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具能量察覺管線化架構可重組混合基底的 

快速傅利葉轉換處理器設計 
 
 

學生：賴祈成  

 

       指導教授：黃  威  教授 

國立交通大學電子工程學系電子研究所碩士班 

摘 要       

 
本論文提出一個先進的可重組混合基底的快速傅利葉轉換處理器。該處理器

可動態重組為 16 點至 4096 點之快速傅利葉/反向快速傅利葉轉換運算，並且對

於不同長度之模式使用不同的混合基底演算法，所提出的架構同時具有能量察覺

的特色。不同於一般管線化架構使用較大的內部字長來提高抗雜訊比，我們的架

構使用與輸入資料相同的內部字長，並使用區塊浮點的方法來維持抗雜訊比。並

且，使用八個平行資料傳輸路徑的管線化架構有效的降低計算週期。 

模擬的結果顯示，所提出的快速傅利葉轉換器在不同的資料長度下，能將抗

雜訊比維持在 110dB 以上。所提出的快速傅利葉轉換器以 TSMC 0.13μm 的技術

實現，供應電壓為 1.2V，最高時脈週期為 110MHz，產出率可達四倍時脈週期，

亦即 440Msample/s；隨著快速傅利葉轉換運算的長度增加，每筆運算所消耗的能

量從 4.34nJ 增加到 5.115μJ。 
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ABSTRACT 

 
In this thesis, we present a novel FFT/IFFT processor, called reconfigurable 

mixed-radix (RMR) FFT. It can be easily reconfigured as from 16-point to 4096-point 

FFT/IFFT with proper mixed-radix algorithm assigned for each mode. The proposed 

architecture is characterized with scalable energy dissipation for different FFT/IFFT 

sizes. Unlike general pipeline-based architectures which use a larger internal 

wordlength to achieve a high signal-to-noise ratio (SNR), our processor keeps the 

internal wordlength the same as the wordlength of the input data while the 

block-floating-point (BFP) approach is adopted to maintain the SNR. The 

pipeline-based architecture with 8-parallel datapath results in low computation cycles. 

The simulation result shows that RMR FFT maintain the SNR above 110dB as 

the FFT size varies. The proposed RMR FFT processor is implemented using TSMC 

0.13μm technology with a supply voltage of 1.2V. With the maximum clock rate of 

110MHz, the throughput rate can reach 440Msample/s, which is 4 times of the input 

clock rate. The energy dissipation per FFT ranges from 4.34nJ to 5.115μJ with 

increasing FFT sizes. 
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Chapter 1 

Introduction 
 

1.1 Background 

 

In discrete-time signal processing (DSP), engineers usually study and practice 

digital signals between time domain and frequency domain [1.1]. A sequence of 

samples from a measuring device produces a time or spatial domain representation, 

whereas a discrete Fourier transform (DFT) produces the frequency domain 

information, that is, the frequency spectrum. As many communications theories are 

based on frequency domain, the DFT becomes an important component. 

However, the direct mapping of DFT equation into a physical implementation 

results in unacceptable hardware overhead. The fast Fourier transform (FFT) is thus 

developed to make the implementation possible. FFTs became popular after J. W. 

Cooley of IBM and John W. Tukey of Princeton published a paper in 1965 [1.2] 

reinventing the algorithm and describing how to perform it conveniently on a 

computer. FFTs are of great importance to a wide variety of applications, from digital 

signal processing to solving partial differential equations to algorithms for quickly 

multiplying large integers. 

The performance of FFT is often the bottle neck of a DSP system. The design of 

a high-speed FFT processor has been an important topic for many years. Various 

architectures have been proposed to serve different applications. Recently, the 

popularity of portable systems raises the low-power consumption as another serious 

design issue. The demand for low-power and high-speed FFT processors never stops. 

 

1.2 Motivation 

 

Many recent communication standards propose the orthogonal frequency 
division multiplexing (OFDM) as the primary modulation method. A general block 
diagram of an OFDM system is shown in Figure 1.1. The FFT and inverse FFT 
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(IFFT), which are essential for such modulation, are both computation-intensive and 
data-exchange-intensive. Many FFT algorithms and architecture have been proposed 
to drive the performance further in the past decades. However, modern 
communication standards require even faster FFT processors while the 
power-consumption is critical. For example, in the popular orthogonal 
frequency-division multiple (OFDM)-based UWB systems, the execution time of the 
128-point FFT/IFFT is only 312.5 ns, or equivalent 409.6Msample/s [1.3]. 

 

Base-band
Modulator

Serial-to-
parallel IFFT Cyclic

Prefix
D/A

Converter

Parallel-to-
serial FFT

Cyclic
Prefix

Remover

A/D
Converter

Base-band
Demodulator

…
……

…
To RF

From 
RF

Input 
data

Output 
data

Transmitter 

Receiver 

Figure 1.1 Generic OFDM block diagram 

 
On the other side, it is desirable for a processor to perform flexible-size FFTs, 

thereby facilitating software adaptability when different formats and changing 
standards must be accommodated. Processors with high re-configurability incur 
inevitable overhead in all terms. In order to minimize the overhead, the design of such 
reconfigurable processors must be considered from both algorithm-level and 
architecture-level. 

This thesis aims to design a high performance FFT/IFFT processor that can meet 
modern high-speed criterions while maintaining low power consumption. The 
processor can be flexible to perform different lengths of FFTs and thus suitable for 
various protocols and applications. The FFT length should be easily reconfigured by 
setting control registers and with minimum hardware overhead possible. 

 

1.3 Organization of Thesis 

 

The rest of this thesis is organized as follow. Chapter 2 is a review of general 

FFT algorithms and architectures. The basic concept of the FFT algorithm is 
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explained and various FFT algorithms are introduced here. Also, popular FFT 

architectures in implementation, memory-based and pipeline-based, are depicted and 

compared in this chapter. In conclusion, we will give a direction of algorithms and 

architecture that is most suitable for modern high-speed applications. 

In this thesis, we propose an energy-aware reconfigurable mixed-radix FFT/IFFT. 

The proposed processor can be easily reconfigured as from 16-point to 4096-point 

FFT/IFFT with proper mixed-radix algorithm assigned for each mode. In chapter 3, 

we will derive the proposed reconfigurable mixed-radix algorithm. The architecture 

design and principle of each block will be illustrated in chapter 4. 

In chapter 5, the RMR FFT is implemented using TSMC 0.13μm technology. As 

will be shown in the proposed architecture, we find that the internal storage block 

takes out most of the FFT area and power during the cell-based synthesis flow. The 

implementation strategy of the internal storage blocks is different from that of the rest 

RMR FFT. The simulation result will be analyzed and compared with other 

reconfigurable architectures. Finally, some conclusions and future work will be 

presented in Chapter 6. 
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Chapter 2 

Review of FFT Algorithms and 

Architectures 
 

2.1  Introduction 

 

The discrete Fourier transform (DFT) is widely employed in the analysis, design, 

and implementation of signal processing algorithms and systems. However, the 

computational complexity of direct evaluation of an N-point DFT is O(N2), which 

results in a long computation time and excessive hardware cost. Fortunately, 

considerable symmetry exists in the operations and coefficients required to compute a 

DFT. Such symmetry can be exploited to reduce the number of operations required, 

thus reducing the time required for DFT computation. Collectively, the resulting 

efficient computation algorithms are called fast Fourier transform (FFT). 

Mainly, the FFT is a way of computing the DFT by decomposing the computation 

into successively smaller DFT computations. In this process, both the symmetry and 

the periodicity of the complex exponential  are exploited. 

Algorithms in which the decomposition is based on the input sequence x[n] into 

successively smaller subsequences are called decimation-in-time (DIT) algorithms. 

Alternatively, we can consider dividing output sequence X[k] into smaller 

subsequences and such algorithms are called decimation-in-frequency (DIF) 

algorithms. 

(2 / )nk j N nk
NW e π−=

By far the most common FFT is the Cooley-Tukey algorithm [2.1], which is 

suitable in decomposing DFT that is of size of power of 2. We would like to introduce 

some variants based on Cooley-Tukey algorithm in this chapter. These variants can be 

classified as fixed-radix and the others, respectively. Also, we will discuss the 

architectures for these algorithms in VLSI implementation. Both of the two popular 

architectures, memory-based and pipeline-based, have their advantages and certain 

shortcomings. 
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2.2 Basic Concept of FFT Algorithms 

 

The discrete Fourier transform of a complex data sequence x[n] of length N is 

defined as: 

1

0
( ) [ ]        k=0,1,.....,N-1

N
nk

N
n

X k x n W
−

=

=∑         (2.1) 

where the coefficient is defined as nk
NW

2j nk
nk N

NW e
π−

= ,which are called twiddle 

factors. The approach used to improve the efficiency in FFT is to exploit the 

symmetry and the periodicity properties of ; nk
NW

( ) (N n k nk nk
N NW W W− −= = *)N

N

  (Symmetry property)     (2.2) 

( ) ( )nk n k N n N k
N N NW W W+ += =   (Periodicity in n and k)     (2.3) 

As an illustration, using the periodicity property, we can group terms in Eq. (2.1) for n 

and (n+N): 

( )[ ] [ ] ( [ ] [ ])nk n N k nk
N Nx n W x n N W x n x n N W++ + = + +      (2.4) 

Similar groupings can be used for other terms in Eq. (2.1). In this way, the number of 

complex multiplication can be reduced by approximately a factor of 2. We can also 

take the advantage of the fact that for certain factors, the real and imaginary parts take 

on the value 1 or 0, which eliminating the need for multiplication. As a result, 

applying the above properties achieves significantly reduction in computation. 

The Cooley-Tukey algorithm is the most common FFT algorithm. It re-expresses 

the DFT of an arbitrary composite size N = N1N2 in terms of smaller DFTs of sizes N1 

and N2 recursively. FFT algorithms are based on the fundamental principle of 

decomposing the computation of the DFT of an N-length sequence into successively 

smaller DFT. The manner of how this principle is implemented leads to a variety of 

different algorithms. In the following section, various FFT algorithms will be 

introduced. 
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2.3 The FFT Algorithms 

 

According to the manner of decomposition, the FFT algorithms can be classified 

as DIT and DIF algorithms. The difference is the object to be decomposed, input 

sequence for DIT and output sequence for DIF. 

 

2.3.1 Decimation-in-Frequency (DIF) Fixed-Radix Algorithms 

 

The principle of the decimation-in-frequency algorithm is most conveniently 

illustrated by considering the N-point DFT where N is an integer power of 2, i.e., 

N=2v. Since N is an even integer, we can consider computing the even-numbered 

frequency samples and odd-numbered frequency samples separately. Referring to Eq. 

(2.1), we can express X(k) as: 

1

0

1 12

0
2

1 1
2 2 ( )

2

0 0

1 1
2 2

2

0 0

2

( ) [ ]

        [ ] [ ]

        [ ] [ ]
2

        [ ] [ ]
2

        [ ] [ ]
2

N
nk

N
n

N
N

nk nk
N N

Nn n

N N
Nn knk

N
n n

N N
N knk nk

N N
n n

N k nk
N N

n

X k x n W

x n W x n W

Nx n W x n W

N

N

Nx n W x n W W

Nx n x n W W

−

=

−
−

= =

− −
+

= =

− −

= =

=

=

= +

= + +

= + +

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭

∑

∑ ∑

∑ ∑

∑ ∑
1

2

0

N
−

∑

       (2.5) 

Based on the above equation, the even-numbered frequency samples are: 

1
2 2 22

0

1
2

0 2

(2 ) [ ] [ ]
2

          [ ] [ ]
2

N
N r n r

N N
n

N

nr
N

n

NX r x n x n W W

Nx n x n W

−

=

−

=

⎧ ⎫
= + +⎨ ⎬

⎩

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

∑

∑

⎭        (2.6) 

The result of Eq. (2.6) can be seen as the N/2-point DFT of the sequence 
{x[n]+x[n+N/2]}, which is obtained by adding the first half and the second half of the 
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input sequence. In the same way, the odd-numbered frequency points are: 
1

2 (2 1) (2 1)2

0

1
2

0 2

(2 1) [ ] [ ]
2

               [ ] [ ]
2

N
N r n r

N N
n

N

n nr
N N

n

NX r x n x n W W

Nx n x n W W

−
+ +

=

−

=

⎧ ⎫
+ = + +⎨ ⎬

⎩

⎧ ⎫= − +⎨ ⎬
⎩ ⎭

∑

∑

⎭       (2.7) 

Eq. (2.7) is then the N/2-point DFT of the sequence obtained by subtracting the 
second half from the first half of the input sequence and multiplying the resulting 

sequence by n
NW . Therefore, the problem of computing N-point DFT becomes 

computing N/2-point DFT. Recursively, we can further decompose the N/2-point DFT 
in Eq. (2.6) and (2.7) into smaller DFT. Proceed with these decomposition until the 
only DFT required are 2-point DFTs. The 2-point DFT can be derived as the simple 
form in Eq. (2.6) and (2.7), which are multiplication and addition/subtraction 
operations. As a result, the computation of N-point DFT requires no real DFT 
computation but only multiplication and addition/subtraction operations. 

Figure 2.1, which is called a signal flow graph (SFG), illustrates the procedure of 
decomposing the 8-point DFT by the DIF algorithm. First we decompose the 8-point 
DFT as combinations of two 4-point DFT according to Eq. (2.6) and (2.7), as shown 
in (a). We can see now the output frequency points have been separated into 
even-numbered and odd-numbered parts. We then divide the 4-point DFT, 
respectively, into 2-point DFTs. Again, the output frequency points are separated. For 
the sequence {X(0),X(2),X(4),X(6)}, the even-numbered points are {X(0),X(4)} and 
the odd-numbered points are {X(2),X(6)}. The flow graph then becomes (b). Finally, 
we decompose the 2-point DFTs further and obtain the flow graph in (c). As we can 
see, the demand of any DFT block is now eliminated. 

The basic computation unit in the flow graph of Figure 2.1, as brought up in 
Figure 2.2, is called a butterfly. The butterfly output in DIF algorithms have to 
multiply certain constants and such constants are called twiddle factors. This basic 
computation unit is effectively a 2-point DFT unit, as can be seen from (b) and (c) of 
Figure 2.1. Since the N-point DFT is always divided by 2 recursively, the above 
algorithm is called the radix-2 DIF algorithm. 
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Figure 2.1 Decomposition of the 8-point DFT step by step in DIF algorithm 

 

x[n]
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X(n) = x[n]+x[n+N/2]

X(n+N/2) = x[n]-x[n+N/2]  

Figure 2.2 The butterfly unit of radix-2 DIF FFT 
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Further more, the output ordering, as shown in the SFG, is not in normal order as 

the time-domain input. In fact, the order which the output data present is referred to as 

bit-reversed order. The idea of the bit-reversed order can be well depicted by tree 

diagrams. As we take the 8-point DFT as an example, three binary digits are required 

to index through the data. Figure 2.3 shows the way how normal order and 

bit-reversed order are derived, respectively. In (a), the normal order is obtained 

through sorting data sequence by successive examination of the data index bits. In (b), 

the same procedure takes place to obtain the bit-reversed order except that the data 

index bits examination is backward.  
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Figure 2.3 Tree diagrams of (a) normal order and (b) bit-reversed order 
 

Similar to the way of decomposing the even integer N, we can decompose N 

into four parts if N is an integer power of 4, i.e., N=4v. We can divide frequency 

samples into four parts and consider computing them separately. The equation 

represents these four frequency parts are thus: 
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A decomposition of a 4v-point DFT can also be shown through a signal flow graph, 

similar to the one in Figure 2.1. This time, the basic computation unit is no longer a 

2-point DFT butterfly but a 4-point DFT butterfly, as shown in Figure 2.4. The 

resulting algorithm, therefore, is called a radix-4 DIF algorithm. 
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Figure 2.4 The butterfly unit of radix-4 DIF FFT 
 

Practicing the above decomposition procedures, we can further derive even 

higher radix-r DIF algorithms by restricting N as an integer power of r. The advantage 

of a higher radix algorithm is that the number of complex multiplications can be 

effectively lowered. As one radix-4 stage corresponds to two radix-2 stage in the SFG, 

the twiddle-factor multiplications between the two radix-2 stages are now covered in 

the radix-4 stage. As shown in Figure 2.4, complex multiplications in the radix-4 

butterfly, multiplication by { , , , }, are thought as trivial multiplications. 

This means that these multiplications can be carried without a true multiplier. 

Therefore, the effective number of complex multiplication required in radix-4 

algorithm is fewer than that in radix-2 algorithm. Accordingly, algorithms with higher 

radix are more efficient than those with lower radix in arithmetic aspect. On the other 

hand, the butterfly of a higher radix algorithm is more complicated. The trade-off is 

between addition/subtraction and multiplications. Since addition/subtractions are of 

lower computational complexity than multiplications in complex-number computation, 

the higher radix algorithms are usually preferred. However, the radix-r algorithm is 

only suitable for r

0
4W 1

4W 2
4W 3

4W

v-point FFT. For a DFT sequence of length not power of r, lower 

radix algorithm must be used. 
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2.3.2 Decimation-in-Time (DIT) Fixed-Radix Algorithms 

 

To develop the DIT algorithm, let us again consider the N-point DFT where N is 

an integer power of 2, i.e., N=2v. Since N is an even integer, we can consider 

computing X(k) by separating x[n] into the even-numbered points and odd-numbered 

points. With the X(k) given in Eq. (2.1), we can derive the following equation: 

1

0

1 1
2 2

2 (

0
2

1 1
2 2

2 2

0 0

1 1
2 2

0 02 2

( ) [ ]

        [2 ] [2 1]

        [2 ] [2 1]

        [2 ] [2 1]

N
nk

N
n
N N

rk r k
N N

Nr r

N N

rk k rk
N N

r r

N N

rk k rk
N N N

r r

X k x n W

x r W x r W

x n W x r W W

x r W W x r W

−

=

− −

+

= =

− −

= =

− −

= =

=

= + +

= + +

= + +

∑

∑ ∑

∑ ∑

∑ ∑

2 1)

N

       (2.12) 

In the above equation, X(k) can be seen as a combination of the DFT of the 

even-numbered points and odd-numbered points of x[n]. Replace them with G(k) and 

H(k), respectively: 

1 1
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∑ ∑        (2.13) 

G(k) represents the N/2-point DFT of the even-numbered points in x[n] and H(k) 

represents the N/2-point DFT of the odd-numbered points in x[n]. We can then treat 

G(k) as an independent DFT and decompose it as the manner in Eq. (2.12). 

Recursively, G(k) will finally be decomposed into 2-point DFTs, which is 

multiply-and-add operation of two data. In the same way, H(k) can also be recursively 

decomposed into combinations of 2-point DFTs. A 2-point DFT, according to Eq. 

(2.13), is a multiply-and-add operation. Therefore, the N-point DFT can be calculated 

without any real DFT computations.  
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Figure 2.5 Decomposition of the 8-point DFT step by step in DIT algorithm 

 

Figure 2.5 shows the procedure of how an 8-pont DFT is composed by the DIT 

algorithms. First we decompose the 8-point DFT as combinations of two 4-point DFT 

according to Eq. (2.8) and (2.9), as shown in (a). We can see now the time-domain 

input points have been separated into even-numbered and odd-numbered parts. We 

then divide the 4-point DFT, respectively, into 2-point DFTs. Again, the input points 

are separated. For the sequence {x[0],x[2],x[4],x[6]}, the even-numbered points are 
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{x[0],x[4]} and the odd-numbered points are {x[2],x[6]}. The flow graph then 

becomes (b). Finally, we decompose the 2-point DFTs further and obtain the flow 

graph in (c). At last, the demand of any DFT block is now eliminated. 

Similar to the DIF algorithm, the basic butterfly unit of the DIT algorithm is 
shown in Figure 2.6(a). However, be aware of the fact that: 

/ 2 / 2r N r N r
N N N NW W W+ W= = −       (2.14) 

The butterfly is modified as in (b), which reduces the number of multiplications to 1. 
This basic computation unit is also effectively a 2-point DFT unit, as can be seen from 
(b) and (c) of Figure 2.5. Therefore, the above algorithm is called a radix-2 DIT 
algorithm. 
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r
NX(k) = x[2r]+x[2r+1]W

r+N/2
NX(k+N/2) = x[2r]+x[2r+1]W
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x[2r+1]
r

NW

(b)(a)

r
NX(k) = x[2r]+x[2r+1]W

r
NX(k+N/2) = x[2r]-x[2r+1]W

 

Figure 2.6 The butterfly unit of radix-2 DIT FFT 
 

Observing Figure 2.5, the time-domain input for the DIT decomposition are in 

bit-reversed order while the frequency-domain output are in normal order. 

Comprehensively, the SFG of the DIT algorithm is a reverse of the SFG of the DIF 

algorithm. We can also use the same methods as in previous section to derive a higher 

radix decomposition of the DIT algorithm. 

 

2.3.3 Other FFT Algorithms 

 

There are many other variations on the Cooley-Tukey algorithm. Mixed-radix 

implementations [2.2-2.5] handle composite sizes with a variety of (typically small) 

factors in addition to two, usually (but not always) employing the O(N2) algorithm for 

the prime base cases of the recursion. The idea of mixed-radix algorithms is 

straightforward. As the fixed-radix algorithms recursively decompose the N-point 

DFT into N/r-point DFT, we can also decompose the N-point into N/r1-point, 

N/r2-point…, and N/rm-point DFTs as long as N= r1×r2…×rm.  
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Split radix [2.6-2.8] merges radices 2 and 4, exploiting the fact that the first 

transform of radix-2 requires no twiddle factor, in order to achieve the lowest known 

arithmetic operation count for power-of-two sizes. The DIF split-radix 2/4 algorithm 

decomposes the frequency sample as: 
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The SFG of the split-radix algorithm can also be drawn as the fixed-radix 

algorithms. Figure 2.7 shows the basic butterfly unit for split-radix 2/4 algorithm. The 

split-radix algorithm features low computational complexity and is flexible as radix-2 

algorithm. 
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Figure 2.7 The butterfly unit of split-radix 2/4 algorithm 
 
2.4 The FFT Architecture 

 

The FFT architecture is the way to implement the signal flow graph of the FFT 

algorithms. In this section, we will introduce the FFT architectures which are common 

for VLSI implementation. There are two popular architectures to implement the FFT 

algorithms for real time applications. They are pipeline-based architecture and 

memory-based architecture. 
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2.4.1 Pipeline-Based Architecture 

 

The pipeline-based architecture is of high regularity and can be easily scaled and 

parameterized in implementation [2.6, 2.8-2.15]. Compared to the memory-based 

architecture, it is characterized in high throughput rate while keeping moderate 

hardware complexity. An efficient method to obtain the pipeline architecture is to 

project the signal flow graph of the FFT algorithm to the hardware data flow. Two 

common pipeline-based architectures will be introduced next, the single-path delay 

feedback (SDF) and the multiple-delay commutator (MDC) architecture. 

 

2.4.1.1 Single-Path Delay Feedback (SDF) Architecture 

The block diagram of the SDF architecture in radix-2 DIF algorithm is shown in 

Figure 2.8. For the FFT length N = 16, there will be 4 butterfly stages in the SFG. As 

we can see from the figure, a butterfly element is dedicated to each stage. The 

feedback registers are used to store output data of the butterfly outputs. The butterfly 

element perform the butterfly operation when the required data are ready at the input 

ports, otherwise it perform the swap operation to store data into the feedback registers. 

The memory requirement of the SDF architecture is minimal. However, the utilization 

rate of the butterfly and multiplier units is only 50%. 
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Figure 2.8 Radix-2 DIF SDF architecture for N = 16 

 

Similar to the radix-2 SDF architecture, the SDF architecture for the radix-4 

algorithm can also be derived from the SFG. Figure 2.9 shows the case when the SDF 

architecture is applied to the radix-4 algorithm. Compared to the radix-2 architecture, 

the radix-4 architecture can implement the FFT with fewer computation stages. 

However, the butterfly unit will be more complicated. 
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Figure 2.9 Radix-4 DIF SDF architecture for N = 64 

 

2.4.1.2 Multiple-Path Delay Commutator (MDC) Architecture 

The MDC approach is even more straightforward than the SDF approach. As the 

butterfly in the SFG, parallel data paths are used in the architecture. Instead of using 

the delay feedback registers, delay elements are placed on the data paths. Between 

each computation stages, a commutator is used to switch data to correct positions. 

Figure 2.10 shows the block diagram of the radix-2 DIF MDC architecture. The 

throughput rate of the radix-2 MDC architecture is twice that of the radix-2 SDF 

architecture due to the parallel data paths. However, the memory requirement is larger 

than that of the SDF architecture and also extra commutators are required. 
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Figure 2.10 Radix-2 MDC architecture for N = 16 

 

The radix-4 MDC architecture is of the same principle as the radix-2 one. Figure 

2.11 shows the block diagram of the radix-4 MDC architecture for N = 64. In the 

radix-4 MDC architecture, higher throughput rate can be achieved due to the four 

parallel data paths. However, more memory requirement and higher hardware 

complexity are the overhead in return. 
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Figure 2.11 Radix-4 DIF MDC architecture for N = 64 

 

2.4.2 Memory-Based Architecture 

 

The memory-based architecture is considered the most area efficient way of 

implementing the FFT [2.2, 2.4-2.5, 2.16-2.19]. It usually consists of one computation 

block, coefficient memory for twiddle factors, and memory to store IO and internal 

data. The feature of such architecture is that it usually uses only one or few butterfly 

elements as the computation block. Since the butterflies and multipliers usually take 

out most area and consume large power in the pipeline-based architecture, the 

memory-based architecture reduces such hardware cost and thus lowers the power 

consumption. Figure 2.12 shows the generic block diagram of the memory-based 

architecture. The hardware complexity of the memory-based architecture concentrates 

on the control block. Since there are only one or few butterfly elements available, the 

execution order is stage by stage as in the SFG. The memory-based architecture 

usually uses one memory module to store the intermediate data. Since the data 

ordering is different from stage to stage, the order of data stored in the memory must 

be taken care after every stage of operation 
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Figure 2.12 Block diagram of the memory-based architecture 

 

As the number of butterfly units available reduces, the number of butterfly on the 

SFG remains the same. Therefore, the memory-based architecture results in low 

throughput rate. In a radix-r algorithm, an N-point FFT requires logr
N N
r
×  radix-r 

butterfly operation. Assume that the memory access bandwidth is K and the time for a 

butterfly operation is t. Then, the time to compute an N-point FFT can be expressed 

as: 

Time for one FFT = log  = logr
N r NN t N
r K K r t× × × × ×    (2.18) 

From the above equation, it can be seen that the time for one FFT can be reduced 

linearly with K and exponentially with r. Therefore, using high radix algorithms is an 

efficient way to raise the throughput rate of a memory-based architecture. 

 

2.4.3 Reconfigurable Architecture 

 

A FFT processor that can perform various lengths of FFT is usually preferred. 

For the pipeline-based architecture, the reconfiguration can be easily achieved. 

Recall the principle of the FFT algorithms. The idea is to break the N-point DFT into 

smaller DFTs recursively. Therefore, after a radix-r butterfly stage, the N-point FFT 

is decomposed into r N/r-point FFTs. This relation can be observed from the SFG as 
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previously shown in Figure 2.1 or Figure 2.5. Since the pipeline-based architecture is 

the projection of the SFG, the backend stages actually calculate the FFTs of smaller 

sizes. Therefore, the pipeline-based architecture can be reconfigured for calculating 

FFT of smaller size by feeding input data directly into later stages [2.3, 2.20]. 

However, such reconfiguration does require lots of multiplexers when we 

demand higher flexibility in the FFT size. The multiplexers added between each stage 

not only increase the overhead on area and power, but also influence the speed 

performance of overall architecture. Figure 2.13 shows an example of the 

reconfigurable pipeline-based architecture. The 1024-point FFT architecture is 

divided into five stages (1024=45). The architecture can also be reconfigured as 16, 64, 

or 256-point FFT. Reconfiguration is achieved by inserting three multiplexers namely 

MUX I, MUX II, and MUX III. The FFT processor can act as a 256-point processor 

by feeding the input data directly into stage 2 and clocking down the first stage. In the 

same way, reconfigurations to 64-point or 16-point FFT can also be achieved by 

feeding input data directly into stage 3 or stage 4, respectively. 

 

 

Figure 2.13 Architecture of 1024-point radix-4 reconfigurable  

pipelined FFT processor 

 

Alternatively, the memory-based architecture can be modified as reconfigurable 

architecture [2.21-2.22], too. Unlike the pipeline-based architecture, no much 

hardware needs to be added since there is only one butterfly computation block. 

Reconfigurability is achieved by adding flexibility to address generation block, 

coefficient memory block, and data memory block. The difficulty lies on the 

generation of control signal and the data ordering in the memory. 
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2.5 Conclusions 

 

In this chapter, we have reviewed the generic FFT algorithms and architectures. 

The fixed-radix algorithms are popular in VLSI implementation due to the regularity 

of their SFGs. However, while algorithms with high radix are of lower computational 

complexity, the flexibility in FFT size is also limited. The mixed-radix algorithms are 

thus more suitable for decomposing various FFT sizes. The drawback is that their 

twiddle-factor multiplications are more irregular than fixed-radix algorithms. 

In the architecture level, the memory-based architecture which only uses one or 

few computation blocks, is consider the most area efficient architecture. However, the 

low throughput rate makes it unsuitable for the high-speed application. The 

pipeline-based architecture is easy to scale and parameterize in hardware design. 

Although it is also easy to reconfigure for different FFT size, the data path may grow 

too long if we want higher flexibility. 
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Chapter3 

Algorithm of  

Reconfigurable Mixed-Radix FFT 
 

3.1 Introduction 

 

Our purpose is to design a reconfigurable FFT processor that can be dynamically 

configured to perform FFT length as from 16-point to 4096-point. In the fixed-radix 

algorithms, only radix-2 FFT algorithms can cover this range of reconfiguration. 

However, the radix-2 algorithms result in large calculation cycles and low throughput 

rate. As the higher radix algorithms are preferred for our high throughput purpose, the 

flexibility of the FFT size is also limited. Therefore, the mixed-radix algorithm is 

adopted in our design to keep the architecture flexible while using a high radix 

algorithm. Also, the algorithm should have certain common properties for 

decomposing different points of FFT.  

In this chapter, we will derive a reconfigurable mixed-radix algorithm. We 

manage to find regularity for data ordering and twiddle factors for FFTs of different 

sizes. Such regularities facilitate the construction of the hardware architecture. Also, 

special block execution order for the RMR FFT will be introduced in order to adopt 

the block-floating-point method. 

 

3.2 Reconfigurable Mixed-Radix Algorithm 

 

The Discrete Fourier Transform (DFT) of a complex data sequence x[n] of 
length N is defined as 
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A direct implementation of this equation requires large hardware and thus is 
impractical. By using the FFT algorithm, the computational complexity can be 
reduced. Let 
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Combining (1) and (2), the N-point FFT can be formulated as 
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From the above equations, we can divide any N-point (power of 2) FFT into a 
combination of r1-point and r2-point FFT. The r2-point DFT in (3) can be further 
decomposed in the same manner. Therefore, when N is not prime, such that N = 
r1×r2×r3×…×rm, it is possible to divide the N-point DFT as combination of r1, r2, r3…, 
rm-point DFTs. 

The proposed RMR FFT is divided as four-stage pipeline architecture. The idea 
is that, if each butterfly unit can act as radix-2, radix-4, or radix-8 butterfly, then the 
processor is capable of performing different points of FFT algorithms ranging from 
2×2×2×2=16 points to 8×8×8×8=4096 points. That is, decompose the N-point FFT 
as combination of r1, r2, r3, r4 –point DFT, where N= r1 × r2 × r3 × r4. In this way, 
one FFT may have several combinations of radixes. Since the duplications are 
unnecessary for the hardware design, specific mixed-radix algorithm is assigned for 
each FFT mode. 

The higher radix is chosen first. Based on the radix-8 algorithm, smaller FFT 
sizes are realized by bypassing preceding stages. For example, the 512-point FFT can 
be decomposed by the radix-8 algorithm as three stages and the four-stage pipeline 
thus becomes unnecessary. In such cases, we would like to bypass one of the four 
stages as the conventional reconfigurable pipeline architecture does, instead of 
assigning an 8×8×4×2 algorithm or other four-stage decomposition. Radix smaller 
than 8 is arranged at last stage. In this way, we only have to consider the last stage as 
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a reconfigurable butterfly stage while other stages being radix-8 under all modes. The 
resulting radix arrangement is shown in TABLE 3.1. As the table shown, we only 
need four-stage butterflies when the FFT is of size {1024, 2048, 4096}. Meanwhile, 
FFTs of size {128, 256, 512} need three-stage butterflies and FFTs of size {16, 32, 64} 
need only two. 

 

TABLE 3.1 Mixed-radix algorithms for different FFT sizes 

FFT size Stage 1 Stage 2 Stage 3 Stage 4 
16   8 2 
32   8 4 
64   8 8 
128  8 8 2 
256  8 8 4 
512  8 8 8 
1024 8 8 8 2 
2048 8 8 8 4 
4096 8 8 8 8 

 

The basic butterfly units in our design are thus radix-2, radix-4, and radix-8 
butterflies. Based on the decimation in frequency decomposition, the SFG of the 
8-point DFT is shown in Fig. 3.1. Notice that there is no explicit multiplication 
operation in realization of an 8-point DFT. The trivial multiplications of ±j, (1-j)/√2, 
and -(1+j)/√2 can be realized by using only shift-and add operation. Another 
observation through the SFG is that the 8-point DFT is a combination of two parallel 
4-point DFTs if we neglect the first stage and a combination of four parallel 2-point 
DFTs if the first two stages are neglected. Therefore, the radix-8 butterfly can serve as 
radix-4 and radix-2 butterfly as well. The side advantage is that the width of data path 
can stay at 8-data when goes from radix-8 to a lower radix stage. 
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Figure 3.1 SFG of 8-point DIF FFT 

 

Moreover, consider the DFT and IDFT equations: 
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1

0

( ) [ ]
N

nk
N

n

X k x n W
−

=

=∑

IDFT: 
1

0

1[ ] ( )
N

nk
N

n

x n X k W
N

−
−

=

= ∑        (3.5) 

Let 

nk
N

nk
N

W Wr jW

W Wr W−

= +

= −

i

i

)

)

)

)

         (3.6) 

We can find that the differences between DFT and IDFT are (a) the scaling constant 
1/N and (b) twiddle factors are conjugate of each other. Now, consider the complex 
multiplication of multiplying conjugate twiddle factors respectively: 

( )( ) ( ) (Xr jXi Wr jWi XrWr XiWi j XiWr XrWi+ + = − + +    (3.7) 

( )( ) ( ) (Xr jXi Wr jWi XrWr XiWi j XiWr XrWi+ − = + + −    (3.8) 

If we swap the real and imaginary parts of the input variable, that is, changing 
 to , Eq. (3.7) becomes: ( )Xr jXi+ (Xi jXr+

( )( ) ( ) (Xi jXr Wr jWi XiWr XrWi j XrWr XiWi+ + = − + +    (3.9) 

Comparing Eq. (3.8) and Eq. (3.9), the real part of Eq. (3.8) equals to the imaginary 
part of Eq. (3.9) and the imaginary part of Eq. (3.8) equals to the real part of Eq. (3.9). 
This means that these two equations are equal if we swap the real and imaginary parts 
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of one of the equations. Therefore, there is way to transform Eq. (3.7) to Eq. (3.8). 
Since Eq (3.7) represents the multiplications in DFT and Eq. (3.8) represents 
multiplications in IDFT, this means that we are able to use the DFT to calculate the 
IDFT. 

In summary, the IDFT can be performed by first swap the real and imaginary 
parts of input data. Then, after the DFT computation, swap the real and imaginary 
parts of output data. By scaling the output with the constant 1/N, the IDFT result is 
obtained. In the view of hardware implementation, we only have to add the swap unit 
at the input and output data port of the FFT processor in order to use the same 
processor to calculate IFFT. 

 

3.3 Data Ordering and Twiddle Factors 

 

As the proposed architecture can be reconfigured from 16 to 4096-point FFT, the 

data ordering will be different from mode to mode due to the dedicated mixed-radix 

algorithm. To make the architecture realizable, there must be rules that apply to all 

modes. The dedicated mixed-radix algorithms for different modes are listed in 

TABLE 3.1. The approach we use here is first to decompose the N-point FFT by the 

radix-2 decimation-in-frequency algorithm. As mentioned in the previous section, a 

radix-8 stage can be decomposed as combination of radix-2 stages or radix-4 stages. 

In other word, we can combine two radix-2 stages as one radix-4 stage and three 

radix-2 stages as a radix-8 stage, as shown in Figure 3.1. Based on signal flow graph 

of the radix-2 DIF decomposition, we recompose N-point FFT to the mixed-radix 

algorithms listed in TABLE 3.1. Since all the FFTs are decomposed by the radix-2 

DIF algorithm, the data ordering follows the same rules. The order of output data for 

the radix-2 flow graph is referred to as bit-reversed order. Figure 3.2 shows the 

example of radix-2 decomposition of the 128-point FFT. As Table 3.1 listed, the 

assigned mixed-radix algorithm for 128-point is radix-8/8/2. Figure 3.3 shows the 

recomposed SFG, which is the desired SFG for our architecture. Notice that the black 

nodes in Figure 3.2 correspond to the nodes in Figure 3.3 respectively. 
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Figure 3.2 SFG of 128-point FFT in radix-2 DIF algorithm 
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Figure 3.3 SFG of 128-point FFT in mixed-radix algorithm 
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After determine the data ordering for every butterfly stage, the next question is 

how the twiddle factors arrange. Clearly, it is not likely that we can directly map the 

twiddle factors from the radix-2 SFG to our mixed-radix SFG. However, we have 

found relation between that is easy enough for us to derive a common rule. 

Start with the example of the 16-point FFT SFG and as mentioned before, first 

we draw the SFG using radix-2 algorithm, as shown in Figure 3.4(a). According to 

TABLE 3.1, the 16-point FFT is supposed to recompose as radix-8/2 butterfly stages 

and thus we know that the first three radix-2 stages should be combined as one 

radix-8 stage. Since there are 16 points, there will be two radix-8 butterflies and we 

extract them as in Figure 3.5. The first butterfly is readily a radix-8 butterfly as shown 

in Figure 3.1. For the second butterfly, we must transform the internal twiddle factors 

in order to map to Figure 3.1. The procedure is shown in Figure 3.6. 
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Figure 3.4 SFG of 16-point DFT in  

(a) radix-2 algorithm, and (b) radix-8/2 algorithm 
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Figure 3.5 Extraction of radix-8 butterfly 

 

The transformation starts with the first stage. In order to map the twiddle factors 

in the first column to those of the radix-8 butterfly, 1
16W −  is multiplied to the twiddle 

factors, as shown in (a). Since the radix-2 butterfly performs only addition/subtraction 

operations, the output must multiply  in order to compensate the multiplication at 

input. The procedure goes on through (b) and (c), and we can obtain the resulting SFG 

as in (d). 
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Figure 3.6 Procedure of combining three radix-2 stages into one radix-8 stage 
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We can then conclude the formula for the twiddle factors scheduling. For the 

N-point radix-8 decomposition, there will be N/8 butterflies. The twiddle factors for 

the mth radix-8 butterfly are { , , , , , , , }, 

where m is a integer from 0 to (N/8)-1. The relation is shown in Figure 3.7. We will 

later find that such relation greatly simplify the control for the multiplier stage. 

Therefore, we can say that, for the N-point radix-8 decomposition, the complex 

multiplications required are of N-based twiddle factors. As our reconfigurable FFT 

may maximally perform 4 BF-stage operations, three multiplier stages are required. 

For these three multiplier stages, the possible N-based twiddle factors required are 

shown in TABLE 3.2.  
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Figure 3.7 The twiddle factors for the mth radix-8 butterfly for N-point 

decomposition 

 

TABLE 3.2 N-based twiddle factors required for each multiplier stage  
under different FFT size 

FFT size Stage 1 Stage 2 Stage 3 
16   16 
32   32 
64   64 
128  128 16 
256  256 32 
512  512 64 
1024 1024 128 16 
2048 2048 256 32 
4096 4096 512 64 
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3.4 Finite Register Length Effect and Block-Floating-Point Method 

 

For physical circuit implementation, an exact precision of computation is usually 
not possible due to the effects of finite register length. For example, in implementing 
an FFT algorithm with fixed-point arithmetic we must ensure against overflow. For 
every fixed-point addition, M bits for example, (M+1)-bit registers are required to 
store the result. However, the result will eventually be rounded to M bits and therefore 
generate quantization errors. The analysis of signal quality can be measured by the 
signal-to-quantization noise ratio (SNR), where each step of rounding reduces the 
SNR accordingly. 

An analysis of the effects is given in [3.1]. The analysis goes under the 
assumption that the FFT length N is power of 2 and radix-2 decomposition is applied. 
The simplified result shows that the signal-to-noise ratio decrease as N2, or 1 bit per 
stage. That is, after every radix-2 butterfly stage, 1 bit must be added to the register 
length in order to maintain the same noise-to-signal ratio. 

There several methods to maintain the signal-to-noise in FFT implementations. 
For general pipelined-based architectures, the common way is to use a larger internal 
wordlength than the input data wordlength, either increasing the internal wordlength 
gradually or keeping it fixed. This method is useful when FFT length is small. 
However, when the FFT length becomes large, such as 1024-point or larger, 
considerable overhead on circuitry comes out. The increase of wordlength affects not 
only the number of register bits but also the size of computation circuitry. Another 
drawback of this approach is that it is not suitable for a reconfigurable architecture. As 
the general reconfigurable architecture introduced in sec 2.4.3, when the processor is 
going to perform a shorter length FFT, preceding stages are often bypassed. As a 
result, circuitry with large wordlength may be used to calculate a small FFT. 

In the proposed architecture, the Block Floating Point (BFP) method is used to 
minimize the quantization error [3.2-3.4]. The concept of BFP is that: The incoming 
data are partitioned into non-overlapping blocks, and depending upon the data sample 
with the highest magnitude in each block, a common exponent is assigned to the 
block. As illustrated in Figure 3.8, the original block is normalized to the word with 
largest magnitude in the block and a scaling factor k is obtained. Then the fixed-point 
computation proceeds with the normalized data. When all the data in this block is 
done computation, the whole block of data are shift back to the original precision 
point according to the scaling factor previously obtained. Block-floating-point 
outperforms fixed-point, since its input signals are always block normalized. 
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Figure 3.8 Concept of block-floating-point 

 

The difficulty of using the BFP in a pipeline-based architecture is that the 
execution order is not processed stage by stage as the memory-based architecture. The 
general pipeline-based architecture starts the next stage calculation as soon as the 
available data arrive. In order to adopt the BFP, first we have divided the execution 
into blocks. Figure 3.9 shows an example of how the blocks will be arranged when 
128-point FFT is calculated in our approach. The data will be divided into r group 
after a radix-r butterfly stage. The required data for butterfly stages afterward only 
come from the previously block. In the example, the data are separated as B-0 ~ B-7 
after the first radix-8 butterfly stage. The calculation beginning from B-0 will only 
involved the data of B-0. That is, the operation of block C-0 ~ C-7 will need no data 
from B-1 ~ B-7. Here, we call B-0 as the supply block of C-0 ~ C-7 and A-0 as the 
supply block of B-0 ~ B-7. 

To adopt the BFP method, the execution order of blocks thus follows two rules. 
First, the execution of certain block will not start before their supply block is finished. 
Secondly, the execution order of each stage is from top to bottom as in the SFG.  
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Figure 3.9 Blocks decomposition of 128-point FFT 

 

Now, we can apply the BFP method. After the calculation of a certain block, the 
data coming out from this block will be evaluated to obtain a scaling factor. 
According to this factor, the data will be scaled when they go into next stage 
operation. The scaling factors are stored as a table during execution. The final scaling 
factor for the output will be the sum of scaling factors of all its supply blocks. The 
final scaling factors are required to shift back the data to the coordinate precision as 
the FFT input. Namely, output scaling factor for X(0) is the sum of scaling factors of 
block A-0 and B-0, and the output scaling factor for X(4) is the sum of scaling factors 
of block A-0 and B-1, etc.. 

Accordingly, the number of storage elements required to store the intermediate 
data between each stage is related to the block size respectively. TABLE 3.3 shows 
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the required storage elements between stages for each FFT size. Take the 128-point 
FFT for example, as the SFG in Figure 3.9. There are three computation stages for the 
128-point FFT in our mixed-radix algorithm. For the first stage, the 128 data must be 
computed before any computation of the second stage starts. Therefore, 128 storage 
elements are required between first two stages. In the second stage, the 128 points are 
divided into eight 16 points by the radix-8 decomposition, and now the block size 
becomes 16 data. Again, 16 storage elements are required between second and the last 
stage. 

 

TABLE 3.3 Storage elements required between each stage 

FFT size Stage 1&2 Stage 2&3 Stage 3&4 
16   16 
32   32 
64   64 
128  128 16 
256  256 32 
512  512 64 
1024 1024 128 16 
2048 2048 256 32 
4096 4096 512 64 

 

The actual number of storage elements required in the implementation of RMR 
FFT architecture, however, is a little different from TABLE 3.3. This is due to the 
design style of “Register Banks”, the internal storage modules. The detail will be 
explained in section 4.3.3. 

 

3.5 Conclusions 

 

In this chapter, we have derived the reconfigurable mixed-radix algorithm for the 
proposed FFT. For FFTs of length from 16 points to 4096 points, different mixed 
radix algorithms are assigned. In the proposed algorithm, we will need a 
reconfigurable butterfly stage that can act as radix-8, radix-4, or radix-2 butterfly 
accordingly. We also show the approach to calculate the IFFT using the FFT 
architecture. 

By establishing the SFG through the radix-2 decomposition, we manage to find 

 33



certain rules in the way of data ordering. Such rules will be helpful for the architecture 
design. The twiddle factors are also clarified over various FFT sizes. Regularities are 
found in the twiddle factors for the 8-data-path architecture. 

In the issue of signal-to-noise ratio, general pipeline-based architectures use 
larger internal wordlength to maintain a reasonable SNR. In our RMR FFT, the 
block-floating point approach is used to maintain the data accuracy. The procedure is 
first to identify data blocks on the SFG and then execute the butterfly computations 
according to block ordering. The utilization of BFP greatly changes the execution 
order in our RMR FFT compared to other pipeline-base architecture.  

As our purpose is to construct a reconfigurable processor with high throughput 
rate, we may already draw out the RMR FFT architecture as in MDC structure. 
However, there are more to consider, as will be discussed in next chapter 
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Chapter 4 

Architecture of  

Reconfigurable Mixed-Radix FFT 
 

4.1 Introduction 

 

The design environment is shown in Figure 4.1. We will assume that existing 

input buffer has arranged the time domain input as 8 parallel data. The output of the 

FFT is of 8 parallel data as well. External power management unit are required for 

applying power gating on the proposed architecture. 
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Figure 4.1 FFT environment 

 

In this chapter, we will construct the architecture for the proposed RMR FFT and 

demonstrate the data flow in the processor. Section 4.2 first depicts the overall 

architecture. The detail design of each function module is given in section 4.3. Section 

4.4 illustrates the data flow of the FFT processor under different mode. The 

conclusion is stated in section 4.5. 
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4.2 Overall Architecture 

 

The overall architecture of the proposed RMR FFT is shown in Figure 4.2. The 

width of the data path is of 8 words. Each word represents a complex number data, 

which consists of real and imaginary part. The wordlength is 16-bit, and then the data 

path is of 8×2×16=256-bits. The proposed reconfigurable architecture is of four 

butterfly computation stages while the architecture in the figure shows only three. 

This is because the first two butterfly computation stages are combined as one. 

Observing TABLE 3.1, the first BF stage is enabled only during 1024, 2048, or 

4096-point FFT. As block execution order explained in previous chapter, the first BF 

stage and the second BF stage in a signal flow graph will not overlap in calculation 

since the second BF stage will not start until the first BF stage is totally completed. 

Therefore, these two computation stages can share the same hardware. 

 

R8_BF MULT CMULTR8_BFRB_4096

ROM

RB_512a

RR_BF

BFP

BFP

RB_512b

RB_64a

BFP

RB_64b

0

1

0

1

0

1

0

1
swap

swap

Data
in

Data
Out

 

Figure 4.2 Block diagram of the proposed RMR FFT 

 

As Table 3.1 suggests in section 3.2, only the last BF stage needs to be a 

reconfigurable butterfly (RR_BF) while the rest are radix-8 butterflies (R8_BF). We 

also have different strategies for the two multiplier stages, as MULT and CMULT. 

Between each computation stage, register banks (RB) are used to store and switch 

internal data. Unlike the traditional commutators in pipeline architecture [4.1-4.2], our 

internal RB is of more regular structure and easier to control. The construction and 

principle of each module will be introduced in next section. 
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4.3 Architecture Design 

 

The detail architecture of each module will be explained in the following 

sub-sections. 

 

4.3.1 Butterfly (BF) Unit 

 

The butterfly blocks are designed based on the signal flow graph in Figure 3.1. In 

overall architecture, there will be two kinds of butterfly required. One is a general 

radix-8 butterfly block which performs an 8-point DFT operation. The other is the 

reconfigurable butterfly that can be reconfigured as radix-2, radix-4, and radix-8 

butterfly respectively. 

 

4.3.1.1 General BF 

The general radix-8 butterfly is a direct implementation of SFG of the 8-point 

DFT (Figure 3.1). As explained earlier, the multiplications involved in an 8-poit DFT 

are trivial, which are multiplication by ± j, (1-j)/ √ 2, and -(1+j)/ √ 2. The 

multiplication of ± j is simply sign and real/imaginary part adjustment and 

multiplication of 1/√2 can be implemented as in Figure 4.3. Therefore, these 

multiplications required only some shift-and-add, swap, and sign-changing operation. 

Without any true multiplier, it is possible to carried out the whole 8-point DFT in one 

clock cycle. The implementation diagram of a general BF is shown in Figure 4.4. The 

8-point DFT is implemented in a fully parallel datapath by exactly following the SFG 

(Figure 3.1). The internal wordlength of these units is 16-bit, which is the same as 

input wordlength. 
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Figure 4.3 Circuit diagram of multiplication by 1/√2 
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Figure 4.4 Block diagram of general radix-8 butterfly 

 

4.3.1.2 Reconfigurable BF 

The SFG of implementing the reconfigurable butterfly also refers to Figure 3.1. 

The block diagram of the reconfigurable BF is much like the general BF except that 

multiplexers are inserted every two stages. The block diagram of the reconfigurable is 

shown in Figure 4.5. For the three-stage partition, there will be two columns of 

multiplexers present, controlled by ENA and ENB respectively. The multiplexers 

select data from previous stage or the butterfly input. When the BF is going to act as a 

radix-8 butterfly, ENA and ENB are set to 0. When the two radix-4 BF combination is 

demanded, the input data should go directly into stage 2, and thus set ENA to 1 and 

ENB to 0. When the four radix-2 BF combination is needed, only the last stage is 

required for calculation and thus set ENB to 1. The relation between control signals 

and operation mode is listed in TABLE 4.1. 
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Figure 4.5 Block diagram of reconfigurable butterfly 

 

TABLE 4.1 Truth table of control signals for reconfigurable BF 

BF Mode ENA ENB 

Raidx-8 BF 0 0 

2 parallel radix-4 BF 1 0 

4 parallel radix-2 BF X 1 

 

4.3.2 Multiplier Stage 

 

As the overall block diagram shows (Figure 4.2), there are two multiplier stages 

required in the proposed architecture. Here, we use two different strategies for these 

two multiplier stages respectively. The required twiddle-factor multiplications are 

verified in the previous chapter. For the multiplier stage between last two BF stages, 

we will use the strategy proposed in [4.3] to construct this multiplier stage, which is 

call the “constant multiplier” method. For the other multiplier stage, the traditional 

multiplier-ROM architecture is applied. 

 

4.3.2.1 Constant Multiplier Approach 

According to section 3.3, the twiddle factors for the N-point radix-8 

decomposition are { , , , , , , , }, 

where m is a integer from 0 to (N/8)-1. For the multiplier stage between last two BF 

*0m
NW *4m

NW *2m
NW *6m

NW *1m
NW *5m

NW *3m
NW *7m

NW

 39



stages, N could be 16, 32, or 64, as shown in TABLE 3.2. Therefore, possible twiddle 

factors are , , or . Notice that  and . As a 

result, the twiddle factors are in the range . 

0~15
16W 0~31

32W 0~63
64W 4

16 64
kW W= k k2

32 64
kW W=

0~63
64W

In the complex-number coordinates, we can map the twiddle factors to the unit 

circle. As shown in Figure 4.6, we can divide the unit circle into 8 equal regions, each 

containing N/8 twiddle factors (N = 64 in our case). Due to the symmetry of the unit 

circle, we can use only the twiddle factors in one of the regions to obtain the others by 

proper swapping and sign-changing operation. 
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Figure 4.6 Twiddle factors on the unit circle 

 

In the approach proposed in [4.3], it suggests that a twiddle factor multiplication 

of , where =X+jY, can be carried out by a set of constant multipliers (X,Y) 

instead of a complex multiplier. The twiddle factors required in this multiplier stage 

are , where p ranges from 0 to 63. According to the above property, however, 

only nine sets of constants need to be implemented. Only twiddle factors in region A 

need to be implemented and the twiddle factors in other regions can be transformed 

through TABLE 4.2. In these nine sets of constants, one of them is (0, 1), which is a 

trivial multiplication. The rest 8 sets of constants are listed in TABLE 4.3. 

p
NW p

NW

64
pW

TABLE 4.2 Mapping table of the twiddle factors 

Region Real Imaginary
A X Y
B Y X
C -Y X
D -X Y
E -X -Y
F -Y -X
G Y -X
H X -Y
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TABLE 4.3 Implementation table of constants 

Constant Value of 
real part 

Value of 
img. part

Realization of real part Realization of img. part

Const1 0.995178 0.097961 1-2-8-2-10+2-14 2-4+2-5+2-8+2-12+2-14

Const2 0.980773 0.195068 1-2-6-2-8+2-12+2-14 2-3+2-4+2-7-2-12

Const3 0.956909 0.290283 1-2-5-2-7-2-8-2-13 2-2+2-5+2-7+2-10+2-12

Const4 0.923828 0.382690 1-2-4-2-7-2-8-2-9 2-1-2-3+2-7-2-13

Const5 0.881896 0.471374 1-2-3+2-7-2-10+2-14 2-1-2-5+2-9+2-11+2-12-2-14

Const6 0.831420 0.555541 1-2-3-2-5-2-6+2-8-2-11-2-13 2-1+2-4-2-7+2-10-2-13

Const7 0.773010 0.634399 1-2-2+2-6+2-7-2-11+2-14 2-1+2-3+2-7+2-9-2-11+2-13

Const8 0.707092 0.707092 2-1+2-3+2-4+2-6+2-8+2-14 2-1+2-3+2-4+2-6+2-8+2-14

 

We can derive the scheduling of twiddle factors. TABLE 4.4 shows the 

scheduling of the twiddle factors in each data path after mapping to region A. The 

scheduling is first derived by the 64-base case. For the 64-base case, there will be 8 

radix-8 butterflies and thus require 8 cycles. The twiddle factors are { , , 

, , , , , } at cycle m. For example, twiddle factors 

at cycle 2 are { , , , , , , , }. After mapping 

through TABLE 4.2, they becomes { , , , , , , , }. 

For 32-base case, since , scheduling of twiddle factors for four cycles 

corresponding time slot {0, 2, 4, 6} of the 64-base case. The same reason applies to 

the 16-base case. 

*0
64
mW *4

64
mW

*2
64
mW *6

64
mW *1

64
mW *5

64
mW *3

64
mW *7

64
mW

2*0
64W 2*4

64W 2*2
64W 2*6

64W 2*1
64W 2*5

64W 2*3
64W 2*7

64W

0
64W 8

64W 4
64W 4

64W 2
64W 6

64W 6
64W 2

64W

2
32 64
mW W= m

TABLE 4.4 Scheduling of twiddle factors,  64
pW

0 1  ←16-base
0  1  2  3  ←32-base

Time slot 
 

Data path 0 1 2 3 4 5 6 7 ←64-base
0th 0 0 0 0 0 0 0 0  
1st 0 4 8 4 0 4 8 4  
2nd 0 2 4 6 8 6 4 2  
3rd 0 6 4 2 8 2 4 6  
4th 0 1 2 3 4 5 6 7  
5th 0 5 6 1 4 7 2 3  
6th 0 3 6 7 4 1 2 5  
7th 0 7 2 5 4 3 6 1  
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The multiplier stage is based on the constant multipliers shown in TABLE 4.3. 

Figure 4.7 shows the block diagram of one of such constant multipliers. The 

hard-wired circuitry is dedicated to perform multiplication by certain constant. The 

overall block diagram of the CMULT stage is shown in Figure 4.8. The input shuffle 

network routes the incoming data to the appropriate hard-wired constants and the 

output shuffle network will perform the appropriate sign-changing and swapping 

operation according to the mapping table in TALBE 4.2. Noticing the scheduling of 

TABLE 4.4, some constant multipliers may be duplicated in the same time slot. 

Therefore, there will be duplicate constant multiplier in the central multiplier bank, 

too. For example, there will be four Const4 in the multiplier bank since there are 

maximally 4 Const4 multipliers required at the same time (time slot 4 in TABLE 4.4). 

8-bit right shift

10-bit right shift

14-bit right shift

+ x(0.995178)

1

-1

-1

1

x

 

Figure 4.7 Block diagram of a constant multiplier 
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Figure 4.8 Block diagram of CMULT stage 
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4.3.2.2 Complex Multiplier Approach 

For first two multiplier stages, possible twiddle factors are , , 

, , , or . Similar to before, we can say that the possible 

twiddle factors are in the range . For this multiplier stage, we use the 

traditional multiplier-ROM approach. The block diagram of MULT is shown in Figure 

4.9. Seven parallel complex multipliers are dedicated to the eight data paths 

respectively. For the 0

0~127
128W 0~255

256W

0~511
512W 0~1023

1024W 0~2047
2048W 0~4095

4096W

0~4095
4096W

th data path, the twiddle factor is always  and thus no 

multiplier required. 

0 1NW =

ROM1
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ROM4

ROM5

ROM6

ROM7
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Figure 4.9 Block diagram of MULT stage 

 

The read-only memory (ROM) is used to store the twiddle factors and supply 

them to the complex multipliers. The scheduling of twiddle factors for each data path 

for 4096-base case is listed in TABLE 4.5. The strategy used here is to map this table 

to the ROM storage. That is, with a specific ROM dedicated to each data path, each 

ROM stores 512 twiddle factors. The time slot information is used as the address for 

the ROMs. This strategy simplifies the control for ROM address generation for the 

multiplier stage. A counter is only required to generate the ROM address. For twiddle 

factors of 2048-base case, applying , the twiddle factors for 256 cycles 

thus corresponding to time slot {0, 2, 4 … 510} in TABLE 4.5. Based on the same 

reason, we can use the same ROMs to supply twiddle factors for different modes. The 

address generation is simply modified by changing the counter interval. 

2
2048 4096
mW W= m

Moreover, we divide each ROM into six banks. When small-base multiplication 
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mode is on, not all 512 time slots are required. It means that certain twiddle factors 

will not be needed and thus we can turn off ROM banks that store these unnecessary 

twiddle factors. Figure 4.10 shows the block diagram of the ROM banking and 

TABLE 4.6 shows the example of the twiddle factors stored in each bank for 4th ROM. 

As we can see, only bank {F} is activated during 128-base multiplications, and bank 

{E, F} are activated during 256-base multiplications, etc. 

TABLE 4.5 Scheduling of twiddle factors,  4096
pW

Time slot 
Data path 

0 1 2 3 4 5  510 511 

0th 0 0 0 0 0 0  0 0 
1st 0 4 8 12 16 20  2040 2044 
2nd 0 2 4 6 8 10  1020 1022 
3rd 0 6 12 18 24 30  3060 3066 
4th 0 1 2 3 4 5  510 511 
5th 0 5 10 15 20 25  2550 2555 
6th 0 3 6 9 12 15  1530 1533 
7th 0 7 14 21 28 35  3570 3577 
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0 1

0 1

0 1

0 1Addr[0]

Addr[1]

Addr[2]

Addr[3]

Addr[4]

Addr[8:1]Addr[8:2]Addr[8:3]Addr[8:4]
Addr[8:5]

 

Figure 4.10 Block diagram of ROM banking 
 

TABLE 4.6 Twiddle factors, , stored in 44096
pW th ROM 

ROM Content (p) ROM Content (p) 
A 1, 3, 5…511 D 8, 24, 40…504 
B 2, 6, 10,…510 E 16, 48, 80…496 
C 4, 12, 20…508 F 0, 32, 64…480 
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4.3.3 Register Banks (RB) 

 

The register banks are used to store intermediate data during calculation. As 

shown in section 3.4, the number of storage elements required between each stage at 

each mode is listed in TABLE 3.3. There should be three RB modules between four 

computation stages. For each of these RB modules, the number of storage elements 

varies according to different FFT length. Here, we want to design the register banks to 

be reconfigurable. That is, a RB module should be able to change its storage capacity. 

More importantly, the extra storage elements should be able to be fully turned off 

while the RB is in a low capacity mode. Therefore, a good circuitry partition is 

required in design the RB. Furthermore, the register banks also have the responsibility 

for reordering the data sequence before output them to next computation stage. Since 

there are nine different mixed-radix algorithms for our reconfigurable architecture, the 

control and dataflow of this reordering might be an annoying problem. Fortunately, 

we have a common rule for data ordering as described in previous section (section 

3.2). The design of internal register banks thus become a much smooth job. 

Also, in the design of our proposed register banks, a two-input register is used 

(Figure 4.11(a)). A direct implementation such registers will be using a D flip-flop 

with a 2-to-1 multiplexer for input selection, as shown in (b). We will discuss the 

implementation of the required registers in later chapter. The use of two-input register 

effectively adds another control signal, CTRL, for input selection. To control the data 

flow in the register banks, the clock signal, CLK, and CTRL must be taken care of. 

In the overall architecture, there are three kinds of register banks, RB_4096, 

RB_512, and RB_64 (as shown in Figure 4.2). The structure of RB_4096 and RB_512 

is of the same type while RB_64 is of another. We will depict these two types of RB 

respectively. 
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Figure 4.11 Block diagram of the two-input register 

 

4.3.3.1 RB_64 

Observing TABLE 3.1, the butterfly stage before RB_64 is radix-8 BF stage 

while the stage after is reconfigurable BF stage, which can be one radix-2, two radix-4, 

or one radix-8.butterfly. Referring to TABLE 3.3, the possible capacity of RB_64 may 

be of 16, 32, 64-word according to different FFT length. Figure 4.12 shows the block 

diagrams for the three different modes. 
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Figure 4.12 Block diagram of RB_64 for three different capacities,  
(a) 16-word, (b) 32-word, and (c) 64-word 
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Assuming that M-data capacity is required for the RB under current FFT mode, 

then it will take the RB M/8 to clock cycles to receive data previous stage and 8 

parallel data for each clock cycle. During the input phase, the index of incoming data 

at cycle i is: 

i+(M/8)*k         (4.1) 

, where k = 0~7 represents the index of the 8-word datapath. During the output phase, 

the desired data ordering should be: 

j*(M/8)+k         (4.2) 

, where j is the output cycle count. Take the 16-word mode for example, as shown in 

Figure 4.13. Two cycles are required for the RB to receive data. During the input 

phase (PHASE=1), data from previous stage goes into the 8 dedicated input ports. For 

every cycle, the RB performs a shift-up operation. In other word, the two-input 

register choose the data from downward. During output phase (PHASE=0), the overall 

RB performs a shift-right operation and the desired data are obtained at the output 

ports every cycle. Therefore, we can use the PHASE signal to control the data flow in 

the RB. The PHASE signal is used for all the register in RB as the CTRL signal, which 

selects the input data for the two-input register. 
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Figure 4.13 Data flow in RB for 16-word mode 
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The similar operation and data flow stand for the 32-word and 64-word RB. In 

order to deal with the various FFT modes, three different RBs are thus to be 

constructed, which is undesired overhead since only one of them is required at the 

same time. Observing Figure 4.12, it is not hard to find that the 64-word RB can also 

be used for the other two. Figure 4.14 shows such reconfigurable RB. Using parts of 

the 64-word RB, it can perform as the 32-word or 16-word RB as long as we redirect 

input data to the corresponding positions. The advantage of the reconfigurable RB is 

that, when a smaller capacity RB mode is required, the unnecessary registers can be 

fully turned off since they have nothing to do with the correct data-flow operation. 

Also, the control signal is simple since only the PHASE signal is needed. The 

overhead for reconfiguration is the multiplexers at the corresponding input ports. 
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Figure 4.14 Block diagram of reconfigurable RB_64  

 

4.3.3.2 RB_512 and RB_4096 

The structure of RB_512 and RB_4096 are of the same type. Also observing 

TABLE 3.1, the butterfly stage before and after these two RB stages are both radix-8 

BF stages. The RB capacity ranges from 128-word to 4096-word.  
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Assuming that M-data capacity is required for the current RB, then it will take 

the RB M/8 to clock cycles to receive data previous stage and 8 parallel data for each 

clock cycle. During the input phase, the index of incoming data at cycle i is: 

i+(M/8)*k         (4.3) 

, where k = 0~7 represents the index of the 8-word datapath. During the output phase, 

the desired data ordering should be: 

2 2 2 2/( ) * %( )  *
8 8 8 8
M M M Mj j⎢ ⎥ + +⎢ ⎥⎣ ⎦

k       (4.4) 

, where j is the output cycle count. Take the 128-word RB mode for example, as 

shown in Figure 4.15. The overall RB can be seen as a combination of eight blocks 

and each input data goes into one block respectively. During the input phase, the 

bottom row of registers performs shift-right operation. For every 2 cycles, the upper 

rows of registers perform shift-up operation in order to shift-up the bottom row data to 

let next data coming in. After 16 cycles, the first output data are ready at the output 

ports. At output phase, the overall RB performs the shift-right operation to deliver 

output data every cycle. 
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Figure 4.15 Data flow in RB for 128-word mode 

 

The control signals of the above operations are also of simple regularity. Both the 

PHASE and CLK need to be considered. First, we divide the RB into two control 

zones, as shown in Figure 4.16. For the two-input register in Zone 1, they share the 
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same clock and use the PHASE signal as the input-select signal. For registers in Zone 

2, except for those at input ports, their input-select signals are set to 0 in order to 

perform the shift-right operation at all time. Each of the 8 blocks has a dedicated input 

port. For the register at input ports, the PHASE signal is used for the input-select 

signal. The resulting timing relation of the control signals is shown in Figure 4.17. 

Notice that the clock signals for Zone 1 toggle only every two cycle during the input 

phase.  
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Figure 4.16 Control zones for the RB 
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Figure 4.17 Control signals for the 128-word RB 
 

Based on the above scheme, we can derive a rule for the structure of this type of 

RB. The RB is combined by 8 basic blocks, which are of the same structure and 

connected one after another, and there are 8 rows of two-input registers in a basic 

block. For the RB of capacity of M-data, the width of a basic block is (M/82)-word. 

The control signals are the PHASE signal and two clock signals for the two control 

zones. The clock signals for Zone 1 toggle every (M/82) cycle during input phase. 

According to TABLE 3.3, the RB_512 module may be of the capacity 128, 256, 

or 512-word and RB_4096 module may be of the capacity 1024, 2048, or 4096-word 
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for different FFT length. The same as the RB_64 in previous section, we can also use 

a reconfigurable RB. Figure 4.18 shows the block of RB_512, which can be 

reconfigured as 128, 256 or 512-word. The basic block is of width 8-word. The 

dedicated input for a basic block is connected to three different registers. For RB_512 

to act as 128-word RB, the input data goes into the right most input register, which 

effectively set the width of the basic block to 2-word. The column where the input 

register is at now takes data from the output of previous basic block instead of 

previous column. For the rest 6 columns at the left of the basic block, they can be 

fully turned off since they have nothing to do with the correct data-flow operation. 

With this scheme, we can change the mode of RB just by setting the corresponding 

input registers and modifying control signals. The overhead for reconfiguration is the 

multiplexers at the columns of the input registers in every block. 
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Figure 4.18 Block diagram of reconfigurable RB_512  
 

4.3.3.3 Duplicate Module Insertion 

In the above design of register banks, the RB modules are not able to accept 

input data during output phase, even if there is empty register available. This is 

because the flow in the RB is two-way direction instead of the traditional one-way. 

The situation is awkward to the pipeline-based architecture. In the correct pipeline 

operation, the RB should be able to accept one data input after one data output. Since 

the designed RB can not do this, the data flow will have to stall to wait for the RB 

available. 

Our method to deal with this problem is to insert duplicate RBs. Two identical 
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RBs are presented for the stage. When the first RB is at output phase, the input data 

from previous will go into the second one. Then the second RB will go into output 

phase and the first RB is back to input phase in turn. Since the input and output phase 

both take the same cycles, two RBs are enough to make the data flow with stalls.  

However, we do not use duplicate RB module for the first RB stage in order to 

save the number of storage elements required. Since the capacity of the first stage RB 

is N-word, where N is the FFT length, large number of registers can be saved without 

the duplicate module in the first stage RB. This approach effectively reduces the 

throughput rate of our architecture. The original throughput rate is 8 times of the input 

clock rate since the datapath is of 8-data width. The resulting throughput rate turns out 

to be 4 times of the input clock rate. This is because the first stage takes N/8 clock 

cycles to take input data and N/8 clock cycles to deliver output data afterward. 

Therefore, the throughput rate at the FFT input is cut half due to this effect. 

 

4.3.4 BFP 

 

As mentioned in Chapter 3, the block-floating-point technique is used in the 

proposed RMR FFT in order to maintain the SNR. The approach used here is the 

“input scaling” approach. The data are evaluated before writing to memory (RB) and 

not shifted until they are read into next computation stage. That is, in our architecture, 

the incoming data of RB are evaluated during the input phase of RB. While the RB is 

at output phase, the RB output data will be shifted according to the scaling factor 

obtained during input phase. 

RB

detector

sh
ift

er
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Figure 4.19 Block diagram of BFP  
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The block diagram of the BFP block is shown in Figure 4.19. The BFP block 

consists of a detector and a shifter. The detector picks out the largest data in a block, 

and records its number of MSB zeros or ones as the scaling factor. The shifter shifts 

data according to the scaling factor of the block. Data will not be shifted until they go 

into the next computation stage. 

As the overall architecture of Figure 4.2, there are three BFP modules in the FFT. 

For RB stage with duplicate module, only one BFP is needed since the input phase 

and output phase of these two RBs will not overlap. A scaling table is constructed to 

store the scaling factors from each BFP modules. The final output scaling factor will 

be determined according to this scaling table. 

 

4.3.5 INPUT/OUTPUT Buffer 

 

Since the IFFT can be performed by first swap the real and imaginary parts of 

input data, and then swap the real and imaginary parts of output data [4.4], the FFT 

processor is capable of performing IFFT operations by adding swap units at input and 

output respectively. Although we have assumed that external input buffer has arranged 

the input data in 8-parallel format as the proposed FFT required, we will give a simple 

demonstration of how such a reconfigurable input buffer can be designed. 

Figure 4.20 shows the block diagram of a reconfigurable input buffer. The data 

flow is similar to that of RB_512 or RB_4096. Taking N=16 for example, only two 

right most columns are activated. For every two cycles, the upper rows perform the 

shift-up operation. After the buffer is full, shift-right operation is performed to deliver 

the output data. The data flow example is shown in Figure 4.21. The way of data 

moving in the buffer is similar to that in a RB (section 4.3.3.2). The number of 

memory required for the input buffer for N-point FFT is (7N/8) +1. 
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Figure 4.20 Block diagram of reconfigurable input buffer 
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Figure 4.21 Data flow in the input buffer for N = 16 

 

As derived in chapter 2, the output order of the FFT is in bit-reversed order for 

whatever FFT length. Therefore, the output can be indexed without too much trouble. 

Also, the final data will be output with a scaling factor, OUT_SBIT, as described 

previously. The correct output precision will have to be adjusted with the output 
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scaling factor. Alternatively, the block-floating-point representation of output data can 

directly go into next functional module, which also supports the BFP operation. 

 

4.4 Data Flow 

 

The proposed RMR FFT is capable of performing FFT of length from 16 to 4096 

points. According to different FFT length, the flow of data path varies in three ways. 

For {16, 32, 64}-point FFT, the data flow is shown as Figure 4.22. Since only two 

butterfly stages are required, the preceding stages are directly bypassed. Only one RB 

stage, RB_64, is needed. As described in section 4.3.3, no duplicate RB is used for the 

first RB stage. Therefore, only RB_64a is activated in the only RB stage. 
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Figure 4.22 Flow of data path for 16, 32, 64-pont FFT 

 

Figure 4.23 shows the flow of data path for {128, 256, 512}-point FFT. Three 

butterfly stages are required for these three FFT lengths and therefore all three BF 

stages are activated. As the same, the first RB stage, RB_512, does not use a duplicate 

module and thus only RB_512a is activated. For the RB_64 stage, the PHASE signal 

for the two RB modules is shown in Figure 4.24. The RB_64a will first accept input 

data and while it is in output phase, incoming data from previous stage go into 

RB_64b instead. The width of an output or input phase is M/8 cycles, where M is the 

current RB capacity. Because the capacity of previous RB stage, RB_512, must be 8 

times of the RB_64 (referring to TABLE 3.3), 8 input-output phases are required and 

each RB_64 takes four. The control signals show that the two RB work in turn without 

overlap. 
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Figure 4.23 Flow of data path for 128, 256, 512-pont FFT 
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Figure 4.24 Control signal, PHASE, for duplicate RB modules 

 

For {1024, 2048, 4096}-point FFT, the data flow is shown as Figure 4.25. The 

data flow will go through all the modules. The first computation stage, {RB_BF, 

MULT, ROM}, is used to calculate the first two butterfly stages in the SFG. 
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Figure 4.25 Flow of data path for 1024, 2048, 4096-pont FFT 

 

TABLE 4.7 shows the memory requirement of our architecture compared to 

other generic architectures [4.5]. As our architecture can achieve the throughput rate 4 

times of the input clock rate, which is close to the radix-4 MDC architecture, the 

memory required is less than that of the radix-4 MDC architecture. 
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TABLE 4.7 Comparison of memory requirement  
(including the input buffer) 

Radix-2 Radix-4 Radix-
8 

Algorith

m 

N 

Proposed RMR FFT 

SDF MDC SDF MDC MDC 
16 31 (1+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1  
32 61 (1+7/8)N+1 N-1 1.5N-1    

64 121 (1+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1 4.5N-8 
128 273 (1+2/8+7/8)N+1 N-1 1.5N-1    

256 545 (1+2/8+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1  
512 1089 (1+2/8+7/8)N+1 N-1 1.5N-1   4.5N-8 
1024 2209 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1  
2048 4417 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1    

4096 8833 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1 4.5N-8 
 

In the implementation of the proposed architecture, pipeline registers will be 

inserted between the BF module and multiplier module. The execution cycles required 

for an N-point FFT are: 

2

2 3

            {16, 32, 64}-point : 2
8 8

      {128, 256, 512}-point : 3
8 8 8

{1024, 2048, 4096}-point : 4
8 8 8 8

N N

N N N

N N N N

+ +

+ + +

+ + + +

 

The required cycles are summarized in TABLE 4.8. 

 

TABLE 4.8 Execution cycles required for different FFT length 

FFT size 16 32 64 128 256 512 1024 2048 4096
Execution cycles 6 10 18 37 71 139 278 552 1100
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4.5 Conclusions 

 

In this chapter, the overall architecture of the proposed RMR FFT has been 

drawn out. In algorithm level, the RMR FFT is divided as four computation stages. In 

architecture design, we manage to combine the first two computation stages into one. 

The intermediate data are stored in the register bank modules. The two-input registers 

are used for constructing the RB modules, which are organized in chessboard-like 

structure. Reconfiguration of the RB modules can be easily achieved by modifying 

few control signals. Two different strategies are used for the multiplier stages. The 

constant multiplier approach eliminates the need for another ROM. For the 

multiplier-ROM stage, the coefficient address generation is accomplished through a 

simple counter. In order to adopt the block-floating-point method, BFP modules are 

added with the RB modules to scale block data before every computation stage. The 

approach of designing the input buffer is also described. 

Unnecessary circuit can be fully turned off without affecting the correct 

operation due to good circuitry partition. The number of memory elements required is 

relative low comparing to generic pipeline-based architecture. Considering the 

hardware overhead, the overall throughput rate reaches 4 times of the input clock rate. 
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Chapter 5 

Implementation of RMR FFT/IFFT 

Processor 
 

5.1 Introduction 

 

In this chapter, we will show the implementation strategy and simulation results 

of the proposed RMR FFT. The overall design is to be implemented through 

cell-based synthesis design flow, except for the register bank modules. For the RB 

modules, we will use the full-custom design flow to further exploit the regularity of 

the proposed structure. The implementation of the register banks is described in 

section 5.2. As we partition the circuitry carefully to achieve an energy-aware design, 

section 5.3 shows a simple way to realize the control for external power management 

unit. As will be seen in section 5.4, the proposed RMR FFT achieves energy-aware 

design. Compared to other reconfigurable architecture, our FFT outperforms in 

execution speed with relative low power and energy dissipation. 

 

5.2 Implementation issue on Register Banks 

 

As introduced in section 4.3.3, the structures of our register banks are of high 

regularity. The two-input registers are put together in a chessboard-like manner. Using 

Design Compiler for synthesis, the synthesized result for the two-input register is 

shown in Figure 5.1 [5.1]. The SI represents the scan input and SE is the scan enable. 

Such flip-flop is usually used as the scan D flip-flop. Basically, it is D flip-flop with a 

2-to-1 multiplexer at the input. However, this implementation can cause unnecessary 

power consumption. As shown in section 4.3.3, there are situations that the inputs of 

the registers are changed while the clocks to flip-flops are gated. This is means that 

the multiplexer can consume unnecessary transition power. Also, the regularity of the 

RB structure can not be fully reflected through the CBD flow. Therefore, we take the 
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FCD flow to further implement the RB modules. 

 

 

Figure 5.1 Circuit of synthesized scan D flip-flop 

 

Referring to the block diagrams of Figure 4.18, we construct the RB arrays in the 

way shown in Figure 5.2. Transmission gates are used for the input selection. To 

further optimize the RB modules, now the problem becomes the choice of the D 

flip-flop. 
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Figure 5.2 Block diagram of the two-input register array 
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We have searched some popular architecture of D flip-flops [5.2-5.7], as shown 

in Figure 5.3.  

(a) The positive-edge triggered, static D-type flip-flop according to the data 

sheet of TSMC 0.13μm technology [5.1].  

(b) Clocked CMOS (C2MOS) register [5.8], which is insensitive to clock 

overlaps. Only eight transistors are used. However, with sufficient slow 

rise and fall times, there will be a time slot both NMOS and PMOS are 

conducting, which results in extra leakage power. 

(c) Hybrid-latch Flip-Flop (HLFF) [5.9] is one of the fastest structure 

presented. It also has a small power-delay product. The major advantage 

of this structure is its robustness to clock skew. However, unnecessary 

internal transitions increase the total power consumption. 

(d) True single-phase clocked register (TSPCR) [5.10] uses a single phase 

clock. Similar to C2MOS register, slow clocks cause both the NMOS 

and PMOS clocked transistors to be on simultaneously. 

(e) The modified C2MOS. Register has low power feedback assuring fully 

static operation. Compared to the classical C2MOS structure, the 

modified C2MOS is robust to clock slope variation. 

(f) PowerPC 603 master-slave latch is one of the fastest classical structures 

[5.11]. Its main advantages are a short direct path and low-power 

feedback. However, the large clock load influences the total on-chip 

power consumption. Such effect can be reduced by the local clock 

buffering. 
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Figure 5.3 Various structure of D flip-flops 

 

We have constructed a basic block of RB_4096 (64*8=512 bits) using the above 

flip-flops respectively. Since the D flip-flops perform only shifter operation in our 

pipeline architecture, speed is not the most concerned criterion. Instead, we are more 

interested in the performance of power consumption. Figure 5.4 shows the average 

current with low-clock-transition input patterns and Figure 5.5 is the case with 

high-clock-transition. As describe in section 4.3.3, most registers in the RB are in 

low-clock-transition during the input phase and high-clock-transition during the 
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output phase. Architecture (b) and (f) both consume relative low transition current, as 

shown in Figure 5.5. However, the data of (b) in Figure 5.4 is high, which means that 

leakage current is large for this architecture. According to the simulation result, we 

choose the structure of (f) as the D flip-flop in the RB modules. 
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Figure 5.4 Average current under low-clock-transition cases 
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Figure 5.5 Average current under high-clock-transition cases 
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5.3 Power Control 

 

As described previously, different amount of modules are required to be 

activated for different FFT length. As shown in section 4.4, three different flow of 

data path are dedicated for the 9 FFT lengths. Also, the activation of certain 

sub-modules is different according to different FFT length, such as ROM and register 

banks. For these unnecessary modules, they can be fully turned off since they have 

nothing to do with the correct operation. Although the power management unit is not 

implemented in our RMR FFT, we have derived a control table for the power control, 

as shown in TABLE 5.1. The number 1 represents a turn-on situation and 0 represents 

opposite. The CONTOL block is turned on under all modes since it generates control 

signals for all modules. The ROM and MULT modules are turned on when the FFT 

size is larger than 128 points. The ROM is divided into six banks as described in 

4.3.2.2. Each register bank is divided as three parts. They are of the size 1/4, 1/4, and 

1/2 of the RB respectively. As described in section 4.3.3, the RBs are made 

reconfigurable such that only the required numbers of registers are turned on for 

different FFT sizes. 

As shown in TABLE 5.1, the control of such power management unit is simple 

enough to realize through a truth table. By turning off the unnecessary blocks during 

between FFT operations of different sizes, the proposed RMR FFT can achieve 

energy-aware and power scalability. 
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TABLE 5.1 Truth table of the activated modules 

Mode 16 32 64 128 256 512 1024 2048 4096

CONTROL 1 1 1 1 1 1 1 1 1 

R8_BF 0 0 0 1 1 1 1 1 1 

MULT 0 0 0 1 1 1 1 1 1 

ROM          

rom A 0 0 0 1 1 1 1 1 1 

rom B 0 0 0 0 1 1 1 1 1 

rom C 0 0 0 0 0 1 1 1 1 

rom D 0 0 0 0 0 0 1 1 1 

rom E 0 0 0 0 0 0 0 1 1 

rom F 0 0 0 0 0 0 0 0 1 

RB_4096          

RB_4096_1 0 0 0 0 0 0 1 1 1 

RB_4096_2 0 0 0 0 0 0 0 1 1 

RB_4096_3 0 0 0 0 0 0 0 0 1 

BFP 0 0 0 0 0 0 1 1 1 

RB_512a          

RB_512a_1 0 0 0 1 1 1 1 1 1 

RB_512a_2 0 0 0 0 1 1 0 1 1 

RB_512a_3 0 0 0 0 0 1 0 0 1 

RB_512b          

RB_512b_1 0 0 0 0 0 0 1 1 1 

RB_512b_2 0 0 0 0 0 0 0 1 1 

RB_512b_3 0 0 0 0 0 0 0 0 1 

BFP 0 0 0 1 1 1 1 1 1 

R8_BF 1 1 1 1 1 1 1 1 1 

CMULT 1 1 1 1 1 1 1 1 1 

RB_64a          

RB_64a_1 1 1 1 1 1 1 1 1 1 

RB_64a_2 0 1 1 0 1 1 0 1 1 

RB_64a_3 0 0 1 0 0 1 0 0 1 

RB_64b          

RB_64b_1 0 0 0 1 1 1 1 1 1 

RB_64b_2 0 0 0 0 1 1 0 1 1 

RB_64b_3 0 0 0 0 0 1 0 0 1 

BFP 1 1 1 1 1 1 1 1 1 

RR_BF 1 1 1 1 1 1 1 1 1 
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5.4 Simulation Result 

 

With the implementation strategy described above, we have implemented the 

proposed RMR FFT using TSMC 0.13μm technology. For the three RB modules, 

RB_4096, RB_512a, and RB_512b, full-custom design approach is used and the 

circuitry is simulated using the HSPICE netlist. The rest of the reconfigurable FFT 

processor is designed with Verilog HDL and synthesized to TSMC 0.13μm CMOS 

standard cell technology library with Synopsys Design Compiler. This is followed by 

gate level simulations. Synopsys PrimePower is used for power analysis. The 

wordlength of the FFT is 16 bits. The simulation is run under supply voltage 1.2V. 

The maximum working frequency is 110MHz. The throughput of the RMR FFT is 

four times of the input clock rate, which can reach 440Msample/s. The profile of 

power consumptions are analyzed with the power control table mentioned in previous 

section. 

 

5.4.1 Performance of the RMR FFT 

 

With random patterns as the input, the SNR of the RMR FFT maintains above 

110 dB for various FFT sizes. As described previously, the SNR is maintained due to 

the utilization of the BFP in RMR FFT. The BFP approach also enables us to keep the 

internal wordlength the same as the IO wordlength. Without the BFP approach, the 

SNR degrades as the FFT size grows. Figure 5.6 shows the SNR comparison between 

the RMR FFT with and without BFP approach applied. 

The power consumption of the proposed RMR FFT is shown in Figure 5.7. As 

can be seen, there are three levels of the power consumption. We can consider FFT of 

size {16, 32, 64} as one group and {128, 256, 512} and {1024, 2048, 4096} as the 

other two groups. This is due to that different numbers of computation stage are 

required for different groups of FFTs. The figure also shows that our FFT has good 

power scalability. 
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Figure 5.6 SNR comparison 
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Figure 5.7 Power consumption for various FFT sizes (110MHz, 1.2V) 
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Figure 5.8 Power distribution characteristics 

 

Figure 5.8 shows the distribution of power consumption over the RMR FFT. The 

power dissipation concentrates on the computation modules when the FFT size is 

small. In long-size FFT, the power of the internal register banks start to dominate.  

Referring to the execution cycles listed in TABLE 5.2, the energy dissipation for 

one FFT operation is shown in Figure 5.9. The RMR FFT shows good energy 

scalability over various FFT sizes. 

 

TABLE 5.2 Execution cycles required for various FFT sizes 

FFT size 16 32 64 128 256 512 1024 2048 4096
Execution cycles 6 10 18 37 71 139 278 552 1100

 

 68



7.06E-03 1.40E-02 2.55E-02 7.70E-02 0.159 0.327

0.946

2.116

5.131

0

1

2

3

4

5

6

16 32 64 128 256 512 1024 2048 4096

FFT size

E
ne

rg
y 

(u
J)

 

(a) 

7.06E-03

1.40E-02

2.55E-02

7.70E-02

0.159

0.327

0.946

2.116

5.131

0.001

0.01

0.1

1

10

16 32 64 128 256 512 1024 2048 4096

FFT size

E
ne

rg
y 

(u
J)

 

(b) 

Figure 5.9 Energy dissipation per FFT operation,  

(a) in normal scale, (b) in log scale 

 

5.4.2 Comparison 

 

The performance RMR FFT is compared to two other reconfigurable 

architectures, as shown in TABLE 5.3. One is the delay spread based architecture 

proposed in [5.12]. It is based on the radix-4 SDF architecture and can be 
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reconfigured as 16, 64, 256, or 1024-point FFT. The throughput rate of this 

pipeline-based architecture is the same as the input clock rate due to the single data 

path. The other one is the reconfigurable FFT processor proposed in [5.13]. It adopts 

the memory-based architecture and can be configured as from 16-point to 1024-point 

FFT. 

The execution time for one FFT of the RMR FFT is sufficient fast compared to 

other architecture, as shown in TABLE 5.4. This is due to the utilization of parallel 

data paths and high mixed-radix algorithm. The energy of the two architectures can be 

scaled to the 0.13μm technology with the following relationship: 

2110 0.13 1.2   ( ) ( ) (MHz m VScaled Energy Energy
Frequency Technology Voltage

)μ
= × × ×   (5.1) 

Since the dynamic energy dissipation is proportional to CV2 and C scales 

approximately as linear to the technology. The scaled energy is compared in Figure 

5.10 and Figure 5.11. The energy dissipation of the RMR FFT outperforms the other 

two when the FFT size grows large (>64). The energy saving compared to the 

reconfigurable radix-4 pipeline-based architecture [5.12] is 51%, 64%, and 80% for 

FFT of size 64, 256 and 1024 points respectively. On the other hand, the energy 

compared to the reconfigurable radix-2 memory-based architecture [5.13] is 17%, 

62%, 82%, and 85% for FFT of size 128, 256, 512, 1024 points respectively. 

 

TABLE 5.3 Comparison with other reconfigurable architectures 

 RMR FFT 
(This work) 

Hasan et al.[5.12] Yutian Zhao et 
al.[5.13] 

Algorithm Reconfigurable 

Mixed-Radix 

Radix-4 Radix-2 

Architecture Pipeline-based Pipeline-based Memory-based 

Word length 16-bit 16-bit 16-bit 

Technology 0.13μm 0.18μm 0.18μm 

Clock Rate (R) 110MHz 20MHz 20MHz 

Supply voltage 1.2V 1.8V 1.8V 

Throughput Rate 4R R <R 

 

 70



TABLE 5.4 Execution cycles required per FFT 

FFT size 16 32 64 128 256 512 1024 2048 4096
This work 6 10 18 37 71 139 278 552 1100

Hasan et al.[5.12] 16  64  256  1024   
Yutian Zhao et al.[5.13] 32 80 192 448 1024 2304 5120   
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Figure 5.10 Comparison of Energy dissipation between RMR FFT and the other 

reconfigurable pipeline-based architecture 
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Figure 5.11 Comparison of Energy dissipation between RMR FFT and the other 

reconfigurable memory-based architecture 
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5.5 Layout Implementation  

 

The layout view of the RMR FFT will be shown in this section. Figure 5.12 

shows the layout view of the D flip-flop in the register banks. The dimension of the 

1-bit flip-flop is 9.8μm×3.69μm. 

 

Layout View

Schematic View

9.8 µm

3.69 µm

 

Figure 5.12 Layout and schematic view of the 1-bit D flip-flop 
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Figure 5.13 shows the layout view of a basic block in RB_512. The basic block 

consists of 64 D flip-flops. The dimension of the layout is 130μm×25μm. 
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Figure 5.13 Layout and schematic view of a basic block in RB_512 
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Figure 5.14 shows the layout view of RB_512. As described before, the RB_512 

consists of 8 basic blocks. With 16-bit wordlength, the total number of register in one 

RB_512 module is 16×2×512=16K bits. The dimension of the layout is 

1050μm×830μm. 
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Figure 5.14 Layout and schematic view of RB_512 
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Figure 5.15 shows the layout view of RB_4096. The RB_4096 also consists of 8 

basic blocks. The basic block capacity is 8 times that of the RB_512. With 16-bit 

wordlength, the total number of register in one RB_4096 module is 16×2×4096=128K 

bits. The dimension of the layout is 3750μm×1700μm. 
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Figure 5.15 Layout and schematic view of RB_4096 
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Figure 5.16 shows the layout view of RMR FFT, except for RB_4096 and 

RB_512s. The layout is implemented through TSMC 0.13μm CMOS technology. The 

dimension of the layout is 1650μm×830μm. 
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Figure 5.16 Layout and schematic view of the 1-bit D flip-flop 
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Figure 5.17 shows the layout view of the entire RMR FFT. Three RB modules 

are implemented through the full-custom design flow. The rest of the RMR FFT is 

implemented through cell-base synthesis flow using TSMC 0.13μm CMOS 

technology. The figure shows that the memory (RB_4096, RB_512a, and RB_512b) 

takes over 80% of the FFT area. As the simulation result shows before, these register 

banks consume nearly 50% of the total power when they are all turned on. The 

dimension of the overall layout is 3750μm×2530μm. 
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Figure 5.17 Overall Layout view of the proposed RMR FFT 

 

5.6 Conclusions 

 

In this chapter, we have shown the implementation strategy and the simulation 

results of the RMR FFT. The wordlength of the FFT is set to 16-bit, which means that 

32-bit registers are required to store one complex word. Observing that large numbers 

of registers are used, we implement the RB modules through the full-custom design 

flow, which can further exploit the regularity of our RB design. External power 
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management is required for the power gating of each module for different FFT sizes. 

The simulation result shows that our approach of adopting BFP in the RMR FFT 

does help maintain the SNR over 100 dB. Without the BFP approach, the SNR 

degrades rapidly as the FFT size grows. The simulation result also shows that the 

RMR FFT has good power scalability. The power distribution shows that the 

computation blocks consume most portion of power when the FFT size is small. 

However, the register banks become to dominate when the FFT size grows. This 

distribution clarifies that our approach to further optimize the RB modules is 

worthwhile. 
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Chapter 6 
Conclusions and Future Work 

 

6.1 Conclusions 

 

In this thesis, we have proposed a novel reconfigurable FFT architecture, called 

the reconfigurable mixed-radix (RMR) FFT. The proposed architecture is able to 

reconfigured dynamically as from 16-point to 4096-point FFT/IFFT. The 

reconfigurable mixed-radix algorithm is based on the radix-2 DIF algorithm. Different 

mixed-radix algorithms are assigned for different FFT sizes while keeping the data 

ordering of each mode in same regularity. Also, unlike other pipeline-base 

architecture, the block-floating-point approach is adopted here to maintain the SNR. 

The BFP method help keeping the internal wordlength of data flow fixed which 

prevent the circuitry growing to big for long size FFTs. The simulation result shows 

that RMR FFT maintain the SNR above 110dB as the FFT size varies. Without the 

BFP, the SNR degrades rapidly as the FFT size grows. 

The pipeline-based hardware architecture achieve high throughput rate by using 

8 parallel data paths in data flow. Internal register banks, instead of traditional 

commutators, are used to store the intermediate data between each computation stages. 

The butterfly (BF) and register banks (RB) modules are designed to be reconfigurable. 

Along with the bypassing multiplexers, the architecture can be reconfigured as from 

16-point to 4096-point FFT without resulting in a long data path. The data flow goes 

in a way of block execution order in coordinate to the BFP approach. Duplicate 

register banks are inserted between middle stages to smoothen the data flow. 

Considering the hardware overhead, the register bank of the first stage is not 

duplicated which effectively result in a throughput rate as 4 times of the input clock 

rate. With good circuit partitioning, unnecessary blocks can be fully turned off when 

calculate smaller FFT without affecting the correct operation. With external power 

management unit, the RMR FFT can achieve a power scalable and energy aware 

design.  

In implementation, the RMR FFT is to be synthesized using the TSMC 0.13μm 
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standard cell library. Considering that large bits of register required, the register banks 

are implemented through the full-custom flow in order to fully exploit its regularity. 

As the simulation result shows, the 16-point FFT takes only 6 clock cycles and energy 

dissipation is 4.34nJ/FFT while the 4096-point FFT takes 1100 clock cycles with 

energy dissipation 5.115 μJ/FFT. Compared to other reconfigurable architecture, the 

RMR FFT outperforms in execution speed and overall energy dissipation especially 

for long size FFTs. Comparing to other reconfigurable pipeline-based architecture, the 

energy saving is 51%, 64%, and 80% for 64, 256, and 1024-point FFT respectively. 

Comparing to other reconfigurable memory-based architecture, the energy saving is 

up to 85% for 1024-point FFT. 

The RMR FFT meets the UWB standard, which requires throughput rate of 

409.6 Msample/s [6.1], at clock rate of 110MHz. The proposed RMR FFT is 

especially suitable for modern high-speed and long-size FFT applications. 

 

6.2 Future Work 

 

The dynamic frequency and voltage management (DVFM) is popular in SOC 
design in recent years [6.2-6.7]. As we use the external power management unit to 
adjust supply voltage, the design of such PMU can be taken into consideration with 
the overall FFT design. Besides static power gating over different FFT size, more 
voltage-control techniques can be applied to the FFT processor, such as the multi-Vdd 
approach. 

On the other hand, we assume that the IO data of our RMR FFT have been 
wrapped by external buffers. As shown in Figure 1.1, the OFDM requires a 
serial-to-parallel or a parallel-to-serial block to wrap the data. As the proposed RMR 
FFT is a general purpose FFT, it is also interesting to design reconfigurable wrapper 
for different FFT sizes and specifications that is suitable to various applications. 
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