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高速及面積最小化之可組態加法器設計 

 

研究生：馮翊展 指導教授：黃俊達  博士 

國立交通大學 

電子工程學系 電子研究所碩士班 

摘     要 

在數位電路系統設計中，加法是最基本的算術運算之一。因此過去有多種演算

法及架構被提出來用以符合不同的設計需求。採用不同的加法器架構像是進位選

擇(carry-select)式、平行前綴(parallel-prefix)式、和進位提前預知(carry-lookahead)  

式會有不同的面積、速度、還有功耗表現。一般而言，如果想要得到較佳的速度

及對後段製程實現較容易的電路結構，則Kogge-Stone平行前綴加法器架構是一套

不錯的解決方案。在進位的產生方面，我們提出的架構利用了Ling加法器去縮減一

個邏輯閘的延遲時間。而且我們用混合式平行前綴(hybrid parallel-prefix)/進位選

擇(carry-select)架構及一些特殊的功能元件用以縮減整個加法器的面積。從實驗的

結果可看出我們的新架構比傳統Kogge-Stone平行前綴加法器面積縮減了25%。近

來,多媒體已在我們生活當中扮演了一個重要角色。在處理多媒體訊號方面需要一

個可即時調整成處理不同精準度運算的高速可組態加法器。然而，為了達到可組

態所使用的切割架構(partition scheme)是需要一些額外的負擔。因此，我們也提出

了經由修改本來的架構但卻不需付出太多額外面積及延遲時間的新可組態式架

構。從實驗數據可看出我們只需要多增加5.12%延遲時間及3.98%面積就可完成新

的可組態加法器。簡而言之，我們所提出的加法器能在不影響速度下又盡可能的

去縮減面積，且又容易拓展成可組態架構。 
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 High-Speed Area-Minimized Reconfigurable   
Adder Design 

Student:Yi-Zeng Fong Advisor: Dr. Juinn-Dar Huang 

 

Department of Electronics Engineering & Institute of Electronics 
National Chiao Tung University 

 

Abstract 

Binary addition is one of the fundamental arithmetic operations in digital system 

design. Consequently, several adder architectures have been proposed to meet different 

design requirements in the past. Various architectures like carry-select, parallel-prefix, 

and carry-lookahead lead to different performance among area, delay, and power. In 

general, Kogge-Stone parallel-prefix adders provide a good solution to optimize delay 

and regular structure for VLSI implementation. The proposed architecture uses Ling 

addition to reduce one logic level delay in parallel-prefix structure for the carry 

generation. Furthermore, using hybrid parallel-prefix/carry-select architecture and some 

special function blocks can reduce overall area. Experimental results reveal that the 

proposed architecture achieves 25% area reduction when compared to traditional 

Kogge-Stone parallel-prefix adders. Recently, the multimedia plays an important role in 

our life. Multimedia signal processing usually needs a fast reconfigure adder, which can 

be run-time reconfigured to handle the operations with different precisions. However, 

the extra overhead of partition scheme for the purpose of reconfigurability is 

unavoidable. Therefore, we present a new reconfigurable approach by modifying our 

original architecture without introducing significant extra area and timing penalty. 

Finally, experimental results show that the new reconfigurable adder needs only 5.12% 

delay penalty and 3.98% area penalty. In brief, the proposed adders do our utmost to 

reduce area without affecting speed and extent to reconfigurable scheme easily. 
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Chapter 1 Introduction 
Binary addition is the primitive operation in computer arithmetic. A high-speed and 

area-minimized architecture for binary addition is the critical element for designing a 

high-performance digital IC. Therefore, a systematic design methodology for the new 

architecture which can meet the requirements of high performance and small area cost 

has been proposed in the thesis. 

1.1 Motivation 

  Various architectures for the binary addition have been proposed in [1-13]. In 

general, the carry-select [5], carry-lookahead [6], parallel-prefix [7-11], Ling [12] are 

the most common adders used to meet different design requirements. Parallel-prefix 

adders provide a highly efficient solution to the fast binary addition and regular VLSI 

implementation from the use of simple logic cells and low complexity of wiring. 

Meanwhile, the Ling adder offers a simplified carry-computation to gain the 

improvement of speed. In [13], a new architecture which combines the Ling and the 

parallel-prefix algorithms has been proposed. The parallel-prefix Ling adders [13] 

preserve the benefits over the traditional parallel-prefix carry-computation and offer 

reduced delay and fanout requirements. However, this architecture needs more area 

than the traditional parallel-prefix adder for achieving the purpose of high-speed. 

Even though the hybrid parallel-prefix / carry-select Ling architecture is used, the 

extra area overhead is still significant when compared to the hybrid structure which 

uses the traditional parallel-prefix algorithm. To solve the problem of significant area 

penalty, a new architecture has been proposed in this thesis. The proposed architecture 

preserves the property of high-speed by using Ling addition, while, at the same time, 

minimizes the overall area as far as possible.  
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In our daily life, multimedia devices require real-time audio and video signals 

processing. The algorithms used in the digital signal processing usually need large 

computations of multiple addition or multiplication. Therefore, SIMD (single 

instruction, multiple data) architecture is useful for these computation-hungry 

functions by calculating data in parallelism. To achieve these requirements, efficient 

reconfigurable computational elements such as reconfigurable adders are needed. For 

example, a reconfigurable 32-bit adder can execute one 32-bit, two 16-bit, or four 

8-bit additions depending on user requirements. Several structures [14-19] have been 

proposed to achieve real-time processing of media signals. Therefore, a high-speed 

area-minimized reconfigurable adder is also presented in this thesis. In the proposed 

architecture, the additional area cost and timing penalty for the partition scheme are 

very small. In other words, the new reconfigurable adders can be generated from the 

original architecture with minor changes. Finally, a high-speed area-minimized hybrid 

Ling adder with/without reconfigurability can be implemented by the systematic 

methodology presented in the later chapters.  

1.2 Thesis Organization 

  The rest of the thesis is organized as follows: Chapter 2 gives a brief description of 

the parallel-prefix adders, basic definitions of Ling addition, parallel-prefix Ling 

adders, and the methods of handling the carry-in signals. Chapter 3 introduces the 

previous approaches of the hybrid architecture, the detailed description of the 

proposed adder design, and the related experimental results. Chapter 4 describes the 

design methodology to build the proposed architecture with reconfigurability and 

corresponding experimental results. Chapter 5 presents the RTL code generator 

derived from the design steps described in Chapter 3 and Chapter 4. In the end, 

Conclusions and future works are drawn in Chapter 6. 
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Chapter 2 Preliminaries 
In this chapter, we give a brief description of equations and notation about our 

proposed architecture. This background knowledge contains the basic concepts 

required to understand our proposed design. 

2.1 Parallel-Prefix (P-P) Addition 

  To consider the addition of two N-bit binary numbers, A = aN-1aN-2…a0 and B = 

bN-1bN-2…b0. S = SN-1SN-2…S0 denotes the sum of the two binary number. A 

parallel-prefix addition can be partitioned into three stages. The first stage computes 

bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn). For every n (0≤n≤N-1), 

these signals can be computed by the following equations : 

& , | , ^n n n n n n n ng a b p a b d a b= = = n                     (1) 

The second stage is the parallel-prefix tree for computing the carry signals (Cn) by 

using the associative operator ○. The associative operator ○ is defined as : 

               (2) 

We can group these pairs of generate and propagate bits (gn , pn) to generate group 

term (Gm:n , Pm:n) by using associative operator ○ consecutively : 

    (3) 

Follow the above definitions, each carry Cn is equal to Gn:0. At the final stage, the 

sum bits (Sn) can be computed according to the following equation: 

1^n n nS d C −=                             (4) 

Several architectures have been proposed to compute the group term (Gm:n , Pm:n) in 

the second stage for different goals of design. Fig. 1 presents the 8-bit parallel-prefix 

adder which is proposed by Kogge and Stone. Fig. 2 presents the 8-bit parallel-prefix 

adder which is proposed by Lander and Fisher. There are three basic cells to construct 

 3



the parallel-prefix. The diamond-type node represents the logic cell for the 

generation of gn, pn, and dn. The black node  represents the logic cell for the 

associative operator. The white node  represents the buffer node. The  node 

represents the logic cell for the generation of sum bit. All of the function cells are 

shown in Fig. 3. 

 

        

Fig. 1. An 8-bit Kogge-Stone adder.        Fig. 2. An 8-bit Lander-Fisher adder. 

 

 

Fig. 3. Overview of function cells. 
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2.2 Ling Addition 

  According to the architecture proposed by Ling [12], a pseudo-carry signal (Hn) can 

be expressed as : 

1

: 0 1 : 0

1 1 2 1 2 1

1 1 2 1 2 1 0

1 1 2 1 2 1 0

    
    ( & & & ... & & &...& & )
        ( & ... & &...& & )
    & ... & &...& &

n n n

n n

n n n n n n n n n

n n n n n

n n n n n n

H C C
G G
g p g p p g p p p p g
g p g p p p g

g g p g p p p g

−

−

− − − − −

− − − − −

− − − − −

= +
= +
= + + + +

+ + +
= + + + +

0 +

0

   
(5) 

A carry signal (Cn) also can be expressed as : 

: 0

      1 1 2 1 2 1 0

1 1 2 1 2 1

1 1 2 1 2 1 0

    (    & & & ... & & &...& & )
    ( & & & & ... & & &...& & )
    & ( & ... & &...& & )
(   &

n n

n n n n n n n n n

n n n n n n n n n n

n n n n n n n

n n

C G
g p g p p g p p p p g

p g p g p p g p p p p g
p g g p g p p p g

based on p g

− − − − −

− − − − −

− − − − −

=
= + + + +
= + + + +
= + + + +

)ng= (6) 

From Equation(5) and Equation(6), the relationship between Hn and Cn is : 

1 1 2 1 2 1 0& ( & ... & &...& & )
   &
                                                                                                            

n n n n n n n n

n n

C p g g p g p p p g
p H

− − − − −= + + + +
=

        (7) 

  Therefore, a parallel-prefix adder using Ling addition, one row of carry-merge 

gates (Gn:n-1) can be replaced with OR gates, which produce the pseudo-carry signal 

(Hn). As a result, the calculation of Hn can save one logic level delay compared to the 

traditional generation of carry signal (Cn) in parallel-prefix tree. Finally, the 

generation of sum bit (Sn) should be modified to meet the pseudo-carry signal (Hn). 

The sum bit (Sn) derived from Hn can be computed as : 

1

1 1

1 1

^
   ^ ( & )

   & & ( ^ )

n n n

n n n

n n n n n

S d C
d p H

H d H d p

−

− −

− − 1−

=
=

= +               (8) 
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From Equation(8), we replace XOR gates with 2-1 multiplexers for the generation of 

sum bits. A systematic methodology that allows the parallel-prefix computation of 

Ling carries (Hn) is presented in [13]. First, we define two symbols Gn* and Pn* as the 

following equations : 

1*n n nG g g −= +                         (9) 

1* &n n nP p p 2− −=                       (10) 

If the addition has no carry-in, we define g-1 = p-1= 0 and gn = pn = 0, for n < -1. In 

the following, we use an 8-bit adder as an example. According to Equation(5) and gn 

& pn = gn, the Ling carries at the fourth bit position are expressed as : 

4 4 3 3 2 3 2 1 3 2 1 0

4 3 3 2 2 1 3 2 1 0

& & & & & &
    ( ) ( & ) & ( ) ( & ) & ( & ) &
H g g p g p p g p p p g

g g p p g g p p p p g 0

= + + + +
= + + + +   (11) 

From Equation(9) and Equation(10), Equation(11) can be rewritten as : 

4 4 3 3 2 2 1 3 2 1 0

4 4 2 4 2 0

0 0 1 0 0

( ) ( & ) & ( ) ( & ) & ( & ) &
    * *& * *& *& *
(   * 0 )

H g g p p g g p p p p g
G P G P P G

based on G g g g g−

= + + + +
= + +

= + = + =

0

     (12) 

Using the associative operator ○, Equation(12) can be expressed as : 

                (13)   

As a result, each Hn in an 8-bit adder can be derived using associative operator ○ and 

(Gn*,Pn*) pairs as follows : 
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  From the example, the parallel-prefix Ling adder needs an additional logic level to 

generate (Gn*,Pn*) . But, the computation of the pseudo carry (Hn) can reduce one 

level of associative operation compared to the traditional carry (Cn). In other words, 

we replace one level of associative operation (2 logic levels) with the new one logic 

level to generate (Gn*,Pn*). Therefore, the modified architecture of the parallel-prefix 

Ling adder can save one logic level for the computations of carries. The n-bit 

parallel-prefix Ling addition can be easily derived from the example of the 8-bit adder 

and Equation(13). The pseudo carry (Hn) can be expressed as : 

           (14) 

According to Equation(8), the multiplexers should be used to generate the sum bits 

(Sn) at the final stage to meet the change from traditional carry out (Cn) to pseudo 

carry out (Hn). Follow the above steps, the design of parallel-prefix Ling adders can 

be systematically constructed. In Fig. 4 and Fig. 5, the architecture of the 

parallel-prefix Ling adders is presented. In Fig. 6, it shows the implementation of new 

function cells. 
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Fig. 4. A 8-bit Kogge-Stone Ling adder.    Fig. 5. A 8-bit Lander-Fisher Ling adder. 

 

 

Fig. 6. New function cells for parallel-prefix Ling adders. 
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2.3 Carry-In Operation 

  In general, most binary adders need to consider the external carry-in. From [20], 

there are three ways to incorporate a carry-in into a Ling parallel-prefix structure. The 

first method needs an additional stage to generate the sum bit at each bit position from 

the pn signal and the carry from the previous bit position according the following 

equation : 

                       (15) 

According to the Equation(15), there is an extra associative operation at the last 

level to generate correct Hn. The architecture of the first method is illustrated in Fig. 7 

for an 8-bit parallel-prefix Ling adder. 

 

Fig. 7. An 8-bit parallel-prefix Ling adder with a carry-in using the first method. 

   

  The second method allows the first generate signal without modification and 

changes some white nodes (buffer nodes) to black nodes (associative operation) for 

incorporating the carry-in signal in parallel. This approach needs an additional stage 

 9



to generate the final carry-out (CN-1), but the computation of sum bits can be executed 

in parallel. An 8-bit parallel-prefix Ling adder is illustrated in Fig. 8. 

 

Fig. 8. An 8-bit parallel-prefix Ling adder with a carry-in using the second method. 

 

In the end, the third method can incorporate the carry-in by redefining the first 

generate signal (g0). The carry-in (Cin) can be considered an (g-1, p-1) pair. Then, the 

new g0 can be derived by setting (g-1, p-1) = (Cin, 1) and using Equation(2). The 

modified first generate signal (g0_m) can be expressed as : 

0 _ 0 0| ( & )m ig g p C= n                            (16) 

  Therefore, the architecture of the third method is similar to the original adder 

without carry-in except the additional logic for the newly modified first generate 

signal (g0_m). An 8-bit parallel-prefix Ling adder is presented in Fig. 9. 
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Fig. 9. An 8-bit parallel-prefix Ling adder with a carry-in using the third method. 

 

In general, fanout issue, logic depth, area, and complexity of wiring are the major 

issues to construct adders. In terms of fanout, the first method has the large amount of 

fanout on the carry-in (Cin) from the additional stage to generate correct carries. But, 

the fanout of other nodes has the max fanout of 2 for all methods. The third method 

has the smallest amount of fanout on Cin from the only one extra function cell to 

modify g0. In terms of logic depth, the second method has the smallest logic depth to 

generate sum bits, but the effect of fanout on Cin may affect the overall delay when 

the size of the adder is large. Under the consideration of the fanout effect, the constant 

fanout 1 of the third method may have the same or better performance on speed. By 

the way, the logic depth to generate final carry-out (CN-1) of each method is the same. 
 11



Because an additional stage is needed in the first method, there are N black nodes 

(associative operation) should be inserted into the original structure without the 

carry-in. The second method has the intermediate penalty of area from the additional 

log2N + 1 black nodes. There is the only one function cell needed to incorporate with 

carry-in to the architecture of the third method. So the third method has the smallest 

area penalty for the computation of carry-in. The complexity of wiring for the carry-in 

is like the fanout issue on Cin. Therefore, the third method is the best choice for small 

complexity of wiring. Consequently, the third method is a better way for 

parallel-prefix adders under the considerations of area, speed, and fanout effect. 
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Chapter 3 Proposed Adder Architecture 
In this chapter, the previous works of parallel-prefix Ling adders are introduced in 

the first section. The remaining sections give the detailed description of the proposed 

architecture. 

3.1 Previous Approaches 

  In Chapter 2, the fundamental architecture of parallel-prefix Ling adders has been 

introduced. But Kogge-Stone parallel-prefix adders comparing to other adders like 

carry-ripple adder, carry-select adders, and carry-skip adders has the critical problem 

on cost of area. Consequently, the modern architecture of adders utilizes a hybrid 

scheme. A hybrid scheme like the parallel-prefix/carry-select adder leads to the 

reduction of area and the requirement for high-speed. Fig. 10 mentioned in [13] 

illustrates a hybrid 32-bit adder which combines the Kogge-Stone parallel-prefix tree 

for the generation of carries and carry-select blocks for the sum-bits. 

 

 

Fig. 10. A 32-bit hybrid parallel-prefix adder. 
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  The following architecture in [21] is a hybrid carry-lookahead/carry-select adder. In 

Fig. 11, the correct sum-bits are selected from the carries generated by the 

carry-lookahead unit.  

 

Fig. 11. A general architecture of hybrid carry-lookahead/carry-select adder. 

 

The goal of hybrid structures is to overlap the time of computation for carries at the 

boundaries of the carry-select blocks with the time needed to calculate the sum bits. 

Base on the previous hybrid adders and parallel-prefix Ling adders described in 

Chapter 2, the hybrid parallel-prefix/carry-select Ling adders using Kogge-Stone 

algorithm (hybrid K-S Ling adders) are proposed in [13]. The new approach employs 

a Kogge-Stone parallel-prefix Ling structure to generate the partial pseudo- carries 

(Hn) for carry-select blocks. However, the traditional carry-select blocks need some 

modification for using pseudo-carries (Hn) instead of the normal carries (Cn). It also 

separates the generation of carries and sum bits into even and odd bit positions. The 

modified carry-select adders (MCSA) [13] use the pairs (Gn*, Pn*) as inputs instead of 

traditional (gn, pn) pairs. A 32-bit hybrid Ling adder and related function cells defined 

in [13] are shown in Fig. 12, Fig. 13, and Fig. 14. 
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Fig. 12. A 32-bit hybrid parallel-prefix/carry-select Ling adder. 

 

  
Fig. 13. Logic cells – 1. 

  

Fig. 14. Logic cells – 2. 
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Fig. 15. A modified 4-bit carry-select block (MCSA). 

 

However, the area of the MCSA is obviously larger than traditional carry-select 

block which is shown in Fig. 15. The Table 1 in [13] shows that the speed 

improvement of the hybrid parallel-prefix Ling adders induces the additional cost of 

area compared to the traditional hybrid parallel-prefix adders. However, the hybrid 

Ling adders can save area when compared to traditional parallel-prefix adders and 

parallel-prefix Ling adders from the simulation results in Table 2 presented by [13]. 

According to these results, a hybrid K-S Ling adder can improve speed and reduce the 

overall area when compared to the parallel-prefix adders. But, the area of hybrid K-S 

Ling adder is still large than hybrid K-S adder from the use of MCSA blocks. Based 

on the analysis of previous works, the goal of our proposed adder is to further reduce 

area without additional timing penalty by a systematic methodology in the following 

sections. Using the proposed architecture can solve the area problem of using MCSA 

blocks, reduce more area in parallel-prefix tree, and preserve the benefit of Ling 

addition. 
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Table 1. The timing and area results for hybrid adders. 

 

 

Table 2. The timing and area results for Ling adders. 

 

 

3.2 Proposed Architecture 

  The following sections introduce the proposed architecture with detailed block 

diagram and the systematic methodology to design the high-speed area-minimized 

hybrid Ling adder. From the experimental results, the proposed scheme can achieve 

area reductions of up to 25 percent when compared to the traditional Kogge-Stone 

parallel-prefix architectures. And further, it also can reduce nearly one-fifth area than 

the hybrid K-S Ling adders. 
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3.2.1 Area-Minimized Parallel-Prefix Tree 

  There are many algorithms to build the parallel-prefix tree. Various architectures 

result in different area, delay, complexity of wiring, and fanout issue. These different 

architectures from [22] are shown in Fig. 16, Fig. 17, Fig. 18, and Fig. 19. In these 

figures, all the (pn, gn) pairs are generated in the first level and other function nodes 

are shown in Fig. 3. Table 3 is a collection of area, delay, and fanout according to 

[22]. From these data in Table 3, the parallel-prefix architecture of Kogge-Stone type 

has the advantage of fast speed, the fixed number of fanout, and the regularity of 

wiring. Consequently, the Kogge-Stone parallel-prefix tree is chosen in our proposed 

approach. 

 

 

Fig. 16. A 16-bit Sklansky parallel-prefix adder. 

 

Fig. 17. A 16-bit Brent-Kung parallel-prefix adder. 
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Fig. 18. A 16-bit Kogge-Stone parallel-prefix adder. 

 

Fig. 19. A 16-bit Han-Carson parallel-prefix adder. 

 

Table 3. Comparison of different parallel-prefix algorithms. 
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However, all the data in Table 3 are produced by mathematics. We need more 

simulation results by physical implementation to get more confidence in Kogge-Stone 

parallel-prefix structure. From Table 4 by arranging the data in [23], it shows that the 

Kogge-Stone parallel-prefix adder (K-S adder) is a good solution to design a 

high-speed adder. The unit to estimate delay is FO4 (fanout-of-four inverter delay). 

But, the Kogge-Stone architecture achieves high performance by using a large amount 

of associative operation. More area may cause more power consumption and so the 

way to reduce overall area without loss of performance is important. A hybrid 

structure is used to achieve delay reductions in our design. And further, we use the 

parallel-prefix Ling structure introduced in Chapter 2 to be the main backbone. A 

32-bit Kogge-Stone parallel-prefix tree for the proposed hybrid Ling adder is shown 

in Fig. 20. 

Table 4. Delay estimation for different parallel-prefix algorithms. 

Algorithm Type Delay (FO4) N = 32 Delay (FO4) N = 64 

Ripple 54.6 107.7 

Sklansky 16.3 23.4 

Brent-Kung 16.8 21.8 

Lander-Fisher 15.6 20.2 

Han-Carson 13.3 16.4 

Kogge-Stone 13.4 18.0 

N : the number of addition 

1. Non-inverting CMOS 

2. uniform cell size 
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Fig. 20. A 32-bit Kogge-Stone parallel-prefix tree for the hybrid Ling adder. 

 

According to the Table 3, Fig. 12, Fig. 20, a 32-bit traditional Kogge-Stone 

parallel-prefix adder needs 129 nodes, a 32-bit architecture proposed in [13] it 

needs 29 nodes and 31       nodes, and the parallel-prefix tree in our design 

needs 25 nodes and 16  nodes. Assuming the use of two-input logic gate, 

the  node requires 3 logic gates, the    node or the  node requires 2 logic 

gates. The area cost of the proposed scheme is 107 gates, the architecture in [13] 

needs 137 gates, and the traditional architecture requires 387 gates. Consequently, the 

type of parallel-prefix tree in Fig. 20 can achieve the minimum area when compared 

to other architectures. The equations to calculate the cost of area for the three 

architectures are listed in Table 5. Table 6 and Table 7 explain area reductions of the 

parallel-prefix tree clearly via the following cases of various tree structures. From 

these cases, using hybrid parallel-prefix Ling structure can easily achieve the goal of 

area-reduction on the part of parallel-prefix tree. 

 

 

 
 21



Table 5. Equations to calculate number of different nodes. 

 

 

Table 6. Area comparison between K-S adders and proposed architecture. 

N (bit number) traditional K-S proposed hybrid K-S Ling saving percentage

16 147 43 70.75% 

32 387 107 72.35% 

64 963 259 73.10% 

Using the number of 2-input gates to estimate the area 

 

 

 

Table 7. Area comparison between hybrid K-S Ling and proposed architecture. 

N (bit number) hybrid K-S Ling proposed hybrid K-S Ling saving percentage

16 60 43 28.33% 

32 149 107 28.19% 

64 354 259 26.83% 

Using the number of 2-input gates to estimate the area 
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3.2.2 Carry-In Handling  

In general, most adders need the carry-in to support the multi-word addition and 

subtraction. Therefore, it is important to find the efficient approaches for 

incorporating the carry-in to a parallel-prefix structure. In Chapter 2, there are three 

ways for solving the carry-in problem. To achieve the minimum fanout of Cin, the 

smallest area penalty, and the regularity of parallel-prefix structures, we choose the 

third method to be the solution of our proposed adders with carry-in. First, we can see 

the carry-in as a (g-1,p-1) pair. Because the carry-in must propagate to the bit position 

0, setting g-1= Cin and p-1 = 1 represents the Carry-in. Finally, the original (g0, p0) 

needs to be modified as (g0_m, p0_m) by the following equation. The logic-level 

implementation for the (g0_m, p0_m) pair is shown in Fig. 21. 

 

          (17) 

  

 

 

Fig. 21. The logic cell to incorporate carry-in to the (g0, p0) pair. 
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3.2.3 The block size of carry-select adders (CSA) 

  In a hybrid parallel-prefix/carry-select adder, the size of the carry-select block 

should be chosen carefully. The timing of addition may become worse due to the 

un-optimized block size. Assuming the 2-input AND gate be the basic unit to estimate 

the delay. In Table 8, the timing information of all logic gates used to calculate delay 

of the carry-select block are listed. The formula to estimate delay of K-bit carry-select 

block can be derived form the general 4-bit block presented in Fig. 22. The equation 

is expressed as : 

 

1
N

  

1
K

(    )
1* ( 2)* 1*
1*1 ( 2)*2 1*2
2 1

(  : temporal sum bit K when assuming Cin is 1, K>1)

OR gate AND OR gate XOR

T longest delay of Sum
T K T T

K
K

Sum

−= + − +
= + − +
= −

    (18) 

When the time to generate the carries for selecting sum bits produced by carry-select 

blocks is equal to the delay of  , the block-size is optimized. However, the 

regularity of structure is also important for designing an adder. For the convenience of 

transferring our proposed architecture to the reconfigurable version, the block size 

should be the factor of the minimum partition-size. However, the small size like 2-bit, 

3-bit cannot get the benefit of area-reduction from the hybrid structure. Therefore, the 

nearly optimum block size K should meet the following Equations(19). 

1
KSum
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Table 8. Normalized logic delay table. 
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   (19) 

 

  Finally, using the cases of 16/32/64/128-bit adders to explain the way of choosing 

the nearly optimum size of the carry-select block are shown the Table 9. In general, 

4-bit block is a good solution for designing the proposed adder. Fig. 22 presents a 

4-bit simple (traditional) carry-select adder (SCSA). 
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Table 9. Examples of selecting nearly optimum block size. 

 

 

 

Fig. 22. A 4-bit carry-select adder. 
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3.2.4 CSA Optimization 

  The following content, the special function blocks for reducing the overall area are 

introduced. In section 3.2.2, the way for incorporating Cin to parallel-prefix Ling 

structure is presented. According to the skills mentioned in 3.2.1 and 3.2.2, the 

proposed architecture without CSA optimization is shown in Fig. 23. Although the 

parallel-prefix tree has been minimized, the area-problem of MCSA is still alive. The 

method to minimize the area of using MCSA is to insert some logic cells into the 

additional stage for Cin. There are two new logic cells in the proposed architecture. 

First, using the “&1” cells to replace some buffer nodes can transfer the Hn into Cn, 

for n <= N/2. The principle of the new cell can be derived from Equation(7). Fig. 24 

presents the logic implementation of the “&1” cell. However, there are not enough 

buffer nodes to insert the “&1” cells into the parallel-prefix tree. The pseudo carries 

Hn, n > N/2, has no significant buffer nodes in their path. Therefore, the new logic 

cell (“&2”) is proposed. Inserting the new cells into the stage for Cin can translate the 

pseudo carries Hn (n > N/2) into normal carries Cn (n > N/2). The following equation 

can explain the principle of the “&2” cell. Fig. 25 also displays the logic 

implementation of the “&2” cell. Finally, the new architecture can avoid the 

generation of Hn. Consequently, the proposed hybrid Ling adder can fully use simple 

(traditional) carry-select adders to eliminate the additional area cost on MCSAs. A 

16-bit proposed adder is shown in Fig. 26. 

        (20) 
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Fig. 23. A 16-bit proposed adder without CSA optimization. 

 

 

 

Fig. 24. Logic implementation of the &1 cell. 
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Fig. 25. Logic implementation of the &2 cell. 

 

 

 

              Fig. 26. A 16-bit proposed adder without CSA optimization. 
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3.2.5 Fanout Issue 

  For achieving minimum delay, we should consider the fanout. In general, the 

calculation of delay consists of intrinsic delay and delay of fanout loading. Therefore, 

the goal of high-speed can be achieved by minimizing the loading of the logic-cell. 

The Kogge-Stone parallel-prefix adder has the advantage of fixed fanout whether the 

length of addition grows or not. Fig. 27 shows that each associative operator in the 

parallel-prefix tree maintains the fanout of 2. In our architecture, the fanout also 

preserves the property of constant number of fanout except the last stage. But, the 

effect of the last stage is small from the small growth of fanout (2 -> 4) in general 

case. Compared to the hybrid architecture in [13], our proposed adder has the same 

fanout in the critical-path. From Fig. 28 and Fig. 29, the fanout issue of my proposed 

architecture and the hybrid architecture in [13] can be understood clearly. 

Consequently, the proposed hybrid architecture can minimize area without significant 

penalty on the number of fanout. 

 

Fig. 27. Fanout issue of a 8-bit K-S adder. 
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Fig. 28. Fanout issue of a 32-bit hybrid K-S Ling adder. 

 

 
 

Fig. 29. Fanout issue of a 32-bit proposed adder. 

 

 

 

 

 

 

 31



3.3 Summary of Proposed Architecture 

According to the basic components and main idea introduced in previous sections, 

the design of proposed architecture can be summarized in the following steps : 

  ● Generate the bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn) at the 

first stage. 

  ● Handle the carry-in signal by using the proposed method and insert the “&2” 

cells into the specific locations of generate and propagate pairs (gn, pn), with n = 

4k-2 and k = N/8+1, N/8+2, …, N/4-1 (N>=16). 

  ● Use Equation(9) and Equation(10) to generate the intermediate generate and 

propagate pairs (Gn*, Pn*) for Ling addition. 

  ● Use the pairs (Gn*, Pn*) to build the parallel-prefix tree mentioned in section 

3.2.1. The parallel-prefix structure can be employed for the generation of the 

pseudo carries H4k-1, k = 1, 2, …, N/4. 

  ● Replace the specific buffer nodes by the “&1” cells in parallel-prefix trees. These 

buffer nodes pass pseudo carries H4k-1, k = 1, 2, …, N/8. After the replacement, 

these pseudo carries are transferred to normal carries C4k-1. 

  ● Select correct sum-bits produced from SCSA blocks by using normal carries 

C4k-1, k = 1, 2, …, N/4-1. Finally, combining HN-1 and pN-1 can derive the final 

carry-out from using Equation(7). 

 

  In Fig. 30, the design steps of proposed architecture are illustrated. The order of 

steps conforms to the design methodology mentioned above. Therefore, we can 

design a high-speed and area-minimized adder from our proposed approaches. These 

approaches include area-minimized parallel-prefix tree, the better way to handling 

carry-in, and CSA optimization for Ling addition. In the end, a systematic 
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methodology has been introduced for designing the proposed architecture in this 

section. 

 

 

Fig. 30. Design steps of the proposed architecture. 
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3.4 Experimental Results and Analysis 

  After introducing the main idea and basic components in previous sections, the 

advantages of proposed architecture can be proved by the following experimental 

results. First, Table 10 gives the simple description of the experimental environment. 

Table 10. Experimental environment 1. 

 

  The proposed architecture compares with two objects, one for the traditional K-S 

adder and one for the hybrid K-S Ling adder. Because the carry-in handling in K-S 

Ling adder [13] uses method 1 or method 2 mentioned in the Chapter 2, the two 

objects of comparison use these two methods. The proposed adder uses only method 

3. Table 11 shows the comparison between the K-S adder which uses method1 

(K-S_1) and the proposed adder (proposed). From the result of the experiment, our 

proposed architecture can save 31.56% area on average and get a speed-improvement. 

Table 11. Experimental results of K-S_1 and proposed adders. 
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Table 12 shows the comparison between the K-S adder which uses method2 

(K-S_2) and the proposed adder. From the result of the experiment, our proposed 

architecture can save 26.46% area on average and get a speed-improvement. 

 

Table 12.Experimental results of K-S_2 and proposed adders. 

 

Table 13 shows the comparison between the hybrid K-S Ling adder which uses 

method1 (hybrid K-S Ling_1) and the proposed adder. From the result of the 

experiment, our proposed architecture can save 22.33% area on average and preserve 

the advantage of high-speed by using Ling addition. 

 

Table 13. Experimental results of hybrid K-S Ling_1 and proposed adders. 
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Table 14 shows the comparison between the hybrid K-S Ling adder which uses 

method2 (hybrid K-S Ling_2) and the proposed adder. From the result of the 

experiment, our proposed architecture can save 19.67% area on average and preserve 

the advantage of high-speed by using Ling addition. 

 

Table 14.Experimental results of hybrid K-S Ling_2 and proposed adders. 

 

 

From the above results, it is easily to see that the proposed architecture preserve the 

high-speed of Ling addition and do everything possible to minimize the overall area. 

However, the low-power is also an important factor to design a good adder or IC. In 

general, the area and power are in direct proportion under the same frequency. 

Therefore, the proposed architecture is expected to get an improvement on reducing 

power dissipation. All designs in the following table are all under their fastest speed. 

According to the results of Table 15, the proposed adders can achieve power 

reductions of up to 21% when compared to K-S adders. From the results of Table 16, 

the proposed adders can achieve power reductions of up to 17% when compared to 

hybrid K-S Ling adders. 
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Table 15.Power estimation of K-S adders and proposed adders. 

 

 

Table 16.Power estimation of hybrid K-S Ling adders and proposed adders. 

 

 

However, the frequency (or delay) affects the simulation results of power greatly. 

The faster adder may cause the higher power results form its high frequency (or low 

delay). The more accurate analysis of energy dissipation is to compare the new 

measure: Power-Delay Product (PDP). Using PDP to analyze the designs is the same 

as measuring the power of each design under the same frequency. From Table 17 and 

Table 18, the energy-saving percentage is closed to the area-saving percentage.     

Compared to K-S adders, the PDP saving percentage is up to 25%. Even though the 
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proposed adders compare with hybrid K-S Ling adders, we still can save nearly 20% 

PDP. So, the proposed high-speed architecture meets the goal of low-power and area 

reduction. 

 

Table 17.PDP estimation of K-S adders and proposed adders. 

 

 

Table 18.PDP estimation of hybrid K-S Ling adders and proposed adders. 
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Chapter 4 Reconfigurable Adder Architecture 
Recently, a high-speed reconfigurable adder plays an important role for achieving 

real-time processing of media signals. Thus a fast and reconfigurable architecture for 

addition is needed. This chapter presents a methodology to design a high-speed 

area-minimized reconfigurable hybrid Ling adder. The proposed approach is based on 

the architecture presented in Chapter 3. The delay-penalty or area cost for the partition 

scheme in the proposed architecture is small. In other words, there are few 

modifications in the original architecture. Finally, a systematic design methodology of 

the reconfigurable adder is presented in the later section. 

 

4.1 Review of Previous Approach 

Several reconfigurable adders have been proposed in [14-19], A reconfigurable 

ripple carry adder in [16] uses additional bits for partition. Each partition bit 

determines the propagation of the carry signal generated from previous segment of 

addition. Fig. 31 shows the 32-bit reconfigurable adder using additional 4 bits to 

support partition. Obviously, this approach causes large delay penalty and area cost. 

In [19], a reconfigurable carry-skip adder has been proposed which minimizes the 

energy-delay product by using non-uniform linearly increasing block sizes. A 64-bit 

reconfigurable adder in displayed in Fig. 32. In [24], the reconfigurable carry-select 

adder is proposed. It is faster than the reconfigurable ripple carry adder in [16]. But, 

the architecture still locates partition scheme in the critical path. Fig. 33 shows a 

12-bit reconfigurable CSA. The reconfigurable hybrid carry-lookahead/carry-select 

adder has been proposed in [25]. The partition approaches are located in 

carry-lookahead blocks and carry-select blocks. The partition scheme incurs no 

additional delay in the critical path regardless of the size of adders. The additional 

 39



area cost is also small. A 16-bit reconfigurable hybrid carry-lookahead/carry-select 

adder (CLSA) is presented in Fig. 34. However, it achieves high-speed by reducing 

the variety of reconfigurability. Compared with other approaches, the proposed 

reconfigurable adders can achieve the goal of reducing timing penalty avoiding 

inserting the partition scheme into the critical path. Moreover, the high 

reconfigurability and small area cost are the features of our approach. 

 
Fig. 31. A 32-bit reconfigurable carry ripple adder. 

 

Fig. 32. A 64-bit reconfigurable carry-skip adder. 
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Fig. 33. A 12-bit reconfigurable carry-select adder. 

 

 

 

Fig. 34. A 16-bit reconfigurable CLSA adder. 
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4.2 Proposed Architecture 

  The new reconfigurable blocks need to be inserted into the original architecture. 

The  cell uses the signal break_i to break the propagate signal and generate signal 

from previous block. The  cell also uses the signal break_i to select the partial 

carry-out from previous block or the external carry-in for partition. The  cell 

combine the “&2” cell and  cell. The function of the  cell is the same as the 

 cell. The Fig. 35 shows the logic implementation of the three reconfigurable 

blocks. The delay of each reconfigurable block is 2-level logic. Then, these blocks are 

used in the stage of handling carry-in. Because the logic depth of these blocks is the 

same as the logic cell of carry-in operation, the partition approaches don’t incur 

delay-penalty on the critical path and only need small additional area cost. 

 

 

Fig. 35. Reconfigurable blocks. 
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The CSA blocks at the boundary of partition also need some modification. The 

simple carry-select adder for reconfigurability (SCSA-R) is used in the proposed 

architecture. The SCSA-R adds some logic for the generation of partial carry-out. The 

Fig. 36 presents the architecture of a 4-bit SCSA-R. 

 

 

Fig. 36. A 4-bit SCSA-R. 
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  For the purpose of balancing the fanout of carries generated from the parallel-prefix 

tree, the partial parallel-prefix tree in the left-hand side is used to generate final 

carry-out instead of using carry-select block. Although using the SCSA-R block to be 

the last CSA block can produce the final carry-out, the fanout of the last carry to 

select sum bits and carry-out is larger than other carries. However, the reconfigurable 

architecture needs to use the SCSA-R blocks. Consequently, the part of parallel-prefix 

tree for final carry-out can be saved to reduce area. By this way, the area cost for 

partition also can be minimized. This unbalanced fanout may cause some timing 

penalty, but the additional delay is small. According to the experimental results in the 

later section, the timing penalty is only 5.12%. A 32-bit proposed reconfigurable 

adder is presented in Fig. 37. The different parts are also illustrated in the graph. 

Finally, we introduce the method to control the partition by using the break_i signal. 

For example, four individual 8-bit additions can be derived by setting the partition 

signals (break_2, break_1, break_0) as (1, 1, 1). When all break_i signals are zeros, an 

entire 32-bit addition can be achieved. The part needed to pay attention is that the 

cin_bi relative to break_i should be setted by one when the partition is unnecessary. 

Other cases of a 32-bit proposed reconfigurable adder are presented in Table 19. 
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Fig. 37. A 32-bit proposed reconfigurable adder. 

 

Table 19. Partition Methods. 
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4.3 Summary of Proposed Architecture 

According to the basic components and main idea introduced in previous sections, 

the design of proposed reconfigurable architecture can be summarized in the 

following steps. 

  ● Generate the bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn) at the 

first stage. 

  ● Handle the carry-in signal by using the proposed method. To insert the “&2” 

cells into the specific locations of generate and propagate pairs (gn, pn), with n = 

4k-2 and k = N/8+1, N/8+2, …, N/4-1 (N>=16). If the position of “&2” cell is at 

the partition-boundary should be replaced by the  cell. The  cell is used 

in the location of (gn, pn) pairs, with n = m-2 and m = k, 2k, …, N/2 (k = the 

minimum block-size for partition). In the end, the  cell is inserted in the 

position of (gn, pn) pairs, with n = m-1 and m = k, 2k, …, N-k. 

  ● Use Equation(9) and Equation(10) to generate the intermediate generate and 

propagate pairs (Gn*, Pn*) for Ling addition. 

  ● Use the pairs (Gn*, Pn*) to build the parallel-prefix tree mentioned in section 

3.2.1. The parallel-prefix structure can be employed for the generation of the 

pseudo carries H4k-1, k = 1, 2, …, N/4-1. 

  ● Replace the specific buffer nodes by the “&1” cells in parallel-prefix trees. These 

buffer nodes pass pseudo carries H4k-1, k = 1, 2, …, N/8. After the replacement, 

these pseudo carries are transferred to normal carries C4k-1. 

  ● Select correct sum-bits and partial carry-out signals produced from SCSA-R 

blocks by using normal carries C4k-1, k = 1, 2, …, N/4-1. 
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  In Fig. 38, the design steps of proposed architecture are illustrated. The order of 

steps conforms to the design methodology mentioned above. Therefore, we can 

design a high-speed and area-minimized reconfigurable adder from our proposed 

approaches. These approaches preserve the good properties of original architecture. In 

the end, a systematic methodology has been introduced for designing the proposed 

reconfigurable architecture in this section. 

 

 
Fig. 38. Design steps of the proposed reconfigurable architecture. 
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4.4 Experimental Results and Analysis 

  After introducing the main idea and basic components in previous sections, the 

advantages of proposed architecture can be proved by the following experimental 

results. First, Table 20 gives the simple description of the experimental environment. 

Table 20.Experimental environment 2. 

 

  Normally, the key of designing a reconfigurable adder successfully is to minimize 

the area overhead and timing penalty. According to the results in Table 21, the 

proposed reconfigurable architecture (Prop.-R) can achieve the goal of small penalty 

on area and timing indeed. The additional area cost of the partition scheme is only 

about 3.98% and the timing penalty is about 5.12% when compared to the proposed 

architecture without reconfigurability (Prop.). 

 

Table 21.Area and Timing penalty of proposed reconfigurable adders. 
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There are two reference reconfigurable adders for comparison. One is like the 

reconfigurable ripple-carry adder mentioned in previous work. The multiplexer which 

is used to be the partition scheme which selects the carry-out signal form previous 

block or the external carry-in signal. All blocks of addition are described in RTL (+). 

Fig. 39 shows the first type of the reconfigurable adder (adder-R type1). Another 

reconfigurable adder is the reconfigurable carry-select adder (adder-R type2). The 

architecture also uses the multiplexer to be the partition scheme. The critical path of 

the adder is on the multiplexer-chain except the first block of addition. Therefore, it is 

fast than the first reconfigurable adder. All blocks of addition are also described in 

RTL (+). The architecture view is presented in Fig. 40. 

 

 

Fig. 39. The first type of the reconfigurable adder. 

 

 
Fig. 40. The second type of the reconfigurable adder. 
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  The proposed reconfigurable architecture compares with the two reconfigurable 

adders mentioned above. From Table 22, the proposed reconfigurable adders 

(Prop.-R) achieve delay reductions of up to 31 percent on average when compared to 

the first type of reconfigurable adder. Because the partition scheme of adder-R type1 

is located in the carry-chain, the delay penalty grows greatly when the size becomes 

large. From Table 23, the proposed adders achieve delay reductions of up to 26 

percent on average when compared to the second type of reconfigurable adder. From 

the utilization of CSA blocks, the critical path is not on the generation of sum bits or 

carries. But, it still uses the multiplexer to select the boundary carry form previous 

block or the individual carry for partition. Unfortunately, these multiplexers are still 

on the critical path. So, this kind of reconfigurable adder also has the opportunity to 

gain the more improvement on speed. Finally, Table 24 presents the comparison 

between our 64-bit reconfigurable adder and the adder in [24]. The architecture in 

[24] and the second type reconfigurable adder have the same problem in critical path. 

Both of them insert the partition scheme on their critical path. According to these 

results, it obviously shows that the performance-improvement and data-width are in 

the direct ratio. The reconfigurable architecture designed by the proposed 

methodology can meet the target of high-speed and small penalty of partition scheme. 

Moreover, the penalty for partition would not increase greatly when the data width 

becomes large in our proposed adder design.                   
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Table 22.Timing analysis of adder-R type1 and proposed-R. 

 

 

Table 23.Timing analysis of adder-R type2 and proposed-R. 

 
 

Table 24.Timing analysis of CSA-R [24] and proposed-R. 
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Chapter 5 RTL Code Generator 
  This chapter introduces the RTL code generator of our proposed architecture. 

Section 3.3 and Section 4.3 describe the systematic design methodology of the 

proposed adders. According to the methodology, we can derive the RTL code 

generator. In the first version, the coding environment is the Visual C++R 6.0. Then, 

an execution file (.exe) of MS-DOS version has been generated to be the RTL code 

generator. The graphical user interface (GUI) is the main target for our next version. 

Fig. 41 shows the RTL code generator of MS-DOS version. Our proposed generator 

provides not only RTL code, but also the testbench code. 

 

Fig. 41. RTL code generator. 
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Chapter 6 Conclusions and Future Works 
  A high-speed area-minimized adder design has been presented. A systematic 

methodology is also introduced in previous chapters. The proposed architecture 

preserves the benefits of hybrid K-S Ling adders. Moreover, the methods for 

parallel-prefix tree minimization and CSA optimization are used to further reduce 

area. According the experimental results, the area saving percentage is up to 26% 

when compared to traditional K-S adders. Compared with hybrid K-S adder, the 

saving percentage is about 20%. Meanwhile, the power dissipation is also reduced 

from the reduction of area. For achieving real-time media signals processing, the 

proposed reconfigurable adder is also presented. To design an efficient reconfigurable 

adder, the proposed partition scheme for reconfigurability causes only small 

delay-penalty and area cost. According to experimental results, the delay penalty is 

closed to 5% and additional area overhead is lower than 4%. Compared to other 

reconfigurable adders, our architecture has a great improvement on speed from the 

low penalty of timing. From these results, we can draw that the adder here presented 

exhibits the high-speed, the minimized area, the more power-saving, and low 

overhead for high reconfigurability. However, the Ling addition can only save one 

logic-level delay. Consequently, the new algorithm [26] may be applied to our 

architecture for reducing more delay than Ling addition. A more user-friendly RTL 

code generator is also needed. 
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