High-Speed Area-Minimized Reconfigurable
Adder Design

BEE BB 2T EEE BR
High-Speed Area-Minimized Reconfigurable
Adder Design

Boyod L iEmE Student: Yi-Zeng Fong
R e kE B4 Advisor: Dr. Juinn-Dar Huang
Rzl + g

T EgkR A
AR

%

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical & Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering & Institute of Electronics

July 2006

Hsinchu, Taiwan, Republic of China

PERARAY LT ES D

BB TR MR o B A AR RN T 2 - o FMEE G SR
FE AR R B LR P ORREER R F A e ez B AR E
(carry-select) 3% ~ T {7 m % (parallel-prefix) 3 ~ fvi& i~ 3% 7 7f - (carry-lookahead)
FEF ARG H RSB RELR S AT ok R EFIREER
2 4His BRAR R RGBT RRAS HE T RTROgge-Stone T {7 4k BEH L - £
FAEDfRAS Ko it A 4 2 G Y O Lingte# B3 S -
BIER c BPERF o @ 2 AP * R L& T (35 @ (hybrid parallel-prefix)/ i& i
(carry-select) 7 -2 — 4 FroR izt iy 2 B % LUGERE B AE B g ff o W & D
FE T g NP PRTIE 4 @ SKogge-Stone T {7 A &4 iE B o M50 25% o T
K, S BAP2EFIRFT - BEL A o AL S MRS 6 F & -
BPUEARESRILT FHERETE DFET

{5 #7ie * > 3] 3 4 (partition scheme) &7 & — &b enf 3 o Fpt > APy)

T ek R FHN S SIS G F A BRE ORTE 25
oo R BRI F AP R G R 5B 45, 12%u BPERE 3, 98%H AE T kA AT
VB oA T2 APRNSNZELATRELTERTX FV D
AERG I FEIEEST BAEHE -

C

High-Speed Area-Minimized Reconfigurable
Adder Design

Student:Yi-Zeng Fong Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Binary addition is one of the fundamental arithmetic operations in digital system
design. Consequently, several adderiarchitectures have been proposed to meet different
design requirements in the past. Various architectures like carry-select, parallel-prefix,
and carry-lookahead lead to different performance among area, delay, and power. In
general, Kogge-Stone parallel-prefix adders:provide.a good solution to optimize delay
and regular structure for VLSI implementation.. The proposed architecture uses Ling
addition to reduce one logic level delay in parallel-prefix structure for the carry
generation. Furthermore, using hybrid parallel-prefix/carry-select architecture and some
special function blocks can reduce overall area. Experimental results reveal that the
proposed architecture achieves 25% area reduction when compared to traditional
Kogge-Stone parallel-prefix adders. Recently, the multimedia plays an important role in
our life. Multimedia signal processing usually needs a fast reconfigure adder, which can
be run-time reconfigured to handle the operations with different precisions. However,
the extra overhead of partition scheme for the purpose of reconfigurability is
unavoidable. Therefore, we present a new reconfigurable approach by modifying our
original architecture without introducing significant extra area and timing penalty.
Finally, experimental results show that the new reconfigurable adder needs only 5.12%
delay penalty and 3.98% area penalty. In brief, the proposed adders do our utmost to
reduce area without affecting speed and extent to reconfigurable scheme easily.

i

S

BAARREMA O ERR-FEER L, AL A E g Bl Fopt
B, B0 G A FETRE, b REY R F LT B ENB AT SRR

LRSS TR AR LA A, HR R ez i, e o7 LA o

FR REHET AR AP FADRE LG BRI SR DN e i
%Q&ﬁﬁiﬁéﬁiﬁvﬁﬁﬁékaﬁ"W@ﬁﬁﬁﬁﬁ%%ﬁﬁ%ﬁﬂ
fhopw R EN GRAR F R, L NI FF LR,

Bids BREBTT FREDORENIREE B~ Lan s FL AW EL T
ZEFEFE ER PR ARBHERT R {ridm s AT S
P BRRERED R A Ak e A TR - A

gki\.& 4’5{,\1,3

¥4

FEThwm w8 Ee T ‘ﬁjﬁ'lf’%,&f’ﬁ“—
B REOFE o

>_\.
F_k
¢
1
v
=
o
Iy
a1
A

i1

Contents

ChINESE ADSIIACT. ...c..eeeieiieeiieeteete ettt ettt st e bt et e bt ebeentesaeen s A
23T eq VT W o 1] o 2T APPSR i
ACKNOWIEAZMENLS. ..ottt ettt ettt e e e en oeas il
COMERIES ...ttt ettt ettt et s b et eat e bt et et e sb e et e eatesbeenbesatenbeenaeeatenaeenee v
LSt OF TADIES ...ttt ettt ettt st et et vi
| A e U USSR vil
Chapter 1 INtrodUCHION.ooueiiiriiiiiieei ettt o 1
LT MOTIVALION .ottt b et et e A

1.2 Thesis OrganizZation...........cccueeeviereeriieenieeieerieeereesseesseesseesseenseessseeseessne ss 2
Chapter 2 Preliminari€s. .. coo.eeeeveeeeeesei i s arveeeereeenereeessveeessseesssseesssseesnsseesssseesssseenss 3
2.1 Parallel-Prefix (P-P) Addition s s e . oottt eeeeeiieeiieiieeieeeeeee e 3

282 5 1 T2 [15 1) RO USSR 5

2.3 Carry-In OPeration. v u.....,. leosfiiiiuseaiae e st s eeeeeeeeee et ste et sete s eee et ebeeaen e e 9
Chapter 3 Proposed Adder Archif€ctlre..... it e 13
3.1 Review of Previous Approach i e 13

3.2 Proposed ArchiteCture..........oouviuiiiiiiii e 17

3.2.1 Area-Minimized Parallel-Prefix Tree.......ccccoovieviiiiiiiiiiiieiiicene 18

3.2.2 Carry-In Handling...........ccccoeviiiiiiiiiieiieieeieee et 23

3.2.3 The Block Size of Carry-Select Adders(CSA)ccoovvvevvvivieeciiennens 24

3.2.4 CSA OPMIZALION ..eecvvieiiiieeiiieeiiee e e eeeeeeeeeteeesreeesaeeeseveeeareeas 27

3.2.5 Fanout ISSUE......ccoouiiiiiiiiiieeteeeeee e 30

3.3 Summary of the Proposed Architectureccccceeveeveiveercieeeiieeiee e, 32

3.4 Experimental Results and Analysis........cccccoecieiiieiieniiiiiiieecee e 34
Chapter 4 Proposed Reconfigurable Adder Architecture............ccoecvvevieeiiieniencinennnnns 39
4.1 Review of Previous Approach........cccccceeeieiiieniienieniieeeeeee e 39

4.2 Proposed ATChItECTUIEcccueieiiiieiiieecie et e 42

4.3 Summary of the Proposed Architectureccoceevuerienieieniieneenenicneeens 46

4.4 Experimental Results and ANalysis.........cccecveriienieiiienieeieeieeeeee e 48

1v

Chapter 5 RTL Code GENEIAtOT........cecuieieieeiieeiieeiieeiieeieeeie et e site e eseeeereesseesnbeenaee e
Chapter 6 Conclusions and Future Works...........cccovieeviiiniiiiiiinieciecieceee e,
RETEIEIICES ...ttt ettt ettt ettt e et e e an

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.

List of Tables

The timing and area results for hybrid adders.........ccccoeevieeiiieeiiieiiieeiees 17
The timing and area results for Ling adders...........ccoceveeviiiinienenicnienenne. 17
Comparisons among different parallel-prefix algorithmscccccoceveenenee. 19
Delay estimation among different parallel-prefix algorithms......................... 20
Equations to calculate the number of different nodescccceevvevienennnee. 22
Area comparison between K-S adders and proposed adders.............c.cceunee.. 22

Area comparison between hybrid K-S Ling adders and proposed adders......22

Normalized logic delay table............ccieiiieiiiniieiecieeeece e 25
Examples of selecting nearly optimum block Sizeccceevveeeiieenieeinneenn, 26
Experimental environment 1 .,.........ccccoeeieriiiiiiiniiieiienie e 34
Experimental results of:dK-S 1 and proposed addersccceeevveereeeveennnnns 34
Experimental results of K-S-2 and proposed addersc..cccceevervenennene 35
Experimental resultstof hybrid K-S Ling L and proposed adders 35
Experimental results of hybrid K-S'Ling 2 and proposed adders 36
Power estimation of K-S+adders.and proposed adders..........cc.cccevvevennnnnne. 37
Power estimation of hybrid K-S Ling adders and proposed adders.............. 37
PDP estimation of K-S adders and proposed adders..........c.ccceeecvveeeveeennenn. 38
PDP estimation of hybrid K-S Ling adders and proposed adders................. 38
Partition Methods..........ovviriiiiiiiieeeeeeeee e 45
Experimental environment 2ccceevvieeeiiieeiieeeieeeiee e eeeee e 48
Area and timing penalty of proposed reconfigurable adders..............c......... 48
Timing analysis of adder-R typel and proposed-R...........ccccoeviieiiennnennnnne. 51
Timing analysis of adder-R type2 and proposed-R..........cccccoeviiiiiniiancnns 51
Timing analysis of CSA-R [24] and proposed-Rcccceeviieiiiniiiniiennnne. 51

vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

® N kWD =

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

List of Figures

An 8-bit Kogge-Stone adder..........cceeveiiiiiiiiiiieceecee e 4
An 8-bit Lander-Fisher adderccccooiviiniiiiiiiniiiieceeeeee 4
Overview of function CellSoovuirieiiiiiiiiiieee e 4
A 8-bit Kogge-Stone Ling addercocovveviiiiiiiniiiiniiiciecicceeceecee 8
A 8-bit Lander-Fisher Ling adder...........c.ooouviiiiniiiiiiiniieieceeeceeee e 8
New function cells for parallel-prefix Ling addersccoeeeeviencieeniiecniieee, 8
An 8-bit parallel-prefix Ling adder with a carry-in using the first method......... 9
An 8-bit parallel-prefix Ling adder with a carry-in using the second

METHOM ...t 10
An 8-bit parallel-prefix Ling adder with a carry-in using the third method......11
A 32-bit hybrid parallel-prefix-adder......cfu .o 13
A general architecture of hybrid carry-lookahead/carry-select adder 14
A 32-bit hybrid parallel-prefix/carry-select Ling addercecevvenrennnnen. 15
Logic cells = 1 ..ooouiiieee i b T e 15
LOGIC COIIS = 2 oo i i e ek an et eeteeeveeetteenaeesaaeesseensaeensaeesaeenseeenas 15
A modified 4-bit carry-select block (MCSA).....cccoiiiiiiiiiieiieeeeeeee e 16
A 16-bit Sklansky parallel-prefix adderccoeoveriiiiiiniiieniieeee e, 18
A 16-bit Brent-Kung parallel-prefix adder.........cccoeeeiieeiiiinciieeieeeeeeee, 18
A 16-bit Kogge-Stone parallel-prefix adder...........cccoeevininiininiinicncnce. 19
A 16-bit Han-Carson parallel-prefix adder............ccocevieviniiniininienienenieen. 19
A 32-bit Kogge-Stone parallel-prefix tree for the hybrid Ling adder 21
The logic cell to incorporate carry-in to the (g0, p0) pairccccceeveeeveennennen. 23
A 4-bit carry-select adderccuieviiiiieieciiee e 26
A 16-bit proposed adder without CSA optimization...........cccceeeecveeeereeernveenne. 28
Logic implementation of the &1 cell.........cccoeiiiiiiiiiiniee, 28
Logic implementation of the &2 cell..........cccoeviiiiiiiiiiiiiiieeceeee e, 29
A 16-bit proposed adder without CSA optimization.........ccceceeevereenicrieneennens 29
Fanout issue of a 8-bit K-S adder.........c.ccooeviiiiiiiniiniiiccceeeeeen 30

vil

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

Fanout issue of a 32-bit hybrid K-S Ling adder...........ccccoeeeviiiiiieniieieiee. 31
Fanout issue of a 32-bit proposed adder..........c.coevuieeriiieniiieciieeeecee e 31
Design steps of the proposed architectureceevveeciienieeriienieeceeeieeeeee. 33
A 32-bit reconfigurable carry ripple adder..........ccooeveriieiienciiiieeeeeee, 40
A 64-bit reconfigurable carry-skip addercccccoeiiiiiiiiiiniii, 40
A 12-bit reconfigurable carry-select adder...........ccoocveviieiieniiiiieniieieeeee. 41
A 16-bit reconfigurable CLSA adderc.ccoocvveeiiieeiiiieiieceeee e 41
Reconfigurable BIOCKScccuiiiiiiiiiiiie e 42
A A-DIt SCSA-R ...ttt 43
A 32-bit proposed reconfigurable adder.............cccoveeeiiiiniiienieee e 45
Design steps of the proposed reconfigurable architecture............cccceeevienennene 47
The first type of the reconfigurable addercccccvveeieiiiiiiiiiiicieceee e, 49
The second type of the reconfigurable adder............ccoceeveriiniiiiniininininee 49
RTL cOde eNETatOroctiieriieeiiieeie e tet i et eee et et ettt e e 52

viil

Chapter 1 Introduction

Binary addition is the primitive operation in computer arithmetic. A high-speed and
area-minimized architecture for binary addition is the critical element for designing a
high-performance digital IC. Therefore, a systematic design methodology for the new
architecture which can meet the requirements of high performance and small area cost

has been proposed in the thesis.

1.1 Motivation

Various architectures for the binary addition have been proposed in [1-13]. In
general, the carry-select [5], carry-lookahead [6], parallel-prefix [7-11], Ling [12] are
the most common adders used to meet different design requirements. Parallel-prefix
adders provide a highly efficient solution to thé fast binary addition and regular VLSI
implementation from the use of simplelogic eells and low complexity of wiring.
Meanwhile, the Ling adder ‘offers a.simplified carry-computation to gain the
improvement of speed. In [13], anew architectute which combines the Ling and the
parallel-prefix algorithms has been proposed. The parallel-prefix Ling adders [13]
preserve the benefits over the traditional parallel-prefix carry-computation and offer
reduced delay and fanout requirements. However, this architecture needs more area
than the traditional parallel-prefix adder for achieving the purpose of high-speed.
Even though the hybrid parallel-prefix / carry-select Ling architecture is used, the
extra area overhead is still significant when compared to the hybrid structure which
uses the traditional parallel-prefix algorithm. To solve the problem of significant area
penalty, a new architecture has been proposed in this thesis. The proposed architecture
preserves the property of high-speed by using Ling addition, while, at the same time,

minimizes the overall area as far as possible.

In our daily life, multimedia devices require real-time audio and video signals
processing. The algorithms used in the digital signal processing usually need large
computations of multiple addition or multiplication. Therefore, SIMD (single
instruction, multiple data) architecture is useful for these computation-hungry
functions by calculating data in parallelism. To achieve these requirements, efficient
reconfigurable computational elements such as reconfigurable adders are needed. For
example, a reconfigurable 32-bit adder can execute one 32-bit, two 16-bit, or four
8-bit additions depending on user requirements. Several structures [14-19] have been
proposed to achieve real-time processing of media signals. Therefore, a high-speed
area-minimized reconfigurable adder is also presented in this thesis. In the proposed
architecture, the additional area cost and timing penalty for the partition scheme are
very small. In other words, the new reconfigurable adders can be generated from the
original architecture with minor-changes. Finally, a high-speed area-minimized hybrid
Ling adder with/without reconfigurability-can, be 1mplemented by the systematic

methodology presented in the later chapters.

1.2 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 gives a brief description of
the parallel-prefix adders, basic definitions of Ling addition, parallel-prefix Ling
adders, and the methods of handling the carry-in signals. Chapter 3 introduces the
previous approaches of the hybrid architecture, the detailed description of the
proposed adder design, and the related experimental results. Chapter 4 describes the
design methodology to build the proposed architecture with reconfigurability and
corresponding experimental results. Chapter 5 presents the RTL code generator
derived from the design steps described in Chapter 3 and Chapter 4. In the end,

Conclusions and future works are drawn in Chapter 6.

Chapter 2 Preliminaries

In this chapter, we give a brief description of equations and notation about our
proposed architecture. This background knowledge contains the basic concepts

required to understand our proposed design.

2.1 Parallel-Prefix (P-P) Addition

To consider the addition of two N-bit binary numbers, A = an.jan»...a0 and B =
bn.ibna...bp. S = SniSna...S¢ denotes the sum of the two binary number. A
parallel-prefix addition can be partitioned into three stages. The first stage computes
bit-generate (g,) and bit-propagate (p,), and half-sum bit (d,). For every n (0<n<N-1),
these signals can be computed by the following equations :

gn=an&bn, pn=an|bn,dn=an bn (1)

The second stage is the paralel-prefix tree-for computing the carry signals (C,) by

using the associative operator o Thelassociative operator o is defined as :
(gr, prlolge, pu) = (ge | (pr & gu), pr & pu) @)

We can group these pairs of generate and propagate bits (g,, pn) to generate group

term (Gm:n , Pm:n) by using associative operator o consecutively :

(Grn, Frn) =(gm, ol g -1, P -ol gm -2, P -0 0l g0 -1, pr-1) 3)

Follow the above definitions, each carry C, is equal to Gy,. At the final stage, the
sum bits (S,) can be computed according to the following equation:
Sn=h"Cn- (4)
Several architectures have been proposed to compute the group term (Gpp , Pmn) in
the second stage for different goals of design. Fig. 1 presents the 8-bit parallel-prefix
adder which is proposed by Kogge and Stone. Fig. 2 presents the 8-bit parallel-prefix

adder which is proposed by Lander and Fisher. There are three basic cells to construct

3

the parallel-prefix. The diamond-type node <> represents the logic cell for the

generation of g,, pn, and d,. The black node @ represents the logic cell for the

[
associative operator. The white node O represents the buffer node. The node

represents the logic cell for the generation of sum bit. All of the function cells are

shown in Fig. 3.

v
&
)

D

o

Fig. 1. An 8-bit Kogge-Stone adder. Fig. 2. An 8-bit Lander-Fisher adder.

O i gupudugenerator @ agsociative operator () : buffer
dn bn dn bn dn bn Pm:i Gi-1:n

o : sum generation
1-1:n

JJ/ Gmei
W dn Cnai
En L dn JL
Gm:n Pm:n

Sn

Fig. 3. Overview of function cells.

2.2 Ling Addition

According to the architecture proposed by Ling [12], a pseudo-carry signal (H,) can

be expressed as :

Hn=Cna+Cn-1
=Gn:0+Gn-1:0
=(On+ P& On-1+ P& pr-1&gn-2+.. A P& pr-1&pr-2&... & pr1&go)+
(On-1+prn-1&Qgn-2+...+ Ppr-1& prn-2&...& p1& Qo)
=0+ 0On-1+pn-1&gh-24+...+ Pr-1&pr-2&... & P1&go

)
A carry signal (C,) also can be expressed as :

Chn=Gn:o
=(O +Ppn&On-1+-pn&pr-1&G-2+..FPr&pPpr-1&Pr-2&...& pi1& go)
=(Pn&On+ Prn&On-1+ pPr&pr-1&Ggh-2+...+ P& pPr-1& prn-2&...& p1& go)
= P& (gn+0gn-1+ Pr-1& gn-2+aki+ Pt & pPo-2&...& pr1& Qo)

(based on pn& gn = gn) (6)

From Equation(5) and Equation(6), the relationship bétween H,, and C, is :

Cn= pn&(gn+gn—l+ pn—l&gn—2+...+ pn—l& pn—z&...& pl&go)
= pn& Hn

(7)

Therefore, a parallel-prefix adder using Ling addition, one row of carry-merge
gates (Gyn1) can be replaced with OR gates, which produce the pseudo-carry signal
(Hy). As a result, the calculation of H,, can save one logic level delay compared to the
traditional generation of carry signal (C,) in parallel-prefix tree. Finally, the
generation of sum bit (S;) should be modified to meet the pseudo-carry signal (H,).

The sum bit (S,) derived from H, can be computed as :

Sn:dn/\Cn—]
:dn/\(pn—l&Hn—])
=ﬁn—1&dn+Hn—1&(dn/\pn—l) (8)

From Equation(8), we replace XOR gates with 2-1 multiplexers for the generation of
sum bits. A systematic methodology that allows the parallel-prefix computation of
Ling carries (H,) is presented in [13]. First, we define two symbols G,* and P,* as the

following equations :

Gn* = On+0n-1 (9)

Pn*:pn—l& pnfz (10)

If the addition has no carry-in, we define g; =p.;=0 and g, = p, =0, forn <-1. In
the following, we use an 8-bit adder as an example. According to Equation(5) and g,

& pn = gn, the Ling carries at the fourth bit position are expressed as :

Hi=0g4+03+ p3& g+ ps& p2&gi+ ps& p2& pi&go
=(04+03)+(p3& p2)&(g2+01)+(pP3& p2) & (p1 & po) & go (11)

From Equation(9) and Equation(10), Equation(11l) ¢an be rewritten as :

Ha=(g4+03)+(p3&P2) &(gz+01)+ (P: & p2) & (P1 & po) & go
=Gs*+Ps* &G * #Ps ¥ &P * &G o *
(based on Go*=go+ g -1=go+0=0o0) (12)

Using the associative operator o, Equation(12) can be expressed as :

Hi= ¥ D G ¥ Py ¥ G Pa™* &l ™
= ((T#*F, Pa¥)o(F2*, PrFi1o(Go®, FPo*) (13)

As a result, each H, in an 8-bit adder can be derived using associative operator © and

(Gp*,Py*) pairs as follows :

HO=(Go* P
H2 = (G4, Pr)o(Go*, Po®)

Ha = (G4*, Py)o(Ga*, Pa%)o(Go*, Po*)

H 6= (06, Pe)o O™, Pa¥)o(Gr*, Pi¥)o(Go*, Pr®)
H1= (G, P

H3= (Gs*, P%)o(GH*, P¥)

H5 = (Gs*, P*)o(Ge*, Py¥) ol Gi*, Pr¥)

H7 = (G, ProolGs*, Ps¥)ol G, 5% o Gr*, P%)

6

From the example, the parallel-prefix Ling adder needs an additional logic level to
generate (G,*,P,*) . But, the computation of the pseudo carry (H,) can reduce one
level of associative operation compared to the traditional carry (C,). In other words,
we replace one level of associative operation (2 logic levels) with the new one logic
level to generate (G,*,P,*). Therefore, the modified architecture of the parallel-prefix
Ling adder can save one logic level for the computations of carries. The n-bit
parallel-prefix Ling addition can be easily derived from the example of the 8-bit adder

and Equation(13). The pseudo carry (H,) can be expressed as :

when xn iz aven
Hy = {G*, B0 (TGh- 2%, Pe-2%0. oG, Po)
when »n iz odd

Ha = (G*, Be¥o(Gr- 2%, Pao2¥o. o(GH*, Pr¥) (14)
According to Equation(8), the multiplexers should be used to generate the sum bits
(Sn) at the final stage to meet the change from. traditional carry out (C,) to pseudo
carry out (H,). Follow the above steps, the design of parallel-prefix Ling adders can
be systematically constructed. “In. Fig. 4 and *Fig. 5, the architecture of the
parallel-prefix Ling adders is presented. In Fig. 6, it shows the implementation of new

function cells.

Fig. 5. A 8-bit Lander-Fisher Ling adder.

: modified computation of sum bit

Pu-1

L

dn

]

0

n

S

]
d

™

b

A 4
5
o2l 2ot I T2

"’
Fotd

[
b5

B Fedd
ool etet

Gn*
Fig. 6. New function cells for parallel-prefix Ling adders.

Ty

Fig. 4. A 8-bit Kogge-Stone Ling adder.
Pn Pl En En-l

‘ : Gn*,Pn* generator

2.3 Carry-In Operation

In general, most binary adders need to consider the external carry-in. From [20],
there are three ways to incorporate a carry-in into a Ling parallel-prefix structure. The
first method needs an additional stage to generate the sum bit at each bit position from
the p, signal and the carry from the previous bit position according the following

equation :

Hn_ﬂ'n= Hx o (G”'-]-) (15)

According to the Equation(15), there is an extra associative operation at the last
level to generate correct Hy,. The architecture of the first method is illustrated in Fig. 7

for an 8-bit parallel-prefix Ling adder.

st |
=
tn
-

O
o
e
’1— &
@
’q— o
Soa s
’i— =

@\
-4\
N

NANN

N\

4N
\\

o \\g

o
o

I
I

|

Fig. 7. An 8-bit parallel-prefix Ling adder with a carry-in using the first method.

The second method allows the first generate signal without modification and
changes some white nodes (buffer nodes) to black nodes (associative operation) for

incorporating the carry-in signal in parallel. This approach needs an additional stage

to generate the final carry-out (Cy.;), but the computation of sum bits can be executed
in parallel. An 8-bit parallel-prefix Ling adder is illustrated in Fig. 8.

bbb
<>‘L
13

)

v
O

O
-

1Y

\

Y

Fig. 8. An 8-bit parallel-prefix Ling adderwith-a carry-in using the second method.

In the end, the third method can incorporate the carry-in by redefining the first
generate signal (go). The carry-in (Ci,) can be considered an (g.;, p.1) pair. Then, the
new go can be derived by setting (g1, p-1) = (Cin, 1) and using Equation(2). The

modified first generate signal (go m) can be expressed as :
go_m=(go|(po&Cin) (16)

Therefore, the architecture of the third method is similar to the original adder
without carry-in except the additional logic for the newly modified first generate

signal (g0 m). An 8-bit parallel-prefix Ling adder is presented in Fig. 9.

Fig. 9. An 8-bit parallel-prefix Ling-adder with*a carry-in using the third method.

In general, fanout issue, logic depth, area, and complexity of wiring are the major
issues to construct adders. In terms of fanout, the first method has the large amount of
fanout on the carry-in (Cj,) from the additional stage to generate correct carries. But,
the fanout of other nodes has the max fanout of 2 for all methods. The third method
has the smallest amount of fanout on C;, from the only one extra function cell to
modify g0. In terms of logic depth, the second method has the smallest logic depth to
generate sum bits, but the effect of fanout on C;, may affect the overall delay when
the size of the adder is large. Under the consideration of the fanout effect, the constant
fanout 1 of the third method may have the same or better performance on speed. By

the way, the logic depth to generate final carry-out (Cx.1) of each method is the same.
11

Because an additional stage is needed in the first method, there are N black nodes
(associative operation) should be inserted into the original structure without the
carry-in. The second method has the intermediate penalty of area from the additional
logoN + 1 black nodes. There is the only one function cell needed to incorporate with
carry-in to the architecture of the third method. So the third method has the smallest
area penalty for the computation of carry-in. The complexity of wiring for the carry-in
is like the fanout issue on C;,. Therefore, the third method is the best choice for small
complexity of wiring. Consequently, the third method is a better way for

parallel-prefix adders under the considerations of area, speed, and fanout effect.

12

Chapter 3 Proposed Adder Architecture

In this chapter, the previous works of parallel-prefix Ling adders are introduced in
the first section. The remaining sections give the detailed description of the proposed

architecture.

3.1 Previous Approaches

In Chapter 2, the fundamental architecture of parallel-prefix Ling adders has been
introduced. But Kogge-Stone parallel-prefix adders comparing to other adders like
carry-ripple adder, carry-select adders, and carry-skip adders has the critical problem
on cost of area. Consequently, the modern architecture of adders utilizes a hybrid
scheme. A hybrid scheme like the parallel-prefix/carry-select adder leads to the
reduction of area and the requirement for high-speed. Fig. 10 mentioned in [13]
illustrates a hybrid 32-bit adder;which combines. the: Kogge-Stone parallel-prefix tree

for the generation of carries and carry-seleet blocks for the sum-bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

S SRS REENERY.

v
00000000000000
‘
———

Sam s
Cam o
o
e
S
e w
S
Sam v
e
e s

(gn,pn) pairs
6 5 4 2 1 0
‘ 4-bit CSA ‘ ‘ 4-bit CSA ‘ ‘ 4-bit CSA ‘ ‘ 4-bit CSA | ‘ 4-bit CSA ‘ ‘ 4-bit CSA ‘ ‘ 4-bit CSA ‘ ‘ 4-bit CSA ‘

Fig. 10. A 32-bit hybrid parallel-prefix adder.

The following architecture in [21] is a hybrid carry-lookahead/carry-select adder. In
Fig. 11, the correct sum-bits are selected from the carries generated by the

carry-lookahead unit.

Cu

v

aln, n, +1] —» (n.-n__)-bit
bln ., ,+1] Carry Select Adder

— (o, 0, ,+1]

C

b —»

C —

l
Carry Lookahead Unit

aln, n +1] —» (n,-n,)-bit 5
bln,ng+l) —» Carry Seloct Adder > slnyngH)

Can

¥

a[n, 0] —» (n+1)-bit
b[n, 0] —»= Carry Select Adder

— s[n,, 0]

Fig. 11. A general architecture of hybrid carry-lookahead/carry-select adder.

The goal of hybrid structures is:to.overlap the time of computation for carries at the
boundaries of the carry-select blocks with the time needed to calculate the sum bits.
Base on the previous hybrid adders and parallel-prefix Ling adders described in
Chapter 2, the hybrid parallel-prefix/carry-select Ling adders using Kogge-Stone
algorithm (hybrid K-S Ling adders) are proposed in [13]. The new approach employs
a Kogge-Stone parallel-prefix Ling structure to generate the partial pseudo- carries
(Hy,) for carry-select blocks. However, the traditional carry-select blocks need some
modification for using pseudo-carries (H,) instead of the normal carries (C,). It also
separates the generation of carries and sum bits into even and odd bit positions. The
modified carry-select adders (MCSA) [13] use the pairs (G,*, P,*) as inputs instead of
traditional (g, pn) pairs. A 32-bit hybrid Ling adder and related function cells defined

in [13] are shown in Fig. 12, Fig. 13, and Fig. 14.
14

I 30 2 261 MG OIS 2413 X W 1R ONE N7 MG LS 14 13 211 R OB

7 & 5 4 3 T |
¥ H" '*' : ; ¥ ¥ ¥ ¥ ¥ ¥ ¥ * r 'I ¥y ¥ ¥ 'I Y ¥ ¥ ¥ : L+| :I : :I !' |*.-f‘
-’i’i-’ii;’”iﬁn’-iiq!yi-’-i-iii " -i'i:ﬁ,.
- - - L
' l 'S p’ g e L) ; f'i" [X
L F,f:_, ”3 et
T A A A
. [] . ..
v Ii 2 T ® ey
AT f L=
= (G F,)
'l"""-- W om o fif' ST . o3

e d d db-pACSA
[b-.w:'s.-.r B [r)

0o% oM l/ w1 w 3
[awmc =Ty Ab-MCSA I- | 4n-aacsa
7 | |
, "‘msznﬁmsn db B ind i "..’.:‘...‘l "n“."z‘“u
8 BBy Fyn By Byg By STLTLTEN "7"1"1 |

Fig. 12. A 32-bit hybrid parallel-prefix/carry-select Ling adder.

i e
- =

{Grk"PJ:b) {Gmf’P) (G L j} {f} " m')

G,p) Gl

it

Fig. 13. Logic cells — 1.

E P B Pi
Bl &P By Py e L
. 4

I;.GH-I!" II:.il.'} {G;‘ lF‘r.-]:'

Fig. 14. Logic cells — 2.

15

G, Fo

G_zv F,_,__,.: [,
G dy Py Py [] dypy | dyg, Py dy Pp
[i 1 LT HJ}
v ¥ L L
f1n Fag 26 $24

Fig. 15. A modified 4-bit carry-select block (MCSA).

However, the area of the MCSA is obviously larger than traditional carry-select
block which is shown in Fig. 15. The Table 1 in [13] shows that the speed
improvement of the hybrid parallel-prefix| Ling adders induces the additional cost of
area compared to the traditional hybrid parallel-prefix adders. However, the hybrid
Ling adders can save area when compared-to traditional parallel-prefix adders and
parallel-prefix Ling adders from the stmulation results in Table 2 presented by [13].
According to these results, a hybrid K-S Ling adder can improve speed and reduce the
overall area when compared to the parallel-prefix adders. But, the area of hybrid K-S
Ling adder is still large than hybrid K-S adder from the use of MCSA blocks. Based
on the analysis of previous works, the goal of our proposed adder is to further reduce
area without additional timing penalty by a systematic methodology in the following
sections. Using the proposed architecture can solve the area problem of using MCSA
blocks, reduce more area in parallel-prefix tree, and preserve the benefit of Ling

addition.

16

Table 1. The timing and area results for hybrid adders.

G4-bit hybrid adders Area (prm?) | Delay (ns)
Ladner-Fischer Normal 21228 0.91
Ladner-Fischer Proposed 23654 0.83
Kogge-Stone Normal 26754 (.89
Kogge-Stone Proposed 28385 0.81

Table 2. The timing and area results for Ling adders.

Ladner-Fischer Kogge-Stone
n | Area(um?) Delay (ns) Area (pm®) Delay (ns)
Norm. | Prop. | Norm. | Prop. | Saving || Norm. | Prop. | Norm. | Prop. | Saving
16 | 4336 | 4928 | 0.65 | 0.56 | 13.8% || 5716 | 5755 | 0.62 | 0.53 | 14.5%
92 | 10250 | 11038 | 0.79 | 0.68 | 13.9% | 13404 | 13561 | 0.76 | 0.66 | 13.1%
G4 || 26808 | 28132 | 0.98 | 0.85 | 13.2% || 33205 | 33904 || 0.80 | 0.80 | 10.1%

3.2 Proposed Architecture

The following sections introduce the proposed architecture with detailed block
diagram and the systematic methodology to design the high-speed area-minimized
hybrid Ling adder. From the experimental results, the proposed scheme can achieve
area reductions of up to 25 percent when compared to the traditional Kogge-Stone

parallel-prefix architectures. And further, it also can reduce nearly one-fifth area than

the hybrid K-S Ling adders.

17

3.2.1 Area-Minimized Parallel-Prefix Tree

There are many algorithms to build the parallel-prefix tree. Various architectures
result in different area, delay, complexity of wiring, and fanout issue. These different
architectures from [22] are shown in Fig. 16, Fig. 17, Fig. 18, and Fig. 19. In these
figures, all the (pn, gn) pairs are generated in the first level and other function nodes
are shown in Fig. 3. Table 3 is a collection of area, delay, and fanout according to
[22]. From these data in Table 3, the parallel-prefix architecture of Kogge-Stone type
has the advantage of fast speed, the fixed number of fanout, and the regularity of
wiring. Consequently, the Kogge-Stone parallel-prefix tree is chosen in our proposed

approach.

151413121110 9 8 7

B WM = O

MmN e =0

Fig. 17. A 16-bit Brent-Kung parallel-prefix adder.
18

Fig. 19. A 16-bit Han-Carson parallel-prefix adder.

Table 3. Comparison of different parallel-prefix algorithms.

Algorithm Type | Max. FanOut | Delay (logic depth) Area (black node)
Sklansky 12 N logzN 12 Nlogz N
Brent-Kung log=N 2logzN -2 2N -logzN -2
Kogge-Stonhe 2 logzN N*logzN -N+ 1
Han-Carson 2 logzN +1 112 N"logzN

N : the length of addition

19

However, all the data in Table 3 are produced by mathematics. We need more
simulation results by physical implementation to get more confidence in Kogge-Stone
parallel-prefix structure. From Table 4 by arranging the data in [23], it shows that the
Kogge-Stone parallel-prefix adder (K-S adder) is a good solution to design a
high-speed adder. The unit to estimate delay is FO4 (fanout-of-four inverter delay).
But, the Kogge-Stone architecture achieves high performance by using a large amount
of associative operation. More area may cause more power consumption and so the
way to reduce overall area without loss of performance is important. A hybrid
structure is used to achieve delay reductions in our design. And further, we use the
parallel-prefix Ling structure introduced in Chapter 2 to be the main backbone. A
32-bit Kogge-Stone parallel-prefix tree for the proposed hybrid Ling adder is shown
in Fig. 20.

Table 4. Delay estimation for different parallel-prefix algorithms.

Algorithm Type Delay (FO4)-N.= 32 |Delay (FO4) N = 64
Ripple 546 107.7

Sklansky 16.3 23.4

Brent-Kung 16.8 21.8

Lander-Fisher 15.6 20.2

Han-Carson 13.3 16.4

Kogge-Stone 13.4 18.0

N : the number of addition

1. Non-inverting CMOS

2. uniform cell size

20

.
o
N

o

Fig. 20. A 32-bit Kogge-Stone parallel-prefix tree for the hybrid Ling adder.

According to the Table 3, Fig. 12, Fig. 20, a 32-bit traditional Kogge-Stone
parallel-prefix adder needs 129 .nodes, a 32-bit architecture proposed in [13] it
needs 29 .nodes and 31 [l nodesjand the.parallel-prefix tree in our design
needs 25 .nodes and 16 ’ nodes: Assuming the use of two-input logic gate,

the . node requires 3 logic gates, the B 1ode or the . node requires 2 logic
gates. The area cost of the proposed scheme is 107 gates, the architecture in [13]
needs 137 gates, and the traditional architecture requires 387 gates. Consequently, the
type of parallel-prefix tree in Fig. 20 can achieve the minimum area when compared
to other architectures. The equations to calculate the cost of area for the three
architectures are listed in Table 5. Table 6 and Table 7 explain area reductions of the
parallel-prefix tree clearly via the following cases of various tree structures. From
these cases, using hybrid parallel-prefix Ling structure can easily achieve the goal of

area-reduction on the part of parallel-prefix tree.

21

Table 5. Equations to calculate number of different nodes.

1.Listing equations to calculate the number of different nodes
2.K-S : Kogge-Stone

3. @ Node : 3 2-input gates
M Node : 2 2-input gates
& Node : 2 2-input gates

Table 6. Area comparison between K-S adders and proposed architecture.

N (bit number) | traditional K-S | proposed hybrid K-S Ling | saving percentage
16 147 43 70.75%
32 387 107 72.35%
64 963 259 73.10%

Using the number of 2-input gates to-estimate 'the area

Table 7. Area comparison between hybrid K-S Ling and proposed architecture.

N (bit number) hybrid K-S Ling | proposed hybrid K-S Ling | saving percentage
16 60 43 28.33%
32 149 107 28.19%
64 354 259 26.83%

Using the number of 2-input gates to estimate the area

22

3.2.2 Carry-In Handling

In general, most adders need the carry-in to support the multi-word addition and
subtraction. Therefore, it is important to find the efficient approaches for
incorporating the carry-in to a parallel-prefix structure. In Chapter 2, there are three
ways for solving the carry-in problem. To achieve the minimum fanout of Cin, the
smallest area penalty, and the regularity of parallel-prefix structures, we choose the
third method to be the solution of our proposed adders with carry-in. First, we can see
the carry-in as a (g-1,p-1) pair. Because the carry-in must propagate to the bit position
0, setting g-1= Cin and p-1 = 1 represents the Carry-in. Finally, the original (g0, p0)
needs to be modified as (g0_m, p0_m) by the following equation. The logic-level

implementation for the (g0_m, p0_m) pair is shown in Fig. 21.

(go_m po_m)=(go, po)o(g-1.p-1)
= (g& po)o(Cm. l)
=(go|(po& Cin), p0 & 1)

=(go | (po& Cin), p0) (17)

o associative operator for cin

cin pl

a(}

—

g0 m po_m

Fig. 21. The logic cell to incorporate carry-in to the (g0, p0) pair.

23

3.2.3 The block size of carry-select adders (CSA)

In a hybrid parallel-prefix/carry-select adder, the size of the carry-select block
should be chosen carefully. The timing of addition may become worse due to the
un-optimized block size. Assuming the 2-input AND gate be the basic unit to estimate
the delay. In Table 8, the timing information of all logic gates used to calculate delay
of the carry-select block are listed. The formula to estimate delay of K-bit carry-select
block can be derived form the general 4-bit block presented in Fig. 22. The equation

is expressed as :

T (longest delay of Sumy,)

=1*Tor gate + (K —2) *TanD - 0R gate + 1% Txor
=1%1+(K =2)*2+1%2

=2K -1

(Sumy, : temporal sum bit K when assuming Cin is 1, K>1) (18)

When the time to generate the carries. for-selecting sum bits produced by carry-select

blocks is equal to the delay of Sum , the "block-size is optimized. However, the
regularity of structure is also important for designing an adder. For the convenience of
transferring our proposed architecture to the reconfigurable version, the block size
should be the factor of the minimum partition-size. However, the small size like 2-bit,
3-bit cannot get the benefit of area-reduction from the hybrid structure. Therefore, the

nearly optimum block size K should meet the following Equations(19).

24

Table 8. Normalized logic delay table.

Logic Type Logic Delay
2-input AND

2-inpu MUX

An associative operator
: 2 level AND-OR gate

a. K is integer
b.

Without Carry - In

T(SUM,) <=T(parallel - prefix tree with,Ling addition)
=> (2K -1) <= Tassociaive opearor* (KloorflogsN.]) =1
=> K <= Floor[log:N]
With Carry - In

T(SUM,) <=T (parallel -“prefix-tree'with Ling addition)
=> (2K -1) <= Tassociaive opearor * (Floor[logaN7+1)—1
=> K <= Floor[log:N]+1
C. The length of addition (N) is divisible by K

(to balance the fan-out of carries generated from the parallel-prefix tree)
d. Choose the biggest integer under the conditions of a, b, ¢

Note: The timing information in Table 8 is used to estimating delay (19)

Finally, using the cases of 16/32/64/128-bit adders to explain the way of choosing
the nearly optimum size of the carry-select block are shown the Table 9. In general,
4-bit block is a good solution for designing the proposed adder. Fig. 22 presents a

4-bit simple (traditional) carry-select adder (SCSA).

25

Table 9. Examples of selecting nearly optimum block size.

optinuim block size | nearly optimuim block size
N (K) (K)
witlhywithout Cin with/without Cin
16 475 474
32 5/6 414
64 6/f7 474
128 116 4/8
256 8/9 8/8
N : the length of addition
K : the block-size of the carry-select Dlock
Cin

gﬁ

Fig. 22. A 4-bit carry-select adder.

26

3.2.4 CSA Optimization

The following content, the special function blocks for reducing the overall area are
introduced. In section 3.2.2, the way for incorporating Cj, to parallel-prefix Ling
structure is presented. According to the skills mentioned in 3.2.1 and 3.2.2, the
proposed architecture without CSA optimization is shown in Fig. 23. Although the
parallel-prefix tree has been minimized, the area-problem of MCSA is still alive. The
method to minimize the area of using MCSA is to insert some logic cells into the
additional stage for Cj,. There are two new logic cells in the proposed architecture.
First, using the “&1” cells to replace some buffer nodes can transfer the H, into C,,
for n <= N/2. The principle of the new cell can be derived from Equation(7). Fig. 24
presents the logic implementation of the “&1” cell. However, there are not enough
buffer nodes to insert the “&1” cells into the parallel-prefix tree. The pseudo carries
Hn, n > N/2, has no significant buffer nodes-in their path. Therefore, the new logic
cell (“&2”) is proposed. Inserting the:néw-cells-into the stage for Cin can translate the
pseudo carries H, (n > N/2) into normal carries C, (n > N/2). The following equation
can explain the principle of the “&2” cell. Fig. 25 also displays the logic
implementation of the “&2” cell. Finally, the new architecture can avoid the
generation of H,. Consequently, the proposed hybrid Ling adder can fully use simple
(traditional) carry-select adders to eliminate the additional area cost on MCSAs. A

16-bit proposed adder is shown in Fig. 26.

Cn=pn & Hn
= pn & [(Gn*.Pn*) O Hn-2]
= [pn & (Gn*.Pn*)] O Hn-2
= ((Gn*&pn) , (Pn*&pn)) O Hn-2
= (pn&(gnten-1) . pn&(pn-1&pn-2)) O Hn-2
= ((gntpnégn-1) . (pn&pn-1)&pn-2) O Hn-2
= (modified Gn*, moditied Pn*) O Hn-2 (20)

27

15 14 13 12 11

vy
&

4

vy

10

vy

'y

RERRY

<

4

5 4

6

P2

)

(gn,pn) pairs
1 0

‘ 4-bit MCSA

4-bit MCSA

4-bit MCSA

4-bit SCSA ‘

(g*n,p*n) pairs

Fig. 23. A 16-bit proposed-adder without CSA optimization.

: 1 2-input AND Gate

Hn* pn

Chn

Fig. 24. Logic implementation of the &1 cell.

&2 : 2 2-input AND Gate

Zn Pn+1 Pu

i

Y

Fn_m Pn_m

Fig. 25. Logic implementation of the &2 cell.

(gn,pn) pairs
2 1 0

BB

‘ 4-bit SCSA 4-bit SCS5A 4-bit SCS5A 4-bit RCA

(gn,pn) pairs

Fig. 26. A 16-bit proposed adder without CSA optimization.

29

3.2.5 Fanout Issue

For achieving minimum delay, we should consider the fanout. In general, the
calculation of delay consists of intrinsic delay and delay of fanout loading. Therefore,
the goal of high-speed can be achieved by minimizing the loading of the logic-cell.
The Kogge-Stone parallel-prefix adder has the advantage of fixed fanout whether the
length of addition grows or not. Fig. 27 shows that each associative operator in the
parallel-prefix tree maintains the fanout of 2. In our architecture, the fanout also
preserves the property of constant number of fanout except the last stage. But, the
effect of the last stage is small from the small growth of fanout (2 -> 4) in general
case. Compared to the hybrid architecture in [13], our proposed adder has the same
fanout in the critical-path. From Fig. 28 and Fig. 29, the fanout issue of my proposed
architecture and the hybrid architecture 1n 13] can be understood -clearly.
Consequently, the proposed hybrid.architecture can minimize area without significant

penalty on the number of fanout:

Max fanout = 2

Max fanout =2

Max fanout = 2

Fig. 27. Fanout issue of a 8-bit K-S adder.

30

Max funour = 2

(LI LYV LTV NN}
e oo e e

Max fanout =1

Max funourt = 2

I

Max fanout = 2 C oe /./‘ > &
— e
1 =
= = G P)
— o ir T
Max fanout =4 ﬁ" 3 o8 X B e
’_I_I_L e) E‘j) v r v
® 26 N » m 16 1210 8 PP
P4 —~ 444 — : ‘v '
[4b-MCSA I- ‘ [#o-Mcsa k 4b-MCSA 4-MCSA I
L 0SS ﬂs?ﬂs" 16 ‘u‘:“m‘a b Setetaty
$31 529 %7 %25 52 sn Si19517 SisSi35n % -9-,-35 835,

Fig. 28. Fanout issue of a 32-bit hybrid K-S Ling adder.

- BT E -

Vs w1 4o ——EB E3E3 GI G5 GAEH P53 QAT g3 LSpaw:
’ — — I |]

Max fanout =2 — e . . - L,
I —%
Mux funont =2 T i .

Muax fanont = 4 -— T BN cn

[E1] 5
- 5 -
¢ | ek
COUTICH) ‘
A P2}
o | e
cas
sM
& .
s| ¢ | @pem
5 -
si6| 4 | EFEH <10)
sr|) | wpsre el

Fig. 29. Fanout issue of a 32-bit proposed adder.

31

3.3 Summary of Proposed Architecture

According to the basic components and main idea introduced in previous sections,

the design of proposed architecture can be summarized in the following steps :

e Generate the bit-generate (g,) and bit-propagate (p,), and half-sum bit (d,) at the
first stage.

e Handle the carry-in signal by using the proposed method and insert the “&2”
cells into the specific locations of generate and propagate pairs (gn, pn), with n =
4k-2 and k = N/8+1, N/8+2, ..., N/4-1 (N>=16).

e Use Equation(9) and Equation(10) to generate the intermediate generate and
propagate pairs (G,*, P,*) for Ling addition.

e Use the pairs (Gp*, P,*) to build the. parallel-prefix tree mentioned in section
3.2.1. The parallel-prefix structureican be employed for the generation of the
pseudo carries Hak.1, k = 1,2, %.., N/4.

e Replace the specific buffer nodes by the=*&1°” eells in parallel-prefix trees. These
buffer nodes pass pseudo carries Ha1; k'= 1, 2, ..., N/8. After the replacement,
these pseudo carries are transferred to normal carries Cy.;.

e Select correct sum-bits produced from SCSA blocks by using normal carries
Cax1, k=1, 2, ..., N/4-1. Finally, combining Hy.; and pn.; can derive the final

carry-out from using Equation(7).

In Fig. 30, the design steps of proposed architecture are illustrated. The order of
steps conforms to the design methodology mentioned above. Therefore, we can
design a high-speed and area-minimized adder from our proposed approaches. These
approaches include area-minimized parallel-prefix tree, the better way to handling

carry-in, and CSA optimization for Ling addition. In the end, a systematic

32

methodology has been introduced for designing the proposed architecture in this

section.

R T S { L O A O E T

Ist Step

: / Y
sy [l o] TUUT TUTT

3 Step «

L0 Step -
3-th Step
[,
5 - § .
— . ¢ | g sul ¢ | 0 gl s [$f]
COUTICH) +—| g [+ . ¢ |
al -+ | o+ . - -+ . A it568)
final Step < il o | e I I L I ol al sl
- (1 e ! I
L | = L 4 o ffigo)
Ly o) 8 “1_
151_\ C ﬂ-l’hh iﬂ g | lelpplol] g ‘E.Iglpm
5 : A A
. 250 -
.'.l’“'i T 'Ig_.f.lb i} ﬁ | ‘[;glJ.pI'.'l si0] | ﬁﬂ.pﬂ'i
; 262 Y s 4 [ghoptn
sa7| g | 16 m fglfpl8) " ¥|P
‘| — Ll A
—

Fig. 30. Design steps of the proposed architecture.

33

3.4 Experimental Results and Analysis

After introducing the main idea and basic components in previous sections, the
advantages of proposed architecture can be proved by the following experimental
results. First, Table 10 gives the simple description of the experimental environment.

Table 10. Experimental environment 1.

Experimnetal Enviroment
HDL Verilog
UMC 0.18um
Process
{under TT corner)
Synopsys Design Compiler

Synthesis Tool v W : e

(Version : W-2004.12-SP2-2)

) Power Compiler

Power Analysis .

{(Version : W-2004.12-SP2-2)

The proposed architecture compares with two objects, one for the traditional K-S
adder and one for the hybrid K=S Ling.adder..Because the carry-in handling in K-S
Ling adder [13] uses method 1 or'method 2:mentioned in the Chapter 2, the two
objects of comparison use these two methods. The proposed adder uses only method
3. Table 11 shows the comparison between the K-S adder which uses methodl
(K-S 1) and the proposed adder (proposed). From the result of the experiment, our
proposed architecture can save 31.56% area on average and get a speed-improvement.

Table 11. Experimental results of K-S 1 and proposed adders.

Timing & Area Analysis (UMC: 0.18um/TT corner)

. E-5 1 |Proposed | KE-5 1 | Proposed Area
Data Width — — .
(Delay) (Delay) {(Area) (Area) Saving
16 0.72 0.69 6630 4121 37.84%
32 0.85 0.82 11636 8549 26.53%
64 1.02 0.95 24485 17061 30.32%

average area saving: 31.56%

Hote

Delay(ns} / Area{um”2)

34

Table 12 shows the comparison between the K-S adder which uses method2
(K-S 2) and the proposed adder. From the result of the experiment, our proposed

architecture can save 26.46% area on average and get a speed-improvement.

Table 12.Experimental results of K-S 2 and proposed adders.

Timing & Area Analysis (UMC: 0.18um/TT corner)

. K-8 2 Proposed | K-5 2 | Proposed Area
Data Width — — .
(Delavy) (Delavy) (Area) (Area) Saving

16 0.71 0.69 LB888 4121 30.01%
32 0.84 0.82 11213 8549 23.76%
64 1.05 0.95 22939 17061 25.62%

average area saving: 26.46%

Hote : Delay(ns) / Area(um”2)

Table 13 shows the comparison: between the hybrid K-S Ling adder which uses
methodl (hybrid K-S Ling 1) and the proposed -adder. From the result of the
experiment, our proposed architecture Can,save.22.33% area on average and preserve

the advantage of high-speed by using Ling addition.

Table 13. Experimental results of hybrid K-S Ling 1 and proposed adders.

Timing & Area Analysis (UMC: 0.18um/TT corner)
hybrid hybrid
Data Width K-8 Proposed K-S Proposed Area
Ling 1 (Delavy) Ling 1 (Area) Saving
(Delay) (Area)
16 0.69 0.69 5575 4121 26.08%
32 0.83 0.82 10418 8549 17.943%
64 0.96 0.95 22150 17061 22.98%
average area saving: 22.33%
Hote : Delay(ns) / Area(um™2)

35

Table 14 shows the comparison between the hybrid K-S Ling adder which uses
method2 (hybrid K-S Ling 2) and the proposed adder. From the result of the
experiment, our proposed architecture can save 19.67% area on average and preserve

the advantage of high-speed by using Ling addition.

Table 14.Experimental results of hybrid K-S Ling 2 and proposed adders.

Timing & Area Analysis (UMC: 0.18um/TT corner)
hyvbrid hybrid
pata Width K-8 Proposed K-8 Proposed Area
Ling 2 (Delavy) Ling 2 (Area) Saving
(Del;}} {Hre;}
16 0.70 0.69 5096 4121 19.13%
32 0.82 0.82 10887 8549 21.48%
64 0.95 0.95 20906 17061 18.39%
average area saving: 19.67%
Note : Delay(ns) / Area(um™2)

From the above results, it is easily to see that the proposed architecture preserve the
high-speed of Ling addition and do everything possible to minimize the overall area.
However, the low-power is also an important factor to design a good adder or IC. In
general, the area and power are in direct proportion under the same frequency.
Therefore, the proposed architecture is expected to get an improvement on reducing
power dissipation. All designs in the following table are all under their fastest speed.
According to the results of Table 15, the proposed adders can achieve power
reductions of up to 21% when compared to K-S adders. From the results of Table 16,
the proposed adders can achieve power reductions of up to 17% when compared to

hybrid K-S Ling adders.

36

Table 15.Power estimation of K-S adders and proposed adders.

Power Anzalysis (UMC: O@.18um/TT corner)

Power Power
] E-5 1 KE-5 2 Proposed]]
Data Width — — Saving Saving
(Power) | (Power) (Power)
(1) (2)
16 9.780 8.652 5.694 41.78% 34.19%
32 13.786 12.793 10. 593 23.16% 17.20%
64 22.445 21.007 18.223 18.81% 13.25%

average power saving (1): 27.91%

average power saving (2): 21.55%

Hote : Power (mW)

Table 16.Power estimation of hybrid K-S Ling adders and proposed adders.

Power Analysis (UMC: @.18um/TT corner)

hybrid hybrid
Power Power
. K-§ K-§ Proposed . .
Data Width . . Saving Saving
Ling 1 Ling 2 (Power) (1) (2)
{(Power) | (Power)
16 8.100 T.268 5.694 29.70% 21.66%
32 12.515 12.853 10.593 15.36% 17.58%
64 22.159 21.31417 18.223 17.76% 14.63%

average power saving (1): 20.94%

average power saving (2): 17.96%

Hote : Power (mW)

However, the frequency (or delay) affects the simulation results of power greatly.
The faster adder may cause the higher power results form its high frequency (or low
delay). The more accurate analysis of energy dissipation is to compare the new
measure: Power-Delay Product (PDP). Using PDP to analyze the designs is the same
as measuring the power of each design under the same frequency. From Table 17 and
Table 18, the energy-saving percentage is closed to the area-saving percentage.

Compared to K-S adders, the PDP saving percentage is up to 25%. Even though the
37

proposed adders compare with hybrid K-S Ling adders, we still can save nearly 20%

PDP. So, the proposed high-speed architecture meets the goal of low-power and area

reduction.

Table 17.PDP estimation of K-S adders and proposed adders.

Power-Delay Product Analysis (UMC: 0.18um/TT corner)

PDP PDP
. KE-51 K-8 2 Proposed . .
Data Width - - Saving | Saving
(PDP) {PDP) (PDP)
(1) (2)
16 9.780%0.72 | 8.652*%0.71 | 5.694%0.69 | 42.00% | 33.15h%
32 13.786%0.85]12.793*%0.84]| 10.593*0.82 | 28.09% | 19.12%
64 22.445*1.02|21.007*1.05] 18.223*0.95 | 26.68% | 25.35%
average PDP saving (1): 32.26%
average PDP saving (2): 25.87%

Note :

P-D :Power-Delay Product(mW * nSec)

Table 18.PDP estimation of hybrid K-=S‘Eing adders and proposed adders.

Power-Delay Product Analysis (UMC: Q.18um/TT corner)

hybrid hybrid
PDP PDP
. K-8 K-8 Proposed . .
Data Width .] Saving | Saving
Ling 1 Ling 2 (PDP) (1) (2)
(PDP) (PDP)
16 8.100%0.69 | 7.268*%0.70 | 5.694*0.69 | 26.43% | 21.10%
32 12.515%0.83|12.853*0.82 | 10.593*0.82 | 18.68% | 18. 68%
64 22.159*%0.96 | 21.347*0.95|18.223*0.95 | 17.48% | 17.48%
average PDP saving (1): 20.86%
average PDP saving (2): 19.09%

Hote :

P-D :Power-Delay Product(mW * nSec)

Chapter 4 Reconfigurable Adder Architecture

Recently, a high-speed reconfigurable adder plays an important role for achieving
real-time processing of media signals. Thus a fast and reconfigurable architecture for
addition is needed. This chapter presents a methodology to design a high-speed
area-minimized reconfigurable hybrid Ling adder. The proposed approach is based on
the architecture presented in Chapter 3. The delay-penalty or area cost for the partition
scheme in the proposed architecture is small. In other words, there are few
modifications in the original architecture. Finally, a systematic design methodology of

the reconfigurable adder is presented in the later section.

4.1 Review of Previous Approach

Several reconfigurable adders have been proposed in [14-19], A reconfigurable
ripple carry adder in [16] uses additional bits for partition. Each partition bit
determines the propagation of the carry signal generated from previous segment of
addition. Fig. 31 shows the 32-bit reconfigurable adder using additional 4 bits to
support partition. Obviously, this approach causes large delay penalty and area cost.
In [19], a reconfigurable carry-skip adder has been proposed which minimizes the
energy-delay product by using non-uniform linearly increasing block sizes. A 64-bit
reconfigurable adder in displayed in Fig. 32. In [24], the reconfigurable carry-select
adder is proposed. It is faster than the reconfigurable ripple carry adder in [16]. But,
the architecture still locates partition scheme in the critical path. Fig. 33 shows a
12-bit reconfigurable CSA. The reconfigurable hybrid carry-lookahead/carry-select
adder has been proposed in [25]. The partition approaches are located in
carry-lookahead blocks and carry-select blocks. The partition scheme incurs no

additional delay in the critical path regardless of the size of adders. The additional

39

area cost is also small. A 16-bit reconfigurable hybrid carry-lookahead/carry-select

adder (CLSA) is presented in Fig. 34. However, it achieves high-speed by reducing

the variety of reconfigurability. Compared with other approaches, the proposed

reconfigurable adders can achieve the goal of reducing timing penalty avoiding

inserting the partition scheme

into the critical path. Moreover,

the high

reconfigurability and small area cost are the features of our approach.

Using (/1 to control the partition

+

01 89 10

1718 19

2627 28

35

A@0.7)| |A(8..15)

A(16..23)

A(24..31)

01 89 10

1718 19

26

2728 35

B(0.7)| |B(8..15)

B(16..23)

B(24..31)

01 89 10

1718 19

2627 28

35

S(0..7)| |S(8..15)

S(16..23)

S(24..31)

Fig. 31. A32:-bit reconfigurable-carry ripple adder.

al63:53] | /' b[63:53]

alizi+10] bli:i+10] | NCS3
11-b ci-1|
s[izi+ 100
I si63:53

skip

lci+10
NCo4

coul d—

partd par()

;1[52:431] Joi52:43]
alizi+9] blizi+91 | c43
skip 10-b ci-1
lci+9 .\.Ii.i—i—‘)J‘

53 | s152:43)

afl12:8]

| Ab[l?:?ﬂ

ali

di+d] blini+d] ek
skip 5-b ¢i-1
i+4 s[izi+4]

NC13 |!~'112:81

a[7:4] | Jbl7:41

ali:i+3] bli:i+3]] ¢4
SKip 4-b <
ci+3 s[i:i+3]
cs | si7:41

ci-1

.'J[I:3|| Ibll:3|
ali:i+2] bli:i+2]
skip 3-b il
ci+2 slizi+2]
NC4 | sl1:3]

NC1

d

a0 | Jbo
ai bi cin

skip 1

-l

-b ci-1

s

lcn

Isﬂ

IMUX2

Fig. 32. A 64-bit reconfigurable carry-skip adder.

40

Ca Pl €= PO
y
a[11:8] b[11:8] a[7-4] b[7:4] a[3:0] b[3:0]
| | | | | |
ch ct C
— RCA4 RCA2 RCAl
aut o=
s°[11:8] s0[7:4]
;1[|11:S] b[lll:S] a[T:Jf] h[r:4] L
ch e 7 €,
RCAS [T | RCA3 |3 :
so[11:8] s'[7:4]| s2[7:4] ;'
__________________ L 4 Y
c s[11:8] c; s[7:4] C; s[3:0]
Fig. 33. A 12-bit reconfigurable carry-select adder.
P by, 1,, by Ay P, b, a; l\o o P, by a, b, a b, a,
| | [| | | | | |l
¥ A I 0
PG Units L’j_L‘ ’j_L‘ .- LH_L\ ’j_L‘ nes L{ | | ==l []

pl£ g“ pIO I ™ .pSl g.?l pr . 6 an .pdl gd’l p.?

Pl b

‘ Block Propagate/Generate Unit

‘ Block Propagate/Generate Unit

117 g_"&. 1y

I p‘ 7 G ‘D» a4 G, a5

Carry Generation Unit f— —

L, _— [Cy C; C,
0 CoP, 0 CuP 0 CyuP
] li_\:l.?] '.1[Jﬁl:lil ol b[11:8] a[l1:8] o b[T:4] a[T:4] O b[3:0] a[3:0]

4-bit Adder |, 4-bit Adder 4—bit Adder 4-bit Adder
A5 A3 Al A0

II b[15:12] a[15:12] 1 b[11:8] a[ll:8] 1 b[T:4] a[T:4]

| }

| 4-bit Adder 4-bit Adder A-bit Adder

A6 Ad A2

Y

(C15, S[15:12]» (CLLS[11:8]) (CT, S[7:41) (C3,S[3:0])

Fig. 34. A 16-bit reconfigurable CLSA adder.

41

4.2 Proposed Architecture

The new reconfigurable blocks need to be inserted into the original architecture.

The X] cell uses the signal break i to break the propagate signal and generate signal

from previous block. The . cell also uses the signal break i to select the partial

carry-out from previous block or the external carry-in for partition. The cell

combine the “&2” cell and X] cell. The function of the cell is the same as the

X] cell. The Fig. 35 shows the logic implementation of the three reconfigurable
blocks. The delay of each reconfigurable block is 2-level logic. Then, these blocks are
used in the stage of handling carry-in. Because the logic depth of these blocks is the
same as the logic cell of carry-inn Operation, ‘the partition approaches don’t incur

delay-penalty on the critical path and only need small-additional area cost.

(I logic cell 1 for reconfigurability [l| : logic cell 2 for reconfigurability E : logic cell 3 for reconfigurability

break i gi break_i break i g'popitp

cin_bi pi

gim pim
gim pim gim pim

Fig. 35. Reconfigurable blocks.

42

The CSA blocks at the boundary of partition also need some modification. The
simple carry-select adder for reconfigurability (SCSA-R) is used in the proposed
architecture. The SCSA-R adds some logic for the generation of partial carry-out. The

Fig. 36 presents the architecture of a 4-bit SCSA-R.

Cin

Pt

S| "l
Y LT

cout_bi

Fig. 36. A 4-bit SCSA-R.

43

For the purpose of balancing the fanout of carries generated from the parallel-prefix
tree, the partial parallel-prefix tree in the left-hand side is used to generate final
carry-out instead of using carry-select block. Although using the SCSA-R block to be
the last CSA block can produce the final carry-out, the fanout of the last carry to
select sum bits and carry-out is larger than other carries. However, the reconfigurable
architecture needs to use the SCSA-R blocks. Consequently, the part of parallel-prefix
tree for final carry-out can be saved to reduce area. By this way, the area cost for
partition also can be minimized. This unbalanced fanout may cause some timing
penalty, but the additional delay is small. According to the experimental results in the
later section, the timing penalty is only 5.12%. A 32-bit proposed reconfigurable
adder is presented in Fig. 37. The different parts are also illustrated in the graph.
Finally, we introduce the method to control the partition by using the break i signal.
For example, four individual 8-bit.additions.can.be-derived by setting the partition
signals (break 2, break 1, break 0) as(l;-15-1)--When all break i signals are zeros, an
entire 32-bit addition can be achieved:. The part needed to pay attention is that the
cin_bi relative to break i should be setted by one when the partition is unnecessary.

Other cases of a 32-bit proposed reconfigurable adder are presented in Table 19.

44

BRBRHNY S

rrrrrre
LYYV, V.V.0-V V.

new cells for partition

yd
K | o Ll

the reduced part compared fo the o] i
original architecture | ¢ E

- o | Jotpam

s |

+— L3l

si| u 2]

-

J!

cdrry-select adder for reconfigurabilify

Fig. 37. A 32-bit proposed.reconfigurable adder.

Table 19. Partition-Methods.

www (cin b0,cin bl,cin b2) | partition scheme
0 0 0 (1 , 1 ,1) |a32-bit addition
0 0 1 (1 , 1 ,DC) (24 , 8)
0 1 0 (1 , DC ,1) (16 , 16)
0 1 1 (1 , DC ,DC) (le , 8 ,8)
1 0 0 (oc , 1 ,1) (8, 24)
1 0 1 (DC , 1 ,DC) (8,16, 8)
1 1 0 (DC , DC ,1) (8 ,8,16)
1 1 (DC , DC ,DC)| (8 ,8,8,8)
DC : Don't Care ; Controlled by User

45

4.3 Summary of Proposed Architecture

According to the basic components and main idea introduced in previous sections,
the design of proposed reconfigurable architecture can be summarized in the
following steps.

e Generate the bit-generate (g,) and bit-propagate (pn), and half-sum bit (d,) at the

first stage.

e Handle the carry-in signal by using the proposed method. To insert the “&2”

cells into the specific locations of generate and propagate pairs (g,, pn), with n =

4k-2 and k = N/8+1, N/8+2, ..., N/4-1 (N>=16). If the position of “&2” cell is at

the partition-boundary should be replaced by the cell. The E cell is used

in the location of (g,, pn) pairs;with n ='m-2 and m = k, 2k, ..., N/2 (k = the

minimum block-size for partition). In the end; the . cell is inserted in the
position of (g, pn) pairs, with n =m-Land.m sk, 2k, ..., N-k.

e Use Equation(9) and Equation(10) to.generate the intermediate generate and
propagate pairs (G,*, P,*) for Ling addition.

e Use the pairs (G,*, P,*) to build the parallel-prefix tree mentioned in section
3.2.1. The parallel-prefix structure can be employed for the generation of the
pseudo carries Hax 1, k=1, 2, ..., N/4-1.

e Replace the specific buffer nodes by the “&1” cells in parallel-prefix trees. These
buffer nodes pass pseudo carries Hac 1, k = 1, 2, ..., N/8. After the replacement,
these pseudo carries are transferred to normal carries Cay.;.

e Sclect correct sum-bits and partial carry-out signals produced from SCSA-R

blocks by using normal carries Ca.1, k=1, 2, ..., N/4-1.

46

In Fig. 38, the design steps of proposed architecture are illustrated. The order of
steps conforms to the design methodology mentioned above. Therefore, we can
design a high-speed and area-minimized reconfigurable adder from our proposed
approaches. These approaches preserve the good properties of original architecture. In
the end, a systematic methodology has been introduced for designing the proposed

reconfigurable architecture in this section.

303029282 %8 M 32N 8ITL BRIy s TéiJ.ilfﬂ(in

Ist Step 5&&%&&& <*>*”*<*><*><*> <*><*>*<*>*<+>+<v> EEBRE

! 7 1 T /) s rr

! &
2ud Step E ws] =] #ﬁ/ [RIALTATAIAL.
$ ¢

3rd Step

4-th Step
5-th Step
o
— cout bl
cout bl
] s [
Ak (g1gp!3) > (G40
s3] § P .
final Step I *:Jl w Q | e
‘g—!‘;_ glpp
(g26,p6)
S16] 3| S 'J
- C ;i C
si7| s | @fppi6) s§| s
ol ‘({pl?l K
SI8 ey 510
“ 4‘ - 4 (&10p10)
$19 (glf.pl8) st i i
- -

Fig. 38. Design steps of the proposed reconfigurable architecture.

47

4.4 Experimental Results and Analysis

After introducing the main idea and basic components in previous sections, the
advantages of proposed architecture can be proved by the following experimental
results. First, Table 20 gives the simple description of the experimental environment.

Table 20.Experimental environment 2.

Experimnetal Enviroment

HDL Verilog

UMC 0.18um
{under SS corner)
TSMC 0.18um
{under TT corner)

Process

Synopsys Design Compiler

Synthesis Tool .
(Version : W-2004.12-SP2-2)

Partitfon Size 3-bit block

Normally, the key of designing a reconfigurable adder successfully is to minimize
the area overhead and timing penalty. According to the results in Table 21, the
proposed reconfigurable architecture (Prop.-R) can achieve the goal of small penalty
on area and timing indeed. The additional area cost of the partition scheme is only
about 3.98% and the timing penalty is about 5.12% when compared to the proposed

architecture without reconfigurability (Prop.).

Table 21.Area and Timing penalty of proposed reconfigurable adders.

Timing & Area Analysis (UMC: 0.18um / 55 coner)

. Prop.-R Prop. Prop.-R Prop. Timing Area
Data Width
(Delay) (Delay) | (Area) (Area) | Penalty | Penalty
16 1.72 1.6 hkh28B 6167 T7.50% -10.36%
32 2.06 1.95 11849 11230 h.6d% h.h1%
64 2.3 2.25 24333 237h4 2.22% 2.44%

average timing penalty:

5.12% faverage area penalty: 3.9B%

Hote

: Delay(ns) / Area{um™2)

48

There are two reference reconfigurable adders for comparison. One is like the
reconfigurable ripple-carry adder mentioned in previous work. The multiplexer which
is used to be the partition scheme which selects the carry-out signal form previous
block or the external carry-in signal. All blocks of addition are described in RTL (+).
Fig. 39 shows the first type of the reconfigurable adder (adder-R typel). Another
reconfigurable adder is the reconfigurable carry-select adder (adder-R type2). The
architecture also uses the multiplexer to be the partition scheme. The critical path of
the adder is on the multiplexer-chain except the first block of addition. Therefore, it is
fast than the first reconfigurable adder. All blocks of addition are also described in

RTL (+). The architecture view is presented in Fig. 40.

cin_b2 cin_bl cin_bl
§-hit Adder 8-hit Adder 8-hit Adder §-bit Adder P
(RTL:+) (RTL :4) (RTL:) (RTL:)
Fig. 39. The first type of the reconfigurable adder.
cin_b2 cin_bl cin_b0
8-bit Adder 8-bit Adder g 8-bit Adder g 8-bit Adder |,
(RTL : +) (RTL : +) (RTL : +) = (RTL : +)
8-bit Adder 8-bit Adder 8-bit Adder
(RTL : +) (RTL : +) (RTL : +)

Y ¥

S_mux o

Fig. 40. The second type of the reconfigurable adder.

mux

Y

49

mux

The proposed reconfigurable architecture compares with the two reconfigurable
adders mentioned above. From Table 22, the proposed reconfigurable adders
(Prop.-R) achieve delay reductions of up to 31 percent on average when compared to
the first type of reconfigurable adder. Because the partition scheme of adder-R typel
is located in the carry-chain, the delay penalty grows greatly when the size becomes
large. From Table 23, the proposed adders achieve delay reductions of up to 26
percent on average when compared to the second type of reconfigurable adder. From
the utilization of CSA blocks, the critical path is not on the generation of sum bits or
carries. But, it still uses the multiplexer to select the boundary carry form previous
block or the individual carry for partition. Unfortunately, these multiplexers are still
on the critical path. So, this kind of reconfigurable adder also has the opportunity to
gain the more improvement on speed. Finally,Table 24 presents the comparison
between our 64-bit reconfigurable.adder and: the. adder in [24]. The architecture in
[24] and the second type reconfigurable.adder-have the same problem in critical path.
Both of them insert the partition scheme on-their critical path. According to these
results, it obviously shows that the performance-improvement and data-width are in
the direct ratio. The reconfigurable architecture designed by the proposed
methodology can meet the target of high-speed and small penalty of partition scheme.
Moreover, the penalty for partition would not increase greatly when the data width

becomes large in our proposed adder design.

50

Table 22.Timing analysis of adder-R typel and proposed-R.

Timing & Area Analysis (UMC:

0.18um/ 88 corner)

Adder-R Adder-R L.
] Prop. R Prop. R Timing

Data Width typel typel .
(Area) (Delay) Saving

{Area) (Delay)

16 hh28 4235 1.72 2.01 16.91%
32 11849 71614 2.06 2.89 28.72%
64 24333 12557 2.3 4.46 48.43%

average timing saving: 31.35%

Hote

Delay(ns) / Area(um™2)

Table 23.Timing analysis of adder-R type2 and proposed-R.

Timing & Area Analysis (UMO:

0.318um/ 58 corner)

Adder-R Adder-R L.
. Prop. R Prop. R Timing

Data Width typel type? .
{Area) {Delay) Saving

(Area) (Delay)

16 5528 4817 1.72 1.51 9.95%
32 11849 9035 2.06 2.71 23.99%
64 24333 17207 2.3 4.30 46.51%

average timing saving:

26.82%

Hote

Delay(ns) / Area(um"2)

Table 24.Timing analysis of CSA-R [24] and proposed-R.

Timing & Area Analysis (TsMc: 0.18um/TT corner)

. Timing
64d-bit adder Area Delay .
Saving
CSB-R [24] 20540 2.44
46.515%
Prop.-R 21761 1.36
Hote Delay(ns) / Area(um™2)

51

Chapter 5 RTL Code Generator

This chapter introduces the RTL code generator of our proposed architecture.
Section 3.3 and Section 4.3 describe the systematic design methodology of the
proposed adders. According to the methodology, we can derive the RTL code
generator. In the first version, the coding environment is the Visual C++R 6.0. Then,
an execution file (.exe) of MS-DOS version has been generated to be the RTL code
generator. The graphical user interface (GUI) is the main target for our next version.
Fig. 41 shows the RTL code generator of MS-DOS version. Our proposed generator

provides not only RTL code, but also the testbench code.

——— HModified Hybrid Parallel-Prefix-Carry—Select Ling Adder Gensrator ————
_—— AUTHOR =z ¥i—-Zeng Fong = —————

Copyright <c? 200%

Advanced Computer Architecture Research {ACARY Laboratory

Department of Electronics Engimeering. Mational Chiao Tung Univewrs ity
ACAR' = ProprietaryConfidential

All rights rezserved. Ho part of thiz design may he reproduced o stored
in a retrieval system,. or transmitted. in any form or by any means .
electronic, mechanical,., photocopwing, recording,. or otherwise .

without prior written permiszsion of the

Advanced Computer Architecture Reseawrch CACAR> Labhowatowry.

Unanthorized reproduction,. duplication. wuse. or disclosure of this
design will be deemed as infringement .

R e N T Y \

i ddddddddddddddddddddddidddad

S Btart to generate design -7
TS E SIS S S IS A A E SIS

- With HReconfigurability 7 ¥Y/H =z H
- Enter Data Width = 32

E
|
|

#——— Hithout Reconfigurability
-

-

re——Data Width = 32
s

r

r—— generate testhench - test_add_w
-

-

f——— generate design = m_hpcl__add._w
A

Sl o e e
L Finiszh? o
FRIIIPL IS EII SIS SIS LIS TIPS F S
Pressz any key to continuwe

Fig. 41. RTL code generator.
52

Chapter 6 Conclusions and Future Works

A high-speed area-minimized adder design has been presented. A systematic
methodology is also introduced in previous chapters. The proposed architecture
preserves the benefits of hybrid K-S Ling adders. Moreover, the methods for
parallel-prefix tree minimization and CSA optimization are used to further reduce
area. According the experimental results, the area saving percentage is up to 26%
when compared to traditional K-S adders. Compared with hybrid K-S adder, the
saving percentage is about 20%. Meanwhile, the power dissipation is also reduced
from the reduction of area. For achieving real-time media signals processing, the
proposed reconfigurable adder is also presented. To design an efficient reconfigurable
adder, the proposed partition scheme, for reconfigurability causes only small
delay-penalty and area cost. According to experimental results, the delay penalty is
closed to 5% and additional area overhead is lower than 4%. Compared to other
reconfigurable adders, our architecture has-a-great-improvement on speed from the
low penalty of timing. From these results, we can draw that the adder here presented
exhibits the high-speed, the minimized area, the more power-saving, and low
overhead for high reconfigurability. However, the Ling addition can only save one
logic-level delay. Consequently, the new algorithm [26] may be applied to our
architecture for reducing more delay than Ling addition. A more user-friendly RTL

code generator is also needed.

53

References

[1] K. Hwang, Computer Arithmetic. New York: Wiley, 1979.
[2] D, J, Kuck, The Structure of Computers and Computations. New York: Wiley,
1978.
[3] I. Koren, Computer Arithmetic Algorithms. A.K. Peters, Ltd., 2002.
[4] B. Parhami, Computer Arithmetic-Algorithms and Hardware Designs. Oxford
Univ. Press, 2000.
[5] O.J. Bedrij, “Carry Select Adder”, IRE Trans., EC-11, pp.340-346, June 1962.
[6] A. Weinberger and J.L Smith, “A Logic for High-Speed Addition”, Nat. Bur.
Stand. Circ., 591, pp.3-12, 1958.
[7] P.M. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrencé Equations,” IEEE Trans. Computers, vol.22, no. 8,
pp. 786-792, Aug. 1973.
[8] R.E. Lander and M.J. Fishet, “Parallel-Prefix Computation,” J. ACM, vol. 27, no.
4, pp. 831-838, Oct. 1980.
[9] R.P. Bent and H.T.Kung, “A Regular Layout for Parallel Adders,” IEEE Trans.
Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.
[10] T. Han and D. Carlson, “Fast Area-Efficient VLSI Adders,” Proc. Symp.
Computer Arithmetic, pp. 49-56, May 1987.
[11] S. Knowles, “A Family of Adders,” Proc. 14™ Symp. Computer Arithmetic, pp.
30-32, Apr. 1999. Reprinted in ARITH-15, pp. 277-281.
[12] H. Ling, “High-Speed Binary Adder,” IBM J.R&D, vol. 25, pp. 156-166, May

1981.

54

[13] Dimitrakopoulos, G.; Nikolos, D.,” High-speed parallel-prefix VLSI Ling
adders”, IEEE Trans. Computers, vol. 54, Issue 2, pp. 225-231, Feb. 2005.

[14] R.-B. Lee, “Subword parallelism with MAX-2”, IEEE Micro, vol. 16, no. 4, pp.
51-59, Aug. 1996.

[15] M. Tremblay, J.,-M. O’Connor, V. Narayanan, and H. Liang, “VIS speeds new
media processing”, IEEE Micro, vol. 16, no. 4, pp. 10-20, Aug. 1996.

[16] M. S. Schmookler, M. Putrino, A. Mather, J. Tyler, and H. V. Nguyen, “A
low-power, high-speed implementation of a PowerPC™ Microprocessor vector
extension”, IEEE Symp. Computer Arithmetic, pp. 12-19, 1999.

[17] A. A. Farooqui, V. G. Oklobdzija, and F. Chechrazi, “64-bit media adder,” in
Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Orlando, May 1999.

[18] S. Perri, P. Corsonello, and G::Cocorullo, “Ar.64-bit reconfigurable adder for low
power media processing”,«Electronics Lettets; vol. 38, no. 9, pp. 397-399, Apr.
2002.

[19] S. Perri, P. Corsonello, and G.*Cocorulle; *“A high-speed energy-efficient 64-bit
reconfigurable binary adder,” IEEE Trans. VLSI Systems, vol. 11, no. 5, pp.
939-943, Oct. 2003.

[20] A. Goldovsky et al., ”A 1.0-nsec 32-bit Prefix Tree Adder in 0.25-um static
CMOS,” Proc. Midwest Symp. Circuits and Systems, vol. 2, pp. 608-612, Aug.
1999.

[21] Y. Wang , C. Pai Xiaoyu Song, "The Design of Hybrid Carry-Lookahead/Carry
Select Adders", IEEE Trans. circuits and systems-II: analog and digital signal
processing, vol.49, no. 1, Jan. 2002.

[22] R. Zimmermann, "Binary Adder Architectures for Cell-Based VLSI and Their
Synthesis", Ph.D. dissertation, Swiss Federal Institute of Technology (ETH),

Zurich, 1998.
55

[23] Harris, D. Sutherland, I. Harvey Mudd Coll., Claremont, "Logical effort of carry
propagate adders", Proceedings of the Thirty-Seventh Asilomar Conference on
Signals, Systems and Computers, vol. 1, pp. 873-878, Nov. 2003.

[24] Jin-Fu Li, Yao-Chang Kuo, Chao-Da Huang, Tsu-Wei Tseng, Chin-Long
Wey,”Design of Reconfigurable Carry select Adders”, IEEE Asia-Pacific
Conference on Circuits and Systems, Mar. 2004.

[25] Jin-Fu Li, Jiunn-Der Yu, Yu-Jen Huang, A design methodology for hybrid
carry-lookahead/carry-select adders with reconfigurability”, IEEE Int. Symp.
Circuits and Systems, vol. 1, pp. 77-80, May 2005.

[26] Jackson, R., Talwar, S., "High speed binary addition", Thirty-Seventh Asilomar
Conference on Signals, Systems and Computers, vol. 2, pp. 1350-1353, Nov.

2004.

56

