

國立交通大學

電子工程學系 電子研究所

碩 士 論 文

高速及面積最小化之可組態加法器設計

High-Speed Area-Minimized Reconfigurable

Adder Design

研 究 生：馮翊展

 指導教授：黃俊達 博士

中 華 民 國 九 十 五 年 七 月

高速及面積最小化之可組態加法器設計

High-Speed Area-Minimized Reconfigurable

Adder Design

研 究 生：馮翊展 Student: Yi-Zeng Fong
指導教授：黃俊達 博士 Advisor: Dr. Juinn-Dar Huang

國立交通大學

電子工程學系 電子研究所

碩士論文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical & Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering & Institute of Electronics

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

 i

高速及面積最小化之可組態加法器設計

研究生：馮翊展 指導教授：黃俊達 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘 要

在數位電路系統設計中，加法是最基本的算術運算之一。因此過去有多種演算

法及架構被提出來用以符合不同的設計需求。採用不同的加法器架構像是進位選

擇(carry-select)式、平行前綴(parallel-prefix)式、和進位提前預知(carry-lookahead)

式會有不同的面積、速度、還有功耗表現。一般而言，如果想要得到較佳的速度

及對後段製程實現較容易的電路結構，則Kogge-Stone平行前綴加法器架構是一套

不錯的解決方案。在進位的產生方面，我們提出的架構利用了Ling加法器去縮減一

個邏輯閘的延遲時間。而且我們用混合式平行前綴(hybrid parallel-prefix)/進位選

擇(carry-select)架構及一些特殊的功能元件用以縮減整個加法器的面積。從實驗的

結果可看出我們的新架構比傳統Kogge-Stone平行前綴加法器面積縮減了25%。近

來,多媒體已在我們生活當中扮演了一個重要角色。在處理多媒體訊號方面需要一

個可即時調整成處理不同精準度運算的高速可組態加法器。然而，為了達到可組

態所使用的切割架構(partition scheme)是需要一些額外的負擔。因此，我們也提出

了經由修改本來的架構但卻不需付出太多額外面積及延遲時間的新可組態式架

構。從實驗數據可看出我們只需要多增加5.12%延遲時間及3.98%面積就可完成新

的可組態加法器。簡而言之，我們所提出的加法器能在不影響速度下又盡可能的

去縮減面積，且又容易拓展成可組態架構。

 ii

 High-Speed Area-Minimized Reconfigurable
Adder Design

Student:Yi-Zeng Fong Advisor: Dr. Juinn-Dar Huang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

Abstract

Binary addition is one of the fundamental arithmetic operations in digital system

design. Consequently, several adder architectures have been proposed to meet different

design requirements in the past. Various architectures like carry-select, parallel-prefix,

and carry-lookahead lead to different performance among area, delay, and power. In

general, Kogge-Stone parallel-prefix adders provide a good solution to optimize delay

and regular structure for VLSI implementation. The proposed architecture uses Ling

addition to reduce one logic level delay in parallel-prefix structure for the carry

generation. Furthermore, using hybrid parallel-prefix/carry-select architecture and some

special function blocks can reduce overall area. Experimental results reveal that the

proposed architecture achieves 25% area reduction when compared to traditional

Kogge-Stone parallel-prefix adders. Recently, the multimedia plays an important role in

our life. Multimedia signal processing usually needs a fast reconfigure adder, which can

be run-time reconfigured to handle the operations with different precisions. However,

the extra overhead of partition scheme for the purpose of reconfigurability is

unavoidable. Therefore, we present a new reconfigurable approach by modifying our

original architecture without introducing significant extra area and timing penalty.

Finally, experimental results show that the new reconfigurable adder needs only 5.12%

delay penalty and 3.98% area penalty. In brief, the proposed adders do our utmost to

reduce area without affecting speed and extent to reconfigurable scheme easily.

 iii

誌 謝

首先,我要感謝我的指導教授-黃俊達博士,在碩士兩年當中給我的支持和鼓

勵,讓我能有良好的研究環境,在自由的學習風氣之下,培養出獨立研究的能力,又

能隨時給予寶貴的意見及指導,對老師的感激之情,並非以簡短的文句可以表達。

當然也要感謝養育我長大的父母對我的栽培,沒有他們,就沒有今日的我。接

著要感謝的是所有來參與口試的所有教授們,張添烜教授和黃稚存教授,百忙當中

抽空前來指導我,讓我受益匪淺,也讓我得到了寶貴的經驗,謝謝你們。

最後也要感謝所有實驗室的同仁們,阿光、維聖、士祐、孝恩、詠翔學長、丁

之暉、許哲霖、李南興學弟們,跟大家一起修課、做實驗、和討論及分析研究成果

更是我人生旅途中一段最值得珍惜的回憶,希望未來在讀書或工作還有機會一起

努力。

希望這篇論文能對人類社會有小小的貢獻,如此一來在辛苦也就值得了,再次

謝謝大家的幫忙。

 iv

Contents

Chinese Abstract...…i

English Abstractii

Acknowledgments.iii

Contents ..iv

List of Tables ..vi

List of Figures... vii

Chapter 1 Introduction..…1

1.1 Motivation ..…1

1.2 Thesis Organization..…2

Chapter 2 Preliminaries… ..…3

2.1 Parallel-Prefix (P-P) Addition… ..…3

2.2 Ling Addition ...…5

2.3 Carry-In Operation… ...…9

Chapter 3 Proposed Adder Architecture...13

3.1 Review of Previous Approach..13

3.2 Proposed Architecture……………………………………………………. .17

3.2.1 Area-Minimized Parallel-Prefix Tree..18

3.2.2 Carry-In Handling..23

3.2.3 The Block Size of Carry-Select Adders(CSA)24

3.2.4 CSA Optimization ...27

3.2.5 Fanout Issue...30

3.3 Summary of the Proposed Architecture ...32

3.4 Experimental Results and Analysis ..34

Chapter 4 Proposed Reconfigurable Adder Architecture ...39

4.1 Review of Previous Approach..39

4.2 Proposed Architecture ..42

4.3 Summary of the Proposed Architecture ...46

4.4 Experimental Results and Analysis ..48

 v

Chapter 5 RTL Code Generator..52

Chapter 6 Conclusions and Future Works..53

References ...54

 vi

List of Tables

Table 1. The timing and area results for hybrid adders ..17

Table 2. The timing and area results for Ling adders...17

Table 3. Comparisons among different parallel-prefix algorithms19

Table 4. Delay estimation among different parallel-prefix algorithms20

Table 5. Equations to calculate the number of different nodes22

Table 6. Area comparison between K-S adders and proposed adders..........................22

Table 7. Area comparison between hybrid K-S Ling adders and proposed adders......22

Table 8. Normalized logic delay table..25

Table 9. Examples of selecting nearly optimum block size ...26

Table 10. Experimental environment 1 ..34

Table 11. Experimental results of K-S_1 and proposed adders34

Table 12. Experimental results of K-S_2 and proposed adders35

Table 13. Experimental results of hybrid K-S Ling_1 and proposed adders35

Table 14. Experimental results of hybrid K-S Ling_2 and proposed adders36

Table 15. Power estimation of K-S adders and proposed adders37

Table 16. Power estimation of hybrid K-S Ling adders and proposed adders37

Table 17. PDP estimation of K-S adders and proposed adders38

Table 18. PDP estimation of hybrid K-S Ling adders and proposed adders38

Table 19. Partition methods..45

Table 20. Experimental environment 2 ..48

Table 21. Area and timing penalty of proposed reconfigurable adders........................48

Table 22. Timing analysis of adder-R type1 and proposed-R......................................51

Table 23. Timing analysis of adder-R type2 and proposed-R......................................51

Table 24. Timing analysis of CSA-R [24] and proposed-R ...51

 vii

List of Figures

Fig. 1. An 8-bit Kogge-Stone adder..4

Fig. 2. An 8-bit Lander-Fisher adder ..4

Fig. 3. Overview of function cells ..4

Fig. 4. A 8-bit Kogge-Stone Ling adder ...8

Fig. 5. A 8-bit Lander-Fisher Ling adder..8

Fig. 6. New function cells for parallel-prefix Ling adders ...8

Fig. 7. An 8-bit parallel-prefix Ling adder with a carry-in using the first method.........9

Fig. 8. An 8-bit parallel-prefix Ling adder with a carry-in using the second
method ...10

Fig. 9. An 8-bit parallel-prefix Ling adder with a carry-in using the third method......11

Fig. 10. A 32-bit hybrid parallel-prefix adder...13

Fig. 11. A general architecture of hybrid carry-lookahead/carry-select adder14

Fig. 12. A 32-bit hybrid parallel-prefix/carry-select Ling adder15

Fig. 13. Logic cells - 1 ..15

Fig. 14. Logic cells - 2 ..15

Fig. 15. A modified 4-bit carry-select block (MCSA)..16

Fig. 16. A 16-bit Sklansky parallel-prefix adder ..18

Fig. 17. A 16-bit Brent-Kung parallel-prefix adder..18

Fig. 18. A 16-bit Kogge-Stone parallel-prefix adder..19

Fig. 19. A 16-bit Han-Carson parallel-prefix adder..19

Fig. 20. A 32-bit Kogge-Stone parallel-prefix tree for the hybrid Ling adder21

Fig. 21. The logic cell to incorporate carry-in to the (g0, p0) pair23

Fig. 22. A 4-bit carry-select adder ..26

Fig. 23. A 16-bit proposed adder without CSA optimization ...28

Fig. 24. Logic implementation of the &1 cell...28

Fig. 25. Logic implementation of the &2 cell...29

Fig. 26. A 16-bit proposed adder without CSA optimization ...29

Fig. 27. Fanout issue of a 8-bit K-S adder ..30

 viii

Fig. 28. Fanout issue of a 32-bit hybrid K-S Ling adder ..31

Fig. 29. Fanout issue of a 32-bit proposed adder..31

Fig. 30. Design steps of the proposed architecture ...33

Fig. 31. A 32-bit reconfigurable carry ripple adder ..40

Fig. 32. A 64-bit reconfigurable carry-skip adder ..40

Fig. 33. A 12-bit reconfigurable carry-select adder..41

Fig. 34. A 16-bit reconfigurable CLSA adder ..41

Fig. 35. Reconfigurable blocks ...42

Fig. 36. A 4-bit SCSA-R...43

Fig. 37. A 32-bit proposed reconfigurable adder..45

Fig. 38. Design steps of the proposed reconfigurable architecture.................................47

Fig. 39. The first type of the reconfigurable adder ...49

Fig. 40. The second type of the reconfigurable adder...49

Fig. 41. RTL code generator ...52

Chapter 1 Introduction
Binary addition is the primitive operation in computer arithmetic. A high-speed and

area-minimized architecture for binary addition is the critical element for designing a

high-performance digital IC. Therefore, a systematic design methodology for the new

architecture which can meet the requirements of high performance and small area cost

has been proposed in the thesis.

1.1 Motivation

 Various architectures for the binary addition have been proposed in [1-13]. In

general, the carry-select [5], carry-lookahead [6], parallel-prefix [7-11], Ling [12] are

the most common adders used to meet different design requirements. Parallel-prefix

adders provide a highly efficient solution to the fast binary addition and regular VLSI

implementation from the use of simple logic cells and low complexity of wiring.

Meanwhile, the Ling adder offers a simplified carry-computation to gain the

improvement of speed. In [13], a new architecture which combines the Ling and the

parallel-prefix algorithms has been proposed. The parallel-prefix Ling adders [13]

preserve the benefits over the traditional parallel-prefix carry-computation and offer

reduced delay and fanout requirements. However, this architecture needs more area

than the traditional parallel-prefix adder for achieving the purpose of high-speed.

Even though the hybrid parallel-prefix / carry-select Ling architecture is used, the

extra area overhead is still significant when compared to the hybrid structure which

uses the traditional parallel-prefix algorithm. To solve the problem of significant area

penalty, a new architecture has been proposed in this thesis. The proposed architecture

preserves the property of high-speed by using Ling addition, while, at the same time,

minimizes the overall area as far as possible.

 1

In our daily life, multimedia devices require real-time audio and video signals

processing. The algorithms used in the digital signal processing usually need large

computations of multiple addition or multiplication. Therefore, SIMD (single

instruction, multiple data) architecture is useful for these computation-hungry

functions by calculating data in parallelism. To achieve these requirements, efficient

reconfigurable computational elements such as reconfigurable adders are needed. For

example, a reconfigurable 32-bit adder can execute one 32-bit, two 16-bit, or four

8-bit additions depending on user requirements. Several structures [14-19] have been

proposed to achieve real-time processing of media signals. Therefore, a high-speed

area-minimized reconfigurable adder is also presented in this thesis. In the proposed

architecture, the additional area cost and timing penalty for the partition scheme are

very small. In other words, the new reconfigurable adders can be generated from the

original architecture with minor changes. Finally, a high-speed area-minimized hybrid

Ling adder with/without reconfigurability can be implemented by the systematic

methodology presented in the later chapters.

1.2 Thesis Organization

 The rest of the thesis is organized as follows: Chapter 2 gives a brief description of

the parallel-prefix adders, basic definitions of Ling addition, parallel-prefix Ling

adders, and the methods of handling the carry-in signals. Chapter 3 introduces the

previous approaches of the hybrid architecture, the detailed description of the

proposed adder design, and the related experimental results. Chapter 4 describes the

design methodology to build the proposed architecture with reconfigurability and

corresponding experimental results. Chapter 5 presents the RTL code generator

derived from the design steps described in Chapter 3 and Chapter 4. In the end,

Conclusions and future works are drawn in Chapter 6.

 2

Chapter 2 Preliminaries
In this chapter, we give a brief description of equations and notation about our

proposed architecture. This background knowledge contains the basic concepts

required to understand our proposed design.

2.1 Parallel-Prefix (P-P) Addition

 To consider the addition of two N-bit binary numbers, A = aN-1aN-2…a0 and B =

bN-1bN-2…b0. S = SN-1SN-2…S0 denotes the sum of the two binary number. A

parallel-prefix addition can be partitioned into three stages. The first stage computes

bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn). For every n (0≤n≤N-1),

these signals can be computed by the following equations :

& , | , ^n n n n n n n ng a b p a b d a b= = = n (1)

The second stage is the parallel-prefix tree for computing the carry signals (Cn) by

using the associative operator ○. The associative operator ○ is defined as :

 (2)

We can group these pairs of generate and propagate bits (gn , pn) to generate group

term (Gm:n , Pm:n) by using associative operator ○ consecutively :

 (3)

Follow the above definitions, each carry Cn is equal to Gn:0. At the final stage, the

sum bits (Sn) can be computed according to the following equation:

1^n n nS d C −= (4)

Several architectures have been proposed to compute the group term (Gm:n , Pm:n) in

the second stage for different goals of design. Fig. 1 presents the 8-bit parallel-prefix

adder which is proposed by Kogge and Stone. Fig. 2 presents the 8-bit parallel-prefix

adder which is proposed by Lander and Fisher. There are three basic cells to construct

 3

the parallel-prefix. The diamond-type node represents the logic cell for the

generation of gn, pn, and dn. The black node represents the logic cell for the

associative operator. The white node represents the buffer node. The node

represents the logic cell for the generation of sum bit. All of the function cells are

shown in Fig. 3.

Fig. 1. An 8-bit Kogge-Stone adder. Fig. 2. An 8-bit Lander-Fisher adder.

Fig. 3. Overview of function cells.

 4

2.2 Ling Addition

 According to the architecture proposed by Ling [12], a pseudo-carry signal (Hn) can

be expressed as :

1

: 0 1 : 0

1 1 2 1 2 1

1 1 2 1 2 1 0

1 1 2 1 2 1 0

 (& & & ... & & &...& &)
 (& ... & &...& &)
 & ... & &...& &

n n n

n n

n n n n n n n n n

n n n n n

n n n n n n

H C C
G G
g p g p p g p p p p g
g p g p p p g

g g p g p p p g

−

−

− − − − −

− − − − −

− − − − −

= +
= +
= + + + +

+ + +
= + + + +

0 +

0

(5)

A carry signal (Cn) also can be expressed as :

: 0

 1 1 2 1 2 1 0

1 1 2 1 2 1

1 1 2 1 2 1 0

 (& & & ... & & &...& &)
 (& & & & ... & & &...& &)
 & (& ... & &...& &)
(&

n n

n n n n n n n n n

n n n n n n n n n n

n n n n n n n

n n

C G
g p g p p g p p p p g

p g p g p p g p p p p g
p g g p g p p p g

based on p g

− − − − −

− − − − −

− − − − −

=
= + + + +
= + + + +
= + + + +

)ng= (6)

From Equation(5) and Equation(6), the relationship between Hn and Cn is :

1 1 2 1 2 1 0& (& ... & &...& &)
 &

n n n n n n n n

n n

C p g g p g p p p g
p H

− − − − −= + + + +
=

 (7)

 Therefore, a parallel-prefix adder using Ling addition, one row of carry-merge

gates (Gn:n-1) can be replaced with OR gates, which produce the pseudo-carry signal

(Hn). As a result, the calculation of Hn can save one logic level delay compared to the

traditional generation of carry signal (Cn) in parallel-prefix tree. Finally, the

generation of sum bit (Sn) should be modified to meet the pseudo-carry signal (Hn).

The sum bit (Sn) derived from Hn can be computed as :

1

1 1

1 1

^
 ^ (&)

 & & (^)

n n n

n n n

n n n n n

S d C
d p H

H d H d p

−

− −

− − 1−

=
=

= + (8)

 5

From Equation(8), we replace XOR gates with 2-1 multiplexers for the generation of

sum bits. A systematic methodology that allows the parallel-prefix computation of

Ling carries (Hn) is presented in [13]. First, we define two symbols Gn* and Pn* as the

following equations :

1*n n nG g g −= + (9)

1* &n n nP p p 2− −= (10)

If the addition has no carry-in, we define g-1 = p-1= 0 and gn = pn = 0, for n < -1. In

the following, we use an 8-bit adder as an example. According to Equation(5) and gn

& pn = gn, the Ling carries at the fourth bit position are expressed as :

4 4 3 3 2 3 2 1 3 2 1 0

4 3 3 2 2 1 3 2 1 0

& & & & & &
 () (&) & () (&) & (&) &
H g g p g p p g p p p g

g g p p g g p p p p g 0

= + + + +
= + + + + (11)

From Equation(9) and Equation(10), Equation(11) can be rewritten as :

4 4 3 3 2 2 1 3 2 1 0

4 4 2 4 2 0

0 0 1 0 0

() (&) & () (&) & (&) &
 * *& * *& *& *
(* 0)

H g g p p g g p p p p g
G P G P P G

based on G g g g g−

= + + + +
= + +

= + = + =

0

 (12)

Using the associative operator ○, Equation(12) can be expressed as :

 (13)

As a result, each Hn in an 8-bit adder can be derived using associative operator ○ and

(Gn*,Pn*) pairs as follows :

 6

 From the example, the parallel-prefix Ling adder needs an additional logic level to

generate (Gn*,Pn*) . But, the computation of the pseudo carry (Hn) can reduce one

level of associative operation compared to the traditional carry (Cn). In other words,

we replace one level of associative operation (2 logic levels) with the new one logic

level to generate (Gn*,Pn*). Therefore, the modified architecture of the parallel-prefix

Ling adder can save one logic level for the computations of carries. The n-bit

parallel-prefix Ling addition can be easily derived from the example of the 8-bit adder

and Equation(13). The pseudo carry (Hn) can be expressed as :

 (14)

According to Equation(8), the multiplexers should be used to generate the sum bits

(Sn) at the final stage to meet the change from traditional carry out (Cn) to pseudo

carry out (Hn). Follow the above steps, the design of parallel-prefix Ling adders can

be systematically constructed. In Fig. 4 and Fig. 5, the architecture of the

parallel-prefix Ling adders is presented. In Fig. 6, it shows the implementation of new

function cells.

 7

Fig. 4. A 8-bit Kogge-Stone Ling adder. Fig. 5. A 8-bit Lander-Fisher Ling adder.

Fig. 6. New function cells for parallel-prefix Ling adders.

 8

2.3 Carry-In Operation

 In general, most binary adders need to consider the external carry-in. From [20],

there are three ways to incorporate a carry-in into a Ling parallel-prefix structure. The

first method needs an additional stage to generate the sum bit at each bit position from

the pn signal and the carry from the previous bit position according the following

equation :

 (15)

According to the Equation(15), there is an extra associative operation at the last

level to generate correct Hn. The architecture of the first method is illustrated in Fig. 7

for an 8-bit parallel-prefix Ling adder.

Fig. 7. An 8-bit parallel-prefix Ling adder with a carry-in using the first method.

 The second method allows the first generate signal without modification and

changes some white nodes (buffer nodes) to black nodes (associative operation) for

incorporating the carry-in signal in parallel. This approach needs an additional stage

 9

to generate the final carry-out (CN-1), but the computation of sum bits can be executed

in parallel. An 8-bit parallel-prefix Ling adder is illustrated in Fig. 8.

Fig. 8. An 8-bit parallel-prefix Ling adder with a carry-in using the second method.

In the end, the third method can incorporate the carry-in by redefining the first

generate signal (g0). The carry-in (Cin) can be considered an (g-1, p-1) pair. Then, the

new g0 can be derived by setting (g-1, p-1) = (Cin, 1) and using Equation(2). The

modified first generate signal (g0_m) can be expressed as :

0 _ 0 0| (&)m ig g p C= n (16)

 Therefore, the architecture of the third method is similar to the original adder

without carry-in except the additional logic for the newly modified first generate

signal (g0_m). An 8-bit parallel-prefix Ling adder is presented in Fig. 9.

 10

Fig. 9. An 8-bit parallel-prefix Ling adder with a carry-in using the third method.

In general, fanout issue, logic depth, area, and complexity of wiring are the major

issues to construct adders. In terms of fanout, the first method has the large amount of

fanout on the carry-in (Cin) from the additional stage to generate correct carries. But,

the fanout of other nodes has the max fanout of 2 for all methods. The third method

has the smallest amount of fanout on Cin from the only one extra function cell to

modify g0. In terms of logic depth, the second method has the smallest logic depth to

generate sum bits, but the effect of fanout on Cin may affect the overall delay when

the size of the adder is large. Under the consideration of the fanout effect, the constant

fanout 1 of the third method may have the same or better performance on speed. By

the way, the logic depth to generate final carry-out (CN-1) of each method is the same.
 11

Because an additional stage is needed in the first method, there are N black nodes

(associative operation) should be inserted into the original structure without the

carry-in. The second method has the intermediate penalty of area from the additional

log2N + 1 black nodes. There is the only one function cell needed to incorporate with

carry-in to the architecture of the third method. So the third method has the smallest

area penalty for the computation of carry-in. The complexity of wiring for the carry-in

is like the fanout issue on Cin. Therefore, the third method is the best choice for small

complexity of wiring. Consequently, the third method is a better way for

parallel-prefix adders under the considerations of area, speed, and fanout effect.

 12

Chapter 3 Proposed Adder Architecture
In this chapter, the previous works of parallel-prefix Ling adders are introduced in

the first section. The remaining sections give the detailed description of the proposed

architecture.

3.1 Previous Approaches

 In Chapter 2, the fundamental architecture of parallel-prefix Ling adders has been

introduced. But Kogge-Stone parallel-prefix adders comparing to other adders like

carry-ripple adder, carry-select adders, and carry-skip adders has the critical problem

on cost of area. Consequently, the modern architecture of adders utilizes a hybrid

scheme. A hybrid scheme like the parallel-prefix/carry-select adder leads to the

reduction of area and the requirement for high-speed. Fig. 10 mentioned in [13]

illustrates a hybrid 32-bit adder which combines the Kogge-Stone parallel-prefix tree

for the generation of carries and carry-select blocks for the sum-bits.

Fig. 10. A 32-bit hybrid parallel-prefix adder.

 13

 The following architecture in [21] is a hybrid carry-lookahead/carry-select adder. In

Fig. 11, the correct sum-bits are selected from the carries generated by the

carry-lookahead unit.

Fig. 11. A general architecture of hybrid carry-lookahead/carry-select adder.

The goal of hybrid structures is to overlap the time of computation for carries at the

boundaries of the carry-select blocks with the time needed to calculate the sum bits.

Base on the previous hybrid adders and parallel-prefix Ling adders described in

Chapter 2, the hybrid parallel-prefix/carry-select Ling adders using Kogge-Stone

algorithm (hybrid K-S Ling adders) are proposed in [13]. The new approach employs

a Kogge-Stone parallel-prefix Ling structure to generate the partial pseudo- carries

(Hn) for carry-select blocks. However, the traditional carry-select blocks need some

modification for using pseudo-carries (Hn) instead of the normal carries (Cn). It also

separates the generation of carries and sum bits into even and odd bit positions. The

modified carry-select adders (MCSA) [13] use the pairs (Gn*, Pn*) as inputs instead of

traditional (gn, pn) pairs. A 32-bit hybrid Ling adder and related function cells defined

in [13] are shown in Fig. 12, Fig. 13, and Fig. 14.

 14

Fig. 12. A 32-bit hybrid parallel-prefix/carry-select Ling adder.

Fig. 13. Logic cells – 1.

Fig. 14. Logic cells – 2.

 15

Fig. 15. A modified 4-bit carry-select block (MCSA).

However, the area of the MCSA is obviously larger than traditional carry-select

block which is shown in Fig. 15. The Table 1 in [13] shows that the speed

improvement of the hybrid parallel-prefix Ling adders induces the additional cost of

area compared to the traditional hybrid parallel-prefix adders. However, the hybrid

Ling adders can save area when compared to traditional parallel-prefix adders and

parallel-prefix Ling adders from the simulation results in Table 2 presented by [13].

According to these results, a hybrid K-S Ling adder can improve speed and reduce the

overall area when compared to the parallel-prefix adders. But, the area of hybrid K-S

Ling adder is still large than hybrid K-S adder from the use of MCSA blocks. Based

on the analysis of previous works, the goal of our proposed adder is to further reduce

area without additional timing penalty by a systematic methodology in the following

sections. Using the proposed architecture can solve the area problem of using MCSA

blocks, reduce more area in parallel-prefix tree, and preserve the benefit of Ling

addition.

 16

Table 1. The timing and area results for hybrid adders.

Table 2. The timing and area results for Ling adders.

3.2 Proposed Architecture

 The following sections introduce the proposed architecture with detailed block

diagram and the systematic methodology to design the high-speed area-minimized

hybrid Ling adder. From the experimental results, the proposed scheme can achieve

area reductions of up to 25 percent when compared to the traditional Kogge-Stone

parallel-prefix architectures. And further, it also can reduce nearly one-fifth area than

the hybrid K-S Ling adders.

 17

3.2.1 Area-Minimized Parallel-Prefix Tree

 There are many algorithms to build the parallel-prefix tree. Various architectures

result in different area, delay, complexity of wiring, and fanout issue. These different

architectures from [22] are shown in Fig. 16, Fig. 17, Fig. 18, and Fig. 19. In these

figures, all the (pn, gn) pairs are generated in the first level and other function nodes

are shown in Fig. 3. Table 3 is a collection of area, delay, and fanout according to

[22]. From these data in Table 3, the parallel-prefix architecture of Kogge-Stone type

has the advantage of fast speed, the fixed number of fanout, and the regularity of

wiring. Consequently, the Kogge-Stone parallel-prefix tree is chosen in our proposed

approach.

Fig. 16. A 16-bit Sklansky parallel-prefix adder.

Fig. 17. A 16-bit Brent-Kung parallel-prefix adder.

 18

Fig. 18. A 16-bit Kogge-Stone parallel-prefix adder.

Fig. 19. A 16-bit Han-Carson parallel-prefix adder.

Table 3. Comparison of different parallel-prefix algorithms.

 19

However, all the data in Table 3 are produced by mathematics. We need more

simulation results by physical implementation to get more confidence in Kogge-Stone

parallel-prefix structure. From Table 4 by arranging the data in [23], it shows that the

Kogge-Stone parallel-prefix adder (K-S adder) is a good solution to design a

high-speed adder. The unit to estimate delay is FO4 (fanout-of-four inverter delay).

But, the Kogge-Stone architecture achieves high performance by using a large amount

of associative operation. More area may cause more power consumption and so the

way to reduce overall area without loss of performance is important. A hybrid

structure is used to achieve delay reductions in our design. And further, we use the

parallel-prefix Ling structure introduced in Chapter 2 to be the main backbone. A

32-bit Kogge-Stone parallel-prefix tree for the proposed hybrid Ling adder is shown

in Fig. 20.

Table 4. Delay estimation for different parallel-prefix algorithms.

Algorithm Type Delay (FO4) N = 32 Delay (FO4) N = 64

Ripple 54.6 107.7

Sklansky 16.3 23.4

Brent-Kung 16.8 21.8

Lander-Fisher 15.6 20.2

Han-Carson 13.3 16.4

Kogge-Stone 13.4 18.0

N : the number of addition

1. Non-inverting CMOS

2. uniform cell size

 20

Fig. 20. A 32-bit Kogge-Stone parallel-prefix tree for the hybrid Ling adder.

According to the Table 3, Fig. 12, Fig. 20, a 32-bit traditional Kogge-Stone

parallel-prefix adder needs 129 nodes, a 32-bit architecture proposed in [13] it

needs 29 nodes and 31 nodes, and the parallel-prefix tree in our design

needs 25 nodes and 16 nodes. Assuming the use of two-input logic gate,

the node requires 3 logic gates, the node or the node requires 2 logic

gates. The area cost of the proposed scheme is 107 gates, the architecture in [13]

needs 137 gates, and the traditional architecture requires 387 gates. Consequently, the

type of parallel-prefix tree in Fig. 20 can achieve the minimum area when compared

to other architectures. The equations to calculate the cost of area for the three

architectures are listed in Table 5. Table 6 and Table 7 explain area reductions of the

parallel-prefix tree clearly via the following cases of various tree structures. From

these cases, using hybrid parallel-prefix Ling structure can easily achieve the goal of

area-reduction on the part of parallel-prefix tree.

 21

Table 5. Equations to calculate number of different nodes.

Table 6. Area comparison between K-S adders and proposed architecture.

N (bit number) traditional K-S proposed hybrid K-S Ling saving percentage

16 147 43 70.75%

32 387 107 72.35%

64 963 259 73.10%

Using the number of 2-input gates to estimate the area

Table 7. Area comparison between hybrid K-S Ling and proposed architecture.

N (bit number) hybrid K-S Ling proposed hybrid K-S Ling saving percentage

16 60 43 28.33%

32 149 107 28.19%

64 354 259 26.83%

Using the number of 2-input gates to estimate the area

 22

3.2.2 Carry-In Handling

In general, most adders need the carry-in to support the multi-word addition and

subtraction. Therefore, it is important to find the efficient approaches for

incorporating the carry-in to a parallel-prefix structure. In Chapter 2, there are three

ways for solving the carry-in problem. To achieve the minimum fanout of Cin, the

smallest area penalty, and the regularity of parallel-prefix structures, we choose the

third method to be the solution of our proposed adders with carry-in. First, we can see

the carry-in as a (g-1,p-1) pair. Because the carry-in must propagate to the bit position

0, setting g-1= Cin and p-1 = 1 represents the Carry-in. Finally, the original (g0, p0)

needs to be modified as (g0_m, p0_m) by the following equation. The logic-level

implementation for the (g0_m, p0_m) pair is shown in Fig. 21.

 (17)

Fig. 21. The logic cell to incorporate carry-in to the (g0, p0) pair.

 23

3.2.3 The block size of carry-select adders (CSA)

 In a hybrid parallel-prefix/carry-select adder, the size of the carry-select block

should be chosen carefully. The timing of addition may become worse due to the

un-optimized block size. Assuming the 2-input AND gate be the basic unit to estimate

the delay. In Table 8, the timing information of all logic gates used to calculate delay

of the carry-select block are listed. The formula to estimate delay of K-bit carry-select

block can be derived form the general 4-bit block presented in Fig. 22. The equation

is expressed as :

1
N

1
K

()
1* (2)* 1*
1*1 (2)*2 1*2
2 1

(: temporal sum bit K when assuming Cin is 1, K>1)

OR gate AND OR gate XOR

T longest delay of Sum
T K T T

K
K

Sum

−= + − +
= + − +
= −

 (18)

When the time to generate the carries for selecting sum bits produced by carry-select

blocks is equal to the delay of , the block-size is optimized. However, the

regularity of structure is also important for designing an adder. For the convenience of

transferring our proposed architecture to the reconfigurable version, the block size

should be the factor of the minimum partition-size. However, the small size like 2-bit,

3-bit cannot get the benefit of area-reduction from the hybrid structure. Therefore, the

nearly optimum block size K should meet the following Equations(19).

1
KSum

 24

Table 8. Normalized logic delay table.

1

 2

2

1

. is integer

.
 -

 () (-)
 (2 -1) *(Floor[log]) 1
 Floor[log]

 -
 () (

K

associaive opearor

K

a K
b
Without Carry In

T SUM T parallel prefix tree with Ling addition
K T N

K N
With Carry In

T SUM T para

<=
=> <= −
=> <=

<=
 2

2

-)
 (2 -1) *(Floor[log] 1) 1
 Floor[log] 1

. The length of addition (N) is divisible by K
 (to balance the fan-out of carr

associaive opearor

llel prefix tree with Ling addition
K T N

K N
c

=> <= + −
=> <= +

ies generated from the parallel-prefix tree)
. Choose the biggest integer under the conditions of a, b, c

Note: The timing information in Table 8 is used to estimating delay
d

 (19)

 Finally, using the cases of 16/32/64/128-bit adders to explain the way of choosing

the nearly optimum size of the carry-select block are shown the Table 9. In general,

4-bit block is a good solution for designing the proposed adder. Fig. 22 presents a

4-bit simple (traditional) carry-select adder (SCSA).

 25

Table 9. Examples of selecting nearly optimum block size.

Fig. 22. A 4-bit carry-select adder.

 26

3.2.4 CSA Optimization

 The following content, the special function blocks for reducing the overall area are

introduced. In section 3.2.2, the way for incorporating Cin to parallel-prefix Ling

structure is presented. According to the skills mentioned in 3.2.1 and 3.2.2, the

proposed architecture without CSA optimization is shown in Fig. 23. Although the

parallel-prefix tree has been minimized, the area-problem of MCSA is still alive. The

method to minimize the area of using MCSA is to insert some logic cells into the

additional stage for Cin. There are two new logic cells in the proposed architecture.

First, using the “&1” cells to replace some buffer nodes can transfer the Hn into Cn,

for n <= N/2. The principle of the new cell can be derived from Equation(7). Fig. 24

presents the logic implementation of the “&1” cell. However, there are not enough

buffer nodes to insert the “&1” cells into the parallel-prefix tree. The pseudo carries

Hn, n > N/2, has no significant buffer nodes in their path. Therefore, the new logic

cell (“&2”) is proposed. Inserting the new cells into the stage for Cin can translate the

pseudo carries Hn (n > N/2) into normal carries Cn (n > N/2). The following equation

can explain the principle of the “&2” cell. Fig. 25 also displays the logic

implementation of the “&2” cell. Finally, the new architecture can avoid the

generation of Hn. Consequently, the proposed hybrid Ling adder can fully use simple

(traditional) carry-select adders to eliminate the additional area cost on MCSAs. A

16-bit proposed adder is shown in Fig. 26.

 (20)

 27

Fig. 23. A 16-bit proposed adder without CSA optimization.

Fig. 24. Logic implementation of the &1 cell.

 28

Fig. 25. Logic implementation of the &2 cell.

 Fig. 26. A 16-bit proposed adder without CSA optimization.

 29

3.2.5 Fanout Issue

 For achieving minimum delay, we should consider the fanout. In general, the

calculation of delay consists of intrinsic delay and delay of fanout loading. Therefore,

the goal of high-speed can be achieved by minimizing the loading of the logic-cell.

The Kogge-Stone parallel-prefix adder has the advantage of fixed fanout whether the

length of addition grows or not. Fig. 27 shows that each associative operator in the

parallel-prefix tree maintains the fanout of 2. In our architecture, the fanout also

preserves the property of constant number of fanout except the last stage. But, the

effect of the last stage is small from the small growth of fanout (2 -> 4) in general

case. Compared to the hybrid architecture in [13], our proposed adder has the same

fanout in the critical-path. From Fig. 28 and Fig. 29, the fanout issue of my proposed

architecture and the hybrid architecture in [13] can be understood clearly.

Consequently, the proposed hybrid architecture can minimize area without significant

penalty on the number of fanout.

Fig. 27. Fanout issue of a 8-bit K-S adder.

 30

Fig. 28. Fanout issue of a 32-bit hybrid K-S Ling adder.

Fig. 29. Fanout issue of a 32-bit proposed adder.

 31

3.3 Summary of Proposed Architecture

According to the basic components and main idea introduced in previous sections,

the design of proposed architecture can be summarized in the following steps :

 ● Generate the bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn) at the

first stage.

 ● Handle the carry-in signal by using the proposed method and insert the “&2”

cells into the specific locations of generate and propagate pairs (gn, pn), with n =

4k-2 and k = N/8+1, N/8+2, …, N/4-1 (N>=16).

 ● Use Equation(9) and Equation(10) to generate the intermediate generate and

propagate pairs (Gn*, Pn*) for Ling addition.

 ● Use the pairs (Gn*, Pn*) to build the parallel-prefix tree mentioned in section

3.2.1. The parallel-prefix structure can be employed for the generation of the

pseudo carries H4k-1, k = 1, 2, …, N/4.

 ● Replace the specific buffer nodes by the “&1” cells in parallel-prefix trees. These

buffer nodes pass pseudo carries H4k-1, k = 1, 2, …, N/8. After the replacement,

these pseudo carries are transferred to normal carries C4k-1.

 ● Select correct sum-bits produced from SCSA blocks by using normal carries

C4k-1, k = 1, 2, …, N/4-1. Finally, combining HN-1 and pN-1 can derive the final

carry-out from using Equation(7).

 In Fig. 30, the design steps of proposed architecture are illustrated. The order of

steps conforms to the design methodology mentioned above. Therefore, we can

design a high-speed and area-minimized adder from our proposed approaches. These

approaches include area-minimized parallel-prefix tree, the better way to handling

carry-in, and CSA optimization for Ling addition. In the end, a systematic

 32

methodology has been introduced for designing the proposed architecture in this

section.

Fig. 30. Design steps of the proposed architecture.

 33

3.4 Experimental Results and Analysis

 After introducing the main idea and basic components in previous sections, the

advantages of proposed architecture can be proved by the following experimental

results. First, Table 10 gives the simple description of the experimental environment.

Table 10. Experimental environment 1.

 The proposed architecture compares with two objects, one for the traditional K-S

adder and one for the hybrid K-S Ling adder. Because the carry-in handling in K-S

Ling adder [13] uses method 1 or method 2 mentioned in the Chapter 2, the two

objects of comparison use these two methods. The proposed adder uses only method

3. Table 11 shows the comparison between the K-S adder which uses method1

(K-S_1) and the proposed adder (proposed). From the result of the experiment, our

proposed architecture can save 31.56% area on average and get a speed-improvement.

Table 11. Experimental results of K-S_1 and proposed adders.

 34

Table 12 shows the comparison between the K-S adder which uses method2

(K-S_2) and the proposed adder. From the result of the experiment, our proposed

architecture can save 26.46% area on average and get a speed-improvement.

Table 12.Experimental results of K-S_2 and proposed adders.

Table 13 shows the comparison between the hybrid K-S Ling adder which uses

method1 (hybrid K-S Ling_1) and the proposed adder. From the result of the

experiment, our proposed architecture can save 22.33% area on average and preserve

the advantage of high-speed by using Ling addition.

Table 13. Experimental results of hybrid K-S Ling_1 and proposed adders.

 35

Table 14 shows the comparison between the hybrid K-S Ling adder which uses

method2 (hybrid K-S Ling_2) and the proposed adder. From the result of the

experiment, our proposed architecture can save 19.67% area on average and preserve

the advantage of high-speed by using Ling addition.

Table 14.Experimental results of hybrid K-S Ling_2 and proposed adders.

From the above results, it is easily to see that the proposed architecture preserve the

high-speed of Ling addition and do everything possible to minimize the overall area.

However, the low-power is also an important factor to design a good adder or IC. In

general, the area and power are in direct proportion under the same frequency.

Therefore, the proposed architecture is expected to get an improvement on reducing

power dissipation. All designs in the following table are all under their fastest speed.

According to the results of Table 15, the proposed adders can achieve power

reductions of up to 21% when compared to K-S adders. From the results of Table 16,

the proposed adders can achieve power reductions of up to 17% when compared to

hybrid K-S Ling adders.

 36

Table 15.Power estimation of K-S adders and proposed adders.

Table 16.Power estimation of hybrid K-S Ling adders and proposed adders.

However, the frequency (or delay) affects the simulation results of power greatly.

The faster adder may cause the higher power results form its high frequency (or low

delay). The more accurate analysis of energy dissipation is to compare the new

measure: Power-Delay Product (PDP). Using PDP to analyze the designs is the same

as measuring the power of each design under the same frequency. From Table 17 and

Table 18, the energy-saving percentage is closed to the area-saving percentage.

Compared to K-S adders, the PDP saving percentage is up to 25%. Even though the

 37

proposed adders compare with hybrid K-S Ling adders, we still can save nearly 20%

PDP. So, the proposed high-speed architecture meets the goal of low-power and area

reduction.

Table 17.PDP estimation of K-S adders and proposed adders.

Table 18.PDP estimation of hybrid K-S Ling adders and proposed adders.

 38

Chapter 4 Reconfigurable Adder Architecture
Recently, a high-speed reconfigurable adder plays an important role for achieving

real-time processing of media signals. Thus a fast and reconfigurable architecture for

addition is needed. This chapter presents a methodology to design a high-speed

area-minimized reconfigurable hybrid Ling adder. The proposed approach is based on

the architecture presented in Chapter 3. The delay-penalty or area cost for the partition

scheme in the proposed architecture is small. In other words, there are few

modifications in the original architecture. Finally, a systematic design methodology of

the reconfigurable adder is presented in the later section.

4.1 Review of Previous Approach

Several reconfigurable adders have been proposed in [14-19], A reconfigurable

ripple carry adder in [16] uses additional bits for partition. Each partition bit

determines the propagation of the carry signal generated from previous segment of

addition. Fig. 31 shows the 32-bit reconfigurable adder using additional 4 bits to

support partition. Obviously, this approach causes large delay penalty and area cost.

In [19], a reconfigurable carry-skip adder has been proposed which minimizes the

energy-delay product by using non-uniform linearly increasing block sizes. A 64-bit

reconfigurable adder in displayed in Fig. 32. In [24], the reconfigurable carry-select

adder is proposed. It is faster than the reconfigurable ripple carry adder in [16]. But,

the architecture still locates partition scheme in the critical path. Fig. 33 shows a

12-bit reconfigurable CSA. The reconfigurable hybrid carry-lookahead/carry-select

adder has been proposed in [25]. The partition approaches are located in

carry-lookahead blocks and carry-select blocks. The partition scheme incurs no

additional delay in the critical path regardless of the size of adders. The additional

 39

area cost is also small. A 16-bit reconfigurable hybrid carry-lookahead/carry-select

adder (CLSA) is presented in Fig. 34. However, it achieves high-speed by reducing

the variety of reconfigurability. Compared with other approaches, the proposed

reconfigurable adders can achieve the goal of reducing timing penalty avoiding

inserting the partition scheme into the critical path. Moreover, the high

reconfigurability and small area cost are the features of our approach.

Fig. 31. A 32-bit reconfigurable carry ripple adder.

Fig. 32. A 64-bit reconfigurable carry-skip adder.

 40

Fig. 33. A 12-bit reconfigurable carry-select adder.

Fig. 34. A 16-bit reconfigurable CLSA adder.

 41

4.2 Proposed Architecture

 The new reconfigurable blocks need to be inserted into the original architecture.

The cell uses the signal break_i to break the propagate signal and generate signal

from previous block. The cell also uses the signal break_i to select the partial

carry-out from previous block or the external carry-in for partition. The cell

combine the “&2” cell and cell. The function of the cell is the same as the

 cell. The Fig. 35 shows the logic implementation of the three reconfigurable

blocks. The delay of each reconfigurable block is 2-level logic. Then, these blocks are

used in the stage of handling carry-in. Because the logic depth of these blocks is the

same as the logic cell of carry-in operation, the partition approaches don’t incur

delay-penalty on the critical path and only need small additional area cost.

Fig. 35. Reconfigurable blocks.

 42

The CSA blocks at the boundary of partition also need some modification. The

simple carry-select adder for reconfigurability (SCSA-R) is used in the proposed

architecture. The SCSA-R adds some logic for the generation of partial carry-out. The

Fig. 36 presents the architecture of a 4-bit SCSA-R.

Fig. 36. A 4-bit SCSA-R.

 43

 For the purpose of balancing the fanout of carries generated from the parallel-prefix

tree, the partial parallel-prefix tree in the left-hand side is used to generate final

carry-out instead of using carry-select block. Although using the SCSA-R block to be

the last CSA block can produce the final carry-out, the fanout of the last carry to

select sum bits and carry-out is larger than other carries. However, the reconfigurable

architecture needs to use the SCSA-R blocks. Consequently, the part of parallel-prefix

tree for final carry-out can be saved to reduce area. By this way, the area cost for

partition also can be minimized. This unbalanced fanout may cause some timing

penalty, but the additional delay is small. According to the experimental results in the

later section, the timing penalty is only 5.12%. A 32-bit proposed reconfigurable

adder is presented in Fig. 37. The different parts are also illustrated in the graph.

Finally, we introduce the method to control the partition by using the break_i signal.

For example, four individual 8-bit additions can be derived by setting the partition

signals (break_2, break_1, break_0) as (1, 1, 1). When all break_i signals are zeros, an

entire 32-bit addition can be achieved. The part needed to pay attention is that the

cin_bi relative to break_i should be setted by one when the partition is unnecessary.

Other cases of a 32-bit proposed reconfigurable adder are presented in Table 19.

 44

Fig. 37. A 32-bit proposed reconfigurable adder.

Table 19. Partition Methods.

 45

4.3 Summary of Proposed Architecture

According to the basic components and main idea introduced in previous sections,

the design of proposed reconfigurable architecture can be summarized in the

following steps.

 ● Generate the bit-generate (gn) and bit-propagate (pn), and half-sum bit (dn) at the

first stage.

 ● Handle the carry-in signal by using the proposed method. To insert the “&2”

cells into the specific locations of generate and propagate pairs (gn, pn), with n =

4k-2 and k = N/8+1, N/8+2, …, N/4-1 (N>=16). If the position of “&2” cell is at

the partition-boundary should be replaced by the cell. The cell is used

in the location of (gn, pn) pairs, with n = m-2 and m = k, 2k, …, N/2 (k = the

minimum block-size for partition). In the end, the cell is inserted in the

position of (gn, pn) pairs, with n = m-1 and m = k, 2k, …, N-k.

 ● Use Equation(9) and Equation(10) to generate the intermediate generate and

propagate pairs (Gn*, Pn*) for Ling addition.

 ● Use the pairs (Gn*, Pn*) to build the parallel-prefix tree mentioned in section

3.2.1. The parallel-prefix structure can be employed for the generation of the

pseudo carries H4k-1, k = 1, 2, …, N/4-1.

 ● Replace the specific buffer nodes by the “&1” cells in parallel-prefix trees. These

buffer nodes pass pseudo carries H4k-1, k = 1, 2, …, N/8. After the replacement,

these pseudo carries are transferred to normal carries C4k-1.

 ● Select correct sum-bits and partial carry-out signals produced from SCSA-R

blocks by using normal carries C4k-1, k = 1, 2, …, N/4-1.

 46

 In Fig. 38, the design steps of proposed architecture are illustrated. The order of

steps conforms to the design methodology mentioned above. Therefore, we can

design a high-speed and area-minimized reconfigurable adder from our proposed

approaches. These approaches preserve the good properties of original architecture. In

the end, a systematic methodology has been introduced for designing the proposed

reconfigurable architecture in this section.

Fig. 38. Design steps of the proposed reconfigurable architecture.

 47

4.4 Experimental Results and Analysis

 After introducing the main idea and basic components in previous sections, the

advantages of proposed architecture can be proved by the following experimental

results. First, Table 20 gives the simple description of the experimental environment.

Table 20.Experimental environment 2.

 Normally, the key of designing a reconfigurable adder successfully is to minimize

the area overhead and timing penalty. According to the results in Table 21, the

proposed reconfigurable architecture (Prop.-R) can achieve the goal of small penalty

on area and timing indeed. The additional area cost of the partition scheme is only

about 3.98% and the timing penalty is about 5.12% when compared to the proposed

architecture without reconfigurability (Prop.).

Table 21.Area and Timing penalty of proposed reconfigurable adders.

 48

There are two reference reconfigurable adders for comparison. One is like the

reconfigurable ripple-carry adder mentioned in previous work. The multiplexer which

is used to be the partition scheme which selects the carry-out signal form previous

block or the external carry-in signal. All blocks of addition are described in RTL (+).

Fig. 39 shows the first type of the reconfigurable adder (adder-R type1). Another

reconfigurable adder is the reconfigurable carry-select adder (adder-R type2). The

architecture also uses the multiplexer to be the partition scheme. The critical path of

the adder is on the multiplexer-chain except the first block of addition. Therefore, it is

fast than the first reconfigurable adder. All blocks of addition are also described in

RTL (+). The architecture view is presented in Fig. 40.

Fig. 39. The first type of the reconfigurable adder.

Fig. 40. The second type of the reconfigurable adder.

 49

 The proposed reconfigurable architecture compares with the two reconfigurable

adders mentioned above. From Table 22, the proposed reconfigurable adders

(Prop.-R) achieve delay reductions of up to 31 percent on average when compared to

the first type of reconfigurable adder. Because the partition scheme of adder-R type1

is located in the carry-chain, the delay penalty grows greatly when the size becomes

large. From Table 23, the proposed adders achieve delay reductions of up to 26

percent on average when compared to the second type of reconfigurable adder. From

the utilization of CSA blocks, the critical path is not on the generation of sum bits or

carries. But, it still uses the multiplexer to select the boundary carry form previous

block or the individual carry for partition. Unfortunately, these multiplexers are still

on the critical path. So, this kind of reconfigurable adder also has the opportunity to

gain the more improvement on speed. Finally, Table 24 presents the comparison

between our 64-bit reconfigurable adder and the adder in [24]. The architecture in

[24] and the second type reconfigurable adder have the same problem in critical path.

Both of them insert the partition scheme on their critical path. According to these

results, it obviously shows that the performance-improvement and data-width are in

the direct ratio. The reconfigurable architecture designed by the proposed

methodology can meet the target of high-speed and small penalty of partition scheme.

Moreover, the penalty for partition would not increase greatly when the data width

becomes large in our proposed adder design.

 50

Table 22.Timing analysis of adder-R type1 and proposed-R.

Table 23.Timing analysis of adder-R type2 and proposed-R.

Table 24.Timing analysis of CSA-R [24] and proposed-R.

 51

Chapter 5 RTL Code Generator
 This chapter introduces the RTL code generator of our proposed architecture.

Section 3.3 and Section 4.3 describe the systematic design methodology of the

proposed adders. According to the methodology, we can derive the RTL code

generator. In the first version, the coding environment is the Visual C++R 6.0. Then,

an execution file (.exe) of MS-DOS version has been generated to be the RTL code

generator. The graphical user interface (GUI) is the main target for our next version.

Fig. 41 shows the RTL code generator of MS-DOS version. Our proposed generator

provides not only RTL code, but also the testbench code.

Fig. 41. RTL code generator.

 52

Chapter 6 Conclusions and Future Works
 A high-speed area-minimized adder design has been presented. A systematic

methodology is also introduced in previous chapters. The proposed architecture

preserves the benefits of hybrid K-S Ling adders. Moreover, the methods for

parallel-prefix tree minimization and CSA optimization are used to further reduce

area. According the experimental results, the area saving percentage is up to 26%

when compared to traditional K-S adders. Compared with hybrid K-S adder, the

saving percentage is about 20%. Meanwhile, the power dissipation is also reduced

from the reduction of area. For achieving real-time media signals processing, the

proposed reconfigurable adder is also presented. To design an efficient reconfigurable

adder, the proposed partition scheme for reconfigurability causes only small

delay-penalty and area cost. According to experimental results, the delay penalty is

closed to 5% and additional area overhead is lower than 4%. Compared to other

reconfigurable adders, our architecture has a great improvement on speed from the

low penalty of timing. From these results, we can draw that the adder here presented

exhibits the high-speed, the minimized area, the more power-saving, and low

overhead for high reconfigurability. However, the Ling addition can only save one

logic-level delay. Consequently, the new algorithm [26] may be applied to our

architecture for reducing more delay than Ling addition. A more user-friendly RTL

code generator is also needed.

 53

References
[1] K. Hwang, Computer Arithmetic. New York: Wiley, 1979.

[2] D, J, Kuck, The Structure of Computers and Computations. New York: Wiley,

1978.

[3] I. Koren, Computer Arithmetic Algorithms. A.K. Peters, Ltd., 2002.

[4] B. Parhami, Computer Arithmetic-Algorithms and Hardware Designs. Oxford

Univ. Press, 2000.

[5] O.J. Bedrij, “Carry Select Adder”, IRE Trans., EC-11, pp.340-346, June 1962.

[6] A. Weinberger and J.L Smith, “A Logic for High-Speed Addition”, Nat. Bur.

Stand. Circ., 591, pp.3-12, 1958.

[7] P.M. Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient Solution of a

General Class of Recurrence Equations,” IEEE Trans. Computers, vol.22, no. 8,

pp. 786-792, Aug. 1973.

[8] R.E. Lander and M.J. Fisher, “Parallel Prefix Computation,” J. ACM, vol. 27, no.

4, pp. 831-838, Oct. 1980.

[9] R.P. Bent and H.T.Kung, “A Regular Layout for Parallel Adders,” IEEE Trans.

Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.

[10] T. Han and D. Carlson, “Fast Area-Efficient VLSI Adders,” Proc. Symp.

Computer Arithmetic, pp. 49-56, May 1987.

[11] S. Knowles, “A Family of Adders,” Proc. 14th Symp. Computer Arithmetic, pp.

30-32, Apr. 1999. Reprinted in ARITH-15, pp. 277-281.

[12] H. Ling, “High-Speed Binary Adder,” IBM J.R&D, vol. 25, pp. 156-166, May

1981.

 54

[13] Dimitrakopoulos, G.; Nikolos, D.,” High-speed parallel-prefix VLSI Ling

adders”, IEEE Trans. Computers, vol. 54, Issue 2, pp. 225-231, Feb. 2005.

[14] R.-B. Lee, “Subword parallelism with MAX-2”, IEEE Micro, vol. 16, no. 4, pp.

51-59, Aug. 1996.

[15] M. Tremblay, J.,-M. O’Connor, V. Narayanan, and H. Liang, “VIS speeds new

media processing”, IEEE Micro, vol. 16, no. 4, pp. 10-20, Aug. 1996.

[16] M. S. Schmookler, M. Putrino, A. Mather, J. Tyler, and H. V. Nguyen, “A

low-power, high-speed implementation of a PowerPCTM Microprocessor vector

extension”, IEEE Symp. Computer Arithmetic, pp. 12-19, 1999.

[17] A. A. Farooqui, V. G. Oklobdzija, and F. Chechrazi, “64-bit media adder,” in

Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), Orlando, May 1999.

[18] S. Perri, P. Corsonello, and G. Cocorullo, “A 64-bit reconfigurable adder for low

power media processing”, Electronics Letters, vol. 38, no. 9, pp. 397-399, Apr.

2002.

[19] S. Perri, P. Corsonello, and G. Cocorullo, “A high-speed energy-efficient 64-bit

reconfigurable binary adder,” IEEE Trans. VLSI Systems, vol. 11, no. 5, pp.

939-943, Oct. 2003.

[20] A. Goldovsky et al., ”A 1.0-nsec 32-bit Prefix Tree Adder in 0.25-um static

CMOS,” Proc. Midwest Symp. Circuits and Systems, vol. 2, pp. 608-612, Aug.

1999.

[21] Y. Wang , C. Pai Xiaoyu Song, "The Design of Hybrid Carry-Lookahead/Carry

Select Adders", IEEE Trans. circuits and systems-II: analog and digital signal

processing, vol.49, no. 1, Jan. 2002.

[22] R. Zimmermann, "Binary Adder Architectures for Cell-Based VLSI and Their

Synthesis", Ph.D. dissertation, Swiss Federal Institute of Technology (ETH),

Zurich, 1998.
 55

[23] Harris, D. Sutherland, I. Harvey Mudd Coll., Claremont, "Logical effort of carry

propagate adders", Proceedings of the Thirty-Seventh Asilomar Conference on

Signals, Systems and Computers, vol. 1, pp. 873-878, Nov. 2003.

[24] Jin-Fu Li, Yao-Chang Kuo, Chao-Da Huang, Tsu-Wei Tseng, Chin-Long

Wey,”Design of Reconfigurable Carry select Adders”, IEEE Asia-Pacific

Conference on Circuits and Systems, Mar. 2004.

[25] Jin-Fu Li, Jiunn-Der Yu, Yu-Jen Huang, ”A design methodology for hybrid

carry-lookahead/carry-select adders with reconfigurability”, IEEE Int. Symp.

Circuits and Systems, vol. 1, pp. 77-80, May 2005.

[26] Jackson, R., Talwar, S., "High speed binary addition", Thirty-Seventh Asilomar

Conference on Signals, Systems and Computers, vol. 2, pp. 1350-1353, Nov.

2004.

 56

