An Implementation of Universal Dual-Field Scalar Multiplication on Elliptic
Curve Cryptosystems



An Implementation of Universal Dual-Field Scalar Multiplication on Elliptic
Curve Cryptosystems

Student Yao-Jen Liu
Advisor Hse-ChiaChang

A Thesis
Submitted to Department of Electronics‘Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science
National“Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Electronics Engineering

January 2007

Hsinchu, Taiwan, Republic of China



256
degree  p(x)

192

3.3



An Implementation of Universal Dual-Field Scalar Multiplication on
Elliptic Curve Cryptosystems

student Yao-JenLiu Advisors Hse-Chia Chang

Department of Electronics Engineering & Institute of Electronics
National Chiao Tung University

ABSTRACT

An universal hardware architecture of scalar multiplier on €liptic curves
suitable for both GF(p) and GF(2™) is-introduced in this thesis. The proposed
scalar multiplier can work in arbitrary field lengths within a maximum 256-bit
length in GF(p), and it also supports various field degrees and primitives in
GF(2™). The flexible universal hardware architecture is based on the Montgomery
techniques, including the Montgomery multiplier and divider. The Montgomery
modular division agorithm is aso proposed to replace the inversion followed by a
multiplication in the Montgomery domain. It provides a better performance on
modular divison operations than previous ECC techniques and also has a smaller
area size than other modular division architectures. The proposed scalar multiplier
architecture can perform the scalar multiplication on elliptic curves at a
reasonable speed. For a 192-bit scalar multiplication operation, it takes about 3.3

ms.
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Abstract

An universal hardware architecture of scalar multiplier on elliptic curves suitable for
both GF(p) and GF(2™) is introduced in this thesis. The proposed scalar multiplier can
work in arbitrary field lengths within a maximum 256-bit length in GF(p), and it also
supports various field degrees and primitives in GF(2™). The flexible universal hardware
architecture is based on the Montgomery techniques, including the Montgomery multiplier
and divider. The Montgomery modular division algorithm is also proposed to replace the
inversion followed by a multiplicatiom“i'ﬁ‘ fﬁe .Mbntgomery domain. It provides a better
performance on modular division 0perat10n81than prev1ous ECC techniques and also has a
smaller area size than other modular d1v151on archltectures The proposed scalar multiplier
architecture can perform the scalar multlpﬁw onl elhptlc curves at a reasonable speed.

For a 192-bit scalar multiplication operatlon, it takes about 3.3 ms.
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Chapter 1

introduction

1.1 Background

Since the public-key cryptography was introduced by Diffe and Hellman [1] in 1976,
the use of discrete logarithm problem in public-key cryptosystems has been recognized.
This method of exponential key exchange came to be known as Diffie-Hellman key ex-
change. RSA and El-Gamal are two of the popular pubhc key cyrptosystems widely used
nowadays. The RSA algorithm based on Lthe dlfﬁcult of factoring large numbers was
published by Rivest, Shamir and: Adleman_th MIT 1in 1978. Further, the El-Gamal
algorithm based on Diffie- Hellman’ key agreement desorlbes the public-key system and
digital signature schemes, and it was proposed by Taher ElGamal [3] in 1985.

The public-key cryptosystem such as RSA is still widely used in electronic commerce
protocols and it is believed to be secure enough as long as it has sufficiently long keys.
However, there are many efficient attacks known for both RSA and modular p discrete log
based cryptosystems such as the Number Field Sieve [4] attacks for RSA and the index
calculus attacks for the modular p systems.

The elliptic curve cryptography (ECC) is an approach to public-key cryptography
based on the algebraic structure of elliptic curves over finite fields. The ECC was in-
dependently proposed by Victor S. Miller of IBM? in 1986 [5] and Neal Koblitz of the

University of Washington in 1987 [6]. There are no subexponential algorithms known

Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/
2International Business Machines Corporation. http://www.ibm.com/



for the elliptic curve discrete logarithm problem (ECDLP) and denotes that there are no
efficient attacks known on it. Consequently, the parameters for ECC can be chosen to be
much smaller than the paramters for RSA with the same level of resistance against the
best known attacks. Table 1.1 shows each different parameter size with the same level of

security strengths compared with given cryptography [7].

Table 1.1: Comparable security strength for given cryptography

ECC (e.g., ECDSA) | IFC (e.g., RSA) | Symmetric key algorithms
f =160 —223 k =1024 -
f =224 —255 k = 2048 -
f =256 — 383 k= 3072 AES-128
f =384 —511 k = 7680 AES-192
f=5127 k = 15360 AES-256

I ECDSA (Appendix A.3).

2 IFC denotes integer factorlzatlon cryptography

3 f is the size of n, Where n 1s the order of the base point G.
1k is the size of the rdodulus p .?.

> Advanced Encryptlon Standard (AES) [8 ]

Note that in Table 1.1, the differe"nce“of the size"between ECC and RSA becomes more
enormous as the security level increases. It is attractive that the ECC has much smaller
parameters leads to more significant performance advantages contrast to RSA. Therefore,
the ECC takes advantages for wireless applications where the computing power, memory
and battery life are limited such as smart cards and wireless devices.

Furthermore, the performance of ECC mainly depends on the efficiency of its math-
ematical arithmetics, namely, scalar multiplication. Given p, a positive integer, and a
point P on an elliptic curve. The scalar multiplication kP can easily be defined as adding
the (k — 1) copies of P to itself. There are some algorithm to compute the multiple of
points on elliptic curves. More details will be discussed in chapter 2.3 later.

At the end of this thesis in appendix, some schemes for ECC are listed. Appendix A.1
is El-Gamal on elliptic curves, Appendix A.2 is Elliptic Curve Diffie-Hellman (ECDH) [9]
and Appendix A.3 is Elliptic Curve Digital Signature Algorithm (ECDSA) [10].

2



1.2 Motivation

In recent years, security issues on communications are more and more significant as
the wireless industry explodes. The ECC has become an important role in public-key
cryptographic systems. There are more and more applications using ECC as authenti-
cation for transactions and encryption or signature for secure messaging. For example,
ECDSA has been used to sign the product key by Microsoft® since Windows 95%.

Since the scalar multiplications on elliptic curves are needed, there are much advanced
research on modular arithmetic operations over finite fields such as the Montgomery’s
technique [11] for modular multiplication which will be discussed in chapter 3.1.1. Then
the Montgomery’s technique for modular inversion has been described in [12] and will be
mentioned later in chapter 3.2.2. However, scalar multiplication on elliptic curves needs
modular division operations in affine coordinates, and there are few implementations
on ECC applications using dedicated modular division component. There were still no
efficient modular division algorithms known for past hundreds of years. Instead, modular
division is achieved by computing thesisversioir followed by multiplication, but it takes
longer latency between domain traﬂnéfdrma";ibg usmg Montgomery’s technique in this way.
Thus, a Montgomery modular division algcl)“ri‘tlhfh“is‘! (ieifeloped in this thesis to shorten the
timing for scalar multiplication of_g elhphefem"—ve&usmé Montgomery’s technique.

In Freescale® MPC190 security ﬁrdqéésor, it ir;qlddes elliptic curve operations in either
GF(p) or GF(2™) in its features, and its proéfammable field size is from 55 to 511 bits.
The point operations (addition, doubling and multiplication) involve one or more finite
field operations, which are addition, multiplication, inverse and squaring.

Therefore, in this thesis, an approach is also provided to compute the scalar multi-
plication on elliptic curves in both GF(p) and GF(2™), and the Montgomery technique
can be used to deal with various finite field degrees and different primitive polynomials
in GF(2™). Further, in this feature, one more finite field operation, division, is involved
here to replace the inversion followed by a multiplication, and it is used in hardware to

accelerate the scalar multiplication operations in ECC applications.

3Microsoft Corporation. http://www.microsoft.com/
4A consumer-oriented graphical user interface-based operating system developed by Microsoft in 1995.
SFreescale Semiconductor, Inc. http://www.freescale.com/



1.3 Thesis Organization

In this thesis, the total solution to elliptic curve operations in hardware and software
is given. In Chapter 2, the preliminary mathematical background of elliptic curves is
introduced. In Chapter 3, the Montgomery’s techniques for the finite field arithmetic
are detailed in this chapter. It shows each algorithm in both prime field and binary
extension field versions. Additionally, an algorithm for Montgomery modular division is
proposed for the combination of Montgomery inversion and Montgomery multiplication.
In Chapter 4, all the proposed universal dual-field architectures are described in this
chapter. An universal architecture of Montgomery multiplication for both prime field
and binary extension field is proposed first. Then the implementation of the proposed
Montgomery modular division algorithm is presented. The division hardware is the major
part of the scalar multiplier on elliptic curves. In Chapter 5, it shows the hardware
implementation results and test consideration for the scalar multiplier on elliptic curves.

Finally, the conclusion is given in Chapter 6.



Chapter 2

Elliptic Curves

Elliptic curves [13] [14] are not ellipses as shown in literal. In mathematics, an elliptic
curve is an algebraic curve defined by a cubic equation such as y? = 2® 4+ ax + b, which
is non-singular, i.e. its graph has no cusps or self-intersections. Elliptic curves received
their name from their relation to elliptic integrals such as

z2

and v de (2.1)

z1 Va3 +ax+b

HARTT

a Va3 4 adt b
that arose in connection with the: -Gomputéltﬁn(.)':h.-iof.tﬁ‘e ‘circumference of ellipses.

| _ ]

2.1 Basic Facts

Let F be an algebraically closed field and F? denote the affine plane A2, the usual plane,
A*(F) = {(z,y)|x,y € F}. Let C(z,y) be an irreducible polynomial over F, and the curve
C means the set of zeros of C in the affine plane F?, ie. {(z,y) € F?|C(x,y) = 0}.

Assume that P is a point (x,,y,) on the curve C. If both of the partial derivatives vanish

at P, that is 80(;;’”) = aC(gZ’y”) = 0, then the point P is called a singular point on the
curve C. A curve is called a singular curve if and only if it has at least one singular
point on it, otherwise it is called a non-singular curve. An elliptic curve commonly used
in cryptography is a non-singular curve because of its better security level relative to a

singular curve. A singular elliptic curve is thought of insecure in general. Definition 2.1

shows the algebraic equation of the elliptic curve in a more general form.



Definition 2.1. An elliptic curve E over the field F defined by an affine Weierstrass

equation is an equation of the form
Y2+ a XY +asyY = X2+ asX?> + au X +ag, Va; €F (2.2)

let E(F) denote the elliptic curve E over F, i.e. the set of points (x,y) € F? that satisfy

this equation, along with the point at infinity denoted by O.

Definition 2.2. The point at infinity called O is the intersection of the y-axis and the
line at infinity. The line at infinity is the set of points on the projective plane for which
Z = 0. Therefore, the point at infinity O is (0,1,0) in the projective plane, i.e. the

equivalence class with X = Z = 0.

No further details about projective plane are shown in this thesis since only affine
coordinates are discussed in the remaining chapters.
In order to describe a singular or non-singular curve clearly, an important quantity A

related to the elliptic curve called the discriminant of E'is defined.

Definition 2.3. A is the discrim?ﬁ:cmt ofrﬁ and z'sln"gz'ven by
o= el ._

> bs 3 a? + 4day
A o by = 2a4 + ajas
A = —03bs — 80} — 270 + bsbabe. puwheres (B = a2 + dag (2.3)
bg = CL%CL@ + 4&2&6 — 10304
+agai — a3

and the symbols above correspond to (2.2).

Theorem 2.1. A cubic curve defined by a Weierstrass equation (2.2) is singular if and

only if its discriminant A is zero.

The Definition 2.1 is feasible for any field F. However, the elliptic curves commonly
used in cryptography are over the finite field GF(q), where ¢ is either a large prime p or a
power of p. If ¢ is a large prime p, the prime field GF(p), also labeled as F, or Z,, is a field
of characteristic p where p # 2,3, that is, Ele l=k#0forl1<k<pand} 1=0.
If ¢ is a power of p, denoted by p™, the Galois field GF(p™) is an extension field of GF(p),



where p is typically chosen as 2 for the sake of binary property in hardware. The finite
fields are also called Galois fields, in honor of their discoverer.

On the basis of various characteristics, the Weierstrass equation (2.2) can be simplified
into different forms by a linear change of variables. The following paragraphs shows the
equation for a field of characteristic # 2,3 and a field of characteristic 2.

Let F be a field of characteristic # 2,3 and char(F) denote the characteristic of F.
Since the char(F) # 2, substitute (X, Y) by (X,Y — “2+9) on the left hand side in (2.2).
an X + CL3)

= (Y — ety g x(y - aXte) gy - aXta) (2.4)
= YZ_ﬁX2_mX_ﬁ
4 2 4

Y2+ a1 XY +azY substitute (X,Y) — (X,Y —

Notice that both XY and Y term are eliminated so the coefficients a; and as should be
zero. Thus the equation (2.4) results in Y2 by substitution for a; = a3 = 0. Further, the
char(FF) # 3 so substitute (X,Y’) by (X —%,Y) on the right hand side in equation (2.2).

X3+ ayX? + ay X +ag substitute (X,Y) — (X — %, Y)
= (X —2)3 +.a2'(”X a3 + (X — %) + ag (2.5)
= X’ + (_02 + a4)+X] + (27% ; §a2a4 + ag)

Then again, the X? term is ehmmated 80 that the coefﬁment as should be zero and the

equation (2.5) results in X? + a4X o+ CLG by Settifg a2 = 0. According to (2.4) and (2.5),

let a1 =as =a3=0,a4 =a,a6 => Aidthe equatlon (2.2) is modified as follows
Y2=X*+aX+b, abcF (2.6)

where char(F) # 2,3. Note that the elliptic curve is a smooth curve, i.e. the curve
is non-singular. Review in Theorem (2.1), an elliptic curve should have its discriminant
nonzero. Therefore, the discriminant of the cubic curve (2.6) can be derived through (2.3)
by substitution for a; = ay = a3 = 0,a4 = a,a6 = b. Thus A = —16(4a® + 27b) # 0.

For a field of characteristic 2, only the non-supersingular case is considered. In brief,
non-supersingular has the result of the coefficient a; # 0. Since a; # 0, substitute (X,Y)
by (aiX + 2, afY + a%aa%%) in (2.2) likewise. A simplified form is obtained as follows

Y24+ XY =X34aX?+b, abelF (2.7)

where char(F) = 2. There is no need to care whether or not the cubic polynomial on the

right hand side in (2.7) has multiple roots.



2.2 Elliptic Curves Arithmetic

Elliptic curve cryptography makes use of elliptic curves where the variables and co-
efficients are belong to a finite field. Two kinds of elliptic curves are commonly used in
cryptographic applications. They are prime curves over GF(p) and binary curves over
GF(2™) respectively. Before discussion on the above curves, the elliptic curves over the

reals are first introduced because some of the basic concepts are easier to visualize.

2.2.1 Elliptic Curves over the Reals

According to equation (2.6), a definition for elliptic curves over the reals is given below.
Definition 2.4. A non-singular elliptic curve E over the reals is an equation of the form
v’ =12 +ax+b (2.8)

where a,b € R are constants such that 4a® + 27b> # 0.

It can be shown that the condition Ha® 1 2762750 is necessary and sufficient to ensure
that the equation (2.8) has three 'di‘stinct‘ﬂ)d)-ts_‘w‘zvhich‘ may be real or complex numbers.

Figure 2.1 shows two non-singular elliptic. ¢urves and one singular elliptic curve whose

equation are y? = a® — 4z, y? = fg‘_+ 73, andy2 = #3— 3z — 2 respectively.

y2=x3—4x y2=x3+73 y2=x3—3x+2
10 T 30 T 10 T
8 - -
20
6 - -
4 - -
10
2 - - .
- O » O | | B O k
_2 - - .
_lo -
_4 - -
_6 - -
_20 -
_8 - -
—10 - —30
-5 o 5 —10
x X

Figure 2.1: Elliptic curves over the reals



Let E be a non-singular elliptic curve over the reals. Given two points P and () on

E, the negative of P, denoted by —P, and the sum P + () is defined as follows:

1. If P is the point at infinity O, then —P is O and P + @ is Q; that is, O is the

additive identity which is also called zero element of the group of points.

2. If P is not the point at infinity O, then —P is the symmetry point of P on the
curve F; that is, —P is the point with the same z-coordinate and negative the y-
coordinate of P, ie. —(z,y) = (x,—y). According to equation (2.8), if (z,y) is a

point on the curve F, then the point (z, —y) is consequently on the curve F.

3. If P and @ are different points on E with different x-coordinates, then let [ be the
line through P and (), and the line [ intersects the curve E in exactly one more

point R. Then the sum P + () = —R is defined and is illustrated in Figure 2.2.

Figure 2.2: Adding two distinct points P+ Q = —R

4. If P and () are different points on E with the same z-coordinates, that is, @) is a

symmetry point of P equal to —P, then the sum P+Q = P+ (—P) = O is defined.

5. If P and @ are the same points on F, then let the line [ be the tangent line to the
curve at P and the point R be the only other point of intersection of [ with the
curve E. Thus the sum P+ () = P+ P = 2P = —R is defined and is illustrated in



Figure 2.3. Furthermore, if the tangent line has a double tangency at P, that is, P
is a point of inflection, then the sum P+ @ = P+ P = 2P = —P is defined.

Figure 2.3: Doubling a point 2P = —R

In figure 2.2, let (z1,41), (22, yg)“ ‘(xg, yg) and (xg,yg) denote the coordinates of P,
Q), R and P+ @ respectively. Letd gy= )\:17+ ﬂ be the: .equatlon of the line through P and

() then \ = 92 yl is the slope of the line'l aLQ— y1 2 Ax1 = Yo — Axy is the consequence
of the point P lymg on the line [. Assume that t 1s a variable and (¢, \t + () denotes the
coordinates of arbitrary points on the hne A The point on [ simultaneously lies on the
elliptic curve E if and only if (¢, \t+/3) satisfies equation (2.8) so that (At+3)* = t3+at+b

and rearrange it below by order of ¢.
S (=N 4 (a =228t + (b— 3% =0 (2.9)

Note that the equation has exactly three distinct roots and two of them are known as x;
and z2. Remember the relation between roots and coefficient mentioned in Viéte formula

first proposed by Frangois Viéte (1540-1603), a French mathematician.

Theorem 2.2. (Viéte’s Formula) Assume P(x) is a polynomial of degree n with roots
T1,To, ..., Ty For 1l < i < n, let S; be the sum of the products of distinct polynomaial

roots x; of the polynomial
P(z) = ap2™ + ap 2™ '+ Fagx +ag =0 (2.10)

10



where the roots are taken 1 at a time, i.e. S; is defined as the symmetric polynomial
(2, ..., z,) fori=1,... ,n, where
S =1i(zq,. .. 2,) = Z TayTay *** Tay, (2.11)
1< <as<..<arp<n

For example, the first few values of S; are

S = Ih(zy,...,2,) = oo = r1+xo+r3+a4+---
1<i<n
SQ = HQ(J?l,...,ZEn) = Z X = T2+ T3+ X1T4 + Toxz + -
1<i<j<n
Sy = Ms(z1,...,2,) = Yo mTpTE = %93 + T1T2%y + ToXaTy + - -
1<i<j<k<n

and so on. Then Viéte’s formula states that
Sp = (—1)—= (2.12)
Proof. The polynomial P(x) can also be written as

P(z) = an(z — 21)( gy - - (2 — 2n)

‘& N (2.13)
AT\
According to equation (2.10), set?ﬂﬁg the (Izoleflﬁments c%:lual yields
“n (—1515 - ““— |
which is what the Viéte’s formula stant.e.s-f;)r. l Q.E.D.

The Viéte formula was proved by Viéte (1579) for positive roots only, and the general
theorem was proved by Gérard Desargues (1591-1661). Therefore the sum of the roots s;
of a monic polynomial shown in (2.9) is equal to minus the coefficient of the second-to-
highest order. A monic polynomial or normed polynomial is a polynomial whose leading
coefficient is equal to 1. It concludes that the third root z3 in (2.9) is equal to N — 2 — 9
since the sum of the three distinct roots s; is A2. Then the y-coordinate of R is \xs + 3
and y3 is minus the y-coordinate of R. Therefore the coordinate of P + @) in terms of

1, T2, Y1, Y2 is shown below.

Y2 = Y19
T3 = I a:) — T — T2
> (2.14)
Y2 — U1
Ys = )(xl - 563) — Y
To — X1



In figure 2.3, let (z1,91), (22,42), (23, —y3) and (z3,y3) denote the coordinates of P,

@, R and P + (@) respectively. Since P and () are the same point, zo = xy and yo = y;.

Let | : y = Ax + 3 be the equation of the tangent line to the curve £ at P. The slope of
the tangent line at P can be derived by differentiation of the equation (2.8) as follows.

%(gf) = %(mg +ax +0b)

(2.15)

dy 322 +a
(=)=

de’ 2y

So the slope of the tangent line A\ = 2% According to (2.14), substitute (2= for

2y1 r2—T1

(3‘7;%;“) and o = 21, ¥ = y1. A formula for doubling a point is obtained.
3 2
T3 :( x21+a)2—2$1
Yy
3z3 le a (2.16)
ys = ( 21y1 )@ — x3) — 11

Table 2.1 shows the addition formula mentioned above.

Point Addition (P # Q)

Point Doubling (P = Q)

33'3:)\2—@'1.;.1’2' .'-41'3:)\2—2‘%1

P+Q| y = \ay— t3) = 1fyi' A Yg = Mz —23) —m

_ Y2 __ 3zita
A= T2 =1y P I 2y1

Table 2.1: Pomtaddltlon foyinula over reals

2.2.2 Elliptic Curves over Prime Fields

Let p > 3 be a prime. Elliptic curves over GF(p) are defined almost the same as they

are over the reals and the operations over the reals are replaced by modulus operations.

Definition 2.5. Let p > 3 be a prime. A non-singular elliptic curve E over the finite

field GF(p) is an equation of the form
v’=2"+ar+b (mod p) (2.17)
where a,b € GF(p) are constants such that 4a® + 27b* # 0 (mod p).

Assume that (z1,v1), (72,y2) and (x3,y3) denote the coordinates of P, @ and P + @
respectively. Then the coordinate of —P is defined as (z1,—y;) and P + (—P) = O.
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According to equation (2.14) and (2.16), the point addition formula of the elliptic curves

over GF'(p) is shown in Table 2.2.

Point Addition (P # Q)

Point Doubling (P = Q)

3 = N\ — 1 — 15 (mod p)

13 = A\ — 22, (mod p)

P+Q | y; = AMxy — x3) — 31 (mod p) Y3 = AMx1 — x3) — 1 (mod p)
— .1’2 a
A =222 (mod p) A= 321;: (mod p)

Table 2.2: Point addition formula over GF'(p)

2.2.3 Elliptic Curves over Extension of Binary Fields

Definition 2.6. Let p(x) be a primitive polynomial of degree m. A non-supersingular

elliptic curve E over the extension of binary field GF(2™) is an equation of the form

v +ay =2 +ar’ +b (2.18)

where a,b € GF(2™) are constants. 43 b2

| = |

Note that in this subsection, afl of thé"gﬁiﬁhmetiond‘perations are defined over GF'(2™)

and all of the parameters are belbﬁ_g to) GF(2m), toos Assume that (z1,y1), (72, v2) and

(x3,y3) denote the coordinates of-"}?, Q-a'nd"'P-tI— Q'fqrespectively. Then the coordinate of
—P is defined as (z1,7; +v;) and P+ V(‘.—P) . -158 “
If P+#Q,letl:y= \z+ [ be the equation of the line through P and () then A = ﬁ%ﬁ}l

is the slope of the line [ and § = y; + Azr; = y» + Axy is the consequence. The following

equation shows all of the points (¢, Az + /3) on [ simultaneously lies on the curve E.

BN+ +a)t+(2+b) =0 (2.19)

Thus the third root 3 = A2 + X\ + 21 + 29 + a and the corresponding y-coordinate is
Ax3 + (. So the negative of the y-coordinate y3 = (Ax3 + ) + 3 = AM(x1 + x3) + 23 + y1.
If P=0@Q,let l: Ax+ [ be the equation of the tangent line to the curve E at P. The

slope of the tangent line at P can be derived by differentiation of the equation (2.18).

L toy) = L@+ aa® 1)
dy y (2.20)
(Ly=a+?
dzx T

13



So the slope of the tangent line A = x; + % Since P = Q, 3 = X\ 4+ )X+ a and
ys = N1 + x3) + x3 + y1; moreover, there is another formula commonly used for y3 by
changing varibale. Given A\ = x; + z—i = J”i—tyl that leads to Azy +y; = 7. Thus rearrange
ys = (A +1)x3 + Az; +y; and adapt it for y3 = (A + 1)z3 + 23. Table 2.3 lists all obtained
formulas of the above together for GF(2™).

Point Addition (P # Q) Point Doubling (P = Q)

T3 =N+ \+a
23 =N+ X+x +25+a
ys = Nay +x3) + 23+
P+Q ygz)\(a:1+x3)—|—x3+y1

P Y2+y1
r2+x1

= A+ 1)x3+ 2?2

— v
)\ —Jfl—f—xl

Table 2.3: Point addition formula over GF'(2™)

2.3 Elliptic Curves Scalar Multiplication

Scalar multiplication is used telcompute a-‘mlliltiple of an Elliptic curve point kP,
-~ HAESL &

where P is an elliptic curve point and & isi‘ a_positive integer smaller than the order of

P, then kP is the point obtained by adding togetheri k copies of P and this operation

dominates the execution time of eﬂiptié'%ur&e "Cryp‘t..ographic schemes.

2.3.1 Double-and-Add Algorithm

Algorithm 2.1. (Double-and-Add Algorithm)
Input: A positive integer k<n, where n is the order of P; and an elliptic curve point P.

Output: The elliptic curve point kP.

1. Let kpk,_1...kiko be the binary representation of k, where the leftmost bit k,, is 1.
2. Set R =P.

3. For i fromn —1 down to 1 do

3.1 Set R =2R.
3.2 If k; =1, then set R= R+ P.
4. Output R.

14



The double-and-add algorithm is a basic method for calculating scalar multiplication.
It achieves by repeated point double and add operations. The expected number of ones
in the binary representation of k is %, where m is the length of the integer k. The
number of ones in k£ indicates the number of times that point addition performs and the
number of times that point doubling operation performs is approximately equal to m.
Thus Algorithm 2.1 averagely takes % times point addition and m times point doubling

to perform m-bit elliptic curve scalar multiplication once.

2.3.2 Addition-Subtraction Method

If P(z,y) € E(F,) then —P = (z, —y); else if P(x,y) € E(Fym) then —P = (z,z +y).
Thus the point subtraction is as efficient as point addition. Then Algorithm 2.1 is replaced

by using addition-subtraction method and shown in Algorithm 2.2.

Algorithm 2.2. (Addition-Subtraction Method)
Input: A positive integer k<n, where n is the order of P; and an elliptic curve point P.
Output: The elliptic curve point k:P pAERES
1. Let epe,—1...e1€0 be the bin'&r"y T@p%ﬁ%@ﬂf&iioﬁ“ Of 3k, where the leftmost bit e,, is 1.
2. Let k,k,_1...ki1ko be the b@'_;z':ary repreééh%ati’on éf k.
3. Set R=P. E < |
4

. Fori fromn —1 down to 1 d.b
4.1 Set R =2R.
4.2 If e; =1 and k; =0, then set R= R+ P.
4.3 If e, =0 and k; = 1, then set R= R — P.
. Output R.

O

2.3.3 Binary NAF Method

Owing to point subtraction is as efficient as point addition, the signed digit representa-
tion k = > k;2" is used, where k; € {0,4+1}. A non-adjacent form (NAF) is a useful signed
representation which has the property that no two consecutive bits in k£ are nonzero and
has the fewest nonzero bits of any signed digit representation of k. Each positive integer
k has its unique NAF, denoted by NAF(k). The NAF of an integer k can be computed
efficiently by using Algorithm 2.3 [15].
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Algorithm 2.3. (NAF of a Positive Integer)
Input: A positive integer k.
Output: NAF(k).

1. Seti=0.
2. While k> 1 do
2.1 If k is odd, then set k; = 2 — (k mod 4) and then set k = k —k;; else set k; = 0.

2.2 Setkz%andz’zi%—l.

3. Output k, whose binary representation is (k;_1k;_o ... kiko).

Note that the length of NAF (k) is at most one bit longer than the binary representation
of k and the average density of nonzero bits in NAF(k) is approximately % [16], where m

is the length of the integer k.

Algorithm 2.4. (Binary NAF Method)
Input: NAF(k) and an elliptic curve point P.
Output: The elliptic curve point kP.

1. Let kyky_1 ... kiko be signed dzgzt Tep@esentatz:bn of k, where the leftmost bit k,, is 1.

=l RS =
2. Set R=P. '”‘“:, g Tk

]
1

3. For i fromn — 1 down to O:n.clio c _ g -
3.1 Set R = 2R. kN |
3.2 If k; =1, then set R=R —|—P
3.3 If k; = —1, then set R= R — P.

4. Output R.

Then the Algorithm 2.4 modifies Algorithm 2.1 by using NAF (k) instead of the binary
representation of & and averagely takes approximately % times point addition and m times
point doubling to perform m-bit elliptic curve scalar multiplication once. Furthermore, it

follows that the expected running time of Algorithm 2.2 and Algorithm 2.4 are the same.
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Chapter 3

Finite Field Arithmetic

This chapter describes the basic arithmetic used in elliptic curve over GF(p) and
GF(2™). Modular arithmetic such as modular multiplication is especially an important
part in many cryptographic systems, so there are still many approaches to its improvement
nowadays. Since affine coordinate is used for elliptic curve cryptography in this thesis,

modular inverse and division arithmetics are,also discussed in this chapter.

3.1 Modular Multiplication .

Modular multiplication is widely u‘s‘ed"'i;i many a'pplications including public key cryp-
tography such as RSA [2] algorithm. “THeTRSA “algorithm requires the computation of
modular exponentiation and this modular exponentiation is achieved through a series of
modular multiplications. Given an m-bit integer p, called the modulus, and two m-bit

operands a and b, modular multiplication computes the result of a x b (mod p).

3.1.1 Montgomery Multiplication Algorithm

The Montgomery multiplication algorithm, which was proposed by P. L. Montgomery
in 1985 [11], computes the modular multiplication without trial division. It turns the
modular multiplication into iterations of addition and shift operations. Thus the Mont-
gomery multiplication is quite appropriate for implementing modular multiplication with
hardware. Let the modulus p be an m-bit integer with 21 < p < 2™, and let r be

equal to 2™ where p and r are relatively prime, i.e. ged(p, r) = ged(p, 2™) = 1. Thus
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the p-residue of an integer a with 0 < a < p is defined as A = a - r (mod p). Given two

p-residues, A and B, the Montgomery product of the two p-residues is shown below,

C = A-B-r ' (mod p) (3.1)
= (a-r)-(b-r)-r7" (mod p)
= (a-b)-r (mod p)

= c¢-r (mod p), where0 <c<p (3.2)

1 -1

where r~! is the inverse of r (mod p), ie. r-r~' = 1 (mod p). The Montgomery

reduction algorithm also involves another quantity, p’, which is an integer that satisfies

L'and p’ can both be derived by the extended Euclidean

r-rt—p-p = 1. Here r-
algorithm described later in chapter 3.2.1. Therefore, the Montgomery product shown in

equation 3.1 can be obtained by Montgomery multiplication algorithm.

Algorithm 3.1. (Montgomery Multiplication Algorithm)

1. T=A-B
2.Q=T- -p modr ,. g,
3.U=(T+Q p)r !j 2 b
4. if U >p then C =U — p, e:;s'e CF"‘VU“" ' E

Proof. Assume that the lengths of Aand B are bo’tﬂ m-bit and the value T is a product
having double length equal to 2m. Step 2 sirﬁply converts () to single length m. Note
that in step 3, given r-r~! — p-p’ = 1 which leads to p-p' = —1 (mod r) so that

Q-p=T-pp (modr)=-T (modr) (3.3)

where @ - p is also a product having the same length as 7"and 7'+ @ - p = 0 (mod r)
which concludes that it can be divisable by r and U is its quotient.

U r=T+Q-p=T (mod p) (3.4)

The result U =T -r~ (mod p) = A-B-r~! (mod p) is derived. Seeing that the modulus
r is a little bigger than p and 0 < A, B < p, the value of T'/r = A - (B/r) is smaller than
p and such is the same case with (@ - p)/r. Since U is an additive result of two p-residue

value, step 4 ensure that the result C' is in p-residue format, too. Q.E.D.
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Among Montgomery multiplication algorithm, the operations of modulus r and di-
vision by r are both trivial operations since r is a constant with power of two. Thus
Montgomery multiplication has the advantage of hardware implementation, and it’s sim-
pler and faster than traditional modular multiplication.

Observe in (3.2), the resulting value C' of the Montgomery product is still in the p-
residue format, that is to say, the output value from the Montgomery product can be used
as input value to the next without converting from an ordinary residue to a p-residue. To
convert an ordinary residue to a p-residue, let the integer a multiply by r? (mod p), i.e.

22m (mod p), with the Montgomery product operation.

A = MonMul(a,r?)

a-r*-r~' (mod p) (3.5)

a-r (mod p)

Note that the constant 7> (mod p) needs to be precomputed externally. Similarly, in order

to convert the result A back to the ordinary residue, it can be achieved that A multiplies

by a constant 1 with the Montgomery product,opefation.
=y = T ¥ "

a : " MorllMl;l(A", 1y- :
Ay N oty) (3.6)

= (a L -”rn_i .(mod P)
Here no extra constants need to be precomputed. Moreover, the p-residue can also be
called Montgomery domain. However, it’s not efficient to perform one single modular
multiplication using Montgomery product since the conversion between Montgomery and

real domain needs one more Montgomery product operation, and otherwise computation

for the value p’ also takes much time.

3.1.2 Modified Montgomery Multiplication Algorithm

There are a variety of ways to realize the Montgomery multiplication [17]. The radix-2
Montgomery multiplication algorithm [18] over GF(p) is shown in Algorithm 3.2 and it
can easily adapt the field GF(p) for the field GF(2™). Algorithm 3.3 shows the binary

version of the radix-2 Montgomery multiplication algorithm and it has been proven by [19].
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Algorithm 3.2. (Montgomery Multiplication over GF(p))
Input: A, B and P, where A, B € GF(p) and P is the modulus p.
Output: U, where U = A x B x2™™ (mod P).

1. Let @y 1Gp_o ... araq be the binary representation of A.
2. Set U = 0.
3. For i from 0 to m —1 do
3.1. SetT = (U + a;B).
3.2. Set U = (T +t,P)/2.
4. If U > P, then set U =U — P.
5. Output U.

Algorithm 3.3. (Montgomery Multiplication over GF(2™))

Input: A(x), B(x) and P(x), where A(x), B(x) and P(z) € GF(2™), and GF(2™) is
generated by P(x).

Output: U(x), where U(x) = A(z) - B(&) -‘:v'“mv,-(,“mod P(x)).

1. Let A(z) = Zin:ol a;x', Va; € GF(Q);L“ ib“f’. tﬁ«}z.pélynomz’al representation of A(x).
2. Set U(z) = 0. L e

; "
| ]

3. Fori from 0 to m —1 do % 1896

3.1. Set T'(z) = (U(x) + aiB(x"))-_'“
3.2. Set U(x) = (T(x) +toP(x))/x.
4. Output U(x).

The suffix ¢ of the variable indicates the ith bit in the binary or polynomial repre-
sentation of the variable, i.e. %, denotes the least significant bit of T. Note that the
coefficients of the polynomial representation of A(x), i.e. ap_1am,_2...a1a0, are also the
binary representation of the integer A(2) since A(2) = >7" @;2". The addition of two

elements in GF'(2™) is shown in the following equation,

m—1 m—1 m—1
A@) + B(z) = Y aa' + Y b’ =) (a; ® bi)a’ (3.7)
=0 =0 =0

and the subtraction in GF(2™) is the same as addition in GF(2™). Furthermore, division

by 2 in GF(p) and division by = in GF(2™) are both shift operations.
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3.2 Modular Inversion

Modular inversion is used in cryptographic applications such as the Diffie-Hellman
key exchange [20], the public and private key pair generations in RSA and point addition
operations in ECC. Given an m-bit modulus p, modular inversion computes the inversion
of a non-zero field element a € GF(p). The inversion of a is denoted by a~! (mod p),

_1:

where a - a (mod p). Furthermore, the multiplicative inverse of a exists if and only

if a and p are relatively prime and its proof will be shown later.

3.2.1 Extended Euclidean Algorithm

In number theory, the Euclidean algorithm determines the greatest common divisor
(GCD) of two integers. The GCD of a and b, written as ged(a, b), is the largest positive
integer that divides both a and b without remainder. Two integers are called relatively
prime if and only if their GCD equals 1.

The extended Euclidean algorithm (EEA) [21] is an extension to the Euclidean algo-
rithm and it can be used to solve the'Bé.zun’s 1dent1ty, a linear diophantine equation. In
number theory, Bézout’s identity, . fAmlbd aﬂen E‘;ﬁenﬁg Bézout (1730-1783), states that if

a and b are non-negative integers; there exist integers=r and y such that
=4 | |

@y by = scd(@D) (3.8)

where x and y can be obtained by the EEA, but they are not uniquely determined. Set
¥ =z —kband ¥y =y + ka, then (2/,y') is another solution to (3.8) since az’ + by’ =
a(x—kb)+b(y+ka) = ax+by = ged(a,b). The following is the proof of Bézout’s identity.

Proof. Let S be the set of all positive integers of ax+ by, where x and y are integers. Since
S is not empty, it has a smallest element by the well-ordering principle. Let s = ax; + by,
be the smallest element of the set S. According to the division algorithm, there are unique

integers ¢ and r that satisfy a = sq + r with 0 <r < s. Then
r=a—sq=a— (ax;+by)qg = a(l — qx;) + b(—qy;) (3.9)

Note that (1 —gx;) and (—qy;) are both integers so that r should be in the set S. But the

condition 0 < r < s contradicts the choice of s as the smallest element of S. Thus » must
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be equal to 0 and it leads to a = sq which indicates that a is divisible by s. Similarly, b
is also divisible by s. Therefore s is one of the common divisor of a and b. Assume that

¢ is another common divisor of @ and b. Let a = ¢q; and b = cqq, then
cls = ax + by = c(q1x + q2y) (3.10)
Since c|s leads to ¢ < s, it implies that s is the GCD of a and b, i.e. s = ged(a,b). Q.E.D.

The EEA can solve the equation az + by = ged(x,y) efficiently. When a and b are
relatively prime, i.e. ax + by = 1, then x is the multiplicative inverse of a (mod b). The

following algorithm is a variant of the EEA.

Algorithm 3.4. (Modified Extended Euclidean Algorithm over GF(p))
Input: A and P, where A € GF(p) and P is the modulus p.
Output: R, where R= A' (mod P).
1. SetU=P,V=A R=0and S =1.
2. While V # 0 do
2.1. While U is even do
2.1.1. Set U =U/2.

2.1.2. If R is even, thenSetiR :}31/2 “ ) 3
2.1.3. Else set R= (R +P)/2L ~— .
2.2. While V' is even do
2.2.1. Set V =V/2.
2.2.2. If S is even, then set S = S/2.

2.2.3. Else set S = (S+ P)/2.
2.83. IfU >V, thensetU=U—-V, R=R-S.
2.4. Elseif V> U, then setV =V —-U, S=5—R.

3. Output R (mod P).

The algorithm described above works by using the elimination method for solving the

simultaneous equations below, where d and e are not really computed.

S A + d-P =V
(3.11)

R-A + e P =U
The algorithm terminates when V' = 0, in which case U = 1, and then RA+¢eP = 1 leads
to RA=1 (mod P), hence R= A~' (mod p).
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3.2.2 Montgomery Modular Inverse Algorithm

Based on the EEA, the algorithm proposed by Kaliski [12] computes the Montgomery
modular inverse. Given an m-bit modulus p, the Montgomery modular inverse of a non-

zero integer a € GF(p) is defined as the integer x,
r=a"'2" (mod p) (3.12)

The following algorithm rewrites the Kaliski Montgomery inverse algorithm with com-
bination of the two phases in one algorithm. It is alternative that the output can be in

the Montgomery domain or in the integer domain.

Algorithm 3.5. (Montgomery Modular Inverse Algorithm over GF(p))
Input: A and P, where A € GF(p) and P is the modulus p.

U=A"12" (mod P).

U=A"" (mod P).

1. SetU=P,V=A R=0and S=1.

Output: U, where {

2. Set k =0, where k is an integer, aith m§k< 2m.

3. While V> 0 do ¥ ERA ¢
3.1. If U is even, then set U = U/2,Ié’l:28 | -
3.2. Else if V is even, then:set V! ———JK/_Z,_R _9R.
3.3, Else if U >V, then set G (U — V) /2R = R+ S and S = 25.
3.4. Else if V. > U, then set V = (VIZl")/2, S = S+ R and R = 2R.
3.5, Setk=Fk+1.

m
4. Foru from 1 to { do
k

4.1. If R is even, then set R = R/2.
4.2. Else set R = (R+ P)/2.

5. If R > P, then set R =2P — R, else set R=P — R.
6. Output R.

Note that the upper in the braces derives Montgomery inverse result and the lower
derives modular inverse result, that is to say, output U is equivalent to A=12™ (mod P)
or A7! (mod P) depends on that the iteration count is (k —m) or k in Step 4.

The Step 3 is iterative and it steadily reduces U or V by one bit in each iteration.

Obviously, U and V initially have at most 2m bits in total since 2m~! < U < 2™ and

23



0 <V <U. But U equals 1 and V equals 0 in the last iteration, therefore, the iteration
count in Step 3 takes no more than (2m — 1) iterations. Similarly, U and V initially have
at least m + 1 bits in total while V' is equal to 1, thus, the iteration count in Step 3 takes
no less than m iterations. So the boundary of k is m < k < 2m.

If the input is originally in the Montgomery domain, i.e. A =a2™ (mod P), then the

output of the Montgomery inverse is given below.

U= (a2™)"'2™ (mod P)

(3.13)
a”' (mod P)

In order to convert the output to the Montgomery domain, the conversion between integer
and Montgomery domain needs an additional Montgomery multiplication operation. If
the input is originally in the integer domain, i.e. A =a (mod P), then the output in the

integer domain needs m iterations more than output in the Montgomery domain.

Table 3.1: Latency of Montgomery modular inverse

from and to both dqmain"

Domain Hel i Lé-tlerllﬂby (cycles)
From —  To- Moty MonMul  Total
It — Inkd [ dmecedl S dme
Int — Mon:i;'-'fﬂ 3m +1 : - 3m + 1
Mont — Int | -ﬂ B+l S 3m +1
Mont — Mont dm+1 m+1 4m+2

! Int means integer and Mont means Montgomery.
2 MonInv denotes Montgomery inverse.
3 MonMul denotes Montgomery multiplication.

4 m is the bit length of the modulus p.

Table 3.1 shows each latency in worst case of the Montgomery inverse from and to
both domain. In worst case, the latencies of the result for an m-bit Montgomery inverse
and for real modular inverse are (3m + 1) and (4m + 1) clock cycles respectively, and the
Montgomery multiplication operation over GF(p) requires (m + 1) clock cycles. Further,

the Montgomery multiplication operation over GF(2™) requires only m clock cycles.
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3.3 Modular Division

The modular division operation is traditionally accomplished by modular inversion
followed by modular multiplication since the modular division is believed to be slow. It

can be applied to the computation of the parameter A in ECC.

3.3.1 Modular Division Algorithm

Given an m-bit modulus p, the modular division of two integers a,b € GF(p), where

b # 0, is defined as the integer z,

1

r=ab " (mod p) (3.14)

The following algorithm shows a binary add-and-shift algorithm proposed by Sheueling

Chang Shantz [22] for modular divison in a residue class.

Algorithm 3.6. (Modular Division Algorithm over GF(p))
Input: A, B and P, where A, B € GE(p) and P is the modulus p.
Output: U, where U = AB™! (mod P

HATCA
1. SetU=P,V=B,R=0 _a'ﬁdS:Ai.?”" 4
2. While U £V do 4 Yearm
2.1. If U is even, then set U-:"“HU/Z.
2.1.1. If R is even, then set R _ R/2
2.1.1. Else set R=(R+ P)/2.
2.2. Else if V' is even, then set V = V2.

2.2.2. If S is even, then set S = S/2.
2.2.2. FElse set S = (S + P)/2.
2.3. Else if U =V >0, then set U = (U —V)/2, and R=R— S.
2.3.3. If R <0, then set R= R+ P.
2.3.3. If R is even, then set R = R/2. Else set R = (R + P)/2.
2.4. Else if V.—U >0, then set V. =(V —-U)/2, and S =S — R.
2.4.4. If S <0, then set S =S5+ P.
2.4.4. If S is even, then set S = S/2. Else set S = (S + P)/2.
3. Output R.
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The modular division algorithm above is an iterative process of additions, parity-
testings, and shifts. Like Montgomery modular inverse algorithm, it reduces U or V' by
one bit. But it is different that in the last iteration, U and V are both equal to 1. Thus
the entire division routine takes no more than 2(m — 1) iterations.

Remember that in modular inverse algorithm, solving the simultaneous equation (3.11)
can derive the inverse of the term A modular P. In order to solve this equation, it can

be easily observed that an identical equation fits this equation and shown below.

1-A + 0-P = A
(3.15)

0-A + 1-P = P

Therefore the initial value of the variable U, V', R and S in modular inverse algorithm
are set to be P, A, 0 and 1, respectively.

Further, the modular division algorithm is similar to the modular inverse algorithm
that it also works by using the elimination method for solving another simultaneous

equations below, where d and e are not really computed, too.

e (3.16)

S (4tB)_+Hep = v
R AP S PE= U

]
1

Note that the modular division éllg;orithl}l"@nétesl when U = V = 1, in which case
R-(A'B)+eP=1and S- (A_lB)+dP: 1SmceP is a prime, i.e. gcd(A™'B, P) =1,
the equation above definitely exists iﬁféger Sohitions that satisfy R- (A™'B) +e- P =1,
where R - (A7'B) = 1 (mod P), that is, R = AB~! (mod P). Similarly, S = AB™!
(mod P), too. And it also can be easily obtained that an identical equation that fits

equation (3.16) is written below,

{A-(A—lB) + d-P = B (317

0-(A'B) + 1.P = P

Thus the two algorithms of modular inverse and division only differ from the initial value
of the variable S with S = A instead. Although d is not really computed, in this case,
d = (—kB), where k is an integer that AA™! =1+ kP since AA™! =1 (mod P).

A-(A'B)+d-P=(1+kP)B+ (-kB)-P=B (3.18)

Thus, there exists an integer d satisfy the equation (3.17).
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3.3.2 Montgomery Modular Division Algorithm

Given an m-bit modulus p, the Montgomery modular division of the two integers

a,b € GF(p), where b # 0, is defined as the integer ¢, where

g=ab 2™ (mod p) (3.19)

And given a primitive polynomial p(z) with degree m which generates the GF'(2™), the
Montgomery modular division of the two element a(x),b(x) € GF(2™), where b(z) # 0,

is defined as the polynomial ¢(z), where
q(z) = a(x)b~ (x)z™ (mod p(x)) (3.20)

An alternative algorithm for calculating the Montgomery modular division or real

modular division is proposed below and it is suitable for both GF(p) and GF(2™).

Algorithm 3.7. (Montgomery Modular Division Algorithm over GF(p))

Input: A, B and P, where A, B € GF(p) and P is the modulus p.
U= AB~ 2™ (mod P) i
U= AB ' (mod Pl :
I SetU=P,V = BR—OandS Aw 4 -

2. Set k=0, where k is an mteger wath <k < 2m.
3. While V>0 do '

3.1. If U 1is even, then set U =U/2, S = 28S.

3.2. Else if V is even, then set V =V/2, R = 2R.

3.3. Else if U =V >0, then setU =(U—-V)/2, R=R+S and S = 25.
3.4. Else if V.—U >0, then set V=(V -U)/2, S=S+ R and R = 2R.
3.5. If R> P, then set R=R — P.

3.6. If S > P, then set S =5 — P.

3.7. Setk =k+1.

Output: U, where {

m
4. Fori from 1 to { do
k

4.1. If R is even, then set R = R/2.
4.2. Else set R=(R+ P)/2.

5. Set R=P — R.
6. Output R.
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Algorithm 3.8. (Montgomery Modular Division Algorithm over GF(2™))

Input: A(x), B(x) and P(x), where A(x), B(x) and P(z) € GF(2™), and GF(2™) is
generated by P(x).

U= A(z)B ' (x)z™ (mod P(z)).
U= A(z)B ' (z) (mod P(z)).
1. Set U(z) = P(x), V(x) = B(z), R(z) =0 and S(z) = A(z).
2. Set k=0, where k is an integer with m < k < 2m.
3. While V(z) # 0 do
3.1. If U(2) is even, then set U(x) = U(x)/z, S(z) = xS(x).
3.2. Else if V(2) is even, then set V(x) =V (z)/z, R(x) = zR(x).
3.3. Else if U(2) =V (2) > 0,
then set U(x) = (U(x) + V(x))/x, R(x) = R(x) + S(x) and S(z) = zS(x).
3.4. Else if V(2) = U(2) >0,
then set V(z) = (V(x) + U(x))/x, S(z) = S(x) + R(x) and R(x) = zR(x).
3.5. If deg(R) = deg(P
3.6. If deg(S) = deg(P ) :S(a:) + P(x).
3.7 Setk =k +1. ¥ EHHEHEW\ S

r)B™!
Output: U(x), where
)

~—

, then set R(z) = R(x) + P(z).
, thenset S (z ‘

]

~—

4. Fori from 1 to { de | Pl .

4.1. If R(2) is even, then set'nRﬂ(;‘z;,-) = R(:z:)/x

4.2. Else set R(z) = (R(z) + P(z))/z.""
5. Output R(x).

The proposed Montgomery modular division algorithm above is based on EEA and
the binary GCD algorithm [23]. It mainly modifies the Montgomery modular inverse
algorithm by setting the dividend to the initial value of S or S(z). Note that all of the
condition statements are almost the same in hardware design among these two algorithms,
so it can compute not only Montgomery division but also modular division in both GF'(p)
and GF(2™) fields. The two algorithms only differ from the field addition operations and
the modular condition statements in Step 3.5 and Step 3.6.

Although the Montgomery division can be performed by Montgomery inverse followed
by Montgomery multiplication, it takes longer latency and needs extra one more Mont-

gomery multiplication operation while the output is in Montgomery domain. Table 3.2
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shows the latency of traditional method using a Montgomery inversion followed by a

Montgomery multiplication.

Table 3.2: Latency of modular division using traditional method

from and to both domain

Domain Latency (cycles)
From — To MonInv MonMul MonMul Total
Int — Int 3m+1 m+1 - dm + 2

Int — Mont 3m+1 m+1 m+1 m—+ 3
Mont — Int 3m+1 m+1 - 4dm + 2

Mont — Mont 3m+1 m+1 m—+1 5m + 3

The total latency of the method above seems worse in some cases especially in Mont-
gomery domain, so the Montgomery modular division algorithm combine the inversion
with multiplication to improve this shortcoming. The maximum number of iterations
in Montgomery modular division algorl‘chm is, 3m or 4m depends on the output is in
Montgomery or integer domain. Table 3. 3y Shows each latency in worst case of the Mont-
gomery division from and to both domaln Hév&;élv.er there are no additional Montgomery

multiplication operations needed 1n each p@se. ]

Table 3.3: Lé;fency of MOIif';gomery mod-

ular division from and to both domain

Domain Latency (cycles)
From — To GF(p) GF(2™)
Int — Int 4m dm — 1
Int — Mont 3am 3m —1
Mont — Int 4m dm — 1
Mont — Mont 3m 3m —1

According to Table 4.3, the Montgomery modular division algorithm is consequently
suitable for Montgomery domain implementation design. Therefore, the proposed algo-
rithm is consistent with the way of implementing ECC on affine coordinate using Mont-

gomery architecture in this thesis.
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Chapter 4

Proposed Universal Architectures

The proposed architecture of the universal dual-field scalar multiplier on ECC is pre-
sented in this chapter. It is adapted to arbitrary lengths of the fields within a fixed length
of the given design, and it is also adapted to both the prime finite fields, GF(p), and the
binary extension fields, GF(2™). All of the required materials for mathematical theorems
have been mentioned in early chapter‘s.“ Then all of these main components used in the
scalar multiplier are detailed in thg: "‘féﬂowin}g subééct.ions.

In this thesis, all of the design‘ in ha!‘rd‘ixés'(afé‘is" ﬁpplemented using RTL (Register-
Transfer-Level) Verilog HDL (ha‘rdware d@@tion la{nguage) and synthesized on both
application-specific integrated cir;:‘uiﬁt‘ (ASIC) -':dnd“ ﬁeld-programmable gate arrays (FP-
GAs). The technology of ASIC desigfl 'is using‘Ul\-/[C1 0.18um 1P6M CMOS process and
the technology of FPGA design is using Xilinx? Virtex-II XC2V8000 platform FPGAs.

4.1 Universal Dual-field Montgomery Multiplier

In order to design an universal dual-field multiplier, the main problem is to deal with
the variable binary extension field since the primitive polynomial and field degree are
unfixed. An universal multiplier in GF(2™) using Montgomery multiplication algorithm
is proposed [24] using bit-parallel architecture, but this architecture for bit-parallel com-
putation is suitable for small field degree. Thus a series shift and addition operations is

chosen to implement Montgomery multiplication algorithm.

1United Microelectronics Corporation. The SoC solution foundry. http://www.umc.com
2Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http://www.xilinx.com
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Back to the Algorithm 3.2 and Algorithm 3.3 which are mentioned in subsection 3.1.2.
It is known that the Montgomery multiplication in GF(p) always takes (m+1) iterations,
but the Montgomery multiplication in GF'(2™) takes only m iterations which is one cycle
less than the former since there is no modular operation in the last step. Besides, the
addition operations in these two algorithms are also different that the adder in GF'(2™)

is the adder in GF'(p) without carry propagation.

ap
B _\l\ mode

2tol
MUX CSA

U
/ ctrl ADD| | e
MUX
0

3tol

> >°_ MUX

Figure 4.1: Universal dual-field Montgomery multiplier

Figure 4.1 shows the proposed ‘architéditfﬂrweﬂof t‘h(? universal dual-field Montgomery
multiplier. The finite field adder: is achieve‘d”by a caﬂry—save adder (CSA) follow by an
adder. The sum and carry are ééparatéd ‘b'waSAn,‘ so the carry can independently be
computed. The sum of CSA is directly chosenias the addition result in GF (2™) when the
mode is in binary extension field. The carry of CSA is shifted left by one bit and added
to the sum as the addition result in GF(p) when the mode is in prime field.

However, the negative of P is needed at the end of the Algorithm 3.2 and (—P) is

represented by its 2’s complement, P*, where P* = 2" — P. Then

Pr=2"_P=02"-1-P)+1=P+1 (4.1)

Note that P denotes the 1’s complement of the positive integer P, where P = (2™ —1)— P.
The 1’s complement is to simply complement P bit-by-bit by replacing 0’s with 1’s and
1’s with 0’s. According to (4.1), the 2’s complement of the integer P can be formed by
complementing P bit-by-bit and then adding 1. It can be achieved in hardware by a
bit-wise inverter except the least significant bit (LSB) of P since P is odd, that is, the
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2’s complement of P is always an odd, too. Moreover, the values of register U and A are
shifted right by one bit and back to the input of CSA after each iteration finished.

There are some sample area and speed results for the Montgomery multiplier over
GF(p) given in [25]. Its architecture is based on [26] and implemented on FPGAs using
Xilinx Virtex-E XCV2000e. Using this architecture, each multiplication operation requires
(m+5) clock cycles. Further, the architecture for the Montgomery multiplier over GF'(p)
based on Algorithm 3.2 is almost the same as Figure 4.1 without the 2-to-1 multiplexer at
the end. Each multiplication requires (m + 1) clock cycles. For more general comparison,
the proposed design here is synthesized using the same technology with [25]. Table 4.1
lists the detailed area and speed results for both.

Table 4.1: Comparison of Montgomery multiplier in GF'(p)

Bit-length Proposed | A. Daly [25]
Area (Slices) 629 646
198-bit Frequency (MHz) 65.90 81.23
Latency (cycles) 129 133
Throughputs(Mbit /sy dits, 65.4 78.2
AreaifSlice|-| [, 64 1292
956 bit Frequszncy (MHZ) AN A=43 58.24
Lateney (cycles) 257 261
Throughput (Mbit/s)f  £47.2 57.1
Area (Slicagyresril®” 2176 2588
519.bit Frequency (MHz) 29.35 56.05
Latency (cycles) 513 517
Throughput (Mbit/s) 29.29 55.5

Note that [25] uses pipelined mux/add architecture to improve in clock speed when
the bit-length of its multiplier exceeds the maximum carry chain length, i.e. 1 column of
the FPGA. Its architecture is especially designed for the specific type of FPGA platforms.
Since the clock period is not under constrain in this thesis, the proposed architecture is
designed for smaller scale to simultaneously adapt to both GF(p) and GF(2™).

The implementation results of the proposed universal dual-field Montgomery multiplier
is given in Table 4.2. It shows the probably gate count synthesized at 100MHz and shows
the area and speed results on FPGAs. Each number of gates in the field Gatecount consists

of two parts which are non-combinational logic and combinational logic respectively. It
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doubles when the bit length doubles. The area is approximately in proportion to the bit
length m of the field.

Table 4.2: Synthesize results for proposed universal dual-field Mont-
gomery multiplier on ASIC and FPGA design

ASIC FPGA
Biengin | Sglooomt | Py | A | Py
64-bit 4.2k (1.9k + 2.3k) 397 83.265
128-bit 8.3k (3.8k + 4.5k) 733 65.811
256-bit 16.3k (7.4k + 8.9k) 100 1387 47.432
512-bit 32.1k (14.5k + 17.6k) 2266 27.118
1024-bit 63.3k (28.8k + 34.5k) 4664 16.120

4.2 Universal Dual-ﬁol‘d Montgomery Divider

The universal dual-field Montgomery diﬁidor 18, mainly used in Montgomery domain. It
shortens the latency of the d1v1s1on i Montgomery domaln by combination of an inversion
and a multiplication. Table 4.3 ShOWS the latency of modular division from and to both

domain using Algorithm 3.6 method

Table 4.3: The latency for Algorithm 3.6

Domain Latency (cycles)

From — To MonDiv.  MonMul  Total
Int — Int 2(m —1) - 2(m —1)
Int — Mont 2lm—1) m+1 3m—1

Mont — Int 2(m —1) - 2(m—1)

Mont — Mont 2(m—1) m+1 3m—1

In comparison with Table 3.3, the total latency for either domain to Montgomery
domain is similar but it needs additional Montgomery multiplier in hardware. Table 4.4
shows the FPGA results of Algorithm 3.7 in comparison with other implementations [27]

using Algorithm 3.6 with the same technology.
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Table 4.4: A Comparison with FPGA results for
modular division in GF(p)

Proposed A. Daly [27]

: Area Freq. Area Freq.
Bit-length (Slices) | (MHz) | (Slices) | (MHz)

64-bit 1163 | 30.361 1212 45
128-bit 2132 | 26.091 | 2215 31
256-bit 3262 | 15429 | 3872 17

According to Algorithm 3.7 and Algorithm 3.8, note that all of the condition state-
ments are almost the same in hardware design among these two algorithms. It reduces
the complexity of the control flow for the two different fields. The control flow is simul-
taneously suitable for GF(p) and GF(2™).

Figure 4.2 shows the circuit diagram for the registers U and V in the universal dula-
field Montgomery divider. There are two subtracters in this circuit which compute (U—V)
and (V' — U) separately. One of themis feuséd torcompute (P — R) in order to share the
subtracters. The term (P — R) ismeeded {0 derive the correct result in GF(p) when the
division is finished at the last step. Fuarther, 1t éan usejonly one subtracter in only GF(p)

by substituting U for —U in Algori‘thm‘?;.?.

U
MUX —
ctrl
v
field
MUX —

® L ctrl

Figure 4.2: Universal dual-field Montgomery Divider Architecture for U and V
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Figure 4.3 shows the circuit diagram for the registers R and S. Note that the source
U denotes (P — R) and is derived from the circuit mentioned above. Since the registers
U and R will not simultaneously be equal to (R + S) in the division algorithm, they can
share the same hardware in this term (R + S). The decoder is used to determine the
modular operation in GF(2™) but also costs around 6% extra portion of area in FPGA.

However, it is unnecessary in specific length design.

logym-to-m bit

S

m Decoder 7
R

R aot || >
P
N o 2

ctrl 777
S
p S

2tol |
R MSX
5 ctrl A
P L

Figure 4.3: Universal dual-field Montgomery Divider Architecture for R and S

Table 4.5 shows the synthesize results for the universal dual-field Montgomery divider

on ASIC and FPGA. The area is also approximately in proportion to the bit length m.

Table 4.5: Synthesize results for proposed universal dual-field Mont-
gomery divider on ASIC and FPGA design

ASIC FPGA
: Gatecount Frequency | Area | Frequency
Bit-length (Gates) (MHz) | (Slices) | (MHz)
64-bit 10.3k (2.6k + 7.7k) 1095 52.366
128-bit 20.8k (5.0k + 15.8k) 100 2164 41.917
256-bit 421k (10.0k + 32.1k) 4535 28.243
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Another algorithm for unified modular division in GF(p) and GF(2™) is proposed
in [28] and is implemented in [29]. Table 4.6 shows a comparison of the number of gates
for two algorithms. The UMD algorithm in [28] is also suitable for both GF(p) and
GF(2™) but still needs additional multiplication for Montgomery domain.

Table 4.6: A Comparison with ASIC results for universal modu-

lar division algorithm

Proposed L. A. Tawalbeh [29]
. Gatecount | Frequency | Gatecount | Frequency
Bit-length || “ates) | (MHz) " | (Gates) | (MHz)
128-bit 20.8k 22.8k 100
100
256-bit 421k 45.6k 92

4.3 Universal Dual-field Scalar Multiplier

The most important arithmetic en elliptic curve applications is the scalar multiplica-
tion that computes kP, where k isran arbitrary integer and P is a point on elliptic curve.

In scalar multiplication, the computation of the parameter \ is the most time consuming.

ctrl

UMM

Y, 4tol
MUX

UMD

4tol
MUX

R

Figure 4.4: Circuit diagram for calculating A
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Figure 4.4 shows the circuit diagram for calculating the parameter A. The block
UMM and UMD denote an universal dual-field Montgomery multiplier and an universal
dual-field Montgomery divider respectively. The block Mod P denotes the modular p
operation once and requires one subtracter or adder and one multiplexer. Thus it is a

great consumption of area in hardware.

X,
X,
a

D

X1

X1 - Xl
— — Mod P X +
? field
ctrl
— H Mod P Y5
Yl 2tol
_‘ MUX

Figure 4.5 Universal-dual-ficld-point adder

Figure 4.5 shows the architecture ‘of the universal dual-field point adder on elliptic
curves. Except the X block, there is one more UMM needed for both the outputs X3 and
Y3. Since the multiplication does not simultaneous occur while calculating X3 and Y3,
they can share the multiplication hardware.

Table 4.7 show the synthesize results for the proposed elliptic curve point adder. Note
that the design here only works in Montgomery domain. The transformation between

domains requires other Montgomery multipliers.

Table 4.7: Synthesize results for proposed elliptic curve point adder

ASIC FPGA
. Gatecount Frequency | Area | Frequency
Bit-length (Gates) (MHz) | (Slices) | (MHz)
256-bit 198.3k (27.6k + 170.7k) 75 12366 27.512
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Figure 4.6 shows the entire architecture of the universal dual-field scalar multiplier.
The block ECPA denotes the point adder. It takes five UMM blocks for domain transfor-
mation, however, the additional UMM blocks cost about 27% area of the entire design. It
multiplies the constant 2** (mod p) to transform to Montgomery domain and multiplies

the constant 1 to transform back to integer domain.

Point
Register kP
| _XKP_
MM |
] 1 v
Xp — L
% o ECPA H |
v UMM
Y, —| P KP]
| UMM
Double
L %
o UMM
2 p—
Shift Register
Mode r/ K
Length

Figure 4.6: Univergal dudl—ﬁeld scalar multiplier

The main function of the control cireuitsis the scalar multiplication. The Double-and-
Add algorithm is used here and takes.about #-area'of the design. This control circuit can
be replaced by other more efficient algorithms mentioned in Chapter 2.3, but it certainly
will take more circuits. Therefore, the control unit can be implemented using software for
more flexibility. In most ECC applications, the base point or some parameters are already
known, so that some variables can be pre-computed in advance and strored in additional
memories in order to accelerate the computation. Table 4.8 shows the final results for the

total design in this thesis. It performs the scalar multiplication on elliptic curves.

Table 4.8: Synthesize results for proposed elliptic curve scalar multiplier

ASIC FPGA
. Gatecount Frequency | Area | Frequency
Bit-length (Gates) (MHz) | (Slices) | (MHz)
256-bit 292.5k (80.8k + 211.7k) 75 18146 18.768
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Chapter 5

Implementation Results

A total solutions for elliptic curve arithmetics in both software and hardware are given
in this work. This chapter shows the hardware implementation results. The software
simulation environment is constructed in both C and C++ programing languages. The
design and test consideration are discussed in Chpater 5.1. The hardware implementation
results and design flow are described in Chapter 5.2. The RTL synthesizer uses Synopsys!

Design Compiler for ASIC and Xillin}l(‘ XSL or Syn‘pli.(:ity2 Synplify Pro for FPGA.

=] ,.,

5.1 Design and Test Cq.nsig_ler.afion

The hardware is designed to accelératé®hie operations on elliptic curves and it deals
with different field parameters using Montgomery technique. The main part in hardware
is the point operation on elliptic curves and the implementation of scalar multiplication
on hardware uses only Double-and-Add algorithm which averagely takes more latency.
The performance of scalar multiplication algorithm is not taken into consideration in this
work since it can be improved efficiently by software or uses additional memories.

The Verilog code for this design was generated using the parameterized module for
different values of m. The test patterns are generated randomly by software. The ver-
ification for the design uses not only hardware-software co-simulation but also confirms

with the examples of NIST? publications for more confidence.

LSynopsys, Inc. http://www.synopsys.com/
2Synplicity, Inc. http://www.synplicity.com/
3National Institute of Standards and Technology. http://www.nist.gov/
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5.2 Hardware Implementation

5.2.1 ASIC Implementation

Figure 5.1 illustrates the entire ASIC design and testing flow with various CAD (Com-
puter Aided Design) tools. The design is done by pre-layout gate-level simulation but the
pre-layout simulation can not calculate the circuit speed precisely. The results for post-

layout gate-level simulation will be worse than the results shown in former.

Specification

RTL
Simulation /
nLint

RTL Coding
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Gate-level
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Get SDE from
Timing
Engine

Prime Time /
Prime Power

( Post-layout )

Get SDF from

Place & Route Timing Gate-level
Engine \ Simulation )
S————

DRC/ERC/

LVS

Figure 5.1: ASIC design flow
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Table 5.1 shows a comparison for the ASIC performance of scalar multiplication. In
this work, the execution time for computing kP in GF(Pigs) is average 3.3 ms. The
execution is probably range from 2.4 to 4.2 ms for the best and worst case, that is, the
latency is probably range from 180k to 320k clock cycles.

In contrast to proposed design, the work [30] shows a great performance using a elliptic
curve cryptographic processor. It has a Montgomery multiplier and uses projective plane
to avoid inversion operations. In scalar multiplication, it uses software NAF method to
reduce the number of 1 terms in k. However, the proposed design mainly shows a powerful
dual-field arithmetic operator on elliptic curves by ASIC method.

In work [31], the design uses Fermat’s Little Theorem for the modular inversion oper-
ation. However, it is not considered efficient in a large field design since the computation
complexity increases significantly. The proposed Montgomery modular inversion or divi-
sion algorithm based on EEA has an obviously improvement on the computation time for
inversion computation. The division algorithm is chosen in this thesis because it always
needs a division in elliptic curve point operatlons

In software simulation on C, it takes around 300 ms averagely to do scalar multipli-
cation once. Then the ECDSA takes about| 1290 ms 1nclud1ng signature and verification.

The signature and verification have,“tota,l four scalar mpltlphcatlon operations. Therefore,

the scalar multiplication spends the mdst«'ti‘rrié"ih ECDSA and requires extra hardware to
accelerate its speed. The simulation restilts b.elo‘vil‘show significant improvement on the

computation time for scalar multiplication.

Table 5.1: Elliptic Curve Scalar Multiplication ASIC Performance Comparison

Author A. Satoh [30] G. Z. Lu [31] Proposed
Field GF(Pyo2)/GF(2'%) | GF(Pigy)/GF (2'9%) | GF(Pasg)/GF(2%°)
Platform 13pm CMOS 25pum CMOS A8um CMOS
Gatecount (Gates) 120.2k 26.7k 292.5k
Frequency (MHz) 137.7 285.7 75
EC mult. (ms) 1.44/0.19 9.75/6.75 3.3
Note 64-bit 8PEs with Universal dual-field
multiplier w = 8bits architecture

! The timing for EC mult. of the proposed design is for 192-bit length.
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5.2.2 FPGA Implementation

Figure 5.2 illustrates the FPGA design and testing flow in contrast to the ASIC design
flow. In this thesis, since this work is mainly implemented on ASIC design, there is
not any technique used to improve the performance on FPGA. Thus, there is no block
RAM and specific length multiplier used to accelerate the speed on FPGA. Thus, the
implementation results on FPGA is slightly worse in timing performance, but it is helpful

in fast verification and gives reliable hardware information.
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Figure 5.2: FPGA design flow
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Table 5.2 shows a comparison for the FPGA performance of scalar multiplication.
There are few similar parallel architecture of universal dual-field elliptic curve scalar

multiplier, so the following table just lists some implementations for reference.

Table 5.2: Elliptic Curve Scalar Multiplication FPGA Performance Comparison

Author Field | Platform | e | A | gatenes | BOmut
C. J. Mclvor [32] | GF(Pass) | xomipioy | 15755 | 39.46 | 1513k | 3.86
W. C. Hsu [33] | GP@%) | (Ao | SSL0 90 37k 0.41
N. A. Saqib [34] | GF(2) | yonmn o | oS5l | 009 | 573 0.05
Leong [35] | GF(2!7) | Microcoded ; - 310k 11.1
Proposed GF(2%9) XC)%{}%OO 18146 | 18.768 | 250k 13.32

! The timing for EC mult. of the p.r,Qp"o‘se‘d 'd'esign is for 192-bit length.

The authors in [32] have proposed mu@h about the Montgomery techniques recent

years. The latency of the Montgomery multlphcatlon is especially shorter than the pro-

posed design in this thesis. It takesn iny 32 clock .‘cycles to perform one 256-bit multi-
plication and achieves by cascading 16'xI16%hit iﬁﬁltipliers. The trade-off is the cost of
area. The Montgomery multiplier here requires 11992 Slices. Despite of the amazing area
consumption, it performs a fast operation speed for 256-bit scalar multiplication.

The work [33] and [34] shows the higher frequency and fewer latency design respec-
tively. They both have a good performance on scalar multiplications. In [33], the design
works on normal basis and uses projective plane method to avoid inversion operations. [35]

shows the performance using microcoded EC processor.
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Chapter 6

Conclusion

A total solution in hardware and software to the scalar multiplication on elliptic curves
in both GF(p) and GF(2™) is given in this thesis. In order to deal with various field
conditions, the Montgomery techniques are employed. In affine coordinates, due to the
slow division while calculating the parameter A in point additions, a Montgomery mod-
ular division algorithm based on EEA is, prosted instead of the inversion followed by a
multiplication. The Montgomery d1v1der plays an 1mportant role in elliptic curve scalar
multiplication since it dominates 40% of to‘ta’l latency Besides, the Montgomery multi-
plier is also an important operatlon T,he Hnilementatlon of these two functions in this
work shows a considerable trade—off on area and specd, so it is suitable for hardware design
to accelerate most complicated opera“fi"bns on “ellibtic curves.

According to the implementation result, it is synthesized using .18 um CMOS tech-
nology with 285k gates and using Xilinx Virtex-II XC2V8000 with 18146 slices in FPGA
design. It takes about 300 ms to accomplish a scalar multiplication in software but takes
only 3 ms in hardware. It is 100 times fast in speed. The result of proposed full parallel
architecture for the scalar multiplier on elliptic curves seems a great consumption of area
in comparison with others. However, the total area of entire scalar multiplier is not take
into consideration in this thesis. It mainly shows the computation time in scalar multipli-
cation using the proposed Montgomery method. It provides another way of implementing

point additions in affine coordinates.
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Appendix A

Elliptic Curve Cryptography

A.1 Elliptic Curve El-Gamal

The elliptic curve group forms finite cyclic group so that the elliptic curve group over

finite field can be used to implement El-Gamal public cryptosystem.

1. Given the base point G, a key pait ‘consists of a prlvate key d, where 1 <d <n-—1,
and a public key @), where Q= dG- 3 ‘

2. Given Alice’s key pair Q4 and'da, Whlere Q A 1S i’?ublie key and d 4 is private key.

3. Given Bob’s key pair p ar.ldn‘ dp, LWPIGTE_@ B 15 p‘ublic key and dp is private key.

4. Given a message P, Alice sends the pomt (xl, y1) = (kG, P + kQp) to Bob using
Bob’s public key where £ is a random mteger chosen by Alice.

5. Bob uses his secret key dg to derive the message P by computing (y; —dpx1), where

y1 —dpry = (P+kQp) — dp(kG) = (P + kQp) — k(dgG) = P+ kQp — kQp = P

A.2 Elliptic Curve Diffe-Hellman

Elliptic Curve Diffe-Hellman (ECDH) is a variant of the Diffie-Hellman protocol using
elliptic curve cryptography. It is a key agreement protocol that allows two parties to
estabilish a shared secret key over an insecure channel. This key can then be used to

encrypt subsequent communications using a symmetric key cipher.
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A.2.1 Key Exchange

1.

A AN R

Given the base point GG, a key pair consists of a private key d, where 1 < d <n —1,
and a public key ), where ) = dG.

Given Alice’s key pair Q4 and d4, where ()4 is public key and d4 is private key.
Given Bob’s key pair Q5 and dp, where () is public key and dp is private key.
Alice computes the point (xy,yx) = da@Qp using Bob’s public key.

Bob computes the point dg(@ 4 using Alice’s public key.

Alice and Bob have the same key since daQp = da(dpG) = dp(daG) = dpQ 4.

A.3 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the Digital Sig-

nature Algorithm (DSA) using elliptic curve cryptography.

A.3.1 Key Pair Generation

1.

Select a statistically unique and unpredlctable mteger din the interval 1 < d < n-—1,
where n is the order of the pomt G, Le. nG’ O
Compute the point Q(zq, yQ) = dG | : E

J

The key pair is ) and d, Where Q is the pubhc key, and d is the private key.

A.3.2 Signature Generation

. Given a bit string, M, with arbitrary length as the message to be signed.

Message digesting:
2.1. Compute the hash value e = H(M) of the message using SHA-1.
2.2. SHA-1 is specified in [36]. The output e is an integer with a length of 160 bits.

. Elliptic curves computations:

3.1. Select a statistically unique and unpredictable integer k, where 1 < k < n —1.
3.2. Compute the point (x1,y;) = kG.

Modular computations:

4.1. Set r = 1 mod n.

4.2. Compute s = k(e + dr) mod n.
The signature for M shall be the two integers, r and s.
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A.3.3 Signature Verification

1. Given a received message M’, and a received signature of two integers, v’ and s'.
2. Message digesting:

2.1. Compute the hash value ¢/ = H(M’) of the message using SHA-1.
3. Modular computations:

3.1. Compute ¢ = (')~ mod n.
3.2. Compute u; = €'c.

3.3. Compute uy = 1'c.
4. Elliptic curves computations:

4.1. Compute the point (x2,y2) = 11 G + u2Q.
5. Signature checking:

5.1. Compute v = x5 mod n.
5.2. If " = v, then the signature is verified.

5.3. If 7" # v, then reject the signature.
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