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摘 要       

這篇論文中介紹了一個同時適用在有限質數場和 GF(2m)有限場的橢圓

曲線純量乘法器的通用型硬體架構。這個所提出的純量乘法器能支援最多

256位元任意長度的有限質數場，且它也能應付 GF(2m)有限場不同的場多項

式 degree和 p(x)。實現此可變的通用型硬體架構是根據蒙哥馬利的技術，包

括蒙哥馬利的乘法器以及除法器。而所提出的蒙哥馬利模數除法理論也可以

用來取代在蒙哥馬利域中的一個模數反元素運算和一個模數乘法運算。這個

理論在計算模數除法時，比原本橢圓曲線所使用的方法效能較好，且設計成

硬體時也比其他模數除法理論需要較小的面積。而用所提出的純量乘法器架

構來計算橢圓曲線上的純量乘法也有合理的速度，例如它只需 3.3毫秒就可

以完成一個 192位元的純量乘法運算。 
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ABSTRACT 

An universal hardware architecture of scalar multiplier on elliptic curves 

suitable for both GF(p) and GF(2m) is introduced in this thesis. The proposed 

scalar multiplier can work in arbitrary field lengths within a maximum 256-bit 

length in GF(p), and it also supports various field degrees and primitives in 

GF(2m). The flexible universal hardware architecture is based on the Montgomery 

techniques, including the Montgomery multiplier and divider. The Montgomery 

modular division algorithm is also proposed to replace the inversion followed by a 

multiplication in the Montgomery domain. It provides a better performance on 

modular division operations than previous ECC techniques and also has a smaller 

area size than other modular division architectures. The proposed scalar multiplier 

architecture can perform the scalar multiplication on elliptic curves at a 

reasonable speed. For a 192-bit scalar multiplication operation, it takes about 3.3 

ms. 
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Abstract

An universal hardware architecture of scalar multiplier on elliptic curves suitable for

both GF (p) and GF (2m) is introduced in this thesis. The proposed scalar multiplier can

work in arbitrary field lengths within a maximum 256-bit length in GF (p), and it also

supports various field degrees and primitives in GF (2m). The flexible universal hardware

architecture is based on the Montgomery techniques, including the Montgomery multiplier

and divider. The Montgomery modular division algorithm is also proposed to replace the

inversion followed by a multiplication in the Montgomery domain. It provides a better

performance on modular division operations than previous ECC techniques and also has a

smaller area size than other modular division architectures. The proposed scalar multiplier

architecture can perform the scalar multiplication on elliptic curves at a reasonable speed.

For a 192-bit scalar multiplication operation, it takes about 3.3 ms.
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Chapter 1

introduction

1.1 Background

Since the public-key cryptography was introduced by Diffe and Hellman [1] in 1976,

the use of discrete logarithm problem in public-key cryptosystems has been recognized.

This method of exponential key exchange came to be known as Diffie-Hellman key ex-

change. RSA and El-Gamal are two of the popular public-key cyrptosystems widely used

nowadays. The RSA algorithm based on the difficult of factoring large numbers was

published by Rivest, Shamir and Adleman [2] at MIT1 in 1978. Further, the El-Gamal

algorithm based on Diffie-Hellman key agreement describes the public-key system and

digital signature schemes, and it was proposed by Taher ElGamal [3] in 1985.

The public-key cryptosystem such as RSA is still widely used in electronic commerce

protocols and it is believed to be secure enough as long as it has sufficiently long keys.

However, there are many efficient attacks known for both RSA and modular p discrete log

based cryptosystems such as the Number Field Sieve [4] attacks for RSA and the index

calculus attacks for the modular p systems.

The elliptic curve cryptography (ECC) is an approach to public-key cryptography

based on the algebraic structure of elliptic curves over finite fields. The ECC was in-

dependently proposed by Victor S. Miller of IBM2 in 1986 [5] and Neal Koblitz of the

University of Washington in 1987 [6]. There are no subexponential algorithms known

1Massachusetts Institute of Technology, located in Cambridge, MA, USA. http://web.mit.edu/
2International Business Machines Corporation. http://www.ibm.com/
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for the elliptic curve discrete logarithm problem (ECDLP) and denotes that there are no

efficient attacks known on it. Consequently, the parameters for ECC can be chosen to be

much smaller than the paramters for RSA with the same level of resistance against the

best known attacks. Table 1.1 shows each different parameter size with the same level of

security strengths compared with given cryptography [7].

Table 1.1: Comparable security strength for given cryptography

ECC (e.g., ECDSA) IFC (e.g., RSA) Symmetric key algorithms

f = 160 − 223 k = 1024 -

f = 224 − 255 k = 2048 -

f = 256 − 383 k = 3072 AES-128

f = 384 − 511 k = 7680 AES-192

f = 512 ↑ k = 15360 AES-256

1 ECDSA (Appendix A.3).

2 IFC denotes integer factorization cryptography.

3 f is the size of n, where n is the order of the base point G.

4 k is the size of the modulus p.

5 Advanced Encryption Standard (AES) [8].

Note that in Table 1.1, the difference of the size between ECC and RSA becomes more

enormous as the security level increases. It is attractive that the ECC has much smaller

parameters leads to more significant performance advantages contrast to RSA. Therefore,

the ECC takes advantages for wireless applications where the computing power, memory

and battery life are limited such as smart cards and wireless devices.

Furthermore, the performance of ECC mainly depends on the efficiency of its math-

ematical arithmetics, namely, scalar multiplication. Given p, a positive integer, and a

point P on an elliptic curve. The scalar multiplication kP can easily be defined as adding

the (k − 1) copies of P to itself. There are some algorithm to compute the multiple of

points on elliptic curves. More details will be discussed in chapter 2.3 later.

At the end of this thesis in appendix, some schemes for ECC are listed. Appendix A.1

is El-Gamal on elliptic curves, Appendix A.2 is Elliptic Curve Diffie-Hellman (ECDH) [9]

and Appendix A.3 is Elliptic Curve Digital Signature Algorithm (ECDSA) [10].
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1.2 Motivation

In recent years, security issues on communications are more and more significant as

the wireless industry explodes. The ECC has become an important role in public-key

cryptographic systems. There are more and more applications using ECC as authenti-

cation for transactions and encryption or signature for secure messaging. For example,

ECDSA has been used to sign the product key by Microsoft3 since Windows 954.

Since the scalar multiplications on elliptic curves are needed, there are much advanced

research on modular arithmetic operations over finite fields such as the Montgomery’s

technique [11] for modular multiplication which will be discussed in chapter 3.1.1. Then

the Montgomery’s technique for modular inversion has been described in [12] and will be

mentioned later in chapter 3.2.2. However, scalar multiplication on elliptic curves needs

modular division operations in affine coordinates, and there are few implementations

on ECC applications using dedicated modular division component. There were still no

efficient modular division algorithms known for past hundreds of years. Instead, modular

division is achieved by computing the inversion followed by multiplication, but it takes

longer latency between domain transformation using Montgomery’s technique in this way.

Thus, a Montgomery modular division algorithm is developed in this thesis to shorten the

timing for scalar multiplication on elliptic curves using Montgomery’s technique.

In Freescale5 MPC190 security processor, it includes elliptic curve operations in either

GF (p) or GF (2m) in its features, and its programmable field size is from 55 to 511 bits.

The point operations (addition, doubling and multiplication) involve one or more finite

field operations, which are addition, multiplication, inverse and squaring.

Therefore, in this thesis, an approach is also provided to compute the scalar multi-

plication on elliptic curves in both GF (p) and GF (2m), and the Montgomery technique

can be used to deal with various finite field degrees and different primitive polynomials

in GF (2m). Further, in this feature, one more finite field operation, division, is involved

here to replace the inversion followed by a multiplication, and it is used in hardware to

accelerate the scalar multiplication operations in ECC applications.

3Microsoft Corporation. http://www.microsoft.com/
4A consumer-oriented graphical user interface-based operating system developed by Microsoft in 1995.
5Freescale Semiconductor, Inc. http://www.freescale.com/
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1.3 Thesis Organization

In this thesis, the total solution to elliptic curve operations in hardware and software

is given. In Chapter 2, the preliminary mathematical background of elliptic curves is

introduced. In Chapter 3, the Montgomery’s techniques for the finite field arithmetic

are detailed in this chapter. It shows each algorithm in both prime field and binary

extension field versions. Additionally, an algorithm for Montgomery modular division is

proposed for the combination of Montgomery inversion and Montgomery multiplication.

In Chapter 4, all the proposed universal dual-field architectures are described in this

chapter. An universal architecture of Montgomery multiplication for both prime field

and binary extension field is proposed first. Then the implementation of the proposed

Montgomery modular division algorithm is presented. The division hardware is the major

part of the scalar multiplier on elliptic curves. In Chapter 5, it shows the hardware

implementation results and test consideration for the scalar multiplier on elliptic curves.

Finally, the conclusion is given in Chapter 6.
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Chapter 2

Elliptic Curves

Elliptic curves [13] [14] are not ellipses as shown in literal. In mathematics, an elliptic

curve is an algebraic curve defined by a cubic equation such as y2 = x3 + ax + b, which

is non-singular, i.e. its graph has no cusps or self-intersections. Elliptic curves received

their name from their relation to elliptic integrals such as

∫ z2

z1

dx√
x3 + ax + b

and

∫ z2

z1

x dx√
x3 + ax + b

(2.1)

that arose in connection with the computation of the circumference of ellipses.

2.1 Basic Facts

Let F be an algebraically closed field and F
2 denote the affine plane A

2, the usual plane,

A
2(F) = {(x, y)|x, y ∈ F}. Let C(x, y) be an irreducible polynomial over F, and the curve

C means the set of zeros of C in the affine plane F
2, i.e. {(x, y) ∈ F

2|C(x, y) = 0}.
Assume that P is a point (xp, yp) on the curve C. If both of the partial derivatives vanish

at P , that is ∂C(xp,yp)

∂x
= ∂C(xp,yp)

∂y
= 0, then the point P is called a singular point on the

curve C. A curve is called a singular curve if and only if it has at least one singular

point on it, otherwise it is called a non-singular curve. An elliptic curve commonly used

in cryptography is a non-singular curve because of its better security level relative to a

singular curve. A singular elliptic curve is thought of insecure in general. Definition 2.1

shows the algebraic equation of the elliptic curve in a more general form.

5



Definition 2.1. An elliptic curve E over the field F defined by an affine Weierstrass

equation is an equation of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, ∀ai ∈ F (2.2)

let E(F) denote the elliptic curve E over F, i.e. the set of points (x, y) ∈ F
2 that satisfy

this equation, along with the point at infinity denoted by O.

Definition 2.2. The point at infinity called O is the intersection of the y-axis and the

line at infinity. The line at infinity is the set of points on the projective plane for which

Z = 0. Therefore, the point at infinity O is (0, 1, 0) in the projective plane, i.e. the

equivalence class with X = Z = 0.

No further details about projective plane are shown in this thesis since only affine

coordinates are discussed in the remaining chapters.

In order to describe a singular or non-singular curve clearly, an important quantity ∆

related to the elliptic curve called the discriminant of E is defined.

Definition 2.3. ∆ is the discriminant of E and is given by

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, where











































b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4

+a2a
2
3 − a2

4

(2.3)

and the symbols above correspond to (2.2).

Theorem 2.1. A cubic curve defined by a Weierstrass equation (2.2) is singular if and

only if its discriminant ∆ is zero.

The Definition 2.1 is feasible for any field F. However, the elliptic curves commonly

used in cryptography are over the finite field GF (q), where q is either a large prime p or a

power of p. If q is a large prime p, the prime field GF (p), also labeled as Fp or Zp, is a field

of characteristic p where p 6= 2, 3, that is,
∑k

i=1 1 = k 6= 0 for 1 ≤ k < p and
∑p

i=1 1 = 0.

If q is a power of p, denoted by pm, the Galois field GF (pm) is an extension field of GF (p),

6



where p is typically chosen as 2 for the sake of binary property in hardware. The finite

fields are also called Galois fields, in honor of their discoverer.

On the basis of various characteristics, the Weierstrass equation (2.2) can be simplified

into different forms by a linear change of variables. The following paragraphs shows the

equation for a field of characteristic 6= 2, 3 and a field of characteristic 2.

Let F be a field of characteristic 6= 2, 3 and char(F) denote the characteristic of F.

Since the char(F) 6= 2, substitute (X,Y ) by (X,Y − a1X+a3

2
) on the left hand side in (2.2).

Y 2 + a1XY + a3Y substitute (X,Y ) → (X,Y − a1X + a3

2
)

⇒ (Y − a1X+a3

2
)2 + a1X(Y − a1X+a3

2
) + a3(Y − a1X+a3

2
)

= Y 2 − a2

1

4
X2 − a1a3

2
X − a2

3

4

(2.4)

Notice that both XY and Y term are eliminated so the coefficients a1 and a3 should be

zero. Thus the equation (2.4) results in Y 2 by substitution for a1 = a3 = 0. Further, the

char(F) 6= 3 so substitute (X,Y ) by (X − a2

3
, Y ) on the right hand side in equation (2.2).

X3 + a2X
2 + a4X + a6 substitute (X,Y ) → (X − a2

3
, Y )

⇒ (X − a2

3
)3 + a2(X − a2

3
)2 + a4(X − a2

3
) + a6

= X3 + (−1
3

a2
2 + a4)X + ( 2

27
a3

2 − 1
3
a2a4 + a6)

(2.5)

Then again, the X2 term is eliminated so that the coefficient a2 should be zero and the

equation (2.5) results in X3 + a4X + a6 by setting a2 = 0. According to (2.4) and (2.5),

let a1 = a2 = a3 = 0, a4 = a, a6 = b and the equation (2.2) is modified as follows

Y 2 = X3 + aX + b, a, b ∈ F (2.6)

where char(F) 6= 2, 3. Note that the elliptic curve is a smooth curve, i.e. the curve

is non-singular. Review in Theorem (2.1), an elliptic curve should have its discriminant

nonzero. Therefore, the discriminant of the cubic curve (2.6) can be derived through (2.3)

by substitution for a1 = a2 = a3 = 0, a4 = a, a6 = b. Thus ∆ = −16(4a3 + 27b2) 6= 0.

For a field of characteristic 2, only the non-supersingular case is considered. In brief,

non-supersingular has the result of the coefficient a1 6= 0. Since a1 6= 0, substitute (X,Y )

by (a2
1X + a3

a1

, a3
1Y +

a2

1
a4+a2

3

a3

1

) in (2.2) likewise. A simplified form is obtained as follows

Y 2 + XY = X3 + aX2 + b, a, b ∈ F (2.7)

where char(F) = 2. There is no need to care whether or not the cubic polynomial on the

right hand side in (2.7) has multiple roots.
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2.2 Elliptic Curves Arithmetic

Elliptic curve cryptography makes use of elliptic curves where the variables and co-

efficients are belong to a finite field. Two kinds of elliptic curves are commonly used in

cryptographic applications. They are prime curves over GF (p) and binary curves over

GF (2m) respectively. Before discussion on the above curves, the elliptic curves over the

reals are first introduced because some of the basic concepts are easier to visualize.

2.2.1 Elliptic Curves over the Reals

According to equation (2.6), a definition for elliptic curves over the reals is given below.

Definition 2.4. A non-singular elliptic curve E over the reals is an equation of the form

y2 = x3 + ax + b (2.8)

where a, b ∈ R are constants such that 4a3 + 27b2 6= 0.

It can be shown that the condition 4a3 +27b2 6= 0 is necessary and sufficient to ensure

that the equation (2.8) has three distinct roots which may be real or complex numbers.

Figure 2.1 shows two non-singular elliptic curves and one singular elliptic curve whose

equation are y2 = x3 − 4x, y2 = x3 + 73, and y2 = x3 − 3x − 2 respectively.
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Figure 2.1: Elliptic curves over the reals
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Let E be a non-singular elliptic curve over the reals. Given two points P and Q on

E, the negative of P , denoted by −P , and the sum P + Q is defined as follows:

1. If P is the point at infinity O, then −P is O and P + Q is Q; that is, O is the

additive identity which is also called zero element of the group of points.

2. If P is not the point at infinity O, then −P is the symmetry point of P on the

curve E; that is, −P is the point with the same x-coordinate and negative the y-

coordinate of P , i.e. −(x, y) = (x,−y). According to equation (2.8), if (x, y) is a

point on the curve E, then the point (x,−y) is consequently on the curve E.

3. If P and Q are different points on E with different x-coordinates, then let l be the

line through P and Q, and the line l intersects the curve E in exactly one more

point R. Then the sum P + Q = −R is defined and is illustrated in Figure 2.2.
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Figure 2.2: Adding two distinct points P + Q = −R

4. If P and Q are different points on E with the same x-coordinates, that is, Q is a

symmetry point of P equal to −P , then the sum P +Q = P +(−P ) = O is defined.

5. If P and Q are the same points on E, then let the line l be the tangent line to the

curve at P and the point R be the only other point of intersection of l with the

curve E. Thus the sum P + Q = P + P = 2P = −R is defined and is illustrated in
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Figure 2.3. Furthermore, if the tangent line has a double tangency at P , that is, P

is a point of inflection, then the sum P + Q = P + P = 2P = −P is defined.
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Figure 2.3: Doubling a point 2P = −R

In figure 2.2, let (x1, y1), (x2, y2), (x3,−y3) and (x3, y3) denote the coordinates of P ,

Q, R and P +Q respectively. Let l : y = λx+β be the equation of the line through P and

Q then λ = y2−y1

x2−x1

is the slope of the line l and β = y1−λx1 = y2−λx2 is the consequence

of the point P lying on the line l. Assume that t is a variable and (t, λt + β) denotes the

coordinates of arbitrary points on the line l. The point on l simultaneously lies on the

elliptic curve E if and only if (t, λt+β) satisfies equation (2.8) so that (λt+β)2 = t3+at+b

and rearrange it below by order of t.

t3 + (−λ2)t2 + (a − 2λβ)t + (b − β2) = 0 (2.9)

Note that the equation has exactly three distinct roots and two of them are known as x1

and x2. Remember the relation between roots and coefficient mentioned in Viéte formula

first proposed by François Viéte (1540–1603), a French mathematician.

Theorem 2.2. (Viéte’s Formula) Assume P (x) is a polynomial of degree n with roots

x1, x2, . . . , xn. For 1 ≤ i ≤ n, let Si be the sum of the products of distinct polynomial

roots xj of the polynomial

P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0 (2.10)
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where the roots are taken i at a time, i.e. Si is defined as the symmetric polynomial

Πi(x1, . . . , xn) for i = 1, . . . , n, where

Si = Πi(x1, . . . , xn) =
∑

1≤α1<α2<...<αk≤n

xα1
xα2

· · · xαk
(2.11)

For example, the first few values of Si are

S1 = Π1(x1, . . . , xn) =
∑

1≤i≤n

xi = x1 + x2 + x3 + x4 + · · ·

S2 = Π2(x1, . . . , xn) =
∑

1≤i<j≤n

xixj = x1x2 + x1x3 + x1x4 + x2x3 + · · ·

S3 = Π3(x1, . . . , xn) =
∑

1≤i<j<k≤n

xixjxk = x1x2x3 + x1x2x4 + x2x3x4 + · · ·

and so on. Then Viéte’s formula states that

Si = (−1)i an−i

an

(2.12)

Proof. The polynomial P (x) can also be written as

P (x) = an(x − x1)(x − x2) · · · (x − xn)

= an(xn − S1x
n−1 + S2x

n−2 − · · · + (−1)nSn)
(2.13)

According to equation (2.10), setting the coefficients equal yields

an(−1)iSi = an−i

which is what the Viéte’s formula states for. Q.E.D.

The Viéte formula was proved by Viéte (1579) for positive roots only, and the general

theorem was proved by Gérard Desargues (1591–1661). Therefore the sum of the roots s1

of a monic polynomial shown in (2.9) is equal to minus the coefficient of the second-to-

highest order. A monic polynomial or normed polynomial is a polynomial whose leading

coefficient is equal to 1. It concludes that the third root x3 in (2.9) is equal to λ2−x1−x2

since the sum of the three distinct roots s1 is λ2. Then the y-coordinate of R is λx3 + β

and y3 is minus the y-coordinate of R. Therefore the coordinate of P + Q in terms of

x1, x2, y1, y2 is shown below.

x3 = (
y2 − y1

x2 − x1

)2 − x1 − x2

y3 = (
y2 − y1

x2 − x1

)(x1 − x3) − y1

(2.14)
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In figure 2.3, let (x1, y1), (x2, y2), (x3,−y3) and (x3, y3) denote the coordinates of P ,

Q, R and P + Q respectively. Since P and Q are the same point, x2 = x1 and y2 = y1.

Let l : y = λx + β be the equation of the tangent line to the curve E at P . The slope of

the tangent line at P can be derived by differentiation of the equation (2.8) as follows.

d

dx
(y2) =

d

dx
(x3 + ax + b)

(
dy

dx
) =

3x2 + a

2y

(2.15)

So the slope of the tangent line λ =
3x2

1
+a

2y1

. According to (2.14), substitute ( y2−y1

x2−x1

) for

(
3x2

1
+a

2y1

) and x2 = x1, y2 = y1. A formula for doubling a point is obtained.

x3 = (
3x2

1 + a

2y1

)2 − 2x1

y3 = (
3x2

1 + a

2y1

)(x1 − x3) − y1

(2.16)

Table 2.1 shows the addition formula mentioned above.

Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1

λ = y2−y1

x2−x1

x3 = λ2 − 2x1

y3 = λ(x1 − x3) − y1

λ =
3x2

1
+a

2y1

Table 2.1: Point addition formula over reals

2.2.2 Elliptic Curves over Prime Fields

Let p > 3 be a prime. Elliptic curves over GF (p) are defined almost the same as they

are over the reals and the operations over the reals are replaced by modulus operations.

Definition 2.5. Let p > 3 be a prime. A non-singular elliptic curve E over the finite

field GF (p) is an equation of the form

y2 ≡ x3 + ax + b (mod p) (2.17)

where a, b ∈ GF (p) are constants such that 4a3 + 27b2 6≡ 0 (mod p).

Assume that (x1, y1), (x2, y2) and (x3, y3) denote the coordinates of P , Q and P + Q

respectively. Then the coordinate of −P is defined as (x1,−y1) and P + (−P ) = O.
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According to equation (2.14) and (2.16), the point addition formula of the elliptic curves

over GF (p) is shown in Table 2.2.

Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 ≡ λ2 − x1 − x2 (mod p)

y3 ≡ λ(x1 − x3) − y1 (mod p)

λ ≡ y2−y1

x2−x1

(mod p)

x3 ≡ λ2 − 2x1 (mod p)

y3 ≡ λ(x1 − x3) − y1 (mod p)

λ ≡ 3x2

1
+a

2y1

(mod p)

Table 2.2: Point addition formula over GF (p)

2.2.3 Elliptic Curves over Extension of Binary Fields

Definition 2.6. Let p(x) be a primitive polynomial of degree m. A non-supersingular

elliptic curve E over the extension of binary field GF (2m) is an equation of the form

y2 + xy = x3 + ax2 + b (2.18)

where a, b ∈ GF (2m) are constants.

Note that in this subsection, all of the arithmetic operations are defined over GF (2m)

and all of the parameters are belong to GF (2m), too. Assume that (x1, y1), (x2, y2) and

(x3, y3) denote the coordinates of P , Q and P + Q respectively. Then the coordinate of

−P is defined as (x1, x1 + y1) and P + (−P ) = O.

If P 6= Q, let l : y = λx+β be the equation of the line through P and Q then λ = y2+y1

x2+x1

is the slope of the line l and β = y1 + λx1 = y2 + λx2 is the consequence. The following

equation shows all of the points (t, λx + β) on l simultaneously lies on the curve E.

t3 + (λ2 + λ + a)t + (β2 + b) = 0 (2.19)

Thus the third root x3 = λ2 + λ + x1 + x2 + a and the corresponding y-coordinate is

λx3 + β. So the negative of the y-coordinate y3 = (λx3 + β) + x3 = λ(x1 + x3) + x3 + y1.

If P = Q, let l : λx + β be the equation of the tangent line to the curve E at P . The

slope of the tangent line at P can be derived by differentiation of the equation (2.18).

d

dx
(y2 + xy) =

d

dx
(x3 + ax2 + b)

(
dy

dx
) = x +

y

x

(2.20)
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So the slope of the tangent line λ = x1 + y1

x1

. Since P = Q, x3 = λ2 + λ + a and

y3 = λ(x1 + x3) + x3 + y1; moreover, there is another formula commonly used for y3 by

changing varibale. Given λ = x1 + y1

x1

=
x2

1
+y1

x1

that leads to λx1 +y1 = x2
1. Thus rearrange

y3 = (λ+1)x3 +λx1 + y1 and adapt it for y3 = (λ+1)x3 +x2
1. Table 2.3 lists all obtained

formulas of the above together for GF (2m).

Point Addition (P 6= Q) Point Doubling (P = Q)

P + Q

x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

λ = y2+y1

x2+x1

x3 = λ2 + λ + a

y3 = λ(x1 + x3) + x3 + y1

= (λ + 1)x3 + x2
1

λ = x1 + y1

x1

Table 2.3: Point addition formula over GF (2m)

2.3 Elliptic Curves Scalar Multiplication

Scalar multiplication is used to compute a multiple of an Elliptic curve point kP ,

where P is an elliptic curve point and k is a positive integer smaller than the order of

P , then kP is the point obtained by adding together k copies of P and this operation

dominates the execution time of elliptic curve cryptographic schemes.

2.3.1 Double-and-Add Algorithm

Algorithm 2.1. (Double-and-Add Algorithm)

Input: A positive integer k<n, where n is the order of P ; and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be the binary representation of k, where the leftmost bit kn is 1.

2. Set R = P .

3. For i from n − 1 down to 1 do

3.1 Set R = 2R.

3.2 If ki = 1, then set R = R + P .

4. Output R.
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The double-and-add algorithm is a basic method for calculating scalar multiplication.

It achieves by repeated point double and add operations. The expected number of ones

in the binary representation of k is m
2
, where m is the length of the integer k. The

number of ones in k indicates the number of times that point addition performs and the

number of times that point doubling operation performs is approximately equal to m.

Thus Algorithm 2.1 averagely takes m
2

times point addition and m times point doubling

to perform m-bit elliptic curve scalar multiplication once.

2.3.2 Addition-Subtraction Method

If P (x, y) ∈ E(Fp) then −P = (x,−y); else if P (x, y) ∈ E(F2m) then −P = (x, x + y).

Thus the point subtraction is as efficient as point addition. Then Algorithm 2.1 is replaced

by using addition-subtraction method and shown in Algorithm 2.2.

Algorithm 2.2. (Addition-Subtraction Method)

Input: A positive integer k<n, where n is the order of P ; and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let enen−1 . . . e1e0 be the binary representation of 3k, where the leftmost bit en is 1.

2. Let knkn−1 . . . k1k0 be the binary representation of k.

3. Set R = P .

4. For i from n − 1 down to 1 do

4.1 Set R = 2R.

4.2 If ei = 1 and ki = 0, then set R = R + P .

4.3 If ei = 0 and ki = 1, then set R = R − P .

5. Output R.

2.3.3 Binary NAF Method

Owing to point subtraction is as efficient as point addition, the signed digit representa-

tion k =
∑

ki2
i is used, where ki ∈ {0,±1}. A non-adjacent form (NAF) is a useful signed

representation which has the property that no two consecutive bits in k are nonzero and

has the fewest nonzero bits of any signed digit representation of k. Each positive integer

k has its unique NAF, denoted by NAF(k). The NAF of an integer k can be computed

efficiently by using Algorithm 2.3 [15].
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Algorithm 2.3. (NAF of a Positive Integer)

Input: A positive integer k.

Output: NAF(k).

1. Set i = 0.

2. While k ≥ 1 do

2.1 If k is odd, then set ki = 2− (k mod 4) and then set k = k−ki; else set ki = 0.

2.2 Set k = k
2

and i = i + 1.

3. Output k, whose binary representation is (ki−1ki−2 . . . k1k0).

Note that the length of NAF(k) is at most one bit longer than the binary representation

of k and the average density of nonzero bits in NAF(k) is approximately m
3

[16], where m

is the length of the integer k.

Algorithm 2.4. (Binary NAF Method)

Input: NAF(k) and an elliptic curve point P .

Output: The elliptic curve point kP .

1. Let knkn−1 . . . k1k0 be signed digit representation of k, where the leftmost bit kn is 1.

2. Set R = P .

3. For i from n − 1 down to 0 do

3.1 Set R = 2R.

3.2 If ki = 1, then set R = R + P .

3.3 If ki = −1, then set R = R − P .

4. Output R.

Then the Algorithm 2.4 modifies Algorithm 2.1 by using NAF(k) instead of the binary

representation of k and averagely takes approximately m
3

times point addition and m times

point doubling to perform m-bit elliptic curve scalar multiplication once. Furthermore, it

follows that the expected running time of Algorithm 2.2 and Algorithm 2.4 are the same.
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Chapter 3

Finite Field Arithmetic

This chapter describes the basic arithmetic used in elliptic curve over GF (p) and

GF (2m). Modular arithmetic such as modular multiplication is especially an important

part in many cryptographic systems, so there are still many approaches to its improvement

nowadays. Since affine coordinate is used for elliptic curve cryptography in this thesis,

modular inverse and division arithmetics are also discussed in this chapter.

3.1 Modular Multiplication

Modular multiplication is widely used in many applications including public key cryp-

tography such as RSA [2] algorithm. The RSA algorithm requires the computation of

modular exponentiation and this modular exponentiation is achieved through a series of

modular multiplications. Given an m-bit integer p, called the modulus, and two m-bit

operands a and b, modular multiplication computes the result of a × b (mod p).

3.1.1 Montgomery Multiplication Algorithm

The Montgomery multiplication algorithm, which was proposed by P. L. Montgomery

in 1985 [11], computes the modular multiplication without trial division. It turns the

modular multiplication into iterations of addition and shift operations. Thus the Mont-

gomery multiplication is quite appropriate for implementing modular multiplication with

hardware. Let the modulus p be an m-bit integer with 2m−1 ≤ p < 2m, and let r be

equal to 2m where p and r are relatively prime, i.e. gcd(p, r) = gcd(p, 2m) = 1. Thus
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the p-residue of an integer a with 0 ≤ a < p is defined as A ≡ a · r (mod p). Given two

p-residues, A and B, the Montgomery product of the two p-residues is shown below,

C ≡ A · B · r−1 (mod p) (3.1)

≡ (a · r) · (b · r) · r−1 (mod p)

≡ (a · b) · r (mod p)

≡ c · r (mod p), where 0 ≤ c < p (3.2)

where r−1 is the inverse of r (mod p), i.e. r · r−1 ≡ 1 (mod p). The Montgomery

reduction algorithm also involves another quantity, p′, which is an integer that satisfies

r · r−1 − p · p′ = 1. Here r−1 and p′ can both be derived by the extended Euclidean

algorithm described later in chapter 3.2.1. Therefore, the Montgomery product shown in

equation 3.1 can be obtained by Montgomery multiplication algorithm.

Algorithm 3.1. (Montgomery Multiplication Algorithm)

1. T = A · B
2. Q = T · p′ mod r

3. U = (T + Q · p)/r

4. if U ≥ p then C = U − p, else C = U

Proof. Assume that the lengths of A and B are both m-bit and the value T is a product

having double length equal to 2m. Step 2 simply converts Q to single length m. Note

that in step 3, given r · r−1 − p · p′ = 1 which leads to p · p′ ≡ −1 (mod r) so that

Q · p ≡ T · p′ · p (mod r) ≡ −T (mod r) (3.3)

where Q · p is also a product having the same length as T and T + Q · p ≡ 0 (mod r)

which concludes that it can be divisable by r and U is its quotient.

U · r = T + Q · p ≡ T (mod p) (3.4)

The result U ≡ T ·r−1 (mod p) ≡ A ·B ·r−1 (mod p) is derived. Seeing that the modulus

r is a little bigger than p and 0 ≤ A,B < p, the value of T/r = A · (B/r) is smaller than

p and such is the same case with (Q · p)/r. Since U is an additive result of two p-residue

value, step 4 ensure that the result C is in p-residue format, too. Q.E.D.
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Among Montgomery multiplication algorithm, the operations of modulus r and di-

vision by r are both trivial operations since r is a constant with power of two. Thus

Montgomery multiplication has the advantage of hardware implementation, and it’s sim-

pler and faster than traditional modular multiplication.

Observe in (3.2), the resulting value C of the Montgomery product is still in the p-

residue format, that is to say, the output value from the Montgomery product can be used

as input value to the next without converting from an ordinary residue to a p-residue. To

convert an ordinary residue to a p-residue, let the integer a multiply by r2 (mod p), i.e.

22m (mod p), with the Montgomery product operation.

A = MonMul(a, r2)

≡ a · r2 · r−1 (mod p) (3.5)

≡ a · r (mod p)

Note that the constant r2 (mod p) needs to be precomputed externally. Similarly, in order

to convert the result A back to the ordinary residue, it can be achieved that A multiplies

by a constant 1 with the Montgomery product operation.

a = MonMul(A, 1)

≡ A · 1 · r−1 (mod p) (3.6)

≡ (a · r) · 1 · r−1 (mod p)

Here no extra constants need to be precomputed. Moreover, the p-residue can also be

called Montgomery domain. However, it’s not efficient to perform one single modular

multiplication using Montgomery product since the conversion between Montgomery and

real domain needs one more Montgomery product operation, and otherwise computation

for the value p′ also takes much time.

3.1.2 Modified Montgomery Multiplication Algorithm

There are a variety of ways to realize the Montgomery multiplication [17]. The radix-2

Montgomery multiplication algorithm [18] over GF (p) is shown in Algorithm 3.2 and it

can easily adapt the field GF (p) for the field GF (2m). Algorithm 3.3 shows the binary

version of the radix-2 Montgomery multiplication algorithm and it has been proven by [19].
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Algorithm 3.2. (Montgomery Multiplication over GF (p))

Input: A, B and P , where A,B ∈ GF (p) and P is the modulus p.

Output: U , where U ≡ A × B × 2−m (mod P ).

1. Let am−1am−2 . . . a1a0 be the binary representation of A.

2. Set U = 0.

3. For i from 0 to m − 1 do

3.1. Set T = (U + aiB).

3.2. Set U = (T + t0P )/2.

4. If U ≥ P , then set U = U − P .

5. Output U .

Algorithm 3.3. (Montgomery Multiplication over GF (2m))

Input: A(x), B(x) and P (x), where A(x), B(x) and P (x) ∈ GF (2m), and GF (2m) is

generated by P (x).

Output: U(x), where U(x) ≡ A(x) · B(x) · x−m (mod P (x)).

1. Let A(x) =
∑m−1

i=0 aix
i, ∀ai ∈ GF (2), be the polynomial representation of A(x).

2. Set U(x) = 0.

3. For i from 0 to m − 1 do

3.1. Set T (x) = (U(x) + aiB(x)).

3.2. Set U(x) = (T (x) + t0P (x))/x.

4. Output U(x).

The suffix i of the variable indicates the ith bit in the binary or polynomial repre-

sentation of the variable, i.e. t0 denotes the least significant bit of T . Note that the

coefficients of the polynomial representation of A(x), i.e. am−1am−2 . . . a1a0, are also the

binary representation of the integer A(2) since A(2) =
∑m−1

i=0 ai2
i. The addition of two

elements in GF (2m) is shown in the following equation,

A(x) + B(x) =
m−1
∑

i=0

aix
i +

m−1
∑

i=0

bix
i =

m−1
∑

i=0

(ai ⊕ bi)x
i (3.7)

and the subtraction in GF (2m) is the same as addition in GF (2m). Furthermore, division

by 2 in GF (p) and division by x in GF (2m) are both shift operations.
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3.2 Modular Inversion

Modular inversion is used in cryptographic applications such as the Diffie-Hellman

key exchange [20], the public and private key pair generations in RSA and point addition

operations in ECC. Given an m-bit modulus p, modular inversion computes the inversion

of a non-zero field element a ∈ GF (p). The inversion of a is denoted by a−1 (mod p),

where a · a−1 ≡ 1 (mod p). Furthermore, the multiplicative inverse of a exists if and only

if a and p are relatively prime and its proof will be shown later.

3.2.1 Extended Euclidean Algorithm

In number theory, the Euclidean algorithm determines the greatest common divisor

(GCD) of two integers. The GCD of a and b, written as gcd(a, b), is the largest positive

integer that divides both a and b without remainder. Two integers are called relatively

prime if and only if their GCD equals 1.

The extended Euclidean algorithm (EEA) [21] is an extension to the Euclidean algo-

rithm and it can be used to solve the Bézout’s identity, a linear diophantine equation. In

number theory, Bézout’s identity, named after Étienne Bézout (1730–1783), states that if

a and b are non-negative integers, there exist integers x and y such that

ax + by = gcd(a, b) (3.8)

where x and y can be obtained by the EEA, but they are not uniquely determined. Set

x′ = x − kb and y′ = y + ka, then (x′, y′) is another solution to (3.8) since ax′ + by′ =

a(x−kb)+b(y+ka) = ax+by = gcd(a, b). The following is the proof of Bézout’s identity.

Proof. Let S be the set of all positive integers of ax+by, where x and y are integers. Since

S is not empty, it has a smallest element by the well-ordering principle. Let s = axt + byt

be the smallest element of the set S. According to the division algorithm, there are unique

integers q and r that satisfy a = sq + r with 0 ≤ r < s. Then

r = a − sq = a − (axt + byt)q = a(1 − qxt) + b(−qyt) (3.9)

Note that (1− qxt) and (−qyt) are both integers so that r should be in the set S. But the

condition 0 ≤ r < s contradicts the choice of s as the smallest element of S. Thus r must
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be equal to 0 and it leads to a = sq which indicates that a is divisible by s. Similarly, b

is also divisible by s. Therefore s is one of the common divisor of a and b. Assume that

c is another common divisor of a and b. Let a = cq1 and b = cq2, then

c|s = ax + by = c(q1x + q2y) (3.10)

Since c|s leads to c ≤ s, it implies that s is the GCD of a and b, i.e. s = gcd(a, b). Q.E.D.

The EEA can solve the equation ax + by = gcd(x, y) efficiently. When a and b are

relatively prime, i.e. ax + by = 1, then x is the multiplicative inverse of a (mod b). The

following algorithm is a variant of the EEA.

Algorithm 3.4. (Modified Extended Euclidean Algorithm over GF (p))

Input: A and P , where A ∈ GF (p) and P is the modulus p.

Output: R, where R ≡ A−1 (mod P ).

1. Set U = P , V = A, R = 0 and S = 1.

2. While V 6= 0 do

2.1. While U is even do

2.1.1. Set U = U/2.

2.1.2. If R is even, then set R = R/2.

2.1.3. Else set R = (R + P )/2.

2.2. While V is even do

2.2.1. Set V = V/2.

2.2.2. If S is even, then set S = S/2.

2.2.3. Else set S = (S + P )/2.

2.3. If U > V , then set U = U − V , R = R − S.

2.4. Else if V ≥ U , then set V = V − U , S = S − R.

3. Output R (mod P ).

The algorithm described above works by using the elimination method for solving the

simultaneous equations below, where d and e are not really computed.

{

S · A + d · P = V

R · A + e · P = U
(3.11)

The algorithm terminates when V = 0, in which case U = 1, and then RA+ eP = 1 leads

to RA ≡ 1 (mod P ), hence R ≡ A−1 (mod p).

22



3.2.2 Montgomery Modular Inverse Algorithm

Based on the EEA, the algorithm proposed by Kaliski [12] computes the Montgomery

modular inverse. Given an m-bit modulus p, the Montgomery modular inverse of a non-

zero integer a ∈ GF (p) is defined as the integer x,

x ≡ a−12m (mod p) (3.12)

The following algorithm rewrites the Kaliski Montgomery inverse algorithm with com-

bination of the two phases in one algorithm. It is alternative that the output can be in

the Montgomery domain or in the integer domain.

Algorithm 3.5. (Montgomery Modular Inverse Algorithm over GF (p))

Input: A and P , where A ∈ GF (p) and P is the modulus p.

Output: U , where

{

U ≡ A−12m (mod P ).

U ≡ A−1 (mod P ).

1. Set U = P , V = A, R = 0 and S = 1.

2. Set k = 0, where k is an integer with m ≤ k < 2m.

3. While V > 0 do

3.1. If U is even, then set U = U/2, S = 2S.

3.2. Else if V is even, then set V = V/2, R = 2R.

3.3. Else if U > V , then set U = (U − V )/2, R = R + S and S = 2S.

3.4. Else if V ≥ U , then set V = (V − U)/2, S = S + R and R = 2R.

3.5. Set k = k + 1.

4. For i from 1 to

{

k − m

k
do

4.1. If R is even, then set R = R/2.

4.2. Else set R = (R + P )/2.

5. If R ≥ P , then set R = 2P − R, else set R = P − R.

6. Output R.

Note that the upper in the braces derives Montgomery inverse result and the lower

derives modular inverse result, that is to say, output U is equivalent to A−12m (mod P )

or A−1 (mod P ) depends on that the iteration count is (k − m) or k in Step 4.

The Step 3 is iterative and it steadily reduces U or V by one bit in each iteration.

Obviously, U and V initially have at most 2m bits in total since 2m−1 ≤ U < 2m and
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0 < V < U . But U equals 1 and V equals 0 in the last iteration, therefore, the iteration

count in Step 3 takes no more than (2m− 1) iterations. Similarly, U and V initially have

at least m + 1 bits in total while V is equal to 1, thus, the iteration count in Step 3 takes

no less than m iterations. So the boundary of k is m ≤ k < 2m.

If the input is originally in the Montgomery domain, i.e. A ≡ a2m (mod P ), then the

output of the Montgomery inverse is given below.

U ≡ (a2m)−12m (mod P )

≡ a−1 (mod P )
(3.13)

In order to convert the output to the Montgomery domain, the conversion between integer

and Montgomery domain needs an additional Montgomery multiplication operation. If

the input is originally in the integer domain, i.e. A ≡ a (mod P ), then the output in the

integer domain needs m iterations more than output in the Montgomery domain.

Table 3.1: Latency of Montgomery modular inverse

from and to both domain

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

MonInv MonMul Total

4m + 1 - 4m + 1

3m + 1 - 3m + 1

3m + 1 - 3m + 1

3m + 1 m + 1 4m + 2

1 Int means integer and Mont means Montgomery.

2 MonInv denotes Montgomery inverse.

3 MonMul denotes Montgomery multiplication.

4 m is the bit length of the modulus p.

Table 3.1 shows each latency in worst case of the Montgomery inverse from and to

both domain. In worst case, the latencies of the result for an m-bit Montgomery inverse

and for real modular inverse are (3m + 1) and (4m + 1) clock cycles respectively, and the

Montgomery multiplication operation over GF (p) requires (m + 1) clock cycles. Further,

the Montgomery multiplication operation over GF (2m) requires only m clock cycles.
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3.3 Modular Division

The modular division operation is traditionally accomplished by modular inversion

followed by modular multiplication since the modular division is believed to be slow. It

can be applied to the computation of the parameter λ in ECC.

3.3.1 Modular Division Algorithm

Given an m-bit modulus p, the modular division of two integers a, b ∈ GF (p), where

b 6= 0, is defined as the integer x,

x ≡ ab−1 (mod p) (3.14)

The following algorithm shows a binary add-and-shift algorithm proposed by Sheueling

Chang Shantz [22] for modular divison in a residue class.

Algorithm 3.6. (Modular Division Algorithm over GF (p))

Input: A, B and P , where A,B ∈ GF (p) and P is the modulus p.

Output: U , where U ≡ AB−1 (mod P ).

1. Set U = P , V = B, R = 0 and S = A.

2. While U 6= V do

2.1. If U is even, then set U = U/2.

2.1.1. If R is even, then set R = R/2.

2.1.1. Else set R = (R + P )/2.

2.2. Else if V is even, then set V = V/2.

2.2.2. If S is even, then set S = S/2.

2.2.2. Else set S = (S + P )/2.

2.3. Else if U − V > 0, then set U = (U − V )/2, and R = R − S.

2.3.3. If R < 0, then set R = R + P .

2.3.3. If R is even, then set R = R/2. Else set R = (R + P )/2.

2.4. Else if V − U ≥ 0, then set V = (V − U)/2, and S = S − R.

2.4.4. If S < 0, then set S = S + P .

2.4.4. If S is even, then set S = S/2. Else set S = (S + P )/2.

3. Output R.
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The modular division algorithm above is an iterative process of additions, parity-

testings, and shifts. Like Montgomery modular inverse algorithm, it reduces U or V by

one bit. But it is different that in the last iteration, U and V are both equal to 1. Thus

the entire division routine takes no more than 2(m − 1) iterations.

Remember that in modular inverse algorithm, solving the simultaneous equation (3.11)

can derive the inverse of the term A modular P . In order to solve this equation, it can

be easily observed that an identical equation fits this equation and shown below.

{

1 · A + 0 · P = A

0 · A + 1 · P = P
(3.15)

Therefore the initial value of the variable U , V , R and S in modular inverse algorithm

are set to be P , A, 0 and 1, respectively.

Further, the modular division algorithm is similar to the modular inverse algorithm

that it also works by using the elimination method for solving another simultaneous

equations below, where d and e are not really computed, too.

{

S · (A−1B) + d · P = V

R · (A−1B) + e · P = U
(3.16)

Note that the modular division algorithm terminates when U = V = 1, in which case

R · (A−1B)+eP = 1 and S · (A−1B)+dP = 1. Since P is a prime, i.e. gcd(A−1B,P ) = 1,

the equation above definitely exists integer solutions that satisfy R · (A−1B) + e · P = 1,

where R · (A−1B) ≡ 1 (mod P ), that is, R ≡ AB−1 (mod P ). Similarly, S ≡ AB−1

(mod P ), too. And it also can be easily obtained that an identical equation that fits

equation (3.16) is written below,

{

A · (A−1B) + d · P = B

0 · (A−1B) + 1 · P = P
(3.17)

Thus the two algorithms of modular inverse and division only differ from the initial value

of the variable S with S = A instead. Although d is not really computed, in this case,

d = (−kB), where k is an integer that AA−1 = 1 + kP since AA−1 ≡ 1 (mod P ).

A · (A−1B) + d · P = (1 + kP )B + (−kB) · P = B (3.18)

Thus, there exists an integer d satisfy the equation (3.17).
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3.3.2 Montgomery Modular Division Algorithm

Given an m-bit modulus p, the Montgomery modular division of the two integers

a, b ∈ GF (p), where b 6= 0, is defined as the integer q, where

q ≡ ab−12m (mod p) (3.19)

And given a primitive polynomial p(x) with degree m which generates the GF (2m), the

Montgomery modular division of the two element a(x), b(x) ∈ GF (2m), where b(x) 6= 0,

is defined as the polynomial q(x), where

q(x) ≡ a(x)b−1(x)xm (mod p(x)) (3.20)

An alternative algorithm for calculating the Montgomery modular division or real

modular division is proposed below and it is suitable for both GF (p) and GF (2m).

Algorithm 3.7. (Montgomery Modular Division Algorithm over GF (p))

Input: A, B and P , where A,B ∈ GF (p) and P is the modulus p.

Output: U , where

{

U ≡ AB−12m (mod P ).

U ≡ AB−1 (mod P ).

1. Set U = P , V = B, R = 0 and S = A.

2. Set k = 0, where k is an integer with m ≤ k < 2m.

3. While V > 0 do

3.1. If U is even, then set U = U/2, S = 2S.

3.2. Else if V is even, then set V = V/2, R = 2R.

3.3. Else if U − V > 0, then set U = (U − V )/2, R = R + S and S = 2S.

3.4. Else if V − U ≥ 0, then set V = (V − U)/2, S = S + R and R = 2R.

3.5. If R ≥ P , then set R = R − P .

3.6. If S ≥ P , then set S = S − P .

3.7. Set k = k + 1.

4. For i from 1 to

{

k − m

k
do

4.1. If R is even, then set R = R/2.

4.2. Else set R = (R + P )/2.

5. Set R = P − R.

6. Output R.
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Algorithm 3.8. (Montgomery Modular Division Algorithm over GF (2m))

Input: A(x), B(x) and P (x), where A(x), B(x) and P (x) ∈ GF (2m), and GF (2m) is

generated by P (x).

Output: U(x), where

{

U ≡ A(x)B−1(x)xm (mod P (x)).

U ≡ A(x)B−1(x) (mod P (x)).

1. Set U(x) = P (x), V (x) = B(x), R(x) = 0 and S(x) = A(x).

2. Set k = 0, where k is an integer with m ≤ k < 2m.

3. While V (x) 6= 0 do

3.1. If U(2) is even, then set U(x) = U(x)/x, S(x) = xS(x).

3.2. Else if V (2) is even, then set V (x) = V (x)/x, R(x) = xR(x).

3.3. Else if U(2) − V (2) > 0,

then set U(x) = (U(x) + V (x))/x, R(x) = R(x) + S(x) and S(x) = xS(x).

3.4. Else if V (2) − U(2) ≥ 0,

then set V (x) = (V (x) + U(x))/x, S(x) = S(x) + R(x) and R(x) = xR(x).

3.5. If deg(R) = deg(P ), then set R(x) = R(x) + P (x).

3.6. If deg(S) = deg(P ), then set S(x) = S(x) + P (x).

3.7. Set k = k + 1.

4. For i from 1 to

{

k − m

k
do

4.1. If R(2) is even, then set R(x) = R(x)/x.

4.2. Else set R(x) = (R(x) + P (x))/x.

5. Output R(x).

The proposed Montgomery modular division algorithm above is based on EEA and

the binary GCD algorithm [23]. It mainly modifies the Montgomery modular inverse

algorithm by setting the dividend to the initial value of S or S(x). Note that all of the

condition statements are almost the same in hardware design among these two algorithms,

so it can compute not only Montgomery division but also modular division in both GF (p)

and GF (2m) fields. The two algorithms only differ from the field addition operations and

the modular condition statements in Step 3.5 and Step 3.6.

Although the Montgomery division can be performed by Montgomery inverse followed

by Montgomery multiplication, it takes longer latency and needs extra one more Mont-

gomery multiplication operation while the output is in Montgomery domain. Table 3.2
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shows the latency of traditional method using a Montgomery inversion followed by a

Montgomery multiplication.

Table 3.2: Latency of modular division using traditional method

from and to both domain

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

MonInv MonMul MonMul Total

3m + 1 m + 1 - 4m + 2

3m + 1 m + 1 m + 1 5m + 3

3m + 1 m + 1 - 4m + 2

3m + 1 m + 1 m + 1 5m + 3

The total latency of the method above seems worse in some cases especially in Mont-

gomery domain, so the Montgomery modular division algorithm combine the inversion

with multiplication to improve this shortcoming. The maximum number of iterations

in Montgomery modular division algorithm is 3m or 4m depends on the output is in

Montgomery or integer domain. Table 3.3 shows each latency in worst case of the Mont-

gomery division from and to both domain. However, there are no additional Montgomery

multiplication operations needed in each case.

Table 3.3: Latency of Montgomery mod-

ular division from and to both domain

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

GF (p) GF (2m)

4m 4m − 1

3m 3m − 1

4m 4m − 1

3m 3m − 1

According to Table 4.3, the Montgomery modular division algorithm is consequently

suitable for Montgomery domain implementation design. Therefore, the proposed algo-

rithm is consistent with the way of implementing ECC on affine coordinate using Mont-

gomery architecture in this thesis.
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Chapter 4

Proposed Universal Architectures

The proposed architecture of the universal dual-field scalar multiplier on ECC is pre-

sented in this chapter. It is adapted to arbitrary lengths of the fields within a fixed length

of the given design, and it is also adapted to both the prime finite fields, GF (p), and the

binary extension fields, GF (2m). All of the required materials for mathematical theorems

have been mentioned in early chapters. Then all of these main components used in the

scalar multiplier are detailed in the following subsections.

In this thesis, all of the design in hardware is implemented using RTL (Register-

Transfer-Level) Verilog HDL (hardware description language) and synthesized on both

application-specific integrated circuit (ASIC) and field-programmable gate arrays (FP-

GAs). The technology of ASIC design is using UMC1 0.18µm 1P6M CMOS process and

the technology of FPGA design is using Xilinx2 Virtex-II XC2V8000 platform FPGAs.

4.1 Universal Dual-field Montgomery Multiplier

In order to design an universal dual-field multiplier, the main problem is to deal with

the variable binary extension field since the primitive polynomial and field degree are

unfixed. An universal multiplier in GF (2m) using Montgomery multiplication algorithm

is proposed [24] using bit-parallel architecture, but this architecture for bit-parallel com-

putation is suitable for small field degree. Thus a series shift and addition operations is

chosen to implement Montgomery multiplication algorithm.

1United Microelectronics Corporation. The SoC solution foundry. http://www.umc.com
2Xilinx, Inc. The developer and fabless manufacturer of FPGAs. http://www.xilinx.com
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Back to the Algorithm 3.2 and Algorithm 3.3 which are mentioned in subsection 3.1.2.

It is known that the Montgomery multiplication in GF (p) always takes (m+1) iterations,

but the Montgomery multiplication in GF (2m) takes only m iterations which is one cycle

less than the former since there is no modular operation in the last step. Besides, the

addition operations in these two algorithms are also different that the adder in GF (2m)

is the adder in GF (p) without carry propagation.

CSA

3to1

MUX

B U/2

P

mode

a0

U
ctrl

2to1

MUX

>>

0

ADD
2to1

MUX

<<

Figure 4.1: Universal dual-field Montgomery multiplier

Figure 4.1 shows the proposed architecture of the universal dual-field Montgomery

multiplier. The finite field adder is achieved by a carry-save adder (CSA) follow by an

adder. The sum and carry are separated by CSA, so the carry can independently be

computed. The sum of CSA is directly chosen as the addition result in GF (2m) when the

mode is in binary extension field. The carry of CSA is shifted left by one bit and added

to the sum as the addition result in GF (p) when the mode is in prime field.

However, the negative of P is needed at the end of the Algorithm 3.2 and (−P ) is

represented by its 2’s complement, P ∗, where P ∗ = 2m − P . Then

P ∗ = 2m − P = (2m − 1 − P ) + 1 = P̄ + 1 (4.1)

Note that P̄ denotes the 1’s complement of the positive integer P , where P̄ = (2m−1)−P .

The 1’s complement is to simply complement P bit-by-bit by replacing 0’s with 1’s and

1’s with 0’s. According to (4.1), the 2’s complement of the integer P can be formed by

complementing P bit-by-bit and then adding 1. It can be achieved in hardware by a

bit-wise inverter except the least significant bit (LSB) of P since P is odd, that is, the
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2’s complement of P is always an odd, too. Moreover, the values of register U and A are

shifted right by one bit and back to the input of CSA after each iteration finished.

There are some sample area and speed results for the Montgomery multiplier over

GF (p) given in [25]. Its architecture is based on [26] and implemented on FPGAs using

Xilinx Virtex-E XCV2000e. Using this architecture, each multiplication operation requires

(m+5) clock cycles. Further, the architecture for the Montgomery multiplier over GF (p)

based on Algorithm 3.2 is almost the same as Figure 4.1 without the 2-to-1 multiplexer at

the end. Each multiplication requires (m + 1) clock cycles. For more general comparison,

the proposed design here is synthesized using the same technology with [25]. Table 4.1

lists the detailed area and speed results for both.

Table 4.1: Comparison of Montgomery multiplier in GF (p)

Bit-length Proposed A. Daly [25]

128-bit

Area (Slices) 629 646

Frequency (MHz) 65.90 81.23

Latency (cycles) 129 133

Throughput (Mbit/s) 65.4 78.2

256-bit

Area (Slices) 1164 1292

Frequency (MHz) 47.43 58.24

Latency (cycles) 257 261

Throughput (Mbit/s) 47.2 57.1

512-bit

Area (Slices) 2176 2588

Frequency (MHz) 29.35 56.05

Latency (cycles) 513 517

Throughput (Mbit/s) 29.29 55.5

Note that [25] uses pipelined mux/add architecture to improve in clock speed when

the bit-length of its multiplier exceeds the maximum carry chain length, i.e. 1 column of

the FPGA. Its architecture is especially designed for the specific type of FPGA platforms.

Since the clock period is not under constrain in this thesis, the proposed architecture is

designed for smaller scale to simultaneously adapt to both GF (p) and GF (2m).

The implementation results of the proposed universal dual-field Montgomery multiplier

is given in Table 4.2. It shows the probably gate count synthesized at 100MHz and shows

the area and speed results on FPGAs. Each number of gates in the field Gatecount consists

of two parts which are non-combinational logic and combinational logic respectively. It
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doubles when the bit length doubles. The area is approximately in proportion to the bit

length m of the field.

Table 4.2: Synthesize results for proposed universal dual-field Mont-

gomery multiplier on ASIC and FPGA design

ASIC FPGA

Bit-length Gatecount Frequency Area Frequency
(Gates) (MHz) (Slices) (MHz)

64-bit 4.2k (1.9k + 2.3k)

100

397 83.265

128-bit 8.3k (3.8k + 4.5k) 733 65.811

256-bit 16.3k (7.4k + 8.9k) 1387 47.432

512-bit 32.1k (14.5k + 17.6k) 2266 27.118

1024-bit 63.3k (28.8k + 34.5k) 4664 16.120

4.2 Universal Dual-field Montgomery Divider

The universal dual-field Montgomery divider is mainly used in Montgomery domain. It

shortens the latency of the division in Montgomery domain by combination of an inversion

and a multiplication. Table 4.3 shows the latency of modular division from and to both

domain using Algorithm 3.6 method.

Table 4.3: The latency for Algorithm 3.6

Domain Latency (cycles)

From → To

Int → Int

Int → Mont

Mont → Int

Mont → Mont

MonDiv MonMul Total

2(m − 1) - 2(m − 1)

2(m − 1) m + 1 3m − 1

2(m − 1) - 2(m − 1)

2(m − 1) m + 1 3m − 1

In comparison with Table 3.3, the total latency for either domain to Montgomery

domain is similar but it needs additional Montgomery multiplier in hardware. Table 4.4

shows the FPGA results of Algorithm 3.7 in comparison with other implementations [27]

using Algorithm 3.6 with the same technology.
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Table 4.4: A Comparison with FPGA results for

modular division in GF (p)

Proposed A. Daly [27]

Bit-length Area Freq. Area Freq.
(Slices) (MHz) (Slices) (MHz)

64-bit 1163 30.361 1212 45

128-bit 2132 26.091 2215 31

256-bit 3262 15.429 3872 17

According to Algorithm 3.7 and Algorithm 3.8, note that all of the condition state-

ments are almost the same in hardware design among these two algorithms. It reduces

the complexity of the control flow for the two different fields. The control flow is simul-

taneously suitable for GF (p) and GF (2m).

Figure 4.2 shows the circuit diagram for the registers U and V in the universal dula-

field Montgomery divider. There are two subtracters in this circuit which compute (U−V )

and (V −U) separately. One of them is reused to compute (P −R) in order to share the

subtracters. The term (P − R) is needed to derive the correct result in GF (p) when the

division is finished at the last step. Further, it can use only one subtracter in only GF (p)

by substituting U for −U in Algorithm 3.7.
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Figure 4.3 shows the circuit diagram for the registers R and S. Note that the source

U denotes (P − R) and is derived from the circuit mentioned above. Since the registers

U and R will not simultaneously be equal to (R + S) in the division algorithm, they can

share the same hardware in this term (R + S). The decoder is used to determine the

modular operation in GF (2m) but also costs around 6% extra portion of area in FPGA.

However, it is unnecessary in specific length design.
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Figure 4.3: Universal dual-field Montgomery Divider Architecture for R and S

Table 4.5 shows the synthesize results for the universal dual-field Montgomery divider

on ASIC and FPGA. The area is also approximately in proportion to the bit length m.

Table 4.5: Synthesize results for proposed universal dual-field Mont-

gomery divider on ASIC and FPGA design

ASIC FPGA

Bit-length Gatecount Frequency Area Frequency
(Gates) (MHz) (Slices) (MHz)

64-bit 10.3k (2.6k + 7.7k)

100

1095 52.366

128-bit 20.8k (5.0k + 15.8k) 2164 41.917

256-bit 42.1k (10.0k + 32.1k) 4535 28.243
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Another algorithm for unified modular division in GF (p) and GF (2m) is proposed

in [28] and is implemented in [29]. Table 4.6 shows a comparison of the number of gates

for two algorithms. The UMD algorithm in [28] is also suitable for both GF (p) and

GF (2m) but still needs additional multiplication for Montgomery domain.

Table 4.6: A Comparison with ASIC results for universal modu-

lar division algorithm

Proposed L. A. Tawalbeh [29]

Bit-length Gatecount Frequency Gatecount Frequency
(Gates) (MHz) (Gates) (MHz)

128-bit 20.8k
100

22.8k 100

256-bit 42.1k 45.6k 92

4.3 Universal Dual-field Scalar Multiplier

The most important arithmetic on elliptic curve applications is the scalar multiplica-

tion that computes kP , where k is an arbitrary integer and P is a point on elliptic curve.

In scalar multiplication, the computation of the parameter λ is the most time consuming.
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Figure 4.4 shows the circuit diagram for calculating the parameter λ. The block

UMM and UMD denote an universal dual-field Montgomery multiplier and an universal

dual-field Montgomery divider respectively. The block Mod P denotes the modular p

operation once and requires one subtracter or adder and one multiplexer. Thus it is a

great consumption of area in hardware.
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Figure 4.5: Universal dual-field point adder

Figure 4.5 shows the architecture of the universal dual-field point adder on elliptic

curves. Except the λ block, there is one more UMM needed for both the outputs X3 and

Y3. Since the multiplication does not simultaneous occur while calculating X3 and Y3,

they can share the multiplication hardware.

Table 4.7 show the synthesize results for the proposed elliptic curve point adder. Note

that the design here only works in Montgomery domain. The transformation between

domains requires other Montgomery multipliers.

Table 4.7: Synthesize results for proposed elliptic curve point adder

ASIC FPGA

Bit-length Gatecount Frequency Area Frequency
(Gates) (MHz) (Slices) (MHz)

256-bit 198.3k (27.6k + 170.7k) 75 12366 27.512
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Figure 4.6 shows the entire architecture of the universal dual-field scalar multiplier.

The block ECPA denotes the point adder. It takes five UMM blocks for domain transfor-

mation, however, the additional UMM blocks cost about 27% area of the entire design. It

multiplies the constant 22n (mod p) to transform to Montgomery domain and multiplies

the constant 1 to transform back to integer domain.
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Figure 4.6: Universal dual-field scalar multiplier

The main function of the control circuit is the scalar multiplication. The Double-and-

Add algorithm is used here and takes about 7% area of the design. This control circuit can

be replaced by other more efficient algorithms mentioned in Chapter 2.3, but it certainly

will take more circuits. Therefore, the control unit can be implemented using software for

more flexibility. In most ECC applications, the base point or some parameters are already

known, so that some variables can be pre-computed in advance and strored in additional

memories in order to accelerate the computation. Table 4.8 shows the final results for the

total design in this thesis. It performs the scalar multiplication on elliptic curves.

Table 4.8: Synthesize results for proposed elliptic curve scalar multiplier

ASIC FPGA

Bit-length Gatecount Frequency Area Frequency
(Gates) (MHz) (Slices) (MHz)

256-bit 292.5k (80.8k + 211.7k) 75 18146 18.768
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Chapter 5

Implementation Results

A total solutions for elliptic curve arithmetics in both software and hardware are given

in this work. This chapter shows the hardware implementation results. The software

simulation environment is constructed in both C and C++ programing languages. The

design and test consideration are discussed in Chpater 5.1. The hardware implementation

results and design flow are described in Chapter 5.2. The RTL synthesizer uses Synopsys1

Design Compiler for ASIC and Xilinx XST or Synplicity2 Synplify Pro for FPGA.

5.1 Design and Test Consideration

The hardware is designed to accelerate the operations on elliptic curves and it deals

with different field parameters using Montgomery technique. The main part in hardware

is the point operation on elliptic curves and the implementation of scalar multiplication

on hardware uses only Double-and-Add algorithm which averagely takes more latency.

The performance of scalar multiplication algorithm is not taken into consideration in this

work since it can be improved efficiently by software or uses additional memories.

The Verilog code for this design was generated using the parameterized module for

different values of m. The test patterns are generated randomly by software. The ver-

ification for the design uses not only hardware-software co-simulation but also confirms

with the examples of NIST3 publications for more confidence.

1Synopsys, Inc. http://www.synopsys.com/
2Synplicity, Inc. http://www.synplicity.com/
3National Institute of Standards and Technology. http://www.nist.gov/
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5.2 Hardware Implementation

5.2.1 ASIC Implementation

Figure 5.1 illustrates the entire ASIC design and testing flow with various CAD (Com-

puter Aided Design) tools. The design is done by pre-layout gate-level simulation but the

pre-layout simulation can not calculate the circuit speed precisely. The results for post-

layout gate-level simulation will be worse than the results shown in former.
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Figure 5.1: ASIC design flow
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Table 5.1 shows a comparison for the ASIC performance of scalar multiplication. In

this work, the execution time for computing kP in GF (P192) is average 3.3 ms. The

execution is probably range from 2.4 to 4.2 ms for the best and worst case, that is, the

latency is probably range from 180k to 320k clock cycles.

In contrast to proposed design, the work [30] shows a great performance using a elliptic

curve cryptographic processor. It has a Montgomery multiplier and uses projective plane

to avoid inversion operations. In scalar multiplication, it uses software NAF method to

reduce the number of 1 terms in k. However, the proposed design mainly shows a powerful

dual-field arithmetic operator on elliptic curves by ASIC method.

In work [31], the design uses Fermat’s Little Theorem for the modular inversion oper-

ation. However, it is not considered efficient in a large field design since the computation

complexity increases significantly. The proposed Montgomery modular inversion or divi-

sion algorithm based on EEA has an obviously improvement on the computation time for

inversion computation. The division algorithm is chosen in this thesis because it always

needs a division in elliptic curve point operations.

In software simulation on C, it takes around 300 ms averagely to do scalar multipli-

cation once. Then the ECDSA takes about 1290 ms including signature and verification.

The signature and verification have total four scalar multiplication operations. Therefore,

the scalar multiplication spends the most time in ECDSA and requires extra hardware to

accelerate its speed. The simulation results below show significant improvement on the

computation time for scalar multiplication.

Table 5.1: Elliptic Curve Scalar Multiplication ASIC Performance Comparison

Author A. Satoh [30] G. Z. Lu [31] Proposed

Field GF (P192)/GF (2160) GF (P192)/GF (2192) GF (P256)/GF (2256)

Platform .13µm CMOS .25µm CMOS .18µm CMOS

Gatecount (Gates) 120.2k 26.7k 292.5k

Frequency (MHz) 137.7 285.7 75

EC mult. (ms) 1.44/0.19 9.75/6.75 3.3

Note 64-bit 8PEs with Universal dual-field
multiplier w = 8bits architecture

1 The timing for EC mult. of the proposed design is for 192-bit length.

41



5.2.2 FPGA Implementation

Figure 5.2 illustrates the FPGA design and testing flow in contrast to the ASIC design

flow. In this thesis, since this work is mainly implemented on ASIC design, there is

not any technique used to improve the performance on FPGA. Thus, there is no block

RAM and specific length multiplier used to accelerate the speed on FPGA. Thus, the

implementation results on FPGA is slightly worse in timing performance, but it is helpful

in fast verification and gives reliable hardware information.
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Table 5.2 shows a comparison for the FPGA performance of scalar multiplication.

There are few similar parallel architecture of universal dual-field elliptic curve scalar

multiplier, so the following table just lists some implementations for reference.

Table 5.2: Elliptic Curve Scalar Multiplication FPGA Performance Comparison

Author Field Platform Area Freq. Latency ECmult.
(Slices) (MHz) (Cycles) (ms)

C. J. McIvor [32] GF (P256)
Xilinx Pro 15755 39.46 151.3k 3.86XC2VP125

W. C. Hsu [33] GF (2163) Xilinx 8815 90 37k 0.41XC2V8000 LUTs

N. A. Saqib [34] GF (2191) Xilinx 18314 9.99 573 0.05XCV3200E 24BRAM

Leong [35] GF (2173) Microcoded - - 310k 11.1Processor

Proposed GF (2256) Xilinx 18146 18.768 250k 13.32XC2V8000

1 The timing for EC mult. of the proposed design is for 192-bit length.

The authors in [32] have proposed much about the Montgomery techniques recent

years. The latency of the Montgomery multiplication is especially shorter than the pro-

posed design in this thesis. It takes only 32 clock cycles to perform one 256-bit multi-

plication and achieves by cascading 16 × 16-bit multipliers. The trade-off is the cost of

area. The Montgomery multiplier here requires 11992 Slices. Despite of the amazing area

consumption, it performs a fast operation speed for 256-bit scalar multiplication.

The work [33] and [34] shows the higher frequency and fewer latency design respec-

tively. They both have a good performance on scalar multiplications. In [33], the design

works on normal basis and uses projective plane method to avoid inversion operations. [35]

shows the performance using microcoded EC processor.
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Chapter 6

Conclusion

A total solution in hardware and software to the scalar multiplication on elliptic curves

in both GF (p) and GF (2m) is given in this thesis. In order to deal with various field

conditions, the Montgomery techniques are employed. In affine coordinates, due to the

slow division while calculating the parameter λ in point additions, a Montgomery mod-

ular division algorithm based on EEA is proposed instead of the inversion followed by a

multiplication. The Montgomery divider plays an important role in elliptic curve scalar

multiplication since it dominates 40% of total latency. Besides, the Montgomery multi-

plier is also an important operation. The implementation of these two functions in this

work shows a considerable trade-off on area and speed, so it is suitable for hardware design

to accelerate most complicated operations on elliptic curves.

According to the implementation result, it is synthesized using .18µm CMOS tech-

nology with 285k gates and using Xilinx Virtex-II XC2V8000 with 18146 slices in FPGA

design. It takes about 300 ms to accomplish a scalar multiplication in software but takes

only 3 ms in hardware. It is 100 times fast in speed. The result of proposed full parallel

architecture for the scalar multiplier on elliptic curves seems a great consumption of area

in comparison with others. However, the total area of entire scalar multiplier is not take

into consideration in this thesis. It mainly shows the computation time in scalar multipli-

cation using the proposed Montgomery method. It provides another way of implementing

point additions in affine coordinates.
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Appendix A

Elliptic Curve Cryptography

A.1 Elliptic Curve El-Gamal

The elliptic curve group forms finite cyclic group so that the elliptic curve group over

finite field can be used to implement El-Gamal public cryptosystem.

1. Given the base point G, a key pair consists of a private key d, where 1 ≤ d ≤ n− 1,

and a public key Q, where Q = dG.

2. Given Alice’s key pair QA and dA, where QA is public key and dA is private key.

3. Given Bob’s key pair QB and dB, where QB is public key and dB is private key.

4. Given a message P , Alice sends the point (x1, y1) = (kG, P + kQB) to Bob using

Bob’s public key where k is a random integer chosen by Alice.

5. Bob uses his secret key dB to derive the message P by computing (y1−dBx1), where

y1 − dBx1 = (P + kQB) − dB(kG) = (P + kQB) − k(dBG) = P + kQB − kQB = P .

A.2 Elliptic Curve Diffe-Hellman

Elliptic Curve Diffe-Hellman (ECDH) is a variant of the Diffie-Hellman protocol using

elliptic curve cryptography. It is a key agreement protocol that allows two parties to

estabilish a shared secret key over an insecure channel. This key can then be used to

encrypt subsequent communications using a symmetric key cipher.
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A.2.1 Key Exchange

1. Given the base point G, a key pair consists of a private key d, where 1 ≤ d ≤ n− 1,

and a public key Q, where Q = dG.

2. Given Alice’s key pair QA and dA, where QA is public key and dA is private key.

3. Given Bob’s key pair QB and dB, where QB is public key and dB is private key.

4. Alice computes the point (xk, yk) = dAQB using Bob’s public key.

5. Bob computes the point dBQA using Alice’s public key.

6. Alice and Bob have the same key since dAQB = dA(dBG) = dB(dAG) = dBQA.

A.3 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the Digital Sig-

nature Algorithm (DSA) using elliptic curve cryptography.

A.3.1 Key Pair Generation

1. Select a statistically unique and unpredictable integer d in the interval 1 ≤ d ≤ n−1,

where n is the order of the point G, i.e. nG = O.

2. Compute the point Q(xQ, yQ) = dG.

3. The key pair is Q and d, where Q is the public key, and d is the private key.

A.3.2 Signature Generation

1. Given a bit string, M , with arbitrary length as the message to be signed.

2. Message digesting:

2.1. Compute the hash value e = H(M) of the message using SHA-1.

2.2. SHA-1 is specified in [36]. The output e is an integer with a length of 160 bits.

3. Elliptic curves computations:

3.1. Select a statistically unique and unpredictable integer k, where 1 ≤ k ≤ n− 1.

3.2. Compute the point (x1, y1) = kG.

4. Modular computations:

4.1. Set r = x1 mod n.

4.2. Compute s = k−1(e + dr) mod n.

5. The signature for M shall be the two integers, r and s.
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A.3.3 Signature Verification

1. Given a received message M ′, and a received signature of two integers, r′ and s′.

2. Message digesting:

2.1. Compute the hash value e′ = H(M ′) of the message using SHA-1.

3. Modular computations:

3.1. Compute c = (s′)−1 mod n.

3.2. Compute u1 = e′c.

3.3. Compute u2 = r′c.

4. Elliptic curves computations:

4.1. Compute the point (x2, y2) = u1G + u2Q.

5. Signature checking:

5.1. Compute v = x2 mod n.

5.2. If r′ = v, then the signature is verified.

5.3. If r′ 6= v, then reject the signature.
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