
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

具能量察覺管線化架構可重組混合基底的

快速傅利葉轉換處理器設計

Energy-Aware Pipeline-based Reconfigurable Mixed-Radix

FFT/IFFT Processor Design

研 究 生：賴祈成

指導教授：黃 威 教授

中 華 民 國 九 十 五 年 六 月

具能量察覺管線化架構可重組混合基底的

快速傅利葉轉換處理器設計

Energy-Aware Pipeline-based Reconfigurable Mixed-Radix

FFT/IFFT Processor Design

研 究 生：賴祈成 Student：Chi-Chen Lai

指導教授：黃 威 教授 Advisor：Prof. Wei Hwang

國 立 交 通 大 學
電 子 工 程 學 系 電 子 研 究 所

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

具能量察覺管線化架構可重組混合基底的

快速傅利葉轉換處理器設計

學生：賴祈成

 指導教授：黃 威 教授

國立交通大學電子工程學系電子研究所碩士班

摘 要

本論文提出一個先進的可重組混合基底的快速傅利葉轉換處理器。該處理器

可動態重組為 16 點至 4096 點之快速傅利葉/反向快速傅利葉轉換運算，並且對

於不同長度之模式使用不同的混合基底演算法，所提出的架構同時具有能量察覺

的特色。不同於一般管線化架構使用較大的內部字長來提高抗雜訊比，我們的架

構使用與輸入資料相同的內部字長，並使用區塊浮點的方法來維持抗雜訊比。並

且，使用八個平行資料傳輸路徑的管線化架構有效的降低計算週期。

模擬的結果顯示，所提出的快速傅利葉轉換器在不同的資料長度下，能將抗

雜訊比維持在 110dB 以上。所提出的快速傅利葉轉換器以 TSMC 0.13μm 的技術

實現，供應電壓為 1.2V，最高時脈週期為 110MHz，產出率可達四倍時脈週期，

亦即 440Msample/s；隨著快速傅利葉轉換運算的長度增加，每筆運算所消耗的能

量從 4.34nJ 增加到 5.115μJ。

Energy-Aware Pipeline-based Reconfigurable Mixed-Radix
FFT/IFFT Processor Design

Student：Chi-Chen Lai

Advisor：Prof. Wei Hwang

Department of Electronics Engineering & Institute of Electronics

National Chiao-Tung University

ABSTRACT

In this thesis, we present a novel FFT/IFFT processor, called reconfigurable

mixed-radix (RMR) FFT. It can be easily reconfigured as from 16-point to 4096-point

FFT/IFFT with proper mixed-radix algorithm assigned for each mode. The proposed

architecture is characterized with scalable energy dissipation for different FFT/IFFT

sizes. Unlike general pipeline-based architectures which use a larger internal

wordlength to achieve a high signal-to-noise ratio (SNR), our processor keeps the

internal wordlength the same as the wordlength of the input data while the

block-floating-point (BFP) approach is adopted to maintain the SNR. The

pipeline-based architecture with 8-parallel datapath results in low computation cycles.

The simulation result shows that RMR FFT maintain the SNR above 110dB as

the FFT size varies. The proposed RMR FFT processor is implemented using TSMC

0.13μm technology with a supply voltage of 1.2V. With the maximum clock rate of

110MHz, the throughput rate can reach 440Msample/s, which is 4 times of the input

clock rate. The energy dissipation per FFT ranges from 4.34nJ to 5.115μJ with

increasing FFT sizes.

 ii

 iii

Acknowledgements

I would like to thank my advisor, Prof. Wei Hwang, who has provided me a free
research environment for the past two years. He has been supportive all the way, which
does help me get rid of the fear of any disturbance in the rear. I was able to think and
research independently on interesting topics. I have learned more from these
experiences than what books or papers may show.

The fellows of my laboratory also help lot on my study. In addition, they are more
helpful on life and many daily events. I have also learned a lot from them and overcome
many difficulties with their help.

I would also like to thank my roommates and many schoolmates for the past few
years. They have accompanied me a long time and so much has happened. The life in
NCTU would be less colorful without them.

 iv

Table of Contents

Chapter 1 Introduction ... 1

1.1 Background.. 1
1.2 Motivation.. 1
1.3 Organization of Thesis... 2

Chapter 2 Review of FFT Algorithms and Architectures... 4

2.1 Introduction.. 4
2.2 Basic Concept of FFT Algorithms .. 5
2.3 The FFT Algorithms.. 6

2.3.1 Decimation-in-Frequency (DIF) Fixed-Radix Algorithms 6
2.3.2 Decimation-in-Time (DIT) Fixed-Radix Algorithms.................................. 11
2.3.3 Other FFT Algorithms.. 13

2.4 The FFT Architecture .. 14
2.4.1 Pipeline-Based Architecture... 15

2.4.1.1 Single-Path Delay Feedback (SDF) Architecture................................. 15
2.4.1.2 Multiple-Path Delay Commutator (MDC) Architecture 16

2.4.2 Memory-Based Architecture.. 17
2.4.3 Reconfigurable Architecture .. 18

2.5 Conclusion ... 20

Chapter 3 Algorithm of Reconfigurable Mixed-Radix FFT 21

3.1 Introduction.. 21
3.2 Reconfigurable Mixed-Radix Algorithm.. 21
3.3 Data Ordering and Twiddle Factors.. 25
3.4 Finite Register Length Effect and Block-Floating-Point Method...................... 30
3.5 Conclusion ... 33

Chapter 4 Architecture of Reconfigurable Mixed-Radix FFT35

4.1 Introduction.. 35
4.2 Overall Architecture .. 36
4.3 Architecture Design ... 37

4.3.1 Butterfly (BF) Unit ... 37
4.3.1.1 General BF... 37
4.3.1.2 Reconfigurable BF .. 38

4.3.2 Multiplier Stage .. 39
4.3.2.1 Constant Multiplier Approach .. 39

 v

4.3.2.2 Complex Multiplier Approach.. 43
4.3.3 Register Banks (RB)... 45

4.3.3.1 RB_64 .. 46
4.3.3.2 RB_512 and RB_4096 .. 48
4.3.3.3 Duplicate Module Insertion... 51

4.3.4 BFP.. 52
4.3.5 Input/Output Buffer .. 53

4.4 Data Flow ... 55
4.5 Conclusion ... 58

Chapter 5 Implementation of RMR FFT/IFFT Processor 59

5.1 Introduction.. 59
5.2 Implementation Issue on Register Banks.. 59
5.3 Power Control .. 64
5.4 Simulation Result... 66

5.4.1 Performance of the RMR FFT ... 66
5.4.2 Comparison... 69

5.5 Layout Implementation.. 72
5.6 Conclusion ... 77

Chapter 6 Conclusions and Future Work... 72
6.1 Conclusions.. 79
6.2 Future Work... 80

References .. 81

List of Tables
TABLE 3.1 Mixed-radix algorithms for different FFT sizes. 23
TABLE 3.2 N-based twiddle factors required for each multiplier stage under

different FFT size .. 29
TABLE 3.3 Storage elements required between each stage...................................... 33
TABLE 4.1 Truth table of control signals for reconfigurable BF............................. 39
TABLE 4.2 Mapping table of the twiddle factors ... 40
TABLE 4.3 Implementation table of constants ... 41

TABLE 4.4 Scheduling of twiddle factors, ... 41 64
pW

TABLE 4.5 Scheduling of twiddle factors, ... 44 4096
pW

TABLE 4.6 Twiddle factors, , stored in 44096
pW th ROM ... 44

TABLE 4.7 Comparison of memory requirement (including the input buffer) 57
TABLE 4.8 Execution cycles required for different FFT length 57
TABLE 5.1 Truth table of the activated modules.. 65
TABLE 5.2 Execution cycles required for various FFT sizes................................... 68
TABLE 5.3 Comparison with other reconfigurable architectures............................. 70
TABLE 5.4 Execution cycles required per FFT .. 71

 vi

List of Figures
Figure 1.1 Generic OFDM block diagram... 2
Figure 2.1 Decomposition of the 8-point DFT step by step in DIF algorithm 8
Figure 2.2 The butterfly unit of radix-2 DIF FFT.. 8
Figure 2.3 Tree diagrams of (a) normal order and (b) bit-reversed order 9
Figure 2.4 The butterfly unit of radix-4 DIF FFT.. 10
Figure 2.5 Decomposition of the 8-point DFT step by step in DIT algorithm 12
Figure 2.6 The butterfly unit of radix-2 DIT FFT.. 13
Figure 2.7 The butterfly unit of split-radix 2/4 algorithm ... 14
Figure 2.8 Radix-2 DIF SDF architecture for N = 16.. 15
Figure 2.9 Radix-4 DIF SDF architecture for N = 64.. 16
Figure 2.10 Radix-2 MDC architecture for N = 16 ... 16
Figure 2.11 Radix-4 DIF MDC architecture for N = 64.. 17
Figure 2.12 Block diagram of the memory-based architecture 18
Figure 2.13 Architecture of 1024-point radix-4 reconfigurable pipelined FFT

processor .. 19
Figure 3.1 SFG of 8-point DIF FFT... 24
Figure 3.2 SFG of 128-point FFT in radix-2 DIF algorithm..................................... 26
Figure 3.3 SFG of 128-point FFT in mixed-radix algorithm 26
Figure 3.4 SFG of 16-point DFT in (a) radix-2 algorithm, and (b) radix-8/2

algorithm.. 27
Figure 3.5 Extraction of radix-8 butterfly .. 28
Figure 3.6 Procedure of combining three radix-2 stages into one radix-8 stage....... 28
Figure 3.7 The twiddle factors for the mth radix-8 butterfly for N-point

decomposition.. 29
Figure 3.8 Concept of block-floating-point.. 31
Figure 3.9 Blocks decomposition of 128-point FFT.. 32
Figure 4.1 FFT environment... 35
Figure 4.2 Block diagram of the proposed RMR FFT... 36
Figure 4.3 Circuit diagram of multiplication by 1/√2.. 38
Figure 4.4 Block diagram of general radix-8 butterfly .. 38
Figure 4.5 Block diagram of reconfigurable butterfly ... 39
Figure 4.6 Twiddle factors on the unit circle ... 40
Figure 4.7 Block diagram of a constant multiplier .. 42
Figure 4.8 Block diagram of CMULT stage .. 42
Figure 4.9 Block diagram of MULT stage... 43
Figure 4.10 Block diagram of ROM banking .. 44
Figure 4.11 Block diagram of the two-input register... 46

 vii

Figure 4.12 Block diagram of RB_64 for three different capacities, (a) 16-word, (b)
32-word, and (c) 64-word ... 46

Figure 4.13 Data flow in RB for 16-word mode.. 47
Figure 4.14 Block diagram of reconfigurable RB_64 ... 48
Figure 4.15 Data flow in RB for 128-word mode.. 49
Figure 4.16 Control zones for the RB .. 50
Figure 4.17 Control signals for the 128-word RB ... 50
Figure 4.18 Block diagram of reconfigurable RB_512 ... 51
Figure 4.19 Block diagram of BFP .. 52
Figure 4.20 Block diagram of reconfigurable input buffer.. 54
Figure 4.21 Data flow in the input buffer for N = 16 .. 54
Figure 4.22 Flow of data path for 16, 32, 64-pont FFT... 55
Figure 4.23 Flow of data path for 128, 256, 512-pont FFT... 56
Figure 4.24 Control signal, PHASE, for duplicate RB modules 56
Figure 4.25 Flow of data path for 1024, 2048, 4096-pont FFT................................... 56
Figure 5.1 Circuit of synthesized scan D flip-flop... 60
Figure 5.2 Block diagram of the two-input register array ... 60
Figure 5.3 Various structure of D flip-flops... 62
Figure 5.4 Average current under low-clock-transition cases 63
Figure 5.5 Average current under high-clock-transition cases.................................. 63
Figure 5.6 SNR comparison ... 67
Figure 5.7 Power consumption for various FFT sizes (110MHz, 1.2V)................... 67
Figure 5.8 Power distribution characteristics... 68
Figure 5.9 Energy dissipation per FFT operation, (a) in normal scale, (b) i n log scale

.. 69
Figure 5.10 Comparison of Energy dissipation between RMR FFT and the other

reconfigurable pipeline-based architecture... 71
Figure 5.11 Comparison of Energy dissipation between RMR FFT and the other

reconfigurable memory-based architecture .. 71
Figure 5.12 Layout and schematic view of the 1-bit D flip-flop................................. 72
Figure 5.13 Layout and schematic view of a basic block in RB_512......................... 73
Figure 5.14 Layout and schematic view of RB_512 ... 74
Figure 5.15 Layout and schematic view of RB_4096 ... 75
Figure 5.16 Layout and schematic view of the 1-bit D flip-flop................................. 76
Figure 5.17 Overall Layout view of the proposed RMR FFT..................................... 77

 viii

Chapter 1

Introduction

1.1 Background

In discrete-time signal processing (DSP), engineers usually study and practice

digital signals between time domain and frequency domain [1.1]. A sequence of

samples from a measuring device produces a time or spatial domain representation,

whereas a discrete Fourier transform (DFT) produces the frequency domain

information, that is, the frequency spectrum. As many communications theories are

based on frequency domain, the DFT becomes an important component.

However, the direct mapping of DFT equation into a physical implementation

results in unacceptable hardware overhead. The fast Fourier transform (FFT) is thus

developed to make the implementation possible. FFTs became popular after J. W.

Cooley of IBM and John W. Tukey of Princeton published a paper in 1965 [1.2]

reinventing the algorithm and describing how to perform it conveniently on a

computer. FFTs are of great importance to a wide variety of applications, from digital

signal processing to solving partial differential equations to algorithms for quickly

multiplying large integers.

The performance of FFT is often the bottle neck of a DSP system. The design of

a high-speed FFT processor has been an important topic for many years. Various

architectures have been proposed to serve different applications. Recently, the

popularity of portable systems raises the low-power consumption as another serious

design issue. The demand for low-power and high-speed FFT processors never stops.

1.2 Motivation

Many recent communication standards propose the orthogonal frequency
division multiplexing (OFDM) as the primary modulation method. A general block
diagram of an OFDM system is shown in Figure 1.1. The FFT and inverse FFT

 1

(IFFT), which are essential for such modulation, are both computation-intensive and
data-exchange-intensive. Many FFT algorithms and architecture have been proposed
to drive the performance further in the past decades. However, modern
communication standards require even faster FFT processors while the
power-consumption is critical. For example, in the popular orthogonal
frequency-division multiple (OFDM)-based UWB systems, the execution time of the
128-point FFT/IFFT is only 312.5 ns, or equivalent 409.6Msample/s [1.3].

Base-band
Modulator

Serial-to-
parallel IFFT Cyclic

Prefix
D/A

Converter

Parallel-to-
serial FFT

Cyclic
Prefix

Remover

A/D
Converter

Base-band
Demodulator

…
……

…
To RF

From
RF

Input
data

Output
data

Transmitter

Receiver

Figure 1.1 Generic OFDM block diagram

On the other side, it is desirable for a processor to perform flexible-size FFTs,

thereby facilitating software adaptability when different formats and changing
standards must be accommodated. Processors with high re-configurability incur
inevitable overhead in all terms. In order to minimize the overhead, the design of such
reconfigurable processors must be considered from both algorithm-level and
architecture-level.

This thesis aims to design a high performance FFT/IFFT processor that can meet
modern high-speed criterions while maintaining low power consumption. The
processor can be flexible to perform different lengths of FFTs and thus suitable for
various protocols and applications. The FFT length should be easily reconfigured by
setting control registers and with minimum hardware overhead possible.

1.3 Organization of Thesis

The rest of this thesis is organized as follow. Chapter 2 is a review of general

FFT algorithms and architectures. The basic concept of the FFT algorithm is

 2

explained and various FFT algorithms are introduced here. Also, popular FFT

architectures in implementation, memory-based and pipeline-based, are depicted and

compared in this chapter. In conclusion, we will give a direction of algorithms and

architecture that is most suitable for modern high-speed applications.

In this thesis, we propose an energy-aware reconfigurable mixed-radix FFT/IFFT.

The proposed processor can be easily reconfigured as from 16-point to 4096-point

FFT/IFFT with proper mixed-radix algorithm assigned for each mode. In chapter 3,

we will derive the proposed reconfigurable mixed-radix algorithm. The architecture

design and principle of each block will be illustrated in chapter 4.

In chapter 5, the RMR FFT is implemented using TSMC 0.13μm technology. As

will be shown in the proposed architecture, we find that the internal storage block

takes out most of the FFT area and power during the cell-based synthesis flow. The

implementation strategy of the internal storage blocks is different from that of the rest

RMR FFT. The simulation result will be analyzed and compared with other

reconfigurable architectures. Finally, some conclusions and future work will be

presented in Chapter 6.

 3

Chapter 2

Review of FFT Algorithms and

Architectures

2.1 Introduction

The discrete Fourier transform (DFT) is widely employed in the analysis, design,

and implementation of signal processing algorithms and systems. However, the

computational complexity of direct evaluation of an N-point DFT is O(N2), which

results in a long computation time and excessive hardware cost. Fortunately,

considerable symmetry exists in the operations and coefficients required to compute a

DFT. Such symmetry can be exploited to reduce the number of operations required,

thus reducing the time required for DFT computation. Collectively, the resulting

efficient computation algorithms are called fast Fourier transform (FFT).

Mainly, the FFT is a way of computing the DFT by decomposing the computation

into successively smaller DFT computations. In this process, both the symmetry and

the periodicity of the complex exponential are exploited.

Algorithms in which the decomposition is based on the input sequence x[n] into

successively smaller subsequences are called decimation-in-time (DIT) algorithms.

Alternatively, we can consider dividing output sequence X[k] into smaller

subsequences and such algorithms are called decimation-in-frequency (DIF)

algorithms.

(2 /)nk j N nk
NW e π−=

By far the most common FFT is the Cooley-Tukey algorithm [2.1], which is

suitable in decomposing DFT that is of size of power of 2. We would like to introduce

some variants based on Cooley-Tukey algorithm in this chapter. These variants can be

classified as fixed-radix and the others, respectively. Also, we will discuss the

architectures for these algorithms in VLSI implementation. Both of the two popular

architectures, memory-based and pipeline-based, have their advantages and certain

shortcomings.

 4

2.2 Basic Concept of FFT Algorithms

The discrete Fourier transform of a complex data sequence x[n] of length N is

defined as:

1

0
() [] k=0,1,.....,N-1

N
nk

N
n

X k x n W
−

=

=∑ (2.1)

where the coefficient is defined as nk
NW

2j nk
nk N

NW e
π−

= ,which are called twiddle

factors. The approach used to improve the efficiency in FFT is to exploit the

symmetry and the periodicity properties of ; nk
NW

() (N n k nk nk
N NW W W− −= = *)N

N

 (Symmetry property) (2.2)

() ()nk n k N n N k
N N NW W W+ += = (Periodicity in n and k) (2.3)

As an illustration, using the periodicity property, we can group terms in Eq. (2.1) for n

and (n+N):

()[] [] ([] [])nk n N k nk
N Nx n W x n N W x n x n N W++ + = + + (2.4)

Similar groupings can be used for other terms in Eq. (2.1). In this way, the number of

complex multiplication can be reduced by approximately a factor of 2. We can also

take the advantage of the fact that for certain factors, the real and imaginary parts take

on the value 1 or 0, which eliminating the need for multiplication. As a result,

applying the above properties achieves significantly reduction in computation.

The Cooley-Tukey algorithm is the most common FFT algorithm. It re-expresses

the DFT of an arbitrary composite size N = N1N2 in terms of smaller DFTs of sizes N1

and N2 recursively. FFT algorithms are based on the fundamental principle of

decomposing the computation of the DFT of an N-length sequence into successively

smaller DFT. The manner of how this principle is implemented leads to a variety of

different algorithms. In the following section, various FFT algorithms will be

introduced.

 5

2.3 The FFT Algorithms

According to the manner of decomposition, the FFT algorithms can be classified

as DIT and DIF algorithms. The difference is the object to be decomposed, input

sequence for DIT and output sequence for DIF.

2.3.1 Decimation-in-Frequency (DIF) Fixed-Radix Algorithms

The principle of the decimation-in-frequency algorithm is most conveniently

illustrated by considering the N-point DFT where N is an integer power of 2, i.e.,

N=2v. Since N is an even integer, we can consider computing the even-numbered

frequency samples and odd-numbered frequency samples separately. Referring to Eq.

(2.1), we can express X(k) as:

1

0

1 12

0
2

1 1
2 2 ()

2

0 0

1 1
2 2

2

0 0

2

() []

 [] []

 [] []
2

 [] []
2

 [] []
2

N
nk

N
n

N
N

nk nk
N N

Nn n

N N
Nn knk

N
n n

N N
N knk nk

N N
n n

N k nk
N N

n

X k x n W

x n W x n W

Nx n W x n W

N

N

Nx n W x n W W

Nx n x n W W

−

=

−
−

= =

− −
+

= =

− −

= =

=

=

= +

= + +

= + +

⎧ ⎫
= + +⎨ ⎬

⎩ ⎭

∑

∑ ∑

∑ ∑

∑ ∑
1

2

0

N
−

∑

 (2.5)

Based on the above equation, the even-numbered frequency samples are:

1
2 2 22

0

1
2

0 2

(2) [] []
2

 [] []
2

N
N r n r

N N
n

N

nr
N

n

NX r x n x n W W

Nx n x n W

−

=

−

=

⎧ ⎫
= + +⎨ ⎬

⎩

⎧ ⎫= + +⎨ ⎬
⎩ ⎭

∑

∑

⎭ (2.6)

The result of Eq. (2.6) can be seen as the N/2-point DFT of the sequence
{x[n]+x[n+N/2]}, which is obtained by adding the first half and the second half of the

 6

input sequence. In the same way, the odd-numbered frequency points are:
1

2 (2 1) (2 1)2

0

1
2

0 2

(2 1) [] []
2

 [] []
2

N
N r n r

N N
n

N

n nr
N N

n

NX r x n x n W W

Nx n x n W W

−
+ +

=

−

=

⎧ ⎫
+ = + +⎨ ⎬

⎩

⎧ ⎫= − +⎨ ⎬
⎩ ⎭

∑

∑

⎭ (2.7)

Eq. (2.7) is then the N/2-point DFT of the sequence obtained by subtracting the
second half from the first half of the input sequence and multiplying the resulting

sequence by n
NW . Therefore, the problem of computing N-point DFT becomes

computing N/2-point DFT. Recursively, we can further decompose the N/2-point DFT
in Eq. (2.6) and (2.7) into smaller DFT. Proceed with these decomposition until the
only DFT required are 2-point DFTs. The 2-point DFT can be derived as the simple
form in Eq. (2.6) and (2.7), which are multiplication and addition/subtraction
operations. As a result, the computation of N-point DFT requires no real DFT
computation but only multiplication and addition/subtraction operations.

Figure 2.1, which is called a signal flow graph (SFG), illustrates the procedure of
decomposing the 8-point DFT by the DIF algorithm. First we decompose the 8-point
DFT as combinations of two 4-point DFT according to Eq. (2.6) and (2.7), as shown
in (a). We can see now the output frequency points have been separated into
even-numbered and odd-numbered parts. We then divide the 4-point DFT,
respectively, into 2-point DFTs. Again, the output frequency points are separated. For
the sequence {X(0),X(2),X(4),X(6)}, the even-numbered points are {X(0),X(4)} and
the odd-numbered points are {X(2),X(6)}. The flow graph then becomes (b). Finally,
we decompose the 2-point DFTs further and obtain the flow graph in (c). As we can
see, the demand of any DFT block is now eliminated.

The basic computation unit in the flow graph of Figure 2.1, as brought up in
Figure 2.2, is called a butterfly. The butterfly output in DIF algorithms have to
multiply certain constants and such constants are called twiddle factors. This basic
computation unit is effectively a 2-point DFT unit, as can be seen from (b) and (c) of
Figure 2.1. Since the N-point DFT is always divided by 2 recursively, the above
algorithm is called the radix-2 DIF algorithm.

 7

0
8W
1

8W
2

8W
3

8W

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

4-point DFT

4-point DFT

X(0)
X(2)
X(4)
X(6)
X(1)
X(3)
X(5)
X(7)

0
8W
1

8W
2

8W
3

8W

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

2-point
DFT

2-point
DFT

X(0)
X(4)
X(2)
X(6)
X(1)
X(5)
X(3)
X(7)

0
8W
1

8W
2

8W
3

8W

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]

X(0)
X(4)
X(2)
X(6)
X(1)
X(5)
X(3)
X(7)

0
8W
2

8W

0
8W
2

8W

0
8W
2

8W

0
8W
2

8W

0
8W

0
8W

0
8W

0
8W

(a)

(b)

(c)
Figure 2.1 Decomposition of the 8-point DFT step by step in DIF algorithm

x[n]

x[n+N/2]

X(n) = x[n]+x[n+N/2]

X(n+N/2) = x[n]-x[n+N/2]

Figure 2.2 The butterfly unit of radix-2 DIF FFT

 8

Further more, the output ordering, as shown in the SFG, is not in normal order as

the time-domain input. In fact, the order which the output data present is referred to as

bit-reversed order. The idea of the bit-reversed order can be well depicted by tree

diagrams. As we take the 8-point DFT as an example, three binary digits are required

to index through the data. Figure 2.3 shows the way how normal order and

bit-reversed order are derived, respectively. In (a), the normal order is obtained

through sorting data sequence by successive examination of the data index bits. In (b),

the same procedure takes place to obtain the bit-reversed order except that the data

index bits examination is backward.

2 1 0[]x n n n

0

0
0

1

1

1

1

1

0
1

0

1

0

0

2n 1n 0n

x[000]

x[001]

x[010]

x[011]

x[100]

x[101]

x[110]

x[111]

2 1 0()X n n n

0

0
0

1

1

1

1

1

0
1

0

1

0

0

2n1n

X(000)
0n

X(100)

X(010)

X(110)

X(001)

X(101)

X(011)

X(111)

(a) (b)

Figure 2.3 Tree diagrams of (a) normal order and (b) bit-reversed order

Similar to the way of decomposing the even integer N, we can decompose N

into four parts if N is an integer power of 4, i.e., N=4v. We can divide frequency

samples into four parts and consider computing them separately. The equation

represents these four frequency parts are thus:

1
4

0 4

2 3(4) [] [] [] []
4 4 4

N

n
N

n

N N NX r x n x n x n x n W
−

=

⎧= + + + + + +⎨
⎩ ⎭

∑ ⎫
⎬ (2.8)

1
4

1 2 3
4 4 4

0 4

2 3(4 1) [] [] [] []
4 4 4

N

n n
N N

n

N N NX r x n x n W x n W x n W W W
−

=

⎧ ⎫+ = + + + + + +⎨ ⎬
⎩ ⎭

∑ (2.9)

1
4

2 4 6
4 4 4

0 4

2 3(4 2) [] [] [] []
4 4 4

N

n n
N N

n

N N NX r x n x n W x n W x n W W W
−

=

⎧ ⎫+ = + + + + + +⎨ ⎬
⎩ ⎭

∑ 2 (2.10)

 9

1
4

3 6 9
4 4 4

0 4

2 3(4 3) [] [] [] []
4 4 4

N

n n
N N

n

N N NX r x n x n W x n W x n W W W
−

=

⎧ ⎫+ = + + + + + +⎨ ⎬
⎩ ⎭

∑ 3 (2.11)

A decomposition of a 4v-point DFT can also be shown through a signal flow graph,

similar to the one in Figure 2.1. This time, the basic computation unit is no longer a

2-point DFT butterfly but a 4-point DFT butterfly, as shown in Figure 2.4. The

resulting algorithm, therefore, is called a radix-4 DIF algorithm.

x[n]

x[n+2N/4]

x[n+N/4]

x[n+3N/4]

2 3(4) [] [] [] []
4 4 4
N N NX r x n x n x n x n= + + + + + +

1 2
4 4

2 3(4 1) [] [] [] []
4 4 4
N N N 3

4X r x n x n W x n W x n W+ = + + + + + +

2 4
4 4

2 3(4 2) [] [] [] []
4 4 4
N NX r x n x n W x n W x n W+ = + + + + + + 6

4
N

3 6
4 4

2 3(4 3) [] [] [] []
4 4 4
N N 9

4
NX r x n x n W x n W x n W+ = + + + + + +

Figure 2.4 The butterfly unit of radix-4 DIF FFT

Practicing the above decomposition procedures, we can further derive even

higher radix-r DIF algorithms by restricting N as an integer power of r. The advantage

of a higher radix algorithm is that the number of complex multiplications can be

effectively lowered. As one radix-4 stage corresponds to two radix-2 stage in the SFG,

the twiddle-factor multiplications between the two radix-2 stages are now covered in

the radix-4 stage. As shown in Figure 2.4, complex multiplications in the radix-4

butterfly, multiplication by { , , , }, are thought as trivial multiplications.

This means that these multiplications can be carried without a true multiplier.

Therefore, the effective number of complex multiplication required in radix-4

algorithm is fewer than that in radix-2 algorithm. Accordingly, algorithms with higher

radix are more efficient than those with lower radix in arithmetic aspect. On the other

hand, the butterfly of a higher radix algorithm is more complicated. The trade-off is

between addition/subtraction and multiplications. Since addition/subtractions are of

lower computational complexity than multiplications in complex-number computation,

the higher radix algorithms are usually preferred. However, the radix-r algorithm is

only suitable for r

0
4W 1

4W 2
4W 3

4W

v-point FFT. For a DFT sequence of length not power of r, lower

radix algorithm must be used.

 10

2.3.2 Decimation-in-Time (DIT) Fixed-Radix Algorithms

To develop the DIT algorithm, let us again consider the N-point DFT where N is

an integer power of 2, i.e., N=2v. Since N is an even integer, we can consider

computing X(k) by separating x[n] into the even-numbered points and odd-numbered

points. With the X(k) given in Eq. (2.1), we can derive the following equation:

1

0

1 1
2 2

2 (

0
2

1 1
2 2

2 2

0 0

1 1
2 2

0 02 2

() []

 [2] [2 1]

 [2] [2 1]

 [2] [2 1]

N
nk

N
n
N N

rk r k
N N

Nr r

N N

rk k rk
N N

r r

N N

rk k rk
N N N

r r

X k x n W

x r W x r W

x n W x r W W

x r W W x r W

−

=

− −

+

= =

− −

= =

− −

= =

=

= + +

= + +

= + +

∑

∑ ∑

∑ ∑

∑ ∑

2 1)

N

 (2.12)

In the above equation, X(k) can be seen as a combination of the DFT of the

even-numbered points and odd-numbered points of x[n]. Replace them with G(k) and

H(k), respectively:

1 1
2 2

0 02

() [2] [2 1]

 () ()

N N

rk k rk
N N

r r

k
N

2
NX k x r W W x r W

G k W H k

− −

= =

= + +

= +

∑ ∑ (2.13)

G(k) represents the N/2-point DFT of the even-numbered points in x[n] and H(k)

represents the N/2-point DFT of the odd-numbered points in x[n]. We can then treat

G(k) as an independent DFT and decompose it as the manner in Eq. (2.12).

Recursively, G(k) will finally be decomposed into 2-point DFTs, which is

multiply-and-add operation of two data. In the same way, H(k) can also be recursively

decomposed into combinations of 2-point DFTs. A 2-point DFT, according to Eq.

(2.13), is a multiply-and-add operation. Therefore, the N-point DFT can be calculated

without any real DFT computations.

 11

0
8W
1

8W
2

8W
3

8W

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

4-point DFT

4-point DFT

x[0]
x[2]
x[4]
x[6]
x[1]
x[3]
x[5]
x[7]

0
8W
1

8W
2

8W
3

8W

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

2-point
DFT

2-point
DFT

x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]

0
8W
1

8W
2

8W
3

8W

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]

0
8W
2

8W

0
8W
2

8W

0
8W
2

8W

0
8W
2

8W

0
8W

0
8W

0
8W

0
8W

(a)

(b)

(c)

Figure 2.5 Decomposition of the 8-point DFT step by step in DIT algorithm

Figure 2.5 shows the procedure of how an 8-pont DFT is composed by the DIT

algorithms. First we decompose the 8-point DFT as combinations of two 4-point DFT

according to Eq. (2.8) and (2.9), as shown in (a). We can see now the time-domain

input points have been separated into even-numbered and odd-numbered parts. We

then divide the 4-point DFT, respectively, into 2-point DFTs. Again, the input points

are separated. For the sequence {x[0],x[2],x[4],x[6]}, the even-numbered points are

 12

{x[0],x[4]} and the odd-numbered points are {x[2],x[6]}. The flow graph then

becomes (b). Finally, we decompose the 2-point DFTs further and obtain the flow

graph in (c). At last, the demand of any DFT block is now eliminated.

Similar to the DIF algorithm, the basic butterfly unit of the DIT algorithm is
shown in Figure 2.6(a). However, be aware of the fact that:

/ 2 / 2r N r N r
N N N NW W W+ W= = − (2.14)

The butterfly is modified as in (b), which reduces the number of multiplications to 1.
This basic computation unit is also effectively a 2-point DFT unit, as can be seen from
(b) and (c) of Figure 2.5. Therefore, the above algorithm is called a radix-2 DIT
algorithm.

x[2r]

x[2r+1]

r
NX(k) = x[2r]+x[2r+1]W

r+N/2
NX(k+N/2) = x[2r]+x[2r+1]W

x[2r]

x[2r+1]
r

NW

(b)(a)

r
NX(k) = x[2r]+x[2r+1]W

r
NX(k+N/2) = x[2r]-x[2r+1]W

Figure 2.6 The butterfly unit of radix-2 DIT FFT

Observing Figure 2.5, the time-domain input for the DIT decomposition are in

bit-reversed order while the frequency-domain output are in normal order.

Comprehensively, the SFG of the DIT algorithm is a reverse of the SFG of the DIF

algorithm. We can also use the same methods as in previous section to derive a higher

radix decomposition of the DIT algorithm.

2.3.3 Other FFT Algorithms

There are many other variations on the Cooley-Tukey algorithm. Mixed-radix

implementations [2.2-2.5] handle composite sizes with a variety of (typically small)

factors in addition to two, usually (but not always) employing the O(N2) algorithm for

the prime base cases of the recursion. The idea of mixed-radix algorithms is

straightforward. As the fixed-radix algorithms recursively decompose the N-point

DFT into N/r-point DFT, we can also decompose the N-point into N/r1-point,

N/r2-point…, and N/rm-point DFTs as long as N= r1×r2…×rm.

 13

Split radix [2.6-2.8] merges radices 2 and 4, exploiting the fact that the first

transform of radix-2 requires no twiddle factor, in order to achieve the lowest known

arithmetic operation count for power-of-two sizes. The DIF split-radix 2/4 algorithm

decomposes the frequency sample as:

1
2

0 2

2(2) [] []
4

N

nk
N

n

NX k x n x n W
−

=

⎧= + +⎨
⎩ ⎭

∑ ⎫
⎬ (2.15)

1
4

4

0

2 3(4 1) [] [] [] []
4 4 4

N

n n
N N

n

N N NX k x n x n j x n x n W W
−

=

⎧ ⎫⎡+ = − + − + − +⎨ ⎬⎢⎣ ⎦⎩ ⎭
∑ k⎤

⎥ (2.16)

1
4

3 4

0

2 3(4 3) [] [] [] []
4 4 4

N

n n
N N

n

N N NX k x n x n j x n x n W W
−

=

⎧ ⎫⎡ ⎤+ = − + + + − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ k (2.17)

The SFG of the split-radix algorithm can also be drawn as the fixed-radix

algorithms. Figure 2.7 shows the basic butterfly unit for split-radix 2/4 algorithm. The

split-radix algorithm features low computational complexity and is flexible as radix-2

algorithm.

x[n]

x[n+2N/4]

x[n+N/4]

x[n+3N/4]
1

4W 3n
NW

n
NW

Figure 2.7 The butterfly unit of split-radix 2/4 algorithm

2.4 The FFT Architecture

The FFT architecture is the way to implement the signal flow graph of the FFT

algorithms. In this section, we will introduce the FFT architectures which are common

for VLSI implementation. There are two popular architectures to implement the FFT

algorithms for real time applications. They are pipeline-based architecture and

memory-based architecture.

 14

2.4.1 Pipeline-Based Architecture

The pipeline-based architecture is of high regularity and can be easily scaled and

parameterized in implementation [2.6, 2.8-2.15]. Compared to the memory-based

architecture, it is characterized in high throughput rate while keeping moderate

hardware complexity. An efficient method to obtain the pipeline architecture is to

project the signal flow graph of the FFT algorithm to the hardware data flow. Two

common pipeline-based architectures will be introduced next, the single-path delay

feedback (SDF) and the multiple-delay commutator (MDC) architecture.

2.4.1.1 Single-Path Delay Feedback (SDF) Architecture

The block diagram of the SDF architecture in radix-2 DIF algorithm is shown in

Figure 2.8. For the FFT length N = 16, there will be 4 butterfly stages in the SFG. As

we can see from the figure, a butterfly element is dedicated to each stage. The

feedback registers are used to store output data of the butterfly outputs. The butterfly

element perform the butterfly operation when the required data are ready at the input

ports, otherwise it perform the swap operation to store data into the feedback registers.

The memory requirement of the SDF architecture is minimal. However, the utilization

rate of the butterfly and multiplier units is only 50%.

BF2

8

BF2

4

BF2

2

j BF2

1
W W

Figure 2.8 Radix-2 DIF SDF architecture for N = 16

Similar to the radix-2 SDF architecture, the SDF architecture for the radix-4

algorithm can also be derived from the SFG. Figure 2.9 shows the case when the SDF

architecture is applied to the radix-4 algorithm. Compared to the radix-2 architecture,

the radix-4 architecture can implement the FFT with fewer computation stages.

However, the butterfly unit will be more complicated.

 15

BF4

3x16

W

BF4

3x4

W

BF4

3x1

Figure 2.9 Radix-4 DIF SDF architecture for N = 64

2.4.1.2 Multiple-Path Delay Commutator (MDC) Architecture

The MDC approach is even more straightforward than the SDF approach. As the

butterfly in the SFG, parallel data paths are used in the architecture. Instead of using

the delay feedback registers, delay elements are placed on the data paths. Between

each computation stages, a commutator is used to switch data to correct positions.

Figure 2.10 shows the block diagram of the radix-2 DIF MDC architecture. The

throughput rate of the radix-2 MDC architecture is twice that of the radix-2 SDF

architecture due to the parallel data paths. However, the memory requirement is larger

than that of the SDF architecture and also extra commutators are required.

c
2

B
F
2

8
W

4

c
2

B
F
2

4
W

2

c
2

B
F
2

2

j 1

c
2

B
F
2

1

Figure 2.10 Radix-2 MDC architecture for N = 16

The radix-4 MDC architecture is of the same principle as the radix-2 one. Figure

2.11 shows the block diagram of the radix-4 MDC architecture for N = 64. In the

radix-4 MDC architecture, higher throughput rate can be achieved due to the four

parallel data paths. However, more memory requirement and higher hardware

complexity are the overhead in return.

 16

c
4

B
F
416

12

c
4

32

48

8

4

W

B
F
44

3

c
4

8

12

2

1

W

B
F
41

2

3

Figure 2.11 Radix-4 DIF MDC architecture for N = 64

2.4.2 Memory-Based Architecture

The memory-based architecture is considered the most area efficient way of

implementing the FFT [2.2, 2.4-2.5, 2.16-2.19]. It usually consists of one computation

block, coefficient memory for twiddle factors, and memory to store IO and internal

data. The feature of such architecture is that it usually uses only one or few butterfly

elements as the computation block. Since the butterflies and multipliers usually take

out most area and consume large power in the pipeline-based architecture, the

memory-based architecture reduces such hardware cost and thus lowers the power

consumption. Figure 2.12 shows the generic block diagram of the memory-based

architecture. The hardware complexity of the memory-based architecture concentrates

on the control block. Since there are only one or few butterfly elements available, the

execution order is stage by stage as in the SFG. The memory-based architecture

usually uses one memory module to store the intermediate data. Since the data

ordering is different from stage to stage, the order of data stored in the memory must

be taken care after every stage of operation

 17

Figure 2.12 Block diagram of the memory-based architecture

As the number of butterfly units available reduces, the number of butterfly on the

SFG remains the same. Therefore, the memory-based architecture results in low

throughput rate. In a radix-r algorithm, an N-point FFT requires logr
N N
r
× radix-r

butterfly operation. Assume that the memory access bandwidth is K and the time for a

butterfly operation is t. Then, the time to compute an N-point FFT can be expressed

as:

Time for one FFT = log = logr
N r NN t N
r K K r t× × × × × (2.18)

From the above equation, it can be seen that the time for one FFT can be reduced

linearly with K and exponentially with r. Therefore, using high radix algorithms is an

efficient way to raise the throughput rate of a memory-based architecture.

2.4.3 Reconfigurable Architecture

A FFT processor that can perform various lengths of FFT is usually preferred.

For the pipeline-based architecture, the reconfiguration can be easily achieved.

Recall the principle of the FFT algorithms. The idea is to break the N-point DFT into

smaller DFTs recursively. Therefore, after a radix-r butterfly stage, the N-point FFT

is decomposed into r N/r-point FFTs. This relation can be observed from the SFG as

 18

previously shown in Figure 2.1 or Figure 2.5. Since the pipeline-based architecture is

the projection of the SFG, the backend stages actually calculate the FFTs of smaller

sizes. Therefore, the pipeline-based architecture can be reconfigured for calculating

FFT of smaller size by feeding input data directly into later stages [2.3, 2.20].

However, such reconfiguration does require lots of multiplexers when we

demand higher flexibility in the FFT size. The multiplexers added between each stage

not only increase the overhead on area and power, but also influence the speed

performance of overall architecture. Figure 2.13 shows an example of the

reconfigurable pipeline-based architecture. The 1024-point FFT architecture is

divided into five stages (1024=45). The architecture can also be reconfigured as 16, 64,

or 256-point FFT. Reconfiguration is achieved by inserting three multiplexers namely

MUX I, MUX II, and MUX III. The FFT processor can act as a 256-point processor

by feeding the input data directly into stage 2 and clocking down the first stage. In the

same way, reconfigurations to 64-point or 16-point FFT can also be achieved by

feeding input data directly into stage 3 or stage 4, respectively.

Figure 2.13 Architecture of 1024-point radix-4 reconfigurable

pipelined FFT processor

Alternatively, the memory-based architecture can be modified as reconfigurable

architecture [2.21-2.22], too. Unlike the pipeline-based architecture, no much

hardware needs to be added since there is only one butterfly computation block.

Reconfigurability is achieved by adding flexibility to address generation block,

coefficient memory block, and data memory block. The difficulty lies on the

generation of control signal and the data ordering in the memory.

 19

2.5 Conclusions

In this chapter, we have reviewed the generic FFT algorithms and architectures.

The fixed-radix algorithms are popular in VLSI implementation due to the regularity

of their SFGs. However, while algorithms with high radix are of lower computational

complexity, the flexibility in FFT size is also limited. The mixed-radix algorithms are

thus more suitable for decomposing various FFT sizes. The drawback is that their

twiddle-factor multiplications are more irregular than fixed-radix algorithms.

In the architecture level, the memory-based architecture which only uses one or

few computation blocks, is consider the most area efficient architecture. However, the

low throughput rate makes it unsuitable for the high-speed application. The

pipeline-based architecture is easy to scale and parameterize in hardware design.

Although it is also easy to reconfigure for different FFT size, the data path may grow

too long if we want higher flexibility.

 20

Chapter3

Algorithm of

Reconfigurable Mixed-Radix FFT

3.1 Introduction

Our purpose is to design a reconfigurable FFT processor that can be dynamically

configured to perform FFT length as from 16-point to 4096-point. In the fixed-radix

algorithms, only radix-2 FFT algorithms can cover this range of reconfiguration.

However, the radix-2 algorithms result in large calculation cycles and low throughput

rate. As the higher radix algorithms are preferred for our high throughput purpose, the

flexibility of the FFT size is also limited. Therefore, the mixed-radix algorithm is

adopted in our design to keep the architecture flexible while using a high radix

algorithm. Also, the algorithm should have certain common properties for

decomposing different points of FFT.

In this chapter, we will derive a reconfigurable mixed-radix algorithm. We

manage to find regularity for data ordering and twiddle factors for FFTs of different

sizes. Such regularities facilitate the construction of the hardware architecture. Also,

special block execution order for the RMR FFT will be introduced in order to adopt

the block-floating-point method.

3.2 Reconfigurable Mixed-Radix Algorithm

The Discrete Fourier Transform (DFT) of a complex data sequence x[n] of
length N is defined as

1

0

() [] k=0,1,.....,N-1
N

nk
N

n

X k x n W
−

=

=∑ (3.1)

where the coefficient is defined as nk
NW

2j nk
nk N

NW e
π−

= ,which is called twiddle factors.

 21

A direct implementation of this equation requires large hardware and thus is
impractical. By using the FFT algorithm, the computational complexity can be
reduced. Let

1 2

1 1
1 1 2

2 2

1 1
2 1 2

2 2

2
0,1..., 1

, {
0,1..., 1
0,1..., 1

, {
0,1..., 1

vN r r
n r

n n r n
n r
n r

k r k k
n r

= = ×
= −

= +
=
= −

= +
= −

−

r

⎪⎪

 (3.2)

Combining (1) and (2), the N-point FFT can be formulated as

1 2
1 1 2 2 1 2

1 2

1 2
2 2 1 2 1 1

2 1

1 2

2

1

1 1
()()

2 1 2 1 1 2
0 0

1 1

1 1 2
0 0 Twiddle factor

r -point DFT

r -point DFT

() []

 []

r r
n r n r k k

N
n n

r r
n k n k n k

r N
n n

X r k k x n r n W

x n r n W W W

− −
+ +

= =

− −

= =

+ = +

⎧ ⎫
⎪⎪= + ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑∑

∑ ∑
 (3.3)

From the above equations, we can divide any N-point (power of 2) FFT into a
combination of r1-point and r2-point FFT. The r2-point DFT in (3) can be further
decomposed in the same manner. Therefore, when N is not prime, such that N =
r1×r2×r3×…×rm, it is possible to divide the N-point DFT as combination of r1, r2, r3…,
rm-point DFTs.

The proposed RMR FFT is divided as four-stage pipeline architecture. The idea
is that, if each butterfly unit can act as radix-2, radix-4, or radix-8 butterfly, then the
processor is capable of performing different points of FFT algorithms ranging from
2×2×2×2=16 points to 8×8×8×8=4096 points. That is, decompose the N-point FFT
as combination of r1, r2, r3, r4 –point DFT, where N= r1 × r2 × r3 × r4. In this way,
one FFT may have several combinations of radixes. Since the duplications are
unnecessary for the hardware design, specific mixed-radix algorithm is assigned for
each FFT mode.

The higher radix is chosen first. Based on the radix-8 algorithm, smaller FFT
sizes are realized by bypassing preceding stages. For example, the 512-point FFT can
be decomposed by the radix-8 algorithm as three stages and the four-stage pipeline
thus becomes unnecessary. In such cases, we would like to bypass one of the four
stages as the conventional reconfigurable pipeline architecture does, instead of
assigning an 8×8×4×2 algorithm or other four-stage decomposition. Radix smaller
than 8 is arranged at last stage. In this way, we only have to consider the last stage as

 22

a reconfigurable butterfly stage while other stages being radix-8 under all modes. The
resulting radix arrangement is shown in TABLE 3.1. As the table shown, we only
need four-stage butterflies when the FFT is of size {1024, 2048, 4096}. Meanwhile,
FFTs of size {128, 256, 512} need three-stage butterflies and FFTs of size {16, 32, 64}
need only two.

TABLE 3.1 Mixed-radix algorithms for different FFT sizes

FFT size Stage 1 Stage 2 Stage 3 Stage 4
16 8 2
32 8 4
64 8 8
128 8 8 2
256 8 8 4
512 8 8 8
1024 8 8 8 2
2048 8 8 8 4
4096 8 8 8 8

The basic butterfly units in our design are thus radix-2, radix-4, and radix-8
butterflies. Based on the decimation in frequency decomposition, the SFG of the
8-point DFT is shown in Fig. 3.1. Notice that there is no explicit multiplication
operation in realization of an 8-point DFT. The trivial multiplications of ±j, (1-j)/√2,
and -(1+j)/√2 can be realized by using only shift-and add operation. Another
observation through the SFG is that the 8-point DFT is a combination of two parallel
4-point DFTs if we neglect the first stage and a combination of four parallel 2-point
DFTs if the first two stages are neglected. Therefore, the radix-8 butterfly can serve as
radix-4 and radix-2 butterfly as well. The side advantage is that the width of data path
can stay at 8-data when goes from radix-8 to a lower radix stage.

 23

0
8W

1
8W

2
8W

3
8W

0
8W

2
8W

0
8W

2
8W

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Stage 1 Stage 2 Stage 3

Figure 3.1 SFG of 8-point DIF FFT

Moreover, consider the DFT and IDFT equations:

DFT: (3.4)
1

0

() []
N

nk
N

n

X k x n W
−

=

=∑

IDFT:
1

0

1[] ()
N

nk
N

n

x n X k W
N

−
−

=

= ∑ (3.5)

Let

nk
N

nk
N

W Wr jW

W Wr W−

= +

= −

i

i

)

)

)

)

 (3.6)

We can find that the differences between DFT and IDFT are (a) the scaling constant
1/N and (b) twiddle factors are conjugate of each other. Now, consider the complex
multiplication of multiplying conjugate twiddle factors respectively:

()() () (Xr jXi Wr jWi XrWr XiWi j XiWr XrWi+ + = − + + (3.7)

()() () (Xr jXi Wr jWi XrWr XiWi j XiWr XrWi+ − = + + − (3.8)

If we swap the real and imaginary parts of the input variable, that is, changing
 to , Eq. (3.7) becomes: ()Xr jXi+ (Xi jXr+

()() () (Xi jXr Wr jWi XiWr XrWi j XrWr XiWi+ + = − + + (3.9)

Comparing Eq. (3.8) and Eq. (3.9), the real part of Eq. (3.8) equals to the imaginary
part of Eq. (3.9) and the imaginary part of Eq. (3.8) equals to the real part of Eq. (3.9).
This means that these two equations are equal if we swap the real and imaginary parts

 24

of one of the equations. Therefore, there is way to transform Eq. (3.7) to Eq. (3.8).
Since Eq (3.7) represents the multiplications in DFT and Eq. (3.8) represents
multiplications in IDFT, this means that we are able to use the DFT to calculate the
IDFT.

In summary, the IDFT can be performed by first swap the real and imaginary
parts of input data. Then, after the DFT computation, swap the real and imaginary
parts of output data. By scaling the output with the constant 1/N, the IDFT result is
obtained. In the view of hardware implementation, we only have to add the swap unit
at the input and output data port of the FFT processor in order to use the same
processor to calculate IFFT.

3.3 Data Ordering and Twiddle Factors

As the proposed architecture can be reconfigured from 16 to 4096-point FFT, the

data ordering will be different from mode to mode due to the dedicated mixed-radix

algorithm. To make the architecture realizable, there must be rules that apply to all

modes. The dedicated mixed-radix algorithms for different modes are listed in

TABLE 3.1. The approach we use here is first to decompose the N-point FFT by the

radix-2 decimation-in-frequency algorithm. As mentioned in the previous section, a

radix-8 stage can be decomposed as combination of radix-2 stages or radix-4 stages.

In other word, we can combine two radix-2 stages as one radix-4 stage and three

radix-2 stages as a radix-8 stage, as shown in Figure 3.1. Based on signal flow graph

of the radix-2 DIF decomposition, we recompose N-point FFT to the mixed-radix

algorithms listed in TABLE 3.1. Since all the FFTs are decomposed by the radix-2

DIF algorithm, the data ordering follows the same rules. The order of output data for

the radix-2 flow graph is referred to as bit-reversed order. Figure 3.2 shows the

example of radix-2 decomposition of the 128-point FFT. As Table 3.1 listed, the

assigned mixed-radix algorithm for 128-point is radix-8/8/2. Figure 3.3 shows the

recomposed SFG, which is the desired SFG for our architecture. Notice that the black

nodes in Figure 3.2 correspond to the nodes in Figure 3.3 respectively.

 25

x [0]
x [1]
x [2]
x [3]
x [4]
x [5]
x [6]
x [7]
x [8]
x [9]

x [1 0]
x [1 1]
x [1 2]
x [1 3]
x [1 4]
x [1 5]
x [1 6]
x [1 7]
x [1 8]
x [1 9]
x [2 0]
x [2 1]

x [2 3]
x [2 4]
x [2 5]
x [2 6]
x [2 7]
x [2 8]
x [2 9]
x [3 0]
x [3 1]
x [3 2]
x [3 3]
x [3 4]
x [3 5]
x [3 6]
x [3 7]
x [3 8]
x [3 9]
x [4 0]
x [4 1]
x [4 2]
x [4 3]
x [4 4]
x [4 5]
x [4 6]
x [4 7]
x [4 8]
x [4 9]
x [5 0]
x [5 1]
x [5 2]
x [5 3]
x [5 4]
x [5 5]
x [5 6]
x [5 7]
x [5 8]
x [5 9]
x [6 0]
x [6 1]
x [6 2]
x [6 3]
x [6 4]
x [6 5]
x [6 6]
x [6 7]
x [6 8]
x [6 9]
x [7 0]
x [7 1]
x [7 2]
x [7 3]
x [7 4]
x [7 5]
x [7 6]
x [7 7]
x [7 8]
x [7 9]
x [8 0]
x [8 1]
x [8 2]
x [8 3]
x [8 4]
x [8 5]
x [8 6]
x [8 7]
x [8 8]
x [8 9]
x [9 0]
x [9 1]
x [9 2]
x [9 3]
x [9 4]
x [9 5]
x [9 6]
x [9 7]
x [9 8]
x [9 9]

x [1 0 0]
x [1 0 1]
x [1 0 2]
x [1 0 3]
x [1 0 4]
x [1 0 5]
x [1 0 6]
x [1 0 7]
x [1 0 8]
x [1 0 9]
x [1 1 0]
x [1 1 1]
x [1 1 2]
x [1 1 3]
x [1 1 4]
x [1 1 5]
x [1 1 6]
x [1 1 7]
x [1 1 8]
x [1 1 9]
x [1 2 0]
x [1 2 1]
x [1 2 2]
x [1 2 3]
x [1 2 4]
x [1 2 5]
x [1 2 6]
x [1 2 7]

x [2 2]

X (0)
X (6 4)
X (3 2)
X (9 6)
X (1 6)
X (8 0)
X (4 8)
X (1 1 2)
X (8)
X (7 2)
X (4 0)
X (1 0 4)
X (2 4)
X (8 8)
X (5 6)
X (1 2 0)
X (4)
X (6 8)
X (3 6)
X (1 0 0)
X (2 0)
X (8 4)

X (1 1 6)
X (1 2)
X (7 6)
X (4 4)
X (1 0 8)
X (2 8)
X (9 2)
X (6 0)
X (1 2 4)
X (2)
X (6 6)
X (3 4)
X (9 8)
X (1 8)
X (8 2)
X (5 0)
X (1 1 4)
X (1 0)
X (7 4)
X (4 2)
X (1 0 6)
X (2 6)
X (9 0)
X (5 8)
X (1 2 2)
X (6)
X (7 0)
X (3 8)
X (1 0 2)
X (2 2)
X (8 6)
X (5 4)
X (1 1 8)
X (1 4)
X (7 8)
X (4 6)
X (1 1 0)
X (3 0)
X (9 4)
X (6 2)
X (1 2 6)
X (1)
X (6 5)
X (3 3)
X (9 7)
X (1 7)
X (8 1)
X (4 9)
X (1 1 3)
X (9)
X (7 3)
X (4 1)
X (1 0 5)
X (2 5)
X (8 9)
X (5 7)
X (1 2 1)
X (5)
X (6 9)
X (3 7)
X (1 0 1)
X (2 1)
X (8 5)
X (5 3)
X (1 1 7)
X (1 3)
X (7 7)
X (4 5)
X (1 0 9)
X (2 9)
X (9 3)
X (6 1)
X (1 2 5)
X (3)
X (6 7)
X (3 5)
X (9 9)
X (1 9)
X (8 3)
X (5 1)
X (1 1 5)
X (1 1)
X (7 5)
X (4 3)
X (1 0 7)
X (2 7)
X (9 1)
X (5 9)
X (1 2 3)
X (7)
X (7 1)
X (3 9)
X (1 0 3)
X (2 3)
X (8 7)
X (5 5)
X (1 1 9)
X (1 5)
X (7 9)
X (4 7)
X (1 1 1)
X (3 1)
X (9 5)
X (6 3)
X (1 2 7)

X (5 2)

Figure 3.2 SFG of 128-point FFT in radix-2 DIF algorithm
x [0]
x [1]
x [2]
x [3]
x [4]
x [5]
x [6]
x [7]
x [8]
x [9]

x [1 0]
x [1 1]
x [1 2]
x [1 3]
x [1 4]
x [1 5]
x [1 6]
x [1 7]
x [1 8]
x [1 9]
x [2 0]
x [2 1]

x [2 3]
x [2 4]
x [2 5]
x [2 6]
x [2 7]
x [2 8]
x [2 9]
x [3 0]
x [3 1]
x [3 2]
x [3 3]
x [3 4]
x [3 5]
x [3 6]
x [3 7]
x [3 8]
x [3 9]
x [4 0]
x [4 1]
x [4 2]
x [4 3]
x [4 4]
x [4 5]
x [4 6]
x [4 7]
x [4 8]
x [4 9]
x [5 0]
x [5 1]
x [5 2]
x [5 3]
x [5 4]
x [5 5]
x [5 6]
x [5 7]
x [5 8]
x [5 9]
x [6 0]
x [6 1]
x [6 2]
x [6 3]
x [6 4]
x [6 5]
x [6 6]
x [6 7]
x [6 8]
x [6 9]
x [7 0]
x [7 1]
x [7 2]
x [7 3]
x [7 4]
x [7 5]
x [7 6]
x [7 7]
x [7 8]
x [7 9]
x [8 0]
x [8 1]
x [8 2]
x [8 3]
x [8 4]
x [8 5]
x [8 6]
x [8 7]
x [8 8]
x [8 9]
x [9 0]
x [9 1]
x [9 2]
x [9 3]
x [9 4]
x [9 5]
x [9 6]
x [9 7]
x [9 8]
x [9 9]

x [1 0 0]
x [1 0 1]
x [1 0 2]
x [1 0 3]
x [1 0 4]
x [1 0 5]
x [1 0 6]
x [1 0 7]
x [1 0 8]
x [1 0 9]
x [1 1 0]
x [1 1 1]
x [1 1 2]
x [1 1 3]
x [1 1 4]
x [1 1 5]
x [1 1 6]
x [1 1 7]
x [1 1 8]
x [1 1 9]
x [1 2 0]
x [1 2 1]
x [1 2 2]
x [1 2 3]
x [1 2 4]
x [1 2 5]
x [1 2 6]
x [1 2 7]

x [2 2]

X (0)
X (6 4)
X (3 2)
X (9 6)
X (1 6)
X (8 0)
X (4 8)
X (1 1 2)
X (8)
X (7 2)
X (4 0)
X (1 0 4)
X (2 4)
X (8 8)
X (5 6)
X (1 2 0)
X (4)
X (6 8)
X (3 6)
X (1 0 0)
X (2 0)
X (8 4)

X (1 1 6)
X (1 2)
X (7 6)
X (4 4)
X (1 0 8)
X (2 8)
X (9 2)
X (6 0)
X (1 2 4)
X (2)
X (6 6)
X (3 4)
X (9 8)
X (1 8)
X (8 2)
X (5 0)
X (1 1 4)
X (1 0)
X (7 4)
X (4 2)
X (1 0 6)
X (2 6)
X (9 0)
X (5 8)
X (1 2 2)
X (6)
X (7 0)
X (3 8)
X (1 0 2)
X (2 2)
X (8 6)
X (5 4)
X (1 1 8)
X (1 4)
X (7 8)
X (4 6)
X (1 1 0)
X (3 0)
X (9 4)
X (6 2)
X (1 2 6)
X (1)
X (6 5)
X (3 3)
X (9 7)
X (1 7)
X (8 1)
X (4 9)
X (1 1 3)
X (9)
X (7 3)
X (4 1)
X (1 0 5)
X (2 5)
X (8 9)
X (5 7)
X (1 2 1)
X (5)
X (6 9)
X (3 7)
X (1 0 1)
X (2 1)
X (8 5)
X (5 3)
X (1 1 7)
X (1 3)
X (7 7)
X (4 5)
X (1 0 9)
X (2 9)
X (9 3)
X (6 1)
X (1 2 5)
X (3)
X (6 7)
X (3 5)
X (9 9)
X (1 9)
X (8 3)
X (5 1)
X (1 1 5)
X (1 1)
X (7 5)
X (4 3)
X (1 0 7)
X (2 7)
X (9 1)
X (5 9)
X (1 2 3)
X (7)
X (7 1)
X (3 9)
X (1 0 3)
X (2 3)
X (8 7)
X (5 5)
X (1 1 9)
X (1 5)
X (7 9)
X (4 7)
X (1 1 1)
X (3 1)
X (9 5)
X (6 3)
X (1 2 7)

X (5 2)

Figure 3.3 SFG of 128-point FFT in mixed-radix algorithm

 26

After determine the data ordering for every butterfly stage, the next question is

how the twiddle factors arrange. Clearly, it is not likely that we can directly map the

twiddle factors from the radix-2 SFG to our mixed-radix SFG. However, we have

found relation between that is easy enough for us to derive a common rule.

Start with the example of the 16-point FFT SFG and as mentioned before, first

we draw the SFG using radix-2 algorithm, as shown in Figure 3.4(a). According to

TABLE 3.1, the 16-point FFT is supposed to recompose as radix-8/2 butterfly stages

and thus we know that the first three radix-2 stages should be combined as one

radix-8 stage. Since there are 16 points, there will be two radix-8 butterflies and we

extract them as in Figure 3.5. The first butterfly is readily a radix-8 butterfly as shown

in Figure 3.1. For the second butterfly, we must transform the internal twiddle factors

in order to map to Figure 3.1. The procedure is shown in Figure 3.6.

0*0
16Wx[0]

x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]
x[10]
x[11]
x[12]
x[13]
x[14]
x[15]

X(0)
X(8)
X(4)
X(12)
X(2)
X(10)
X(6)
X(14)
X(1)
X(9)
X(5)
X(13)
X(3)
X(11)
X(7)
X(15)

1*0
16W
2*0

16W
3*0

16W
4*0

16W
5*0

16W
6*0

16W
7*0

16W
0*1

16W
1*1

16W
2*1

16W
3*1

16W
4*1

16W
5*1

16W
6*1

16W
7*1

16W

0*0
8W
1*0
8W
2*0

8W
3*0

8W
0*1

8W
1*1

8W
2*1

8W
3*1

8W

0*0
4W
1*0
4W
0*1

4W
1*1
4W

0*0
8W
1*0

8W
2*0

8W
3*0

8W
0*1

8W
1*1

8W
2*1

8W
3*1

8W

0*0
4W
1*0
4W
0*1

4W
1*1
4W
0*0

4W
1*0
4W
0*1

4W
1*1
4W
0*0

4W
1*0
4W
0*1

4W
1*1
4W

0*0
16Wx[0]

x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]
x[10]
x[11]
x[12]
x[13]
x[14]
x[15]

X(0)
X(8)
X(4)
X(12)
X(2)
X(10)
X(6)
X(14)
X(1)
X(9)
X(5)
X(13)
X(3)
X(11)
X(7)
X(15)

1*0
16W
0*4

16W
1*4

16W
0*2

16W
1*2

16W
0*6

16W
1*6

16W
0*1

16W
1*1

16W
0*5

16W
1*5

16W
0*3

16W
1*3

16W
0*7

16W
1*7

16W

(a) (b)

Figure 3.4 SFG of 16-point DFT in

(a) radix-2 algorithm, and (b) radix-8/2 algorithm

 27

0*0
16Wx[0]

x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]
x[10]
x[11]
x[12]
x[13]
x[14]
x[15]

X(0)
X(8)
X(4)
X(12)
X(2)
X(10)
X(6)
X(14)
X(1)
X(9)
X(5)
X(13)
X(3)
X(11)
X(7)
X(15)

1*0
16W
2*0

16W
3*0

16W
4*0

16W
5*0

16W
6*0

16W
7*0

16W
0*1

16W
1*1

16W
2*1

16W
3*1

16W
4*1

16W
5*1

16W
6*1

16W
7*1

16W

0*0
8W
1*0

8W
2*0

8W
3*0

8W
0*1

8W
1*1

8W
2*1

8W
3*1

8W

1*0
4W

1*1
4W

0*0
8W
1*0

8W
2*0

8W
3*0

8W
0*1

8W
1*1

8W
2*1

8W
3*1

8W

1*0
4W

1*1
4W

1*0
4W

1*1
4W

1*0
4W

1*1
4W

0*0
4W

0*1
4W

0*0
4W

0*1
4W

0*0
4W

0*1
4W

0*0
4W

0*1
4W

0*0
16W
2*0

16W
4*0

16W
6*0

16W
0*1

16W
2*1

16W
4*1

16W
6*1

16W

0*0
8W
2*0

8W
0*1

8W
2*1

8W
0*0

8W
2*0

8W
0*1

8W
2*1

8W

0*0
4W
0*1

4W
0*0

4W
0*1

4W
0*0

4W
0*1

4W
0*0

4W
0*1

4W

x[0]
x[2]
x[4]
x[6]
x[8]
x[10]
x[12]
x[14]

1*0
16W
3*0

16W
5*0

16W
7*0

16W
1*1

16W
3*1

16W
5*1

16W
7*1

16W

1*0
8W
3*0

8W
1*1

8W
3*1

8W
1*0

8W
3*0

8W
1*1

8W
3*1

8W

1*0
4W
1*1
4W
1*0
4W
1*1
4W
1*0
4W
1*1
4W
1*0
4W
1*1
4W

x[1]
x[3]
x[5]
x[7]
x[9]
x[11]
x[13]
x[15]

1st radix-8 butterfly

2nd radix-8 butterfly

Figure 3.5 Extraction of radix-8 butterfly

The transformation starts with the first stage. In order to map the twiddle factors

in the first column to those of the radix-8 butterfly, 1
16W − is multiplied to the twiddle

factors, as shown in (a). Since the radix-2 butterfly performs only addition/subtraction

operations, the output must multiply in order to compensate the multiplication at

input. The procedure goes on through (b) and (c), and we can obtain the resulting SFG

as in (d).

1
16W

1
1

16
1

6WW −×

1
3

16
1

6WW −×

1
5

16
1

6WW −×

1
7

16
1

6WW −×

1
8W
3

8W

1
1

8
1
6W W×

1
3

8
1
6W W×

1*0
4W
1*1
4W
1*0
4W
1*1
4W
1*0
4W
1*1
4W
1*0
4W
1*1
4W

x[1]
x[3]
x[5]
x[7]
x[9]
x[11]
x[13]
x[15]

0
16W
2

16W
4

16W
6

16W

8
1

8
1W W −×

8
3

8
1W W −×

0
4W
1
4W

8
0

4
1W W×

8
1
4

1W W×

1
0

4
1
6W W×

1
1

4
1
6W W×

1
0

4
3
6W W×

1
1
4

3
6W W×

x[1]
x[3]
x[5]
x[7]
x[9]
x[11]
x[13]
x[15]

1
16W
1

16W

1
3

16
3

6WW −×

1
7

16
3

6WW −×

1
1

16
1

6WW −×

1
1

16
1

6WW −×

0
8W
2

8W

0
8W
2

8W

1*0
16W
1*4

16W
1*2

16W
1*6

16W
1*1

16W
1*5

16W
1*3

16W
1*7

16W

x[1]
x[3]
x[5]
x[7]
x[9]
x[11]
x[13]
x[15]

0
8W
1

8W
2

8W
3

8W

1*0
16W
1*4

16W
1*2

16W
1*6

16W
1*1

16W
1*5

16W
1*3

16W
1*7

16W

x[1]
x[3]
x[5]
x[7]
x[9]
x[11]
x[13]
x[15]

Twiddle
Factors

(a) (b)

(c)(d)

Figure 3.6 Procedure of combining three radix-2 stages into one radix-8 stage

 28

We can then conclude the formula for the twiddle factors scheduling. For the

N-point radix-8 decomposition, there will be N/8 butterflies. The twiddle factors for

the mth radix-8 butterfly are { , , , , , , , },

where m is a integer from 0 to (N/8)-1. The relation is shown in Figure 3.7. We will

later find that such relation greatly simplify the control for the multiplier stage.

Therefore, we can say that, for the N-point radix-8 decomposition, the complex

multiplications required are of N-based twiddle factors. As our reconfigurable FFT

may maximally perform 4 BF-stage operations, three multiplier stages are required.

For these three multiplier stages, the possible N-based twiddle factors required are

shown in TABLE 3.2.

*0m
NW *4m

NW *2m
NW *6m

NW *1m
NW *5m

NW *3m
NW *7m

NW

*0m
NW

*4m
NW

*2m
NW

*6m
NW

*1m
NW

*5m
NW

*3m
NW

*7m
NW

x[m+N/8]
x[m+2N/8]
x[m+3N/8]
x[m+4N/8]
x[m+5N/8]
x[m+6N/8]
x[m+7N/8]

x[m]

Figure 3.7 The twiddle factors for the mth radix-8 butterfly for N-point

decomposition

TABLE 3.2 N-based twiddle factors required for each multiplier stage
under different FFT size

FFT size Stage 1 Stage 2 Stage 3
16 16
32 32
64 64
128 128 16
256 256 32
512 512 64
1024 1024 128 16
2048 2048 256 32
4096 4096 512 64

 29

3.4 Finite Register Length Effect and Block-Floating-Point Method

For physical circuit implementation, an exact precision of computation is usually
not possible due to the effects of finite register length. For example, in implementing
an FFT algorithm with fixed-point arithmetic we must ensure against overflow. For
every fixed-point addition, M bits for example, (M+1)-bit registers are required to
store the result. However, the result will eventually be rounded to M bits and therefore
generate quantization errors. The analysis of signal quality can be measured by the
signal-to-quantization noise ratio (SNR), where each step of rounding reduces the
SNR accordingly.

An analysis of the effects is given in [3.1]. The analysis goes under the
assumption that the FFT length N is power of 2 and radix-2 decomposition is applied.
The simplified result shows that the signal-to-noise ratio decrease as N2, or 1 bit per
stage. That is, after every radix-2 butterfly stage, 1 bit must be added to the register
length in order to maintain the same noise-to-signal ratio.

There several methods to maintain the signal-to-noise in FFT implementations.
For general pipelined-based architectures, the common way is to use a larger internal
wordlength than the input data wordlength, either increasing the internal wordlength
gradually or keeping it fixed. This method is useful when FFT length is small.
However, when the FFT length becomes large, such as 1024-point or larger,
considerable overhead on circuitry comes out. The increase of wordlength affects not
only the number of register bits but also the size of computation circuitry. Another
drawback of this approach is that it is not suitable for a reconfigurable architecture. As
the general reconfigurable architecture introduced in sec 2.4.3, when the processor is
going to perform a shorter length FFT, preceding stages are often bypassed. As a
result, circuitry with large wordlength may be used to calculate a small FFT.

In the proposed architecture, the Block Floating Point (BFP) method is used to
minimize the quantization error [3.2-3.4]. The concept of BFP is that: The incoming
data are partitioned into non-overlapping blocks, and depending upon the data sample
with the highest magnitude in each block, a common exponent is assigned to the
block. As illustrated in Figure 3.8, the original block is normalized to the word with
largest magnitude in the block and a scaling factor k is obtained. Then the fixed-point
computation proceeds with the normalized data. When all the data in this block is
done computation, the whole block of data are shift back to the original precision
point according to the scaling factor previously obtained. Block-floating-point
outperforms fixed-point, since its input signals are always block normalized.

 30

k bits

k bits

After Scaling

Filling 0sContinuous 0s or 1s

k bits

Final Data

Sign extension
Fixed-point

Computation

Figure 3.8 Concept of block-floating-point

The difficulty of using the BFP in a pipeline-based architecture is that the
execution order is not processed stage by stage as the memory-based architecture. The
general pipeline-based architecture starts the next stage calculation as soon as the
available data arrive. In order to adopt the BFP, first we have divided the execution
into blocks. Figure 3.9 shows an example of how the blocks will be arranged when
128-point FFT is calculated in our approach. The data will be divided into r group
after a radix-r butterfly stage. The required data for butterfly stages afterward only
come from the previously block. In the example, the data are separated as B-0 ~ B-7
after the first radix-8 butterfly stage. The calculation beginning from B-0 will only
involved the data of B-0. That is, the operation of block C-0 ~ C-7 will need no data
from B-1 ~ B-7. Here, we call B-0 as the supply block of C-0 ~ C-7 and A-0 as the
supply block of B-0 ~ B-7.

To adopt the BFP method, the execution order of blocks thus follows two rules.
First, the execution of certain block will not start before their supply block is finished.
Secondly, the execution order of each stage is from top to bottom as in the SFG.

 31

x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]
x[8]
x[9]

x[10]
x[11]
x[12]
x[13]
x[14]
x[15]
x[16]
x[17]
x[18]
x[19]
x[20]
x[21]

x[23]
x[24]
x[25]
x[26]
x[27]
x[28]
x[29]
x[30]
x[31]
x[32]
x[33]
x[34]
x[35]
x[36]
x[37]
x[38]
x[39]
x[40]
x[41]
x[42]
x[43]
x[44]
x[45]
x[46]
x[47]
x[48]
x[49]
x[50]
x[51]
x[52]
x[53]
x[54]
x[55]
x[56]
x[57]
x[58]
x[59]
x[60]
x[61]
x[62]
x[63]
x[64]
x[65]
x[66]
x[67]
x[68]
x[69]
x[70]
x[71]
x[72]
x[73]
x[74]
x[75]
x[76]
x[77]
x[78]
x[79]
x[80]
x[81]
x[82]
x[83]
x[84]
x[85]
x[86]
x[87]
x[88]
x[89]
x[90]
x[91]
x[92]
x[93]
x[94]
x[95]
x[96]
x[97]
x[98]
x[99]

x[100]
x[101]
x[102]
x[103]
x[104]
x[105]
x[106]
x[107]
x[108]
x[109]
x[110]
x[111]
x[112]
x[113]
x[114]
x[115]
x[116]
x[117]
x[118]
x[119]
x[120]
x[121]
x[122]
x[123]
x[124]
x[125]
x[126]
x[127]

x[22]

A-0

B-0

B-1

B-2

B-3

B-4

B-5

B-6

B-7

C-0
C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8
C-9

C-10
C-11
C-12
C-13
C-14
C-15
C-16
C-17
C-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
C-27
C-28
C-29
C-30
C-31
C-32
C-33
C-34
C-35
C-36
C-37
C-38
C-39
C-40
C-41
C-42
C-43
C-44
C-45
C-46
C-47
C-48
C-49
C-50
C-51
C-52
C-53
C-54
C-55
C-56
C-57
C-58
C-59
C-60
C-61
C-62
C-63

X(0)
X(64)
X(32)
X(96)
X(16)
X(80)
X(48)
X(112)
X(8)
X(72)
X(40)
X(104)
X(24)
X(88)
X(56)
X(120)
X(4)
X(68)
X(36)
X(100)
X(20)
X(84)

X(116)
X(12)
X(76)
X(44)
X(108)
X(28)
X(92)
X(60)
X(124)
X(2)
X(66)
X(34)
X(98)
X(18)
X(82)
X(50)
X(114)
X(10)
X(74)
X(42)
X(106)
X(26)
X(90)
X(58)
X(122)
X(6)
X(70)
X(38)
X(102)
X(22)
X(86)
X(54)
X(118)
X(14)
X(78)
X(46)
X(110)
X(30)
X(94)
X(62)
X(126)
X(1)
X(65)
X(33)
X(97)
X(17)
X(81)
X(49)
X(113)
X(9)
X(73)
X(41)
X(105)
X(25)
X(89)
X(57)
X(121)
X(5)
X(69)
X(37)
X(101)
X(21)
X(85)
X(53)
X(117)
X(13)
X(77)
X(45)
X(109)
X(29)
X(93)
X(61)
X(125)
X(3)
X(67)
X(35)
X(99)
X(19)
X(83)
X(51)
X(115)
X(11)
X(75)
X(43)
X(107)
X(27)
X(91)
X(59)
X(123)
X(7)
X(71)
X(39)
X(103)
X(23)
X(87)
X(55)
X(119)
X(15)
X(79)
X(47)
X(111)
X(31)
X(95)
X(63)
X(127)

X(52)

Figure 3.9 Blocks decomposition of 128-point FFT

Now, we can apply the BFP method. After the calculation of a certain block, the
data coming out from this block will be evaluated to obtain a scaling factor.
According to this factor, the data will be scaled when they go into next stage
operation. The scaling factors are stored as a table during execution. The final scaling
factor for the output will be the sum of scaling factors of all its supply blocks. The
final scaling factors are required to shift back the data to the coordinate precision as
the FFT input. Namely, output scaling factor for X(0) is the sum of scaling factors of
block A-0 and B-0, and the output scaling factor for X(4) is the sum of scaling factors
of block A-0 and B-1, etc..

Accordingly, the number of storage elements required to store the intermediate
data between each stage is related to the block size respectively. TABLE 3.3 shows

 32

the required storage elements between stages for each FFT size. Take the 128-point
FFT for example, as the SFG in Figure 3.9. There are three computation stages for the
128-point FFT in our mixed-radix algorithm. For the first stage, the 128 data must be
computed before any computation of the second stage starts. Therefore, 128 storage
elements are required between first two stages. In the second stage, the 128 points are
divided into eight 16 points by the radix-8 decomposition, and now the block size
becomes 16 data. Again, 16 storage elements are required between second and the last
stage.

TABLE 3.3 Storage elements required between each stage

FFT size Stage 1&2 Stage 2&3 Stage 3&4
16 16
32 32
64 64
128 128 16
256 256 32
512 512 64
1024 1024 128 16
2048 2048 256 32
4096 4096 512 64

The actual number of storage elements required in the implementation of RMR
FFT architecture, however, is a little different from TABLE 3.3. This is due to the
design style of “Register Banks”, the internal storage modules. The detail will be
explained in section 4.3.3.

3.5 Conclusions

In this chapter, we have derived the reconfigurable mixed-radix algorithm for the
proposed FFT. For FFTs of length from 16 points to 4096 points, different mixed
radix algorithms are assigned. In the proposed algorithm, we will need a
reconfigurable butterfly stage that can act as radix-8, radix-4, or radix-2 butterfly
accordingly. We also show the approach to calculate the IFFT using the FFT
architecture.

By establishing the SFG through the radix-2 decomposition, we manage to find

 33

certain rules in the way of data ordering. Such rules will be helpful for the architecture
design. The twiddle factors are also clarified over various FFT sizes. Regularities are
found in the twiddle factors for the 8-data-path architecture.

In the issue of signal-to-noise ratio, general pipeline-based architectures use
larger internal wordlength to maintain a reasonable SNR. In our RMR FFT, the
block-floating point approach is used to maintain the data accuracy. The procedure is
first to identify data blocks on the SFG and then execute the butterfly computations
according to block ordering. The utilization of BFP greatly changes the execution
order in our RMR FFT compared to other pipeline-base architecture.

As our purpose is to construct a reconfigurable processor with high throughput
rate, we may already draw out the RMR FFT architecture as in MDC structure.
However, there are more to consider, as will be discussed in next chapter

 34

Chapter 4

Architecture of

Reconfigurable Mixed-Radix FFT

4.1 Introduction

The design environment is shown in Figure 4.1. We will assume that existing

input buffer has arranged the time domain input as 8 parallel data. The output of the

FFT is of 8 parallel data as well. External power management unit are required for

applying power gating on the proposed architecture.

RMR
FFT/IFFT
Processor

Power Management Unit

8-word 8-word

CLK

RST

START

IFFT

MODE

OUT_EN

OUT_SBIT

Input
Buffer

Output
Buffer

Figure 4.1 FFT environment

In this chapter, we will construct the architecture for the proposed RMR FFT and

demonstrate the data flow in the processor. Section 4.2 first depicts the overall

architecture. The detail design of each function module is given in section 4.3. Section

4.4 illustrates the data flow of the FFT processor under different mode. The

conclusion is stated in section 4.5.

 35

4.2 Overall Architecture

The overall architecture of the proposed RMR FFT is shown in Figure 4.2. The

width of the data path is of 8 words. Each word represents a complex number data,

which consists of real and imaginary part. The wordlength is 16-bit, and then the data

path is of 8×2×16=256-bits. The proposed reconfigurable architecture is of four

butterfly computation stages while the architecture in the figure shows only three.

This is because the first two butterfly computation stages are combined as one.

Observing TABLE 3.1, the first BF stage is enabled only during 1024, 2048, or

4096-point FFT. As block execution order explained in previous chapter, the first BF

stage and the second BF stage in a signal flow graph will not overlap in calculation

since the second BF stage will not start until the first BF stage is totally completed.

Therefore, these two computation stages can share the same hardware.

R8_BF MULT CMULTR8_BFRB_4096

ROM

RB_512a

RR_BF

BFP

BFP

RB_512b

RB_64a

BFP

RB_64b

0

1

0

1

0

1

0

1
swap

swap

Data
in

Data
Out

Figure 4.2 Block diagram of the proposed RMR FFT

As Table 3.1 suggests in section 3.2, only the last BF stage needs to be a

reconfigurable butterfly (RR_BF) while the rest are radix-8 butterflies (R8_BF). We

also have different strategies for the two multiplier stages, as MULT and CMULT.

Between each computation stage, register banks (RB) are used to store and switch

internal data. Unlike the traditional commutators in pipeline architecture [4.1-4.2], our

internal RB is of more regular structure and easier to control. The construction and

principle of each module will be introduced in next section.

 36

4.3 Architecture Design

The detail architecture of each module will be explained in the following

sub-sections.

4.3.1 Butterfly (BF) Unit

The butterfly blocks are designed based on the signal flow graph in Figure 3.1. In

overall architecture, there will be two kinds of butterfly required. One is a general

radix-8 butterfly block which performs an 8-point DFT operation. The other is the

reconfigurable butterfly that can be reconfigured as radix-2, radix-4, and radix-8

butterfly respectively.

4.3.1.1 General BF

The general radix-8 butterfly is a direct implementation of SFG of the 8-point

DFT (Figure 3.1). As explained earlier, the multiplications involved in an 8-poit DFT

are trivial, which are multiplication by ± j, (1-j)/ √ 2, and -(1+j)/ √ 2. The

multiplication of ± j is simply sign and real/imaginary part adjustment and

multiplication of 1/√2 can be implemented as in Figure 4.3. Therefore, these

multiplications required only some shift-and-add, swap, and sign-changing operation.

Without any true multiplier, it is possible to carried out the whole 8-point DFT in one

clock cycle. The implementation diagram of a general BF is shown in Figure 4.4. The

8-point DFT is implemented in a fully parallel datapath by exactly following the SFG

(Figure 3.1). The internal wordlength of these units is 16-bit, which is the same as

input wordlength.

 37

1 3 4 6 8 91 2 0.70710678 2 2 2 2 2 2
22

− − − − − −= = = + + + + +

1-bit right shift

3-bit right shift

4-bit right shift

6-bit right shift

8-bit right shift

9-bit right shift

+x x(0.70710678)

Figure 4.3 Circuit diagram of multiplication by 1/√2

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+
+
+
+
+
+
+

(1-j)/v2

-(1+j)/v2

-j

-1

-1

-1

-1

-j

-j
-1

-1

-1

-1

-1

-1

-1

-1

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Figure 4.4 Block diagram of general radix-8 butterfly

4.3.1.2 Reconfigurable BF

The SFG of implementing the reconfigurable butterfly also refers to Figure 3.1.

The block diagram of the reconfigurable BF is much like the general BF except that

multiplexers are inserted every two stages. The block diagram of the reconfigurable is

shown in Figure 4.5. For the three-stage partition, there will be two columns of

multiplexers present, controlled by ENA and ENB respectively. The multiplexers

select data from previous stage or the butterfly input. When the BF is going to act as a

radix-8 butterfly, ENA and ENB are set to 0. When the two radix-4 BF combination is

demanded, the input data should go directly into stage 2, and thus set ENA to 1 and

ENB to 0. When the four radix-2 BF combination is needed, only the last stage is

required for calculation and thus set ENB to 1. The relation between control signals

and operation mode is listed in TABLE 4.1.

 38

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+

+
+
+
+
+
+
+
+

(1-j)/v2

-(1+j)/v2

-j

-1

-1

-1

-1

-j

-j
-1

-1

-1

-1

-1

-1

-1

-1
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

ENA ENB

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Figure 4.5 Block diagram of reconfigurable butterfly

TABLE 4.1 Truth table of control signals for reconfigurable BF

BF Mode ENA ENB

Raidx-8 BF 0 0

2 parallel radix-4 BF 1 0

4 parallel radix-2 BF X 1

4.3.2 Multiplier Stage

As the overall block diagram shows (Figure 4.2), there are two multiplier stages

required in the proposed architecture. Here, we use two different strategies for these

two multiplier stages respectively. The required twiddle-factor multiplications are

verified in the previous chapter. For the multiplier stage between last two BF stages,

we will use the strategy proposed in [4.3] to construct this multiplier stage, which is

call the “constant multiplier” method. For the other multiplier stage, the traditional

multiplier-ROM architecture is applied.

4.3.2.1 Constant Multiplier Approach

According to section 3.3, the twiddle factors for the N-point radix-8

decomposition are { , , , , , , , },

where m is a integer from 0 to (N/8)-1. For the multiplier stage between last two BF

*0m
NW *4m

NW *2m
NW *6m

NW *1m
NW *5m

NW *3m
NW *7m

NW

 39

stages, N could be 16, 32, or 64, as shown in TABLE 3.2. Therefore, possible twiddle

factors are , , or . Notice that and . As a

result, the twiddle factors are in the range .

0~15
16W 0~31

32W 0~63
64W 4

16 64
kW W= k k2

32 64
kW W=

0~63
64W

In the complex-number coordinates, we can map the twiddle factors to the unit

circle. As shown in Figure 4.6, we can divide the unit circle into 8 equal regions, each

containing N/8 twiddle factors (N = 64 in our case). Due to the symmetry of the unit

circle, we can use only the twiddle factors in one of the regions to obtain the others by

proper swapping and sign-changing operation.

H
GF

E

D

C B

A
0

64W

56
64W

48
64W

40
64W

32
64W

24
64W

16
64W

8
64W

Figure 4.6 Twiddle factors on the unit circle

In the approach proposed in [4.3], it suggests that a twiddle factor multiplication

of , where =X+jY, can be carried out by a set of constant multipliers (X,Y)

instead of a complex multiplier. The twiddle factors required in this multiplier stage

are , where p ranges from 0 to 63. According to the above property, however,

only nine sets of constants need to be implemented. Only twiddle factors in region A

need to be implemented and the twiddle factors in other regions can be transformed

through TABLE 4.2. In these nine sets of constants, one of them is (0, 1), which is a

trivial multiplication. The rest 8 sets of constants are listed in TABLE 4.3.

p
NW p

NW

64
pW

TABLE 4.2 Mapping table of the twiddle factors

Region Real Imaginary
A X Y
B Y X
C -Y X
D -X Y
E -X -Y
F -Y -X
G Y -X
H X -Y

 40

TABLE 4.3 Implementation table of constants

Constant Value of
real part

Value of
img. part

Realization of real part Realization of img. part

Const1 0.995178 0.097961 1-2-8-2-10+2-14 2-4+2-5+2-8+2-12+2-14

Const2 0.980773 0.195068 1-2-6-2-8+2-12+2-14 2-3+2-4+2-7-2-12

Const3 0.956909 0.290283 1-2-5-2-7-2-8-2-13 2-2+2-5+2-7+2-10+2-12

Const4 0.923828 0.382690 1-2-4-2-7-2-8-2-9 2-1-2-3+2-7-2-13

Const5 0.881896 0.471374 1-2-3+2-7-2-10+2-14 2-1-2-5+2-9+2-11+2-12-2-14

Const6 0.831420 0.555541 1-2-3-2-5-2-6+2-8-2-11-2-13 2-1+2-4-2-7+2-10-2-13

Const7 0.773010 0.634399 1-2-2+2-6+2-7-2-11+2-14 2-1+2-3+2-7+2-9-2-11+2-13

Const8 0.707092 0.707092 2-1+2-3+2-4+2-6+2-8+2-14 2-1+2-3+2-4+2-6+2-8+2-14

We can derive the scheduling of twiddle factors. TABLE 4.4 shows the

scheduling of the twiddle factors in each data path after mapping to region A. The

scheduling is first derived by the 64-base case. For the 64-base case, there will be 8

radix-8 butterflies and thus require 8 cycles. The twiddle factors are { , ,

, , , , , } at cycle m. For example, twiddle factors

at cycle 2 are { , , , , , , , }. After mapping

through TABLE 4.2, they becomes { , , , , , , , }.

For 32-base case, since , scheduling of twiddle factors for four cycles

corresponding time slot {0, 2, 4, 6} of the 64-base case. The same reason applies to

the 16-base case.

*0
64
mW *4

64
mW

*2
64
mW *6

64
mW *1

64
mW *5

64
mW *3

64
mW *7

64
mW

2*0
64W 2*4

64W 2*2
64W 2*6

64W 2*1
64W 2*5

64W 2*3
64W 2*7

64W

0
64W 8

64W 4
64W 4

64W 2
64W 6

64W 6
64W 2

64W

2
32 64
mW W= m

TABLE 4.4 Scheduling of twiddle factors, 64
pW

0 1 ←16-base
0 1 2 3 ←32-base

Time slot

Data path 0 1 2 3 4 5 6 7 ←64-base
0th 0 0 0 0 0 0 0 0
1st 0 4 8 4 0 4 8 4
2nd 0 2 4 6 8 6 4 2
3rd 0 6 4 2 8 2 4 6
4th 0 1 2 3 4 5 6 7
5th 0 5 6 1 4 7 2 3
6th 0 3 6 7 4 1 2 5
7th 0 7 2 5 4 3 6 1

 41

The multiplier stage is based on the constant multipliers shown in TABLE 4.3.

Figure 4.7 shows the block diagram of one of such constant multipliers. The

hard-wired circuitry is dedicated to perform multiplication by certain constant. The

overall block diagram of the CMULT stage is shown in Figure 4.8. The input shuffle

network routes the incoming data to the appropriate hard-wired constants and the

output shuffle network will perform the appropriate sign-changing and swapping

operation according to the mapping table in TALBE 4.2. Noticing the scheduling of

TABLE 4.4, some constant multipliers may be duplicated in the same time slot.

Therefore, there will be duplicate constant multiplier in the central multiplier bank,

too. For example, there will be four Const4 in the multiplier bank since there are

maximally 4 Const4 multipliers required at the same time (time slot 4 in TABLE 4.4).

8-bit right shift

10-bit right shift

14-bit right shift

+ x(0.995178)

1

-1

-1

1

x

Figure 4.7 Block diagram of a constant multiplier

Constant
Multiplier

Bank

8 to 8
shuffle

network

8 to 8
shuffle

network8-word 8-word

Figure 4.8 Block diagram of CMULT stage

 42

4.3.2.2 Complex Multiplier Approach

For first two multiplier stages, possible twiddle factors are , ,

, , , or . Similar to before, we can say that the possible

twiddle factors are in the range . For this multiplier stage, we use the

traditional multiplier-ROM approach. The block diagram of MULT is shown in Figure

4.9. Seven parallel complex multipliers are dedicated to the eight data paths

respectively. For the 0

0~127
128W 0~255

256W

0~511
512W 0~1023

1024W 0~2047
2048W 0~4095

4096W

0~4095
4096W

th data path, the twiddle factor is always and thus no

multiplier required.

0 1NW =

ROM1

ROM2

ROM3

ROM4

ROM5

ROM6

ROM7

Complex multiplier

Complex multiplier

Complex multiplier

Complex multiplier

Complex multiplier

Complex multiplier

Complex multiplier

x1

Addr

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

Figure 4.9 Block diagram of MULT stage

The read-only memory (ROM) is used to store the twiddle factors and supply

them to the complex multipliers. The scheduling of twiddle factors for each data path

for 4096-base case is listed in TABLE 4.5. The strategy used here is to map this table

to the ROM storage. That is, with a specific ROM dedicated to each data path, each

ROM stores 512 twiddle factors. The time slot information is used as the address for

the ROMs. This strategy simplifies the control for ROM address generation for the

multiplier stage. A counter is only required to generate the ROM address. For twiddle

factors of 2048-base case, applying , the twiddle factors for 256 cycles

thus corresponding to time slot {0, 2, 4 … 510} in TABLE 4.5. Based on the same

reason, we can use the same ROMs to supply twiddle factors for different modes. The

address generation is simply modified by changing the counter interval.

2
2048 4096
mW W= m

Moreover, we divide each ROM into six banks. When small-base multiplication

 43

mode is on, not all 512 time slots are required. It means that certain twiddle factors

will not be needed and thus we can turn off ROM banks that store these unnecessary

twiddle factors. Figure 4.10 shows the block diagram of the ROM banking and

TABLE 4.6 shows the example of the twiddle factors stored in each bank for 4th ROM.

As we can see, only bank {F} is activated during 128-base multiplications, and bank

{E, F} are activated during 256-base multiplications, etc.

TABLE 4.5 Scheduling of twiddle factors, 4096
pW

Time slot
Data path

0 1 2 3 4 5 510 511

0th 0 0 0 0 0 0 0 0
1st 0 4 8 12 16 20 2040 2044
2nd 0 2 4 6 8 10 1020 1022
3rd 0 6 12 18 24 30 3060 3066
4th 0 1 2 3 4 5 510 511
5th 0 5 10 15 20 25 2550 2555
6th 0 3 6 9 12 15 1530 1533
7th 0 7 14 21 28 35 3570 3577

F E D C B A

0 1

0 1

0 1

0 1

0 1Addr[0]

Addr[1]

Addr[2]

Addr[3]

Addr[4]

Addr[8:1]Addr[8:2]Addr[8:3]Addr[8:4]
Addr[8:5]

Figure 4.10 Block diagram of ROM banking

TABLE 4.6 Twiddle factors, , stored in 44096
pW th ROM

ROM Content (p) ROM Content (p)
A 1, 3, 5…511 D 8, 24, 40…504
B 2, 6, 10,…510 E 16, 48, 80…496
C 4, 12, 20…508 F 0, 32, 64…480

 44

4.3.3 Register Banks (RB)

The register banks are used to store intermediate data during calculation. As

shown in section 3.4, the number of storage elements required between each stage at

each mode is listed in TABLE 3.3. There should be three RB modules between four

computation stages. For each of these RB modules, the number of storage elements

varies according to different FFT length. Here, we want to design the register banks to

be reconfigurable. That is, a RB module should be able to change its storage capacity.

More importantly, the extra storage elements should be able to be fully turned off

while the RB is in a low capacity mode. Therefore, a good circuitry partition is

required in design the RB. Furthermore, the register banks also have the responsibility

for reordering the data sequence before output them to next computation stage. Since

there are nine different mixed-radix algorithms for our reconfigurable architecture, the

control and dataflow of this reordering might be an annoying problem. Fortunately,

we have a common rule for data ordering as described in previous section (section

3.2). The design of internal register banks thus become a much smooth job.

Also, in the design of our proposed register banks, a two-input register is used

(Figure 4.11(a)). A direct implementation such registers will be using a D flip-flop

with a 2-to-1 multiplexer for input selection, as shown in (b). We will discuss the

implementation of the required registers in later chapter. The use of two-input register

effectively adds another control signal, CTRL, for input selection. To control the data

flow in the register banks, the clock signal, CLK, and CTRL must be taken care of.

In the overall architecture, there are three kinds of register banks, RB_4096,

RB_512, and RB_64 (as shown in Figure 4.2). The structure of RB_4096 and RB_512

is of the same type while RB_64 is of another. We will depict these two types of RB

respectively.

 45

IN0

IN1

OUT

OUT

CLK
CTRL

0

1
QD

IN0
IN1

CLK
CTRL

OUT

(a) (b)

Figure 4.11 Block diagram of the two-input register

4.3.3.1 RB_64

Observing TABLE 3.1, the butterfly stage before RB_64 is radix-8 BF stage

while the stage after is reconfigurable BF stage, which can be one radix-2, two radix-4,

or one radix-8.butterfly. Referring to TABLE 3.3, the possible capacity of RB_64 may

be of 16, 32, 64-word according to different FFT length. Figure 4.12 shows the block

diagrams for the three different modes.

IN1IN3IN5IN7

IN0IN2IN4IN6

IN0IN4

IN1IN5

IN2IN6

IN3IN7
IN0IN1IN2IN3IN4IN5IN6IN7

(a) (b) (c)

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

Figure 4.12 Block diagram of RB_64 for three different capacities,
(a) 16-word, (b) 32-word, and (c) 64-word

 46

Assuming that M-data capacity is required for the RB under current FFT mode,

then it will take the RB M/8 to clock cycles to receive data previous stage and 8

parallel data for each clock cycle. During the input phase, the index of incoming data

at cycle i is:

i+(M/8)*k (4.1)

, where k = 0~7 represents the index of the 8-word datapath. During the output phase,

the desired data ordering should be:

j*(M/8)+k (4.2)

, where j is the output cycle count. Take the 16-word mode for example, as shown in

Figure 4.13. Two cycles are required for the RB to receive data. During the input

phase (PHASE=1), data from previous stage goes into the 8 dedicated input ports. For

every cycle, the RB performs a shift-up operation. In other word, the two-input

register choose the data from downward. During output phase (PHASE=0), the overall

RB performs a shift-right operation and the desired data are obtained at the output

ports every cycle. Therefore, we can use the PHASE signal to control the data flow in

the RB. The PHASE signal is used for all the register in RB as the CTRL signal, which

selects the input data for the two-input register.

8 0

10 2

12 4

14 6

IN0IN4

IN1IN5

IN2IN6

IN3IN7

8 0

9 1

10 2

11 3

12 4

13 5

14 6

15 7

IN0IN4

IN1IN5

IN2IN6

IN3IN7

8

9

10

11

12

13

14

15

IN0IN4

IN1IN5

IN2IN6

IN3IN7

i=0 i=1
j=1

PHASE=1 PHASE=1 0 PHASE=0

j=0

Figure 4.13 Data flow in RB for 16-word mode

 47

The similar operation and data flow stand for the 32-word and 64-word RB. In

order to deal with the various FFT modes, three different RBs are thus to be

constructed, which is undesired overhead since only one of them is required at the

same time. Observing Figure 4.12, it is not hard to find that the 64-word RB can also

be used for the other two. Figure 4.14 shows such reconfigurable RB. Using parts of

the 64-word RB, it can perform as the 32-word or 16-word RB as long as we redirect

input data to the corresponding positions. The advantage of the reconfigurable RB is

that, when a smaller capacity RB mode is required, the unnecessary registers can be

fully turned off since they have nothing to do with the correct data-flow operation.

Also, the control signal is simple since only the PHASE signal is needed. The

overhead for reconfiguration is the multiplexers at the corresponding input ports.

IN0IN1IN2IN3IN4IN5IN6IN7

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

32-word mode 16-word mode

Figure 4.14 Block diagram of reconfigurable RB_64

4.3.3.2 RB_512 and RB_4096

The structure of RB_512 and RB_4096 are of the same type. Also observing

TABLE 3.1, the butterfly stage before and after these two RB stages are both radix-8

BF stages. The RB capacity ranges from 128-word to 4096-word.

 48

Assuming that M-data capacity is required for the current RB, then it will take

the RB M/8 to clock cycles to receive data previous stage and 8 parallel data for each

clock cycle. During the input phase, the index of incoming data at cycle i is:

i+(M/8)*k (4.3)

, where k = 0~7 represents the index of the 8-word datapath. During the output phase,

the desired data ordering should be:

2 2 2 2/() * %() *
8 8 8 8
M M M Mj j⎢ ⎥ + +⎢ ⎥⎣ ⎦

k (4.4)

, where j is the output cycle count. Take the 128-word RB mode for example, as

shown in Figure 4.15. The overall RB can be seen as a combination of eight blocks

and each input data goes into one block respectively. During the input phase, the

bottom row of registers performs shift-right operation. For every 2 cycles, the upper

rows of registers perform shift-up operation in order to shift-up the bottom row data to

let next data coming in. After 16 cycles, the first output data are ready at the output

ports. At output phase, the overall RB performs the shift-right operation to deliver

output data every cycle.

112 96 80 64 48 32 16 0

126

125

123

121

119

117

115

113

124

122

120

118

116

114

112

110

109

107

105

103

101

99

97

108

106

104

102

100

98

96

94

93

91

89

87

85

83

81

92

90

88

86

84

82

80

78

77

75

73

71

69

67

65

76

74

72

70

68

66

64

62

61

59

57

55

53

51

49

60

58

56

54

52

50

48

46

45

43

41

39

37

35

33

44

42

40

38

36

34

32

30

29

27

25

23

21

19

17

28

26

24

22

20

18

16

14

13

11

9

7

5

3

1

12

10

8

6

4

2

0

113 112 97 96 81 80 65 64 49 48 33 32 17 16 1 0 114

113 112

98

97 96

82

81 80

66

65 64

50

49 48

34

33 32

18

17 16

2

1 0

127

125

123

121

119

117

115

113

126

124

122

120

118

116

114

112

111

109

107

105

103

101

99

97

110

108

106

104

102

100

98

96

95

93

91

89

87

85

83

81

94

92

90

88

86

84

82

80

79

77

75

73

71

69

67

65

78

76

74

72

70

68

66

64

63

61

59

57

55

53

51

49

62

60

58

56

54

52

50

48

47

45

43

41

39

37

35

33

46

44

42

40

38

36

34

32

31

29

27

25

23

21

19

17

30

28

26

24

22

20

18

16

15

13

11

9

7

5

3

1

14

12

10

8

6

4

2

0

127

125

123

121

119

117

115

113

126

124

122

120

118

116

114

112

111

109

107

105

103

101

99

97

110

108

106

104

102

100

98

96

95

93

91

89

87

85

83

81

94

92

90

88

86

84

82

80

79

77

75

73

71

69

67

65

78

76

74

72

70

68

66

64

63

61

59

57

55

53

51

49

62

60

58

56

54

52

50

48

47

45

43

41

39

37

35

33

46

44

42

40

38

36

34

32

31

29

27

25

23

21

19

17

30

28

26

24

22

20

18

16

15

13

11

9

7

5

3

1

i=0
PHASE=1

i=1
PHASE=1

i=2
PHASE=1

j=1
PHASE=0

i=14
PHASE=1

i=15
PHASE=1 0

j=0

Figure 4.15 Data flow in RB for 128-word mode

The control signals of the above operations are also of simple regularity. Both the

PHASE and CLK need to be considered. First, we divide the RB into two control

zones, as shown in Figure 4.16. For the two-input register in Zone 1, they share the

 49

same clock and use the PHASE signal as the input-select signal. For registers in Zone

2, except for those at input ports, their input-select signals are set to 0 in order to

perform the shift-right operation at all time. Each of the 8 blocks has a dedicated input

port. For the register at input ports, the PHASE signal is used for the input-select

signal. The resulting timing relation of the control signals is shown in Figure 4.17.

Notice that the clock signals for Zone 1 toggle only every two cycle during the input

phase.

Zone 1

Zone 2

IN0IN1IN2IN3IN4IN5IN6IN7

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

register at
input port

Figure 4.16 Control zones for the RB

Input Phase Output Phase

15 cycles
2 cycles

row[0]

row[1]

row[2]

row[3]

row[4]

row[5]

row[6]

row[7]

Phase

C
LK

 fo
r Z

on
e

1

CLK
for

Zone 2

Figure 4.17 Control signals for the 128-word RB

Based on the above scheme, we can derive a rule for the structure of this type of

RB. The RB is combined by 8 basic blocks, which are of the same structure and

connected one after another, and there are 8 rows of two-input registers in a basic

block. For the RB of capacity of M-data, the width of a basic block is (M/82)-word.

The control signals are the PHASE signal and two clock signals for the two control

zones. The clock signals for Zone 1 toggle every (M/82) cycle during input phase.

According to TABLE 3.3, the RB_512 module may be of the capacity 128, 256,

or 512-word and RB_4096 module may be of the capacity 1024, 2048, or 4096-word

 50

for different FFT length. The same as the RB_64 in previous section, we can also use

a reconfigurable RB. Figure 4.18 shows the block of RB_512, which can be

reconfigured as 128, 256 or 512-word. The basic block is of width 8-word. The

dedicated input for a basic block is connected to three different registers. For RB_512

to act as 128-word RB, the input data goes into the right most input register, which

effectively set the width of the basic block to 2-word. The column where the input

register is at now takes data from the output of previous basic block instead of

previous column. For the rest 6 columns at the left of the basic block, they can be

fully turned off since they have nothing to do with the correct data-flow operation.

With this scheme, we can change the mode of RB just by setting the corresponding

input registers and modifying control signals. The overhead for reconfiguration is the

multiplexers at the columns of the input registers in every block.

Width=8

IN0IN1IN7

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

basic block
8 basic blocks

Figure 4.18 Block diagram of reconfigurable RB_512

4.3.3.3 Duplicate Module Insertion

In the above design of register banks, the RB modules are not able to accept

input data during output phase, even if there is empty register available. This is

because the flow in the RB is two-way direction instead of the traditional one-way.

The situation is awkward to the pipeline-based architecture. In the correct pipeline

operation, the RB should be able to accept one data input after one data output. Since

the designed RB can not do this, the data flow will have to stall to wait for the RB

available.

Our method to deal with this problem is to insert duplicate RBs. Two identical

 51

RBs are presented for the stage. When the first RB is at output phase, the input data

from previous will go into the second one. Then the second RB will go into output

phase and the first RB is back to input phase in turn. Since the input and output phase

both take the same cycles, two RBs are enough to make the data flow with stalls.

However, we do not use duplicate RB module for the first RB stage in order to

save the number of storage elements required. Since the capacity of the first stage RB

is N-word, where N is the FFT length, large number of registers can be saved without

the duplicate module in the first stage RB. This approach effectively reduces the

throughput rate of our architecture. The original throughput rate is 8 times of the input

clock rate since the datapath is of 8-data width. The resulting throughput rate turns out

to be 4 times of the input clock rate. This is because the first stage takes N/8 clock

cycles to take input data and N/8 clock cycles to deliver output data afterward.

Therefore, the throughput rate at the FFT input is cut half due to this effect.

4.3.4 BFP

As mentioned in Chapter 3, the block-floating-point technique is used in the

proposed RMR FFT in order to maintain the SNR. The approach used here is the

“input scaling” approach. The data are evaluated before writing to memory (RB) and

not shifted until they are read into next computation stage. That is, in our architecture,

the incoming data of RB are evaluated during the input phase of RB. While the RB is

at output phase, the RB output data will be shifted according to the scaling factor

obtained during input phase.

RB

detector

sh
ift

er

8-word

BFP module

Figure 4.19 Block diagram of BFP

 52

The block diagram of the BFP block is shown in Figure 4.19. The BFP block

consists of a detector and a shifter. The detector picks out the largest data in a block,

and records its number of MSB zeros or ones as the scaling factor. The shifter shifts

data according to the scaling factor of the block. Data will not be shifted until they go

into the next computation stage.

As the overall architecture of Figure 4.2, there are three BFP modules in the FFT.

For RB stage with duplicate module, only one BFP is needed since the input phase

and output phase of these two RBs will not overlap. A scaling table is constructed to

store the scaling factors from each BFP modules. The final output scaling factor will

be determined according to this scaling table.

4.3.5 INPUT/OUTPUT Buffer

Since the IFFT can be performed by first swap the real and imaginary parts of

input data, and then swap the real and imaginary parts of output data [4.4], the FFT

processor is capable of performing IFFT operations by adding swap units at input and

output respectively. Although we have assumed that external input buffer has arranged

the input data in 8-parallel format as the proposed FFT required, we will give a simple

demonstration of how such a reconfigurable input buffer can be designed.

Figure 4.20 shows the block diagram of a reconfigurable input buffer. The data

flow is similar to that of RB_512 or RB_4096. Taking N=16 for example, only two

right most columns are activated. For every two cycles, the upper rows perform the

shift-up operation. After the buffer is full, shift-right operation is performed to deliver

the output data. The data flow example is shown in Figure 4.21. The way of data

moving in the buffer is similar to that in a RB (section 4.3.3.2). The number of

memory required for the input buffer for N-point FFT is (7N/8) +1.

 53

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

data_in
Swapping

unit

To the BF
stage

224

Total width =512

FFT/IFFT

Figure 4.20 Block diagram of reconfigurable input buffer

0

2

1

2

01

1

0

0

13

11

9

7

5

3

1

15

1213

10

8

11

9

6

4

7

5

2

0

3

1

14

12

10

13

11

8

6

9

7

4

2

5

3

01

13

i=0 i=1 i=2 i=13 i=14 i=15

Figure 4.21 Data flow in the input buffer for N = 16

As derived in chapter 2, the output order of the FFT is in bit-reversed order for

whatever FFT length. Therefore, the output can be indexed without too much trouble.

Also, the final data will be output with a scaling factor, OUT_SBIT, as described

previously. The correct output precision will have to be adjusted with the output

 54

scaling factor. Alternatively, the block-floating-point representation of output data can

directly go into next functional module, which also supports the BFP operation.

4.4 Data Flow

The proposed RMR FFT is capable of performing FFT of length from 16 to 4096

points. According to different FFT length, the flow of data path varies in three ways.

For {16, 32, 64}-point FFT, the data flow is shown as Figure 4.22. Since only two

butterfly stages are required, the preceding stages are directly bypassed. Only one RB

stage, RB_64, is needed. As described in section 4.3.3, no duplicate RB is used for the

first RB stage. Therefore, only RB_64a is activated in the only RB stage.

R8_BF MULT RB_4096

ROM

RB_512a

BFP

BFP

RB_512b RB_64b

0

1

0

1swap

Data
in CMULTR8_BF

0

1

RB_64a

BFP RR_BF swap

Data
Out

0

1

Figure 4.22 Flow of data path for 16, 32, 64-pont FFT

Figure 4.23 shows the flow of data path for {128, 256, 512}-point FFT. Three

butterfly stages are required for these three FFT lengths and therefore all three BF

stages are activated. As the same, the first RB stage, RB_512, does not use a duplicate

module and thus only RB_512a is activated. For the RB_64 stage, the PHASE signal

for the two RB modules is shown in Figure 4.24. The RB_64a will first accept input

data and while it is in output phase, incoming data from previous stage go into

RB_64b instead. The width of an output or input phase is M/8 cycles, where M is the

current RB capacity. Because the capacity of previous RB stage, RB_512, must be 8

times of the RB_64 (referring to TABLE 3.3), 8 input-output phases are required and

each RB_64 takes four. The control signals show that the two RB work in turn without

overlap.

 55

RB_4096

BFP RB_512b

R8_BF MULT

ROM

0

1swap

Data
in CMULTR8_BF

RB_512a

RR_BFBFP

RB_64a

BFP

RB_64b

0

1

0

1

0

1
swap

Data
Out

Figure 4.23 Flow of data path for 128, 256, 512-pont FFT

PHASE for RB_64a

PHASE for RB_64b

input
phase

output
phase

0

1

2

3

4

5

6

7

Figure 4.24 Control signal, PHASE, for duplicate RB modules

For {1024, 2048, 4096}-point FFT, the data flow is shown as Figure 4.25. The

data flow will go through all the modules. The first computation stage, {RB_BF,

MULT, ROM}, is used to calculate the first two butterfly stages in the SFG.

R8_BF MULT CMULTR8_BFRB_4096

ROM

RB_512a

RR_BF

BFP

BFP

RB_512b

RB_64a

BFP

RB_64b

0

1

0

1

0

1

0

1
swap

swap

Data
in

Data
Out

Figure 4.25 Flow of data path for 1024, 2048, 4096-pont FFT

TABLE 4.7 shows the memory requirement of our architecture compared to

other generic architectures [4.5]. As our architecture can achieve the throughput rate 4

times of the input clock rate, which is close to the radix-4 MDC architecture, the

memory required is less than that of the radix-4 MDC architecture.

 56

TABLE 4.7 Comparison of memory requirement
(including the input buffer)

Radix-2 Radix-4 Radix-
8

Algorith

m

N

Proposed RMR FFT

SDF MDC SDF MDC MDC
16 31 (1+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1
32 61 (1+7/8)N+1 N-1 1.5N-1

64 121 (1+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1 4.5N-8
128 273 (1+2/8+7/8)N+1 N-1 1.5N-1

256 545 (1+2/8+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1
512 1089 (1+2/8+7/8)N+1 N-1 1.5N-1 4.5N-8
1024 2209 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1
2048 4417 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1

4096 8833 (1+2/8+2/64+7/8)N+1 N-1 1.5N-1 2N-2 2.5N-1 4.5N-8

In the implementation of the proposed architecture, pipeline registers will be

inserted between the BF module and multiplier module. The execution cycles required

for an N-point FFT are:

2

2 3

 {16, 32, 64}-point : 2
8 8

 {128, 256, 512}-point : 3
8 8 8

{1024, 2048, 4096}-point : 4
8 8 8 8

N N

N N N

N N N N

+ +

+ + +

+ + + +

The required cycles are summarized in TABLE 4.8.

TABLE 4.8 Execution cycles required for different FFT length

FFT size 16 32 64 128 256 512 1024 2048 4096
Execution cycles 6 10 18 37 71 139 278 552 1100

 57

4.5 Conclusions

In this chapter, the overall architecture of the proposed RMR FFT has been

drawn out. In algorithm level, the RMR FFT is divided as four computation stages. In

architecture design, we manage to combine the first two computation stages into one.

The intermediate data are stored in the register bank modules. The two-input registers

are used for constructing the RB modules, which are organized in chessboard-like

structure. Reconfiguration of the RB modules can be easily achieved by modifying

few control signals. Two different strategies are used for the multiplier stages. The

constant multiplier approach eliminates the need for another ROM. For the

multiplier-ROM stage, the coefficient address generation is accomplished through a

simple counter. In order to adopt the block-floating-point method, BFP modules are

added with the RB modules to scale block data before every computation stage. The

approach of designing the input buffer is also described.

Unnecessary circuit can be fully turned off without affecting the correct

operation due to good circuitry partition. The number of memory elements required is

relative low comparing to generic pipeline-based architecture. Considering the

hardware overhead, the overall throughput rate reaches 4 times of the input clock rate.

 58

Chapter 5

Implementation of RMR FFT/IFFT

Processor

5.1 Introduction

In this chapter, we will show the implementation strategy and simulation results

of the proposed RMR FFT. The overall design is to be implemented through

cell-based synthesis design flow, except for the register bank modules. For the RB

modules, we will use the full-custom design flow to further exploit the regularity of

the proposed structure. The implementation of the register banks is described in

section 5.2. As we partition the circuitry carefully to achieve an energy-aware design,

section 5.3 shows a simple way to realize the control for external power management

unit. As will be seen in section 5.4, the proposed RMR FFT achieves energy-aware

design. Compared to other reconfigurable architecture, our FFT outperforms in

execution speed with relative low power and energy dissipation.

5.2 Implementation issue on Register Banks

As introduced in section 4.3.3, the structures of our register banks are of high

regularity. The two-input registers are put together in a chessboard-like manner. Using

Design Compiler for synthesis, the synthesized result for the two-input register is

shown in Figure 5.1 [5.1]. The SI represents the scan input and SE is the scan enable.

Such flip-flop is usually used as the scan D flip-flop. Basically, it is D flip-flop with a

2-to-1 multiplexer at the input. However, this implementation can cause unnecessary

power consumption. As shown in section 4.3.3, there are situations that the inputs of

the registers are changed while the clocks to flip-flops are gated. This is means that

the multiplexer can consume unnecessary transition power. Also, the regularity of the

RB structure can not be fully reflected through the CBD flow. Therefore, we take the

 59

FCD flow to further implement the RB modules.

Figure 5.1 Circuit of synthesized scan D flip-flop

Referring to the block diagrams of Figure 4.18, we construct the RB arrays in the

way shown in Figure 5.2. Transmission gates are used for the input selection. To

further optimize the RB modules, now the problem becomes the choice of the D

flip-flop.

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

clk

D Q

IN0

IN1

OUT

OUT

CLK
CTRL

Figure 5.2 Block diagram of the two-input register array

 60

We have searched some popular architecture of D flip-flops [5.2-5.7], as shown

in Figure 5.3.

(a) The positive-edge triggered, static D-type flip-flop according to the data

sheet of TSMC 0.13μm technology [5.1].

(b) Clocked CMOS (C2MOS) register [5.8], which is insensitive to clock

overlaps. Only eight transistors are used. However, with sufficient slow

rise and fall times, there will be a time slot both NMOS and PMOS are

conducting, which results in extra leakage power.

(c) Hybrid-latch Flip-Flop (HLFF) [5.9] is one of the fastest structure

presented. It also has a small power-delay product. The major advantage

of this structure is its robustness to clock skew. However, unnecessary

internal transitions increase the total power consumption.

(d) True single-phase clocked register (TSPCR) [5.10] uses a single phase

clock. Similar to C2MOS register, slow clocks cause both the NMOS

and PMOS clocked transistors to be on simultaneously.

(e) The modified C2MOS. Register has low power feedback assuring fully

static operation. Compared to the classical C2MOS structure, the

modified C2MOS is robust to clock slope variation.

(f) PowerPC 603 master-slave latch is one of the fastest classical structures

[5.11]. Its main advantages are a short direct path and low-power

feedback. However, the large clock load influences the total on-chip

power consumption. Such effect can be reduced by the local clock

buffering.

 61

Vdd

D

Q

CLK

CLK

CLK

CLK

~CLK

CLK

D

CLK

~CLK

CLK

~CLK

~CLK

CLK

~Q

Q

Vdd Vdd

VddVdd

D

CLK

~CLK

Vdd

~CLK

CLK

Vdd

Q

Vdd Vdd

Vdd

CLK

~CLK CLK

~CLK

CLK

~CLK

Vdd

~CLK

CLK

D Q

D

Vdd

CLK

Q

~Q

D

Vdd Vdd

CLK

~CLK

~CLK

CLK

Q

(a) (b)

(c) (d)

(e)

(f)

Figure 5.3 Various structure of D flip-flops

We have constructed a basic block of RB_4096 (64*8=512 bits) using the above

flip-flops respectively. Since the D flip-flops perform only shifter operation in our

pipeline architecture, speed is not the most concerned criterion. Instead, we are more

interested in the performance of power consumption. Figure 5.4 shows the average

current with low-clock-transition input patterns and Figure 5.5 is the case with

high-clock-transition. As describe in section 4.3.3, most registers in the RB are in

low-clock-transition during the input phase and high-clock-transition during the

 62

output phase. Architecture (b) and (f) both consume relative low transition current, as

shown in Figure 5.5. However, the data of (b) in Figure 5.4 is high, which means that

leakage current is large for this architecture. According to the simulation result, we

choose the structure of (f) as the D flip-flop in the RB modules.

0

0.5

1

1.5

2

2.5

1024 2048 4096

FFT sizes

A
ve

ra
ge

 C
ur

re
n
t (

m
A

)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4 Average current under low-clock-transition cases

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1024 2048 4096

FFT sizes

A
ve

ra
ge

 C
u
rr

en
t
(m

A
)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.5 Average current under high-clock-transition cases

 63

5.3 Power Control

As described previously, different amount of modules are required to be

activated for different FFT length. As shown in section 4.4, three different flow of

data path are dedicated for the 9 FFT lengths. Also, the activation of certain

sub-modules is different according to different FFT length, such as ROM and register

banks. For these unnecessary modules, they can be fully turned off since they have

nothing to do with the correct operation. Although the power management unit is not

implemented in our RMR FFT, we have derived a control table for the power control,

as shown in TABLE 5.1. The number 1 represents a turn-on situation and 0 represents

opposite. The CONTOL block is turned on under all modes since it generates control

signals for all modules. The ROM and MULT modules are turned on when the FFT

size is larger than 128 points. The ROM is divided into six banks as described in

4.3.2.2. Each register bank is divided as three parts. They are of the size 1/4, 1/4, and

1/2 of the RB respectively. As described in section 4.3.3, the RBs are made

reconfigurable such that only the required numbers of registers are turned on for

different FFT sizes.

As shown in TABLE 5.1, the control of such power management unit is simple

enough to realize through a truth table. By turning off the unnecessary blocks during

between FFT operations of different sizes, the proposed RMR FFT can achieve

energy-aware and power scalability.

 64

TABLE 5.1 Truth table of the activated modules

Mode 16 32 64 128 256 512 1024 2048 4096

CONTROL 1 1 1 1 1 1 1 1 1

R8_BF 0 0 0 1 1 1 1 1 1

MULT 0 0 0 1 1 1 1 1 1

ROM

rom A 0 0 0 1 1 1 1 1 1

rom B 0 0 0 0 1 1 1 1 1

rom C 0 0 0 0 0 1 1 1 1

rom D 0 0 0 0 0 0 1 1 1

rom E 0 0 0 0 0 0 0 1 1

rom F 0 0 0 0 0 0 0 0 1

RB_4096

RB_4096_1 0 0 0 0 0 0 1 1 1

RB_4096_2 0 0 0 0 0 0 0 1 1

RB_4096_3 0 0 0 0 0 0 0 0 1

BFP 0 0 0 0 0 0 1 1 1

RB_512a

RB_512a_1 0 0 0 1 1 1 1 1 1

RB_512a_2 0 0 0 0 1 1 0 1 1

RB_512a_3 0 0 0 0 0 1 0 0 1

RB_512b

RB_512b_1 0 0 0 0 0 0 1 1 1

RB_512b_2 0 0 0 0 0 0 0 1 1

RB_512b_3 0 0 0 0 0 0 0 0 1

BFP 0 0 0 1 1 1 1 1 1

R8_BF 1 1 1 1 1 1 1 1 1

CMULT 1 1 1 1 1 1 1 1 1

RB_64a

RB_64a_1 1 1 1 1 1 1 1 1 1

RB_64a_2 0 1 1 0 1 1 0 1 1

RB_64a_3 0 0 1 0 0 1 0 0 1

RB_64b

RB_64b_1 0 0 0 1 1 1 1 1 1

RB_64b_2 0 0 0 0 1 1 0 1 1

RB_64b_3 0 0 0 0 0 1 0 0 1

BFP 1 1 1 1 1 1 1 1 1

RR_BF 1 1 1 1 1 1 1 1 1

 65

5.4 Simulation Result

With the implementation strategy described above, we have implemented the

proposed RMR FFT using TSMC 0.13μm technology. For the three RB modules,

RB_4096, RB_512a, and RB_512b, full-custom design approach is used and the

circuitry is simulated using the HSPICE netlist. The rest of the reconfigurable FFT

processor is designed with Verilog HDL and synthesized to TSMC 0.13μm CMOS

standard cell technology library with Synopsys Design Compiler. This is followed by

gate level simulations. Synopsys PrimePower is used for power analysis. The

wordlength of the FFT is 16 bits. The simulation is run under supply voltage 1.2V.

The maximum working frequency is 110MHz. The throughput of the RMR FFT is

four times of the input clock rate, which can reach 440Msample/s. The profile of

power consumptions are analyzed with the power control table mentioned in previous

section.

5.4.1 Performance of the RMR FFT

With random patterns as the input, the SNR of the RMR FFT maintains above

110 dB for various FFT sizes. As described previously, the SNR is maintained due to

the utilization of the BFP in RMR FFT. The BFP approach also enables us to keep the

internal wordlength the same as the IO wordlength. Without the BFP approach, the

SNR degrades as the FFT size grows. Figure 5.6 shows the SNR comparison between

the RMR FFT with and without BFP approach applied.

The power consumption of the proposed RMR FFT is shown in Figure 5.7. As

can be seen, there are three levels of the power consumption. We can consider FFT of

size {16, 32, 64} as one group and {128, 256, 512} and {1024, 2048, 4096} as the

other two groups. This is due to that different numbers of computation stage are

required for different groups of FFTs. The figure also shows that our FFT has good

power scalability.

 66

0

20

40

60

80

100

120

140

160

16 32 64 128 256 512 1024 2048 4096

FFT size

S
N

R
 (

dB
)

BFP

without BFP

Figure 5.6 SNR comparison

129.42
154.43 155.61

228.87 246.35 258.61

374.36

421.73

513.12

0

100

200

300

400

500

600

16 32 64 128 256 512 1024 2048 4096
FFT size

P
ow

er
 (

m
W

)

Figure 5.7 Power consumption for various FFT sizes (110MHz, 1.2V)

 67

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Po
w

er
 D

is
tr

ib
ut

io
n

16 32 64 128 256 512 1024 2048 4096

FFT size

Other

Rgister Bank

Multiplier

Butterfly

Figure 5.8 Power distribution characteristics

Figure 5.8 shows the distribution of power consumption over the RMR FFT. The

power dissipation concentrates on the computation modules when the FFT size is

small. In long-size FFT, the power of the internal register banks start to dominate.

Referring to the execution cycles listed in TABLE 5.2, the energy dissipation for

one FFT operation is shown in Figure 5.9. The RMR FFT shows good energy

scalability over various FFT sizes.

TABLE 5.2 Execution cycles required for various FFT sizes

FFT size 16 32 64 128 256 512 1024 2048 4096
Execution cycles 6 10 18 37 71 139 278 552 1100

 68

7.06E-03 1.40E-02 2.55E-02 7.70E-02 0.159 0.327

0.946

2.116

5.131

0

1

2

3

4

5

6

16 32 64 128 256 512 1024 2048 4096

FFT size

E
ne

rg
y

(u
J)

(a)

7.06E-03

1.40E-02

2.55E-02

7.70E-02

0.159

0.327

0.946

2.116

5.131

0.001

0.01

0.1

1

10

16 32 64 128 256 512 1024 2048 4096

FFT size

E
ne

rg
y

(u
J)

(b)

Figure 5.9 Energy dissipation per FFT operation,

(a) in normal scale, (b) in log scale

5.4.2 Comparison

The performance RMR FFT is compared to two other reconfigurable

architectures, as shown in TABLE 5.3. One is the delay spread based architecture

proposed in [5.12]. It is based on the radix-4 SDF architecture and can be

 69

reconfigured as 16, 64, 256, or 1024-point FFT. The throughput rate of this

pipeline-based architecture is the same as the input clock rate due to the single data

path. The other one is the reconfigurable FFT processor proposed in [5.13]. It adopts

the memory-based architecture and can be configured as from 16-point to 1024-point

FFT.

The execution time for one FFT of the RMR FFT is sufficient fast compared to

other architecture, as shown in TABLE 5.4. This is due to the utilization of parallel

data paths and high mixed-radix algorithm. The energy of the two architectures can be

scaled to the 0.13μm technology with the following relationship:

2110 0.13 1.2 () () (MHz m VScaled Energy Energy
Frequency Technology Voltage

)μ
= × × × (5.1)

Since the dynamic energy dissipation is proportional to CV2 and C scales

approximately as linear to the technology. The scaled energy is compared in Figure

5.10 and Figure 5.11. The energy dissipation of the RMR FFT outperforms the other

two when the FFT size grows large (>64). The energy saving compared to the

reconfigurable radix-4 pipeline-based architecture [5.12] is 51%, 64%, and 80% for

FFT of size 64, 256 and 1024 points respectively. On the other hand, the energy

compared to the reconfigurable radix-2 memory-based architecture [5.13] is 17%,

62%, 82%, and 85% for FFT of size 128, 256, 512, 1024 points respectively.

TABLE 5.3 Comparison with other reconfigurable architectures

 RMR FFT
(This work)

Hasan et al.[5.12] Yutian Zhao et
al.[5.13]

Algorithm Reconfigurable

Mixed-Radix

Radix-4 Radix-2

Architecture Pipeline-based Pipeline-based Memory-based

Word length 16-bit 16-bit 16-bit

Technology 0.13μm 0.18μm 0.18μm

Clock Rate (R) 110MHz 20MHz 20MHz

Supply voltage 1.2V 1.8V 1.8V

Throughput Rate 4R R <R

 70

TABLE 5.4 Execution cycles required per FFT

FFT size 16 32 64 128 256 512 1024 2048 4096
This work 6 10 18 37 71 139 278 552 1100

Hasan et al.[5.12] 16 64 256 1024
Yutian Zhao et al.[5.13] 32 80 192 448 1024 2304 5120

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

16 64 256 1024

FFT size

E
ne

rg
y

(u
J)

[5.12]

RMR FFT

80%

51%

64%

Figure 5.10 Comparison of Energy dissipation between RMR FFT and the other

reconfigurable pipeline-based architecture

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

16 32 64 128 256 512 1024

FFT size

E
ne

rg
y

(u
J)

[5.13]

RMR FFT

17%

62%

82%

85%

Figure 5.11 Comparison of Energy dissipation between RMR FFT and the other

reconfigurable memory-based architecture

 71

5.5 Layout Implementation

The layout view of the RMR FFT will be shown in this section. Figure 5.12

shows the layout view of the D flip-flop in the register banks. The dimension of the

1-bit flip-flop is 9.8μm×3.69μm.

Layout View

Schematic View

9.8 µm

3.69 µm

Figure 5.12 Layout and schematic view of the 1-bit D flip-flop

 72

Figure 5.13 shows the layout view of a basic block in RB_512. The basic block

consists of 64 D flip-flops. The dimension of the layout is 130μm×25μm.

130 µm

25 µm

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

Layout View

Schematic View

Figure 5.13 Layout and schematic view of a basic block in RB_512

 73

Figure 5.14 shows the layout view of RB_512. As described before, the RB_512

consists of 8 basic blocks. With 16-bit wordlength, the total number of register in one

RB_512 module is 16×2×512=16K bits. The dimension of the layout is

1050μm×830μm.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1050 µm

830 µm

Layout View

Schematic View

1-bit datapath

32-bit
datapath

Figure 5.14 Layout and schematic view of RB_512

 74

Figure 5.15 shows the layout view of RB_4096. The RB_4096 also consists of 8

basic blocks. The basic block capacity is 8 times that of the RB_512. With 16-bit

wordlength, the total number of register in one RB_4096 module is 16×2×4096=128K

bits. The dimension of the layout is 3750μm×1700μm.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

3750 µm

1700 µm

Layout View

Schematic View

1-bit datapath

32-bit
datapath

Figure 5.15 Layout and schematic view of RB_4096

 75

Figure 5.16 shows the layout view of RMR FFT, except for RB_4096 and

RB_512s. The layout is implemented through TSMC 0.13μm CMOS technology. The

dimension of the layout is 1650μm×830μm.

1650 µm

830 µm

Layout View

Schematic View

RB_4096

RB_512b

RB_512a

R8_BF MULT CMULTR8_BF

ROM

RR_BF

BFP

BFP

RB_64a

BFP

RB_64b

0

1

0

1

0

1

0

1
swap

swap

Data
in

Data
Out

Figure 5.16 Layout and schematic view of the 1-bit D flip-flop

 76

Figure 5.17 shows the layout view of the entire RMR FFT. Three RB modules

are implemented through the full-custom design flow. The rest of the RMR FFT is

implemented through cell-base synthesis flow using TSMC 0.13μm CMOS

technology. The figure shows that the memory (RB_4096, RB_512a, and RB_512b)

takes over 80% of the FFT area. As the simulation result shows before, these register

banks consume nearly 50% of the total power when they are all turned on. The

dimension of the overall layout is 3750μm×2530μm.

RB_4096

RB_512a RB_512b RMR FFT

3750 µm

2530 µm

Figure 5.17 Overall Layout view of the proposed RMR FFT

5.6 Conclusions

In this chapter, we have shown the implementation strategy and the simulation

results of the RMR FFT. The wordlength of the FFT is set to 16-bit, which means that

32-bit registers are required to store one complex word. Observing that large numbers

of registers are used, we implement the RB modules through the full-custom design

flow, which can further exploit the regularity of our RB design. External power

 77

management is required for the power gating of each module for different FFT sizes.

The simulation result shows that our approach of adopting BFP in the RMR FFT

does help maintain the SNR over 100 dB. Without the BFP approach, the SNR

degrades rapidly as the FFT size grows. The simulation result also shows that the

RMR FFT has good power scalability. The power distribution shows that the

computation blocks consume most portion of power when the FFT size is small.

However, the register banks become to dominate when the FFT size grows. This

distribution clarifies that our approach to further optimize the RB modules is

worthwhile.

 78

Chapter 6
Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed a novel reconfigurable FFT architecture, called

the reconfigurable mixed-radix (RMR) FFT. The proposed architecture is able to

reconfigured dynamically as from 16-point to 4096-point FFT/IFFT. The

reconfigurable mixed-radix algorithm is based on the radix-2 DIF algorithm. Different

mixed-radix algorithms are assigned for different FFT sizes while keeping the data

ordering of each mode in same regularity. Also, unlike other pipeline-base

architecture, the block-floating-point approach is adopted here to maintain the SNR.

The BFP method help keeping the internal wordlength of data flow fixed which

prevent the circuitry growing to big for long size FFTs. The simulation result shows

that RMR FFT maintain the SNR above 110dB as the FFT size varies. Without the

BFP, the SNR degrades rapidly as the FFT size grows.

The pipeline-based hardware architecture achieve high throughput rate by using

8 parallel data paths in data flow. Internal register banks, instead of traditional

commutators, are used to store the intermediate data between each computation stages.

The butterfly (BF) and register banks (RB) modules are designed to be reconfigurable.

Along with the bypassing multiplexers, the architecture can be reconfigured as from

16-point to 4096-point FFT without resulting in a long data path. The data flow goes

in a way of block execution order in coordinate to the BFP approach. Duplicate

register banks are inserted between middle stages to smoothen the data flow.

Considering the hardware overhead, the register bank of the first stage is not

duplicated which effectively result in a throughput rate as 4 times of the input clock

rate. With good circuit partitioning, unnecessary blocks can be fully turned off when

calculate smaller FFT without affecting the correct operation. With external power

management unit, the RMR FFT can achieve a power scalable and energy aware

design.

In implementation, the RMR FFT is to be synthesized using the TSMC 0.13μm

 79

standard cell library. Considering that large bits of register required, the register banks

are implemented through the full-custom flow in order to fully exploit its regularity.

As the simulation result shows, the 16-point FFT takes only 6 clock cycles and energy

dissipation is 4.34nJ/FFT while the 4096-point FFT takes 1100 clock cycles with

energy dissipation 5.115 μJ/FFT. Compared to other reconfigurable architecture, the

RMR FFT outperforms in execution speed and overall energy dissipation especially

for long size FFTs. Comparing to other reconfigurable pipeline-based architecture, the

energy saving is 51%, 64%, and 80% for 64, 256, and 1024-point FFT respectively.

Comparing to other reconfigurable memory-based architecture, the energy saving is

up to 85% for 1024-point FFT.

The RMR FFT meets the UWB standard, which requires throughput rate of

409.6 Msample/s [6.1], at clock rate of 110MHz. The proposed RMR FFT is

especially suitable for modern high-speed and long-size FFT applications.

6.2 Future Work

The dynamic frequency and voltage management (DVFM) is popular in SOC
design in recent years [6.2-6.7]. As we use the external power management unit to
adjust supply voltage, the design of such PMU can be taken into consideration with
the overall FFT design. Besides static power gating over different FFT size, more
voltage-control techniques can be applied to the FFT processor, such as the multi-Vdd
approach.

On the other hand, we assume that the IO data of our RMR FFT have been
wrapped by external buffers. As shown in Figure 1.1, the OFDM requires a
serial-to-parallel or a parallel-to-serial block to wrap the data. As the proposed RMR
FFT is a general purpose FFT, it is also interesting to design reconfigurable wrapper
for different FFT sizes and specifications that is suitable to various applications.

 80

References
References of Chapter 1

[1.1] Alan V. Oppenheim, Ronald W. Schfer, and John R. Buck, “DISCRETE-TIME
SIGNAL PROCESSING, Second Edition,” Prentice Hall International, 1999.
[1.2] J. W. Cooley and J. W. Tukey, “An algorithm for machine computation of
complex fourier series,” Math. Computation, Vol. 19, pp. 297-301, Apr. 1965.
[1.3] A. Batra et al., “Multi-Band OFDM Physical Layer Proposal for IEEE
802.15 Task Group 3a,” IEEE P802.15-03/268r3, Mar. 2004.

 81

References of Chapter 2

[2.1] J. W. Cooley and J. W. Tukey, “An algorithm for machine computation of
complex fourier series,” Math. Computation, Vol. 19, pp. 297-301, Apr. 1965.
[2.2] B.G. Jo and M.H. Sunwoo, “New continuous-flow mixed-radix (CFMR) FFT
Processor using novel in-place strategy,” IEEE Transactions on Circuits and
Systems, Vol. 52, pp. 911-919, May 2005.
[2.3] L. Fanucci, M. Forliti, and F. Gronchi, “Single-chip mixed-radix FFT
processor for real-time on-board SAR processing,” IEEE International Conference
on Electronics, Circuits and Systems, Volume 2, pp. 1135 – 1138, Sept. 1999.
[2.4] K.L. Heo, J.H. Baek, M.H. Sunwoo, B.G. Jo, and B.S. Sun, “New in-place
strategy for a mixed-radix FFT processor,” Proceedings IEEE International SOC
Conference, pp. 81 – 84, Sept. 2003.
[2.5] J.H. Baek, B.S. Son, B.G. Jo, M.H. Sunwoo, and S.K. Oh, “A continuous flow
mixed-radix FFT architecture with an in-place algorithm,” Proceedings of the
2003 International Symposium on Circuits and Systems, Volume 2, pp. II-133 - II-136,
May 2003.
[2.6] Wen-Chang Yeh and Chein-Wei Jen, “High-speed and low-power split-radix
FFT,” IEEE Transactions on Signal Processing, Vol. 51, pp. 864 – 874, Mar. 2003.
[2.7] S. Bouguezel, M.O. Ahmad, and M.N.S. Swamy, “Arithmetic complexity of
the split-radix FFT algorithms,” IEEE International Conference on Acoustics,
Speech, and Signal Processing, Volume 5, pp. v/137 - v/140, March 2005.
[2.8] Lihong Jia, Yonghong Gao, Jouni Isoaho, and Hannu Tenhunen, “A new
VLSI-oriented FFT algorithm and implementation,” Eleventh Annual IEEE
International ASIC Conference, pp. 337-341, Sept. 1998.
[2.9] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip

for high-speed wireless LAN application using OFDM,” IEEE Journal of

Solid-State Circuits, Vol. 39, pp. 484 – 493, Mar. 2004.

[2.10] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee, “A 1-GS/s FFT/IFFT processor
for UWB applications,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 1726-1735,
Aug. 2005.
[2.11] Shung-Chih Chen, Chao-Tang Yu, Chia-Lian Tsai, and Jing-Jou Tang, "A new
IFFT/FFT hardware implementation structure for OFDM applications,” IEEE
Asia-Pacific Conference on Circuits and Systems, Volume 2, pp. 1093-1096, Dec
2004.

 82

[2.12] Wei Han, A.T. Erdogan, T. Arslan, and M. Hasan, “The development of high
performance FFT IP cores through hybrid low power algorithmic methodology,”
Proceedings of Asia and South Pacific Design Automation Conference, Volume 1,
pp.549-552, Jan. 2005.
[2.13] Yun-Nan Chang and K.K Parhi, “An efficient pipelined FFT architecture,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
Volume 50, Issue 6, pp. 322-325, June 2003.
[2.14] J. Choi and V. Boriakoff, “A new linear systolic array for FFT
computation,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, Issue 4, Volume 39, pp.236-239, April 1992.
[2.15] Yunho Jung, Hongil Yoon, and Jaeseok Kim, “New efficient FFT algorithm
and pipeline implementation results for OFDM/DMT applications,” IEEE
Transactions on Consumer Electronics, Issue 1, Volume 49, pp. 14-20, Feb. 2003.
[2.16] Yu-Wei Lin and Chen-Yi Lee, “A new dynamic scaling FFT processor,”
IEEE Asia-Pacific Conference on Circuits and Systems, Vol. 1, pp. 449- 452, Dec.
2004.
[2.17] Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee, “A dynamic scaling FFT

processor for DVB-T applications,” IEEE Journal of Solid-State Circuits, Vol. 39,

pp. 2005- 2013, Nov. 2004.

[2.18] Haining Jiang, Hanwen Luo, Jifeng Tian, and Wentao Song, “Design of an
efficient FFT Processor for OFDM systems,” IEEE Transactions on Consumer
Electronics, Issue 4, Volume 51, pp. 1099-1103, Nov. 2005.
[2.19] Shi Xin, Zhang Tiejun, and Hou Chaohuan, “A high-performance
power-efficient structure of FFT (fast Fourier transform) processor,” 2004 7th
International Conference on Signal Processing, Volume 1, pp. 555-558, Sept. 2004.
[2.20] Hasan, T. Arslan, and J.S. Thompson, "A delay spread based low power
reconfigurable FFT processor architecture for wireless receiver,” Proceedings
International Symposium on System-on-Chip, pp. 135-138, Nov 2003.
[2.21] Yutian Zhao, A.T. Erdogan, and T. Arslan, “A novel low-power reconfigurable
FFT processor,” IEEE International Symposium on Circuits and Systems, Vol. 1, pp.
41-44, May 2005.
[2.22] Guichang Zhong, Fan Xu, and A.N. Willson, Jr., “A power-scalable
reconfigurable FFT/IFFT IC based on a multi-processor ring,” IEEE Journal of
Solid-State Circuits, Vol. 41, pp.483-495, Feb. 2006.

 83

References of Chapter 3

[3.1] Alan V. Oppenheim, Ronald W. Schfer, and John R. Buck, “DISCRETE-TIME
SIGNAL PROCESSING, Second Edition,” Prentice Hall International, 1999.
[3.2] S. Kobayashi and G.P. Fettweis, “A new approach for block-floating-point
arithmetic,” 1999 IEEE International Conference on Acoustics, Speech, and Signal
Processing, Volume 4, pp. 2009-2012, March 1999.
[3.3] S. Kobayashi, I. Kozuka, W.H. Tang, and D. Landmann, “A software/hardware
codesigned hands free system on a "resizable" block-floating-point DSP,” IEEE
International Conference on Acoustics, Speech, and Signal Processing, Volume 5, pp.
V - 149-52, May 2004.
[3.4] A. Mitra, M. Chakraborty, and H. Sakai, “A block floating-point treatment to
the LMS algorithm: efficient realization and a roundoff error analysis,” IEEE
Transactions on Signal Processing, Issue 12, Volume 53, pp. 4536-4544, Dec. 2005.

 84

References of Chapter 4

[4.1] Wei Han, T. Arslan, A.T. Erdogan, and M. Hasan, “Low power commutator for
pipelined FFT processors,” IEEE International Symposium on Circuits and Systems,
Vol. 5, pp. 5274-5277, May 2005.
[4.2] Guoan BI and E. V. Jones, “A Pipelined FFT Processor for Word-Sequential
Data,” IEEE International Conference on Acoustics, Speech, and Signal Processing,
Vol. 37, pp. 1982-1985, Dec. 1989.
[4.3] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier transform chip

for high-speed wireless LAN application using OFDM,” IEEE Journal of

Solid-State Circuits, Vol. 39, pp. 484 – 493, Mar. 2004.

[4.4] Shung-Chih Chen, Chao-Tang Yu, Chia-Lian Tsai, and Jing-Jou Tang, "A new
IFFT/FFT hardware implementation structure for OFDM applications,” IEEE
Asia-Pacific Conference on Circuits and Systems, Volume 2, pp. 1093-1096, Dec
2004.
[4.5] T. Sansaloni, A. Perez-Pascual, V. Torres, and J. Valls, "Efficient pipeline FFT
processors for WLAN MIMO-OFDM systems,” Electronics Letters, Volume 41,
Issue 19, 15 September 2005.

 85

References of Chapter 5

[5.1] TSMC 0.13mm (CL013G) Process 1.2-Volt SAGE-XTM Standard Cell
Library Databook, Release 2.6, January 2004.
[5.2] V. Stojanovic and V.G. Oklobdzija, “Comparative analysis of master-slave
latches and flip-flops for high-performance and low-power systems IEEE Journal
of Solid-State Circuits, Issue 4, Volume 34, pp. 536-548, April 1999.
[5.3] A.S. Seyedi, S.H. Rasouli, A. Amirabadi, and A. Afzali-Kusha, “Clock gated
static pulsed flip-flop (CGSPFF) in sub 100 nm technology,” IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Architectures,
Volume 00, pp. 5, March 2006.
[5.4] V. Stojanovic, V. Oklobdzija, and R. Bajwa, “Comparative analysis of latches
and flip-flops for high-performance systems,” International Conference on
Computer Design: VLSI in Computers and Processors, pp. 264 – 269, Oct. 1998.
[5.5] Shang Xue and B. Oelmann, “Comparative study of low-voltage performance
of standard-cell flip-flops,” The 8th IEEE International Conference on Electronics,
Circuits and Systems, Volume 2, pp. 953 – 957, Sept. 2001.
[5.6] S.H. Rasouli, A. Khademzadeh, A. Afzali-Kusha, and M. Nourani, “Low-power
single- and double-edge-triggered flip-flops for high-speed applications,” IEE
Proceedings Circuits, Devices and Systems, Issue 2, Volume 152, pp. 118-122, April
2005.
[5.7] A. Fish, V. Mosheyev, V. Linkovsky, and O. Yadid-Pecht, “Ultra low-power
DFF based shift registers design for CMOS image sensors applications,”
Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits
and Systems, pp. 658-661, Dec. 2004.
[5.8] Y. Suzuki, K. Odagawa, and T. Abe, “Clocked CMOS calculator circuitry,”
IEEE Journal of Solid-State Circuits, Issue 6, Volume 8, pp. 462-469, Dec 1973.
[5.9] H. Partovi, R. Burd, U. Salim, F. Weber, L. DiGregorio, and D. Draper,
“Flow-through latch and edge-triggered flip-flop hybrid elements,” IEEE
International Solid-State Circuits Conference, pp. 138-139, Feb. 1996.
[5.10] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE
Journal of Solid-State Circuits, Issue 1, Volume 24, pp. 62-70, Feb. 1989.
[5.11] G. Gerosa, S. Gary, C. Dietz, Dac Pham, K. Hoover, J. Alvarez, H. Sanchez, P.
Ippolito, Tai Ngo, S. Litch, J. Eno, J. Golab, N. Vanderschaaf, and J. Kahle, “A 2.2 W,
80 MHz superscalar RISC microprocessor,” IEEE Journal of Solid-State Circuits,
Issue 12, Volume 29, pp. 1440-1454, Dec. 1994.

 86

[5.12] Hasan, T. Arslan, and J.S. Thompson, "A delay spread based low power
reconfigurable FFT processor architecture for wireless receiver,” Proceedings
International Symposium on System-on-Chip, pp. 135-138, Nov 2003.
[5.13] Yutian Zhao, A.T. Erdogan, and T. Arslan, “A novel low-power reconfigurable
FFT processor,” IEEE International Symposium on Circuits and Systems, Vol. 1, pp.
41-44, May 2005.

 87

References of Chapter 6

[6.1] A. Batra et al., “Multi-Band OFDM Physical Layer Proposal for IEEE
802.15 Task Group 3a,” IEEE P802.15-03/268r3, Mar. 2004.
[6.2] Seokwoo Lee, S. Das, T. Pham, T. Austin, D. Blaauw, and T. Mudge, “Reducing
pipeline energy demands with local DVS and dynamic retiming,” Proceedings of
the 2004 International Symposium on Low Power Electronics and Design, pp.
319-324, Aug. 2004.
[6.3] Jian-Hau Wu and Wei Hwang, “Dynamic Frequency and Voltage
Management Design for Energy-Aware FFT Processor Application,” NCTU,
Master Thesis, Sep. 2004.
[6.4] S. Raje and M. Sarrafzadeh, “Variable Voltage Scheduling,” International
Symposium on Low Power Design, pp. 9-13, 1995.
[6.5] J. Chang and M. Pedram, “Energy Minimization Using Multiple Supply
Voltages,” International Symposium on Low Power Electronics and Design, pp.
157-162, 1996.
[6.6] M. Igarashi, et. al., “A Low-Power Design Method Using Multiple Supply
Voltage,” International Symposium on Low Power Electronics and Design, pp. 36-41,
1997.
[6.7] A. Dancy and A. Chandrakasan, “Techniques for aggressive supply voltage
scaling and efficient regulation,” IEEE Custom Integrated Circuits Conf., pp.
579–586, 1997.

 88

	01 thesis front-page.doc
	Energy-Aware Pipeline-based Reconfigurable Mixed-Radix FFT/IFFT Processor Design
	Energy-Aware Pipeline-based Reconfigurable Mixed-Radix FFT/IFFT Processor Design

	02 thesis hind-page.doc
	03 Thesis.doc

