooping is not supported. If memory data are to be shared be-

tween multiple bus masters without taking special software measures to ensure coherency,

then the data must be mapped as:

� uncachable to ensure that all reads access main memory, and

� unbufferable to ensure that all write access main memory.

3.5 ARM Developer Suite (ADS) (from [12])

ADS consists of a suite of applications, together with supporting documentation and ex-

amples, that enable us to write and debug applications for the ARM family of RISC

processors. We can use ADS to develop, build, and debug C, C++, and ARM assembly

language programs.

The ADS toolkit consists of the following major components:

� command-line development tools,

� GUI development tools,

� utilities, and

� supporting software.

Figure 3.5 shows the flow of ARM tools. C or assembly source are input first, then

the object code will be linked. Finally, the program will be loaded into the development

board or the ARMulator.

Command-Line Development Tools

The following command-line development tools are provided:

37

armcc The ARM C compiler. The compiler is tested against the Plum

Hall C Validation Suite for ANSI conformance. It compiles

ANSI source into 32-bit ARM code.

armcpp This is the ARM C++ compiler. It compiles ISO C++ or EC++

source into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the

Plum Hall C Validation Suite for ANSI conformance. It com-

piles ANSI source into 16-bit Thumb code.

tcpp This is the Thumb C++ compiler. It compiles ISO C++ or

EC++ source into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM

assembly language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more

object files with selected parts of one or more object libraries

to produce an executable program. The ARM linker creates

ELF executable images.

armsd The ARM and Thumb symbolic debugger. This enables source

level debugging of programs. We can single-step through C or

assembly language source, set breakpoints and watchpoints,

and examine program variables or memory.

GUI Development Tools

The following Graphical User Interface (GUI) development tools are provided:

38

Figure 3.5: ARM tools for developers.

AXD The ARM Debugger for Windows and UNIX. This provides a

full Windows and UNIX environment for debugging C, C++,

and assembly language source.

CodeWarrior IDE The project management tool for Windows. This automates

the routine operations of managing source files and building

software development projects. The CodeWarrior IDE is not

available for UNIX.

Utilities

The following utility tools are provided to support the main development tools:

39

fromELF The ARM image conversion utility. This accepts ELF format

input files and converts them to a variety of output formats,

including plain binary, Motorola 32-bit S-record format, Intel

Hex 32 format, and Verilog-like hex format. fromELF can also

generate text information about the input image, such as code

and data size.

armprof The ARM profiler displays an execution profile of a simple

program from a profile data file generated by an ARM debug-

ger.

armar The ARM librarian enables sets of ELF format object files to

be collected together and maintained in libraries. The pro-

grammer can pass such a library to the linker in place of several

ELF files.

Supporting Software

The ARMulator support software is provided to enable the programmer to debug the pro-

grams, either under simulation, or on ARM-based hardware. It is an ARM core simulator

which provides instruction-accurate simulation of ARM processors and enables ARM

and Thumb executable programs to be run on non-native hardware. The ARMulator is

integrated with the ARM debuggers.

40

Chapter 4

Analysis of Computational and Storage

Complexity of MPEG-4 Framed-Based

Video Decoder

Our implementation employs the public source MoMuSys as the base. In section 1, we

introduce the MoMuSys software and show the profile. In section 2, we consider code

size and memory usage reduction for implementation. And lastly in section 3, we discuss

our approaches to code acceleration.

4.1 Introduction to MoMuSys

MoMuSys (Mobile Multimedia Systems) is project number AC098 in the ACTS (Ad-

vanced Communication Technology and Services) program, funded up to 50% from the

European Commission. The rest is funded by the partners involved. The project started

on September 1, 1995, and ran until the fall 1998. The prime project leader is Dirk Lappe

from Bosch.

The MoMuSys donated its software for MPEG-4 main profile encoding and decoding

to MPEG. Table 4.1 shows the functionalities that the MoMuSys software supports. The

functionalities defined by MoMuSys conforms to the main profile of MPEG-4. However,

to implement an MPEG-4 decoder on the ARM processor, the main profile appears too

41

complicated on first attempt. Therefore, we implement and optimize the simple profile

first.

4.2 Complexity Analysis of MoMuSys Decoder

We consider two levels of complexity analysis. The first level is an operational analysis

by actual decoding of video sequences. Because of the different characteristics of differ-

ent sequences, the complexity figures of some decoder components, such as the motion

compensator and the VLD, are statistically variable and not a set of fixed numbers. The

second level is a low-level analysis, which is the ideal complexity computed by hand.

At this level, time-critical blocks in the decoder block diagram (see Figure 4.1) are ana-

lyzed. But we overlook the overhead of some computations, especially that for address

calculation.

In this section, we use some well-known QCIF (176x144) test sequences to do the

analysis.

4.2.1 Profile Using the Profiler of ADS

In section 3.5, we have introduced the ARM Developer Suite (ADS) development tools

for ARM processors. Now we employ the profile tools of ADS and VTune to do the first

level analysis, where VTune is a software development tool for Intel processors [16]. The

Intel VTune Analyzer helps to locate and remove software performance bottlenecks by

collecting, analyzing, and displaying performance data from the system-wide level down

to the source level. Since our PC contains Intel CPU, using VTune help us get accurate

profiles.

The experiment environment of VTune is a laptop with a 1.7 GHz Pentium-M CPU

and 768 MB of DDR RAM, running Windows-XP. The profiling results on VTune, in

Table 4.2, is obtained from encoding and decoding 2 frames employing H.263 quantiza-

tion with a fixed half quantization step size (QP) equal to 4. Note that the quantization

step size affects the length of bitstream, so larger QP results in smaller bitstream size and

reduce the required encoding and decoding time.

42

Table 4.1: Functionalities of MoMuSys

Simple Main MoMuSys Perference

Basic

1. I VOP

2. P VOP V V V

3. AC/DC Prediction

4. 4MV Unrestricted MV Full search

Error resilience

1. Slice Resynchronization V V V

2. Data Partitioning

3. Reversible VLC

Short header V V V

B-VOP V V

Method 1/Method 2 quantization V V

P-VOP based

temporal scalability

1. Rectangular V V

2. Arbitrary shape

Binary Shape V V

Grey shape V V

Rate control V V TM5, VM4

43

Previous

VOP
Reconstructed

Motion
Decoding

Motion
Compensation

VOP
Reconstruction

(Motion)

(Texture)

Coded
Bit Stream

Coded
Bit Stream

e
m
u
l
t
i
p
l
e
x
e
r

D

VLD Inverse
Scan

Inverse
AC/DC
Prediction

Inverse
Quantization IDCT

Texture Decoding

Figure 4.1: Block diagram of MPEG-4 frame-based video decoder [4].

We can see that the item “Others” occupies the most percentage of total time. Actually,

most of “Others” is about writing output image. In the original code of MoMuSys, the

output is written into files in yuv format. However, the instruction “fwrite” takes much

time. It is included in “Others.” Writing the output into files is not necessary for every

MPEG-4 application. For example, in some applications the output maybe shown on

screen instead.

In Table 4.2, it is noted that the data are calculated for two frames. However, some

functions, such as “DecodeMBMVs” and “Motion Compensation,” are called for inter (P)

frames only, and “DCACPrediction” is just for intra (I) frames. Therefore, the execution

time of functions which are used for both I and P frames should be divided by two, when

we want to compare the computational complexity of the MPEG-4 decoder.

The statistics on ADS are shown in Table 4.3 and we omit the components whose

percentages are lower than 0.005%. Similar to Table 4.2, the item “Others” occupies the

most percentage of total time and the percentages of other items are compatible between

the two tables. In the table, we can find that the MoMuSys consumes more time on ARM

44

Table 4.2: Profile of Frame-Based MPEG-4 Decoding of QCIF Sequences on VTune

(from [15])

stefan qcif grandmother qcif

Function Name Clockticks % Clockticks %

BitstreamAccess 1,695 1.35 1,865 1.91

DecodeVOLHeader 296 0.24 294 0.30

DecodeVOPHeader 26 0.02 23 0.02

DecodeMBHeader 495 0.40 264 0.27

DecodeMBMVs 1,544 1.23 69 0.07

DCACPrediction 2,584 2.06 2,621 2.69

BlockDequantH263 1,870 1.49 946 0.97

BlockIDCT 28,340 22.63 7,927 8.14

BlockInterpolation 1,170 0.93 1,165 1.20

Motion Compensation 8,066 6.44 7,203 7.40

Fill VOP 424 0.34 413 0.42

Others 79,904 63.80 75,723 77.79

Total 125,244 100.00 97,348 100.00

processor. The reason is that the ARM processor is a fixed-point processor and it is very

sensitive to the floating-pointing execution, such as IDCT, and file I/O operation.

Disregarding the item “Others,” we can see that the most time-critical components are

“BlockIDCT” and “Motion Compensation” in both tables. The reason why IDCT con-

sumes so much time is that the IDCT in the MoMuSys code is implemented in floating-

point. Especially, the item “BlockIDCT” consumes more time on ARM processor rela-

tively. Now we turn to the low-level analysis of these two time-critical items in the next

subsection.

45

Table 4.3: Profile of Frame-Based MPEG-4 Decoding of QCIF Sequences on ADS

stefan qcif grandmother qcif

Function Name Clockticks % Clockticks %

BitstreamAccess 1,412,708 0.44 524,648 0.26

DCACPrediction 2,086,955 0.65 2,098,591 1.04

BlockDequantH263 2,215,383 0.69 1,230,905 0.61

BlockIDCT 46,137,749 14.37 27,301,867 13.53

BlockInterpolation 1,733,778 0.54 1,735,374 0.86

Motion Compensation 5,939,794 1.85 3,934,859 1.95

Fill VOP 706,354 0.22 706,257 0.35

Others 260,840,479 81.24 164255131 81.4

Total 321,069,930 100.00 201,787,632 100.00

4.2.2 Low-Level Computational Complexity Analysis

In this section, we consider detailed computational complexity for some time-critical

functions. In the statistics of the following tables, the designation “data” in front of a dash

indicates that the operation is associated with data values (memory contents), whereas the

designation “mem” indicates that the operation is associated with memory addresses. The

reason for distinguishing “data” and “mem” operations is that many processors treat these

two types of operation differently.

Complexity Analysis of Motion Compensation

As Figure 4.2 shows, there are four steps to complete the motion compensation for lumi-

nance blocks. First, the reference frame is padded with 16 pixels around the whole frame

for the motion vectors which point out of the frame. Second, the padded frame is inter-

polated by two. Third, according to the corresponding motion vectors, we can find the

reference block data and get a compensated frame. Fourth, we add the decoded residual

46

data with the reference data and reconstruct the previous frame.

The complexity and memory requirement analysis of motion compensation for one

frame is shown in Table 4.4. The data is calculated by hand in the ideal case. For exam-

ple, data-load of interpolation comes from � ��� � N"���&� � � ����� N"�;�;� . We see that there

are many memory accesses performed. That is, the memory load/store and address calcu-

lations occupy most of the computational complexity for motion compensation. So, it is

necessary to lower the amount of memory accesses in our implementation.

About the storage requirement for luminance motion compensation, Table 4.4 also

shows the memory requirement for every operation in motion compensation. The total

memory space required is 253 KB, regardless of any memory-sharing skill. Note that

we consider the forward predicted P-VOP only. Details of the storage requirement are as

follows:

� 25,344 bytes for the previous decoded frame,

� 36,608 bytes for the padded frame,

� 146,432 bytes for the interpolated frame,

� 25,344 bytes for the motion-compensated reference frame data, and

� 25,344 bytes for the residual frame data.

We can see that the storage requirement is large and inefficient. Referring to the de-

coder block diagram (see Figure 4.1), the previous decoded frame is the result of motion

compensation and the residual frame is the output of texture decoder. The storage re-

quirements of the previous decoded frame and the residual frame are inevitable. We will

discuss the methods of reducing the memory requirement of the padded frame and the

interpolated frame in chapter 5.

Moreover, the computational complexity and storage requirement of chrominance mo-

tion compensation are listed in Table 4.5. Note that the computational complexity analysis

is for the 4:2:0 format.

47

Figure 4.2: Flow of motion compensation.

Since the memory requirement and the amount of computation for addresses are very

large, we have to analyze the characteristics of motion compensation and find some tech-

niques to rearrange or reuse some memory spaces for higher performance. We leave the

discussion to the next chapter.

Complexity Analysis of Texture Decoding

The texture decoding steps after VLD involve inverse scan, inverse AC/DC prediction,

inverse quantization (or dequantization), and IDCT (inverse discrete cosine transform).

However, the inverse scan and the inverse AC/DC prediction contain relatively small

amount of computation. We concentrate on the dequantization and the IDCT below.

Table 4.6 shows the complexity of the MoMuSys software for dequantization and

IDCT. Instead of carrying out a complexity analysis based on the algorithm as in the case

of motion compensation, we analyze the MoMuSys code itself. In this table, note that

there are many data-comparison instructions in dequantization and many data-add, data-

mult and data-load instructions in IDCT. We should pay attention to these parts in our

implementation and optimization.

48

Table 4.4: Complexity of Luminance Motion Compensation for One QCIF Frame (from

[15])

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 181,507 0 25,344

data-shift 0 109,057 0 0

data-load 25,344 36,608 25,344 25,344

data-store 36,608 146,432 25,344 25,344

mem-add 36,608 146,432 26,136 25,344

mem-mult 0 0 396 0

Memory Req.

(bytes) 61,952 146,432 25,344 25,344

Total Storage Requirement: 253 KBytes

4.3 Code Size and Memory Usage Reduction for Imple-

mentation

In this section, we discuss the code size and memory usage reduction before our acceler-

ation.

4.3.1 Code Size Reduction

After compilation by the ADS compiler in release mode (-O3), the code size of MoMuSys

is 595.52 KB and the total memory size (Code, RO, RW, and ZI data) is 647.34 KB.

Although there is a 256 MB SDRAM on our platform, the instruction cache is only 8 KB.

To reduce cache miss, we have to reduce the code size.

From earlier discussion, we know that there are many functionalities in MoMuSys

49

Table 4.5: Complexity of Chrominance Motion Compensation for One QCIF Frame (from

[15])

Operation Padding Interpolation Find-Ref. Add-Residual

data-add 0 89,992 0 12,672

data-shift 0 54,530 0 0

data-load 12,672 18,304 12,672 12,672

data-store 18,304 73,216 12,672 12,672

mem-add 18,304 73,216 13,068 12,672

mem-mult 0 0 198 0

Memory Req.

(bytes) 30,976 73,216 12,672 12,672

Total Storage Requirement: 126.5 KBytes

(see Table 4.1). Since we only implement the simple profile first, we can remove some

functionalities and modify the code for our implementation. To retain the original code,

we always use the #ifdef macros to do modification as shown in Figure 4.3. If we add the

definition, MAIN PROIFLE, in the preprocessor of the compiler, we will get the original

code without any change.

The files listed in Table 4.7 have the functionalities that we do not need. Thus we

remove them completely. The method we use is to simply add “#ifdef MAIN PROFILE”

at the beginning of the file and add “#endif” at the end. Then, we will reduce a large

amount of the code size and save much of the instruction memory. Some other files

which are removed partly are not shown in this table.

After reducing the code size, our code size becomes 137.73 KB only and the total

memory size (Code, Read-Only, Read-Write, and Zero-Initial data) is 167.89 KB. In con-

clusion, the MoMuSys code contains many functionalities and we only need a quarter of

50

Table 4.6: Complexity of Dequantization and IDCT for One 8 � 8 Block in MoMuSys

Operation DeQuant IDCT

data-comparison 320 0

data-add 192 544

data-mult 64 256

data-shift 128 0

data-load 256 576

data-floor 0 64

mem-add 0 64

mem-mult 0 64

the code size of the MoMuSys code for our simple profile implementation.

4.3.2 Memory Usage Reduction

The MoMuSys code was developed by many people. They use many “malloc” and “cal-

loc” instructions to allocate memory spaces for utilization. That is, when they need an

array or a matrix to record data, the “malloc” instruction will be employed to allocate an

memory space and the “free” instruction will be employed to free the memory space in

the end of the function.

Table 4.8 shows the greater part of the functions which have malloc or calloc instruc-

tions in the MoMuSys code. For our implementation, it is inefficient to allocate memory

space so many times, because the operation takes much time. Our solution of reduc-

ing memory usage is to declare a global variable first and use macros to comment out

the “malloc”, “calloc” and “free” instructions. Furthermore, there are many VOPs at the

same execution time and occupy large memory spaces. In our work, we avoid repeated

operations of memory allocation to get better performance.

51

Figure 4.3: Revised code using the #ifdef macros

It takes very much effort to remove all the instructions of memory allocation. So we

focus on the part of code which allocates large memory spaces. However, there are some

problems which are not easily solved. For example, the array named “A” is allocated by a

function and pointed to a local pointer “B” in another function. At the end of the second

function, “B” is freed but actually the freed array is “A”. When decoding the next frame

or block, the array “A” is used again but the result is wrong because “A” is already freed.

This kind of problem is hard to discover and hence we have spent lots of time dealing

with it.

Finally, we use more fixed memory spaces (Zero-Initial data), and the speed perfor-

mance is better.

52

Table 4.7: Files in MoMuSys That Are Not Needed for Simple Profile Implementation

In folder vm dec alp dec cae.c, alp dec grey.c, alp dec header.c, alp dec mc.c,

alp dec mom.c, alp dec si.c, alp dec util.c, bin ar decode.c,

concealment.c, drc util dec.c, mot get mvnum.c, newpred d.c,

sprite dec piece.c, sprite dec util.c

In folder vm common ac.c, alp common cae.c, alp common mc.c, alp common si.c,

alp common util.c, BinArCodec.c, bitpack.c, boundary.c,

computePSNR.c, context.c, deblock.c, decQM.c, do bgc.c,

download filter.c, drc util common.c, dwt.c, dwt aux.c,

dwtmask.c, encQM.c, errorHandler.c, globalMC.c, idwt.c

idwt aux.c, idwtmask.c, imagebox.c, io debug.c, io sharp.c,

io yuv.c, mom vo.c, msg.c, newpred common.c, nr util.c,

PEZW ac.c, PEZW globals.c, PEZW textureLayerBQ.c,

PEZW utils.c, post filter.c, QMInit.c, QMUtils.c, quant.c,

read control file.c read image.c, sadct blk.c, sadct blk kaup.c,

sadct blk s k.c, sadct fprintf mat.c, sadct init.c,

sadct momusys.c, sadct momusys kaup.c, sadct momusys s k.c,

sadct nrutil.c, sadct vec.c, sadctq blk.c, seg.c, shape.c,

ShapeCommon.c, ShapeDeCoding.c, ShapeEnCoding.c,

ShapeUtil.c, sprite util.c, stats.c, text quant mat def.c,

Utils.c, vm midproc.c, vm vop bound.c, wavelet.c, write image.c,

wvtPEZW.c, wvtpezw tree decode.c, wvtpezw tree encode.c,

wvtpezw tree init decode.c, wvtpezw tree init encode.c,

ztscan dec.c, ztscan enc.c, ztscanUtil.c

53

Table 4.8: Functions with Memory Allocation Instructions

function name variable name size (bytes)

BitstreamOpen stream 2,092

AllocVop vop 6,820

AllocImage Image 28

image.data 4

allocate trace file trace 128

DecodeVopCombinedShapeTextureIntraErrRes mblock 1,536

DC store 2,376

slice nb 396

header data 6,732

DecodeCombinedPacketInfoIntraErrRes mblock 1,536

DecodeVopCombinedMotionShapeTextureInterErrRes mblock 1,536

DC store 2,376

slice nb 396

header data 6,732

DecodeCombinedPacketInfoInterErrRes mblock 1,536

*clone bitstream stream1 2,092

main trace 128

DecodeVopNonScalable mb type 396

mvda 396

SallocVop vop 6,820

SallocVol vol 6,196

54

Chapter 5

MPEG-4 Video Decoder

Implementation and Optimization for

ARM9

We now consider the optimization of our implementation of the MPEG-4 frame-based

video decoder on ARM9. The optimization techniques can be divided into two categories,

algorithmic level and assembly/architecture level optimization. We focus on the functions

which consume more cycles. At the end of this chapter, we give the experiment results.

5.1 Algorithmic Optimization

Algorithmic level optimization involves changing the computation flow in C language

to reduce the computations. We modify our algorithms wherever possible to reduce the

computations.

55

5.1.1 Algorithmic Optimization for Blocks in Intra Frames with Null

AC Coefficients [15]

Analysis of DC/AC Prediction

In the process of intra prediction, the DC and AC values would be predicted from the

previous decoded blocks. Then, after DC and AC reconstruction, inverse quantization

and IDCT will be done for each intra block. However, many intra blocks have a non-

zero DC coefficient but all zero AC coefficients because the property of DCT is that it

concentrates signal energy in lower frequency coefficients. In other words, if we can make

sure that there is only a DC coefficient decoded from the bitstream, the corresponding

output block data can be obtained with copying the DC component to the entire block,

and such property is illustrated in Figure 5.1. There are different methods to skip the

prediction and transform, and we introduce the implementation techniques and show the

analysis and simulation results in the following.

Check Skipped Blocks Using CBP and ACPred Flag

In the macroblock header, there are two parameters which contain important information

for reducing the computation. The first one, Coded Block Pattern (CBP), gives infor-

mation about blocks in macroblock being variable-length coded or not. It is a set of six

bits, each of which representing one block in a macroblock. The status of the bits shows

00 0 0 0 0 04

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

00 0 0 0 0 00

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4

444 4 4 4 4 4IDCT

Dequantize

8X8 Output Block Data8X8 Block Decoded from Bitream

Figure 5.1: DC spreading from decoded coefficient to output block (from [15]).

56

whether the block is coded or not. If all coefficients of the block are zero, that block is

not coded. The second, ACPred Flag, tells us about the existence of AC prediction.

We choose some test sequences to compare the proportion of blocks that can be

skipped. The simulation is done on PC with 90 frames for each sequence and these

frames are all encoded in intra type. The simulation results are listed in Table 5.1.

In Table 5.1, we see that the percentage of skipped blocks is not very high. The

reason that the simulation results is not as what we expected is due to the parameter

ACPred Flag. The ACPred Flag is set to 1 if there is any block in an MB predicted with

AC coefficients. In other words, if any block of the 6 blocks of the macroblock has AC

prediction, the ACPred Flag will be 1 but the rest of blocks whose AC values are zero

will still do AC prediction. We cannot skip some blocks with DC component only but

nonzero ACPred Flag. Therefore, we should improve our method in finding the blocks

that can be skipped.

Check Skipped Blocks After AC Prediction

Since the previous method was not precise enough, we did not skip all the blocks whose

AC coefficients are all zero. In order to get higher precision, we add a check after the

prediction of AC coefficients is completed. Similar to the previous method, we still have

to check CBP. If the corresponding bit in CBP is zero, we can skip this block because all

the AC predicted coefficients are zero.

Consequently, we can further find out all the possible blocks to be skipped, but the

effort also increases because more conditions are checked. We again do a simulation on

PC to get the percentage of skipped blocks in 90 intra-encoded frames. The simulation

results are listed in Table 5.2.

Compared to Table 5.1, we can see that the percentage of skipped blocks gets higher

with the aid of the new check. The test sequence “Grandmother qcif” becomes the one

which has the most skipped blocks. Consequently, the performance of this optimization

should be highly related with the area of smooth region in each sequence.

57

Table 5.1: Number of Skipped Blocks in 90 Intra Frames (Check CBP and ACPred Flag

Only) (from [15])

Test Seqs. (QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 4,106 7.78

stefan 53,460 2,041 3.82

foreman 53,460 8,343 15.61

akiyo 53,460 6,574 12.30

mobile 53,460 1,422 2.66

football 53,460 5,568 10.42

Table 5.2: Number of Skipped Blocks in 90 Intra Frames with Further Check After AC

Prediction (from [15])

Test Seqs. (QCIF) Total Block No. Skipped Block No. %

grandmother 53,460 15,795 29.55

stefan 53,460 4,679 8.75

foreman 53,460 10,976 20.53

Optimization Result

Table 5.3 shows the optimization result. Obviously, the performance varies from one

sequence to another. Moreover, the percentage of speedup on ARM9 is less than percent-

age of skipped blocks. The reason why the speedup is not much can be regarded as a

demonstration of the Ahmdahl’s Law [21]. That is, we only reduced the computations of

inverse quantization and IDCT, and other parts like AC DC Prediction are not optimized.

Besides, checking the conditions is the overhead that takes a few cycles.

In conclusion, the above algorithmic optimization for intra-frame decoding is severely

limited by the characteristics of the test sequences. Furthermore, we can take the advan-

58

Table 5.3: Execution Time of Intra Frame Decoding on ARM9

Test Seqs. Execution Time (cycles)

(QCIF) Original CBP and AC Pred flag Checked Speedup (%) AC Prediction also Checked Speedup (%)

grandmother 15,016,953 14,147,178 5.79 13,349,972 5.64

stefan 18,314,760 17,601,594 3.89 17,407,585 1.10

foreman 15,199,897 14,051,133 7.56 13,837,714 1.52

tage of ARM architecture to improve the performance. The architectural optimization

methods will be introduced later.

5.1.2 Algorithmic Optimization for Null Residual Blocks of P-frames

Check Skipped Blocks for Null Residual Blocks

Similar to the optimization for intra-encoded frames, we want to simplify the decoding

flow for the blocks whose residuals are all zero. Therefore, we again do some analysis on

PC to check how many blocks can be skipped.

In the MB header of P-frame, the information, Coded Block Pattern (CBP), indicates

whether the residual blocks are variable-length encoded or not. That is, if the correspond-

ing bit in CBP is zero, the block is a null residual block. Therefore, we can check the CBP

to see if the dequantization and IDCT can be skipped. For analysis, we still encode 90

frames with the first frame intra-encoded. The data listed in Table 5.4 are obtained from

the statistics of the 89 inter-encoded P frames in each sequence.

In Table 5.4, the simulation results tell us that the less motion the test sequence has,

Table 5.4: Number of Skipped Blocks in 89 P-Frames

Test Seqs. (QCIF) Total Block No. Skipped Block No. %

grandmother 52,866 42,746 80.86

stefan 52,866 16,495 31.20

foreman 52,866 25,590 48.41

59

the more blocks we can skip.

Optimization Result

Table 5.5 shows the average execution time for the test sequences with 89 frames. Com-

pared with Table 5.4, we see that the percentage of speedup is quite related with the

percentage of skipped blocks. Nevertheless, the performance of this optimization is still

limited by Amdahl’s Law [21]. In conclusion, the above algorithmic optimization for

P-frame decoding, similar to intra-frame decoding, is also limited by the characteristics

of the test sequences. For further optimization in P-frame decoding, we consider the

functionality of each process and try to reduce their computations. We will discuss the

methods for optimization in the following sections.

5.1.3 Optimization for Image Interpolation and Padding

Analysis of Image Interpolation

Interpolation of each macroblock is necessary because the motion vector may be a non-

integer number. In the original decoding process of motion compensation (see Figure 4.2),

we interpolate the whole padded image and multiply the motion vector by 2. However,

interpolation of the whole image consumes many cycles on ARM, but the effort is wasted

where the motion vector is an integer. The other problem is that the storage requirement

is 146,432 bytes which is large for our implementation. Therefore, we propose a block-

based interpolation method, done only when the motion vector is not an integer.

Table 5.5: Execution Time of Inter (P) Frame Decoding on ARM9

Test Seqs. Execution Time (cycles)

(QCIF) Original CBP Checked Speedup (%)

grandmother 18,600,472 12,428,187 33.18

stefan 20,837,319 19,004,118 8.80

foreman 19,114,456 16,360,197 14.41

60

Under the above approach, interpolation can be divided into 4 categorizes as follows,

where MVx is the horizontal motion and MVy is the vertical motion for a block:

� Both MVx and MVy are integer numbers.

� MVx is a half-integer number and MVy is a integer number.

� MVy is a half-integer number and MVx is a integer number.

� Both MVx and MVy are half-integer numbers.

If both MVx and MVy are integer numbers, we can avoid the interpolation process.

Moreover, we can interpolate only the horizontal direction, only the vertical direction, or

both according to the category of the block.

To see how much saving is possible, we count the amount of motion vectors which

are half-integer in either the horizontal or the vertical directions. The results are listed in

Table 5.6 (from [15]). In Table 5.6, “Both” means that both the horizontal and the vertical

motion are fractional. “MVx” and “MVy” mean that the motion vector is fractional only

in horizontal and vertical direction, respectively.

From Table 5.6, we can also understand more about the different sequences, in par-

ticular directions of motion. Moreover, we see that more than 50% of interpolation can

be avoided in four of the six test sequences. Thus, if we check the characteristics of the

motion vectors before luminance and chrominance motion compensation of each blocks,

many computations can be saved. Then the motion compensation flow becomes as shown

in Figure 5.2.

Analysis of Padding

The objective of padding is to get more accurate motion estimation. Padding operation

is necessary for the motion vectors which points out of the frame. However, it spends

much time on repetitively copying the edge values to the exterior regions and the storage

requirement of the padded frame is 36,608 bytes which is large for our implementation.

61

Table 5.6: Analysis of Necessary Interpolation (from [15])

Bitstream Total MV Half-integer MV

(QCIF) Number Total % Both % MVx % MVy %

grandmother 18,204 2,064 11.34 550 3.02 497 2.73 1,017 5.59

stefan 33,744 15,385 45.59 1,954 5.79 10,478 31.05 2,953 8.75

foreman 34,128 15,585 45.67 4,658 13.65 5,994 17.56 4,933 14.45

akiyo 13,552 1,225 9.04 120 0.89 144 1.06 961 7.09

mobile 35,192 21,663 61.56 1,697 4.82 15,933 45.27 4,033 11.46

football 34,604 27,031 77.23 11,164 32.26 9,198 26.58 6,669 19.27

Moreover, in the original MoMuSys code, the frame which need to be padded is

copied to the center of another bigger frame and padded latter. The reason of this op-

eration is that the original frame size and the order of pixels are fixed in the MoMuSys

code, so it is necessary to do the copy operation. Consequently, the overhead of calcu-

lating addresses is very considerable. If we can avoid copying the whole image, or even

reducing the padding times, the performance will be more better.

Our approach is to skip the padding process and check if the target pixel is outside the

frame. If it is, then we use the value of the edge pixel to do motion compensation. Take

Figure 5.3 as an example. If the target pixel is at one of the positions marked a’, we use

the value of position a. Similar is the case for b’ and b, h’ and h, etc. Hence, we can to-

tally skip the padding operation at the cost of some computations in block compensation.

Finally, the flow of motion compensation becomes as shown in Figure 5.4.

Experiment Results

Based on the above analysis, we know that both interpolation and padding are time-critical

processes because they are pixel-by-pixel operations. Their execution times for each P-

frame decoding and storage requirements are shown in Table 5.7. For optimization, we

62

Figure 5.2: Modified flow of motion compensation with optimized interpolation.

Table 5.7: Execution Time and Storage Requirement of Image Interpolation and Padding

on ARM9

Operation Time (cycles) Storage (bytes)

Interpolation 1,184,399 146,432

Padding 1,534,275 36,608

Total 2,718,674 183,040

alter the decoding flow to be as in Figure 5.4 and further optimize our code using the

following methods:

� take the computations out of the loops as much as possible, and

� changing division operations into shift operations.

Note that the methods listed above are common optimization methods for program-

ming. They are good for our design because the loops of interpolation and padding are

large in number of cycles. Take Figure 5.5 as an example. This is a double for-loop and

the pixels in the vertical direction need to be padded. We can see that the computations

63

Figure 5.3: Example of padding in the upper-left corner of a frame.

for the variable “destination” is out of the second loop and thus we can save some compu-

tations. In other words, if the computations for the variable “destination” is in the second

loop, the same computations will be done 8 times. Moreover, the interpolation is done by

a shift operation instead of dividing by 2.

With our approach, the execution times of interpolation and padding are reduced, and

the storage requirements are totaly saved. Meanwhile, the time for calculating addresses

is also reduced because the size of the previous frame is the same as that of the current

frame. Therefore, the result of address calculation (partly) can be applied to both frames.

The simulation results are listed in Table 5.8 and we can find that the speedup is very

significant. Furthermore, the speedup of grandmother qcif is more than other sequences.

The reason why the speedup of different sequences is different is that their motion vectors

are quite different in type. In grandmother qcif, there is no motion vector which points

outside the frame, and the motion of the sequence is relatively little that the number of

fractional motion vectors is fewer. In conclusion, the speedup by the proposed method is

also related to the characteristics of the test sequence. For further optimization, we focus

on the modes of motion compensation and discuss our approach in the next section.

64

Figure 5.4: Modified flow of motion compensation with optimized padding.

Table 5.8: Execution Time of P-Frame Decoding on ARM9 After Modification of Inter-

polation and Padding

Test Seqs. Execution Time (cycles)

(QCIF) Original Optimized Speedup (%)

grandmother 12,428,187 5,760,143 53.65

stefan 19,004,118 12,528,558 34.07

foreman 16,360,197 9,829,931 39.92

5.1.4 Optimization for Motion Compensation

Analysis of MB

Each macroblock (MB) in a frame has a compensation mode, which can be SKIPPED,

INTER16, or INTER8. Their details are as follows:

� SKIPPED mode: The motion vector is (0,0) for the macroblock. We only take the

macroblock in the same position in the previous frame as the reference block.

� INTER16 mode: The motion vector is not (0,0) for the macroblock. We obtain the

reference block according to the motion vector.

65

Figure 5.5: Example code of interpolation and padding.

� INTER8 mode: There are 4 motion vectors, one for each
� � �

block in the mac-

roblock. We compensate the 4 blocks according to their motion vectors.

In the MoMuSys code, whatever the mode is, the computation is done according to

what is needed for the INTER8 mode for regularity and simplicity. That is, we always

compensate the 4 blocks in the macroblock according to their motion vectors, which may

be (0,0) for SKIPPED mode. However, this consumes many cycles in calculating the

addresses and the loop overhead is that for 4 double for-loops.

Mode Splitting and Experiment Results

Our approach is to optimize each mode for motion compensation and do compensation

according to the mode. Meanwhile, common optimization methods, such as loop un-

rolling, are also applied. Take Figure 5.6 as an example of SKIPPED mode. The inner

loop of the double for-loop is unrolled and hence the loop overhead is reduced. We can

see that the code of dealing SKIPPED mode is very simple. If we use INTER8 mode to

handle the MB in SKIPPED mode, the time we spend will be much.

Checking the modes and larger code size are small overheads and finally we will get

66

better performance from the optimization. The simulation result is shown in Table 5.9

and we can find that there is again a higher speedup in grandmother qcif. The reason for

the phenomenon is that the more blocks in skipped mode, the better performance from

this approach.

In conclusion, we have optimized the algorithm of interpolation, padding, and motion

compensation. For further optimization, we should employ architectural features on our

design and we discuss the methods in the next section.

5.2 Assembly/Architecture Level Optimization

5.2.1 Loop Overhead Reduction

The assembly code generated by the compiler of ADS is inefficient for for-loops. Figure

5.7 shows an example code generated by the compiler. We can find that there are many

branch instructions in the loop. However, there may be only one operation in the loop,

such as ADD or MUL. The overhead is so large that we have to optimize the overhead of

for-loops when we write the assembly code.

Instinctively, we write the program as Figure 5.8 shows. We use CMP instruction

to test the termination condition of the loop. That is, the flags in the condition register

(CPSR) will be set after CMP instruction and we use BGE instruction to do branch opera-

tion when the value in the register is greater than or equal to the constant value. However,

Table 5.9: Execution Time of P-Frame Decoding after Optimization of Motion Compen-

sation on ARM9

Test Seqs. Execution Time (cycles)

(QCIF) Original Optimized Speedup (%)

grandmother 5,760,143 5,281,289 8.31

stefan 12,528,558 12,486,879 0.33

foreman 9,829,931 9,800,037 0.30

67

Figure 5.6: Example code of mode splitting.

there are 4 instructions in the loop and the overhead is also large.

After many attempts to reduce the loop overhead, we employ the instruction SUBS

whose function is to compare the value of destination register with zero after subtraction.

Figure 5.9 shows an example optimized code in our approach. In order to employ SUBS,

we should always write count-down-to-zero loops and use simple termination conditions.

By using conditional execution, the CMP instructions can be avoided when exiting loops.

For loops where the loop count is large, reduction of even one instruction in the loop is a

big advantage.

Finally, we can find that there are only 2 loop control instructions in the loop and the

original ADD/CMP instruction pair are replaced by a single SUBS instruction.

68

Figure 5.7: Assembly code for for-loops generated by the compiler of ADS.

Figure 5.8: Our initial assembly code for for-loops.

5.2.2 Conditional Execution of Instructions

Conditional execution is an important feature of the ARM processor. In the above dis-

cussion, we have realized the advantage of using conditional execution to reduce the loop

overhead. Moreover, conditional executions can be employed in many places, such as

zero-checking of input or saturation.

Conditional Execution for Zero-Checking

In some operations like dequantization and IDCT, there are many multiplications inside.

It is essential to reduce the usage of multiplications because it takes 3 cycles to perform

a multiplication. In architecture level, our solution is to employ conditional execution to

Figure 5.9: Optimized assembly code for for-loops.

69

check the value of the input. If the input is zero, we can skip the multiplication because

the result of multiplication must be zero. Take Figure 5.10 as an example, if the result of

addition or substraction is zero, the multiplication followed will be skipped and it takes

one cycle only.

This example is an ideal case. However, the common case is that there is no addition

or substraction before multiplication and we have to use CMP instruction to set the flag.

When the input is not zero, the CMP instruction would be redundant and consume one

cycle. Consequently, the time we saved becomes one cycle from two cycles. So, the

performance is better only when the probability of zero-input is more than 50%.

Conditional Execution for Saturation

Referring to Figure 4.1, when we do VOP reconstruction, we need to add the compensated

image and the residual. However, saturation between 0 and 255 is essential after the

addition. Usually, the saturation can be done using 4 instructions, two CMP and two

MOV(cond). In consideration of the addition, we can still use 4 instructions as Figrue

5.11 shows. The ADDS in this example is to do addition and to compare the destination

register with zero. Then we can save one CMP operation in the code. Because VOP

reconstruction is a pixel-by-pixel operation, we save one CMP operation for every pixel.

That is, we save
��� � � � � �

cycles for every P-frame. However, the real condition of VOP

reconstruction is more complicated and we will discuss it in the next section.

5.2.3 Reduction of Memory Accesses using LDM and STM

In ARM processor, there are two powerful instructions for memory access, LDM and

STM. The LDM instruction is used to load multiple words from increasing or decreasing

Figure 5.10: Example of zero-checking.

70

Figure 5.11: Saturation using conditional execution.

addresses into different registers and the STM instruction will store multiple data words

in increasing or decreasing memory addresses. Usually, we use STM in the beginning of

a function to push the register values into the stack and use LDM at the end of function to

pop them.

We employ LDM and STM to load and store the input and the output, respectively.

Similar to loop-unrolling, we make the 15 general purpose registers fully used and mean-

while the loop count is reduced. Furthermore, the greatest benefit from LDM and STM is

that memory accesses and the calculations for address are much reduced. In the following

discussion, the optimization for some functions will be introduced.

Using LDM and STM to Optimize VOP Reconstruction

For VOP reconstruction, we need to add the motion-compensated image and the residual.

There are some conditions that we should take into account:

� The data type of the compensated image and the residual is 16-bit signed integer.

� The value of each pixel in the compensated image is among [0..255].

� The value of each pixel in the residual is among [-256..255].

� Allowing for program counter, stack pointer, loop counter and two input registers,

we can use 11 general purpose registers.

Considering that the data type is short integer, if we use LDRSH instruction to load

every short integer coefficient, the overhead will be very large because it takes 3 cycles

to perform LDRSH. In our approach, LDM/STM is employed and the value in each reg-

ister after using LDM will contain two coefficients. The higher halfword and the lower

halfword contains a coefficient each. Unfortunately, the pixel value of the residual maybe

71

a negative number and hence we cannot add two registers directly. For example, if we

add “0x00330033” and “0x00010001,” the result would be “0x00340034” and we can

store the correct value into the memory directly. However, if the second value contains a

negative number and becomes “0x0001FFFF”, the lower halfword will overflow after the

addition and impact the value of the higher halfword.

In consideration of all conditions, we separate the additions for higher halfwords and

lower halfwords. That is, we use shift operation to take out the halfwords we want. After

addition and saturation, we pack the results, two halfwords, into a word and store them

into the memory. Fortunately, there is a barrel shifter in front of the ALU of the ARM

processor. Then, we can shift the second source register in the assembly instructions

without any overhead.

The assembly code of VOP reconstruction, named AddClipImage, is given in Ap-

pendix A. We handle 8 pixels at the same time in a loop with the aid of LDM and STM

instructions. The acceleration of VOP reconstruction is shown in Table 5.10.

Using LDM and STM to Optimize Regular Functions

For some regular functions, there are no calculations done on the input coefficients, but

their functions are initializing an array or copying an array to another array, etc. In the

following, our approach for these functions is introduced. The optimized assembly code

are all given in the Appendix A.

� Bzero and MBzero

For some block-by-block operations, the array which contains the information must

be initialized before the operation for the next block. We use the two functions,

Bzero and MBzero, to fill the input array with zeros. Our optimization method is

that we fill the registers with zeros and repeatedly use STMIA to store the zeros.

Since the memory address would be auto-increased when using STMIA, we can

save much time for calculating the address.

� MB clip

72

At the end of intra frames decoding, each decoded block will be saturated. Each

pixel in the block will be saturated to [0..255]. We use MB clip to do saturation.

Combining the method of conditional execution and the method of LDM/STM, we

get better performance in saturating the blocks.

� PutBlock

In texture decoding process, each macroblock is split into 6 blocks, i.e., 4 luminance

blocks and 2 chrominance blocks. At the end of texture decoding, we use PutBlock

to pack the 6 blocks to a macroblock. This function checks the position of each

block and puts them into a macroblock. Our optimizing method is that we load and

store 8 coefficients at one time in the loop. After the loop is repeated 8 times, the

operation is done.

� CopyImageI

When a frame is decoded, it is essential to save the current frame in the memory,

which will be the source frame in motion compensation for the next frame. We

use the function CopyImageI to achieve the goal. Since there is no mathematical

calculation in the function, we repeatedly use LDMIA and STMIA to make each

register fully used.

The simulation results of the functions above will be shown in the next section.

5.2.4 Experiment Results of Assembly/Architecture Level Optimiza-

tion So Far

Table 5.10 shows the acceleration of the optimized functions. The frame size is QCIF for

VOP reconstruction and CopyImageI, and the compiler is in release mode (-O3). We can

find that the execution time for the functions is saved by more than 60%. Consequently,

even compared with fully optimized compiler, the performance of regular functions can

be highly improved in the assembly/architecture level. Moreover, some simple functions

like Bzero which are called many times and consumes much power in the decoder should

be optimized in architecture level as much as we can.

73

The speedup after optimizing VOP reconstruction is shown in Table 5.11. We can

easily find that the time we save is the same for each sequence. The reason of this phe-

nomenon is that VOP reconstruction is done once for every P-frame. So, the kind of

optimization is unrelated with the characteristics of the test sequences.

Table 5.12 shows the simulation result after the regular functions are optimized. Note

that we do the initialization in intra frame decoding, and we discard the time for initializa-

tion in P-frame decoding. As a result of the initialization, the speedup for intra frame is

higher. Moreover, we can find that the percentage of speedup is significant because these

functions are called many times in the decoding. Due to the regularities of the functions,

the time we save for the test sequences are quite close. In conclusion, the optimization in

architecture level is very important for the functions which contain large loops.

5.2.5 Optimization of IDCT

Studies of Efficient IDCT

In the past, there have been many methods developed for the fast computation of 2-D

IDCT. The conventional approach is the row-column method, which requires 16 1-D ID-

CTs for the computation of an 8 � 8 IDCT [17]. Many fast algorithms for 2-D IDCT

have been proposed, and one of them reduces the required 1-D IDCTs from 16 to 8 [17].

However, since the number of required registers is very big in this algorithm, it is not

appropriate for implementation on ARM, which only has 15 general purpose registers.

For 1-D IDCT, we have to employ an efficient algorithm to implement it because

the computational complexity of 1-D IDCT is very high. Furthermore, in the statistics

shown before, the IDCT consumes considerable time in the total execution time. Since the

computational complexity of direct implementation is very high, many fast algorithms for

1-D IDCT have been developed. Similar to the derivation from discrete Fourier transform

(DFT) to fast Fourier transform (FFT), a fast cosine transform (FCT) is proposed in [18].

The computational complexity is compared in Table 5.13. Note that the computational

complexity shown in the table is estimated for floating-point computation.

The ARM processor is a fixed-point processor. However, the transform coefficients

74

Table 5.10: Execution Time of Functions Optimized in Assembly/Architecture Level

Execution Time (cycles)

Function Original Optimized Speedup (%)

VOP reconstruction 913,386 304,238 66.69

Bzero 391 111 71.61

MBzero 2,177 559 74.32

MB clip 6,034 2081 65.51

PutBlock 594 209 64.81

CopyImageI 177,531 29,986 83.11

Table 5.11: Execution Time of P-Frame Decoding after Optimization of VOP Reconstruc-

tion on ARM9

Test Seqs. Execution Time (cycles)

(QCIF) Original Optimized Speedup (cycles) Speedup (%)

grandmother 5,281,289 4,672,140 609,149 11.53

stefan 12,486,879 11,877,730 609,149 4.88

foreman 9,800,037 9,190,888 609,149 6.22

used in [18] are cosine values. With the limited precision of fixed-point computation, the

error will increase but we will get higher speed. Table 5.14 shows the cycles of floating-

point and fixed-point 1-D IDCT using ADS compiler in release mode, and we can see that

the time consumed by floating-point 1-D IDCT is much larger than the time consumed by

fixed-point 1-D IDCT.

75

Table 5.12: Improvement after Optimization for Regular Functions

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original Optimized % Original Optimized %

grandmother 13,349,972 10,515,382 21.23 4,672,140 3,861,477 17.35

stefan 17,407,585 14,608,605 16.08 11,877,730 10,797,637 9.09

foreman 13,837,714 11,016,629 20.39 9,190,888 8,079,428 12.09

Table 5.13: Comparison of Computational Complexity for 8-point IDCT

Direct Form FCT [18] MoMuSys Even Odd FCT [19]

Multiplications 64 12 16 20

Additions 56 29 26 28

Implementation of IDCT on ARM9

The DCT and IDCT in MPEG-4 are defined as

� �KM��RQT��� ���� �8M � � �KQ1�
��� &�
$	� #

�
� &�
%�� # @��K���Y�'������

���A��N � � M��
� � ����� ����� N

� � Q��
� � � (5.1)

@��K���Y�'�#� ��
�
� &�
) � #

�
� &�
+ � # � �KMJ� � �KQT�

� �8M��RQT������ ���A��N
� � M��

� � ����� ����� N
� � Q��

� � � (5.2)

Table 5.14: Cycles of Floating-Point and Fixed-Point 1-D IDCT Using ADS Compiler in

Release Mode

Operation Cycles

Floating-point 1-D IDCT 47,547

Fixed-point 1-D IDCT 3,017

76

where M��RQ?�Y���R� ���1� � ���T�X(X(W(\� � , �
, and

� �KMJ��� � �8QT�#�
��� ��

&� ' � for M��RQ����1�
� � otherwise.

Figure 5.12 shows the signal flow of the 1-D fixed-point IDCT algorithm used in Mo-

MuSys. However, we can find that odd-indexed coefficients are rounded twice and each

rounding introduces corresponding error. Figure 5.13 shows the signal flow of the even-

odd decomposition algorithm, which provides a more accurate result because there is

only one rounding operation for each coefficient. However, the even-odd decomposition

algorithm contains more multiplications and each multiplication consumes 3 clockticks

on ARM9. In consideration of the computational speed, we choose the 1-D IDCT algo-

rithm of Figure 5.12. Compared with the original code of MoMuSys, the algorithm is

not changed much but we use fixed-point computation and all architectural optimization

methods to get higher computational speed. Our assembly code for IDCT is shown in

Appendix A.

Based on the algorithm above and the optimization in architecture level, our IDCT

takes 2,240 cycles to run once and the simulation result is shown in Table 5.15. Since

IDCT is a time-critical function in decoding, the improvement of the function results in

significant speedup of the total execution time.

Table 5.15: Improvement after Optimization of IDCT

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original Optimized % Original Optimized %

grandmother 10,515,382 9,249,078 12.04 3,861,477 3,517,510 8.91

stefan 14,608,605 12,955,380 11.32 10,797,637 9,561,428 11.45

foreman 11,016,629 9,590,896 12.94 8,079,428 7,152,338 11.47

77

Figure 5.12: The IDCT algorithm used in MoMuSys [15].

5.3 Conclusion on Optimization

5.3.1 Overall Improvement after Optimization

In this chapter, we improved at both the algorithmic and the architecture levels. We

first focused on algorithmic optimization and modified the decoding flow for the null

texture or null residual blocks. Moreover, the processes of interpolation, padding, and

motion compensation were optimized. After algorithmic optimization, we employed the

architecture features, such as conditional execution, LDM/STM, and IDCT, to optimize

the functions with large loops. The simulation results before and after optimization are

listed in Table 5.16. We can see that there are about 30% speedup in intra decoding and

more than 50% in P-frame decoding. Since the decoder is not optimized entirely, there

are still some parts where we can optimize and we will do further analysis in the next

78

Figure 5.13: The even-odd decomposition IDCT algorithm [20].

section.

5.3.2 Profile Using the Profiler of ADS after Optimization

The analysis after optimization for each test sequence is shown in Table 5.17 and Table

5.18. Table 5.17 summarizes the profile of one intra frame decoding and Table 5.18 gives

the average profile for 89 P-frames decoding. Note that:

� the profiles both exclude writing output files,

Table 5.16: Overall Improvement after Optimization

Test Seqs. I-Frames (Cycles) P-Frames (Cycles)

(QCIF) Original Optimized % Original Optimized %

grandmother 15,016,953 9,249,078 38.41 18,600,472 3,517,510 81.09

stefan 18,314,760 12,955,380 29.26 20,837,319 9,561,428 54.11

foreman 15,199,897 9,590,896 36.90 19,114,456 7,152,338 62.58

79

� the items are named according to Figure 4.1,

� the cycles are calculated from the percentages which are only approximate numbers,

� there is no VOP reconstruction in intra frame decoding,

� the inverse scan has been included in DC/AC prediction in intra frame decoding,

� there is no DC/AC prediction in P-frame decoding, and

� the item “Others” mainly includes the initialization and some operations like clip-

ping, putting an MB into a frame, putting zeros into an MB, or copying an array to

another array.

In Table 5.17, we note that the test sequence, stefan qcif, takes the most execution

time among the three sequences. Unlike other test sequences, stefan qcif has more rough

regions which result in lower accuracy of intra prediction. Consequently, the bitstream

size of stefan qcif is bigger with more texture information and the decoding time becomes

longer.

The code size after optimization is 117.75 KB, and the data memory size (Read-Only,

Read-Write, and Zero-Initial data) is 110.06 KB. The program and data memory are saved

more after optimization.

Since we have not optimized the processes of bitstream access, VLD, DC/AC predic-

tion, and inverse quantization, we use the original code of MoMuSys to perform these

processes in intra frame decoding. However, the execution time of the non-optimized

codes occupies more than 50% of the total execution time. Finally, the performance in

intra frame decoding is not good enough. We will discuss the reason in the next chapter.

In Table 5.18, we notice that the test sequence, stefan qcif, again takes the most exe-

cution time. Due to the moving camera, there are many motion vectors for one P-frame

and it results in much bitstream accessing time and decoding time. However, the execu-

tion time of motion compensation of foreman qcif is more than stefan qcif. The reason is

that foreman qcif contains more fractional motion vectors than stefan qcif contains (refer

to Table 5.6).

80

Table 5.17: Profile of Intra Frame Decoding after Optimization

grandmother qcif stefan qcif foreman qcif

Function Name Cycles % Cycles % Cycles %

Bitstream Access 1,426,208 15.42 2,776,338 21.43 1,547,012 16.13

VLD 1,008,150 10.9 2,273,669 17.55 1,057,876 11.03

DC/AC Prediction 1,571,418 16.99 1,601,285 12.36 1,491,384 15.55

Inverse Quantization 935,082 10.11 1,381,044 10.66 1,016,635 10.6

IDCT 842,591 9.11 1,156,915 8.93 981,149 10.23

Others 3,465,630 37.47 3,766,129 29.07 3,496,841 36.46

Total 9,249,078 100 12,955,380 100 9,590,896 100

Since we have not optimized the processes of bitstream access, VLD, inverse scan,

inverse quantization, and motion decoding, we use the original code of MoMuSys to per-

form these processes in P-frame decoding. However, 20% to 30% of the total execution

time is consumed by the non-optimized processes. If we optimize the operations men-

tioned above, the speedup may be about 15%. Moreover, the item “Others” contains

some regular functions which are not optimized. In case the whole decoder is optimized,

the speedup can reach 50% possibly. In conclusion, we can have much better performance

by optimizing the non-optimized parts of the decoder.

5.4 Comparison with Other Implementations

Since the MPEG-4 standard has been issued for several years, there are a few reports of

implementations on other platforms. We compare our implementation with other imple-

mentations. The numerical comparison is listed in Table 5.19. Note that our data in the

table comes from the average of 90 frames decoding in the best case.

Our main target for comparison is the implementation on ARM7TDMI [23]. Since

the differences between ARM7TDMI and ARM9 are architecture and pipeline stages,

81

Table 5.18: Profile of P-Frame Decoding after Optimization

grandmother qcif stefan qcif foreman qcif

Function Name Cycles % Cycles % Cycles %

Bitstream Access 148,791 4.23 1,220,994 12.77 454,889 6.36

VLD 100,953 2.87 1,008,731 10.55 334,014 4.67

Inverse Scan 155,474 4.42 531,615 5.56 399,100 5.58

Inverse Quantization 239,542 6.81 939,888 9.83 627,975 8.78

IDCT 263,110 7.48 899,730 9.41 675,896 9.45

Motion Decoding 17,236 0.49 54,500 0.57 58,649 0.82

Motion Compensation 676,769 19.24 1,274,538 13.33 1,397,567 19.54

VOP Reconstruction 215,975 6.14 207,483 2.17 210,279 2.94

Others 1,699,661 48.32 3,423,947 35.81 2,993,969 41.86

Total 3,517,510 100 9,561,428 100 7,152,338 100

the performance of ARM7TDMI processor is a little lower than the ARM9 processor.

However, the performance of the implementation on ARM7TDMI is much better than

other implementations. The possible reason is that the program on ARM7TDMI is fully

optimized and employs the architectural features entirely.

The TriMedia CPU64 DSP, a powerful processor for multimedia applications, is a 5-

issue VLIW processor with 27 function units. Further, 64-bit and SIMD instructions are

supported as well [25]. The 4CIF format is 704 � 576, which is 16 times larger than QCIF.

However, the performance can also be compared with other implementations.

The PACDSP is a developing DSP with 5-issue VLIW architecture and SIMD instruc-

tion set [15]. Two load/store units and two ALU/MAC units can be assessed at the same

time. Although the PACDSP is not issued yet, the performance on PACDSP is competitive

to other platforms.

Although our MPEG-4 video decoder can achieve the goal of real-time implementa-

82

Table 5.19: Performance of MPEG-4 Video Decoder on Different Platforms

Processor Freq. (MHz) fps Profile

TI C6201 [22] 200 28.57 (QCIF) Not mentioned

ARM7TDMI [23] 12 15 (QCIF) Simple profile

Philips TriMedia64 [24] 300 30 (4CIF) Not mentioned

PACDSP [15] 200 97.54 (QCIF) Simple profile

without error resilience

ARM920T (Ours) 200 (I) 21.74 (QCIF) Simple profile

200 (P) 57.14 (QCIF) without error resilience

tion, our design is not fully optimized. If we apply the methods of optimization which we

mentioned before to the whole decoder, we expect that the speedup would be more than

50% compared with the current result.

83

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We considered implementation of real-time MPEG-4 simple profile video decoder on

ARM920T. The work was based on the source MoMuSys, which is a powerful but huge

codec for MPEG-4 encoder and decoder.

Since the profile which the MoMuSys can support is main profile, we first used macros

to reduce the code size for simple profile implementation. Moreover, the usage of memory

is very inefficient because the MoMuSys code is written by many people together. We

removed the memory allocation instructions as more as possible. After the efforts on

reducing code size and memory usage, we reduced about 80% of the original code size.

For implementation, we analyzed the profile of MoMuSys using VTune and the pro-

filer of ADS in chapter 4. Then we got some information about the time-critical processes

in the decoding flow. Furthermore, the low-level computational complexity was analyzed

for the time-critical processes. According to the analysis, we planned some strategies for

optimization.

In chapter 5, the methods for optimization were divide into two categories, algorithmic

and architecture level optimization. We first focused on the algorithmic level for intra

and inter frame decoding. Then we found that IQ and IT can be skipped by checking the

header information of each MB. The computations were saved for the null texture and null

residual blocks. In architecture level optimization, we employed the architectural features,

84

such as conditional execution and LDM/STM to optimize the time-critical functions.

Although our MPEG-4 decoder is not fully optimized, the percentage of speedup for

intra and inter frame decoding have achieved 38% and 81%, respectively in the best case.

Since the frequency of the ARM9 processor is 200 MHz, we have achieved the goal of

real-time implementation. Compared with other implementations, the performance of our

implementation is competitive.

6.2 Future Work

There are several improvements and extensions can be considered in the future:

� Fully optimization

Since the decoder is not fully optimized, there are some processes can be optimized,

such as bitstream access, VLD, inverse scan, inverse quantization, DC/AC predic-

tion, and motion decoding. They may be optimized by employing the methods in

architecture level.

� Combining processes

For reducing load/store, combining IQ and IT have been adopted in many imple-

mentations. The more processes combined, the more time we save for memory

access.

� Dual-core implementation

Several specific DSPs have been developed for multimedia processing. The perfor-

mance of them on some signal processing like IDCT is greater than the performance

of ARM processor. If the time-critical functions can be done by DSPs, the perfor-

mance will be much better.

� Optimization of the MPEG-4 encoder and the main profile decoder

Among the days of our research, we also implement the MPEG-4 encoder and the

main profile decoder from the MoMuSys code without any optimization. Since the

MoMuSys code is very inefficient, there must be a great improvement can be done.

85

Moreover, the optimization methods mentioned in the thesis also can be applied on

them.

86

Bibliography

[1] Mobile Multimedia Systems (MoMuSys) web site, http://www.tnt.uni-

hannover.de/js/project/eu/momusys/

[2] International Committee for Information Technology Standards,

http://www.ncits.org/.

[3] MPEG-4 Video Group, “MPEG-4 overview — (V.21 Jeju version),” Doc. no.

ISO/IEC JTC1/SC29/WG11 N4668, Mar. 2002.

[4] ISO/IEC 14496-2:2001, Information Technology — Coding of Audio-Visual Objects

— Part 2: Visual. July 2001.

[5] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits

Systems Video Tech., vol. 7, no. 1, pp. 19–31, Feb. 1997.

[6] A. Puri and A. Eleftheriadis, “MPEG-4: An object-based multimedia coding stan-

dard supporting mobile applications mobile networks and applications,” Mobile Net-

works Applic., vol. 3, pp. 5–32, 1998.

[7] MPEG-4 Video Group, “MPEG-4 video verification model version 18.0,” Doc. no.

ISO/IEC JTC1/SC29/WG11 N3908, Pisa, Jan. 2001.

[8] A. Ebrahimi and C. Horne, “MPEG-4 natural video coding — an overview,” Signal

Processing Image Commun., vol. 15, pp. 365–385, 2000.

[9] ARM, ARM Architecture Reference Manual. Doc. no. DDI0100E, 2000.

87

[10] Tian-Sheuan Chang, “Lecture 3 — ARM processor architecture,” in Lecture and

lab notes of SoC Design Lab, Dept. of Electronics Engeering, National Chiao Tung

University, 2005.

[11] ARM, ARM Developer Suite Version 1.2 – Developer Guide. Doc. no. DUI0056D,

2001.

[12] ARM document, ARM Developer Suite Version 1.2 – Getting Started. Doc. no.

DUI0064D, 2001.

[13] Meng-Yuan Liu, “Real-time implementation of MPEG-4 video encoder using

SIMD-enhanced Intel processor,” M.S. thesis, Degree Program of Electrical Engi-

neering and Computer Science, National Chiao Tung University, Hsinchu, Taiwan,

R.O.C., July 2004.

[14] Pei-Yun Kuo, “Real-time implementation of MPEG-4 video encoder on digital sig-

nal processors,” M.S. thesis, Department of Electronics Engineering, National Chiao

Tung University, Hsinchu, Taiwan, R.O.C., July 2003.

[15] Chung-Yen Tsai, “Software implementation of MPEG-4 video decoder on PACDSP

platform,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C., July 2006.

[16] Intel, Getting Started With the VTune(TM) Performance Analyzer. 2003.

[17] N. I. Cho and S. U. Lee, “Fast algorithm and implementations of 2-D discrete cosine

transform,” IEEE Trans. Circuit Syst., vol. 38, pp. 297–305, Mar. 1991.

[18] B. G. Lee, “A new algorithm to compute the discrete cosine transform,” IEEE Trans.

Acoust. Speech Signal Processing, vol. 32, no. 6, pp. 1243–1245, Dec. 1984.

[19] C. Y. Hung and P. Landman, “A compact IDCT design for MPEG video decoding,”

in Proc. IEEE Workshop Signal Processing Systems, Nov. 1997.

88

[20] S. Sriram and C. Y. Hung, “MPEG-2 video decoding on the TMS320C6X DSP

architecture,” in IEEE Signal Systems Computer Conf., vol. 2, Nov. 1998, pp. 1735–

1739.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach, 3rd ed. San Francisco: Morgan Kaufmann Publishers, 2003.

[22] N. Ventroux, J. F. Nezan, H. Raulet, and O. Deforges, “Rapid prototyping for an

optimized MPEG-4 decoder implementation over a parallel heterogenous architec-

ture,” in Proc. Int. Conf. Multimedia Expo, vol. 3, July 2003, pp. 417–420.

[23] K. Ramkishor and U. Gunashree, “Real time implementation of MPEG-4 video de-

coder on ARM7TDMI,” in Proc. Int. Symp. Intelligent Multimedia Video Speech

Processing, May 2001, pp. 522–526.

[24] J. H. Kuo, J. L. Wu, J. Shiu, and K. L. Huang, “A low-cost media-processor based

real-time MPEG-4 video decoder,” IEEE Int. Conf. Consumer Electronics, June

2002, pp. 272–273.

[25] J. T. J. VanEijndhoven, et al., ”TriMedia CPU64 architecture,” in IEEE Int. Conf.

Computer Design, 1999

89

Appendix A

Assembly Code of Several Functions for

Optimization

A.1 8 � 8 IDCT
AREA idct8x8, CODE, READONLY

BlockIDCT2 FUNCTION

EXPORT BlockIDCT2

;==

; Horizontal idct

;==

STMFD r13!,{r2-r12,r14}

MOV r12, #7 ;i = 7

ADD r1, r1, #256

loop1

LDR r14, =coeff ;set address of coefficient

;down 4 ; X(1) X(3) X(5) X(7)

ADD r11, r0, r12, LSL #5

LDR r6, [r11, #4] ;tmp[1]

LDR r7, [r11, #12] ;tmp[3]

LDR r8, [r11, #20] ;tmp[5]

LDR r9, [r11, #28] ;tmp[7]

LDMIA r14!, {r10-r11} ;e = tmp[1] * c7 - tmp[7] * c1

MUL r2, r6, r11 ;r10 = c1, r11 = c2

MUL r3, r9, r10

SUB r2, r2, r3

MUL r4, r9, r11 ;h = tmp[7] * c7 + tmp[1] * c1;

MLA r3, r6, r10, r4

LDMIA r14!, {r10-r11} ;f = tmp[5] * c3 - tmp[3] * c5;

MUL r4, r8, r10 ;r10 = c3, r11 = c5

MUL r5, r7, r11

SUB r4, r4, r5

MUL r10, r7, r10 ;g = tmp[3] * c3 + tmp[5] * c5;

90

MLA r5, r8, r11, r10

ADD r6, r2, r4 ;tmp[4] = e + f;

SUB r7, r2, r4 ;tmp1[5] = (e - f+131072)>>18;

ADD r7, r7, #131072

MOV r7, r7, ASR #18

SUB r8, r3, r5 ;tmp1[6] = (h - g+131072)>>18;

ADD r8, r8, #131072

MOV r8, r8, ASR #18

ADD r9, r3, r5 ;tmp[7] = h + g;

LDR r11, [r14], #4 ;tmp[5] = (tmp1[6] - tmp1[5]) * c0;

SUB r10, r8, r7 ;tmp[6] = (tmp1[6] + tmp1[5]) * c0;

ADD r8, r8, r7

MUL r7, r10, r11

MUL r8, r11, r8

;up 4 ; X(0) X(4) X(2) X(6) r2-r5,r10,r11

ADD r11, r0, r12, LSL #5

LDR r2, [r11, #0] ;tmp[0]

LDR r3, [r11, #16] ;tmp[4]

LDR r4, [r11, #8] ;tmp[2]

LDR r5, [r11, #24] ;tmp[6]

LDR r11, [r14], #4 ;tmp1[0] = (tmp[0] + tmp[4]) * c4;

ADD r10, r2, r3 ;tmp1[1] = (tmp[0] - tmp[4]) * c4;

SUB r3, r2, r3 ;r11 = c4

MUL r2, r10, r11

MUL r3, r11, r3

LDMIA r14!, {r10-r11} ;tmp1[2] = tmp[2] * c6 - tmp[6] * c2;

MUL r14, r5, r10 ;tmp1[3] = tmp[6] * c6 + tmp[2] * c2;

MUL r10, r4, r10 ;r10 = c2, r11 = c6

MLA r5, r11, r5, r10

MUL r11, r4, r11

SUB r4, r11, r14

ADD r10, r2, r5 ;tmp[0] = tmp1[0] + tmp1[3];

SUB r5, r2, r5 ;tmp[3] = tmp1[0] - tmp1[3];

MOV r2, r10

ADD r10, r3, r4 ;tmp[1] = tmp1[1] + tmp1[2];

SUB r4, r3, r4 ;tmp[2] = tmp1[1] - tmp1[2];

MOV r3, r10

; block[i][0] = ((tmp[0] + tmp[7])+131072)>>18;

; block[i][7] =((tmp[0] - tmp[7])+131072)>>18;

; block[i][1] = ((tmp[1] + tmp[6])+131072)>>18;

; block[i][6] = ((tmp[1] - tmp[6])+131072)>>18;

; block[i][2] = ((tmp[2] + tmp[5])+131072)>>18;

; block[i][5] = ((tmp[2] - tmp[5])+131072)>>18;

; block[i][3] = ((tmp[3] + tmp[4])+131072)>>18;

; block[i][4] = ((tmp[3] - tmp[4])+131072)>>18;

ADD r10, r2, r9

SUB r11, r2, r9

ADD r2, r10, #131072

ADD r9, r11, #131072

MOV r2, r2, ASR #18

MOV r9, r9, ASR #18

ADD r10, r3, r8

SUB r11, r3, r8

91

ADD r3, r10, #131072

ADD r8, r11, #131072

MOV r3, r3, ASR #18

MOV r8, r8, ASR #18

ADD r10, r4, r7

SUB r11, r4, r7

ADD r4, r10, #131072

ADD r7, r11, #131072

MOV r4, r4, ASR #18

MOV r7, r7, ASR #18

ADD r10, r5, r6

SUB r11, r5, r6

ADD r5, r10, #131072

ADD r6, r11, #131072

MOV r5, r5, ASR #18

MOV r6, r6, ASR #18

STMDB r1!, {r2-r9} ;from the end of block

SUBS r12,r12,#1 ;i--

BGE loop1

;===

; Vertical idct

;

; r0 is useless here, so we get one more register to use

;===

Vertical

MOV r12, #7 ;i = 7

loop2

LDR r14, =coeff ;set address of coefficient

;down 4 ; X(1) X(3) X(5) X(7)

ADD r11, r1, r12, LSL #2 ;use r1, the result of Horizontal

LDR r6, [r11, #32] ;tmp[1]

LDR r7, [r11, #96] ;tmp[3]

LDR r8, [r11, #160] ;tmp[5]

LDR r9, [r11, #224] ;tmp[7]

LDMIA r14!, {r10-r11} ;e = tmp[1] * c7 - tmp[7] * c1;

MUL r2, r6, r11 ;r10 = c1, r11 = c7

MUL r3, r9, r10

SUB r2, r2, r3

MUL r4, r9, r11 ;h = tmp[7] * c7 + tmp[1] * c1;

MLA r3, r6, r10, r4

LDMIA r14!, {r10-r11} ;f = tmp[5] * c3 - tmp[3] * c5;

MUL r4, r8, r10 ;r10 = c3, r11 = c5

MUL r5, r7, r11

SUB r4, r4, r5

MUL r10, r7, r10 ;g = tmp[3] * c3 + tmp[5] * c5;

MLA r5, r8, r11, r10

ADD r6, r2, r4 ;tmp[4] = e + f;

SUB r7, r2, r4 ;tmp1[5] = (e - f+131072)>>18;

ADD r7, r7, #131072

92

MOV r7, r7, ASR #18

SUB r8, r3, r5 ;tmp1[6] = (h - g+131072)>>18;

ADD r8, r8, #131072

MOV r8, r8, ASR #18

ADD r9, r3, r5 ;tmp[7] = h + g;

LDR r11, [r14], #4 ;tmp[5] = (tmp1[6] - tmp1[5]) * c0;

SUB r10, r8, r7 ;tmp[6] = (tmp1[6] + tmp1[5]) * c0;

ADD r8, r8, r7 ;r11 = c0

MUL r7, r10, r11

MUL r8, r11, r8

;up 4 ; X(0) X(4) X(2) X(6) r2-r5,r10,r11

ADD r11, r1, r12, LSL #2 ;use r1, the result of Horizontal

LDR r2, [r11, #0] ;tmp[0]

LDR r3, [r11, #128] ;tmp[4]

LDR r4, [r11, #64] ;tmp[2]

LDR r5, [r11, #192] ;tmp[6]

LDR r11, [r14], #4 ;tmp1[0] = (tmp[0] + tmp[4]) * c4;

ADD r10, r2, r3 ;tmp1[1] = (tmp[0] - tmp[4]) * c4;

SUB r3, r2, r3 ;r11 = c4

MUL r2, r10, r11

MUL r3, r11, r3

LDMIA r14!, {r10-r11} ;tmp1[2] = tmp[2] * c6 - tmp[6] * c2;

MUL r0, r5, r10 ;tmp1[3] = tmp[6] * c6 + tmp[2] * c2;

MUL r10, r4, r10 ;r10 = c2, r11 = c6

MLA r5, r11, r5, r10

MUL r11, r4, r11

SUB r4, r11, r0

ADD r10, r2, r5 ;tmp[0] = tmp1[0] + tmp1[3];

SUB r5, r2, r5 ;tmp[3] = tmp1[0] - tmp1[3];

MOV r2, r10

ADD r10, r3, r4 ;tmp[1] = tmp1[1] + tmp1[2];

SUB r4, r3, r4 ;tmp[2] = tmp1[1] - tmp1[2];

MOV r3, r10

; block[i][0] = ((tmp[0] + tmp[7])+131072)>>18;

; block[i][7] = ((tmp[0] - tmp[7])+131072)>>18;

; block[i][1] = ((tmp[1] + tmp[6])+131072)>>18;

; block[i][6] = ((tmp[1] - tmp[6])+131072)>>18;

; block[i][2] = ((tmp[2] + tmp[5])+131072)>>18;

; block[i][5] = ((tmp[2] - tmp[5])+131072)>>18;

; block[i][3] = ((tmp[3] + tmp[4])+131072)>>18;

; block[i][4] = ((tmp[3] - tmp[4])+131072)>>18;

ADD r10, r2, r9

SUB r11, r2, r9

ADD r2, r10, #131072

ADD r9, r11, #131072

MOV r2, r2, ASR #18

MOV r9, r9, ASR #18

ADD r10, r3, r8

SUB r11, r3, r8

ADD r3, r10, #131072

ADD r8, r11, #131072

MOV r3, r3, ASR #18

93

MOV r8, r8, ASR #18

ADD r10, r4, r7

SUB r11, r4, r7

ADD r4, r10, #131072

ADD r7, r11, #131072

MOV r4, r4, ASR #18

MOV r7, r7, ASR #18

ADD r10, r5, r6

SUB r11, r5, r6

ADD r5, r10, #131072

ADD r6, r11, #131072

MOV r5, r5, ASR #18

MOV r6, r6, ASR #18

ADD r11, r1, r12, LSL #2 ;address

STR r2, [r11, #0]

STR r9, [r11, #224]

STR r3, [r11, #32]

STR r8, [r11, #192]

STR r4, [r11, #64]

STR r7, [r11, #160]

STR r5, [r11, #96]

STR r6, [r11, #128]

SUBS r12, r12, #1 ; i--

BGE loop2

Exit

LDMFD r13!, {r2-r12,r14}

MOV pc, lr

ENDFUNC

AREA idct_coeff, DATA, READONLY

; c1 c7 c3 c5 c0 c4 c2 c6

coeff DCD 128553, 25571, 108982, 72820, 185364, 92682, 121095, 50159

A.2 VOP Reconstruction
AREA AddClipImage_code, CODE, READONLY

AddClipImage FUNCTION

EXPORT AddClipImage

STMFD r13!,{r3-r12,r14}

MOV r12, r2 ; loop counter

loop

LDMIA r0!,{r2-r5}

LDMIA r1!,{r6-r9}

; first argument

MOV r10,r2, LSL #16 ; lower part move to higher part (for sign extension)

AND r11,r6,#0x000000FF ; save lower part of compensated frame

ADDS r14,r11,r10, ASR #16 ; ADD the first argument and compare with 0

MOVLT r14, #0 ; Sat. to 0

CMPGT r14, #255 ; Check >255

94

MOVGT r14, #255 ; Sat. to 255

; second argument

MOV r10,r2, ASR #16 ; higher part move to lower part (for add)

ADDS r11,r10,r6, LSR #16 ; ADD the second argument and compare with 0

MOVLT r11, #0 ; Sat. to 0

CMPGT r11, #255 ; Check >255

MOVGT r11, #255 ; Sat. to 255

ORR r2,r14,r11, LSL #16 ; pack the first and second argument

; 3rd argument

MOV r10,r3, LSL #16 ; lower part move to higher part (for sign extension)

AND r11,r7,#0x000000FF ; save lower part of compensated frame

ADDS r14,r11,r10, ASR #16 ; ADD the 3rd argument and compare with 0

MOVLT r14, #0 ; Sat. to 0

CMPGT r14, #255 ; Check >255

MOVGT r14, #255 ; Sat. to 255

; 4th argument

MOV r10,r3, ASR #16 ; higher part move to lower part (for add)

ADDS r11,r10,r7, LSR #16 ; ADD the 4th argument and compare with 0

MOVLT r11, #0 ; Sat. to 0

CMPGT r11, #255 ; Check >255

MOVGT r11, #255 ; Sat. to 255

ORR r3,r14,r11, LSL #16 ; pack the 3rd and 4th argument

; 5th argument

MOV r10,r4, LSL #16 ; lower part move to higher part (for sign extension)

AND r11,r8,#0x000000FF ; save lower part of compensated frame

ADDS r14,r11,r10, ASR #16 ; ADD the 5th argument and compare with 0

MOVLT r14, #0 ; Sat. to 0

CMPGT r14, #255 ; Check >255

MOVGT r14, #255 ; Sat. to 255

; 6th argument

MOV r10,r4, ASR #16 ; higher part move to lower part (for add)

ADDS r11,r10,r8, LSR #16 ; ADD the 6th argument and compare with 0

MOVLT r11, #0 ; Sat. to 0

CMPGT r11, #255 ; Check >255

MOVGT r11, #255 ; Sat. to 255

ORR r4,r14,r11, LSL #16 ; pack the 5th and 6th argument

; 7th argument

MOV r10,r5, LSL #16 ; lower part move to higher part (for sign extension)

AND r11,r9,#0x000000FF ; save lower part of compensated frame

ADDS r14,r11,r10, ASR #16 ; ADD the 7th argument and compare with 0

MOVLT r14, #0 ; Sat. to 0

CMPGT r14, #255 ; Check >255

MOVGT r14, #255 ; Sat. to 255

; 8th argument

MOV r10,r5, ASR #16 ; higher part move to lower part (for add)

ADDS r11,r10,r9, LSR #16 ; ADD the 8th argument and compare with 0

MOVLT r11, #0 ; Sat. to 0

CMPGT r11, #255 ; Check >255

95

MOVGT r11, #255 ; Sat. to 255

ORR r5,r14,r11, LSL #16 ; pack the 7th and 8th argument

STMDB r0,{r2-r5} ; store the 8 arguments

SUBS r12, r12, #1 ; i--

BNE loop ; i>0

Exit

LDMFD r13!,{r3-r12,pc}

ENDFUNC

A.3 Other Regular Functions

A.3.1 CopyImageI
CopyImage2 FUNCTION

EXPORT CopyImage2

STMFD r13!,{r3-r12,r14}

MOV r14, r2 ; loop counter

loop2

LDMIA r0!,{r2-r12} ; load 11 coefficients

STMIA r1!,{r2-r12} ; store 11 coefficients

SUBS r14, r14, #1 ; i--

BNE loop2 ; i>0

Exit2

LDMFD r13!,{r3-r12,pc}

ENDFUNC

A.3.2 Bzero

Bzero FUNCTION

EXPORT Bzero

STMFD r13!,{r1-r12,r14}

MOV r1, #0

MOV r2, #0

MOV r3, #0

MOV r4, #0

MOV r5, #0

MOV r6, #0

MOV r7, #0

MOV r8, #0

MOV r9, #0

MOV r10, #0

MOV r11, #0

MOV r12, #0

MOV r14, #0

STMIA r0!,{r1-r12, r14} ;store 64 zeros

STMIA r0!,{r1-r12, r14}

STMIA r0!,{r1-r12, r14}

STMIA r0!,{r1-r12, r14}

STMIA r0!,{r1-r12}

96

LDMFD r13!,{r1-r12,pc}

ENDFUNC

A.3.3 Putblock
PutBlock FUNCTION ;position of blocks in a MB (comp)

EXPORT PutBlock ; Y: 1 2 U: 5 V: 6

; 3 4

STMFD r13!,{r3-r12,r14}

MOV r12, #8 ; loop counter

CMP r0, #4

BEQ PutV

BGT PutU

; composition = 0˜3

ANDS r3, r0, #1

ADDGT r2, r2, #32

ANDS r3, r0, #2

ADDGT r2, r2, #512

loop_Y

LDMIA r1!, {r3-r10}

STMIA r2!, {r3-r10}

ADD r2, r2, #32 ;next row

SUBS r12, r12, #1

BNE loop_Y

B Exit3

PutU

ADD r2, r2, #1024

loop_U

LDMIA r1!, {r3-r10}

STMIA r2!, {r3-r10}

SUBS r12, r12, #1

BNE loop_U

B Exit3

PutV

ADD r2, r2, #1280

loop_V

LDMIA r1!, {r3-r10}

STMIA r2!, {r3-r10}

SUBS r12, r12, #1

BNE loop_V

Exit3

LDMFD r13!,{r3-r12,pc}

ENDFUNC

A.3.4 MB clip
MB_clip2 FUNCTION ;0˜255

EXPORT MB_clip2

STMFD r13!,{r1-r12,r14}

MOV r14, #32

loop3

97

LDMIA r0!, {r1-r12}

CMP r1, #0

MOVLT r1, #0

CMP r1, #255

MOVGT r1, #255

CMP r2, #0

MOVLT r2, #0

CMP r2, #255

MOVGT r2, #255

CMP r3, #0

MOVLT r3, #0

CMP r3, #255

MOVGT r3, #255

CMP r4, #0

MOVLT r4, #0

CMP r4, #255

MOVGT r4, #255

CMP r5, #0

MOVLT r5, #0

CMP r5, #255

MOVGT r5, #255

CMP r6, #0

MOVLT r6, #0

CMP r6, #255

MOVGT r6, #255

CMP r7, #0

MOVLT r7, #0

CMP r7, #255

MOVGT r7, #255

CMP r8, #0

MOVLT r8, #0

CMP r8, #255

MOVGT r8, #255

CMP r9, #0

MOVLT r9, #0

CMP r9, #255

MOVGT r9, #255

CMP r10, #0

MOVLT r10, #0

CMP r10, #255

MOVGT r10, #255

CMP r11, #0

MOVLT r11, #0

CMP r11, #255

MOVGT r11, #255

CMP r12, #0

MOVLT r12, #0

CMP r12, #255

MOVGT r12, #255

SUBS r14, r14, #1

BNE loop3

LDMFD r13!,{r1-r12,pc}

ENDFUNC

98

自傳

吳和璋，男，民國七十一年四月二十一日出生於台灣省台北縣，高中就讀

於國立臺灣師範大學附屬高級中學，民國九十三年六月畢業於交通大學電子工程

學系，並於同年九月進入交通大學電子工程研究所碩士班就讀，於民國九十五年

九月取得碩士學位，論文題目為：『使用 ARM9 處理器實現 MPEG-4 視訊之軟體解

碼』，研究範圍與興趣為：ARM 處理器與 DSP 上之系統整合與軟體開發，主要應

用範圍在多媒體訊號處理與壓縮方面。

